
Lecture 25: Inflation

- +Inflation
- → How inflation solves the puzzles
- → Physical motivation of inflation: quantum fields

© Sidney Harris

5/3/2007

Reading: Chapter 16 of text

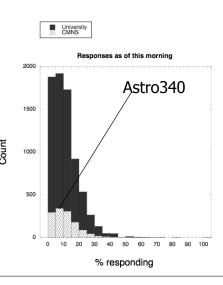
1

A quizz!

- +Last lecture we discussed 4 problems with "classical" cosmology.
- → Pick any one of them, and tell us the name and what it is about.

FINAL EXAM

- + Monday, 19 Dec, 10:30-12:30
- + Exam is in this room
- + Cumulative, but with emphasis on material after the midterm
- ⋆ No notes or books allowed
- + Bring calculator
- +Review session in class Dec 8
- +Q+A session in class Dec 13


5/3/2007

Please fill in your course evaluation!

only 4 people have done so as of this morning

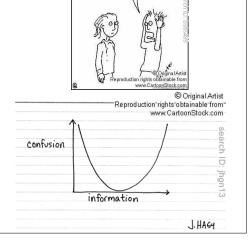
- +www.CourseEvalUM.umd.edu
- + Have you been challenged and learned new things? Have I been effective, responsive, respectful, engaging, etc?-or dull,boring, stodgy, unprepared?
- → Your responses are strictly anonymous. I only see the statistics.
- +Helps me and future students!
- +If we get >75% completion before the last lecture there maybe goodies (?)

→ The most popular reason respondents gave for not participating was the they were too busy and/or ran out of time

Four puzzles to solve

- + The Flatness Problem.
- → The Large-Scale Smoothness Problem.
- → The Small-Scale Inhomogeneity Problem
- + The Magnetic Monopole Problem.
- ★ To solve these requires 'fine tuning' or a very improbable initial state of the universe
- +Of course there are others too...

Sidney Harris


12/8/11

Reading: Chapter 16 of text (inflation)

Here We Go Again ...

Even for quantum physicists this is hard stuff

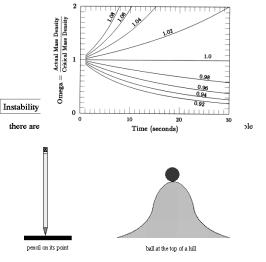
- ★ We are going beyond the bounds of present day certainty
- + these are VERY difficult concepts...please ask questions!

Wow. Either I have a cold or my head is way too full of information.

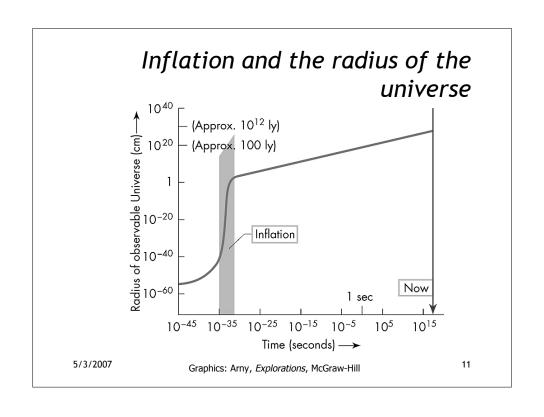
I.BASIC IDEA OF INFLATION

- → Theory of cosmic "inflation" was first proposed by Alan Guth in 1982
- + Guth postulated an Inflationary Epoch
 - + Very-rapid, exponential expansion of Universe
 - + Occurs during interval $t=10^{-37}-10^{-32}$ s
 - + Universe expanded by a factor of 10⁴⁰-10¹⁰⁰ during this time!
- + What caused inflation? We'll get to that later...

http://www.nature.com/news/2009/090415/full/458820a.html


Problems Inflation was Invented to Surmount

- → The conventional Big Bang theory leads has an initial conditions problem: the universe as we know it can only arise for very special and finely-tuned initial conditions.
- → an early period of accelerated expansion (inflation) solves this initial conditions problem and allows our universe to arise from generic initial conditions.


Values of Ω slightly below or above 1 in the early Universe rapidly grow to much less than 1 or much larger than 1 as time passes (like a ball at the top of a hill).

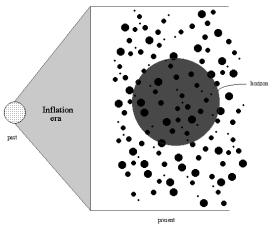
- as time passes, Ω would have quickly grown, or shrunk, to present-day values of much, much more, or much, much less than 1.
- + the Universe must have a value of Ω exactly equal to $\underline{1}$ for stability. Therefore, the flatness problem is that some mechanism is needed to produce a value for Ω to be exactly one (to balance the pencil)

Instability - or fine tuning

any perturbation on these objects causes a runaway to a more stable point

Inflation in the timeline End of Planck time; We do not gravity freezes out Confinement understand Strong force freezes (of quarks) out; inflation begins quantum 1035 Universe Weak and gravity- nor transparent 10³⁰ electromagnetic to neutrinos the true forces freeze out 10²⁵ Temperature (K) – Synthesis of nature of primordial 10²⁰ inflation helium 10¹⁵ Universe transparent 10¹⁰ to photons Now 10-50 10-40 10-30 10-20 10¹⁰ 1020 10-10 Time after Big Bang (s) ---5/3/2007 12

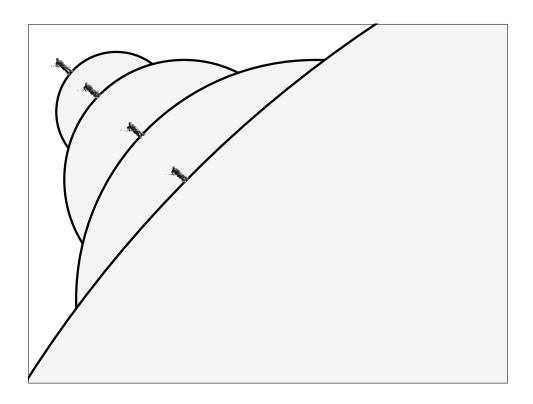
- +Does this rapid expansion imply a violation of relativity (no speed exceeds c)?
- +No, because it is *space itself* that is expanding (R(t)), rather than material particles moving apart at high speed in a fixed, stationary space
- +Nothing can travel through space faster than light. However, in general relativity, space itself can do whatever it likes.


5/3/2007 13

Summary of Inflations Effects

- → Before the inflationary period, the universe's constituents would have been in contact with one another, so they could have reached the same temperature.
- → Rapid inflation would make the universe's expansion appear very flat, in the same way that the surface of a balloon blown up by such a huge factor would resemble the Great Plains. Inflation ended ~10⁻³⁰ seconds after the Big Bang,
- + Since then the universe has expanded just as it would have in the standard big-bang model.

→ Only a small part of the original big bang is within our horizon- OUR universe under inflationary cosmology, the Universe underwent a phase change at the GUT era and expanded faster than the speed of light (the spacetime itself expanded, so there is no violation of special relativity)

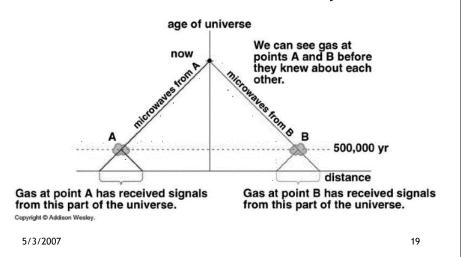


the result is that only a small part of the original Big Bang is within our horizon, what we call our Universe.

http://abyss.uoregon.edu/~js/ast123/lectures/lec18.html

II: SOLVING "COSMOLOGICAL PROBLEMS" WITH INFLATION

- → The Flatness Problem
 - Imagine taking any (reasonably) curved surface
 - → Now expand it by an enormous factor
 - → After the expansion, locally it will look flat
 - → So, inflation predicts a Universe that is indistinguishable from being flat



+ Mathematically, consider Friedmann's equation with a vacuum energy $V_{\rm I}$

$$H^2 = \left(\frac{dR/dt}{R}\right)^2 = \frac{8\pi G V_I}{3} - \frac{kc^2}{R^2}$$

- + During inflation, the vacuum energy density V_I stays nearly constant ...
- + ... but, R increases by an enormous factor
- + Hence, the last term in the equation (the curvature term) becomes negligible compared to the vacuum energy density term (which is converted into matter and radiation after inflation)
- + Therefore, Universe is well described as being **flat** after inflation see text pg 478

The horizon problem without inflation

+How inflation solves the horizon problem

- + Prior to inflation (at t ≈ 10^{-37} s), the particle horizon has radius of $r \approx 10^{-29}$ m
- + A sphere of this radius is the maximum volume that is causally connected at $t \approx 10^{-37}$ s (i.e. in which there can be a mutual influence-l=ct)
- + After inflation (at t $\approx 10^{-32}$ s), this region has exploded to 10^{11} 10^{70} m
- * "Normal" expansion then takes over... Universe expands by another factor of 10²² between end of inflation and recombination/decoupling (t = 400,000 yr)
- + So, at time of decoupling, causally connected volumes have radii at least $r_c = 10^{33}$ m!

- + Cosmic scale factor has increased by a factor 10^3 since decoupling (z = 1100), so causally-connected radius now would be at least $r_c = 10^{36}$ m
- + Current horizon of Universe (observable radius) Universe at present time is about $r_H = 10^{26}$ m
- → Since $r_H < r_c$ (by at least 10 orders of magnitude) inflation says that the whole observable universe originated within a small *causally-connected* patch of the early universe!
- + Since opposite sides of the Universe **now** were in fact in causal contact at t < 10⁻³⁷ s, this explains why the CBR (and everything else) is statistically uniform on large scales
- + Inflation solves the horizon problem!

5/3/2007 21

Inflation and causality time now 500,000 yr 10-36 s 10-38 s Copyright © Addison Wesley.

→The structure problem

- + The initial inhomogeneities are due to *quantum* fluctuations during the inflationary epoch.
- + Virtual particle pairs that formed would be separated by inflationary expansion before they could annihilate, creating uneven densities
- → Inhomogeneities were continually created, and then stretched to much larger scales -- outside the horizon
- It turns out that this naturally gives a characteristic power spectrum of inhomogeneities
 - + This is the "Harrison-Zel'dovich spectrum"
 - + Equal amplitude for fluctuations on all scales

5/3/2007 + Equivalent to "white noise" in acoustics: "static"

23

- + Any fluctuation created by inflation can only grow at much later times, after the horizon has expanded so that it is larger than the size scale of that fluctuation
- → Since the horizon scale increases in time, smallerscale fluctuations grow first (after inflation)
- + Harrison-Zeldovich spectrum is consistent with what we see now, in terms of the observed structure that has grown
- → Largest present-day structures (superclusters, voids, filaments) are the result of quantum fluctuations that originally occurred on sub-microscopic scales!
- http://www.scientificamerican.com/article.cfm?id=inflationcreates-infinity-universes

+Relic problem

- +Suppose exotic particles or structures (cosmic strings, magnetic monopoles etc.) were created in very early universe
- +They would become very diluted during the inflationary epoch, because space would expand so much
- +The probability that we see a "relic" exotic particle in our current universe would then be very, very small.
- +Inflation solves the relic problem!

5/3/2007 2

Additional Bonus Prize

Inflation also explains the origin of structure in the universe.

- Prior to inflation, the portion of the universe we can observe today was microscopic, and quantum fluctuation in the density of matter on these microscopic scales expanded to astronomical scales during Inflation.
- + while inflation tries to make the universe absolutely uniform, quantum mechanics prevents it from doing so; there is always a small amount of fluctuation in the amount of energy from place to place that no amount of inflation can erase.
- the rules of quantum mechanics predict what kinds of fluctuations should arise from inflation. The result is a set of perturbations of approximately equal strength at all distance scales - these are precisely the kind of fluctuations needed to explain the observed anisotropies of the CMB
- + Over the next several hundred million years, the higher density regions condensed into stars, galaxies, and clusters of galaxies.

http://map.gsfc.nasa.gov/universe/bb_cosmo_infl.html

Baryons

- +But what about baryons? Wouldn't the probability of finding them also be small?
- ⋆No, provided that baryogenesis occurred after inflation stopped: vacuum energy is converted to regular matter (including baryons) and radiation

5/3/2007

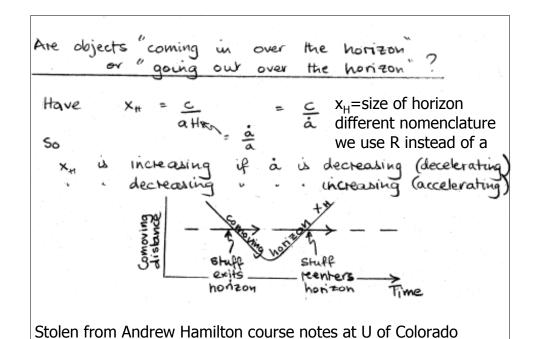
The Flatness Problem:

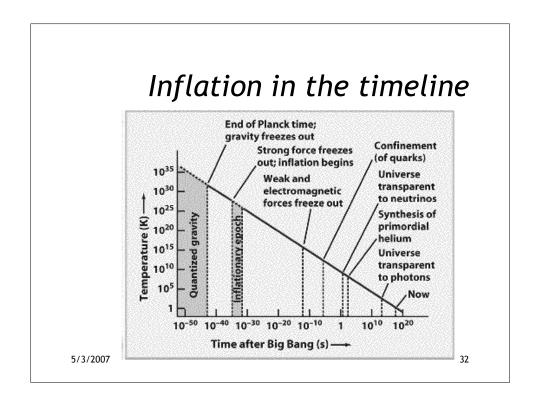
→ Imagine a bug living on the surface of a soccer ball (a 2-dimensional world). Its obvious to you that this surface was curved and that you were living in a closed universe. However, if that ball expanded to the size of the Earth, it would appear flat to you, even though it is still a sphere on larger scales. Now imagine increasing the size of that ball to astronomical scales. To you, it would appear to be flat as far as you could see, even though it might have been very curved to start with. Inflation stretches any initial curvature of the 3-dimensional universe to near flatness.

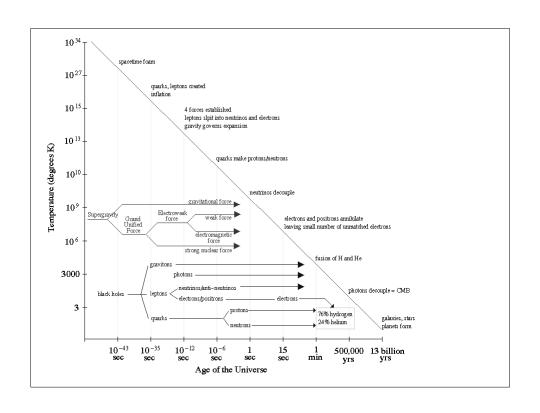
The Horizon Problem:

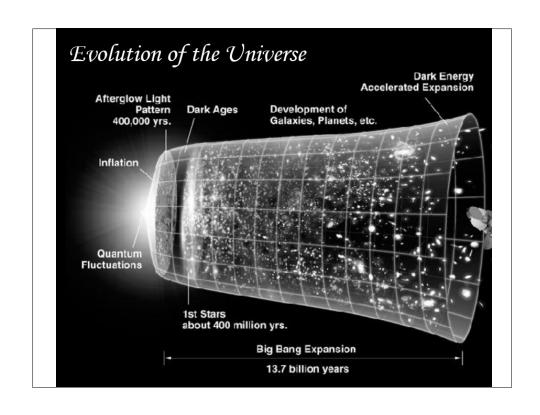
Inflation supposes a burst of exponential expansion in the early universe, thus regions that are now distant are much closer together prior to Inflation than they would have been with the standard Big Bang expansion and could have been in causal contact prior to Inflation and could have attained a uniform temperature.

The Monopole Problem:


 Inflation allows for magnetic monopoles to exist as long as they were produced prior to the period of inflation.
 During inflation, the density of monopoles drops exponentially, so their abundance drops to undetectable levels.


Structure Problem:


★ As a bonus, Inflation also explains the origin of structure in the universe. Prior to inflation, the portion of the universe we can observe today was microscopic, and quantum fluctuation in the density of matter on these microscopic scales expanded to astronomical scales during Inflation. Over the next several hundred million years, the higher density regions condensed into stars, galaxies, and clusters of galaxies.


Structure Problem - pg 479

- → The initial quantum fluctuations are stretched by inflation, become larger than the local horizon and are 'frozen' in.
- → When inflation stops these fluctuations 'reenter' the horizon
- → It turns out that this process 'naturally' produces the right shape of fluctuations as seen in the CMB and needed to start the formation of galaxies.
- → Its amazing that quantum mechanics the science of the very small, predicts the fluctuations that are needed to produce the largest things in the universe!

- +OK... inflation can solve many "cosmic problems"
- +But why did inflation happen?
- →We believe the answer lies in the behavior of quantum fields.

5/3/2007

III: QUANTUM FIELD THEORY

- → To understand inflation, we must consider a little more physics about matter and forces.
- → Modern theories of matter and forces are called "Quantum Field Theories"
- + A VERY difficult subject
 - + Even basic concepts are very abstract
 - → Advanced math needed to study it in any detail.
- → Here we just touch on the basic principles.

12/8/11 36

E/M radiation... particles or waves?

- → Electromagnetic radiation (light) can behave as:
 - → Waves of electric & magnetic field
 - + E.g., see reflection, refraction, diffraction effects
 - + Particles (photons)
 - + E.g. can detect them individually on a CCD
 - + The same EM energy shows both aspects of its behavior: photons can follow a wave pattern
 - → Just one of the weird aspects of quantum theory!

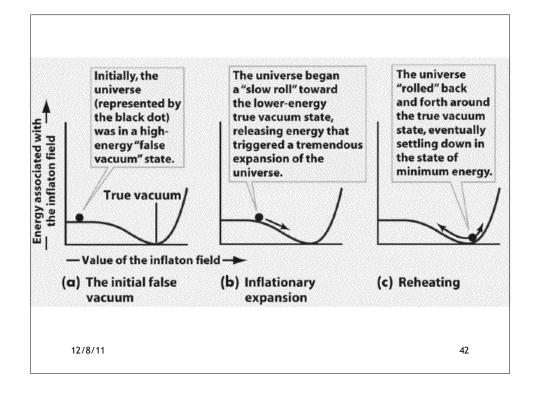
12/8/11 37

Fields and particles

- + Quantum view of EM radiation:
 - + Basic entity is the electromagnetic field (which permeates all of space)
 - + Photons are **excitations** (ripples) of a field with certain wavelengths and frequencies
 - + Energy/momentum of the excitations in the field is quantized... can only add or take away energy/momentum from field in discrete amounts equaling the energy in a single photon
- → Every particle has its own field
 - → Electron Field (excitations = electrons)
 - + Quark Fields (excitations = quarks)
 - → Gluon Fields (excitations = gluons)
 - + etc. etc.
- → Position and momentum of a particle cannot both be known simultaneously, but obey certain probabilistic rules related to the field's wave behavior

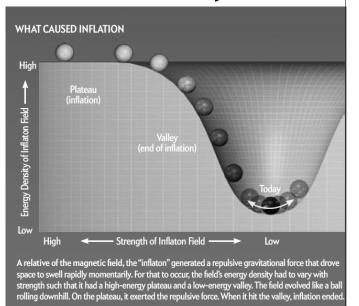
Quantum Fluctuations

- → The properties of the Universe apparently come from `nothing', where nothing is the quantum vacuum, which is a very different kind of nothing.
- → `empty' space is not truly empty, it is filled with spacetime, for example.
- → Spacetime has curvature and structure, and obeys the laws of quantum physics. Thus, it is filled with potential particles, pairs of virtual matter and anti-matter units, and potential properties at the quantum level.

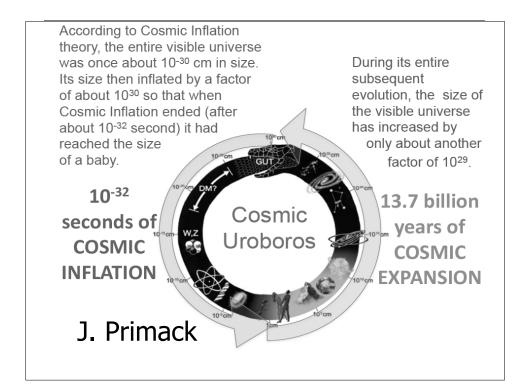

http://abyss.uoregon.edu/~js/ast123/lectures/lec17.html

IV: FALSE VACUUMS AND VARIOUS INFLATION MODELS

- + Alan Guth's original idea...
 - + In early universe, there was some an exotic particle (called "inflaton") and a corresponding quantum field
 - + As the very early universe evolved, this field got stuck in a high-energy state
 - +Analogous to a marble resting on top of an upside-down bowl, or a pencil balanced vertically on its point
 - + This created an enormous "false vacuum" energy that drove the inflation of the Universe (see text pgs 471-477).
 - + Similar to "dark energy" which is making the Universe expand now!
 - + Eventually, field gets "unstuck" and evolves to a lowerenergy state corresponding to "true vacuum", so that inflation ends.


- → Guth originally thought the Higgs Boson (a massive particle related to baryogenesis) would work as the "inflaton"
- → Guth's original model turned out not to work because inflation would not stop!
- + "New" inflation
 - → Proposed independently by Linde and Steinhardt
 - → Inflation occurs during transition from false to true vacuum
 - + Quantum field gets "unstuck" slowly

12/8/11 41



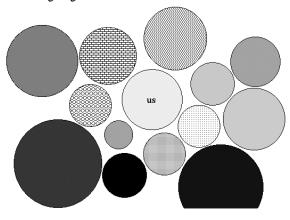
- + P.Steinhardt-ScientificAmerican2004

What Caused Inflation

The Ultimate Growth Spurt + Inflation relies on a special ingredient known as inflationary energy, inflationary which, combined with gravity, can drive the universe to expand by an huge amount in an instant. + see fig 16.6 in text +The inflationary energy must be hugely dense, and its density must remain nearly constant during the inflationary epoch. + It must repel rather than attract causing space to swell so rapidly. +theorists have identified many possible sources of such energy

- → During inflation, temperature plummets because T is inversely proportional to the cosmic scale factor R(t)
- → After inflation ends, vacuum energy is converted into ordinary particles and radiation, which reheats the universe: T rockets up again
- → Subsequent evolution is just as in the radiationdominated, followed by matter-dominated, usual stages that we've discussed

12/8/11 46

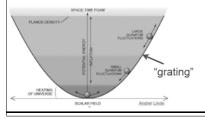

Chaotic inflation

- → This is currently considered the "standard" inflationary model
- + Idea is that inflation occurs due to fluctuations in some quantum field in the early universe
- + So, some regions inflate and some don't; our whole observable universe is a sub-part of one of the "bubbles" that did inflate
- + Larger "super-universe" may be continually spawning new bubble universes within it
- + Think of boiling water as an analogy: bubbles form some places, but not in others; then expand or collapse

12/8/11 47

Bubble Universes

after the inflation era, our Universe became just one of many bubbles in the ${\rm Big}\ {\rm Bang}\ {\rm substratum}$


although these other bubble universes may exist theoretically, we will never be able to observe or communicate with them since they are outside our horizon

16/8/11/s: University of Oregon Physics Dept

J. Primack **COSMIC** LAS VEGAS Coins constantly flip. Heads, and the coin is twice the size and there

are two of them. Tails, and a coin is half the size.

Consider a coin that has a run of tails. It becomes so small it can pass through the grating on the



+ Inflation makes a few strong testable predictions

- **→** The fluctuations have a particular patternthey are Gaussian (Bell curve shape) $(\sqrt{})$
- **→** A particular type of polarization in the CMB- B modes (produced by gravity waves)-tiny effect
- + Shape of fluctuations is a power law in amplitude $(\sqrt{})$

Testing Inflation

The Planck satellite is looking for the B modes NOW... results anticipated in 1 year

- + All theories, no matter how wonderful they seem need to be tested... they **need** to
 - + make new predictions which can be observationally checked and
 - + should 'fit in' with the rest of understood and tested physics
 - + not have 'ad hoc' parameters which just produce the desired effects or be fine tuned

Testing Inflation

There is a lot of discussion about whether chaotic (eternal) inflation can be checked with data

Perhaps need something more fundamental (GUTs)

V: INFLATION AND US

- + Inflation solves many problems about the observed parameters and properties of our universe...
 - + Space is flat because any original curvature was inflated away
 - → Well-separated regions on the horizon look similar to each other because they were neighbors before inflation
 - → The perturbations in the CBR which evolved to create structure in the universe has the power spectrum it does because it was imprinted during inflation due to quantum fluctuations
- → There are no strange relics around because the volume per weird particle (monopoles, etc) 12/8/11 became very large during inflation epoch

- + ...and chaotic inflation may help explain why "we are here"
 - → There may be many regions in the larger universe (hyperuniverse?) that have different properties
 - + Humankind could only have evolved in a bubble that has the properties that "our universe" has!
 - + There may be other interesting bubbles out there, but it's beyond the realm of science to know what they are like (they are causally disconnected from us)...
 - → This provides a possible answer to the "Why 13.7 Gyr ago?" question if we're in a youngish bubble in an older hyperuniverse.

12/8/11 53