Class 6 : General Relativity

ASTR350 Black Holes (Spring 2020) Prof. Richard Mushotzky

RECAP

Einstein's postulates

- Laws of physics look the same in any inertial frame of reference.
- The speed of light is the same in any inertial frame of reference
- Strange consequences
 - Time dilation and length contraction
 - Relativity of simultaneity and ordering of events... need to have ultimate speed limit
 - Equivalence and conversion of mass and energy... reason for ultimate speed limit

We have been carefully avoiding gravity

This class

- Finally talk about gravity
- Affect of gravity on light
- Affect of gravity on time
- Strong equivalence principle
- HW 3 due Feb 20
- Alex D's office hours for Monday Feb 17 are 12:00-1:00 – ONLY FOR THIS WEEK

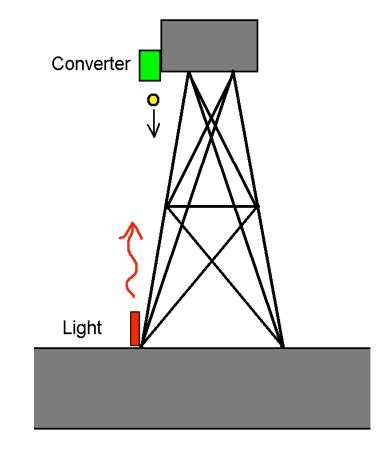
HW 3

- Homework 3 : The Theory of Relativity
 (Due 20h February 2020)
- I. Read the New York Times article on Einstein https://www.nytimes.com/2015/11/24/science/acentury-ago-einsteins-theory-of-relativity-changedeverything.html
- 2. Read/listen to NPR story on atomic clocks at http://www.npr.org/2014/11/03/361069820/newclock-may-end-time-as-we-know-it
- For each of these pieces, submit via ELMS one question that came to your mind, and one issue that you found particularly interesting.

Ehe New York Eimes

WEDNESDAY, DECEMBER 3, 1919

First Newtonian mechanics (special relativity), now his law of gravity (general relativity)


- As we have just learned we have to understand
 - In whose frame do we measure ?
 - Does the force depend based on your reference frame?
 - Can gravity information travel (communicate) faster than *c*?

General Relativity

- Like special relativity, the general theory predicts phenomena which differ significantly from those of classical physics,
 - especially concerning the passage of time,
 - the geometry of space,
 - the motion of bodies in free fall, and the propagation of light.
- Examples of such differences include gravitational time dilation, gravitational lensing, the gravitational redshift of light, and gravitational time delay

I: Einstein's Tower

- Another thought experiment... suppose that light is not affected by gravity.
- Consider a tower on Earth
 - Shine a light ray from bottom to top
 - When light gets to top, turn its energy into mass.
 - Then drop mass to bottom of tower.
 - Then turn it back into energy

Perpetual motion?

So...

• Suppose original photon energy E

 $(E_{grav}=mgh)^*$

- By assumption, photons are is not affected by gravity so it has energy E once it reaches top
- Convert this energy into mass, mass created at top is $m=E/c^2$
- Then drop mass... at bottom of tower, it has picked up speed due to the conversion of gravitational potential energy

$$E_{new} = E + mgh = E\left(1 + \frac{gh}{c^2}\right)$$

• We have made energy! We're rich!!!! Infinite amount of energy!

* A little physics.. the energy due to falling in a gravitational field is E_{fall} =mgh (h=height you fall, m is the mass falling, and g is the local acceleration due to gravity)

- Clearly something is wrong with our assumptions...
 - Only way we can <u>conserve energy</u> is to suppose that light <u>is</u> affected by gravity...
 - We need the photon to lose energy as it climbs upwards... at top of tower, we must have

$$E_{top} = E\left(1 + \frac{gh}{c^2}\right)^{-1}$$

This is known as gravitational redshift (?)

Gravitational Redshift

- for light the energy of a photon is related to its frequency,ν, (alternatively its wavlength,λ)
 E=h*v=hc/λ→ lower energy, longer wavelengthredder
- The profound nature of gravitational redshift...
 - Imagine a clock based on the frequency of light
 - Place the clock at the base of the tower... observe it from the top.
 - Photons lose energy... so they decrease frequency
 - Thus, we see the clock running slowly!
 - Time passes at a slower rate in a gravitational field! (units of v is cycles per sec, λ is wavelength of light)
 - ***h= Planck's constant (**6.62606957 × 10⁻³⁴ m² kg/s)

Properties of Waves

- Recall properties of waves:
- Waves characterized by
 - Wavelength (λ) = distance between crests- (units length)
 - Frequency (f or v) = number of crests passing a given point per second (units cycles/time)
- Speed of a crest; $s_c = \lambda v$ (this is generic to waves, for light $s_c=c$)
- Energy of a wave is proportional to frequency v, E = hv.

2/10/20

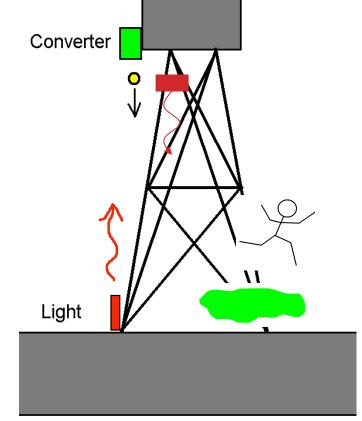
To repeat....

- The profound nature of gravitational redshift...
 - Imagine a clock **based on the frequency of light**
 - Place the clock at the base of the tower...

$$E_{top} = E\left(1 + \frac{gh}{c^2}\right)^{-1}$$

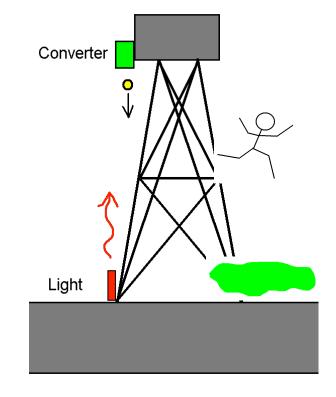
- observe it from the top.
- Photons lose energy... so their frequency decreases
- Thus, we see the clock running slowly!
- Time passes at a slower rate in a gravitational field!

Gravitational Redshift


- To work it out with equations
- For a photon $E=mc^2=h_V$
- The gravitational potential energy (the energy gained by falling in a gravitational field) PE=-GMm/r=(-GMh/ rc²)v₀
- So as the photon rises up in the gravitational field
- h_v=h_{v0} {1-(GM/rc²)}; v=v₀ {1-(GM/rc²)}; Δv/v=GM/rc²

where Δv is the change in frequency of the photon $\Delta v = (v - v_0)$

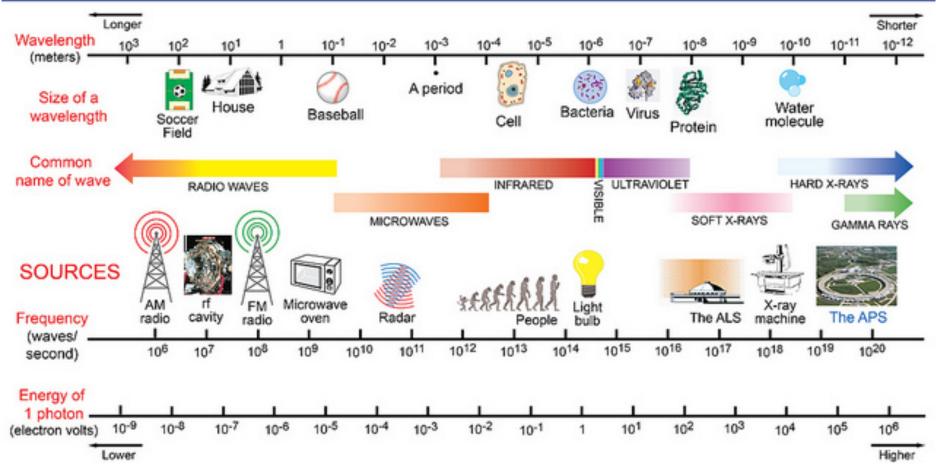
Tthe photon is reduced in frequency (and thus lengthened in wavelength) this is called the **gravitational redshift**


Resolving the tower problem

- Now consider light ray aimed from top to bottom of tower
- Free-falling(FF) observer sees light ray travel unaffected by gravity, since freefall is an inertial frame
- From"Earth' s"frame...
 - Free-falling (FF) observer is traveling faster and faster
 - Falling observer would see an increasing *redshift* of light source according to special relativity (doppler effect)
 - If FF observer is supposed to see a constant frequency light beam, then light must get relatively blueshifted as it falls in a gravitational field, to 2/10/20 compensate

Gravitational Redshift

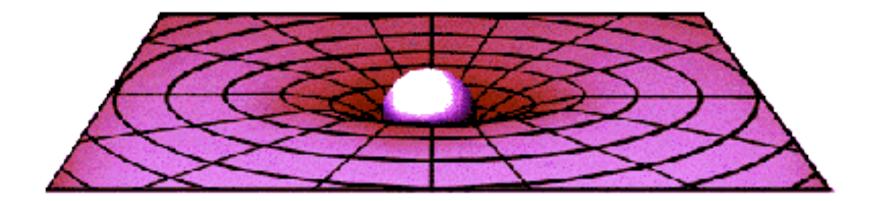
- Free-falling (FF) observer sees light ray travel unaffected by gravity.
- From "Earth's" frame...
 - Free-falling (FF) observer traveling faster and faster
 - FF observer would an increasing *blueshift*
 - Since FF observer sees an unaffected (I.e. constant frequency) light beam, light must get progressively redshifted as it climbs up.
 - Redshifting removes just the right amount of energy to solve tower paradox.



Maxwell and gravity

Clearly, our assumption must be wrong...

- light must be affected by gravity.
- But gravity does not appear in Maxwell's equations, which govern light
- Thus, Maxwell's equations are not complete* and are not exactly valid in the reference frame of Earth's surface, where there is gravity.
- the Earth's surface must not be an inertial frame of reference!



Another Effect of Gravity on Light

 Gravitational time delay- time it takes for light to travel to a source is effected by gravity (paths longer in curved space)

Curved Space (more in next lecture)

Curved space around the Earth looks something like this...

From web site of UCSD

The **Shapiro time delay** effect, or **gravitational time delay**

- the gravitational time delay effect, one of the four classic solar-system tests of general relativity.
- Radar signals passing near a massive object take slightly longer to travel to a target and longer to return than they would if the mass of the object were not present
- bounce radar beams off the surface of Venus and Mercury and measure the round-trip travel time as a function of orbit.
- Results agree with GR to 20 parts per million

Shapiro Delay Geometry

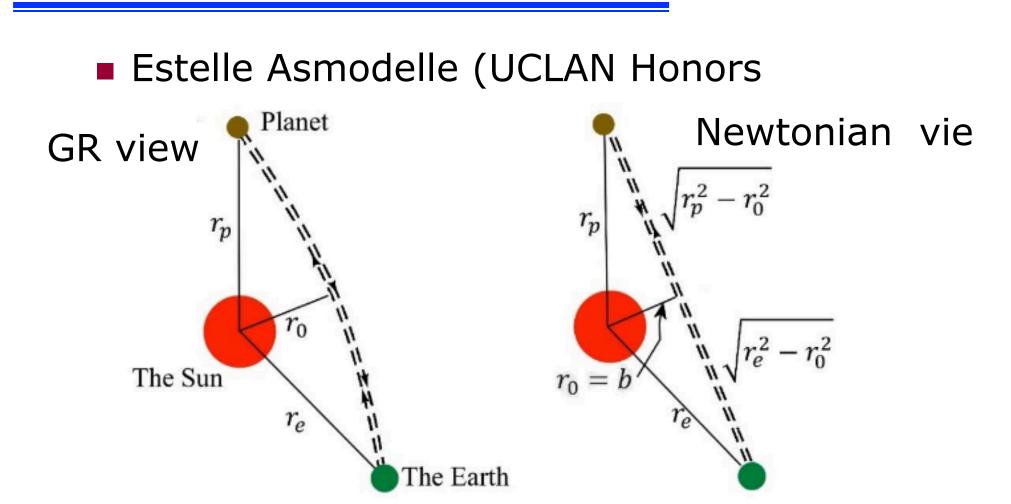


Figure 8 The radar reflection of photons from the Earth to a planet and back. The left image is the actual path, exaggerated. The right image is the Euclidean form. Illustration E. Asmodelle.

Hafele-Keating experiment

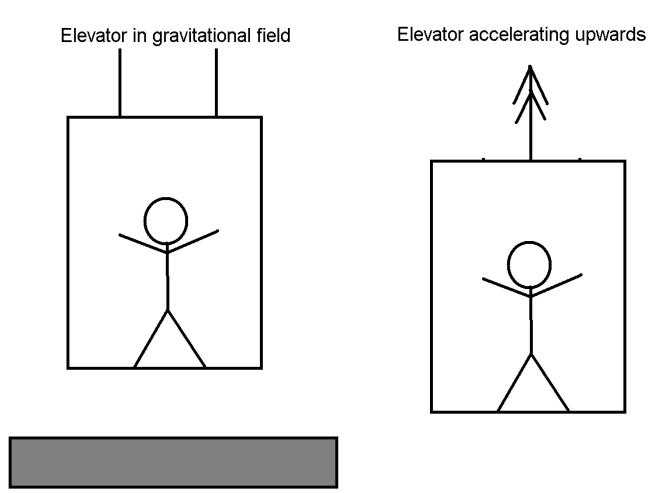
- Hafele & Keating (1971) flew around world with atomic clocks...
- Clock on plane gained time relative to one on ground by...
 - 273±7ns (Westbound)
 - -59±10 (Eastbound)
 - But TWO terms
 - special relativity
 - general relativity

	nanoseconds gained			
	predicted			
	gravitational (general relativity)	kinematic (special relativity)	total	measured
eastward	144±14	-184 ± 18	-40 ± 23	–59 ± 10
westward	179±18	96±10	275±21	273±7

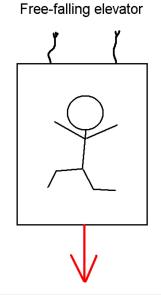
Two terms are need- special and general relativity

II: Strong Equivalence Principle

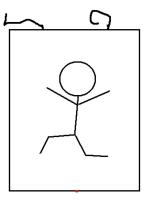
Recap of the weak equivalence principle


- All objects accelerate at the same rate in a given gravitational field.
- In other words, inertial and gravitational masses are the same for any object.
- Einstein introduced the strong equivalence principle

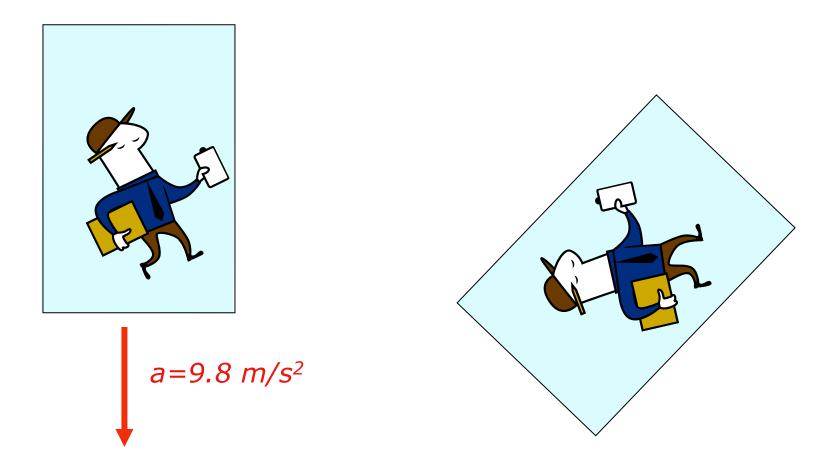
 when gravity is present, the inertial frames of Special Relativity should be identified with free-falling frames of reference.
- What does this mean???


EQUIVALENCE PRINCIPLES

- Recall the "weak" equivalence principle:
 - All objects are observed to accelerate at the same rate in a given gravitational field (Galileo tower of Pisa experiment).
 - Therefore, the inertial and gravitational masses must be the same for any object.
 - This has been verified experimentally, with fractional difference in masses <10⁻¹¹
- As a consequence, the effects of gravity and of inertial forces (fictitious forces associated with accelerated frames) cannot, locally, be distinguished

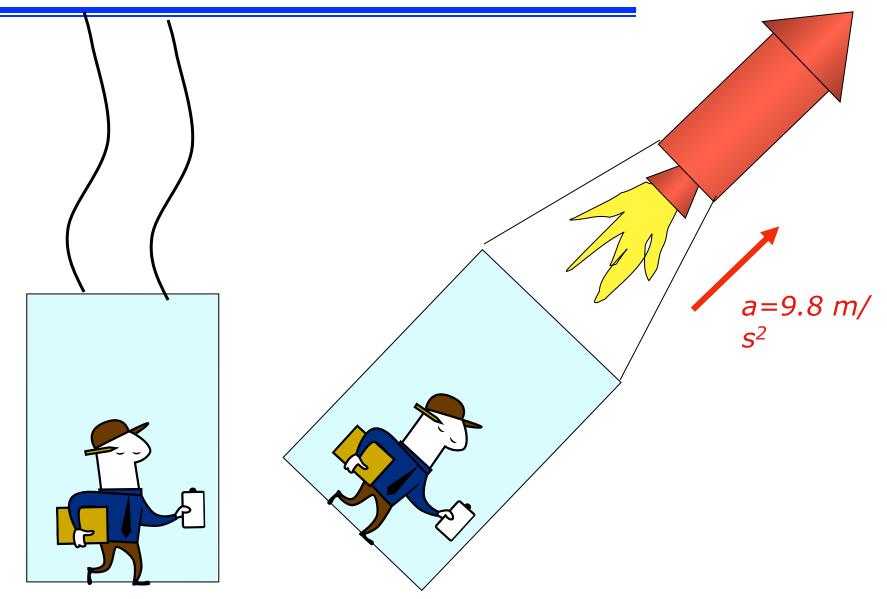

Accleration vs Gravity

There is **no** way of telling the difference between a free-falling frame in a gravitational field and an inertial frame in no gravitational field... the two are equivalent.

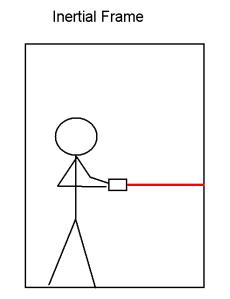


Elevator in deep space

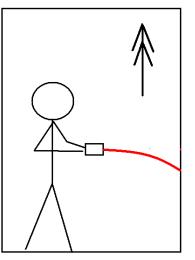
Interior of elevator free-falling on Earth is equivalent to interior of elevator floating freely in deep space


Back to the Astronauts...

What about gravity?


- Suppose that you decide that your frame of reference is not inertial...
 - Freely moving bodies change velocity
 - Is it because of gravity or is the frame accelerating?
 - Einstein says that you cannot tell the difference!
 - Gravity is a "fictitious force" i.e., a force which appears to exist because we are living in a non-inertial frame of reference.

Elevator at rest on Earth equivalent to elevator being pulled by accelerating rocket in deep space



What about light? It "falls", too!

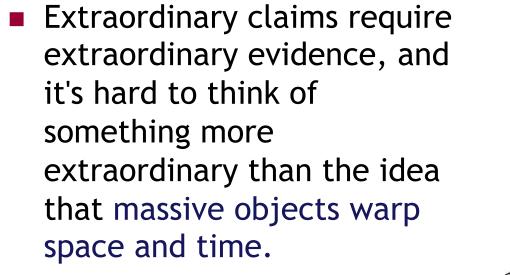
- Astronaut in inertial frame with flashlight
 - Inertial frame, so light goes in straight lines
 - It doesn't matter whether this is free fall or far from masses
- What if we now put flashlight in a gravitational field (accelerated frame)?
 - Light beam will bend: it must accelerate at the same rate and direction as the elevator
 - Strong equivalence principle ⇒ frame with gravity acts the same
 - Important conclusion light "falls" due to gravity!- how can we test this idea?

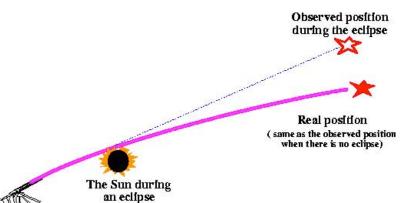
The Eddington Test

- 1919 the first "accessible" total Solar eclipse since Einstein postulated the Strong Equivalence Principle (SEP)
- Arthur Eddington
 - Famous British Astronomer
 - Lead expedition to South Africa to observe eclipse
 - Was looking for effects of gravitational light bending by searching for shifts in positions of stars just next to the Sun*.
 - The shifts were exactly as Einstein calculated! (1.75 seconds)
 Extremely important

*Einstein predicted that the magnitude of the shift depended on how large the angle was between the sun and the background star and the mass of the 34 n

- Prior to this, the GR was untested - just an interesting, intelligent, idea.
- After Eddington, Einstein (and his science) was finally be taken seriously, and even the non-scientists of the world somehow found themselves standing in awe of the genius of this Swiss-German physicist.

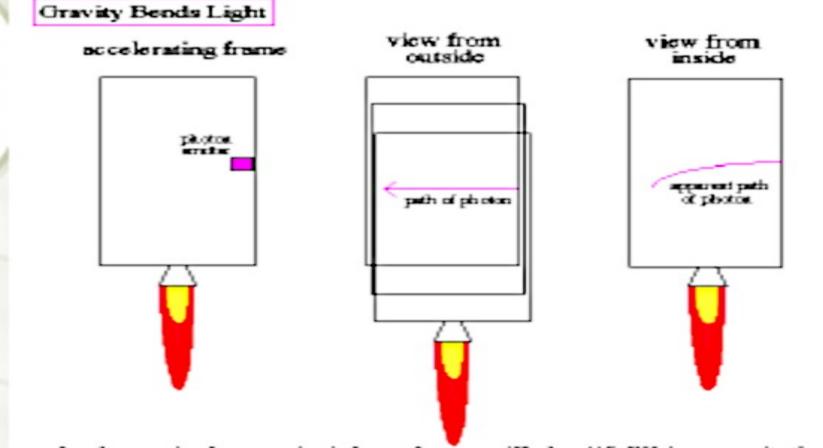



Can Gravity Bend Light?

✦If light, does not have mass, how could it possibly be affected by gravity?

 ★After all, the force of gravity - - is directly dependent upon the mass of two objects.

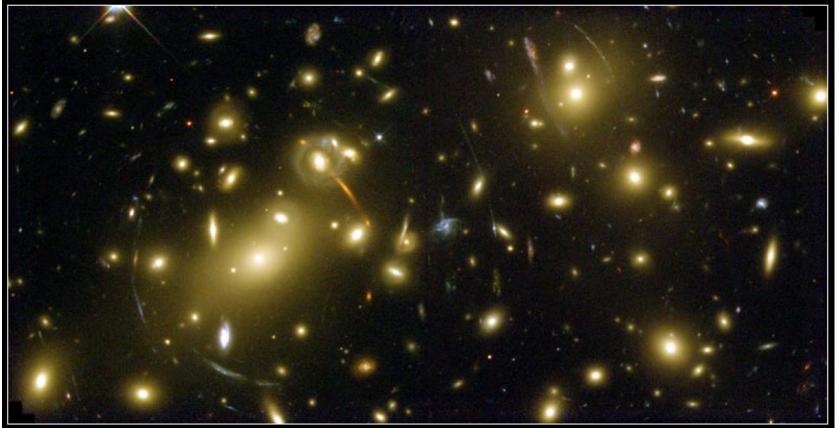
http://isaacmmcphee.suite101.com albert-einstein-and-bending-lighta43865#ixzz1nboyQEaH



Angle is very small

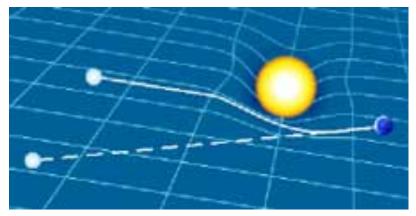
the angle of deflection of a light ray that just grazes the surface of the Sun should be $\theta_d = 4GM_o/c^2R_o = 8.5 \times 10^{-6}$ radians = 1.75 arcsec

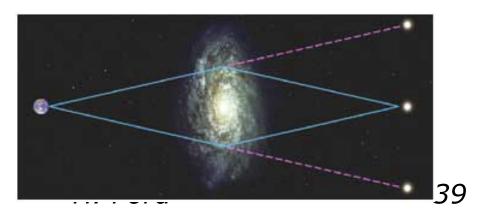
http://sunearthday.nasa.gov/2006/events/einstein.php

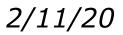

Bending of light by Gravity

by the equivalence principle, a photon will also "fall" in a gravitational field

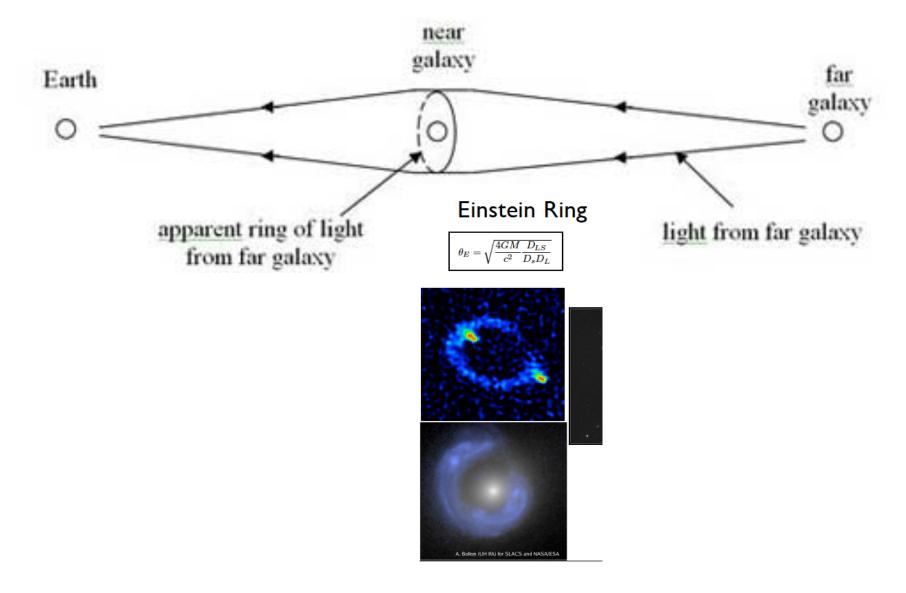
The principle of equivalence renders the gravitational field fundamentally different from all other force fields encountered in nature. 37 http://abvss.uoregon.edu/~is/cosmo/lectures/lec06.html


Giant lenses in the sky

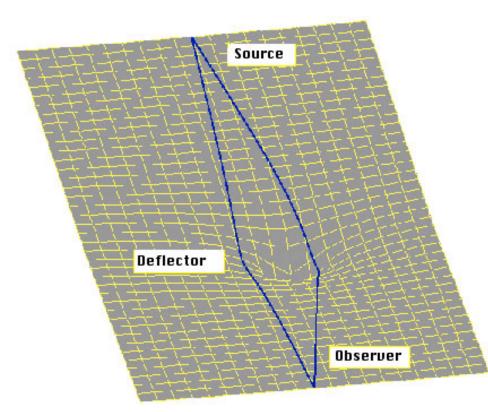

Galaxy Cluster Abell 2218 NASA, A. Fruchter and the ERO Team (STScI) • STScI-PRC00-08 HST • WFPC2


Gravitational Lensing

Einstein's prediction that gravity distorts space-time was verified by observing a 1.7" deflection of star close to the sun during a solar eclipse in 1919.



The gravity from a foreground galaxy bends or images the light from a background galaxy or quasar.

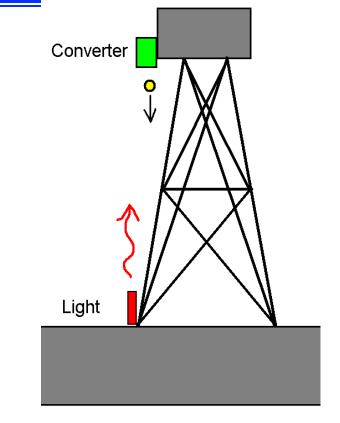


Light Is Bent On Cosmic Scales



light 'bending' is a consequence of the bending of space itself

Quelle genau hinter der Linse

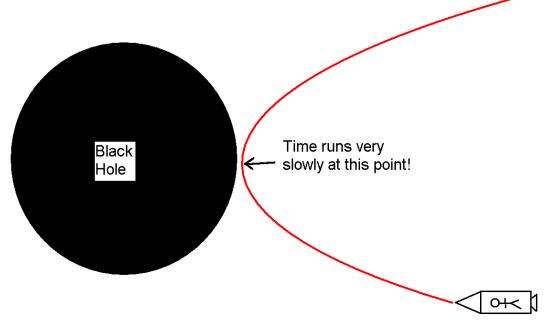


Remember the tower...

Light beam must lose energy as it climbs up

- So...frequency must decrease-wavekength increase
- i.e., light is redshifted.
- Gravitational redshifting

Remember the tower...


- Imagine a clock based on frequency of laser light...
 - 1 "tick" = time taken for fixed number of crests to pass
 - Gravitational redshifting slows down the clock.
 - Clocks in gravitational fields must run slowly

$$t_{grav} \approx \left(1 - \frac{GM}{c^2 r}\right) t_{space}$$

if gravitational field is "weak"

How to live for a 1000 years!-Interstellar the movie

- Go where gravity is very strong!
- Observer on Earth would see astronaut's clock running very slowly when close to black hole - astronaut would age very slowly.
- (In fact, there are other discomforts from of being near a black hole!)

Gravitational time dilation has practical importance!

Global Positioning System (GPS)

- System of satellites that emit timing signals
- Detector on Earth receives signals
- Can figure out position on Earth's surface by measuring time delay between signals from different satellite (light travel time gives distance to satellite)
- Need to measure time of signal from satellite very well!
 - 10m positioning requires ~30ns time accuracy
- Satellites are at varying heights; clocks run at varying rates
 - Satellite clocks drift by ~38us per day wrt Earth clocks!

If @R/@ffects were not included, computed GPS positions would drift from true position by kilometers per day!

GPS Geometry

Have both special (velocity of satellites) and GR effects (gravity) $\left|\mathbf{r}-\mathbf{r}_{j}\right|=c(t-t_{j});$ *j* = 1, 2, 3, 4. distance = c times Δt

Figure 11: The positions of receivers are shown. Transmitted at t_j, and at positions r_j. The values of GvT is found by solving four simultaneous equations. Courtesy: (Ashby, 2002).

Consequences of Strong Equivalent Principle

Gravity effects space-time itself ! Gravity can bend light Gravitational redshift Gravity can slow down time Gravity can change lengths

see for more info https://www.einstein-online.info/en/spotlight/equivalence_principle/