Dynamics and how to use the orbits of stars to
do interesting things

chapter 3 of S+G- parts of Ch 11 of MWB (Mo,
van den Bosch, White)

READ S&G Ch 3 sec 3.1,3.2,3 4

we are skipping over epicycles

A Guide to the Next Few Lectures

*The geometry of gravitational potentials : methods to derive gravitational
potentials from mass distributions, and visa versa.
*Potentials define how stars move
consider stellar orbit shapes, and divide them into orbit classes.
*The gravitational field and stellar motion are interconnected :
the Virial Theorem relates the global potential energy and kinetic energy of
the system.

* Collisions?
* The Distribution Function (DF) :
the DF specifies how stars are distributed throughout the system and
with what velocities.
For collisionless systems, the DF is constrained by a continuity equation :
the Collisionless Boltzmann Equation
*This can be recast in more observational terms as the Jeans Equation.
The Jeans Theorem helps us choose DFs which are solutions to the continuity

equations
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A Reminder of Newtonian Physics sec 3.1 in S&G

Newtons law of gravity tells us that two masses attract
each other with a force

eq 3.1 d GmM ¢ (x) is the potential

If we have a collection of masses acting on a mass
m_the force is

Gm, M eq3.2
g movo=-3 M o x) e L
dt 5| X — X4

d
eq3.3 gemv)=—mVe(x). Gauss's thm [V¢ eds’=4nGM
with the Integral of the normal component
over a closed surface =4nG x mass within

‘P(X)——Zi for x==x_,
Ix—x.|” that surface

eq3.4

the gravitational potential. If we can approximate
the discrete stellar distribution with a continuous
distribution p.

@ (x)=— [ TL Lo p(x) is the mass depsity
distribution

Conservation of Energy and Angular Momentum

In the absence of external forces a star will conserve
energy along its orbit
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Some Basics - M. Whittle

* The gravitational potential energy is a scalar field

* its gradient gives the net gravitational force (per unit mass) which

is a vector field : see S&G pg 113

R
— t st 7y =V.-V=V
(I") 3 ox?  Jdy* 0z
d(r) = -G d’r
v I —x|
'
r —r
F(r) = -V&(r) F G| —— p(r) d°r
v ' —rf
V - F(r) = —4xGp(r)
V2®(r) = 4xGp(r) > Poissons eq inside the mass
5 distribution
Ve®(r) = 0 < > Outside the mass dist

Poisson's Eq+ Definition of Potential Energy
So the force per unit mass is

F(X):_Vé(x):."Gp(x')(x_x;)dsxl
x=x|

To get the differential form we start with the definitic
. 2 .
of @ and applying V*to both sides S+G pg 112-113

(W)
p(x) 1s the density dist

V24>(X):—V2f GP(X')d3X.
Ix —x'|

=4mGp(x) Poisson's equation.

Potential energy W
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Derivation of Poisson's Eq
So the force per unit mass is

(X—X')dax.

F(x)=-Vé(x)=[ Gp(x")

x—x’

To get the differential form we start with the definitic
of @ and applying V?to both sides

VZGP(X):—sz Cl;P(X')dBX.

xX—x"'|

=4mwGp(x) |Poisson's equation.

see S+G pgl12 for detailed derivation or web page
'Poisson's equation'’

More Newton-Spherical Systems

Newtons 1st theorem: a body inside a spherical shell has no net
gravitational force from that shell; e.g. V®(r)=0

Newtons 2nd theorem: the gravitational force on a body outside a
spherical shell is the same as if all the mass were at a point at the
center of the shell.

Simple examples:

Point source of mass M; potential d(r) =-GM/r;

definition of circular speed; speed of a test particle on a circular orbit
at radius r

v2 =r d®(r)/dt=GM/r; v =sqrt(GM/r) ;Keplerian

circular circular

escape speed =sqrt[2d(r)]=sqrt(2GM/r) ; from equating kinetic
energy to potential energy 1/2mv?=|d(r)|
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Characteristic Velocities

2 =r d®(r)/dt=GM/r; v=sqrt(GM/r) Keplerian

circular

velocity dispersion o?=(1/p) [p (0®(r,z)/dz)dz
or alternatively o?(R)=(4xG/3M(R) [rp(r) M(R) dr

escape speed =v

=sqrt(2®@(r)) or O(r)=1/2v2,,

€SC

so choosing r is crucial

Escape Speed

As r goes to infinity ¢(r) goes to zero
s0 to escape v2>2¢(r); e.q. V... =sqrt(-2¢(r))

Alternate derivation using conservation of energy

Kinetic + Gravitational Potential energy is constant
—KE,+U,=KE,+U,
Grav potential =-GMm/r; KE=12mv,__ 2>

escape
Since final velocity=0 (just escapes) and U at
infinity=0
12mv.. .>-GMm/r=0

escape 0



Gravity and Dynamics-Spherical Systems- Repeat

e Newtons 1% theorm : a body inside a a spherical shell has no net force from that

shell V¢ =0

e Newtons 2" theorm ; a body outside the shell experiences forces as if they all
came from a point at the center of the shell-Gravitational force at a point outside a
closed sphere is the same as if all the mass were at the center

* This does not work for a thin disk- cannot ignore what is outside of a given

radius

* One of the prime observables (especially for spirals) is the circular velocity; in
general it is V_2(R)/R=G(M<R)/R? ; more accurate estimates need to know shape

of potential

* so one can derive the mass of a flattened system from the rotation curve

* point source has a potential p=-GM/r

* A body in orbit around this point mass has a circular speed v 2=r ¢pd/dr=GM/r

e v _=sqrt(GM/r); Keplerian

* Escape speed from this potential v
energy KE=1/2mv?

escape

escape )

=sqrt(2¢)=sqrt(2GM/r) (conservation of
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Homogenous Sphere B&T sec 2.2.2

» Constant density sphere of radius a and
density p,

» M(r)=4nGrp, ;r<a

» M(r)=4nGa’p, ; r>a \Y%

d(R)=-d/dr(M(R))

R>a: ¢(r)=4nGa’p,=-GM/r
R<a' d(r)=-2nGp,(a2-1/3r?));
= (41/3)Gp,r?> solid body rotation R<a
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Some Simple Cases

e Constant density sphere of radius a and density p,
Potential energy (B&T) eq 2.41, 2.32
¢(R)=-d/dr(M(R))*
R>a: ¢(r)=4nGa’p,=-GM/r
R<a : ¢(r)=-2nGp (a’-1/3r?));
V2= (47/3)Gp,r? solid body rotation

Potential is the same form as a harmonic oscillator

e.g. the eq of motion is d’r/dt>=-GM(r)/r=47/3Grp; solution to harmonic

oscillator is
r=Acos(wt+¢d) with w= sqrt(4m/3Gp)=2n/T
T=sqrt(3/Gp,)=2mr/v

circ
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Homogenous Sphere

* Potential energy of a self gravitating sphere of constant density r,
mass M and radius R is obtained by integrating the gravitational
potential over the whole sphere

« Potential energy U=1/2/rp(r)V®d3r

U = JR-4G M(r) o(r) r dr=fRG[(4/3mtpr?)x (4mpr?)dr]/r
~(16/3)2p2) fRrdr==(16/15)72pR5

using the definition of total mass M
(volumexdensity)M=(4/3)mpR?

gives| U=- (3/5) GM?*/R
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Homogenous Sphere B&T sec 2.2.2

~

Orbital period T=2mr/v ;.. =sqrt(3n/Gp,) $icis Flynn: T'uorla O'bserva.
Dynamical time=crossing time =2} i
=T/4=sqrt(3n/16Gpy) o
i ]

Potential is the same form as an harmonic >§3 [

oscillator with angular freq 2m/T (B&T

2.2.2(b)) ) A |

o ot

Regardless of initial value of distance (r) a %

particle will reach r=0 (in free fall) in a B i

time T=/4 .‘g ¢ :
Eq of motion of a test particle INSIDE the .;

sphere is 5 1
dr?/dt>=-GM(r)/r>=-(47/3)Gp,r | S AT |
General result dynamical time ~sqrt(1/Gp) Rodius (ro)

Spherical dystems:Homogenous sphere of radius a

Summary

e M(r)=4/3nr3p (r<a); r>a M(r)=4/3nr’a

* Inside body (r<a); ¢(r)=-2nGp(a>-1/3 r?) (from eq. 2.38 in B&T)
Outside (r>a); )¢(r)= -4nGp(a’/3)

Solid body rotation v.2=-4nGp(r?/3)

Orbital period T=2mr/v =sqrt(3n/Gp);

a crossing time (dynamical time) =T/4=sqrt(37/16Gp)

potential energy U=-3/5GM?/a

The motion of a test particle inside this sphere is that of a simple harmonic
oscillator d’r/dt?>= -G(M(r)/ r>=4nGpr/3 with angular freq 25t/T

no matter the intial value of r, a particle will reach =0 in the dynamical time
T/4

In general the dynamical time t;,,~1/sqrt(G<p>)
and its 'gravitational radius' r,= GM?/U
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Star Motions in a Simple Potential

* if the density Q in a spherical galaxy is constant, then a star
following a circular orbit moves so that its angular speed
Q(r ) =V(r )/r is constant.
e astar moving on a radial orbit, i.e., in a straight line
through the center, would oscillate harmonically in radius
with period

P =sqrt[37t/GQ]~ 3t; where ty =sqrt[1/GQ]: S&G sec 3.1
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Not so Simple - Plummer Potential (Problem 3.2S&G)

e Many astrophysical systems have a 'core’; e.g. the surface
brightness flattens in the center (globular clusters, elliptical
galaxies, clusters of galaxies, bulges of spirals) so they have a
characteristic length

* so imagine a potential of the form -¢(r)=-GM/sqrt(r>+b?); where
b is a scale length

V2®(r)=(1/r?) d/dr(r2d¢/dr)=3GMb?/(r?+b?)>2=4nGp(r)
[ Poissons eq]

and thus
p(r) =(3M/4xtb3)[1+(r/b)*]>"> which can also be written as

e p(r)=(3’M/47)(r 2 +b?)->2 .

18



Not so Simple - Plummer Potential sec 2.2 in B&T

Now take limits r<<b  p(r) =(3GM/4xb?) constant
>>b o(r) =(3GM/4xb?)r finite

Plummer potential was 'first' guess at modeling 'real' spherical

systems; it is one of a more general form of 'polytropes’
B&T (pg 300)

Potential energy U=3nGM?/32b
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Spherical systems- Plummer potential

* Another potential with an analytic solution is the Plummer potential - in
which the density is constant near the center and drops to zero at large radii -
this has been used for globular clusters, elliptical galaxies and clusters of
galaxies.

* One such form- Plummer potential
d=-GM/(sqrt(r>+b?); b is called a scale length

The density law corresponding to this potential is

(using the definition of V2¢ in a spherical coordinates)

, 1 d¢, 0 1 & 1 a (. d
V“E—1—(r‘—]+ —~——— - — (51n¢—).
P or\ dr) Psin*¢ 06 Fsing 9¢ d¢

V24 =(1/12)d/dr(r2dd/dr)=(3GMDb2)/((r2+b2)2)3"2

p(r)=(3M/47b3)(1+(r/b)?)->"?
Potential energy W=-3nGM?/32b
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e ; there are many more forms which are better and Many More Not So

better approximations to the true potential of Slmple Analytic
'spherical' systems
* 2 others frequently used -are the modified Forms
Hubble law used for clusters of galaxies
z > >
e start with a measure quantity the surface R .
brightness distribution (more later)
I(r)=2aj (1+(r/a)?)"!
which gives a 3-D luminosity density
i=io(1+(/a)2) 2 &T fig 2.3
Problems: mass
e atr=a; I(a)=1/21(0); a is the core radius diverges
e Now if light traces mass and the mass to light logarithimically
ratio is constant BUT potential is finite
M=[j(r)d’= and at r>>a 1s almost
47a’Gj [In[R/a+sqrt(1+(r/a)?)]-(r/a)(1+(r/a) 2] GM/r
* and the potential is also analytic 21

Spherical Systems

* A frequently used analytic form for the surface brightness of an
elliptical galaxy is the Modified Hubble profile

e I(R)=2j(0o)a/[(1+(r/a)?] which has a luminosity density distribution
JO=iO)[(1+(r/a)?] -
* this is also called the 'pseudo-isothermal’ sphere distribution

the eq for ¢ is analytic and finite at large r even though the mass
diverges

d=-GM/r-(4nGj,a)*/sqrt[ 1+(1/a)?]
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Last Spherical Potential S&G Prob 3.7

* In the last 15 years numerical simulations
have shown that the density distribution
of dark matter can be well described by a The NFW density

form called 'NFW' density distribution diStrib}ltion is an
analytic

o(1)=p(0)/[(r/a)*(1+(r/a))P~*] with approximation
(a,p)=(1,3) to numerical
simulations of cold
dark matter

Integrating to get the mass
M(r)=4nGp(0)a’In[1+(r/a)]-(r/a)/[ 1+(r/a)]
and potential ¢=[In(1+(r/a)]/(r/a)]

See problem 3.7 in S&G
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Other Forms

* However all the forms so far have a
Keplerian rotation v~r-'? while real

tFigure 2.5 Circtilar speed versus
0.6 [tadius for the Jaffe, Hernquist, and

3
¢ INFW models.
galaxies have flat rotation curves §  [NFWmodel
R)= 2 o4l
VC( )_VO bU : /'/
0.2 :_ ///,/'.
e A potential with this property must :/.T......l Ty
have d¢/dr=v,?/R; ¢p=v*InR+C o0f " or 4T o i

* However this is a rather artificial
form; real galaxies seem to be >
composed of 3 parts: disk (D), bulge
(B), halo (H) and it is the sum of the
3 that gives the flat rotation curve
(very fine tuned and very flexible )

0 2 4 6 8 10 12



Summary of Dynamical Equations
gravitational pot'l ®(r)=-Glp (r)/|r-r'| dr
Gravitational force F(r)=-V®(r)

Poissons Eq V>®(r)= 4nGp; if there are no sources
Laplace Eq V’®(r)=0

Gauss's theorem : |[V®(r)eds’=4nGM

Potential energy U=1/2[rp(r)V®d3r

In words Gauss's theorem says that the integral of the normal
component of V® over and closed surface equals 4G times the mass
enclosed
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