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Summary of Dynamical Equations !
•  gravitational pot'l Φ(r)=-G∫ρ (r)/|r-r'| d3r 
•  Gravitational force  F(r)= -∇Φ(r) 
•  Poissons Eq ∇2Φ(r)= 4πGρ; if there are no sources   

Laplace Eq ∇2Φ(r)= 0 

•  Gauss's theorem :    ∫∇Φ(r)•ds2=4πGM 
•  Potential energy U=1/2∫rρ(r)∇Φd3r 

•  In words Gauss's theorem says that the integral of the normal 
component of ∇Φ over and closed surface equals 4πG times the mass 
enclosed  
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Potentials are Separable !
•  We make the fundamental assumption that the potential of a system 

can be decomposed into separable parts-!
•  This is  because Poisson's equation is linear : !
•  differences between any two  φ—ρ  pairs is also a  φ—ρ    pair, and !
differentials of  φ—ρ  or   are also   φ—ρ   pairs !
•  e.g. φtotal=φbulge+φdisk+φhalo 



Projection Effects !

•  Observed luminosity density 
I(R)=integral over true density 
distribution j(r)  (in some wavelength 
band) !

•  Same sort of projection for velocity 
field but weighted by the density 
distribution of tracers !

•  Density distribution solution is an 
Abel integral (see appendix B.2 in 
B&T) !
–   the velocity solution is also an 

Abel integral !
•  There are only a few useful I(R) & j(r) 

pairs that can both be expressed 
algebraically !
–  e.g. I(R) = I(0) / [1 + (R/r0)2]   with   

j(r) = I(0) / 2r0[1 + (r/r0)2]3/2!

from M. Whittle !
http://people.virginia.edu/~dmw8f/astr5630/Topic07/Lecture_7.html!

α'
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So Far Spherical Systems !
•  But spiral galaxies have a 

significant fraction of the 
mass (?; at least the 
baryons) in a flattened 
system. !
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Kuzmin Disk B&T sec 2.3 S&G Prob 3.4;  !
•  This ansatz is for a flattened system and 

separates out the radial and z directions !
•  Assume φΚ(z,R)= GM/[sqrt(R2+(a+z)2)] ; 

axisymmetric (cylindrical)!
     R is in the x,y plane !

•  Analytically, outside the plane,  φΚ has the 
form of the potential of a point mass 
displaced by a distance 'a' along the z axis!
–  e.q. R(z)=     (0, a); z<0!

     (0, -a); z>0!

•  Thus ∇2Φ=0 everywhere except along z=0- 
Poisson's eq !

•  Applying Gauss's thm ∫∇Φd2s=4πGM  
and get Σ(R)=aM/[2π(R2+a2)3/2] 
 

this is in infinitely thin disk... not too 
bad an approx  

B&T fig 2.6!

Use of Gauss's thm (divergence)!
the sum of all sources minus the sum of 
all sinks gives the net flow out of a 
region. !

∫∇Φd2s=4πGM=2πGΣ'

as z       0 ; Σ=(1/2π)G dΦ/dr 

Isothermal Sheet MBW pg 498!
•  simple model for the vertical structure of disk galaxies!
•  Allows an estimate the disk mass from a measurement of the vertical 

velocity dispersion, σz, and the radial scale length, Rd, if one knows 
the vertical scale height of the tracer population !

•  The relevant Poisson eq is d2φz/d (z/zd)2=1/2exp-(φz);!
•  φz=φ/σ2

z  and zd =σz/sqrt(8πGρ(R,0))!
σ2

z(R) =(z/zd)GMdRdexp(−RRd)!
•  where zd is the vertical scale height of the disk and Rd is the radial 

scale length!
•  can solve for the density distribution the disk  !

•  Why do we want to do this??- Estimates of the mass for face on 
galaxies where radial velocity data are impossible.!

31!
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Flattened +Spherical Systems-B&T eqs !
•  Add the Kuzmin to 

the Plummer 
potential !

•  When b/a~ 0. 2, 
qualitatively 
similar to the light 
distributions of 
disk galaxies,!

Contours of equal density in the (R; z) plane for b/a=0.2!

33!

Potential of an Exponential Disk B&T sec 2.6 !
•  As to be discussed later the light 

profile of the stars in most spirals 
has an exponential scale LENGTH!

Σ(R)=Σ0exp(-R/Rd) (this is surface 
brightness NOT surface mass 
density)- see next page for formula's !

Mass of exponential disk!
M(R)= ∫ Σ(R)Rdr = 2πΣ0Rd

2[1-exp( R/Rd)(1+R/Rd)]!
!
when R gets large M~2πΣ0Rd

2!
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Potential of an Exponential Disk B&T sec 2.6 !
. !

The circular velocity peaks at R~2.16 Rd approaches Keplerian for 
a point mass at large R (eq. 11.30 in MWB) and depends only on 
Σ0 and Rd!

As long as the vertical scale length is much less than the radial 
scale the vertical distribution has a small effect - e.g. separable 
effects ! !

IF the disk is made only of stars (no DM) and and if they all have 
the same mass to light ratio Γ , Rd is the scale length of the stars , 
then the observables I0,Rd,vcirc(r) have all the info to calculate the 
mass!  !

Circular Velocity for 3 Potentials !
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Exponential disk (Solid line)!
Point mass (.....)!
Spherical exponential (-----) !
!
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Explaining Disks!
•  Remember the most important properties of disk dominated galaxies 

(MBW pg 495)  !
–  Brighter disks are on average!

•  larger, redder, rotate faster, smaller gas fraction!
–  flat rotation curves!
–  surface brightness profiles close to exponential !
–  lower metallicity in outer regions !

•  traditional to model them as an infinitely  thin exponential disk with a 
surface density distribution Σ(R)=Σ0yexp(-R/Rd) 
–  This gives a potential (MBW pg 496) which is a bit messy 

   φ(R, z)=-2πGΣ0
2RD∫ [J0(kR)exp(-k|z|)]/[1+(kRD)2]3/2dk!
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Modeling Spirals !
•  As indicated earlier to fit the observed 

density and velocity distributions in 
the MW one needs a 3 component 
mass distribution!

•  Traditionally this is parameterized as 
the sum of !
–  disk Σ(R) =Σ0[exp-R/a]!
–  spheroid (bulge) using 

I(R)=I0Rs
2/[R+Rs]2 or 

similar forms!
–  dark matter halo ρ(r)=ρ(0)/

[1+(r/a)2]!
•  See B&T sec 2.7 for more 

complex forms- 2 solutions in 
B&T- notice extreme difference 
in importance of halo (H) (table 
2.3)  !
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Virial Theorem S&G pg 120, MBW pg 234 !
•  S+G pg 120-121, MBW 5.4.4 !
•  ½d2I/dt2 =2KE+W (no extl forces)!
        I = moment of inertia = Σmiri

2  (sum   !
          over i=1,N particles)!
•  A rather different derivation (H Rix)!
•  Consider (for simplicity) the 1-D Jeans 

eq in steady state (more later)!
•   ∂/∂x[ρv2]+ρ∂φ/∂x=o!
•  Integrate over velocities and 

then over positions...!

•  -2Ekin=Epot   (static)!
•  or restating in terms of forces!
•  if T= total KE of system of N 

particles < >= time average!

call the 'virial 'Q!

Q=!

dQ/dt=!

2<T>=-Σ(Fk•rk); 
summation over all 
particles k=1,N!
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Virial Theorem - Simple Cases!
•  Circular orbit: !
mV2/r=GmM/r2!

Multiply both sides by r, mV2=GmM/r!

mV2=2KE; GmM/r=-W so 2KE+W=0!
!
•  Time averaged Keplerian orbit !
 define U=KE/|W|; as shown in figure it 

clearly changes over the orbit; but 
take averages: !

-W=<GMm/r>=GMm<1/r>!
     =GMm(1/a)!
  KE=<1/2mV2>=GMm<1/r-1/2a>    !
       =1/2GMm(1/a) !
So again 2KE+W=0!
!

Red: kinetic energy (positive) starting at perigee!
Blue: potential energy (negative) !
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Virial Theorem !
•  Another derivation following Bothun 

http://ned.ipac.caltech.edu/level5/Bothun2/Bothun4_1_1.html!
•  Moment of inertia, I,  of a system of N particles !
•  I=Σmiri

2  sum over i=1,N (express ri
2  as (xi

2+yi
2+zi

2)!
•  take the first and second time derivatives ; let d2x/dt2 be symbolized by x,y,z!
•  ½ d2I/dt2 =Σmi ( dxi/dt)2+(dyi/dt)2+(dzi/dt)2+Σmi(xi

 x+yiy+ziz) !

    mv2  (2 KE)+Potential energy (W)     [ ~r •(ma) ] !
!
after a few dynamical times, if unperturbed a system will 

come into Virial equilibrium-time averaged inertia will 
not change so 2<T>+W=0  !

For self gravitating systems W=-GM2/2RH ; RH is the harmonic radius- the sum of the 
distribution of particles appropriately weighted   [ 1/RH =1/N Σi 1/ri ] 

The virial mass estimator is M=2σ2RH/G; for many mass distributions RH~1.25 Reff 

where Reff  is the half light radius,  σ is the 3-d velocity dispersion !
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Virial Thm MBW sec 5.4.4 !
•  If I is the moment of inertia !
•  ½d2I/dt2 =2KE+W+Σ !

–  where Σ is the work done by 
external pressure !

–  KE is the kinetic energy of 
the system!

–  W is the potential energy 
(only if the mass outside 
some surface S can be 
ignored) !

•  For a static system (d2I/dt2 =0) 
!2KE+W+Σ =0!



Using the Virial Theorm- (from J. Huchra) !
•  It is hard to use for distant galaxies because individual test particles 

(stars) are too faint!
•  However it is commonly used to clusters of galaxies !
Assume the system is spherical. The observables are (1) the l.o.s. time 

average velocity:!
     < v2

R,i> Ω   =  1/3 vi
2!

!
       projected radial v    averaged over solid angle!

i.e. we only see the radial component of motion & !

        vi ~   √3 vr!
Ditto for position, we see projected radii R, !
   R  = θ d ,    d = distance, θ = angular separation!

42!
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So taking the average projection,!
!

 <            >Ω =              <             >Ω!
!

and!

      <         >Ω =                 =               = π/2!
!
Remember we only see 2 of the 3 dimensions with R!

1!
sin θij!

 ∫(sinθ)-1dΩ!

dΩ!

∫0
π dθ!

  ∫π
0
sinθ dθ!

   1!
|Ri – Rj|!

   1!
|Ri – Rj|! |ri – rj|!

1!

So taking the average projection,!
!

 <            >Ω =              <             >Ω!
!

and!

      <         >Ω =                 =               = π/2!
!
Remember we only see 2 of the 3 dimensions with R!

1!

sin θij!
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Time Scales for Collisions (S&G 3.2) !
•  N particles of radius rp; Cross section for a direction collision σd=πr2

p!

•  Definition of mean free path: λ=1/nσd  "

   where n is the number density of particles (particles per unit volume),  
n=N/(4πl3/3)!

   The characteristic time between collisions (Dim analysis) is !
   tcollision=λ/v~[ ( l/rp)2 tcross/N] where v is the velocity of the particle. !
   for a body of size l, tcross= l/v= crossing time !
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Time Scales for Collisions (MBW sec 5.4.1) !

   So lets consider a galaxy with l~10kpc, N=1010 stars and v~200km/sec !
•  if rp = Rsun, tcollision~1021 yrs Therefore direct collisions among stars are 

completely negligible in galaxies.!

•  For indirect collisions the argument is more complex (see S+G sec 
3.2.2, MWB pg 231-its a long derivation-see next few pages) but the 
answer is the same - it takes a very long time for star interactions 
to exchange energy (relaxation). "

•  trelax~Ntcross/10lnN !
•  It’s only in the centers of the densest globular clusters and galactic 

nuclei that this is important !
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How Often Do Stars Encounter Each Other (S&G 3.2.1) !
Definition of a 'strong' encounter, GmM/r > 1/2mv2        !

  potential energy exceeds KE of incoming particle!
So a critical radius is r<rs=2GM/v2   eq 3.48!
!

Putting in some typical numbers m~1/2M! v=30km/sec 
rs=1AU !
So how often do stars get that close?!

consider a cylinder Vol=πr2
svt; if have n stars per unit volume than on 

average the encounter occurs when !
nπr2

svt=1, ts=v3/ 4πnG2M2!

Putting in typical numbers =4x1012(v/10km/sec)3(M/M!)-2(n/pc3)-1 yr- a 
very long time (universe is only 1010yrs old) eq 3.55!
 - galaxies are essentially collisionless  !
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What About Collective Effects ?  sec 3.2.2!

!
For a weak encounter b >> rs!
Need to sum over individual interactions- effects are also small!

49!

Relaxation Times !
=vt!•  Star passes by a system of N stars of mass m!

•  assume that the perturber is stationary!
 during the encounter and that δv/v<<1 !

 (B&T pg 33-sec 1.2.1. sec 3.1 for exact calculation)!
•  So δv is perpendicular to v !

–  assume star passes on a straight line trajectory !
•  The force perpendicular to the motion is !
Fp=Gm2cosθ/(b2+x2)=Gbm2/(b2+x2)3/2=(Gm2/b2)(1+(vt/b)2)-3/2 =m(dvdt)!
!

so  δv=1/m ∫  Fpdt = (Gm2/b2)∫ ∞-∞  dt(1+(vt/b)2)-3/2= 2GM/bv!
!
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Relaxation Times !
•  In words, δv is roughly equal to the acceleration at closest 

approach,!
     Gm/b2, times the duration of this   acceleration 2b/v."

The surface density of stars is ~N/πR2!

N is the number of stars and R is the galaxy radius!
 !
let  δn be the number of interactions a  star encounters with impact 
parameter!
between b and δb crossing the galaxy once!
  δn~(N/πr2)2πbδb=~(2N/r2)bδb!
!
each encounter produces a dv but are randomly oriented to the stars intial 
velocity v and thus their mean is zero (vector) HOWEVER!
 the mean square is NOT ZERO and is !
Σδv2~δv2δn= (2Gm/bv)2(2N/R2) bdb !
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Relaxation...continued (MBW pg !
•  now integrating this over all impact parameters from bmin to bmax !

•  one gets δv2  ~8πn(Gm)2/vln Λ ; where r is the galaxy radius eq (3.54) 
     ln Λ is  the Coulomb logarithm = ln(bmax/bmin) (S&G 3.55) !
!
•  For gravitationally bound systems  the typical speed of a  star is 

roughly v2~GNm/r!
      (from KE=PE) and thus δv2/v2~8 ln Λ/Ν '

'

•  For each 'crossing' of a galaxy one gets the same δv so the number of 
crossing for a star to change its velocity by order of its own velocity is 
nrelax~N/8ln Λ'
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Relaxation...continued !
So how long is this?? 
•  Using eq 3.55 
trelax=V3/[8πn(Gm)2ln Λ]∼[2x109 yr/lnΛ](V/10km/sec)3(m/M!)-2(n/103pc-3)-1!
!

Notice that this has the same form and value as eq 3.49 (the strong 
interaction case) with the exception of the 2ln Λ term "

•  Λ~N/2   (3.56) 
•  trelax~(0.1N/lnN)tcross  ; if we use N~1011 ; trelax is much much longer 

than tcross 

•  Over much of a typical galaxy the dynamics over timescales t< trelax is 
that of a collisionless system in which the constituent particles move 
under the influence of the gravitational field generated by a smooth 
mass distribution, rather than a collection of mass points!

•  However there are parts of the galaxy which 'relax' much faster!
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Relaxation!
•  Values for some representative systems!
! ! !<m> !N !r(pc) !trelax(yr) !age(yrs)!

Pleiades! !1 !120 !4 !1.7x107 !<107!
Hyades ! !1 !100 !5 !2.2x107 !4 x 108!
Glob cluster         0.6 !106 !5             2.9x109 !109-1010!!
E galaxy! !0.6 !1011 !3x104 !4x1017 !1010!
Cluster of gals !1011 !103 !107 !109 !109-1010!!
!

                        Scaling laws trelax~ tcross~ R/v ~ R3/2 / (Nm)1/2 ~ ρ-1/2  !
•   Numerical experiments (Michele Trenti and Roeland van der Marel 2013 astro-ph 

1302.2152) show that even globular clusters never reach energy equipartition (!) to quote  
'Gravitational encounters within stellar systems in virial equilibrium, such as globular 
clusters, drive evolution over the two-body relaxation timescale. The evolution is toward a 
thermal velocity distribution, in which stars of different mass have the same energy). This 
thermalization also induces mass segregation. As the system evolves toward energy 
equipartition, high mass stars lose energy, decrease their velocity dispersion and tend to sink 
toward the central regions. The opposite happens for low mass stars, which gain kinetic 
energy, tend to migrate toward the outer parts of the system, and preferentially escape the 
system in the presence of a tidal field''!



54!

So Why Are Stars in Rough Equilibrium? !
•  Another process, 'violent relaxation' (MBW sec 5.5), is crucial. !
•  This is due to rapid change in the gravitational potential (e.g., 

collapsing protogalaxy) !
•  Stellar dynamics describes in a statistical way the collective motions 

of stars subject to their mutual gravity-The essential difference from 
celestial mechanics is that each star contributes more or less equally 
to the total gravitational field, whereas in celestial mechanics the pull 
of a massive body dominates any satellite orbits !

•  The long range of gravity and the slow "relaxation" of stellar systems 
prevents the use of the methods of statistical physics  as stellar 
dynamical orbits tend to be much more irregular and chaotic than 
celestial mechanical orbits-....woops.!

•  to quote from MBW pg 248 !
•  Triaxial systems with realistic density distributions are therefore difficult to treat 

analytically, and one in general relies on numerical techniques to study their 
dynamical structure!


