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A Guide to the Next Few Lectures !
• The geometry of gravitational potentials : methods to derive gravitational !
potentials from mass distributions, and visa versa.!

• Potentials define how stars move !

• The gravitational field and stellar motion are interconnected : !
   the Virial Theorem relates the global potential energy and kinetic energy of 

!the system. !

•  Collisions?!
•  The Distribution Function   (DF) : !
   the DF specifies how stars are distributed throughout the system and !

!with what velocities.!
For collisionless systems, the DF is constrained by a continuity equation :!

! the Collisionless Boltzmann Equation !
• This can be recast in more observational terms as the Jeans Equation. !
The Jeans Theorem helps us choose DFs which are solutions to the continuity 
equations!
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A Reminder of Newtonian Physics sec 3.1 in S&G!

Gauss's thm ∫ φ •ds2=4πGM!
the Integral of the normal component!
over a closed surface =4πG  x mass within 
that surface!

φ (x) is the potential!eq 3.1!

eq 3.2!

eq 3.3!

eq 3.4!

ρ(x) is the mass density 
distribution!
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Conservation of Energy and Angular Momentum  !

Angular momentum L!

26!

Some Basics - M. Whittle!
•  The gravitational potential energy is a scalar field !
•  its gradient gives the net gravitational force (per unit mass) which 

is a vector field : see S&G pg 113  !

Poissons eq inside the mass 
distribution !
Outside the mass dist !
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Poisson's Eq+ Definition of Potential Energy (W) !

S+G pg 112-113!

Potential energy W !

 ρ(x) is the density dist!
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Derivation of Poisson's Eq !

see S+G pg112 for detailed derivation or web page 
'Poisson's equation' !
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More  Newton-Spherical  Systems   
Newtons 1st theorem: a body inside a spherical shell has no net 
gravitational force from that shell; e.g. ∇Φ(r)=0&

Newtons 2nd theorem: the gravitational force on a body outside a 
spherical shell is the same as if all the mass were at a point at the 
center of the shell. 

Simple examples: 
Point source of mass M; potential Φ(r) =-GM/r;  
definition of circular speed; speed of a test particle on a circular orbit 
at radius r 
v2

circular=r dΦ(r)/dr=GM/r; vcircular=sqrt(GM/r) ;Keplerian  

escape speed =sqrt[2Φ(r)]=sqrt(2GM/r) ; from equating  kinetic 
energy to potential energy  1/2mv2=|Φ(r)|  

30!

Characteristic Velocities !
v2

circular=r dΦ(r)/dr=GM/r; v=sqrt(GM/r) :Keplerian  

velocity dispersion �: statistical dispersion of 
velocities about the mean velocity; if �������� is the 
velocity field     

•    ���
��������	�����������	�!
For most systems ����������	 

escape speed =vesc=sqrt(2Φ(r)) or Φ(r)=1/2v2
esc 
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Escape Speed!
•  As r goes to infinity φ(r) goes to zero!
•  so to escape v2>2φ(r); e.q. vesc=sqrt(-2φ(r))!

•  Alternate derivation using conservation of energy!
•  Kinetic + Gravitational Potential energy is constant!

           KE1+U1=KE2+U2 !
•  Grav potential =-GMm/r; KE=1/2mvescape

2!

•  Since final velocity=0 (just escapes) and U at 
infinity=0!

•  1/2mvescape
2-GMm/r=0!

•  The star’s energy E is the sum of its kinetic energy KE = 
mv2/2 and the  potential energy PE = mφ(x).!

•   The kinetic energy cannot be negative,  and since far from 
an isolated galaxy or star cluster, φ(x) � 0. !

•  So a star at position x can escape only if it has E > 0; it 
must be moving faster than the local!

 escape speed ve, given by!
v2

e= −2φ(x).!

32!
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Gravity and Dynamics-Spherical Systems- Repeat !
•  Newtons 1st theorm : a body inside a a spherical shell has no net force from that 

shell φ =0!
•  Newtons 2nd theorm ; a body outside the shell experiences forces as if they all 

came from a point at the center of the shell-Gravitational force at a point outside a 
closed sphere is the same as if all the mass were at the center !

•  This does not work for a thin disk- cannot ignore what is outside of a given 
radius!

•  One of the prime observables (especially for spirals) is the circular velocity; in 
general it is Vc

2(R)/R=G(M<R)/R2 ; more accurate estimates need to know shape 
of potential!

•  so one can derive the mass of a flattened system from the rotation curve !
-------------------------------------------------------------------------------------------!
•   point source has a potential φ=-GM/r!
•  A body in orbit around this point mass has a circular speed vc

2=r φd/dr=GM/r!
•  vc=sqrt(GM/r); Keplerian !
•  Escape speed from this potential vescape=sqrt(2φ)=sqrt(2GM/r) (conservation of 

energy KE=1/2mv2
escape )!

-------------------------------------------------------------------------------------------!

Variety of "Simple" Potentials See problems 
3.1-3.4,3.7 in S&G $

•  Point mass φ(r)=-GM/r!
•  Plummer sphere : simple model for spherical systems !
–  φ(r)=-GM/sqrt(r2+a2)!

•  Singular isothermal sphere  φ(r)=4πGr2
0ρ(r0) ln (r/r0)!

      some interesting properties- circular speed is constant at !
!sqrt (4πGr2

0ρ(r0))!
•  A disk  φ(R, z) = − GM/sqrt(R2 + (aK + |z|)2!

•  The Navarro–Frenk–White (NFW) potential !
φ(R)=4πGa2

0ρ(r0) [ln(1+r/a0)/(r/a0)!
–  this form fits numerical simulations of structure growth!

34!
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Homogenous Sphere   B&T sec 2.2.2 !
•  Constant density sphere  of radius a  and 

density ρ0&

•  M(r)=4πGr3ρ0    ; r<a 
•  M(r)=4πGa3ρ0   ;  r>a&

     φ(R)=-d/dr(M(R))  

 R>a: φ(r)=4πGa3ρ0=-GΜ/r   
 R<a: φ(r)=-2πGρ0(a2-1/3r2)); 

 v2
circ= (4π/3)Gρ0r2 ;  solid body rotation R<a  

Chris Flynn: Tuorla Observatory!

φ&

vc!
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Some Simple Cases !
•  Constant density sphere  of radius a  and density ρ0  &
Potential energy (B&T) eq 2.41, 2.32 
φ(R)=-d/dr(M(R)) ;   

 R>a: φ(r)=4πGa3ρ0=-GΜ/r   
 R<a : φ(r)=-2πGρ0(a2-1/3r2)); 

 v2
circ= (4π/3)Gρ0r2  solid body rotation  

Potential is the same form as a harmonic oscillator 
e.g. the eq of motion is d2r/dt2=-GM(r)/r=4π/3Grρ; solution to harmonic 

oscillator is  
r=Acos(ωt+φ) with ω= sqrt(4π/3Gρ)=2π/Τ 
Τ=sqrt(3π/Gρ0)=2πr/vcirc 
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Homogenous Sphere    !
•  Potential energy of a self gravitating sphere of constant density r, 

mass M and radius R is obtained by integrating the gravitational 
potential over the whole sphere!

•  Potential energy U=1/2∫rρ(r)∇Φd3r 

U = ∫0R
 -4πG M(r) ρ(r) r dr=∫0RG[(4/3πρr3)x (4πρr2)dr]/r!

=(16/3)π2ρ2r2)∫0Rr4dr==(16/15)π2ρ2R5!

            using the definition of total mass M (volume x density) 
!M=(4/3)πρR3!

gives  U=- (3/5)GM2/R!
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Homogenous Sphere   B&T sec 2.2.2 !
Orbital period T=2πr/vcirc=sqrt(3π/Gρ0) 
Dynamical time=crossing time  
=T/4=sqrt(3π/16Gρ0) 

Potential is the same form as an harmonic 
oscillator with angular freq 2π/T (B&T 
2.2.2(b)) 

Regardless of initial value of distance (r) a 
particle will reach r=0 (in free fall) in a 
time T=/4  

Eq of motion of a test particle INSIDE the 
sphere is  

dr2/dt2=-GM(r)/r2=-(4π/3)Gρ0r    
General result dynamical time ~sqrt(1/Gρ) 

Chris Flynn: Tuorla Observatory!
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Spherical Systems:Homogenous sphere of radius a$
Summary  !

•  M(r)=4/3πr3ρ (r<a); r>a M(r)=4/3πr3a 
•  Inside body (r<a); φ(r)=-2πGρ(a2-1/3 r2) (from eq. 2.38 in Β&Τ)!
Outside (r>a); )φ(r)= -4πGρ(a3/3)&

Solid body rotation  vc
2 = -4πGρ(r2/3)&

Orbital period T=2πr/vc=sqrt(3π/Gρ); &

a crossing time (dynamical time) =Τ/4=sqrt(3π/16Gρ)&

potential energy U=-3/5GM2/a 
The motion of a test particle inside this sphere is that of a simple harmonic oscillator 

d2r/dt2= -G(M(r)/ r2=4πGρr/3 with angular freq 2π/T 
no matter the initial value of r, a particle will reach r=0 in the dynamical time Τ/4&
In general the dynamical time tdyn~1/sqrt(G<ρ>)&

and its 'gravitational radius' rg= GM2/U 

Star Motions in a Simple Potential !
•  if the density ρ in a spherical galaxy is constant, then a star 

following a circular orbit moves so that its angular speed 
 Ω(r)=V(r )/r is constant.!

•   a star moving on a radial orbit, i.e., in a straight line 
through the center, would oscillate harmonically in radius 
with period!
!P =sqrt[3π/Gρ]� 3tff, where tff =sqrt[1/Gρ]: S&G sec 3.1!
ρ is the density  !

40!
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Not so Simple - Plummer Potential  (Problem 3.2S&G)!
•  Many astrophysical systems have a 'core'; e.g. the surface 

brightness flattens in the center (globular clusters, elliptical 
galaxies, clusters of galaxies, bulges of spirals) so they have a 
characteristic length!

•  so imagine a potential of the form -φ(r)=-GM/sqrt(r2+b2); where 
b is a scale length !

∇2Φ(r)=(1/r2) d/dr(r2dφ/dr)=3GMb2/(r2+b2)5/2=4πGρ(r) 
[ Poissons eq]  

and thus  
ρ(r) =(3M/4πb3)[1+(r/b)2]-5/2 which can also be written as !
•  ρ(r)=(3b2M/4π)(r 2 +b2)-5/2 .!
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Not so Simple - Plummer Potential sec 2.2 in B&T!

Now take limits r<<b    ρ(r) =(3GM/4πb3) constant  
                      r>>b        ρ(r) =(3GM/4πb3)r-5 finite  

Plummer potential was 'first' guess at modeling 'real' spherical 
systems; it is one of a more general form of 'polytropes' * 
B&T (pg 300)  

Potential energy of Plummer is U=3πGM2/32b 

*Polytropes are self-gravitating gaseous spheres that were useful as crude 
approximation to more realistic models-they have polytropic relation 
between pressure and density  P
��(1+1/n)�

https://www.astro.princeton.edu/~gk/A403/polytrop.pdf!
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•  Another potential with an analytic solution is the Plummer potential - in 
which the density is constant near the center and drops to zero at large radii - 
this has been used for globular clusters, elliptical galaxies and clusters of 
galaxies. !

•  One such form- Plummer potential !
   φ=-GM/(sqrt(r2+b2); b is called a scale length !

   The density law corresponding to this potential is !
   (using the definition of 2φ in a spherical coordinates)!

   2φ =(1/r2)d/dr(r2dφ/dr)=(3GMb2)/((r2+b2)2)5/2!

   ρ(r)=(3M/4πb3)(1+(r/b)2)-5/2!

   Potential energy W=-3πGM2/32b!

Spherical systems- Plummer potential cont!
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Many More Not So 
Simple Analytic Forms !

•  There are many more forms which are better and 
better approximations to the true potential of 
'spherical' self gravitating systems!

•   Another frequently used is the modified Hubble 
law used for clusters of galaxies !

•  start  with a measured quantity the  surface 
brightness distribution (more later)!

         I(r)=2ajo(1+(r/a)2)-1; where I(R) is the 
measured surface brightness !

 which gives a 3-D luminosity density!

 j=jo(1+(r/a)2)-3/2 a is the core radius !

at r=a ; I(a)=1/2I(0); !
•  Now if light traces mass and the mass to light 

ratio is constant !
M=∫ j(r)d3r=!
4πa3Gjo[ln[R/a+sqrt(1+(r/a)2)]-(r/a)(1+(r/a)-1/2]!
•  and the potential is also analytic !

B&T fig 2.3!

Problems: mass 
diverges !
logarithimically !
BUT potential is finite 
and at r>>a is almost 
GM/r!
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Last Spherical Potential S&G Prob 3.7!
•  In the last 15 years numerical simulations 

have shown that the density distribution 
of dark matter can be well described by a 
form called 'NFW' density distribution   !

   ρ(r)=ρ(0)/[(r/a)α(1+(r/a))β�α] with 
(α,β)= (1,3)!

   Integrating to get the mass 
M(r)=4πGρ(0)a3ln[1+(r/a)]-(r/a)/[1+(r/a)] 
and potential φ=[ln(1+(r/a)]/(r/a)] !

   See problem 3.7 in S&G!

The NFW density!
distribution is an !
analytic 
approximation !
to numerical 
simulations of cold 
dark matter!
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Other Forms!
•  However all the forms so far have a 

Keplerian rotation v~r-1/2 while real 
galaxies have flat rotation curves 
vc(R)=v0!

•  A potential with this property must 
have dφ/dr=v0

2/R; φ=v0
2lnR+C!

•  However this is a rather artificial 
form; real galaxies seem to be 
composed of 3 parts: disk (D), bulge 
(B), halo (H) and it is the sum of the 
3 that gives the flat rotation curve 
(very fine tuned and very flexible ) !
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Summary of Dynamical Equations !
•  gravitational pot'l Φ(r)=-G∫ρ (r)/|r-r'| d3r 
•  Gravitational force  F(r)= -∇Φ(r) 
•  Poissons Eq ∇2Φ(r)= 4πGρ; if there are no sources   

Laplace Eq ∇2Φ(r)= 0 

•  Gauss's theorem :    ∫∇Φ(r)•ds2=4πGM 
•  Potential energy U=1/2∫rρ(r)∇Φd3r 

•  In words Gauss's theorem says that the integral of the normal 
component of ∇Φ over and closed surface equals 4πG times the mass 
enclosed  

Today!
•  Non-spherical potential!
•  Virial theorm!
•  Time scales- collisionless 

systems !
and if time !
•  Collisionless Boltzmann Eq!

–  Jeans equations !

48!
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Potentials are Separable !
•  We make the fundamental assumption that the potential of a system 

can be decomposed into separable parts-!
•  This is  because Poisson's equation is linear : !
•  differences between any two  φ—ρ  pairs is also a  φ—ρ    pair, and !
differentials of  φ—ρ  or   are also   φ—ρ   pairs !
•  e.g. φtotal=φbulge+φdisk+φhalo 

Projection Effects !

•  Observed luminosity density 
I(R)=integral over true density 
distribution j(r)  (in some wavelength 
band) !

•  Same sort of projection for velocity 
field but weighted by the density 
distribution of tracers !

•  Density distribution solution is an 
Abel integral (see appendix B.2 in 
B&T) !
–   the velocity solution is also an 

Abel integral !
•  There are only a few useful I(R) & j(r) 

pairs that can both be expressed 
algebraically !
–  e.g. I(R) = I(0) / [1 + (R/r0)2]   with   

j(r) = I(0) / 2r0[1 + (r/r0)2]3/2!

from M. Whittle !
http://people.virginia.edu/~dmw8f/astr5630/Topic07/Lecture_7.html!

α&
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So Far Spherical Systems !
•  But spiral galaxies have a 

significant fraction of the 
mass (?; at least the 
baryons) in a flattened 
system. !

•  Remember Oort constants!
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Kuzmin Disk B&T sec 2.3 S&G Prob 3.4;  !
•  This ansatz is for a flattened system and 

separates out the radial and z directions !
•  Assume φΚ(z,R)= GM/[sqrt(R2+(a+z)2)] ; 

axisymmetric (cylindrical)!
     R is in the x,y plane !
•  Analytically, outside the plane,  φΚ has the 

form of the potential of a point mass 
displaced by a distance 'a' along the z axis!
–  e.q. R(z)=     (0, a); z<0!

     (0, -a); z>0!

•  Thus ∇2Φ=0 everywhere except along z=0- 
Poisson's eq !

•  Applying Gauss's thm ∫∇Φd2s=4πGM  
and get Σ(R)=aM/[2π(R2+a2)3/2] 

this is in infinitely thin disk... not too 
bad an approx  

B&T fig 2.6!

Use of Gauss's thm (divergence)!
the sum of all sources minus the sum of 
all sinks gives the net flow out of a 
region. !

∫∇Φd2s=4πGM=2πGΣ&

as z       0 ; Σ=(1/2π)G dΦ/dr 



Isothermal Sheet MBW pg 498!
•  simple model for the vertical structure of disk galaxies!
•  Allows an estimate the disk mass from a measurement of the vertical 

velocity dispersion, σz, and the radial scale length, Rd, if one knows 
the vertical scale height of the tracer population !

•  The relevant Poisson eq is d2φz/d (z/zd)2=1/2exp-(φz);!
•  φz=φ/σ2

z  and zd =σz/sqrt(8πGρ(R,0))!
σ2

z(R) =(z/zd)GMdRdexp(−R/Rd)!
•  where zd is the vertical scale height of the disk and Rd is the radial 

scale length!
•  can solve for the density distribution the disk  !

•  Why do we want to do this??- Estimates of the mass for face on 
galaxies where radial velocity data are impossible.!
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Flattened +Spherical Systems-B&T eqs !
•  Add the Kuzmin to 

the Plummer 
potential !

•  When b/a~ 0. 2, 
qualitatively 
similar to the light 
distributions of 
disk galaxies,!

Contours of equal density in the (R; z) plane for b/a=0.2!
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Potential of an Exponential Disk B&T sec 2.6 !
•  As to be discussed later the light 

profile of the stars in most spirals 
has an exponential scale LENGTH!

Σ(R)=Σ0exp(-R/Rd) (this is surface 
brightness NOT surface mass 
density)- see next page for formula's !

Mass of exponential disk!
M(R)= ∫ Σ(R)Rdr = 2πΣ0Rd

2[1-exp( R/Rd)(1+R/Rd)]!

when R gets large M~2πΣ0Rd
2!
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Potential of an Exponential Disk B&T sec 2.6 !
. !

The circular velocity peaks at R~2.16 Rd - approaches Keplerian for 
a point mass at large R (eq. 11.30 in MWB) and depends only on 
Σ0 and Rd!

As long as the vertical scale length is much less than the radial 
scale the vertical distribution has a small effect - e.g. separable 
effects ! !
IF the disk is made only of stars (no DM) and and if they all have 
the same mass to light ratio Γ , Rd is the scale length of the stars , 
then the observables I0,Rd,vcirc(r) have all the info to calculate the 
mass!  !



Circular Velocity for 3 Potentials !
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Explaining Disks!
•  Most important properties of disk dominated galaxies   !

–  Brighter disks are on average!
•  larger, redder, rotate faster, smaller gas fraction!

–  flat rotation curves!
–  surface brightness profiles close to exponential !
–  lower metallicity in outer regions !

For a uniform disk (S&G Prob 3.24) the potential is !
�  φ(x) = 2πGΣ|z|.   Σ is the surface density z=height above disk!
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Explaining Disks!

•  Traditional to model disk as an infinitely  thin exponential disk with a 
surface density distribution Σ(R)=Σ0yexp(-R/Rd) 
–  This gives a potential (MBW pg 496) which is a bit messy 

   φ(R, z)=-2πGΣ0
2RD∫ [J0(kR)exp(-k|z|)]/[1+(kRD)2]3/2dk!

   (do not need to know this...)!
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Modeling Spirals !
•  As indicated earlier to fit the observed 

density and velocity distributions in 
the MW one needs a 3 component 
mass distribution!

•  Traditionally this is parameterized as 
the sum of !
–  disk Σ(R) =Σ0[exp-R/a]!
–  spheroid (bulge) using 

I(R)=I0Rs
2/[R+Rs]2 or 

similar forms!
–  dark matter halo ρ(r)=ρ(0)/

[1+(r/a)2]!
•  See B&T sec 2.7 for more 

complex forms- 2 solutions in 
B&T- notice extreme difference 
in importance of halo (H) (table 
2.3)  !


