A Guide to the Next Few Lectures

*The geometry of gravitational potentials : methods to derive gravitational
potentials from mass distributions, and visa versa.
*Potentials define how stars move

*The gravitational field and stellar motion are interconnected :
the Virial Theorem relates the global potential energy and kinetic energy of
the system.

* Collisions?
e The Distribution Function (DF):
the DF specifies how stars are distributed throughout the system and
with what velocities.
For collisionless systems, the DF is constrained by a continuity equation :
the Collisionless Boltzmann Equation
*This can be recast in more observational terms as the Jeans Equation.
The Jeans Theorem helps us choose DFs which are solutions to the continuity

equations
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A Reminder of Newtonian Physics sec 3.1 in S&G

Newtons law of gravity tells us that two masses attract
each other with a force

eq 3.1 d (py)— CmM ¢ (x) is the potential

r
dt 3

If we have a collection of masses acting on a mass
m_the force is

Gm, M eq3.2
T mov )= T (x o x,) B d
dt 5| X — X4

eq 3.3 %(m‘”:—qu”’“' Gauss's thm [V ¢ ¢ds2=4nGM

with the Integral of the normal component
B(x)=—3 Gm, . forx = x., over a closed surface =4nG x mass within
eq 34 & x—x that surface

the gravitational potential. If we can approximate
the discrete stellar distribution with a continuous
distribution p.

®(x)=— [ TL ) x p(x) is the mass depsity
distribution




Conservation of Energy and Angular Momentum

In the absence of external forces a star will conserve
energy along its orbit

d
\ % W(mv)——mv NV P(x),

wv- i(rn\/)—l—mv NV @ (x)=0

adt
do 0 § o 0
But since pa e v (x) x()l i')y + zé’)z
ad _
m[—(v )+rmP(x)]=

This is just the KE + PE

Angul tum L
£=x><mﬂ:—mx><ch ngular momentum
dt dt | _
Where { XY, z} 7, are the unit vectors in their respective directions.

Some Basics - M. Whittle

e The gravitational potential energy is a scalar field

* its gradient gives the net gravitational force (per unit mass) which
is a vector field : see S&G pg 113

*? 0r P L,
’) dx? ()J_+-()ZQ—V-V—V
d(r) = -G ) By
v |r — 1
r' —r

i
~—
"~
N
I

—V(I)(I‘) = (7 y W ()(I") dSI"

V. F(r) = —4xGp(r)

V2<I>(r) — 47er(r) ———> Poissons eq inside the mass
distribution
0 <« > Outside the mass dist

<
o
oy
L
I



Poisson's Eq+ Definition of Potential Energy (W)

So the force per unit mass is _ ' .
P p(x) 1s the density dist

F(x):—ch(x)zj‘Gp(x.)(|X—X|3)d3x.
X—X

To get the differential form we start with the definitic
. 2 .
of # and applying V*to both sides S+G pg 112-113

Gp(xl)d3xl
Ix —x'|

V& (x)=—V?[

=4mGp(x) Poisson's equation.

Potential energy W

W = %/ p(r) ®(r) dr = L
v

8n7

IV®|? d®r

Derivation of Poisson's Eq
So the force per unit mass is

fG (x— X)d3 \
Ix X’

To get the differential form we start with the definitic
of @ and applying V?to both sides

—X |

=4mwGp(x) |Poisson's equation.

see S+G pgl12 for detailed derivation or web page
'Poisson's equation’
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More Newton-Spherical Systems

Newtons 1st theorem: a body inside a spherical shell has no net
gravitational force from that shell; e.g. Vd(r)=0

Newtons 2nd theorem: the gravitational force on a body outside a
spherical shell is the same as if all the mass were at a point at the
center of the shell.

Simple examples:

Point source of mass M; potential ®(r) =-GM/r;

definition of circular speed; speed of a test particle on a circular orbit
at radius r

v2 =r d®(r)/dr=GM/r; v =sqrt(GM/r) ;Keplerian

circular circular

escape speed =sqrt[2d(r)]=sqrt(2GM/r) ; from equating kinetic

energy to potential energy 1/2mv?=|d(r)| "

Characteristic Velocities
v2 =r d®(r)/dr=GM/r; v=sqrt(GM/r) :Keplerian

circular

velocity dispersion O : statistical dispersion of
velocities about the mean velocity; if f (v)dv is the
velocity field

e« 0 =[(v—v)?f(v)dv]'2
For most systems 0 ~(GM/r)!/2

escape speed =v_, =sqrt(2P(r)) or P(r)=1/2v2__
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Escape Speed

e Asr goes to infinity ¢(r) goes to zero
* 50 to escape v2>20(r); e.q. V,...=sqrt(-2¢(r))

e Alternate derivation using conservation of energy

» Kinetic + Gravitational Potential energy is constant
KE,+U,=KE,+U,

e Grav potential =-GMm/r; KE=1/2mv__ >

escape
 Since final velocity=0 (just escapes) and U at
infinity=0
e 12mv,__. 2-GMm/r=0

escape 31

* The star’s energy E is the sum of its kinetic energy KE =
mv?/2 and the potential energy PE = m¢(x).

* The kinetic energy cannot be negative, and since far from
an isolated galaxy or star cluster, ¢(x) — O.

* So a star at position X can escape only if it has £ > 0; it
must be moving faster than the local

escape speed v,, given by

V2= =2¢(X).
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Gravity and Dynamics-Spherical Systems- Repeat

e Newtons 1% theorm : a body inside a a spherical shell has no net force from that
shell V¢ =0

o Newtons 2™ theorm ; a body outside the shell experiences forces as if they all
came from a point at the center of the shell-Gravitational force at a point outside a
closed sphere is the same as if all the mass were at the center

* This does not work for a thin disk- cannot ignore what is outside of a given
radius

* One of the prime observables (especially for spirals) is the circular velocity; in
general it is V_2(R)/R=G(M<R)/R? ; more accurate estimates need to know shape
of potential

* so one can derive the mass of a flattened system from the rotation curve

e point source has a potential $=-GM/r

* A body in orbit around this point mass has a circular speed v 2=r ¢pd/dr=GM/r

e v=sqrt(GM/r); Keplerian

* Escape speed from this potential v
energy KE=1/2mv?

=sqrt(2¢)=sqrt(2GM/r) (conservation of

escape

escape ) 33

Variety of "Simple" Potentials See problems
3.1-3.4,3.7 in S&G

* Point mass ¢(r)=-GM/r

e Plummer sphere : simple model for spherical systems
- ¢(r)=-GM/sqrt(r’*+a?)

* Singular isothermal sphere ¢(r)=4nGr?,p(r,) In (/1)

some interesting properties- circular speed is constant at

sqrt (4nGr?,p(r,))

o Adisk ¢(R, z) =— GM/sqrt(R?> + (ay + Iz])?

e The Navarro—Frenk—White (NFW) potential
d(R)=4nGaZ,p(r,) [In(1+r/a,)/(r/a,)

— this form fits numerical simulations of structure growth
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Homogenous Sphere B&T sec 2.2.2

~N

dCons‘f[ant density sphere of radius a and | Flynn: .
ensity p, =
M(r)=4nGrp, ;r<a ':Z,
M(r)=4nGa’p, ; r>a V. %
d(R)=-d/dr(M(R)) ol
P S
R>a: ¢(r)=4nGa’p,~GM/r =
R<a: ¢(r)=-2nGp,(a2-1/312)); A
V2= (4m/3)Gp,r?: solid body rotation R<a . $ -
21
T ey e g
Rodius (rp)

Some Simple Cases

e Constant density sphere of radius a and density p,
Potential energy (B&T) eq 2.41, 2.32
¢(R)=-d/dr(M(R))
R>a: ¢(r)=4nGa’p,=-GM/r
R<a : ¢(r)=-2nGp(a2-1/3r?));
= (47/3)Gp,r? solid body rotation

ClI'C

Potential is the same form as a harmonic oscillator

e.g. the eq of motion is d’r/dt>=-GM(r)/r=47/3Grp; solution to harmonic
oscillator is

r=Acos(wt+¢d) with w= sqrt(4m/3Gp)=2n/T
T=sqrt(3n/Gp,)=2mnr/v,;

circ

36



Homogenous Sphere

* Potential energy of a self gravitating sphere of constant density r,
mass M and radius R is obtained by integrating the gravitational
potential over the whole sphere

» Potential energy U=1/2/rp(r)V®d3r

U = [R-47G M(r) o(r) r dr=fRG[(4/3mpr’)x (4dmpr?)dr]/r
—(16/3)2p™2) fRrdr==(16/15)72pR5

using the definition of total mass M (volume x density)
M=(4/3)mpR>

gives| U=- (3/5) GM?/R
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Homogenous Sphere B&T sec 2.2.2
Orbital period T=2mr/v ;.. =sqrt(3n/Gp,) - '

Dynamical time=crossing time
=T/4=sqrt(3m/16Gp,)

cire Chris Flynn: Tuorla Observajory

1 1.5

Vere [Varelre) = 1.0]

03

Potential 1s the same form as an harmonic
oscillator with angular freq 2m/T (B&T
2-2.2(b)) o....:....;....;....‘

o

vvvvvvvvvvvvvvv

Regardless of initial value of distance (r) a
particle will reach r=0 (in free fall) in a
time T=/4

Eq of motion of a test particle INSIDE the
sphere is

dr?/dt>=-GM(r)/1*=-(4t/3)Gp,r 0 0 Liiiiiiiiiii...
General result dynamical time ~sqrt(1/Gp) Rodius (ry)

—-10*

-3x10* -2x10*
L) L)




Spherical SyStemSIHomogenous sphere of radius a

Summary

e  M(r)=4/3nr’p (r<a); r>a M(r)=4/3nr’a

* Inside body (r<a); ¢(r)=-2nGp(a>-1/3 r?) (from eq. 2.38 in B&T)
Outside (r>a); )d(r)= -4nGp(a*/3)

Solid body rotation v.2=-4nGp(r?/3)

Orbital period 7=2ntr/v =sqrt(37/Gp);

a crossing time (dynamical time) =T/4=sqrt(37/16Gp)

potential energy U=-3/5GM?/a

The motion of a test particle inside this sphere is that of a simple harmonic oscillator
d?r/dt>= -G(M(r)/ r=4nGpr/3 with angular freq 25t/T

no matter the initial value of r, a particle will reach r=0 in the dynamical time 774
In general the dynamical time t; ,~1/sqrt(G<p>)
and its 'gravitational radius' r,= GM*/U
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Star Motions in a Simple Potential

* if the density Q in a spherical galaxy is constant, then a star
following a circular orbit moves so that its angular speed
Q(r)=V(r )/r is constant.

e astar moving on a radial orbit, i.e., in a straight line
through the center, would oscillate harmonically in radius
with period
P =sqrt[35t/GQ]~ 3t where ty =sqrt[1/GQ]: S&G sec 3.1

o is the density
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Not so Simple - Plummer Potential (Problem 3.2S&G)

e Many astrophysical systems have a 'core'; e.g. the surface
brightness flattens in the center (globular clusters, elliptical
galaxies, clusters of galaxies, bulges of spirals) so they have a
characteristic length

* 5o imagine a potential of the form -¢(r)=-GM/sqrt(r>+b?); where
b is a scale length

V2®(r)=(1/r?) d/dr(r2d¢/dr)=3GMb?/(r*+b?)>?=4nGp(r)
[ Poissons eq]

and thus
p(r) =(3M/4nb3)[1+(r/b)*]->> which can also be written as
e p(r)=(36>M/47)(r > +b?)>2 |
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Not so Simple - Plummer Potential sec 2.2 in B&T

Now take limits r<<b  p(r) =(3GM/4mb?) constant
>>b o(r) =(3GM/4xb3)r finite

Plummer potential was 'first' guess at modeling 'real' spherical
systems; it is one of a more general form of 'polytropes' *
B&T (pg 300)

Potential energy of Plummer is U=31GM?/32b

*Polytropes are self-gravitating gaseous spheres that were useful as crude
approximation to more realistic models-they have polytropic relation
between pressure and density P=K p (+1/m

https://www .astro.princeton.edu/~gk/A403/polytrop.pdf
)



which gives a 3-D luminosity density

j=jo(1+(r/a)?)32 a is the core radius

Spherical systems- Plummer potential cont

Another potential with an analytic solution is the Plummer potential - in
which the density is constant near the center and drops to zero at large radii -
this has been used for globular clusters, elliptical galaxies and clusters of

galaxies.

One such form- Plummer potential
d=-GM/(sqrt(r>+b?); b is called a scale length

The density law corresponding to this potential is

(using the definition of V2¢ in a spherical coordinates)

, 1 0
V‘E——(r" —)+

Fsin’¢ 9 rPsing ¢

i (singb ;—¢ )

V24 =(1/12)d/dr(r2dd/dr)=(3GMDb2)/((r2+b2)2)3"2

p(r)=(3M/47b3)(1+(1/b)?)->2

Potential energy W=-3nGM?/32b

There are many more forms which are better and
better approximations to the true potential of
'spherical' self gravitating systems

Another frequently used is the modified Hubble

law used for clusters of galaxies

start with a measured quantity the surface
brightness distribution (more later)

I(r)=2aj (1+(r/a)?)"!; where I(R) is the
measured surface brightness

at r=a ; I(a)=1/2I(0);

Now if light traces mass and the mass to light

ratio is constant

M=[j(r)d*r=

47a’Gj [In[R/a+sqrt(1+(r/a)?)]-(r/a)(1+(r/a) 2]

and the potential is also analytic
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Many More Not So
Simple Analytic Forms

> >
Rl /r
&T fig2.3
Problems: mass
diverges
logarithimically

BUT potential is finite
and at r>>a is almost
GM/r

44



Last Spherical Potential S&G Prob 3.7

* In the last 15 years numerical simulations
have shown that the density distribution
of dark matter can be well described by a

form called 'NFW' density distribution
p(1)=p(0)/[(r/a)*(1+(r/a))P~*] with
(a,p)=(1,3)

Integrating to get the mass
M(r)=4nGp(0)a’In[1+(r/a)]-(r/a)/[1+(r/a)]
and potential ¢=[In(1+(r/a)]/(r/a)]

See problem 3.7 in S&G

Other Forms

e However all the forms so far have a
Keplerian rotation v~r!/2 while real
galaxies have flat rotation curves
v.(R)=v,

ve/V(4nGpoa)

* A potential with this property must
have d¢/dr=v,*/R; ¢=v,’InR+C

e However this is a rather artificial

form; real galaxies seem to be >

composed of 3 parts: disk (D), bulge
(B), halo (H) and it is the sum of the
3 that gives the flat rotation curve
(very fine tuned and very flexible )

The NFW density
distribution is an
analytic
approximation

to numerical
simulations of cold
dark matter

45
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Summary of Dynamical Equations
« gravitational pot'l ®(r)=-G/p (r)/|r-r'| d3r
* Gravitational force F(r)=-V®(r)
« Poissons Eq V*®(r)= 4nGp; if there are no sources
Laplace Eq V*®(r)= 0
 Gauss's theorem : |V®(r)eds’=4nGM
* Potential energy U=1/2] rp(r)Vod3r

* In words Gauss's theorem says that the integral of the normal
component of V® over and closed surface equals 47tG times the mass
enclosed

47

Today

* Non-spherical potential
e Virial theorm

e Time scales- collisionless
systems

and if time
e Collisionless Boltzmann Eq

— Jeans equations

48



Potentials are Separable
* We make the fundamental assumption that the potential of a system
can be decomposed into separable parts-
e This is because Poisson's equation is linear :
 differences between any two ¢—p pairsisalsoa ¢—p pair, and

differentials of ¢—p or arealso ¢—p pairs

* €.8. Prora=Poulget Paisk Phato
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Projection Effects
from M. Whittle

http://people.virginia.edu/~dmw8f/astr5630/TopicO7/Lecture_7 .html

e Observed luminosity density

I(R)=integral over true density I(R) = f_ ZJ'(T) de = 2 :%
distribution j(r) (in some wavelength
band) m To us
e Same sort of projection for velocity R I%
field but weighted by the density 2= -R
distribution of tracers i
e Density distribution solution is an Ve -RY
Abel integral (see appendix B.2 in
B&T)
— the velocity solution is also an

——>jr) = — B for o
* There are only a few useful I(R) & j(r) T J. dR /(R? —7?)
pairs that can both be expressed
algebraically
- eg. IR)=10)/[1 + (R/ry)?] with
j(@©) =1(0) / 2r[1 + (r/ry)*]3?

Abel integral r) = -1 f* dI dR



So Far Spherical Systems

» But spiral galaxies have a

significant fraction of the
mass (?7; at least the
baryons) in a flattened
system.

e Remember Oort constants
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Kuzmin Disk B&T sec 2.3 S&G Prob 3.4;

This ansatz is for a flattened system and
separates out the radial and z directions
Assume Py (z,R)= GM/[sqrt(R*+(a+2)?)] ;
axisymmetric (cylindrical)

R is in the X,y plane

Analytically, outside the plane, {y has the

form of the potential of a point mass
displaced by a ?stance 'a' along the z axis

— eq.R(z)= < (0,a); z<0
(0, -a); z>0
Thus V2®=0 everywhere except along z=0-
Poisson's eq

Applying Gauss's thm [V®d2s=47GM

and get Z(R)=aM/[2rt(R>+a?)*?]

this is in infinitely thin disk... not too

bad an approx

(0.a)

B&T fig 2.6 \]'z'

Use of Gauss's thm (divergence)
the sum of all sources minus the sum of
all sinks gives the net flow out of a

region.

[VOd2s=41GM=21G=
as z—0 ; 3=(121)G dD7dr



Isothermal Sheet MBW pg 498

simple model for the vertical structure of disk galaxies

Allows an estimate the disk mass from a measurement of the vertical
velocity dispersion, 0_, and the radial scale length, R, if one knows
the vertical scale height of the tracer population

The relevant Poisson eq is d’¢,/d (z/z4)*=1/2exp-(9,);
¢, =¢/0%, and z, =0,/sqrt(SxGp(R,0))

0%(R) =(z/z)) GM R ,exp(—R/R )

where z, is the vertical scale height of the disk and R is the radial
scale length

can solve for the density distribution the disk

Why do we want to do this??- Estimates of the mass for face on
galaxies where radial velocity data are impossible.
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Flattened +Spherical Systems-B&T eqs

Add the Kuzmin to GM

dym(R,2) = — . (2.69a)
the Plummer \/ R4 (a+ VETR)
potential
When b/a~ 0. 2, When a = 0, u reduces to Plummer’s spherical potential (2.44a), and when

.. b =0, &) reduces to Kuzmin’s potential of a razor-thin disk (2.68a). Thus,
qualitatively depending on the choice of the two parameters a and b, 51 can represent the
similar to the light potential of anything from an infinitesimally thin disk to a spherical system.
distributions of If we calculate V2®y;, we find that the mass distribution with which it is

disk galaxies associated is (Miyamoto & Nagai 1975)

21, 2 2 2 2 22
oni(Boz) = <b4M> aR +(a+3\/:z +b )(‘;/j V2?2 +b?) . (2.69b)
") (Rt @+ VETRPE + )
FT T T T T T T [ T T T [ T T T ] T T T T T T3
1 3
< of 3
~1F 3
Evovo oo b e b e b by g 4
-6 —4 —2 0 4 6
R/a

Contours of equal density in the (R; z) plane for b/a=02 **



Potential of an Exponential Disk B&T sec 2.6

* As to be discussed later the light
profile of the stars in most spirals
has an exponential scale LENGTH

2(R)=2,exp(-R/R,) (this is surface
brightness NOT surface mass
density)- see next page for formula's

Mass of exponential disk
M(R)= [Z(R)Rdr = 2nZ R [1-exp( R/R )(1+R/R )]

when R gets large M~2nZ R 2
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Potential of an Exponential Disk B&T sec 2.6

The circular velocity peaks at R~2.16 R, - approaches Keplerian for
a point mass at large R (eq. 11.30 in MWB) and depends only on
Z,and R,

As long as the vertical scale length is much less than the radial

scale the vertical distribution has a small effect - e.g. separable
effects !

IF the disk is made only of stars (no DM) and and if they all have
the same mass to light ratio I' , R; is the scale length of the stars ,
then the observables I,,R,v.(r) have all the info to calculate the
mass!

circ
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Circular Velocity for 3 Potentials

Exponential disk (Solid line)
Point mass (.....)
Spherical-exponential (-----)

0.8
0.6 ; ;
g :

=
T 04 —
S ]
N L ]
N B |
0.2 f —
\ \ \ \ I |
OO 2 4 6 8 10
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Explaining Disks

* Most important properties of disk dominated galaxies

— Brighter disks are on average
e larger, redder, rotate faster, smaller gas fraction

— flat rotation curves
— surface brightness profiles close to exponential
— lower metallicity in outer regions

For a uniform disk (S&G Prob 3.24) the potential is
- ¢(x) = 2nGZlzl. X is the surface density z=height above disk
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Explaining Disks

e Traditional to model disk as an infinitely thin exponential disk with a
surface density distribution Z(R)=2, exp(-R/R)

— This gives a potential (MBW pg 496) which is a bit messy

O(R, 2)=-21GZ, 2R, [ [J(kR)exp(-klzD) /[ 1+(kR,,)?]2dk

(do not need to know this...)
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Modeling Spirals 260 [

* Asindicated earlier to fit the observed 200 |
density and velocity distributions in
the MW one needs a 3 component
mass distribution

150 [;

ve/(km s7)

100 |
e Traditionally this is parameterized as o
the sum of sof .

— disk Z(R) =Z,[exp-R/a] ofiiis

— spheroid (bulge) using

I(R)=I R .*[R+Rs]? or -

similar forms 200 |-

— dark matter halo p(r)=p(0)/
[1+(1/a)?]

e See B&T sec 2.7 for more
complex forms- 2 solutions in
B&T- notice extreme difference oLt

in importance of halo (H) (table
2.3)

e bt b Ll

250

150 [

v./(km s7')

100 [£7;
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