
Virial Theorem Simplest 
•  2T + U = 0
•  By re-arranging the above equation and making some simple 

assumptions about T~(Mv2/2)) and U~(GM2/R) for galaxies one gets 
•  M~v2R/G

–  M is the total mass of the galaxy, v is the mean velocity of 
object in the galaxy/cluster, G is Newton’s gravitational 
constant and R is the effective radius (size) of the object.  

•  This equation is extremely important, as it relates two observable 
properties of galaxies (velocity dispersion and effective half-light 
radius) to a fundamental, but unobservable, property – the mass 
of the galaxy. Consequently, the virial theorem forms the root of 
many galaxy scaling relations. 

•  Therefore, we can estimate the Virial Mass of a system if we can observe:
–  The true overall extent of the system Rtot

–  The mean square of the velocities of the individual objects in the system
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Virial Theorem 
•  Another derivation following Bothun 

http://ned.ipac.caltech.edu/level5/Bothun2/Bothun4_1_1.html- please read this 
•  Moment of inertia, I,  of a system of N particles 

I=Σmiri
2  sum over i=1,N (express ri

2  as (xi
2+yi

2+zi
2)

•  take the first and second time derivatives ; let d2x/dt2 be symbolized by x,y,z
•  ½ d2I/dt2 =Σmi ( dxi/dt)2+(dyi/dt)2+(dzi/dt)2+Σmi(xi

 x+yiy+ziz) !

    mv2  (2 KE)+Potential energy (W)  ; W~1/2GN2m2/R=1/2GM2tot/Rtot    !
!
after a few dynamical times, if unperturbed a system will 

come into Virial equilibrium-time averaged inertia will 
not change so 2<T>+W=0  !

For self gravitating systems W=-GM2/2RH ; RH is the harmonic radius- the sum of the 
distribution of particles appropriately weighted   [ 1/RH =1/N Σi 1/ri ] 

The virial mass estimator is M=2σ2RH/G; for many mass distributions RH~1.25 Reff 

where Reff  is the half light radius,  σ is the 3-d velocity dispersion 
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Virial Theorem - Simple Cases
•  Circular orbit: 
mV2/r=GmM/r2

Multiply both sides by r, mV2=GmM/r
mV2=2KE; GmM/r=-W so 2KE+W=0

•  Time averaged Keplerian orbit 
 define U=KE/|W|; as shown in figure it 

clearly changes over the orbit; but 
take averages: 

-W=<GMm/r>=GMm<1/r>
     =GMm(1/a)
  KE=<1/2mV2>=GMm<1/r-1/2a>    
       =1/2GMm(1/a) 
So again 2KE+W=0

Red: kinetic energy (positive) starting at perigee
Blue: potential energy (negative) 
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Virial Thm  
•  If I is the moment of inertia 

•  ½d2I/dt2 =2KE+W+Σ 
–  where Σ is the work done by external pressure 
–  KE is the kinetic energy of the system
–  W is the potential energy (only if the mass outside some surface S 

can be ignored) 

•  For a static system (d2I/dt2 =0) 2KE+W+Σ =0- 
almost always Σ=0

•  Using the virial theorem, masses can be derived by 
measuring characteristic velocities over some characteristic 
scale size. In general, the virial theorem can be applied to 
any gravitating system after one dynamical timescale has 
elapsed.



Using the Virial Theorm- (from J. Huchra) 
•  It is hard to use for distant galaxies because individual test particles 

(stars) are too faint
•  However it is commonly used for clusters of galaxies 
Assume the system is spherical. The observables are (1) the l.o.s. time 

average velocity:
     < v2

R,i> Ω   =  1/3 vi
2

       projected radial v    averaged over solid angle

i.e. we only see the radial component of motion & 

        vi ~   √3 vr
Ditto for position, we see projected radii R, 
   R  = θ d ,    d = distance, θ = angular separation
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Time Scales for Collisions (S&G 3.2) 
•  N particles of radius rp; Cross section for a direction collision σd=πr2

p

•  Definition of mean free path: λ=1/nσd  

   where n is the number density of particles (particles per unit volume),  
n=N/(4πl3/3)

   The characteristic time between collisions (Dim analysis) is 
   tcollision=λ/v~[ ( l/rp)2 tcross/N] where v is the velocity of the particle. 
   for a body of size l, tcross= l/v= crossing time 
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Time Scales for Collisions

   So lets consider a galaxy with l~10kpc, N=1010 stars and v~200km/sec 
•  if rp = Rsun, tcollision~1021 yrs Therefore direct collisions among stars are 

completely negligible in galaxies.

•  For indirect collisions the argument is more complex (see S+G sec 
3.2.2, MWB pg 231-its a long derivation-see next few pages) but the 
answer is the same - it takes a very long time for star interactions 
to exchange energy (relaxation). 

•  trelax~Ntcross/10lnN 
•  It’s only in the centers of the densest globular clusters and galactic 

nuclei that this is important 
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How Often Do Stars Encounter Each Other (S&G 3.2.1) 
Definition of a 'strong' encounter, GmM/r > 1/2mv2        

  potential energy exceeds KE of incoming particle
So a critical radius is r<rs=2GM/v2   eq 3.48

Putting in some typical numbers m~1/2M� v=30km/sec 
rs=1AU 
So how often do stars get that close?

consider a cylinder Vol=πr2
svt; if have n stars per unit volume than on 

average the encounter occurs when 
nπr2

svt=1, ts=v3/ 4πnG2M2

Putting in typical numbers =4x1012(v/10km/sec)3(M/M�)-2(n/pc3)-1 yr- a 
very long time (universe is only 1010yrs old) eq 3.55
 - galaxies are essentially collisionless  
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What About Collective Effects ?  sec 3.2.2

For a weak encounter b >> rs
Need to sum over individual interactions- effects are also small
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Relaxation Times 
=vt•  Star passes by a system of N stars of mass m

•  assume that the perturber is stationary
 during the encounter and that δv/v<<1 

 (B&T pg 33-sec 1.2.1. sec 3.1 for exact calculation)
•  So δv is perpendicular to v 

–  assume star passes on a straight line trajectory 
•  The force perpendicular to the motion is 
Fp=Gm2cosθ/(b2+x2)=Gbm2/(b2+x2)3/2=(Gm2/b2)(1+(vt/b)2)-3/2 =m(dvdt)

so  δv=1/m ∫  Fpdt = (Gm2/b2)∫ ∞-∞  dt(1+(vt/b)2)-3/2= 2GM/bv
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Relaxation Times 
•  In words, δv is roughly equal to the acceleration at closest 

approach,
     Gm/b2, times the duration of this   acceleration 2b/v.

The surface density of stars is ~N/πR2

N is the number of stars and R is the galaxy radius
 
let  δn be the number of interactions a  star encounters with impact 
parameter
between b and δb crossing the galaxy once
  δn~(N/πr2)2πbδb=~(2N/r2)bδb

each encounter produces a dv but are randomly oriented to the stars intial 
velocity v and thus their mean is zero (vector) HOWEVER
 the mean square is NOT ZERO and is 
Σδv2~δv2δn= (2Gm/bv)2(2N/R2) bdb 
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Relaxation...continued
•  now integrating this over all impact parameters from bmin to bmax 

•  one gets δv2  ~8πn(Gm)2/vln Λ ; where r is the galaxy radius eq (3.54) 
     ln Λ is  the Coulomb logarithm = ln(bmax/bmin) (S&G 3.55) 

•  For gravitationally bound systems  the typical speed of a  star is 
roughly v2~GNm/r

      (from KE=PE) and thus δv2/v2~8 ln Λ/Ν 

•  For each 'crossing' of a galaxy one gets the same δv so the number of 
crossing for a star to change its velocity by order of its own velocity is 
nrelax~N/8ln Λ
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Relaxation...continued 
So how long is this?? 
•  Using eq 3.55 
trelax=V3/[8πn(Gm)2ln Λ]∼[2x109 yr/lnΛ](V/10km/sec)3(m/M¤)-2(n/103pc-3)-1

Notice that this has the same form and value as eq 3.49 (the strong 
interaction case) with the exception of the 2lnΛ term 
•  Λ~N/2   (S&G 3.56) 
•  trelax~(0.1N/lnN)tcross  ; if we use N~1011 ; trelax is much much longer 

than tcross 

•  Over much of a typical galaxy the dynamics over timescales t< trelax is 
that of a collisionless system in which the constituent particles move 
under the influence of the gravitational field generated by a smooth 
mass distribution, rather than a collection of mass points

•  However there are parts of the galaxy which 'relax' much faster
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Relaxation
•  Values for some representative systems

<m> N r(pc) trelax(yr) age(yrs)
Pleiades 1 120 4 1.7x107 <107

Hyades 1 100 5 2.2x107 4 x 108

Glob cluster         0.6 106 5             2.9x109 109-1010

E galaxy 0.6 1011 3x104 4x1017 1010

Cluster of gals 1011 103 107 109 109-1010

                        Scaling laws trelax~ tcross~ R/v ~ R3/2 / (Nm)1/2 ~ ρ-1/2  

•   Numerical experiments (Michele Trenti and Roeland van der Marel 2013 astro-ph 
1302.2152) show that even globular clusters never reach energy equipartition (!) to quote  
'Gravitational encounters within stellar systems in virial equilibrium, such as globular 
clusters, drive evolution over the two-body relaxation timescale. The evolution is toward a 
thermal velocity distribution, in which stars of different mass have the same energy). This 
thermalization also induces mass segregation. As the system evolves toward energy 
equipartition, high mass stars lose energy, decrease their velocity dispersion and tend to sink 
toward the central regions. The opposite happens for low mass stars, which gain kinetic 
energy, tend to migrate toward the outer parts of the system, and preferentially escape the 
system in the presence of a tidal field''
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So Why Are Stars in Rough Equilibrium? 
•  Another process, 'violent relaxation' (MBW sec 5.5), is crucial. 
•  This is due to rapid change in the gravitational potential (e.g., 

collapsing protogalaxy) 
•  Stellar dynamics describes in a statistical way the collective motions 

of stars subject to their mutual gravity-The essential difference from 
celestial mechanics is that each star contributes more or less equally 
to the total gravitational field, whereas in celestial mechanics the pull 
of a massive body dominates any satellite orbits 

•  The long range of gravity and the slow "relaxation" of stellar systems 
prevents the use of the methods of statistical physics  as stellar 
dynamical orbits tend to be much more irregular and chaotic than 
celestial mechanical orbits-....woops.

•  to quote from MBW pg 248 
•  Triaxial systems with realistic density distributions are therefore difficult to treat 

analytically, and one in general relies on numerical techniques to study their 
dynamical structure
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Collisionless Boltzmann Eq (= Vlasov eq)         
S+G sec 3.4 

•  When considering the structure of galaxies, one cannot follow each 
individual star (1011 of them!),

•  Consider instead stellar density and velocity distributions. However, a fluid 
model is not really appropriate since a fluid element has a single velocity, 
which is maintained by particle-particle collisions on a scale much smaller 
than the element.

•   For stars in the galaxy, this is not true - stellar collisions are very rare, and 
even encounters where the gravitational field of an individual star is 
important in determining the motion of another are very infrequent 

•  So taking this to its limit, treat each particle as being collisionless,  moving 
under the influence of the mean potential generated by all the other particles 
in the system φ(x,t)
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Collisionless Boltzmann Eq s S&G 3.4   
•  The distribution function is defined such that f(r,v,t)d3xd3v specifies 

the number of stars inside the volume of phase space d3xd3v centered 
on (x,v) at time t-  

•  We can  describe a many-particle system by its distribution function 
f(x,v,t) = density of stars (particles) within a phase space element�

At time t, a full description of the state of this system is given by 
specifying the number of stars 

f(x, v, t)d3xd3v

Then f(x, v, t) is called the �distribution function� (or �phase space 
number density�) in 6 dimensions (x and v) of the system. 

f ≥ 0 since no negative star densities

Since the potential is smooth, nearby particles in phase space move 
together-- fluid approx. 
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See S&G sec 3.4 

•  The collisionless Boltzmann equation (CBE) is like the 
equation of continuity, 

             dn/dt = ∂n/∂t+ ∂(nv)/∂x= 0
but it allows for changes in velocity and relates the changes 
in f (x, v, t) to the forces acting on individual stars

•  In one dimension, the CBE is 

df/dt = ∂f/∂t + v∂ f/∂x- [∂φ(x, t) /∂x] ∂f/∂v= 0 

Collisionless Boltzman cont
•  Starting point: Boltzmann Equation (= phase space continuity 

equation) 
•  It says: if I follow a particle on its gravitational path (=Lagrangian 

derivative) through phase space, it will always be there. 

•  A rather ugly partial differential equation!�
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Collisionless Boltzmann Eq 
•  This results in (S+G pg 143)

•   the flow of stellar phase points through phase space is incompressible 
– the phase-space density of points around a given star is always the 
same

•  The distribution function f is a function of seven variables (t, x, v), so 
solving the collisionless Boltzmann equation in general is hard. So 
need either simplifying assumptions (usually symmetry), or try to get 
insights by taking moments of the equation. 

•  Take moments of an eq-- multipying f  by powers of v  

•  For a collisionless stellar system in dynamic equilibrium, the 
gravitational potential,φ , relates to the phase-space distribution of 
stellar tracers f(x, v, t), via the collisionless Boltzmann Equation

•  number density of particles:  n(x,t)=∫ f(x, v, t)d3v

average velocity: <v(x,t)>=∫ f(x, v, t) vd3v/∫ f(x, v, t)d3v=(1/n(x,t))∫ f(x, v, t) vd3v

•  bold variables are vectors
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Analogy with Gas- continuity eq see MBW sec 4.1.4  

•  ∂ρ/∂t +∇•(ρv)=0 which is equiv to 
•  ∂ρ/∂t +v•∇ρ=0 

•  In the absence of encounters f satisfies 
the continuity eq, flow is smooth, stars 
do no jump discontinuously in phase 
space 

•  Continuity equation :
define w=(x,v) pair (generalize to 3-D)
dw/dt=(v,-∇φ) – 6-dimensional space

•  df/dt = 0
•  ∂f/∂t + ∇6(f  dw/dt)=0 
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Jeans Equations MBW sec 5.4.3 
•  Since f is a function of 7 variables, obtaining a solution is challenging
•  Take moments (e.g. integrate over all v)

–  let n be the space density of 'stars'

∂n/∂t + ∂(n<vi> )/∂xi = 0; continuity eq. zeroth moment 
first moment (multiply by v and integrate over all velocities)
∂(n<vj> /∂t) + ∂(n<vivj>)/∂xi + n∂φ/∂x j= 0
equivalently 
n∂(<vj> /∂t) + n<vi> ∂<vj>/∂xi = -n∂φ/∂xj - ∂(nσ2

ij)/∂xi 
where
 n is the integral over velocity of f ;  n=∫ f d3v
<vi> is the mean velocity in the ith direction = (1/n) ∫ f vi d3v
 σ2

ij = < (vi - <vi>) (vj - <vj>) >     “stress tensor”
       = <vivj> - <vi><vj>
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Collisionless Boltzmann Eq 

astronomical structural and kinematic observations provide 
information only about the projections of phase space distributions 
along lines of sight, 
limiting knowledge about f and hence also about φ�. 

Therefore all efforts to translate existing data sets into constraints on � 
CBE involve simplifying assumptions. 
•  dynamic equilibrium, 
•  symmetry assumptions
•  particular functional forms for the distribution function and/or the 
gravitational potential.
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Collisionless Boltzmann Eq- Moments 

define n(x,t) as the number density of stars at position x
 
then the zeroth moment is: 
∂n/∂t+∂/∂x(nv)=0; the same eq as continuity equation of a fluid

first moment:
n∂v/dt+nv∂v/dx=-n∂φ/∂x�∂/∂x(nσ2)

σ is the velocity dispersion 
But unlike fluids, we do not have thermodynamics to help out.... 
nice math but not clear how useful 
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Jeans Eq 

•  n∂(<vj> /∂t) + n<vi> ∂<vj>/∂xi = -n∂φ/∂xj - ∂(nσ2
ij)/∂xi 

•  So what are these terms??
•  Gas analogy: Euler’s eq of motion
          ρ ∂v/∂t + ρ (v . ∇)v  = -∇P � ρ∇Φ
•  n∂φ/∂xj : gravitational pressure gradient
•  nσ2

ij   “stress tensor” is like a pressure, but may be anisotropic, 
allowing for different pressures in different directions - important in 
elliptical galaxies and bulges 'pressure supported' systems  (with a 
bit of coordinate transform one can make this symmetric e.g. 
σ2

ij=σ2
ji)
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Jeans Eq Cont 
•  n∂v/dt+nv∂v/dx=-n∂φ/∂x-∂/∂x(nσ2)
•  Simplifications: assume isotropy, steady state, non-rotating
            à terms on the left vanish
•  Jean Eq becomes: -n sφ =s(nσ2)

•  using Poisson eq: s2φ = 4πGρ 
•  Generally, solve for  ρ  (mass density)
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Jeans Equations: Another Formulation 
•  Jeans equations follow from the 

collisionless Boltzmann equation; 
Binney & Tremaine (1987), MBW 
5.4.2. S+G sec 3.4 .

cylindrical coordinates and assuming an 
axi-symmetric and steady-state 
system, the accelerations in the 
radial (R) and vertical (Z) directions 
can be expressed in terms of 
observable quantities: 

the stellar number density distribution 
ν*

And 5 velocity components 
 - a rotational velocity vφ
 - 4 components of random velocities
   (velocity dispersion components)      

σφφ, σRR, σZZ, σRZ

where aZ, aR are accelerations in the 
appropriate directions- 

given these values (which are 
the gradient of the gravitational potential), 
the dark matter contribution can be estimated 
after accounting for the contribution from 
visible matter 
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Use of Jeans Eqs: Surface mass density near Sun�
 •  Poissons eq s2φ = 4πρG = -s•F 

•  Use cylindrical coordinates, axisymmetry 
    (1/R)∂/∂R(RFR) + ∂Fz/∂z=�4πρG 

•  FR=-vc
2/R   vc  = circular velocity (roughly constant near Sun) – 

                       FR = force in R direction  
So  ρ = (�1/4πG)∂Fz/∂z; only vertical gradients count 
since the surface mass density Σ=2∫ ρdz  (integrate 0 to +∞ thru plane)  
   Σ=-Fz/2πG 
Now use Jeans eq: nFz=-∂(nσ2

z)/∂z+(1/R)∂/∂R(Rnσ2
zR); if R+z are 

separable, e.g φ(R,z) =φ(R)+φ(z)  then σ2
zR~0 and voila! (eq 3.94 in S+G) 

Σ=-(1/2πGn) ∂(nσ2
z)/∂z; need to observe the number density distribution 

of some tracer of the potential above the plane [goes as exp(-z/z0)]
    and its velocity dispersion distribution perpendicular to the plane 
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Spherical systems- Elliptical Galaxies and Globular Clusters 
 
•  while apparently simple we have 3 sets of unknowns <v2

r>, β(r) , n(r)
•  and 2 sets of observables I(r)- surface brightness of radiation (in some 

wavelength band) and the lines of sight  projected velocity field (first 
moment is velocity dispersion)   

•  It turns out that one has to 'forward fit'- e.g. propose a particular form 
for the unknowns and fit for them.   
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Use of Jeans Eq For Galactic Dynamics 
•  Accelerations in the z direction from the Sloan 

digital sky survey for 
1) all matter (top panel)
2)�known' baryons only (middle panel)
3) ratio of the 2 (bottom panel)   
Based on full-up numerical simulation from 

cosmological conditions of a MW like galaxy-this  
'predicts' what aZ should be near the Sun 
(Loebman et al 2012)  

Compare with results from Jeans eq (ν is density of 
tracers, vφ is the azimuthal velocity (rotation) ) 
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What Does One Expect The Data To Look Like 
•  Now using Jeans eq
•  Notice that it is not 

smooth or monotonic
     and that the simulation is 

neither perfectly 
rotationally symmetric 
nor steady state.. 

•  errors are on the order of 
20-30%- figure shows 
comparison of true radial 
and z accelerations 
compared to Jeans model 
fits 

1 kpc x 1kpc bins; acceleration units of 2.9x10-13 km/sec2 
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Jeans (Continued)
•  Using dynamical data and velocity data, get estimate of surface mass 

density in MW 
                                Σtotal~70 +/- 6M¤/pc2

                                Σdisk~48+/-9 M¤/pc2

                                Σstar~35M¤/pc2

                                Σgas~13M¤/pc2

we know that there is very little light in the halo so direct evidence for dark 
matter
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Full Up Equations of Motion- Stars as an Ideal Fluid                 
( S+G pgs140-144,  MBW pg 163) 

Continuity equation (particles not created or destroyed)
   dρ/dt+ρ∇.v=0; dρ/dt+d(ρv)/dr=0

Eq's of motion (Eulers eq)
   dv/dt = -∇P/ρ�∇Φ

Poissons eq 
    ∇2Φ(r) = -4πGρ(r)    (example potential)
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Analogy of Stellar Systems to Gases �
- Discussion due to Mark Whittle  

•  Similarities : 
comprise many, interacting objects which act as points (separation >> size) 
can be described by distributions in space and velocity  eg Maxwellian velocity 

distributions; uniform density; spherically concentrated etc. 
Stars or atoms are neither created nor destroyed -- they both obey continuity equations-

not really true, galaxies are growing systems!  
All interactions as well as the system as a whole obeys conservation laws (eg energy, 

momentum)  if isolated 
•  But  : 
•  The relative importance of short and long range forces is radically different : 

–   atoms interact only with their neighbors
–   stars interact continuously with the entire ensemble via the long range attractive 

force of gravity
•  eg uniform medium : F ~ G (ρ dV)/r2, ; dV ~ r2dr;  F ~ ρ dr                                  
                                        ~ equal force from all distances 
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Analogy of Stellar Systems to Gases �
- Discussion due to Mark Whittle  

•   The relative frequency of strong encounters is radically different :   
      -- for atoms, encounters are frequent and all are strong (ie  δV ~ V) 
      -- for stars, pairwise encounters are very rare, and the stars move in the smooth 

global potential (e.g. S+G 3.2) 

•  Some  parallels between gas (fluid) dynamics and stellar dynamics: many of the 
same equations can be used as well as  : 

      ---> concepts such as Temperature and Pressure can be applied to stellar systems 
      ---> we use analogs to the equations of fluid dynamics and hydrostatics
•  there are also some interesting differences 
      ---> pressures in stellar systems can be anisotropic 
      ---> self-gravitating stellar systems have negative specific heat 
               2K + U = 0 à E = K + U = -K = -3NkT/2 à C = dE/dT = -3Nk/2<0 
             and evolve away from uniform temperature.

Next Time 
•  The Local Group
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