
Local Group See S&G ch 4
•  Our galactic neighborhood consists 

of one more 'giant' spiral (M31, 
Andromeda), a  smaller spiral M33 
and lots of  (>35 galaxies), most of 
which are dwarf ellipticals and 
irregulars with low mass; most are 
satellites of MW, M31 or M33

•  The gravitational interaction 
between these systems is complex 
but the local group is apparently 
bound.  

•  Major advantages
–  close and bright- all nearby 

enough that individual stars can 
be well measured as well as HI, 
H2, IR, x-ray sources and even 
γ-rays

–  wider sample of universe than 
MW (e.g. range of metallicities, 
star formation rate etc etc) to be 
studied in detail

– allows study of dark matter on larger 
scales and first glimpse at galaxy 
formation
– calibration of Cepheid distance scale 

MBW fig 2.31

ARA&A1999, V 9, pp 273-318 The local group of 
galaxies S. van den Bergh
Star formation histories in local group dwarf galaxies  
Skillman, Evan D.
New Astronomy Reviews, v. 49, iss. 7-9 p. 453-460.
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https://
sciencesprings.word
press.com/tag/
milky-way/
Local Group. 
Andrew Z. Colvin 
3 March 2011
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Image of Local Group to Scale S&G Fig 4.1
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Local Group Galaxies -Wide Range of Luminosity 
•  Local Group dwarfs 

galaxies trace out a 
narrow line in the 
surface brightness 
luminosity- plane

(Tolstoy et al 2009)
see table 4.1 in S&G   
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Comparison of Galaxies and Globulars
•  Comparison of 

dwarf galaxies 
in the local 
group- plot of 
absolute 
magnitude vs 
size 
–  + are 

globular 
clusters
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•  MW/M31~2x1010Lv¤

•  LMC~2x109Lv¤

•  Formax dSph 1x107
vL¤

•  Carina dSph 3x105Lv¤

•  Because of closeness and relative 
brightness of stars the Color 
Magnitude Diagram combined with 
Spectroscopy of resolved stars can 
produce 'accurate'
–  star formation histories
–  Chemical evolution T. Smecker-Hane

Mv(mag)

<[
Fe

/H
]>

Despite wide variety of 'local'  environments (near/far from MW/M31)
trends in chemical composition seem to depend primarily on galaxies
properties 6

Wide Range of Luminosities/ Chemical 
Abundance  



Star Formation Histories 
•  Analysis of CMDs shows presence of both old and (some) young stars in the dwarfs 

-complex SF history
•  The galaxies do not show the same SF history- despite their physical proximity and 

being in a bound system 
•  Their relative chemical abundances show some differences with  low metallicity 

stars in the MW. 
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Star Formation Histories Local Group Dwarfs 
•  With HST can 

observed color 
magnitude diagram 
for individual stars 
in local group 
galaxies 

•  Using the 
techniques 
discussed earlier 
can invert this to 
get the star 
formation history

•  Note 2 extremes: 
very old systems 
Cetus, wide range 
of SF histories (Leo 
A) 

•  (Tolstoy, Hill, Tosi 
Annual Reviews 
2009) 

0                 10   now
t (Gyr)
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History of SFR In Local Group Dwarfs

Grebel and
Favata
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Different 
Places in 
the LMC

•  Different parts of  
a galaxy can have 
different star 
formation 
histories 
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Abundances in Local Group Dwarfs 

•  Clear difference in metal generation 
compared to MW
–  Fe from type I SN
–  "α" from type II

•  "α" elements is O,Ne,Mg,Ar,Si,S,

Hill 2008

Sculptor stars in red, MW
stars in black 
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Metallicities In LG Dwarfs Vs MW•  Overall metallicity of LG 
dwarfs is low :patterns but 
different  to stars in MW 
(black dots- Tolstoy et al 
2009)- 

•  How to reconcile their low 
observed metallicity with the 
fairly high SFR of the most 
metal-poor systems many of 
which are actively star-
forming 

•  best answer metal-rich gas 
outflows, e.g. galactic 
winds, triggered by 
supernova explosions in 
systems with shallow 
potential wells, efficiently 
remove the metal-enriched 
gas from the system.

•   In Local Group wind 
models be well constrained 
by chemical abundance 
observations (later in 
lecture). 
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Conservation Equations

•  If we assume that the yield y is 
independent of time and 
metallicity (  Z)  then 

•   Z(t)= Z(0)-y ln Mg(t)/Mg(0)= 
Z(0)=yln µ
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Maeder 1992
f = e = 0, Mg(t = 0) = M, Ms(t = 0) = 0 (closed-box-model):

of
of



Closed Box Approximation-Tinsley 1980, Fund. Of Cosmic 

Physics, 5, 287-388 Read S&G 4.3
•  To get a feel for how chemical evolution and SF are related (S+G eqs  

4.13-4.17)- 

•  at time t, mass ΔMtotal of stars formed, after  the massive stars die left 
with ΔMlow mass  which live 'forever'

•  massive stars inject into ISM a mass pΔMtotal  of heavy elements (p 
depends on the IMF and the yield of SN- normalized to total mass of 
stars).

•  Assumptions: galaxies gas is well mixed, no infall or outflow, high 
mass stars return metals to ISM faster than time to form new stars)
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Formation of Elements ala S&G 
•  Mg(t) the mass of gas in the 

galaxy at time t 
•  M*(t) the mass in low-mass 

stars and the white dwarfs, 
neutron stars and black the 
matter in these objects 
remains locked within them 
throughout the galaxy’s 
lifetime) 

•  Mh(t) is the total mass of 
elements heavier than 
helium in the gas;

•  The metal abundance in the 
gas is then Z(t) =Mh(t)/Mg(t).
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When the massive stars end their 
lives, they leave behind a mass 
ΔM*(t) of low-mass stars and 
remnants, and return gas to the 
interstellar medium which includes 
a mass pΔM*(t) of heavy elements.

 The yield is p 

So 
The mass Mh(t) of heavy elements 
in the interstellar gas changes as 
the metals produced by massive 
stars are returned to the gas phase



•  while a mass Z ΔM*(t) of these elements is locked into low-mass stars 
and remnants. 

•  Taking all these terms 
•  We have
•  ΔMh(t)	��ΔM*(t) ���ΔM*(t)	��������ΔM*(t)

As the stars evolve the metallicity of the gas increases by 
ΔZ=(Mh(t)/M(t)g)=pΔM*(t)-Z([ΔM*(t)+ΔMg(t)]/Mg(t) eq 4.14
Closed box approximation- no gas enters or leaves the system sosum 
of mass remains constant e.g. ΔM*(t)+ΔMg(t)= 0 (e.g. sum of changes 
in gas and stellar mass balance)

Integrate eq. 4.14  to get 
Z(t)=Z(t=0)+pln[Mg(t=0)/Mg(t)] 17

•  Metallicity grows with time as stars form and gas is used up

•  The mass of stars formed before time t is  Mg(0)-Mg(t)
•  These stars have a metallicity <Z(t) and so 
•  M*(<Z))=Mg(0)[(1-exp[Z-Z(0)/p)] eq 4.16 

•  The mass M*(<Z) of slowly evolving stars that have abundances 
below the given level Z depends only on the quantity of gas 
remaining in the galaxy when its metal abundance has reached that 
value.

•  Once all the gas is gone, this model predicts that the mass of stars 
with metallicity between Z and Z + Z should be

•  [�
*����/dZ] Δ����������������������
����Δ�� 18



Closed Box- continued 
•  Net change in metal content of gas
•  dMh=p dMstar - Z dMstar=(p- Z) dMstar

•  Change in  Z since dMg= -dMstar  and  Z=Mh/Mg then
•  dZ=dMh/Mg -Mh dMg/M2

g =(p- Z) dMstar/Mg +(Mh/Mg)
(dMstar/Mg ) =pdMstar /Mg

•  d Z/dt=-p(dMg/dt) Mg

•  If we assume that the yield y is independent of time and 
metallicity (Z)  then 

•   Z(t)= Z(0)-p ln Mg(t)/Mg(0) metallicity of gas grows with 
time  logarithmically 4.15
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Closed Box- continued 
•  metallicity of gas grows with time logarithmically 
mass of stars that have a metallicity less than  Z(t) is  
Mstar[< Z(t)]=Mstar(t)=Mg(0)-Mg(t) or 
Mstar[< Z(t)]=Mg(0)*[1-exp(( Z(t)- Z(0))/p]

when all the gas is gone, mass of stars with metallicity  Z, Z+d Z is 
Mstar[ Z] α exp(( Z(t)- Z(0))/p) d Z- we use this to derive the yield from 

data
 Z(today)~ Z(0-pln[Mg(today)/Mg(0)]; Z(today)~0.7 Zsun

since initial mass of gas was sum of gas today and stars today 
Mg(0)=Mg(today)+Ms(today) with for MW Mg(today)~10M¤/pc2 

Mstars(today)~40M¤/pc2

 get p=0.43 Zsun go to pg 180 in text to see sensitivity to average 
metallicity of stars 20



Closed Box- Problems 
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•  Problem is that closed box connects todays gas 
and stars yet have systems like globulars with 
no gas and more or less uniform abundance. 

•  Also need to tweak yields and/or assumptions to 
get good fits to different systems like local 
group dwarfs. 

•    'G dwarf' problem in MW (S+G pg 180-181) 
nearly half of all stars in the local disk should 
have less than a quarter of the Sun’s metal 
content. BUT less than 25% have such low 
abundances

•  Go to more complex models - leaky box (e.g 
inflow/outflow);
–   assume outflow of metal enriched material 

g(t) which is proportional to star formation 
rate g(t)=cdMs/dt;

–  solution is  Z(t)= Z(0)-[(p/(1+c))*ln[Mg(t)/
Mg(0)]- reduces effective yield but does not 
change relative abundances

Green is closed box model
red is observations of local stars
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in this and the following slides 
the yield is y
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•  Simple closed-box model works 
well for bulge of Milky Way

•  Outflow and/or accretion is 
needed to explain

Metallicity distribution of 
stars in Milky Way disk
Mass-metallicity relation of 
local star-forming galaxies
 Metallicity-radius relation in 
disk galaxies
 Merger-induced starburst 
galaxies
Mass-metallicity relation in 
distant star-forming galaxies
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Galactic bulge metallicity 
distributions of stars S&G fig 
4.16- solid line is closed box 
model  

Leaky box 
Outflow and/or accretion is needed to 

explain
•  Metallicity distribution of stars in 

Milky Way disk
•   Mass-metallicity relation of local star-

forming galaxies

•  In a growing universe (remember 
galaxy masses increase with time) 
expect gas inflow

•  Gas outflow could be caused by the 
effects of star formation (supernova) 
and active galaxies injecting huge 
amounts of energy 

26
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Optical Image of LMC and SMC 

Magellanic Clouds 
•  Satellites of the MW: potentially 

dynamics of SMC and LMC and the 
Magellanic stream can allow detailed 
measurement of mass of the MW. 

•  LMC D~50kpc Mgas ~ 0.6x109 M¤ 
(~10% of Milky Way)Supernova rate 
~0.2 of Milky Way

R.C. Bruens

Magellanic stream
-tidally removed gas?? 

Position of LMC and SMC over 
time- in full  up dynamical model;
no merger with MW in 2 Gyrs ?
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Dynamical Friction 
•  Transfer of energy of the forward motion of the galaxies into internal 

energy (e.g. motion of test particles inside the galaxies)
•  this drag force, is called dynamical friction, which transfers energy 

and momentum from the subject mass to the field particles. 
•  Intuitively, this can be understood from the fact that two-body 

encounters cause particles to exchange energies in such a way that the 
system evolves towards thermodynamic equilibrium. 

•  The set-up is an infalling galaxy of mass Ms moves into a large 
collisionless object whose constituents have mass m<< Ms

•  Thus, in a system with multiple populations, each with a different 
particle mass mi, two-body encounters drive the system towards 
equipartition, in which the mean kinetic energy per particle is locally 
the same for each population: m1<v1

2> = m2<v2
2>
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Dynamical Friction Derivation pg 285 S&G
•  As M moves past it gets a change in 

velocity in the perpendicular direction 
δV=2Gm/bV (in the limit that b 

>>2G(M+m)/V2

momentum is conserved so change in 
kinetic energy in the perpendicular 
direction is 

δ(KE)=(M/2)(2Gm/bV)2+(m/2)(2GM/
bV)2=

2G2mM(M+m)/b2V2  (eq 7.5 S&G)
δV~[2G2m(M+m)/b2V3]
and dV/dt~4πG2[(M+m)/V2]

notice that the smaller object 
acquires the most energy- which 
can only come from the forward 
motion of galaxy M

34



Dynamical Friction-cont
•  basically this process allows the exchange of energy between a smaller 'incoming' 

mass and the larger host galaxy 
•  The smaller object acquires more energy 

–  -removes energy from the directed motion small particles (e.g. stars) and 
transfers it to random motion (heat) - incoming galaxy 'bloats' and it loses stars.

•  It is not identical to hydrodynamic drag:
–   in the low velocity limit the force is ~velocity, while in the high limit is goes as 

v-2 
•   independent of the mass of the particles but depends on their total density- e.g. 

massive satellite slowed more quickly than a small one 
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Analytic Estimate How Fast Will Local Group Merge?
•  Dynamical friction (S+G 7.1.1 )-occurs when an object has a relative 

velocity wrt to  a stationary set of masses. The moving stars are deflected slightly, 
producing a higher density 'downstream'- producing a net drag on the moving 
particles 

•  Net force =Mdv/dt~ 4π G2M+m)nm/V2 (eq 7.8) for particles of equal mass m and 
number n-so time to 'lose' significant energy-timescale for dynamical friction-
slower galaxy moves, larger its deacceleration  a more massive satellite is 
slowed more quickly 

•  tfriction~V/(dv/dt)~V3/4πG2Mmρ/lnΛ (in previous lecture)
Μ∼1010 Μ;m=1Μ; ρ∼3x10�4 Μ/pc3 Galactic density at distance of LMC (problem 7.6)

putting in typical values  for LMC 

tfriction~3Gyrs
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•  Accurate estimates of the effects of 
dynamical friction and the timescale 
for an orbiting satellite to lose its 
energy and angular momentum to 
merge with a host are essential for 
many astrophysical problems.

•  the growth of galaxies depends on 
their dynamical evolution within 
larger dark matter halos.

•  dynamical friction provides a critical 
link between dark matter halo mergers 
and the galaxy mergers that determine, 
e.g., stellar masses, supermassive 
black hole masses, galaxy colors, and 
galaxy morphologies. (Boylan-
Kolchin et al 2007)
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LMC Merger??
•  Depends  sensitively 

on  LMC orbit and 
model of MW 
potential-

At the Clouds� present-
day position, a large 
fraction of their 
observed line of sight 
and proper motion 
speeds are due to the 
Sun�s motion around 
the Galactic center!

•  The origin of the 
Magellanic Clouds is 
still an enigma as they 
are the only blue, gas-
rich irregulars in the 
local group. 

K. Johnston 38



To get orbit to MCs need all  6 
quantitites (x,y,z) and vx,vy,vz
measure positon and radial velocity easy
tangent velocity is hard 
recent results differ a lo
vx,vy,vz[km/s] 41±44, -200±31, 169±37
Kroupa & Bastian (1997)
vx,vy,vz[km/s] -56±39, -219±23, 186±35

van der Marel et al. (2002) 

Need distance to convert angular coordinates
to physical units 

Dynamical friction vectors-
depend on shape and size of MW dark halo!
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Distance to LMC
•  LMC is unique in that many Cepheids 

can be detected in a galaxy with rather 
different metallicity with no effect of 
crowding

distance modulus, µ,(log d=1+µ/5) pc
 LMC µ= 18.48 ± 0.04 mag; (49.65 Kpc)

This sets the distance scale for 
comparison with Cepheids in nearby
galaxies (Freedman+Madore 2010)  

LMC Distance Modulus

log Period (days)
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Rotation of the LMC New result from Gaia
•  Each vector shows motion of stars 

over next 7.2Myr
•  Big vector is overall motion of LMC 

(van den Marel and Sahlmann 2017)
•  Proper motion is ~ 1mas/yr and 

velocities are in km/sec to connect the 
2 need distance. 

•  Fit gives m-M=18.54 mag or D= 51 
kpc
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3D Map of LMC/SMC
•  Data so precise get 3D 'map' of LMC/SMC
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Cosmic Rays and γ-rays
•  LMC, SMC and M31 are only galaxies, 

other than MW,  for which γ-ray images 
exist. 

•  Look for correlations with sites of CR 
acceleration and/or for dense gas which  
the CRs interact with to produce γ-rays . 

Spitzer IR (dust) Image of LMC 

γ-ray Map of LMC 

γ-ray intensity scale 43

LMC Cosmic Rays and γ-rays
γ-ray emission correlates with massive star forming  regions and not with the gas 

distribution (simulated images if the γ-ray emission was distributed like the source) 
–  Compactness of emission regions suggests little CR  diffusion

•  30 Doradus star forming region is a bright source of gamma rays and very likely a  
cosmic-ray accelerator

Dermer 2011
γ-ray emission poorly correlated with dense gas (!)  
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