The Components of a Spiral Galaxy—a Bit of a Review

we have discussed this in the context of the Milky Way

Disks:

Rotationally supported, lots of gas, dust, star formation occurs in disks, spiral arms

Origin in CDM models: disk galaxies form in halos with high angular momentum and quiet recent assembly history, ellipticals are the slowly-rotating remnants of repeated merging events. Disks, form out of gas that flows in with similar angular momentum to that of earlier-accreted material

Bulges:

- somewhat spheroidal featureless (no spiral arms, bars, rings etc) that stick out of the disk plane,
- mostly old stars (not much dust or star-forming regions),
- kinematically hot, i.e. dynamically supported by the velocity dispersion of their stars— but they do rotate more significantly than ellipticals

Origin

- thought to form via mergers (i.e. accretion of usually smaller external units)— disks reform later after merger by accretion of gas.

Halo

- Totally dominated by dark matter but does have gas (HI), some field stars and globular clusters

TABLE 23.1 Overall Properties of the Galactic Disk, Halo, and Bulge

<table>
<thead>
<tr>
<th>GALACTIC DISK</th>
<th>GALACTIC HALO</th>
<th>GALACTIC BULGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly flattened</td>
<td>Roughly spherical—mildly flattened</td>
<td>Somewhat flattened and elongated in the plane of the disk ("football shaped")</td>
</tr>
<tr>
<td>Contains both young and old stars</td>
<td>Contains old stars only</td>
<td>Contains both young and old stars; more old stars at greater distances from the center</td>
</tr>
<tr>
<td>Contains gas and dust</td>
<td>Contains no gas and dust</td>
<td>Contains gas and dust, especially in the inner regions</td>
</tr>
<tr>
<td>Site of ongoing star formation</td>
<td>No star formation during the last 10 billion years</td>
<td>Ongoing star formation in the inner regions</td>
</tr>
<tr>
<td>Gas and stars move in circular orbits in the Galactic plane</td>
<td>Stars have random orbits in three dimensions</td>
<td>Stars have largely random orbits but with some net rotation about the Galactic center</td>
</tr>
<tr>
<td>Spiral arms</td>
<td>No obvious substructure</td>
<td>Ring of gas and dust near center; Galactic nucleus</td>
</tr>
</tbody>
</table>

From Chaisson
• Disk-bulge separation is tricky and influenced by inclination angle and dust and wavelength observed (disks standout in the blue, bulges in the red)

• Composed of 3 components
 – disk
 – bulge
 – halo
• Bulge-oldish stars-tends to be metal poor
• Disk - young stars
 The disk contains a large quantity of gas & dust, the bulge essential none
 Disks are cold (rotationally supported)
 Bulges are 'hot' supported by random motions
• The rotation curves of spiral galaxies rise like a solid body in the central regions, then flattens out (i.e., $v(r) = \text{constant}$). This flattening is due to the presence of a dark matter halo.
Simple Model of Why Galaxies Have Disks

- A circular orbit has the lowest energy for an initial angular momentum J - thus since angular momentum is conserved, if the in falling gas loses energy (cools) will tend to form a disk
- If stars form from dense gas they will also be in a disk.
However In A Hierarchical Universe Things are More Complex

- Formation of a spiral galaxy

The Big Picture- Two Populations

- top panel color distribution vs mass of a large sample of local galaxies from the SDSS

 Middle panel is the morphologies that dominate at each mass

 bottom panel shows the galaxy mass function divided by color - the spirals are mostly blue (some S0s are red) (Cattaneo et al 2009) - spirals tend to be less massive than ellipticals

 the black solid line is the prediction from cold dark matter theory of the number density of halos vs mass - notice does not agree with the galaxy mass distribution
Summary of Tuesdays-Lecture Spirals

- Components of Spirals
 - bulge
 - disk
 - halo
 - each has a different stellar population, gas content.
- Connection between color, mass, morphology for galaxies as a whole-patterns on the color, mass, morphology.

Top Level Summary-Spirals

- Galaxies have a wide variety of morphologies, from spheroids, disks with and without bars and irregular galaxies.
- Their physical properties (e.g. gas content, average stellar age, the rate of current star formation, mass etc) correlate with morphology.
- disks are predominantly rotationally flattened structures
- spheroids have shapes largely supported by velocity dispersion.
- Conventional theoretical ‘wisdom’: disks form at the center of dark matter halos as a consequence of angular momentum conservation during the dissipational collapse of gas (Fall & Efstathiou 1980), spheroids result predominantly from merger events
- Thus morphology is a transient feature of the hierarchical formation of a galaxy:
 - a disk galaxy may be transformed into a spheroidal one after a major merger, but could then re-form a disk through further gas accretion only to be later disrupted again by another merger
• The stellar mass \textit{integrated over ALL galaxies} lies mostly between
 \[\log M_\odot = 10.5 - 11.4 \]

• In what galaxies does the stellar mass lie?
 – most \textbf{massive} galaxies are \textcolor{red}{red} (ellipticals)
 – at lower masses there is an increasing ratio of \textit{spirals} to \textit{ellipticals}

\textbf{Where is the Stellar Mass}

<table>
<thead>
<tr>
<th>Frac</th>
<th>(\log M_\odot)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.15</td>
<td>8</td>
</tr>
<tr>
<td>0.1</td>
<td>9</td>
</tr>
<tr>
<td>0.05</td>
<td>10</td>
</tr>
<tr>
<td>0.1</td>
<td>11</td>
</tr>
</tbody>
</table>

\textbf{Morphology/ Color and Mass}

A result of the 'Galaxy Zoo' project-
eyeball
classification of 10s of thousands
of galaxies by citizen scientists
Combination of \textit{morphology}, mass and \textit{color}
\textit{Spirals} less massive, bluer at a given
mass than ellipticals

• \textbf{Strong relation of mass, color and morphology} Schawinski 2010
Spirals

The Hubble type of a spiral correlates with
• bulge/disk luminosity ratio
• relative content of cool gas (H I)
• mass concentration
• stellar population (how many young/old stars)
• nuclear properties
• chemical abundances in the ISM
• star formation history and integrated stellar spectrum
• bulges of spirals tend to have old stars, disks younger stars
• A lot of the detail depends on what wavelength one observes in (e.g. the UV favors hot young stars, the IR dust, x-rays hot gas and binaries)

Spirals and Gas

• The ISM of spiral galaxies is quite complex and show wide variations with position
• However there are certain trends - the lower the mass and the 'bluer' the galaxy the higher is the baryonic fraction in cool/cold gas.- there seems to be a characteristic stellar mass \(\sim 3 \times 10^{10} \text{M}_\odot \) where things change.
• Luminous red galaxies have hot ISMs

Gas to light ratio in log scale
Spirals- More Trends with Morphology (Sd \rightarrow Sa)

- Total luminosity decreases
- M / L_B rises
- $M_{(HI)} / M_{(total)}$ rises
- Bulge / Disk decrease
- Tightness of the spiral arms decreases
- Scale length drops
- Color reddens- star formation history
- The question is what are the primary eigenvectors of the correlations... it seems to be mass

The stress on 'B' band comes from history- before CCDs photographic plates were used and they were most sensitive in the 'B' band.

"Where" Do Galaxies of a Given Type Reside

- In low density regions most of the galaxies are spirals (blue line)
- As the density of galaxies increases the fraction which are S0(black) and E (red) increase dramatically- this reaches it limit in massive clusters of galaxies whose cores have almost no spirals
- **Thus the morphology of galaxies 'knows' about the environment- not clear if this is nature (formed that way) or nurture (spirals converted into S0's)**
• Distribution of red and blue galaxies out to $z=0.15$ from the SDSS (M. Blanton)

• Notice that red galaxies are highly concentrated in dense regions while blue galaxies are in the filaments

Luminosity Function

• The combined luminosity function of all galaxies is fitted by the Schecter function - a power law at low L and an exponential cutoff at high L

Redshift distribution is not uniform (e.g. large scale structure makes derivation of $f(L)$ unstable at high L where objects are rare
Red and Blue Luminosity Functions

Despite differences in populations the red (mostly ellipticals) and blue (mostly spiral) galaxy luminosity functions add smoothly together and are well fit with a Schechter function

Physical Difference Between Bulges and Disks

- In spiral galaxies
 - the stars in the disk have lots of angular momentum and a wide variety of ages.
 - stars in the bulge tend to be old, have little angular momentum and have low metallicity*
 - (globular clusters may be part of this population)
- Disks are rotationally supported (dynamically cold)
- Bulges are dispersion supported (dynamically hot)

* while superficially elliptical galaxies 'look like' bulges their stars are frequently metal rich, not metal poor.
Descriptions of Galaxy Optical Surface Brightness

- For most massive galaxies a two component description of the surface brightness is a reasonable approximation to the azimuthally averaged data
 - Bulges/spheroids
 - Disks
- The ratio of these two components has wide variation
- Both can be described by a 'Sersic' profile $\Sigma(r) = \Sigma(0) \exp(-k [(r/r_e)^{1/n}-1]); k \sim 2n-0.331$ (who called for that!) where r_e is a characteristic (scale length-$\Sigma(r)$ is the surface brightness profile $S+G$ eq 3.13
- Disks have $n\sim1$ (exponential profile) while spheroids have $n\sim2-5$ (a special value is $n=4$, the DeVaucouleurs profile)
- Most spirals have a bulge and thus the surface brightness is the sum of 2 Sersic profiles (the bulge usually dominates for small r)

Azimuthally Averaged Light Profiles

- Bulge is more concentrated than the disk: bulge is described by Sersic profile, disk by an exponential profile

This is an approximation, galaxies with strong bars or other non-azimuthally symmetric features will clearly change this
Pure exponentials would be straight lines.

The exponential scale length α is a measure of the size of the baryonic disk. Most of the light is inside 2 scale lengths.

Typical disk surface brightness profiles

Other Complications - Disk Components

- Stellar bars are common
 – Often only recognized in near-IR images (less dust)
 – Consequence of disk instability
 – Effective means of angular momentum transport
- Spiral arms are common and coherent features—even after accounting for young stars (while often spiral arms are the locations of star formation they are also seen in the light of older stars).
Summary of Surface Brightness Profiles

- Most galaxies can be well fit with the Sersic profile, spirals have lower values of ‘n’ for the disk and 2 components to the profile (bulge, disk)
 - Sersic profile 2 asymptotic forms
 - low n ~exponential: \(I(R) = I(0)(\exp[-((R/R_d))] \) where \(R_d \) is the disk scale length
 - total flux \(I_{\text{tot}} = 2\pi R_d^2 I(0) \)
 - high n - \(R^{1/4} \) profile
 - deVaucouleurs profile \(I(R) = I(R_e)(\exp[-7.67((R/R_e)^{1/4}-1)]) \)
 - \(R_e \) is the half light radius

- have cold gas and dust
- present day star formation
- many have internal structure (spiral arms and bars)
- a bulge and disk (large range in relative importance)
- host radio quiet AGN
- are more frequent in lower density environments
- x-ray luminosity is dominated by binaries
- ISM is highly structured

Spirals-
What's Important So Far

- The class of galaxies called spirals (based on morphology in the optical) has a set of strongly correlated properties (mass, star formation, dust, gas, color) - so there is physics in morphology.
- The big bifurcation between color, mass, morphology classification by color, mass, morphology gives similar but NOT identical results.
 - At one lower level (e.g. sub-divisions in morphology (Sa, Sb, Sc etc) there are also trends.
 - the luminosity function of galaxies is fit by a simple function (Schechter function) which is different for ellipticals and spirals but sums together into a smooth form.
 - spirals tend to 'live in the field' low density regions
 - ellipticals in denser regions (morphology density relation - Dressler 1978)
- Surface brightness can be well modeled by Sersic Law:
 \[\Sigma(r) = \Sigma(0) \exp(-k \left(\frac{r}{r_e}\right)^{1/n} - 1) \]

Tully-Fisher Relation

- Relates circular velocity of test particles (gas, stars) to total luminosity of system.
 (circular velocity is related to mass, \(v_{\text{circ}}^2(r) = r \frac{d\Phi}{dr} = GM(r)/r \))
- Back of the envelope derivation of it
- System in equilibrium: centripetal force balances gravity
- \(GM(r)/r^2 = v_c^2/r; \) so \(M(r) = v_c^2 r/G; \) definition of surface density \(\Sigma = L/r \)
- If all galaxies are alike and have the same surface densities \(L \sim r^2 \)
- Further if \(M/L \) is constant \(M \sim L \)
- a little algebra gives \(L \sim v_c^2 L^{1/2} \sim v_c^4 \)

Since luminosity depends on \(d^2\text{flux} \) can get distance to object from measuring its circular velocity and apparent brightness!

Giovanelli et al 1997

![Tully-Fisher Relation Graph]

Fig. 1—Template relation based on 555 galaxies in 24 clusters. The fit is \(-21.00 \pm 0.02 - 7.68 \pm 0.13 \log W = 2.5 \).
Spiral Galaxy spectra

- Galaxies have composite spectra. They integrate contributions from different stars of different stellar populations, gas and the effects of dust.
- The overall continuum shape is modulated by the gas, the stars, as well as by the presence of dust.

Spiral SED normalized at 8000 Å with emphasis on near IR spectral features (PAHs)

Galaxy Spectra: The Simple Picture

- Continuum: the combination of many Black-Body spectra (from a wide range of stellar types, spanning a range in temperatures, weighted by the IMF) just happens to produce a fairly flat overall spectrum.
Galaxy spectra

- Galaxies have composite spectra. They integrate contributions from different stars of different stellar populations, gas and the effects of dust.
- The emission lines trace the ionized gas and its excitation mechanism.
- The absorption lines trace the stellar populations, their ages and metallicities.
- The overall continuum shape is modulated by the gas, the stars, as well as by the presence of dust.
- Color of line is based on g-r color.

Figure 12: Composite spectra of the red and blue galaxies as described in Sec. 3.4. The curves are colour-coded from blue (top) to red (bottom) based on the g - r colour of the galaxies. See the online edition for a colour version of this plot.
Galaxy spectra

The star forming galaxies—almost all spirals at low redshift, show emission lines (from ionized gas) and much more blue light (especially when they are young).

Galaxy Spectra –IR- Review of Dust Lecture

- At $\lambda > 5 \mu m$ in most spiral galaxies, continuum dominated by emission from dust - there are atomic and molecular features as well.
- In many spiral galaxies, $L_{\text{opt}} \sim L_{\text{IR}}$:
 - Dust heated by star light - temperature to which it is heated depends on geometry and the nature of the stars.
- Dust can be very patchy as can star formation.

Red dotted line is grey body emission from dust.
Energy Released By Galaxies

- Extensive galaxy surveys have allowed the measurement of the total energy released by all low z galaxies across the UV-far IR spectrum $1.3 \times 10^{35} \text{ W/Mpc}^3$ (Driver 2012). 35-45% of energy generated by stars is absorbed by dust and re-radiated in IR- this occurs predominately in spirals.

Composition of Average Spiral

- **Stars** ~80% of mass
 - DISK ~80% of stars
 - BULGE ~20% of stars
- **Gas** ~20% of mass
 - atomic gas ("H I") ~2/3 of gas
 - molecular gas (H$_2$) ~1/3 of gas
 - hot, ionized gas ("H II")
- **Dust**
 - between stars
 - mostly in spiral arms & molecular clouds
Reminder of Big Picture

• Disks :
 Metal rich stars and ISM
 Nearly circular orbits with little (~5%) random motion & spiral patterns
 Both thin and thick components

• Bulge :
 Wide range of metals poor to super-rich stars (only in nuclear regions)
 \(V(\text{rot})/\sigma \sim 1 \), so dispersion (random velocity-hot systems) support important.

• Bar/Spiral Patterns/rings :
 • Dense\'cold\' ISM +star formation

• Stellar Halo :
 Very low surface brightness; ~few % total light; little/no rotation
 Metal poor stars; GCs, dwarfs; low-density hot gas

• Dark Halo :
 Dark matter dominates mass (and potential) outside ~a few scale lengths

General Patterns

• Relationship of 'class' (e.g. S0,Sa,Sb..) to physical properties -
• Correlations of surface brightness, size, color, star formation etc etc
• 'Later' types, lower mass, more of baryons in gas, higher specific star formation rates (today):
 • Sa -> Sb -> Sc -> Sd in order of decreasing bulge size.
• Patterns
 – More luminous galaxies have larger \(V_{\text{max}} \)
 – Earlier Hubble-type galaxies rotate faster for the same L
 – Fraction of DM inside optical radius increases with decreasing \(V_{\text{max}} \)
• Large fraction of energy radiated in the IR due to dust
• Spectroscopic signature of gas in spirals in form of emission lines from hydrogen, oxygen etc; gives information about physical conditions (temperature, density, velocity field)
Gas Motions

• If there is a well defined disk, inclined at some angle \(i \) to the plane of the sky and rotating perpendicular to this angle (fig 5.18 in text)

• 2 sets of coordinates
 – disk of galaxy R \(\phi \)
 – plane of sky \(\rho \ \theta \)

• When \(\theta = \phi \) line of nodes

• The measured radial velocity of gas in circular orbits is

\[
v_R(\rho, \theta) = v_{\text{system}} + v_R(R, \phi) \sin \phi \sin i + v_\phi(R, \phi) \cos \phi \sin i + v_z(R, \phi) \cos i
\]

\(v_R \) velocity in radial direction
\(v_\phi \) angular speed
\(v_z \) vertical speed

HI

• Spirals have large HI disks
 – This gas is optically thin
 This means that we see all the gas and can measure the amount directly from the line intensity

• HI gas is much more extended than the optical light, \(r_{\text{HI}} > 2.5 \ R_{25} \)

• – Gives a unique tracer for the velocity in spiral galaxies

\(\text{contours of constant } v_r, \ \text{velocity pattern disk observed at } i=30 \)

\(\text{negative velocities ----} \)
Physics of 21cm Line

- Hydrogen is the most abundant element in the ISM, but the symmetric H$_2$ molecule has no dipole moment and hence does not emit a spectral line at radio frequencies. But it is detectable in the 21 cm ($\lambda=1420.405751$ MHz) hyperfine line a transition between two energy levels due to the magnetic interaction between the quantized electron and proton spins. When the relative spins change from parallel to antiparallel, a photon is emitted. Collisions excite the line.

- The equilibrium temperature of cool interstellar HI is determined by the balance of heating and cooling. The primary heat sources are cosmic rays and ionizing photons from hot stars. The main coolant in the cool ISM is radiation from the fine-structure line of singly ionized carbon, CII, at $\lambda=157.7$ μm.

http://www.cv.nrao.edu/course/astro34

Gas Motions- continued

- Circular disk tilted by an angle i, projects to an ellipse
- What to look for in the 'spider' plot
 - Kinematic major axis - line through nucleus perpendicular to velocity contours- should be aligned to photometric axis if mass is traced by light
 - If $V(r)$ is flat at large radii outer contours are radial
 - if $V(r)$ is declining at large radii contours close in a loop
 - spiral arms give perturbations to pattern near arms
 - warped disk (see figure)
Gas Motions

- This is what is seen in 'real' galaxies in the motion of HI(fig 5.13 S=G)
- e.g spider diagram is 'A diagram that gives the equations for lines of constant radial velocities as seen for a rotating galaxy inclined to the observer's line of sight.'
- Gas sees all the matter- deviation from Spider plot in M81 shows influence of spiral arms (real density increases- not just light increases)

Optical Image and Velocity Field of NGC5033

- Spider plot is the contours of the velocity field
Spirals and Dark Matter—
Review of Dynamics

• Rotation-curve decomposition — primary tool for measuring the distribution of dark matter in spiral galaxy halos, but uncertainties in the mass-to-light ratio of the luminous disk and bulge make accurate estimates difficult (IMF-mass degeneracy)

• Disk-halo conspiracy— there is no 'feature' in the rotation curve indicating where dark matter starts to dominate— smooth transition!

• Disks in equilibrium
 Rotation provides total mass within a given radius.

Solution is that disks have less mass than the maximum allowed by IMF, colors—
At the radius where the velocity curve flattens ~15-30% of the mass is in baryons
Build your own rotation curve (!)
http://burro.astr.cwru.edu/ JavaLab/RotcurveWeb/main.html

Bulge Scaling Relations

• The properties of the bulges of lenticulars follow closely the relations obeyed by Es
• Dwarfs have different bulges (large n values, scale lengths and higher surface brightness)
• The more luminous bulges of all Hubble types show similarities in various correlations but ellipticals have a smaller range of parameters than spiral bulges.
Spiral Arms in Spirals (sec 5.5.2 in S+G)

- Defining feature of spiral galaxies - what causes them?

- Observational clues
 Seen in disks that contain gas, but not in gas poor S0 galaxy disks.
 Defined by blue light from hot massive stars.
 'Visually' spiral arms are associated with star formation/molecular gas.
 Lifetime is << galactic rotation period.

When the sense of the galactic rotation is known, the spiral arms almost always trail the rotation.

- First ingredient for producing spiral arms is differential rotation.

- For galaxy with flat rotation curve:
 \[V(R) = \text{constant} \]
 \[\Omega(R) = \frac{V}{R} \]
 Angular velocity \(\sim \frac{1}{R} \)

- Any feature in the disk will be wrapped into a trailing spiral pattern due to differential rotation:

 - Angular frequency \(\omega = \frac{V_c}{R} \)
 spirals have flat rotation curve \(V_c = \text{constant} \)
 \[\frac{d\omega}{dr} = \frac{V^2}{r^2} \]
 angle \(\phi = \omega t \)
 \[d\phi = \omega dt = \frac{V^2}{r^2} t \]
 so \[\tan \psi = \frac{dr}{r} \]
 \[d\phi = \frac{r}{vt} = 1/\phi \]
 pitch angle \(\psi \), steadily decreases as the pattern rotates - after 1 rotation \(\psi = 1/2\pi (\psi = 9^\circ) \)
 e.g. winds up! - 2 rotations 4.5° etc

 - In Sa's \(\psi \sim 5^\circ \)
 - In Scs \(\psi \sim 10-30^\circ \)

SO since galaxies have been around for >> 2 orbital times

- Long lived spiral arms are not material features in the disk they are a pattern, through which stars and gas move

However this is NOT SOLELY why spiral galaxies have spiral arms - they would wrap up into a tight spiral in time scale \(\Delta R/R = 2\pi R/vt \)
putting in values near the sun \(\Delta R/R = 0.25 \) (t/Gyr) \(^{-1} \)
e.g. The Winding Problem

If arms were "fixed" w.r.t. the disk
With flat rotation (V \(\sim \) const), inner parts rotate many times compared to outer parts
E.g. for one rotation at R, two rotations at R/2, four at R/4, 8 at R/8.
This leads to very tightly wound arms.

- Winding?

M. Whittle's web site
Winding

- Thought experiment: paint a stripe on a galactic disk along \(\phi = \phi_0 \)
- Disk is in differential rotation with an angular speed \(\Omega(R) \)
- So the equation of the strip as a function of time is
 \[\phi(R,t) = \phi_0 + \Omega(R)t \]

For a typical spiral galaxy with a flat rotation curve

\[\Omega(R) = \frac{v_{\text{circ}}}{R}; \text{ so} \]

\[\frac{d\Omega(R)}{dR} = \frac{v_{\text{circ}}}{R^2} \]

near the sun =220km/sec at \(R \approx 10\text{kpc} \), at \(t = 10^{10}\text{yrs} \)
\(\alpha = 0.25\text{deg}! \)

Real galaxies have \(\alpha \sim 5-25\text{ deg} \)

Spiral Density Waves- One Possible Answer

- Properties of spiral arms can be explained if they are continuously generated and destroyed

- density waves provide the perturbation which gets sheared:
 Spiral arms are where the stellar orbits are such that stars are more densely packed-waves of compression that move around the galaxy
 Gas is also compressed, triggering star formation and young stars.
 Stars pass through the spiral arms unaffected
 Arms rotate with a pattern speed which is not equal to the circular velocity - i.e. long lived stars enter and leave spiral arms repeatedly.
 Pattern speed is less than the circular velocity - partially alleviating the winding up problem.

- In isolated disk, creation of a density wave requires an instability. Self-gravity of the stars and / or the gas can provide this.

Simplest case to consider is gas. Imagine a small perturbation which slightly compresses part of the disk:

- Self-gravity of the compressed clump will tend to compress it further.

- Extra pressure will resist compression. If the disk is massive (strong self-gravity) and cold (less pressure support) first effect wins and develop spiral wave pattern.
Spiral Arm Formation

The fundamental cause of spiral arm formation is not well understood.

- To quote from https://www.cfa.harvard.edu/~edonghia/Site/Spiral_Arms.html, "The precise nature of spiral structure in galaxies remains uncertain. Recent studies suggest that spirals may result from interactions between disks and satellite galaxies..., here we consider the possibility that the multi-armed spiral features originate from density inhomogeneities orbiting within disks."

- In this movie, spiral arms are formed due to mergers (http://www.nature.com/news/galaxy-formation-the-new-milky-way-1.11517)