Project the spherical distribution onto a plane.

Because of the symmetry in the problem, choose any axis,

say = , and we cylindrical polar coordinates.

$$2\pi R dR \ \tilde{Z}(R) = 2\pi R dR \int_{-\infty}^{\infty} dz \ n(r) \qquad (\text{mass of an infinite annulus})$$

$$\Rightarrow \tilde{Z}(R) = \int_{-\infty}^{\infty} n(r) dz = 2 \int_{-\infty}^{\infty} n(r) dz \qquad (dR = 0 \text{ in the integration})$$

$$\Rightarrow dz = \frac{r}{z} dr = \frac{r}{r^2 - R^2} dr \qquad (dR = 0 \text{ in the integration})$$

$$\therefore \tilde{Z}(R) = 2 \int_{-\infty}^{\infty} \frac{n(r) r dr}{\sqrt{r^2 - R^2}}$$

For
$$n(r) = n_0 \left(\frac{r_0}{r}\right)^d$$
, $Z(R) = 2 \int_0^\infty n_0 r_0^2 \frac{dz}{(R^2 + z^2)^{d/2}}$. Converges only for $d > 1$ (limiting case $d = 1$, as $z > \infty$, $Z(R) > \int_0^{dz} \frac{dz}{z}$ unbound the infinite annulus $d = 1$ for the main in the infinite annulus $d = 1$ for $d = 1$ for the main lets $Z(R)$ remain finite as $d = 1$ for $d = 1$ variables.

In spherical polar coordinates
$$\Xi(R) = 2 \int_{R}^{\infty} \frac{n_0 \left(\frac{r_0}{r}\right)^{d} r \, dr}{\sqrt{r^2 - R^2}} = 2n_0 \left(\frac{r_0}{R}\right)^{d} \int_{R}^{\infty} \frac{\left(\frac{r}{R}\right)^{1-d} dr}{\sqrt{\frac{r^2}{R^2} - 1}}$$

$$let \quad x = \frac{r}{R} \quad dr = R dx$$

$$\Rightarrow \Xi(R) = 2n_0 r_0 \left(\frac{r_0}{R}\right)^{d-1} \int_{1}^{\infty} \frac{x^{1-d} \, dx}{\sqrt{x^2 - 1}}$$

$$\Xi(R = r_0) = 2n_0 r_0 \int_{1}^{\infty} \frac{x^{1-d} \, dx}{\sqrt{x^2 - 1}}$$

$$\vdots \quad \Xi(R) = \Xi(R = r_0) \left(\frac{r_0}{R}\right)^{d-1}, \quad d > 1$$
Note that to be regular at $R = 0$ ($r = 0$) require the mass element $4\pi r^2 n(r) dr$ to be finite as $r \to 0$.

$$4\pi r^2 n(r) = 4\pi r^2 n_0 \left(\frac{r_0}{r}\right)^{d} \propto r^{2-d}$$
Finite as $r \to 0$ for $x = 2$.

$$f(q) dq = \frac{q dq}{\sqrt{1-(B/A)^2}} \int_{q^2-(B/A)^2}^{2} is a probability distribution function.$$
Its integral $F(2q) \equiv \int_{B/A}^{1} f(q) dq'$ is a commodative distribution function.

They decibe the probability distribution of projected axis ratio q for objects of true axis ratio B/A randomly oriented in space, and that their true shape is described by two parameters.

Then we can infer B/A from observed distribution of q .

$$F(2q) = \int_{B/A}^{q} \frac{dq'}{(1-B/A)^2} \sqrt{q^2-(B/A)^2}$$

$$= \int_{1-(B/A)^2}^{1-(B/A)^2} \left[\int_{1-(B/A)^2}^{2-(B/A)^2} \int_{0}^{1} dq \right]$$
by inspection $(spotting)$ the satisfies derivative of $(spotting)$ the satisfies derivative $(spotting)$ the satisfies derivative $(spotting)$ the satisfies $(spotting)$ the satisfies

For objects with $\frac{B}{A} = 0.8$ oriented randomly in space, expect to see F(0.95 < 9 < 1) = F(<1) - F(<0.95) $= 1 - \frac{0.95^2 - 0.64}{1 - 0.64} = 0.0461$

$$F(0.8 < q < 0.85) = F(<0.85) - F(<0.8)$$

$$= \sqrt{\frac{0.85^{2} - 0.64}{1 - 0.64}} - 0 = 0.4787$$

$$\frac{0.4787}{0.1461} = 3.3.$$

Next part wants you to show that a smaller
$$\frac{B}{A}$$
 (a flatter oblate shape) has a higher fraction of
$$\frac{F(0.95 < q < 1)}{F(0.8 < q < 0.85)} = \frac{.95^2 - x^2}{1 - x^2} / (\frac{.85^2 - x^2}{1 - x^2} - \frac{.6^2 - x^2}{1 - x^2})$$

$$= \frac{\sqrt{.95^2 - x^2}}{\sqrt{.65^2 - x^2} - \sqrt{.8^2 - x^2}} \qquad (x = \frac{B}{A})$$

Take the demantive with x:

Multiply out the terms in brackets in the second term,

$$\frac{-x/\sqrt{g_{s}^{2}-x^{2}}-x\sqrt{g_{s}^{2}-x^{2}}/\sqrt{g_{s}^{2}-x^{2}}\sqrt{g_{s}^{2}-x^{2}}}{(\sqrt{g_{s}^{2}-x^{2}}-\sqrt{g_{s}^{2}-x^{2}})}, < 0.$$

The important result is that this is negative \Rightarrow when $\frac{B}{A} \downarrow$, the ratio 4.

For $-21 < M_B < -20$ there are ~ 126 points, 3 of which have q > 0.95. Since true $\frac{B}{A} = q$, it must be smaller than the smallest q observed (~ 0.6 de this luminosity range). The math just does not work out — no obtate shape can give the observed obstribution of q.

These galoxies are most likely triaxial, described by 3 parameters rather than two, and triaxial bodies are less likely to produce round projections.

So F(<q) doesn't work out because it is not the correct description.

Shape of elliptical galaxies

Ellipticals have very little bulk votation. Their shapes are primarily due to velocity dispersion and otropy giving a triaxial shape. Bodies with high bulk angular momentum would separate into a spheroidal bulge and some disc component.

Maxwellian velocities + isotropy

$$\Rightarrow \langle v^2 \rangle = \sigma^2 = 3\sigma_r^2$$

$$\frac{1}{2}M\sigma_r^2$$

Given $GPE = -\frac{3GM^2}{5Re}$, by wind theorem

$$2 \times \frac{3}{2} M \sigma_{\nu}^{2} - \frac{3GM^{2}}{5Re} = 0 \implies M = \frac{5\sigma^{2}Re}{G}$$

(6.1) $I(R) = I_e \exp\left\{-b\left[\left(\frac{R}{R_e}\right)^{\frac{1}{h}}-r\right]\right\} \propto \exp\left[-b\left(\frac{R}{R_e}\right)^{\frac{1}{h}}\right].$

$$L = \int_{-2\pi}^{\infty} R \, I(k) dk \, \propto I_{e} \left[\operatorname{Rexp} \left[-b \left(\frac{R}{Re} \right)^{\frac{1}{n}} \right] dk \right]$$

Extract the Re dependence with substitution $x = \frac{R}{Re}$

depends only a constants.

$$\Rightarrow \underbrace{\left[\begin{array}{c} Z \times Z_{e}R_{e} \\ Z \times Z_{e}R_{e} \end{array}\right]}_{L} = \underbrace{\frac{\sigma^{2}R_{e}}{IR_{e}}}_{IR_{e}} = \underbrace{\frac{\sigma^{2}}{IR_{e}}}_{IR_{e}}$$

(a) $\frac{M}{L}$, In constant $\Rightarrow \frac{\sigma^2}{R_e} \times constant$. $L \propto R_e^2 \propto \sigma^4$

(b) (6.19) $R_{e} \times \sigma I_{e} \Rightarrow R_{e} = \sigma \times I_{e}$. $\frac{M}{L} \times \frac{\sigma^{2}}{R_{e}} R_{e}^{5/4} - 3/2 = \frac{1/2}{R_{e}} R_{e} \times M^{1/4}$