Project the spherical distribution onto a plane.
Because of the symmetry in the problem, choose any axis, say z, and we cylindrical polar coordinates.

$$
\begin{aligned}
& 2 \pi R d R \sum(R)=2 \pi R d R \int_{-\infty}^{\infty} d z n(r) \quad\left(\begin{array}{c}
\text { mass of } \\
\text { an infinite } \\
\text { ammulus }
\end{array}\right) \\
& \Rightarrow \Sigma(R)=\int_{-\infty}^{\infty} n(r) d z=2 \int_{0}^{\infty} n(r) d z . \\
& r^{2}=R^{2}+z^{2} \Rightarrow 2 r d r=2 z d z \quad(d R=0
\end{aligned}
$$

$$
\Rightarrow d z=\frac{r}{z} d r=\frac{r}{\sqrt{r^{2}-R^{2}}} d r .
$$

the interaction)

$$
\therefore \Sigma(R)=2 \int_{\substack{R}}^{\infty} \frac{n(r) r d r}{\sqrt{r^{2}-R^{2}}}
$$

$r=R$ when $z=0$.
For $n(r)=n_{0}\left(\frac{r_{0}}{r}\right)^{\alpha}$,
$\Sigma(R)=2 \int_{0}^{\infty} n_{0} r_{0}^{\alpha} \frac{d z}{\left(R^{2}+z^{2}\right)^{\alpha / 2}} \cdot \frac{\text { Converges inly fo } \alpha>1}{\left(\text { limiting cove } \alpha=1 \text {, as } z \rightarrow \infty, z(R) \rightarrow \int \frac{d z}{z} \text { unbound }\right.}$
Density must fall of at least as $\alpha \frac{1}{r}$ for the mas in the infinite annulus x be fence. $\underline{\alpha>0}$ also lets $\sum(R)$ remain finite as $R \rightarrow \infty, \Sigma(R)$ vanishes.

In spherical polar coordinates

$$
\begin{aligned}
& \quad \sum(R)=2 \int_{R}^{\infty} \frac{n_{0}\left(\frac{r_{0}}{r}\right)^{\alpha} r d r}{\sqrt{r^{2}-R^{2}}}=2 n_{0}\left(\frac{r_{0}}{R}\right)^{\alpha} \int_{R}^{\infty} \frac{\left(\frac{r}{R}\right)^{1-\alpha} d r}{\sqrt{\frac{r^{2}}{R^{2}}-1}} . \\
& \text { let } x=\frac{r}{R}, d r=R d x \\
& \Rightarrow \sum(R)=2 n_{0} r_{0}\left(\frac{r_{0}}{R}\right)^{\alpha-1} \int_{1}^{\infty} \frac{x^{1-\alpha} d x}{\sqrt{x^{2}-1}} \\
& \sum\left(R=r_{0}\right)=2 n_{0} r_{0} \int_{1}^{\infty} \frac{x^{1-\alpha} d x}{\sqrt{x^{2}-1}} \\
& \therefore \sum(R)=\sum\left(R=r_{0}\right)\left(\frac{r_{0}}{R}\right)^{\alpha-1}, \quad \alpha>1
\end{aligned}
$$

Note that to be regular at $R=0 \quad(r=0)$ require the mass element $4 \pi r^{2} n(r) d r$ to be finite as $r \rightarrow 0$.

$$
4 \pi r^{2} n(r)=4 \pi r^{2} n_{0}\left(\frac{r_{0}}{r}\right)^{\alpha} \alpha r^{2-\alpha}
$$

Finite as $r \rightarrow 0$ for $\alpha \leq 2$.

$$
\text { Hs integal } F(q) \equiv \int_{G A}^{q} f\left(q^{\prime}\right) d q^{\prime} \text { is a curmmative dostilation faction }
$$

They dexicibe the probebility dostiaution of pogected axs) ratio q for odjects of the axis vatio BAA randemily oniested
in space. Assumnty they are randomily oriented in space, and that their true shape is decicited by two pparanctoro
then we can inter B / A from oberved dotibucto. of q.
ve can usper B / A from oberved dotriberos. of q.
$F(k q)=\int_{B A A}^{q} \frac{q^{\prime} d q^{\prime}}{\sqrt{1-(B A A)^{2}} \sqrt{q^{2}-(B A A)^{2}}}$

$=$ canndstive pobabitity foon $\frac{B}{A} \in q$.

For objects with $\frac{B}{A}=0.8$ onelated roundongy in space, epeect 1 see
$F(0.95<q<1)=F(<1)-F(<0.95)$
$=1-\sqrt{\frac{0.95^{2}-0.64}{1-0.64}}=0.1461$

$$
\begin{aligned}
& F(0.8<q<0.85)=F(<0.85)-F(<0.8) \\
&=\sqrt{\frac{0.85^{2}-0.64}{1-0.64}-0}=0.4787 \\
& \frac{0.4787}{0.1461}=3.3 . \\
& \text { Next part wants you to show that a smaller } \frac{B}{A} \\
& \text { (a flatter oblate shape) has a higher fraction of } \\
& \frac{F(0.95<q<1)}{F(0.8<q<0.85)}=\sqrt{\frac{.95^{2}-x^{2}}{1-x^{2}}} /\left(\sqrt{\frac{.85^{2}-x^{2}}{1-x^{2}}}-\sqrt{\frac{.8^{2}-x^{2}}{1-x^{2}}}\right) \\
&=\frac{\sqrt{.95^{2}-x^{2}}}{\sqrt{.85^{2}-x^{2}}-\sqrt{8^{2}-x^{2}}} \quad\left(x=\frac{B}{A}\right)
\end{aligned}
$$

Take the derivative wit. x :

$$
\begin{aligned}
& \frac{-x / \sqrt{.95^{2}-x^{2}}}{\sqrt{.85^{2}-x^{2}-\sqrt{8}-x^{2}}}-\frac{\sqrt{.95^{2}-x^{2}}\left[-x\left(\frac{1}{\sqrt{.85^{2}-x^{2}}}-\frac{1}{\sqrt{1 .^{2}-x^{2}}}\right)\right]}{\left(\sqrt{.85^{2}-x^{2}}-\sqrt{\left.. .^{2}-x^{2}\right)^{2}}\right.} \\
& \text { Multiply out the term in brackets in the second term, } \\
& \frac{-x / \sqrt{195^{2}-x^{2}}-x \sqrt{.95^{2}-x^{2}} / \sqrt{.85^{2}-x^{2}} \sqrt{8^{2}-x^{2}}}{\left(\sqrt{.85^{2}-x^{2}}-\sqrt{18^{2}-x^{2}}\right)},<0 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { The important result is that this is negative } \\
& \Rightarrow \text { when } \frac{B}{A} t \text {, the ratio } 4 \text {. }
\end{aligned}
$$

For $-21<M_{B}<-20$ there are ~ 126 point, 3 of which have $q>0.95$. Since true $\frac{B}{A} \leq q$, it must be smaller than the smallest of observed (~ 0.6 in this luminosity range). The math put does not work out - no oblate shape can gie the observed distribution of q.

These galaxies are most likely triaxial, described by 3 parameters rather than two, and triaxial bodies are less likely to produce round projections. So $F(<q)$ doesn'4 work out because if s not the correct description.

Shape of elliptical galaxies
Ellipticals have very little bulk rotation. Their shapes are primarily due to velocity dispersion anisotropy giving a triaxial shape. Bodies with high bull angular momentum would separate into a spheroidal bulge and some dis component.
6.7

$$
K E=\frac{1}{2} M\left\langle v^{2}\right\rangle
$$

Maxuellian relocitites + isotropy

$$
\begin{array}{r}
\Rightarrow\left\langle v^{2}\right\rangle=\sigma^{2}=3 \sigma_{r}^{2} \\
\therefore K E=\frac{3}{2} M \sigma_{r}^{2}
\end{array}
$$

Given $G P E=-\frac{3 G M^{2}}{5 R_{e}}$, by wisial theorem

$$
2 \times \frac{3}{2} M \sigma_{r}^{2}-\frac{3 G M^{2}}{5 R_{e}}=0 \Rightarrow M=\frac{5 \sigma^{2} R}{G T}
$$

(6.1)

$$
\begin{aligned}
& I(R)=I_{e} \exp \left\{-b\left[\left(\frac{R}{R_{e}}\right)^{\frac{1}{n}}-1\right]\right\} \propto \exp \left[-b\left(\frac{R}{R_{e}}\right)^{\frac{1}{n}}\right] . \\
& L=\int_{0}^{\infty} 2 \pi R I(R) d R \propto \frac{I_{e}}{\infty} R_{0}^{\infty} \exp \left[-b\left(\frac{R}{R_{e}}\right)^{\frac{1}{n}}\right] d R
\end{aligned}
$$

Extract the R_{e} dependane with sulutitition $x=\frac{R}{R_{e}}$

$$
\begin{aligned}
& \Rightarrow L \alpha I_{e} R_{e}^{2} \int_{0}^{\infty} x \exp \left[-b x^{1 / n}\right] d x \\
& \therefore L \alpha I_{e} R_{e}^{2} \text { depende arly a consta.t. } \\
\Rightarrow & \frac{M}{L} \alpha \frac{\sigma^{2} R_{e}}{T_{e} R_{e}^{2}}=\frac{\sigma^{2}}{\frac{T}{e} R_{e}}
\end{aligned}
$$

(a) $\frac{M}{L}, I_{e}$ constant $\Rightarrow \sigma^{2} / R_{e} \alpha$ constmant. $L \alpha R_{e}^{2} \propto \sigma^{4}$
(b) (6.19) $R_{e} \propto \sigma^{6 / 5} Z_{e}^{-45} \Rightarrow R_{e}^{-5 / 4} \sigma / 2 \alpha I_{e}$.

$$
\frac{M}{L} \propto \frac{\sigma^{2}}{R_{e}} e_{e}^{5 / 4} \sigma^{3 / 2} \propto \sigma R_{e}^{1 / 14} \propto M^{1 / 4}
$$

