
Chapter 15

Theories of Spiral Structure

That rotating disk galaxies should exhibit spiral structure is not surprising, but the nature of the

spiral patterns is not completely understood – probably because there is nouniquecause of spiral

structure.

15.1 Material Arms & Density Waves

Because disk galaxies rotate differentially, the orbital period is an increasing function of radiusR.

Thus if spiral arms were material features then differential rotation would would soon wind them

up into very tightly-coiled spirals. The expected pitch angle of material arms in a spiral galaxy like

the Milky Way is only about 0:25 degrees (BT87, Ch. 6.1.2). In fact, pitch angles measured from

photographs range from about 5 degrees for Sa galaxies to 20 degrees for Sc galaxies (Kennicutt

1981). The most likely implication is thatspiral arms are not material features.

The other possibility is that spiral arms aredensity waves; in this case the stars which make

up a given spiral arm are constantly changing. Observational and numerical evidence lends strong

support to the idea of spiral density waves.

15.2 Epicyclic Theory

Just as water molecules in the ocean do not move very far in response to a passing wave, the stars

in a disk galaxy need not move far from their unperturbed orbits to create a spiral density wave. To

describe thelocal motions of stars in a disk we study the equations of motion for small perturbations

from a circular orbit. The result is a description of stellar motion in terms ofepicycles.

Let x andy be coordinates for a ‘not-quite-Cartesian’ frame of reference which revolves about

the center of the galaxy with the angular velocityΩ0 = Ω(R0) of a circular orbit at radiusR0. In

terms ofR andθ ,

x� R�R0 ; y� R0(θ �Ω0t) ; (15.1)

thusx increases outward from the center, andy increases in the direction of rotation.

In this coordinate system, the linearized equations of motion for a star near the guiding center
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are

d2x
dt2

�2Ω0
dy
dt

= 4Ω0A0x; (15.2)

d2y
dt2

+2Ω0
dx
dt

= 0; (15.3)

whereA0 is Oort’s ‘constant’ evaluated atR0. These linearized equations have a solution of the form

x(t) = α cos(κt) ; y(t) =�sin(κt) ; (15.4)

which describe an ellipse about the guiding center. The sign ofy(t) is such that the motion about the

ellipse is retrograde with respect to the galactic rotation. This follows from conservation of angular

momentum: when the star is at radiiR> R0 it must drift backward with respect to the guiding center

since both have the same specific angular momentum.

Substituting (15.4) into (15.3), we obtain

α =
κ

2Ω0
(15.5)

for the axial ratio of the ellipse. Substituting (15.4) and (15.5) into (15.2), we obtain

κ2 = 4(Ω2
0�A0Ω0) ; (15.6)

which is equivalent to the formula given in the previous chapter.

The Sun and nearby disk stars make about 1:3 radial oscillations per orbit about the Galactic

Center. In the solar neighborhood,α ' 0:7; thus the Sun and nearby disk stars are moving on

epicycles which are squashed by about 30% in the radial direction (BT87, Ch. 3.2.3).

15.3 Kinematic Spiral Waves

One application of epicycles is the construction ofkinematic spiral waves. For example, consider a

ring of test particles on similar epicyclic orbits with their guiding centers at the same radiusR0. Let

the initial phases of the epicycles be such that att = 0 the particles define an oval. As time moves

forward the guiding centers travel around the galaxy with angular velocityΩ0, but the stars at the

ends of the oval are being carried backward with respect to their guiding centers, so the form of the

oval advances more slowly. The precession rate or ‘pattern speed’ of the oval is

Ωp =Ω�κ=2: (15.7)

This point is illustrated by Fig. 2 of Toomre (1977; hereafter T77).

By superimposing ovals of different sizes, one can produce a wide variety of spiral patterns.

If Ω� κ=2 were independent ofR, such patterns would persist indefinitely because all the super-

imposed ovals would precess at the same rate. In fact, plausible disk galaxy models have circular

velocity profiles which yieldΩ�κ=2 fairly constant over a range of radii (e.g., Fig. 6-10 of BT87).

Compared to material arms, density waves in the Milky Way should wind up about six times less

rapidly, yielding predicted pitch angles of about 1:4 degrees. This is an improvement, but still

inconsistent with most observed pitch angles. Moreover, this kinematic model has neglected the

self-gravity of spiral structures, so it can’t be telling the whole story.
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Figure 15.1: Evolution of an overdense perturbation in a shearing disk. The disk rotates counter-

clockwise, as indicated by the heavy arc; a typical star moves around an elliptical epicycle in a

clockwise direction. The perturbation (grey patch) initially has the form of aleadingspiral (right),

but is sheared into atrailing spiral (left) by the differential rotation of the disk. The epicycle and

the perturbation rotate in the same direction, so stars stay in the perturbation longer than they would

under other conditions.

15.4 Swing Amplification

As we saw in Chapter 14, disks are stablized on small scales by random motion, and on large scales

by rotation. Under some circumstances, the stabilizing effects of random motion can be temporarily

suppressed. If this happens, small perturbations the the disk can beswing amplified(eg., Toomre

1981).

Fig. 15.1 illustrates the mechanism of swing amplification. In this diagram, the grey region

represents a density wave created by the coherent excitation of epicyclic motions in a uniform disk.

The wave initially has the form of a leading spiral, but it’s sheared into a trailing spiral by the disk’s

differential rotation. In a stable disk, random motions normally disrupt an overdense region before

it has time to collapse. Here, however, the specific form of the density wave insures that individual

stars remain within the overdense region for a substantial fraction of the epicyclic periodκ ; as a

consequence, the wave is amplified by a modified form of the Jeans instability.

The gain of the swing amplifier depends on the value ofQ and on the vratioX � λ=λcrit, where

λcrit = 4πGΣκ�2 is the shortest wavelength nominally stabilized by rotation. Toomre (1981) com-

pares amplification factors estimated using different techniques, and finds fairly good agreement

between a local WKB analysis and a global numerical calculation. The amplification factor peaks

at X � 1:5, reaching values in excess of 102 for relatively cold disks. Swing amplification is much

less effective forX > 2; perturbations with such long wavelengths are stabilized by rotation, which

remains effective even when random motions fail to do their part.

In N-body experiments, particle noise creates a spectrum of perturbations of all sizes and shapes,

including both leading and trailing spirals. As the differential rotation of the disk shears leading

spirals into trailing configurations, swing amplification boosts the amplitudes of those which have

wavelengths of order� 1:5λcrit, thereby creating a multi-armed pattern of trailing spirals with a

characteristic spacing. Shown in Fig. 15.2 is an N-body simulation of a disk galaxy. Apart from
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Figure 15.2: Stable disk.simulation. Initially, this disk hasQ' 1:26, suffcient to curb local instabil-

ities. The galaxy model includes a bulge and a halo (not shown); the disk is 15% of the total mass.

Each frame is 15 disk scale lengths on a side; times are given in units of the rotation period at� 3

disk scale lengths.

Poissonian fluctuations, this disk was initially featureless; the spiral pattern which develops is due

to swing-amplified particle noise.

With time, however, the spiral patterns in numerical simulations tend to fade away as pertur-

bations due to spiral features boost the random velocities of disk stars (e.g. Sellwood & Carlberg

1984). Once the disks become too ‘hot’, random stellar velocities reduce the gain of the swing-

amplifier and prevent the amplification of small fluctuations. In this respect, N-body experiments

fall short of explaining the spiral patterns of real galaxies, which persist for many tens of rotations.
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15.5 Alternatives

15.5.1 Quasi-Stationary Spiral Structure

The key assumption of the QSSS hypothesis is that spiral structures simply rotate at constant pattern

speedΩp without significant evolution (Lin & Shu 1964, 1966). To arrange such a spiral, we require

the effective precession speed

Ωeff = Ω�jνj
κ
2
; (15.8)

to be independent ofR, wherejνj = ω=κ is the dimensionless frequency given by the WKB dis-

persion relation for nearly-axisymmetric density waves (T77, Fig. 4). This is possible, in principle,

becausejνj depends on the local radial wavelengthλ .

The mathematical details are pretty tricky; suffice it to say that this is a self-consistent problem,

and that where a solution can be found it is unique. Thus the real advantage of the QSSS is that it

provides a definite set of predictions for a given spiral system.

The WKB analysis of QSSS gets into trouble atresonanceswhere responses become very large

and linear theory breaks down. The three most important resonances are theOuter Lindblad Reso-

nance(OLR), whereΩp = Ω+κ=2, theCorotation Resonance(CR), whereΩp = Ω, and theInner

Lindblad Resonance(s)(ILR), whereΩp = Ω�κ=2. In particular, the ILR canabsorbthe inward-

propagating density waves, much like ocean waves break and dissipate energy when they reach a

beach (T77).

15.5.2 Chaotic Spirals

To maintain spiral structure in N-body experiments it’s necessary to counteract the increasing ran-

dom motions of disk stars. One way to do this is to mimic the effects of star formation by constantly

adding new stars on circular orbits. Sellwood & Carlberg (1984) present simulations in which the

disk is assumed to grow by ongoing gas accretion; the accreted mass is added to the model in the

form of particles on initially circular orbits. If the mass accreted per rotation is about 1:5% of the

disk’s initial mass, the disk can maintain an open spiral pattern similar to the spiral patterns of typical

Sc galaxies. Further implications of this accretion hypothesis are reviewed by Toomre (1990).

15.5.3 Tidal Spirals

Tides between galaxies provoke a two-sided response, much like the ocean’s response to the tidal

pull of the Moon. Since the classic two-armed ‘grand-design’ spiral galaxies M51 and M81 are

clearly interacting with close companions, it’s very likely that these galaxies owe their symmet-

ric spirals to tidal interactions (Toomre & Toomre 1972). Tidal perturbations, swing-amplified in

differentially-rotating disks, can indeed produce striking ‘grand-design’ spiral patterns. In the ex-

periment shown in Fig. 15.3, a disk galaxy is perturbed by the parabolic passage of a smaller com-

panion. In the aftermath of this passage, the disk develops a two-armed spiral pattern which persists

for several rotation periods.
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Figure 15.3: Tidal encounter between the disk in Fig. 15.2 and a companion of 10 the total mass.

This compaion approached on a parabolic initial orbit and reached an apocenter of� 9 disk scale

lengths att = 1:5. Each frame is 24 scale lengths on a side; times are given in units of the rotation

period at� 3 scale lengths.


