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Dynamics and how to use the orbits of stars to 
do interesting things !

chapter 3 of S+G- parts of  ch 2 of B&T and parts 
of Ch 11 of MWB !

Galactic Rotation- Oort Constants!
•   using a bit of trig !
R(cos α)= R0sin(l)!
R(sin α)= R0cos(l)-d!
so!
Vobservered,radial=(ω- ω0) R0sin(l)!
Vobservered,tang=(ω- ω0) R0cos(l)-ωd!
!
then following the text expand (ω- ω0) 

around R0  and using the fact that most of 
the velocities are local e.g. R-R0 is small 
and d is smaller than R or R0  (not 
TRUE for HI) and some more trig !

get !
Vobservered,radial=Adsin(2l);Vobs,tang=Adcos(2l)+Bd!
Where !
A=-1/2 R0 (dω/dr) at R0!

B=-1/2 R0 (dω/dr –ω)!

ω#
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Galactic Rotation Curve- sec 2.3.1 S+G!

Assume gas/star has!
a perfectly circular orbit!
!
At a radius R0 orbit with 
velocity V0 ; another star/
parcel of gas at radius R has 
a orbital speed V(R)!
!
since the angular speed V/R 
drops with radius,  V(R) is 
positive for nearby objects 
with galactic longitude  l 
0<l<90 etc etc (pg 91 
bottom) !

2)!

1)!

• Convert to angular velocity  ω#
• Vobservered,radial=ωR(cos α)- ω0R0sin(l)!
• Vobservered,tang=ωR(sin α)- ω0R0cos(l)!
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In terms of Angular Velocity!
•  model  Galactic motion as circular motion with 

monotonically decreasing angular rate with distance 
from center.  !

•  Simplest physics: if the mass of the Galaxy is all at 
center angular velocity ω at R is  ω=M1/2G1/2R-3/2!

•  If  looking through the Galaxy at an angle l from the 
center,  velocity at radius R projected along the line of 
site minus the velocity of the sun projected on the 
same line is!
(1) V = ω R sin d - ωoRo sin l   !
ω = angular velocity at distance R!

       ωo = angular velocity at a distance Ro!
       Ro = distance to the Galactic center!
      l  = Galactic longitude !
•  Using trigonometric identity sin d =Ro sin(l /R)                              !
   and substituting into equation (1)!
•  V = (ω - w ωo) Ro sinl            !

http://www.haystack.mit.edu/edu/
undergrad/srt/SRT Projects/
rotation.html       !
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Continued!
•  The tangential velocity vT= Vosinα-Vocos l!
       and Rsinα =Rocosl-d!
•  a little algebra then gives !
       VT= V/R(Rocosl-d)-Vocos l 	
•  re-writing this in terms of angular velocity 
        VT= ( ω-ωo)Rocosl-ωd!

•  For a reasonable galactic mass distribution we expect that the angular speed 
ω=V/R is monotonically decreasing at large R (most galaxies have flat 
rotation curves (const V) at large R) then get a set of radial velocities as a 
function of where you are in the galaxy !

•  VT is positive for 0<l<90 and nearby objects- if R>R0 it is negative !
•  For 90<l<180 VT is always negative  !
•  For 180<l<270 VT is always positive (S+G sec 2.3.1)  
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Veilleux 2010!

1!2!

3!4!
GC!

(1)  0<l<90!

(2)  90<l<180!

(3)  180<l<270!

(4)  270<l<360!

receding!

approaching!

tangent point !
where α=0!

tangent point !
where α=0!
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Oort Constants S&G pg 92-93!
Derivation:!
•  for objects near to sun, use a Taylor series 

expansion of ω-ωo!

ω-ωo=dω/dR (R-Ro)!
ω=V/R; dω/dR =d/dr(V/R)=(1/R)dV/dr-V/R2!
!

then to first order !
Vr

 =(ω-ωo)Rosinl=[dV/dr-V/R](R-Ro) sinl ; when 
d<<Ro!

R-Ro=dcosl which gives !
Vr

 =(Vo/Ro-dV/dr)d sinl cosl !
using trig identity sinlcosl= 1/2sin2l!
one gets the Oort forumla !
Vr

 =Adsin2l where !
!

Ro! R!
!

d!
!dcosl!

!

GC!

One can do the same sort of thing for VT ! 7!

Oort Constants !
•  For nearby objects ( d<<R)  !

–  V(R)~R0sin l (d(V/R)/dr)(R-R0)!
    !  ~dsin(2l)[-R/2(d(V/R)/dr)~ dAsin(2l) !
 (l is the galactic longitude)  !

•  A is one of  'Oorts constants' !
•  The other B (pg 93 S+G) is related to 

the tangential velocity of a object near 
the sun Vt=d[Acos(2l)+B] !

•  So, stars at the same distance r will 
show a systematic pattern in the 
magnitude of their radial velocities 
across the sky with Galactic longitude.!

•   A  is the Oort constant describing the 
shearing motion and B  describes the 
rotation of the Galaxy!

A=-1/2[Rdω/dr]!
!
Useful since if know A get !
kinematic  estimate of d !
!
Radial velocity vr~2AR0(1-sinl) 
only valid near l~90 measure 
AR0~115km/s  !
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Oort 'B'!
•  B measures 'vorticity' B=-(ω=-1/2[Rdω/dr])=-1/2[(V/R)+(dV/dR)] angular 

momentum gradient!
   ω=A-B=V/R; angular speed of Local standard of rest (sun's motion) !

   Oort constants are local description of differential rotation!
   Values !
   A=14.8 km/s/kpc!
   B=-12.4 km/s/kpc!
   Velocity of sun V0=R0(A-B)!

   I will not cover epicycles (stars not on perfect circular orbits) now (maybe 
next lecture): : see sec pg 133ff in S&G!
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A Guide to the Next Few Lectures !
• The geometry of gravitational potentials : methods to derive gravitational !
potentials from mass distributions, and visa versa.!
• Potentials define how stars move !
   consider stellar orbit shapes, and divide them into orbit classes.!
• The gravitational field and stellar motion are  interconnected : !
   the Virial Theorem relates the global potential energy and kinetic energy of 

!the system. !
!!

•    The Distribution Function   (DF) : !
   the DF specifies how stars are distributed throughout the system and !

!with what velocities.!
For collisionless systems, the DF is constrained by a continuity equation :!

! the Collisionless Boltzmann Equation !
• This can be recast in more observational terms as the Jeans Equation. !
The Jeans Theorem helps us choose DFs which are solutions to the continuity 
equations!
!
*Adapted from M. Whittle!
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A Reminder of Newtonian Physics sec 2.1 in B&T !

Gauss's thm ∫ !φ •ds2==4πGM!
the Integral of the normal component!
over a closed surface =4πG  x mass within 
that surface!

φ (x) is the potential!
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Conservation of Energy and Angular Momentum 
Sec 3.1 S&G  !

Angular momentum L!
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Some Basics - M. Whittle!
•  The gravitational potential energy is a scalar field !
•  its gradient gives the net gravitational force (per unit mass) which is a vector 

field :!

Poissons eq inside the mass 
distribution !
Outside the mass dist !
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Poisson's Eq+ Definition of Potential Energy (W) !

S+G pg 112-113!

Potential energy W !

 ρ(x) is the density dist!
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Derivation of Poisson's Eq !

see S+G pg112 for detailed derivation !
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Characteristic Velocities !
v2

circular=r dΦ(r)/dt=GM/r; v=sqrt(GM/r) Keplerian  
 
velocity dispersion σ2=(1/ρ) ∫ρ (∂Φ(r,z)/∂z)dz 
or alternatively  σ2(R)=(4πG/3Μ(R) ∫rρ(r) Μ(R) dr 
 
escape speed =vesc=sqrt(2Φ(r)) or Φ(r)=1/2v2

esc 
so choosing r is crucial  
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More  Newton-Spherical  Systems B&T 2.2 
Newtons 1st theorem: a body inside a spherical shell has no net 
gravitational force from that shell; e.g. ∇Φ(r)=0#
#
Newtons 2nd theorem: the gravitational force on a body outside a 
spherical shell is the same as if all the mass were at a point at the 
center of the shell. 
 
Simple examples: 
Point source of mass M; potential Φ(r) =-GM/r;  
definition of circular speed; speed of a test particle on a circular orbit 
at radius r 
v2

circular=r dΦ(r)/dt=GM/r; vcircular=sqrt(GM/r) ;Keplerian  
 
velocity dispersion σ2=(1/ρ) ∫ρ (∂Φ(r,z)/∂z)dz  
escape speed =sqrt[2Φ(r)]=sqrt(2GM/r) ; from equating  kinetic 
energy to potential energy  1/2mv2=|Φ(r)|  
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Escape Speed !
•  As r goes to infinity φ(r) goes to zero!
•  so to escape v2>2φ(r); e.q. vesc=sqrt(-2φ(r))!
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Gravity and Dynamics-Spherical Systems- Repeat !
•  Newtons 1st theorm : a body inside a a spherical shell has no net force from that 

shell !φ =0!
•  Newtons 2nd theorm ; a body outside the shell experiences forces as if they all 

came from a point at the center of the shell-Gravitational force at a point outside a 
closed sphere is the same as if all the mass were at the center !

•  This does not work for a thin disk- cannot ignore what is outside of a given 
radius!

•  One of the prime observables (especially for spirals) is the circular velocity; in 
general  V2(R)/R=G(M<R)/R2!

         more accurate estimates need to know shape of potential!

•  so one can derive the mass of a flattened system from the rotation curve !
-------------------------------------------------------------------------------------------!
•   point source has a potential φ=-GM/r!
•  A body in orbit around this point mass has a circular speed vc

2=r φd/dr=GM/r!
•  vc=sqrt(GM/r); Keplerian !
•  Escape speed from this potential vescape=sqrt(2φ)=sqrt(2GM/r) (conservation of 

energy KE=1/2mv2
escape!

-------------------------------------------------------------------------------------------!
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Homogenous Sphere   B&T sec 2.2.2 !
•  Constant density sphere  of radius a  and density ρ0#

•  M(r)=4πGr3ρ0    ; r<a 
•  M(r)=4πGa3ρ0   ;  r>a 
     φ(R)=-d/dr(M(R)) ;  φ(R)=-3/5GM2/R ; B&T 2.41)  

 R>a φ(r)=4πGa3ρ0=-GΜ/r   
 R<a φ(r)=-2πGρ0(a2-1/3r2)); 

 v2
circ= (4π/3)Gρ0r2 ;  solid body rotation R<a  

Orbital period T=2πr/vcirc=sqrt(3π/Gρ0) 
Dynamical time=crossing time =T/4=sqrt(3π/16Gρ0) 
Potential is the same form as an harmonic oscillator 

with angular freq 2π/T (B&T 2.2.2(b)) 
Regardless of r a particle will reach r=0 (in free fall) in 

a time T=/4  
Eq of motion of a test particle INSIDE the sphere is  
dr2/dt2=-GM(r)/r2=-(4π/3)Gρ0r    
General result dynamical time ~sqrt(1/Gρ) 

Chris Flynn: Tuorla Observatory!
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Some Simple Cases !
•  Constant density sphere  of radius a  and density ρ0 continued #

Potential energy (B&T) eq 2.41, 2.32 
φ(R)=-d/dr(M(R)) ;   

 R>a φ(r)=4πGa3ρ0=-GΜ/r   
 R<a φ(r)=-2πGρ0(a2-1/3r2)); 

 v2
circ= (4π/3)Gρ0r2  solid body rotation  

 

Potential is the same form as a harmonic oscillator 
e.g. the eq of motion is d2r/dt2=-GM(r)/r=4π/3Grρ; solution to harmonic 

oscillator is  
r=Acos(ωt+φ) with ω= sqrt(4π/3Gρ)=2π/Τ 
Τ=sqrt(3π/Gρ0)=2πr/vcirc 
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Spherical Systems:Homogenous sphere of radius 'a' #
Summary  !

•  M(r)=4/3πr3ρ (r<a); r>a M(r)=4/3πr3a 
•  Inside body (r<a); φ(r)=-2πGρ(a2-1/3 r2) (from eq. 2.38 in Β&Τ)!
Outside (r>a); )φ(r)= -4πGρ(a3/3)#

Solid body rotation  vc
2 = -4πGρ(r2/3)#

Orbital period T=2πr/vc=sqrt(3π/Gρ); #

a crossing time (dynamical time) =Τ/4=sqrt(3π/16Gρ)#

potential energy W=-3/5GM2/a 
The motion of a test particle inside this sphere is that of a simple harmonic 

oscillator d2r/dt2= -G(M(r)/ r2=4πGρr/3 with angular freq 2π/T 
no matter the intial value of r, a particle will reach r=0 in the dynamical time 

Τ/4#

In general the dynamical time tdyn~1/sqrt(G<ρ>)#

and its 'gravitational radius' rg= GM2/W 
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Summary of Dynamical Equations !
•  gravitational pot'l Φ(r)=-G∫ρ (r)/|r-r'| d3r 
•  Gravitational force  F(r)= -∇Φ(r) 
•  Poissons Eq ∇2Φ(r)= 4πGρ; if there are no sources   

Laplace Eq ∇2Φ(r)= 0 

•  Gauss's theorem :    ∫∇Φ(r)•ds2=4πGM 
•  Potential energy W=1/2∫rρ(r)∇Φd3r 

•  In words Gauss's theorem says that the integral of the normal 
component of ∇Φ over a closed surface equals 4πG times the mass 
enclosed  
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Potentials are Separable !
•  We make the fundamental assumption 

that the potential of a system can be 
decomposed into separable parts-!

•  This is  because Poisson's equation is 
linear : !

•  differences between any two  φ—ρ  
pairs is also a  φ—ρ    pair, and !

differentials of  φ—ρ  or   are also   φ—ρ    
pairs !

•  e.g. φtotal=φbulge+φdisk+φhalo 
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So Far Spherical Systems !
•  But spiral galaxies have a significant 

fraction of the mass (?; at least the 
baryons) in a flattened system. !
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Kuzmin Disk B&T sec 2.3 S&G Prob 3.4;  !
•  This ansatz is for a flattened system and 

separates out the radial and z directions !
•  Assume φΚ(z,R)= GM/[sqrt(R2+(a+z)2)] ; 

axisymmetric (cylindrical)!
     R is in the x,y plane !

•  Analytically, outside the plane,  φΚ has the 
form of the potential of a point mass 
displaced by a distance 'a' along the z axis!
–  e.q. R(z)=     (0, a); z<0!

     (0, -a); z>0!

•  Thus ∇2Φ=0 everywhere except along z=0- 
Poisson's eq !

•  Applying Gauss's thm ∫∇Φd2s=4πGM  
and get Σ(R)=aM/[2π(R2+a2)3/2] 
 

this is in infinitely thin disk... not too 
bad an approx  

B&T fig 2.6!

Use of Gauss's thm (divergence)!
the sum of all sources minus the sum of 
all sinks gives the net flow out of a 
region. !

∫∇Φd2s=4πGM=2πGΣ#

as z       0 ; Σ=(1/2π)G dΦ/dr 
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Flattened +Spherical Systems-Binney and Tremaine eqs !
•  Add the Kuzmin to 

the Plummer 
potential (S&G 
113,114)!

•  When b/a~ 0. 2, 
qualitatively 
similar to the light 
distributions of 
disk galaxies,!

Contours of equal density in the (R; z) plane for b/a=0.2!
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Explaining Disks!
•  Remember the most important properties of disk dominated galaxies (MBW pg 495)  !

–  More luminous disks are on average!
•  larger, redder, rotate faster, smaller gas fraction!

–  flat rotation curves!
–  surface brightness profiles close to exponential !
–  lower metallicity in outer regions !
–  traditional to model them as an infinitely  thin exponential disk with a surface 

density distribution Σ(R)=Σ0yexp(-R/Rd) 

–  This gives a potential (MBW pg 496) which is a bit messy 
   φ(R, z)=-2πGΣ0

2RD∫ [J0(kR)exp(-k|z|)]/[1+(kRD)2]3/2dk!

   J0 is a Bessel function order zero!



29!

Modeling Spirals !
•  to fit the observed density and velocity 

distributions in the MW one needs a 3 
component mass distribution!

•  Traditionally this is parameterized as 
the sum of !
–  disk Σ(R) =Σ0[exp-R/Rd]!
–  spheroid (bulge) using 

I(R)=I0Rs
2/[R+Rs]2 or similar 

forms!
–  dark matter halo!

 ρ(r)=ρ(0)/[1+(r/a)2]!
•  See B&T sec 2.7 for more 

complex forms- 2 solutions in 
B&T- notice extreme difference 
in importance of halo (H) (table 
2.3)  !


