Dynamics and how to use the orbits of stars to

do interesting things

chapter 3 of S+G- parts of ch 2 of B&T and parts

of Ch 11 of MWB

Galactic Rotation- Oort Constants

* using a bit of trig

R(cos )= Rysin(1)

R(sin a))= Rycos(1)-d

SO

V bservered sadia=(00- @g) Rysin(l)

v =(- w,) Rycos(l)-od

observered tang

then following the text expand (w- w,)

around R, and using the fact that most of
the velocities are local e.g. R-R,) is small

and d is smaller than R or R, (not
TRUE for HI) and some more trig

get
Vobservered ,radialedSin(ZD ;V
Where

A=-1/2 R (dw/dr) at R,
B=-1/2 R, (dw/dr —m)

obs.tang

=Adcos(2])+Bd
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Galactic Rotation Curve- sec 2.3.1 S+G

Assume gas/star has * (Galactic Rotation Curve

a perfectly circular orbit AR thelsthas a

velocity of V,
At a radius R, orbit with  Astar at P has an apparent
velocity V. another star/ velocity of
parcel of gas at radius R has
a orbital speed V(R)

since the angular speed V/R
drops with radius, V(R) is
positive for nearby objects
with galactic longitude 1

0<1<90 etc etc (pg o1 *Convert to angular velocity
bOttom) .Vobservered,radia1=wR(COS OL)— (DOROSiIl(l)
.Vobservered,tang:wR(Sin OL)- U)OROCOS(D

In terms of Angular Velocity

* model Galactic motion as circular motion with
monotonically decreasing angular rate with distance
from center.

* Simplest physics: if the mass of the Galaxy is all at
center angular velocity  at R is w=M"2G!2R-¥2

» If looking through the Galaxy at an angle 1 from the 25
center, velocity at radius R projected along the line of i
site minus the velocity of the sun projected on the
same line is

()V=oRsind-wR, sinl
o = angular velocity at distance R

Yom
w, = angular velocity at a distance R A

R, = distance to the Galactic center

1 = Galactic longitude
* Using trigonometric identity sin d =R sin(l1 /R) http://www.haystack.mit.edu/edu/
and substituting into equation (1) undergrad/srt/SRT Projects/

e V=(w-wwn,)R, sinl rotation.html
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Continued

The tangential velocity v,= V sina-V cos 1
and Rsino. =R cosl-d

a little algebra then gives
V= V/R(R cosl-d)-V cos 1

re-writing this in terms of angular velocity
V= (w-w, )R cosl-wd

For a reasonable galactic mass distribution we expect that the angular speed
®w=V/R is monotonically decreasing at large R (most galaxies have flat
rotation curves (const V) at large R) then get a set of radial velocities as a
function of where you are in the galaxy

V. is positive for 0<1<90 and nearby objects- if R>R,, it is negative
For 90<1<180 V is always negative
For 180<1<270 V is always positive (S+G sec 2.3.1)
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where a=0

(4) 270<1<360

tangent point
Veilleux 2010 where a=0



Oort Constants S&G pg 92-93

Derivation:

» for objects near to sun, use a Taylor series d

expansion of w-w,
w-w,=dw/dR (R-R))

dcos]

®=V/R; dw/dR =d/dr(V/R)=(1/R)dV/dr-V/R? 0 R

then to first order

V,=(w-0,)R sinl=[dV/dr-V/R](R-R ) sinl ; when

d<<R,
R-R =dcosl which gives
V,=(V /R -dV/dr)d sinl cosl
using trig identity sinlcosl= 1/2sin21
one gets the Oort forumla

V. =Adsin2l where
ALY _(dv
2 [Ro (dR) RJ

One can do the same sort of thing for v,

Oort Constants

* For nearby objects ( d<<R)
— V(R)~R,sin I (d(V/R)/dr)(R-R,)
~dsin(2D)[-R/2(d(V/R)/dr)~ dAsin(2])
(1'is the galactic longitude)

¢ Aisone of 'Oorts constants'

* The other B (pg 93 S+QG) is related to
the tangential velocity of a object near
the sun V,=d[Acos(21)+B]

¢ So, stars at the same distance r will
show a systematic pattern in the
magnitude of their radial velocities

across the sky with Galactic longitude.

* A is the Oort constant describing the
shearing motion and B describes the
rotation of the Galaxy

GC

dR
A=-1/2[Rdw/dr]

A+B:—<dv> ; A—B:E
Ro

Useful since if know A get
kinematic estimate of d

Radial velocity v ~2AR(1-sinl)
only valid near 1~90 measure
ARy~115km/
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Oort 'B'
* B measures 'vorticity' B=-(w=-1/2[Rdw/dr])=-1/2[(V/R)+(dV/dR)] angular
momentum gradient

w=A-B=V/R; angular speed of Local standard of rest (sun's motion)

Oort constants are local description of differential rotation
Values

A=14.8 km/s/kpc

B=-12.4 km/s/kpc

Velocity of sun V;=R,(A-B)

I will not cover epicycles (stars not on perfect circular orbits) now (maybe
next lecture): : see sec pg 133ff in S&G

A Guide to the Next Few Lectures

*The geometry of gravitational potentials : methods to derive gravitational
potentials from mass distributions, and visa versa.
*Potentials define how stars move
consider stellar orbit shapes, and divide them into orbit classes.
*The gravitational field and stellar motion are interconnected :
the Virial Theorem relates the global potential energy and kinetic energy of
the system.

e The Distribution Function (DF):
the DF specifies how stars are distributed throughout the system and
with what velocities.
For collisionless systems, the DF is constrained by a continuity equation :
the Collisionless Boltzmann Equation
*This can be recast in more observational terms as the Jeans Equation.
The Jeans Theorem helps us choose DFs which are solutions to the continuity
equations
10

*Adapted from M. Whittle



A Reminder of Newtonian Physics sec 2.1 in B&T

Newtons law of gravity tells us that two masses attract
each other with a force

GmM ¢ (x) is the potential

i(mv)z— r

dt r3

If we have a collection of masses acting on a mass
m_ the force is

Gm, M
i(mmva):_z 7;(xa_x3)’ O(__/__B
dt 5| Xe— X4
d
ge(mv)=—mVe(x). Gauss's thm [V¢ eds’==4nGM
with the Integral of the normal component
d(x)=—S CMe rornex, OVETA closed surface =4G x mass within
o x—xd that surface

the gravitational potential. If we can approximate
the discrete stellar distribution with a continuous
distribution p.

GP(X')dax
[x —x | 11

& (x)=—[

Conservation ot Energy and Angular Momentum
Sec 3.1 S&G

In the absence of external forces a star will conserve
energy along its orbit

d —_—— -
V-E(mv)— mvwv-\V &P (x),

d —
V-E(mv)—i—mv-qu(x)—O

N, g .0
But since Sk =v-V&(x) V:x‘__—.{_
dt (_);l?

y@ i 292

Vil l,/y U

d m - _ A
aclz (V)+me(x)]=0 e 1,1 aweunt e i,

This is just the KE + PE

dl. d Angular momentum L

J— v:_
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Some Basics - M. Whittle

The gravitational potential energy is a scalar field
its gradient gives the net gravitational force (per unit mass) which is a vector

field : o o o
* 0?0 5
wtoptoz -V V=V

o(r')
d(r) = -G ) 43y’
% |r — 1|
!
I —r N 3.
Flr) = =Vo(r)|= G [ ———5plr) d°r
L
V. F(r) = —4xGp(r)
V2<I>(r) = 47 Gp(r) «—> Poissons eq inside the mass
0 distribution
Ve®(r) = 0 > Qutside the mass dist |,

Poisson's Eq+ Definition of Potential Energy (W)

So the force per unit mass is ) ) )
P p(x) 1s the density dist

(X—X')dsx.
IX—x

F(x)=-V&(x)=[ Gp(x")

To get the differential form we start with the definitic
. 2 .
of @ and applying V*to both sides S+G pg 112-113

Gp(x")
Ix —x'|

Vqu( VJ d3xl

=4mwGp(x) Poisson's equation.

Potential energy W

W = %/\, p(r) ®(r) dr = S;G y IV®|? d®r




Derivation of Poisson's Eq
So the force per unit mass is

F(x)=—V45(x):J’Gp(x')(x_x|l3)d3x'

X—X

To get the differential form we start with the definitic
of @ and applying V?to both sides

Gp(x')
Ix —x|

Ve (x)=—V?[ d’x

=4mwGp(x) |Poisson's equation.

see S+G pgl12 for detailed derivation
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Characteristic Velocities
VZireutar =T d@(r)/dt=GM/r; v=sqrt(GM/r) Keplerian

velocity dispersion o?=(1/p) [p (0®(r,z)/dz)dz
or alternatively o?(R)=(47G/3M(R) [rp(r) M(R) dr

escape speed =v, . =sqrt(2dD(r)) or O(r)=1/2v?_,
so choosing r is crucial

16




More Newton-Spherical Systems B&T 2.2

Newtons 1st theorem: a body inside a spherical shell has no net
gravitational force from that shell; e.g. V®(r)=0

Newtons 2nd theorem: the gravitational force on a body outside a
spherical shell is the same as if all the mass were at a point at the
center of the shell.

Simple examples:

Point source of mass M; potential ®(r) =-GM/r;

definition of circular speed; speed of a test particle on a circular orbit
at radius r

v? =r d®(r)/dt=GM/r; v =sqrt(GM/r) ;Keplerian

circular circular

velocity dispersion 0?=(1/p) [p (6®(r,z)/0z)dz
escape speed =sqrt[2P(r)]=sqrt(2GM/r) ; from equating kinetic

energy to potential energy 1/2mv?=|®(r)| -

Escape Speed

e Asr goes to infinity ¢(r) goes to zero
* 50 to escape v2>24(1); e.q. V. =sqrt(-2¢(r))

18



Gravity and Dynamics-Spherical Systems- Repeat

* Newtons 1% theorm : a body inside a a spherical shell has no net force from that

shell V¢ =0

* Newtons 2" theorm ; a body outside the shell experiences forces as if they all
came from a point at the center of the shell-Gravitational force at a point outside a

closed sphere is the same as if all the mass were at the center

e This does not work for a thin disk- cannot ignore what is outside of a given

radius

* One of the prime observables (especially for spirals) is the circular velocity; in

general V2(R)/R=G(M<R)/R?

more accurate estimates need to know shape of potential

e so one can derive the mass of a flattened system from the rotation curve

* point source has a potential ¢p=-GM/r

* A body in orbit around this point mass has a circular speed v 2=r ¢pd/dr=GM/r

* v =sqrt(GM/r); Keplerian
* Escape speed from this potential v
energy KE=1/2mv?

escape

escape

Homogenous Sphere B&T sec 2.2.2

* Constant density sphere of radius a and density p,
*  M(r)=4nGrip, ;r<a
*  M(r)=4nGa’p, ; r>a
®(R)=-d/dr(M(R)): ¢(R)=-3/5GM?/R ; B&T 2.41)
R>a ¢(r)=4nGa’p,=-GM/r
R<a ¢(r)=-2nGp,(a>-1/3r?));
V2= (41/3)Gp,r?: solid body rotation R<a
Orbital period T=2nr/v .. =sqrt(3n/Gp,)
Dynamical time=crossing time =T/4=sqrt(3n/16Gp,)

cire

Potential is the same form as an harmonic oscillator
with angular freq 20/T (B&T 2.2.2(b))

Regardless of r a particle will reach r=0 (in free fall) in
a time T=/4

Eq of motion of a test particle INSIDE the sphere is
dr?/dt*=-GM(r)/r*=-(47/3)Gp,r
General result dynamical time ~sqrt(1/Gp)

~

1

Vere Vare(re) = 1.0]
03

0

=sqrt(2¢)=sqrt(2GM/r) (conservation of
19

¢

1.5

Chris Flynn. Tuorla Observa]

—10*

-3x10* -2x10*

Rodius (rp)

3
Rodius (ry)
L) ' Sl a Ll
[ L el elenl L A
/] 1 2 3 4

or



Some Simple Cases

e Constant density sphere of radius a and density p, continued
Potential energy (B&T) eq 2.41, 2.32
o(R)=-d/dr(M(R))
R>a ¢(r)=4nGa’p,=-GM/r
R<a ¢(r)=-2nGp,(a?-1/3r?));
V2= (4mt/3)Gp,r? solid body rotation

Potential is the same form as a harmonic oscillator

e.g. the eq of motion is d’r/dt?>=-GM(r)/r=4m/3Grp; solution to harmonic
oscillator is

r=Acos(wtt+¢) with w= sqrt(4n/3Gp)=2n/T
T=sqrt(3n/Gp,)=2mnr/v

circ

21

Spherical Systems:Homogenous sphere of radius 'a’

Summary

e M(r)=4/3nr3p (r<a); r>a M(r)=4/3nra

* Inside body (r<a); ¢(r)=-2nGp(a>-1/3 1?) (from eq. 2.38 in B&T)
Outside (r>a); )¢(r)= -4nGp(a’/3)

Solid body rotation v.2=-4nGp(r?/3)

Orbital period T=2mr/v =sqrt(3n/Gp);

a crossing time (dynamical time) =T/4=sqrt(37/16Gp)

potential energy W=-3/5GM?/a

The motion of a test particle inside this sphere is that of a simple harmonic
oscillator d*r/dt*>= -G(M(r)/ r>=4nGpr/3 with angular freq 27t/T

no matter the intial value of r, a particle will reach r=0 in the dynamical time
T/4

In general the dynamical time t;,,~1/sqrt(G<p>)
and its 'gravitational radius' r,= GM*W

22



Summary of Dynamical Equations
e gravitational pot'l ®(r)=-G/p (r)/|r-r'| d3r
* Gravitational force F(r)=-V®(r)
« Poissons Eq V*®(r)= 4nGp; if there are no sources
Laplace Eq V’®(r)=0
 Gauss's theorem : [V®(r)eds’=4nGM
« Potential energy W=1/2[rp(r)V®d3r

* In words Gauss's theorem says that the integral of the normal
component of V® over a closed surface equals 4G times the mass
enclosed

23

Potentials are Separable

*  We make the fundamental assumption
that the potential of a system can be
decomposed into separable parts-

e Thisis because Poisson's equation is
linear :

* differences between any two ¢p—p
pairs is also a (I)—p pair, and
differentials of ¢—p or arealso ¢—p

pairs

¢ ecg ¢t0ta1=¢bulge+¢disk+¢halo

24



So Far Spherical Systems

But spiral galaxies have a significant
fraction of the mass (?; at least the
baryons) in a flattened system.

25

Kuzmin Disk B&T sec 2.3 S&G Prob 3.4;

This ansatz is for a flattened system and
separates out the radial and z directions
Assume Py (z,R)= GM/[sqrt(R*+(a+2)?)] ;
axisymmetric (cylindrical)

R is in the x,y plane

Analytically, outside the plane, ¢y has the

form of the potential of a point mass
displaced by a c{'stance 'a’ along the z axis

— eq.R(z)= < (0, a); z<0
(0,-a); >0
Thus V2®=0 everywhere except along z=0-
Poisson's eq

Applying Gauss's thm [V®d2s=47GM

and get Z(R)=aM/[2rt(R?>+a?)??]

this is in infinitely thin disk... not too

bad an approx

(0.a)

B&T fig 2.6 \1'2'

Use of Gauss's thm (divergence)
the sum of all sources minus the sum of
all sinks gives the net flow out of a

region.

[VOd2s=47GM=21GZ
asz 0 ; 3=(112m)G dD/dr



Flattened +Spherical Systems-Binney and Tremaine eqs

Add the Kuzmin to Bu(R,2) = — GM . (2.69)
the Plummer \/ R4 (a+ V2T R)?

potential (S&G

113,114) When a = 0, ) reduces to Plummer’s spherical potential (2.44a), and when

b =0, &) reduces to Kuzmin’s potential of a razor-thin disk (2.68a). Thus,
Whe_n b./aN 0.2, depending on the choice of the two parameters a and b, ®y; can represent the
qualitatively potential of anything from an infinitesimally thin disk to a spherical system.
similar to the light If we calculate V2®y, we find that the mass distribution with which it is
distributions of associated is (Miyamoto & Nagai 1975)

disk galaxies,

21, 2 2 2 2 22
oni(Roz) = <b4M> aR -I-(a+3\/:z +f> )(c;/;r V22 +b?) . (2.60h)
T )[R+ (a+ V22 +82)2] 7 (22 + b2)3/2
F T T T | T T T I T T T | T T T I T T T I T T T B
1 -
< of £
~1F 3
el | 1 1 | 1 1 1 I 1 1 1 | 1 1 1 I 1 1 1 I 1 1 |
-6 -4 -2 0 2 4 6
R/a
27

Contours of equal density in the (R; z) plane for b/a=0.2

Explaining Disks
Remember the most important properties of disk dominated galaxies (MBW pg 495)
— More luminous disks are on average

e larger, redder, rotate faster, smaller gas fraction
— flat rotation curves
— surface brightness profiles close to exponential
— lower metallicity in outer regions

— traditional to model them as an infinitely thin exponential disk with a surface

density distribution Z(R)=Z, ,exp(-R/Ry)

— This gives a potential (MBW pg 496) which is a bit messy
d(R, 2)=-2nGZ ’RpJ [J(kR)exp(-klz)]/[1+(kRp)?]*>2dk

Jo 1s a Bessel function order zero
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Modeling Spirals 250

to fit the observed density and velocity 200
distributions in the MW one needs a 3

component mass distribution 150

Traditionally this is parameterized as
the sum of

— disk Z(R) =%, [exp-R/Ry]

100

ve/(km s7)

o
(=}

°_|.~I‘I.I||Il\lll.l__l“l L L

o

[ A WL

— spheroid (bulge) using
I(R)=[,R ?/[R+R]? or similar
forms

250

200

— dark matter halo

p()=p(0)/[1+(r/a)*]
See B&T sec 2.7 for more
complex forms- 2 solutions in
B&T- notice extreme difference

in importance of halo (H) (table
2.3)

150

100

ve/(km s7')

50
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