Stellar Populations of Galaxies—2 Lectures

see MBW10.3- (sec 10.1-10.2 for stellar structure theory- will not cover this) parts of sec 2.2 and 6.3 in S&G

Top level summary
- stars with $M<0.9M_\odot$ have MS lifetimes $>t_{\text{Hubble}}$
- $M>10M_\odot$ are short-lived: $<10^8$ years $\sim t_{\text{orbit}}$
- Only massive stars are hot enough to produce HI–ionizing radiation
- massive stars dominate the luminosity of a young SSP (simple stellar population)

H-R(CMD) diagram of region near sun
H-R is theoretical CMD is in observed units (e.g. colors)

Stellar Populations of Galaxies—2 Lectures

Extensive Review Articles
'Stellar Populations in the Galaxy Mould 1982 ARA&A..20, 91
sec 2 of the "Galaxy Mass" review paper by Courteau et al on web page arxiv 1309.3276

Modeling the Panchromatic Spectral Energy Distributions of Galaxies
Charlie Conroy ARA&A 2013 51:393–455

H-R(CMD) diagram of region near sun
H-R is theoretical CMD is in observed units (e.g. colors)
Why are **We** Studying Stars???

- The UV-near IR band is one of the prime regions for studying galaxies and most of the light in that band comes from stars.
- The stellar populations of galaxies hold vital clues to their formation histories.
- Stellar spectra contain information about
 - age
 - metallicity and abundance patterns (origin of elements)
 - star formation rate history (conversion of gas into stars)
 - dynamics of the system (ability to measure formation processes and dark matter)
- Understanding stellar spectra allows measurement of dust and dust distribution.
- One needs to understand stellar spectrum to obtain information about the IMF.

Why are **we** Studying Stars???

- To quote from Conroy et al 2013

 From an empirical point of view, the formation and evolution of galaxies can be probed via two general techniques. The first is through lookback studies where one observes, statistically, the progenitors of present day galaxies at progressively higher redshifts. The second is through studying the present day properties of galaxies, including their stellar populations, structure, and kinematics, in order to learn about their past evolution.
Spectra of Individual Stars

- Stellar spectra reflect:
 - spectral type (OBAFGKM)
 - effective temperature T_{eff}
 - chemical (surface) abundance
 - $[\text{Fe/H}]$—much more e.g. $[\alpha$/Fe]
 - absorption line strengths depend on T_{eff} and $[\text{Fe/H}]$

- surface gravity, log g
 - Line width (line broadening)
 - size at a given mass
 - dwarf-giant distinction for GKM stars

- no easy 'age'-parameter
 - Except e.g. $t<t_{\text{MS}}$

- the structure of a star, in hydrostatic and thermal equilibrium with all energy derived from nuclear reactions, is determined by its mass distribution of chemical elements and spin

Range of Stellar Parameters

- For stars above $100M_\odot$ the outer layers are not in stable equilibrium, and the star will begin to shed its mass. Very few stars with masses above $100M_\odot$ are known to exist,

- At the other end of the mass scale, a mass of about $0.1M_\odot$ is required to produce core temperatures and densities sufficient to provide a significant amount of energy from nuclear processes.

- Thus, the range of stellar masses spans a factor of 10^3 in mass.

- Observationally sizes range from $10^{-3}R_\odot<R<10^3R_\odot$ on the main sequence. For stars on the main sequence, the observed mass-radius relation is approximately $M\sim R^{4/3}$ and luminosity $10^{-4}L_\odot<L<10^6L_\odot$

- In Collins (see web page) sec 5.3 there is a detailed discussion of the main sequence physics (e.g. when stars are burning nuclear fuel steadily)—also see MBW sec 10.1.3(d)
 - For $M<2M_\odot$ stars 'burn' via the p-p chain; the main sequence lifetime of a low mass star consists of a steady energy output from hydrogen burning in an environment of steadily increasing helium.
Basic Physics of Stellar Classes

- The spectra of stars from each class is dominated by different physical processes in the stars’ atmosphere—but there is strong overlap between classes.

Again, horrible nomenclature e.g., GOV, Wolf-Rayet, giants, dwarfs etc etc tables 1.4-1.6 in S+G. Huge (~ 10^9) range in luminosities (table 1.4).

Mass and age are the prime determinant of stars properties

More Details

- If one has spectra of individual stars much can be learned - detailed metallicity, gravity, rotation rate.
- BUT for composite stellar systems in real galaxies much harder to obtain this information due to
 - velocity of stars broadens features
 - composite spectra are not unique.
- For young populations (<300 Myrs)
 - upper MS stars (massive, young) dominates integrated L_{bol}.
- For old populations (>2 Gyrs)
 - red giants (moderate mass, wide range of ages) dominate integrated L_{bol}.
• To zeroth order stellar spectra can be approximated as black bodies of the appropriate temperature. - If this is true, comparison of flux in 2 well separated bands can determine the temperature.

![Image of Sun's Spectrum vs. Thermal Radiator](http://homepages.wmich.edu/~korista/sun-images/solar_specbb.jpg)

Stellar Spectra

- "hot" opaque bodies emits a continuous spectra.
- "hot" low density gas emits a sequence of emission lines. - a neon sign.

- "cold" low density gas, placed in front of a hot opaque body, produces a continuous spectrum with dark lines on top (absorption lines). - light from the sun.
- Every element (Hydrogen, Oxygen, Nitrogen etc.) produces a unique set of emission and absorption lines
 - contains information on the ionization state of the element, its velocity (and with more discrimination the density of the gas and whether it is in equilibrium).
Stellar Spectra by Types

- 0.01-10 µm micron spectra of main sequence stars
- Notice the presence of 'unique' spectral signatures and the vast difference in the UV flux of the stars

- Detailed spectra of bright stars can reveal their age, metallicity, rotation rate, size and distance,... allowing measurements of detail of MW structure, age, chemical evolution, etc.

- Need very high (>30,000) spectral resolution (λ/δλ)
Chemical Composition of Stars

- Frequently normalize the chemical composition of an astrophysical system to the sun- The Chemical Composition of the Sun Annual Review of Astronomy and Astrophysics 47: 481-522 Asplund et al
- There are 2 types of variation: total abundance of 'metals' (elements heavier than He) and their relative abundance; total abundance of metals by mass (Z) in sun is ~0.013
- to zeroth order (more later) there are 4 sources of metals
 - BBN- Li Be
 - Type I SN -Fe, Ni etc
 - Type II SN - O, Ne, etc
 - Other (stellar winds, planetary nebulae etc) - N, C - still to be understood.

Luminosity Mass Relation (MBW 10.1.4-10.1.5)

- on the main sequence stars of the same age and metallicity have simple scaling relations (first order) between mass, luminosity and size
 - 2nd order corrections can be important
 - Basic physics of stellar structure eqs (MBW sec 10.1.4 eq 10.61) shows that on the main sequence L~
 \[81(M/M_\odot)^{2.14}; M>20M_\odot \]
 \[1.78(M/M_\odot)^{3.5}; 2M_\odot<M<20M_\odot \]
 \[0.75(M/M_\odot)^{4.8}; M<2M_\odot \]
 \[L\sim T^b \] with \(b \approx 4.1 \) at low and 8.6 at high mass
 Notice the very strong dependences
 Lifetime on MS \sim M/L \sim M^{-3}
26.7 MeV released every time $4\text{H} \rightarrow \text{He} + \nu + \text{photons}$

The difference in mass of 4H and He is

$$4m_{\text{proton}} - 3.97m_{\text{proton}} = 0.0267m_{\text{proton}}$$

The efficiency of converting mass to energy with p-p process is $0.03 / 4 = 0.007$, or 0.7% (some of the energy goes into neutrinos)

- So, $t_{\text{MS}} = (0.007 \alpha M c^2) / L$

α is the total mass of H converted to He while the star is on the main sequence- varies with mass: nuclear burning regions takes up a larger percentage of the stellar interior as one goes to low mass star.

In terms of useful units, $t_{\text{MS}} \sim 10^{10}(M/M_\odot)/(L/L_\odot) \sim M^{-2.5}$

Stellar Sizes/Luminosity/Temperature

- Stefan-Boltzman law- Lines $L \sim T^4$

- Over a wide range in luminosity stars radiate close to a Black body spectrum in the optical band

The brightest stars in the visible sky do NOT sample the H-R diagram well - how does one construct an appropriate sample?

Need to go much fainter, find 'co-eval' populations (e.g. open clusters like the Hyades)

Stellar evolution reminder

HERTZSPRUNG-RUSSELL DIAGRAM
Russell Smith Durham
Plots luminosity of stars, versus their temperature.

Stars populate distinct regions of this plane, corresponding to particular evolutionary phases.

H-R diagram organizes the observed optical properties of stars
Main sequence
white dwarfs
Giant branch
MBW 10.2)
TRACKS

“Tracks” are trajectories of individual stars in the H-R plane. Stellar evolutionary tracks trace the evolution of a given mass star vs time, as a function of initial mass (and initial chemical composition).

In detail, the tracks are computed from stellar evolution models (Padova, Geneva, BaSTI etc).

Isochrone

Theoretical lines in the H-R diagram of a given age for stars of different masses of a 'simple' stellar population details depend on color used and stellar metallicity

'Simple' stellar population has one age and metallicity

Theoretical models-allow estimate age **from MS turn-off** metallicity **from giant branch color**

See MBW fig 10.3
MAIN SEQUENCE (MS)

Core hydrogen burning phase. Longest phase of evolution.

TURN-OFF

Hydrogen exhausted in core, start of "interesting" evolution.

RED-GIANT BRANCH (RGB)

Hydrogen burning in shell around inert helium core. Growth of He core.

RGB TIP

End of RGB phase: core massive and hot enough to ignite He-burning (the "helium flash")

- 'low' mass stars evolve slowly-'stay' on the M-S for a long time
- On the M-S hydrogen burning' nuclear fusion in the core generates energy, the pressure is balanced by gravity-hydrostatic equilibrium.
- Stars spend ~80% of their lifetime on the M-S fusing hydrogen into helium.
- The position in the HR diagram changes with time, e.g. the Sun will slowly brighten and its color vary over its ~10^{10} year life on the Main Sequence. By the end of its MS lifetime, ~ twice as luminous as now.
How Good are the Models??

For many purposes we must reply on stellar evolution models to determine stellar parameters-
How good are they

Please read arXiv:1508.01254 Beyond the Main Sequence: Testing the accuracy of stellar masses predicted by the PARSEC evolutionary tracks Luan Ghezzi, John Asher Johnson

you may also wish to look at sec 1 and 5 of Yildiz 1505.05797v1.pdf 'Grids of stellar models'

Off the MS

- He burning only releases ~20% of the energy that H burning produces
- Lifetime in the He burning phase is
 ~ 2x10^9 yrs for a solar mass star
- However stars on the giant branch are very luminous and can dominate the luminosity of old stellar systems
Detailed Look at Evolution of a 5M\(_\odot\) star

- The basic nature of the theory of stellar evolution is tested by comparing the location of a collection of stars of differing mass but similar physical age with the H-R diagrams of clusters of stars formed about the same time.

Collins fig 5.2

H-R Diagram for stars d<200pc
McDonald, Zijlstra, Boyer 2012

- Uses SDSS, Akari, WISE, 2MASS
- There is still a large amount of scatter in the H–R diagram due to distance errors, causing vertical scatter

Star with dust ring- IR excess not all light from stars is due to the star itself (!)
A Young SSP

- H-R diagram of the Pleiades (S&G fig 2.12) a nearby young open cluster.
- Notice the relative thinness of the H-R diagram

A SSP

- Color-magnitude (H-R) diagram for stars in the globular cluster M55
- an old population of equal age +metallicity with no recent star formation ; e.g. a SSP
- To first order most Globular clusters are SSPs (some show metallicity variations)
Binary Stars

- As pointed out last time, the effects of binary stars is to smear out the theoretical H-R diagram.
Some Especially Interesting Places in HR Diagram

- Cepheids are used to determine absolute distances.
- Red giants are very luminous with narrow range of parameters - can be used for distance determinations (called 'tip of red giant branch' TGB).

What does a population with continuous Star formation look like??

- Theoretical space (left), observational space (right)
- Constant SFR from 13Gyr ago to the present time, Z = 0.0198, IMF slope -2.3
- Stellar evolutionary tracks for stars of masses 7, 3, 1.9, 1.5, 1.2, and 1M$_\odot$
Age Dating a SSP

- Globular clusters can be well approximated by a SSP and are frequently chemically homogenous.
- With precision photometry ages can be well estimated by measuring the location of the 'turn-off' - e.g. when the star leaves the main sequence.
 - (because stars at same distance can use observed brightness, V, instead of absolute luminosity)
Age Dating A SSP

- Alternate method is to use the cooling of white dwarfs
- The second sequence to the left is that of white dwarfs cooling—since there is no more energy generation

![Image of H-R diagram with Messier 4, NGC 6397, and 47 Tucanæ]

Age Dating A SSP

- If one just has colors then the H-R diagram is not so useful; the colors of a SSP can be calculated as a function of age (for a given metallicity) (See MBW pg 473)
- Notice the weak change in color vs age after ~3Gyrs, but the strong change in M/L_V and weak change in M/L_K

Quick quiz: why? please write down a 3 sentence explanation of why these plots look like they do.
Galaxy Spectra

- Of course the galaxy spectrum is the sum of the stars, weighted by their luminosity.
- The spectra changes radically with the age of the system (MBW fig 10.5) and weakly with chemical composition.
- After a \(\sim \text{fewx}10^9 \) yrs stars on the red giant branch dominate the \(\sim \mu \) flux; stars on the red giant branch have a narrow range of parameters for a large range in mass; good estimator of mass in stars (discussion in sec 10.3.3 MBW).

Theoretical spectrum of a SSP with a Saltpeter IMF and solar metallicity at a variety of ages 0.001-13 Gyrs

- The origin of the form of the IMF is not well understood.
- Use the stellar mass-luminosity relation and present day stellar luminosity function together with a model of how the star formation rate varies with time.
- Salpeter- pure power law \(\Phi(m)=N(M)\sim M^{-\alpha} \ dM \) for \(M>M_{\odot} \) (Salpeter 1953)- total mass diverges \(\alpha \sim 2.35 \).
- Near the sun one can observe several 'open' star clusters (Scalo 1986)
 - one finds that the slope changes below \(\sim 1M_{\odot} \) (e.g. flattens) Amount it flattens by is slightly controversial.
- There is a severe technical issue- it is only in the MW, MW globular clusters and the Magellanic clouds that one can measure individual stars over a large mass range. All other estimates of the IMF depend on integrated properties and thus are more model dependent
 - there is also a fundamental problem; how to handle binary stars!

IMF- MBW 9.6

INITIAL Mass Function

<table>
<thead>
<tr>
<th>Mass Range</th>
<th>% by Number</th>
<th>% by Mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 - 0.08</td>
<td>37.2</td>
<td>4.1</td>
</tr>
<tr>
<td>0.08 - 0.5</td>
<td>47.8</td>
<td>26.6</td>
</tr>
<tr>
<td>0.5 - 1</td>
<td>8.9</td>
<td>16.1</td>
</tr>
<tr>
<td>1 - 8</td>
<td>5.7</td>
<td>32.4</td>
</tr>
<tr>
<td>8 - 120</td>
<td>0.40</td>
<td>20.8</td>
</tr>
<tr>
<td>(<m>)</td>
<td>0.38 (M_{\odot})</td>
<td></td>
</tr>
</tbody>
</table>

Review Chabrier-
Steps to the IMF-adapted from Djorgovski/Scalo

Determining the IMF is difficult
• Start with observed star counts
 – Understand your selection effects, completeness
 – Get the distances
 – Correct for extinction
 – Correct for unresolved binaries
These ingredients include the luminosity function (LF), the mass-luminosity (m-L) relation, main sequence lifetimes, the relation between scale height and mass, the correction for evolved stars etc
• Get the Present-Day Luminosity Function (PDLF)
 – Assume a mass-luminosity relation
 which is a function of metallicity, bandpass, …
 – Theoretical models tested by observations
• Convert to Present-Day Mass Function (PDMF)
 – Use the evolutionary tracks from the same theoretical models
 – Iterate over a star formation history
• Get the Initial Mass Function (IMF)

Initial Mass Function-IMF
• The distribution of stellar masses at t=0 (birth)
• The origin of the form of the IMF is not well understood
• There are several forms proposed
 – Salpeter- \(\Phi(m) = N(M) \propto M^{-2.35} \) for \(M > M_\odot \) (Salpeter 1953)
 - much of integrated stellar mass near \(1M_\odot \)
 - Kroupa-flattens at low masses
 – At present it is controversial if the IMF is universal or a function of age, metallicity, density etc
• As SSP ages the relative luminosity due to different parts of the H-R diagram changes
 - young systems MS (massive stars)
 - Older systems (>2Gyrs)-red giant branch
 - If star formation is a continuous process which stars produce most of the luminosity and where most of the stellar mass lies can be quite different
IMF-see MBW pg 440

- General form \(\int m \Phi(m) dm = 1M_\odot \)
- integrated over the upper and lower mass range of stars; meaning \(\Phi(m) dm \) is the number of stars born with mass \(m +/- dm/2 \) for every \(M_\odot \) of newly formed stars
- Stars \(M<0.08M_\odot \) nuclear fusion not take place and \(M>~120M_\odot \) are unstable.

- Kroupa IMF \(\Phi(M)=dN/dM = A M^{-1.3} \)
 \((0.1 \leq M_\odot \leq 0.5) \)
 \(= 0.5 A M^{-2.3} \) \((0.5 \leq M_\odot \leq 100) \)
Kroupa IMF has 1.6x less total mass than the Salpeter IMF for the same normalization
\(<M>=0.6M_\odot \)

Initial Mass Function-IMF

- As SSP ages the relative luminosity due to different parts of the H-R diagram changes
 - young systems MS(massive stars)
 - Older systems(>2Gyrs)-red giant branch
 - If star formation is a continuous process which stars produce most of the luminosity and where most of the stellar mass lies can be quite different

![Spectral energy distribution](image)

Spectral energy distribution
UV-IR of a SSP as it ages
Notice the enormous changes in the UV and blue
A slow fading in the IR
Effects of IMF

- an IMF with a slope of $\alpha = 2.4$ for stars above $1M_\odot$ produces 10^8 stars with $M > 8M_\odot$ for a galaxy of total stellar mass $10^{11} M_\odot$ while a Kroupa (2001) IMF gives 10^9 such stars – a factor of 10 times more.
- This change in the number of massive stars is very important for the chemical enrichment of the galaxy since only stars of $M > 8M_\odot$ produce type II SN.
- Thus, for example, the mass of O^{16} released by massive stars for the slope 2.4 case, produces a 7 times lower than solar oxygen abundance.
- The slope of the IMF is, of course, critical for converting the observed light to stellar mass. As we will discuss later this is extremely important for determining the baryonic mass in spiral and elliptical galaxies and is a major source of uncertainty.

Focus on The UV

- The UV emission of a star forming galaxy driven by high-mass stars ($M > 10M_\odot$).
- The short main-sequence lifetimes of these stars indicates that the UV luminosity is a diagnostic of the star formation rate.
- BUT the UV emission from a star forming galaxy is produced by stars with a range of masses, and thus main-sequence lifetimes.

Solid line- how much UV luminosity comes from stars more massive than m-dotted line how much of the total stellar mass comes from these objects

Wilkins et al 2012
Stellar Populations I & II- Baade 1942

In spiral galaxies there are 2 'types' of stellar populations

Population I
- Young
- Metal rich
- Found in galaxy disks
- Rotationally supported

Population II- 'red'
- Old
- Metal poor- non-solar abundances
- Found in Globular clusters, Spiral bulges
- dispersion supported
- But not in Ellipticals- these stars are old- but frequently metal rich, thus different than spiral Pop II

theoretically there is also
Pop III- the first stars

Schematic picture of stellar pop's in Milky Way

Abundance Pattern of OLD Metal Poor Halo Stars (pg 177 in S+G)

- A strong clue to the formation of the first stars - lots more C, N,O relative to Fe.
- We will have a more general lecture on chemical evolution later

[X/Fe] is the logarithmic ratio of element X to Fe with respect to the sun's abundance pattern
- Different parts of a galaxy have different ages and metallicity
- Only for the MW, SMC, LMC (and with Hubble a few nearby galaxies) can one construct a H-R diagram which shows this
- For distant galaxies we have to deal with integrated spectra colors and brightness and the effects of dust.

Galaxies are NOT SSPs

H.Rix2010

Galaxy = \sum_{\text{time}} \text{SFR}(t) \times \text{SSP}(t; Y; Z; \text{IMF})

Y the Helium abundance and \(Z \) the abundance of heavier elements (metallicity)

Galaxy spectra-see MWB 10.3.4

- Classical indicators of what is going on:
- The so-called 4000Å break is produced by the absorption of metallic lines of a variety of elements in various states of ionization, including Ca II H and K high-order lines of the Balmer series (see Hamilton 1985, The opacity suddenly increases for photons bluer than this wavelength, which produces an intensity drop. It is enhanced in old stellar populations
- The Balmer lines become deeper and broader with time from the starburst, with a characteristic time-scale of the order of one Gyr
Galaxy spectra

- Classical indicators of what is going on:
- The limit of the Balmer series and the blending of the high-order Balmer lines produces a discontinuity of the spectrum blueward of 3650 Å (the Balmer break) – more important in young populations. The break amplitude and position is a proxy for the age of the stellar population.
- The UV continuum flux is also an age indicator for very young stellar populations. It increases with decreasing age when the ages are only a few Myr.
- The ratio between the fluxes of Hα and [NII]6583 is an indicator of how the gas is ionized.
- Balmer absorption lines such as Hγ, Hδ, and Hβ tend to trace age in old stellar populations, whereas metal-line indices such as Fe and Mgb yield information about the metallicity and α (O, Mg, Si, Ar, Ne) abundances in the stellar atmospheres.
- Dust (reddening) is a major issue.

General Trends for SSPs

- Populations fade as they age
 - Ionizing flux is only produced for t<20 Myrs.
 - Fading by 10^5 at 3000 Å from 10 Myrs to 10 Gyrs.
 - UV flux is only produced for 0.2 Gyrs.
 - X 100 at 5000 Å from 0.1 Gyrs to 10 Gyrs.
- X 6 at 1.5 μ from 1 Gyrs to 10 Gyrs.
- Populations ‘redden’ as they age.
- The ratio of the current SFR over the average past SFR is very important in determining the spectrum of a galaxy.
- Higher ‘metallicity’ and dust also ‘redden’.

Each spectrum in the library is defined by a set of 17 astrophysical parameters, plus the morphological type.

The four most significant APs are:
- the star formation scenario,
- the infall timescale of gas,
- the age of the galactic winds.
Effects of Metallicity

- At a given mass/temperature the colors of metal poor stars are 'bluer' due to less line blanketing* in their atmospheres.

*The decrease in intensity of a star's spectrum due to many closely spaced, unresolved absorption lines.

It's important for cool stars, whose atmospheres contain many different types of atoms and molecules that tend to absorb at shorter (bluer) wavelengths and reemit in the red and infrared.

Effects of Metallicity

- Color distribution of stars of a fixed absolute magnitude (M_v) as a function metallicity-lines are models points are data
- Lower metallicity stars are 'bluer' (both hotter and with a different spectral energy distribution) and brighter for a given mass. (fig 1.5 in S+G).
- M_v : absolute magnitude in the V band

Age-Metallicity Degeneracy (10.3.5)

Evolution of star depends on metallicity; stars with higher metallicity evolve faster. Unfortunately stars with the same $tZ^{3/2}$ have virtually identical optical colors.
Theoretical Isochrones

- These lines are the positions of stars from a SSP as a function of the age of the system - in the temperature/luminosity plane if no new stars are born.
- The shape depends on the metallicity of the stars (Demarque et al. 2004).
- One can determine the 'age' of the system by fitting an isochrone (if one has data for individual stars) or by calculating some average property (color/spectrum) averaging over the isochrone - degeneracy problems with age and metallicity are obvious.
- Notice stars 'pile up' on the red giant branch (dominate luminosity of old systems).
Spectra of Galaxies see MWB sec 10.3.2-10.3.6

- Almost all the energy radiated by 'normal' (not AGN) galaxies is due to stars (either direct or reprocessed)
- However the stellar spectra is a triple integral over
 - IMF
 - star formation history
 - stellar library
- furthermore the observed spectrum is often strongly effected by dust
- Also there is a 'age/metallicity' degeneracy; for much of the optical band spectra young, metal-rich populations strongly resemble old, metal-poor populations
- see sec 2.2 in the 'Galaxy Mass' review paper posted on the web site.

Spectra of Galaxies

- Mathematically the luminosity of a galaxy at a given frequency, \(\nu \), is
 \[
 L_\nu(\text{galaxy}) = \int \! \! dt' \int \! \! dZ'(dM/dt(t,Z))xL_\nu^{(\text{SSP})}(t-t',Z',\phi)
 \]
 where \(Z \) is metallicity at a time \(t \) \(dM/dt \) is the formation rate of stars of metallicity \(Z \) at time \(t \) and \(L_\nu^{(\text{SSP})} \) is the luminosity at this frequency of a SSP of metallicity \(Z \), age \(t \) and IMF \(\phi \)
- \(L_\nu^{(\text{SSP})} = \int \phi(M')L_\nu^{(\text{star})}(t, Z) dM' \) over the range of masses (e.g. \(M_{\text{min}} \)-\(M_{\text{max}} \))
- there are theoretical libraries which calculate for different ages, IMFs and metallicities
- However significant uncertainties still exist- estimate to be about 0.4mag/unit redshift in the K band (!) for a evolving population
- see the A. Benson review article eqs 114,115
How to Use this Information

• ‘Integrated’ Stellar Populations
 Crucial since only 10-100 Galaxies have resolved stars
 • What can we say about stellar mass, metallicity, star formation history age–
 for low z galaxies can resolve 'parts' of the galaxy, for most distant objects
 'whole' galaxy
 • Data
 – images
 – colors, or ‘many colors’, i.e the ‘spectral energy distribution’ (SED)
 (R=5 spectrum)
 – Spectra (R=2000) (integrated or spatially resolved spectra or long slit)
 • It is not possible to invert the data to derive the desired parameters.
 • Process:
 – assume stellar formation history and IMF- generate isochrones
 – use stellar library to calculate spectra/colors
 – iterate and see if it converges

Effects of Different Star Formation Histories on
Galaxy Spectra- Conroy 2013

13 Gyr solid lines, 1 Gyr dashed lines
Age/Type/SF rate Degeneracies

- The new BOSS galaxy sample (400,000 galaxies) has degeneracies even when using solar metallicity models.
- Notice good fits for both Star forming (SF) and 'passive' galaxies with very different ages and somewhat different stellar masses even without including reddening (dust).

Maraston et al 2012

M/L Indicators

- Some colors are very sensitive to M/L for spirals
- If there is a universal spiral galaxy IMF, - a strong correlation between stellar M/L and the optical colors
- For a composite population one has to make a lot of assumptions: SF vs time law, chemical evolution model, SSP model, etc etc- color is basically ratio of how much SF now to how much in the past
- Apply such technique to large samples -
Dust and Reddening-MBW 478-481

- The effects of reddening can be complex.
- Reddening law for isolated stars
 - not the same for all galaxies; e.g. MW and SMC are rather different in the UV but not in the optical;

- It depends on how the stars and the dust are intermixed
- Since star formation occurs in dusty molecular clouds regions of high SFR show high reddening

Signatures of Stellar Evolution

- H\textdelta vs D(4000)- distinguish SSP vs continuous star formation-features in summed stellar spectra
- Historically specific stellar absorption features over narrow wavelength intervals were used when analyzing galaxy spectra to obtain the ages and metallicities of the stellar populations.
- For galaxies with old stellar populations, the Lick/IDS system of ~25 narrow-band indices was often used (Worthey1994).
- For actively star-forming galaxies, the 4000Å break (Balogh et al. 1999) and Balmer absorption line features, such as the Hδ index, provide important information about stellar age and recent star formation history.

Put it All Together Into A Galaxy

- Even some ellipticals have dust

http://hubblesite.org/newscenter
Next Time

- GAS- physics of ... S+G 2.4+5.2

Star formation Rate Estimates

- Depends on signatures of high mass (short lived) stars
- SFR estimates are based on counting either
 - Ionizing photons, often reflected in Hα
 - UV photons only from short lived stars
- Dust heated by UV photons
- SFR estimates depend entirely on IMF
 - effects from $M^* > 5M_\odot$
 - those stars contribute negligibly to M_{tot}

Kennicutt SFR estimators

\[
\begin{align*}
\text{SFR (}M_\odot yr$^{-1}$) & = 7.9 \times 10^{-42} \ L(\text{H}\alpha) \ (\text{ergs s}^{-1}) \\
\text{SFR (}M_\odot yr$^{-1}$) & = (1.4 \pm 0.4) \times 10^{-41} \ L(\text{FIR}) \ (\text{ergs s}^{-1}), (3) \\
\text{SFR (}M_\odot yr$^{-1}$) & = 1.4 \times 10^{-26} \ L_\nu \ (\text{ergs s}^{-1} \ Hz^{-1}) \\
\text{SFR (}M_\odot yr$^{-1}$) & = 4.5 \times 10^{-44} \ L_{FIR} \ (\text{ergs s}^{-1})
\end{align*}
\]
Generic Results

- Ellipticals tend to be massive and red and have old, metal rich stars and very little star formation at the present time.
- Spirals have a wide range of stellar ages and metallicities and have 'more' star formation now.
- However star formation (SF) has varied over cosmic time with galaxy properties.

Energy Generation on Main Sequence

- p-p goes at ρT^4 dominates in sun.
- C-N-O as ρT^{17} if $M>1.5M_\odot$ this dominates.