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Dynamics and how to use the orbits of stars to
do interesting things

chapter 3 of S+G- parts of  ch 2 of B&T and parts
of Ch 11 of MWB
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A Guide to the Next Few Lectures
•The geometry of gravitational potentials : methods to derive gravitational
potentials from mass distributions, and visa versa.
•Potentials define how stars move
   consider stellar orbit shapes, and divide them into orbit classes.
•The gravitational field and stellar motion are  interconnected :
   the Virial Theorem relates the global potential energy and kinetic energy of

the system.

•   The Distribution Function   (DF) :
   the DF specifies how stars are distributed throughout the system and

with what velocities.
For collisionless systems, the DF is constrained by a continuity equation :

 the Collsionless Bboltzmann Equation
•This can be recast in more observational terms as the Jeans Equation.
The Jeans Theorem helps us choose DFs which are solutions to the continuity
equations

*Adapted from M. Whittle
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A Reminder of Newtonian Physics sec 2.1 in B&T

Gauss's thm ! !! •ds2==4"GM
the Integral of the normal component
over a closed surface =4"G  x mass within
that surface

! (x) is the potential
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Conservation of Energy and Angular Momentum

Angular momentum L
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Some Basics - M. Whittle
• The gravitational potential energy is a scalar field
• its gradient gives the net gravitational force (per unit mass) which is a vector

field :

Poissons eq inside the mass
distribution
Outside the mass dist
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Poisson's Eq+ Definition of Potential Energy (W)

S+G pg 112-113

Potential energy W

 #(x) is the density dist
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Derivation of Poisson's Eq

see S+G pg112 for detailed derivation
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Characteristic Velocities
v2

circular=r d$(r)/dt=GM/r; v=sqrt(GM/r) Keplerian

velocity dispersion %2=(1/#) !# ("$(r,z)/"z)dz
or alternatively  %2(R)=(4"G/3&(R) !r#(r) &(R) dr

escape speed =vesc=sqrt(2$(r)) or $(r)=1/2v2
esc

so chosing r is crucial
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More  Newton-Spherical  Systems B&T 2.2
Newtons 1st theorem: a body inside a spherical shell has no net
gravitational force from that shell; e.g. '$(r)=0

Newtons 2nd theorem: the gravitational force on a body outside a
spherical shell is the same as if all the mass were at a point at the
center of the shell.

Simple examples:
Point source of mass M; potential $(r) =-GM/r;
definition of circular speed; speed of a test particle on a circular orbit
at radius r
v2

circular=r d$(r)/dt=GM/r; vcircular=sqrt(GM/r) ;Keplerian

velocity dispersion %2=(1/#) !# ("$(r,z)/"z)dz
escape speed =sqrt[2$(r)]=sqrt(2GM/r) ; from equating  kinetic
energy to potential energy  1/2mv2=|$(r)|
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Escape Speed/Angular Momentum Changes
• As r goes to infinity!(r) goes to zero
• so to escape v2>2!(r); e.q. vesc=sqrt(-2!(r))
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Gravity and Dynamics-Spherical Systems- Repeat
• Newtons 1st theorm : a body inside a a spherical shell has no net force from that

shell !! =0
• Newtons 2nd theorm ; a body outside the shell experiences forces as if they all

came from a point at the center of the shell-Gravitational force at a point outside a
closed sphere is the same as if all the mass were at the center

• This does not work for a thin disk- cannot ignore what is outside of a given
radius

• One of the prime observables (especially for spirals) is the circular velocity; in
general it is V2(R)/R=G(M<R)/R2 more accurate estimates need to know shape of
potential

• so one can derive the mass of a flattened system from the rotation curve
-------------------------------------------------------------------------------------------
•  point source has a potential !=-GM/r
• A body in orbit around this point mass has a circular speed vc

2=r !d/dr=GM/r
• vc=sqrt(GM/r); Keplerian
• Escape speed from this potential vescape=sqrt(2!)=sqrt(2GM/r) (conservation of

energy KE=1/2mv2
escape

-------------------------------------------------------------------------------------------
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Homogenous Sphere   B&T sec 2.2.2
• Constant density sphere  of radius a  and density #0

• M(r)=4"Gr3#0    ; r<a
• M(r)=4"Ga3#0   ;  r>a
     !(R)=-d/dr(M(R)) ;  !(R)=-3/5GM2/R ; B&T 2.41)

R>a !(r)=4"Ga3#0=-G&/r
R<a !(r)=-2"G#0(a2-1/3r2));

 v2
circ= (4"/3)G#0r2 ;  solid body rotation R<a

Orbital period T=2"r/vcirc=sqrt(3"/G#0)
Dynamical time=crossing time =T/4=sqrt(3"/16G#0)
Potential is the same form as an harmonic oscillator

with angular freq 2"/T (B&T 2.2.2(b))
Regardless of r a particle will reach r=0 (in free fall) in

a time T=/4
Eq of motion of a test particle INSIDE the sphere is
dr2/dt2=-GM(r)/r2=-(4"/3)G#0r
General result dynamical time ~sqrt(G#)

Chris Flynn: Tuorla Observatory
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Some Simple Cases
• Constant density sphere  of radius a  and density #0 continued
Potential energy (B&T) eq 2.41, 2.32
!(R)=-d/dr(M(R)) ;

R>a !(r)=4"Ga3#0=-G&/r
R<a !(r)=-2"G#0(a2-1/3r2));

 v2
circ= (4"/3)G#0r2  solid body rotation

Potential is the same form as a harmonic oscillator
e.g. the eq of motion is d2r/dt2=-GM(r)/r=4"/3Gr#; solution to harmonic

oscillator is
r=Acos((t+!) with (= sqrt(4"/3G#)=2"/)

)=sqrt(3"/G#0)=2"r/vcirc
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Spherical Systems:Homogenous sphere of radius a
Summary

• M(r)=4/3"r3# (r<a); r>a M(r)=4/3"r3a
• Inside body (r<a); !(r)=-2"G#(a2-1/3 r2) (from eq. 2.38 in *&))

Outside (r>a); )!(r)= -4"G#(a3/3)

Solid body rotation  vc
2 = -4"G#(r2/3)

Orbital period T=2"r/vc=sqrt(3"/G#);

a crossing time (dynamical time) =)/4=sqrt(3"/16G#)

potential energy W=-3/5GM2/a
The motion of a test particle inside this sphere is that of a simple harmonic

oscillator d2r/dt2= -G(M(r)/ r2=4"G#r/3 with angular freq 2"/T
no matter the intial value of r, a particle will reach r=0 in the dynamical time

)/4

In general the dynamical time tdyn~1/sqrt(G<#>)

and its 'gravitational radius' rg= GM2/W
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Not so Simple - Plummer Potential sec 2.2 in B&T
• Many astrophysical systems have a 'core'; e.g. the surface brightness flattens in the

center (globular clusters, elliptical galaxies, clusters of galaxies, bulges of spirals) so
they have a characteristic length

• so imagine a potential of the form -!(r)=-GM/sqrt(r2+b2); where b is the Plummer
scale length

'2$(r)=(1/r2) d/dr(r2d!/dr)=3GMb2/(r2+b2)5/2=4"G #(r) Poissons eq
and thus
#(r) =(3GM/4"b3)[1+(r/b)2]-5/2

Now take limits r<<b    #(r) =(3GM/4"b3) constant
                      r>>b   #(r) =(3GM/4"b3)r-5 finite
Plummer potential was 'first' guess at modeling 'real' spherical systems; it

is one of a more general form 'polytropes' B&T (pg 300)

Potential energy W=3"GM2/32b

----------
form of '2$(r) in spherical coordinates
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• Another potential with an analytic solution is the Plummer potential - in
which the density is constant near the center and drops to zero at large radii -
this has been used for globular clusters, elliptical galaxies and clusters of
galaxies.

• One such form- Plummer potential
 !=-GM/(sqrt(r2+b2); b is called a scale length

 The density law corresponding to this potential is
 (using the definition of !2! in a spherical coordinates)
 

 !2! =(1/r2)d/dr(r2d!/dr)=(3GMb2)/((r2+b2)2)5/2

 #(r)=(3M/4"b3)(1+(r/b)2)-5/2

 Potential energy W=-3"GM2/32b

Spherical systems
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Many More Not So
Simple Analytic

Forms

• B&T pgs 65-72 ; there are many more forms
which are better and better approximations to the
true potential of 'spherical' systems; I will not
cover them in detail in the lectures, please read
the relevant sections of the text.

• However I will cover 2 others- the modified
Hubble law which is frequently used for clusters
of galaxies

• B&T eq 2.53 starts with the luminosity density
j=jo(1+(r/a)2)-3/2

• which gives surface brightness
I(r)=2ajo(1+(r/a)2)-1

• at r=a ; I(a)=1/2I(0); a is the core radius
• Now if light traces mass and the mass to light

ratio is constant
M=! j(r)d3r=
4"a3Gjo[ln[R/a+sqrt(1+(r/a)2)]-(r/a)(1+(r/a)-1/2} B&T

eq 2.56
• and the potential is also analytic

B&T fig 2.3

Problems: mass
diverges
logarithimically
BUT potential is finite
and at r>>a is almost
GM/r
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Spherical Systems
• A frequently used analytic form for the surface brightness of an elliptical galaxy is

the Modified Hubble profile
• I(R)=2j(o)a/[(1+(r/a)2] which has a luminosity density distribution
• j(r)=j(0)[(1+(r/a)2] -3/2

• this is also called the 'pseudo-isothermal' sphere distribution

•  the eq for ! is analytic and finite  at large r even though the mass diverges (eq. 2.56,
2.57 in B+T)

   !=-GM/r-(4"Gj0a)2/sqrt[1+(r/a)2]
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Last Spherical Potential
• In the last 15 years numerical simulations have

shown that the density distribution of dark matter
can be well described by a form called 'NFW'
density distribution   (B+T eq 2.65)

 #(r)=#(0)/[(r/a)+(1+(r/a)),-+] with
(+,,)= (1,3)

 Integrating to get the mass
M(r)=4"G#(0)a3ln[1+(r/a)]-(r/a)/[1+(r/a)]
and potential !=[ln(1+(r/a)]/(r/a)]

 There is a long history of different potentials and
B&T goes thru it... no longer relevant to modern
work except to improve your skills !

The NFW density
distribution is an
analytic
approximation
to numerical
simulations of cold
dark matter
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Other Forms
• B+T discuss many other forms which

are interesting mathematically but are
not really relevant to the rest of our
class.

• However all the forms so far have a
Keplerian rotation v~r-1/2 while real
galaxies have flat rotation curves
vc(R)=v0

• A potential with this property must
have d!/dr=v0

2/R; !=v0
2lnR+C

• However this is a rather artificial form;
real galaxies seem to be composed of
3 parts: disk (D), bulge (B), halo (H)
and it is the sum of the 3 that gives the
flat rotation curve (very fine tuned and
very flexible )
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Summary of Dynamical Equations
• gravitational pot'l $(r)=-G!# (r)/|r-r'| d3r
• Gravitational force  F(r)= -'$(r)
• Poissons Eq '2$(r)= 4"G#; if there are no sources

Laplace Eq '2$(r)= 0

• Gauss's theorem :    !'$(r)•ds2=4"GM
• Potential energy W=1/2!r#(r)'$d3r

• In words Gauss's theorem says that the integral of the normal
component of '$ over and closed surface equals 4"G times the mass
enclosed
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Potentials are Separable
• We make the fundamental assumption

that the potential of a system can be
decomposed into separable parts-

• This is  because Poisson's equation is
linear :

• differences between any two  !—#
pairs is also a  !—#    pair, and

differentials of  !—#  or   are also   !—#
pairs

• e.g. !total=!bulge+!disk+!halo
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So Far Spherical Systems
• But spiral galaxies have a significant

fraction of the mass (?; at least the
baryons) in a flattened system.
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Kuzmin Disk B&T sec 2.3 S&G Prob 3.4;
• This ansatz is for a flattened system and

separates out the radial and z directions
• Assume !.(z,R)= GM/[sqrt(R2+(a+z)2)] ;

axisymmetric (cylindrical)
     R is in the x,y plane
• Analytically, outside the plane,  !. has the

form of the potential of a point mass
displaced by a distance 'a' along the z axis
– e.q. R(z)=     (0, a); z<0

     (0, -a); z>0

• Thus '2$=0 everywhere except along z=0-
Poisson's eq

• Applying Gauss's thm !'$d2s=4"GM
and get /(R)=aM/[2"(R2+a2)3/2]

this is in infinitely thin disk... not too
bad an approx

B&T fig 2.6

Use of Gauss's thm (divergence)
the sum of all sources minus the sum of
all sinks gives the net flow out of a
region.

!'$d2s=4"GM=2"G/
as z       0 ; /=(1/2")G d$/dr
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Flattened +Spherical Systems-B&T eqs
• Add the Kuzmin to

the Plummer
potential

• When b/a~ 0. 2,
qualitatively
similar to the light
distributions of
disk galaxies,

Contours of equal density in the (R; z) plane for b/a=0.2
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Potential of an Exponential Disk B&T sec 2.6
• As discussed earlier the light profile of the stars in

most spirals has an exponential scale LENGTH
/(R)=/0exp(-R/Rd) (this is surface brightness NOT

surface mass density)- see next page for formula's
Do we learn anything from this ?? see MWB 11.1.2
Fig 2.17 in B&T - how the circular speed (a potential

observable) depends on the scale length for
different mass distributions.

The circular velocity peaks at R~2.16 Rd approaches
Keplerian for a point mass at large R (eq. 11.30 in
MWB) and depends only on /0 and Rd

As long as the vertical scale length is much less than
the radial scale the vertical distribution has a small
effect - e.g. separable effects !

IF the disk is made only of stars (no DM) and and if
they all have the same mass to light ratio 0 , Rd is
the scale length of the stars , then the observables
I0,Rd,vcirc(r) have all the info to calculate the mass!

Mass of exponential disk
M(R)= ! /(R)Rdr =
2"/0Rd

2[1-exp(
R/Rd)(1+R/Rd)]

when R gets large
M~2"/0Rd

2
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Explaining Disks
• Remember the most important properties of disk dominated galaxies (MBW pg 495)

– Brighter disks are on average
• larger, redder, rotate faster, smaller gas fraction

– flat rotation curves
– surface brightness profiles close to exponential
– lower metallicity in outer regions
– traditional to model them as an infinitely  thin exponential disk with a surface

density distribution /(R)=/0yexp(-R/Rd)
– This gives a potential (MBW pg 496) which is a bit messy

 !(R, z)=-2"G/0
2RD! [J0(kR)exp(-k|z|)]/[1+(kRD)2]3/2dk
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Exponential Disks
• Motivated by the exponential surface brightness profiles of disks

examine a potential that is generated by such a distribution (B+T
2.162)

 /(R)=/0exp (-R/RD) which gives a mass distribution
 M(R)=2"! /(R)RdR =2"/0R2

D[1-exp(-R/RD)(1+R/RD)];
  as shown in detail in eqs B&T 2.153-2.157 one gets a potential in the

form of Bessel functions
 This comes from the use of Hankel functions (analogs of Fourier

transforms but for cylindrically symmetric systems)
 S(k)=-2"G !  J0(kR)/(R)RdR ; J0 is a Bessel function order zero
 !(R, z)=-2"G/0 2RD! [J0(kR)exp(-k|z|)]/[1+(kRD)2]3/2dk
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Modeling Spirals
• As indicated earlier to fit the observed

density and velocity distributions in
the MW one needs a 3 component
mass distribution

• Traditionally this is parameterized as
the sum of
– disk /(R) =/0[exp-R/a]
– spheroid (bulge) using

I(R)=I0Rs
2/[R+Rs]2 or

similar forms
– dark matter halo
#(r)=#(0)/[1+(r/a)2]

• See B&T sec 2.7 for more
complex forms- 2 solutions in
B&T- notice extreme difference
in importance of halo (H) (table
2.3)
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Stellar Dynamics B&T ch 3; S&G 3.3
• Orbits in a static spherical potential:

angular momentum ( L) is conserved
– d2r/dt2=!(r)er  er is the unit vector in radial direction; the radial acceleration
!=d2r/dt2

– d/dt(r x dr/dt)=(dr/dt x dr/dt)+r x d2r/dt2=g(r)r xer =0; conservation of angular
momentum L=rxdr/dt (eqs. 3.1-3.5)

– Define L=rxdr/dt; dL/drt=0

– Since L is conserved stars move in a plane and can use polar coordinates (R,1)
 (do not need z, appendix B B&T B.24)
– R eq of motion dR2/dt2-Rd12/dt2=!(r)
– 1 eq of motion (2dR/dt*d1/dt)+Rd12/dt2=0 ; L=R2d1/dt is a constant
– total equation of motion dR2/dt2-L/R2=!(r)


