
Preprint typeset using LATEX style emulateapj v. 5/2/11

THE DENSITY PROFILES OF MASSIVE, RELAXED GALAXY CLUSTERS:
II. SEPARATING LUMINOUS AND DARK MATTER IN CLUSTER CORES

Andrew B. Newman1, Tommaso Treu2, Richard S. Ellis1, David J. Sand2,3

ABSTRACT

We present stellar and dark matter (DM) density profiles for a sample of 7 massive, relaxed galaxy
clusters derived from strong and weak gravitational lensing and resolved stellar kinematic observa-
tions within the centrally-located brightest cluster galaxies (BCGs). In Paper I of the series, we
demonstrated that the total density profile derived from these data, which span 3 decades in radius,
is consistent with numerical DM-only simulations at radii & 5 − 10 kpc, despite the significant con-
tribution of stellar material in the core. Here we decompose the inner mass profiles of these clusters
into stellar and dark components. Parametrizing the DM density profile as a power law ρDM ∝ r−β

on small scales, we find a mean slope 〈β〉 = 0.50 ± 0.10 (random) +0.14
−0.13 (systematic). Alternatively,

cored Navarro–Frenk–White (NFW) profiles with 〈log rcore/kpc〉 = 1.14±0.13+0.14
−0.22 provide an equally

good description. These density profiles are significantly shallower than canonical NFW models at
radii . 30 kpc, comparable to the effective radii of the BCGs. The inner DM profile is correlated with
the distribution of stars in the BCG, demonstrating a close connection between the inner halo and
the assembly of stars in the central galaxy. The stellar mass-to-light ratio inferred from lensing and
stellar dynamics is consistent with that inferred using stellar population synthesis models if a Salpeter
initial mass function is adopted. We compare these results to theories describing the interaction be-
tween baryons and DM in cluster cores, including prescriptions for adiabatic contraction, and discuss
possible signatures of alternative DM candidates.
Subject headings: dark matter — galaxies: elliptical and lenticular, cD — gravitational lensing: strong

— gravitational lensing: weak — stars: kinematics and dynamics

1. INTRODUCTION

The internal structure of dark matter (DM) halos is a
key prediction of the cold dark matter (CDM) paradigm.
Numerical simulations following the detailed structure of
collisionless CDM halos (e.g., Navarro et al. 1996; Ghigna
et al. 2000; Diemand et al. 2005; Graham et al. 2006;
Gao et al. 2012b) generically produce a central density
cusp with ρDM ∼ r−1, characteristic of the Navarro–
Frenk–White (NFW, Navarro et al. 1996) form, proba-
bly becoming slightly shallower on very small scales (e.g.,
Navarro et al. 2010). On the hand, simulations are only
beginning to make predictions for DM halos that include
baryons, which could profoundly reshape their host ha-
los. The structure of real DM halos thus contains im-
portant information about galaxy formation, but there
is currently no theoretical consensus on the magnitude
or even sign of these baryonic effects, particularly over
a wide range in mass. Additionally, the microphysics
of the unknown DM particle could become important in
the densest regions, and the inner structure of DM halos
may therefore provide valuable indirect clues to its na-
ture (e.g., Spergel & Steinhardt 2000; Abazajian et al.
2001; Kaplinghat 2005; Peter et al. 2010).

Given the current uncertainty, observations are clearly
in an good position to guide theoretical efforts. How-
ever, measurements of DM mass profiles are extremely

Email: anewman@astro.caltech.edu
1 Cahill Center for Astronomy & Astrophysics, California In-

stitute of Technology, MS 249-17, Pasadena, CA 91125
2 Department of Physics, University of California, Santa Bar-

bara, CA 93106
3 Las Cumbres Observatory Global Telescope Network, Santa

Barbara, CA 93117

challenging and are usually limited by confusion with
baryons, the small dynamic range of the observations,
and degeneracies that are inherent to individual mass
probes (e.g., velocity anisotropy). Clusters of galaxies
are promising locations to make progress. Accurate mass
measures are available via many independent observa-
tional probes, especially gravitational lensing and X-ray
emission (see Allen et al. 2011; Kneib & Natarajan 2011
for reviews, and references in Paper I). As we have shown
(Newman et al. 2009, 2011), combining stellar kinematics
with strong and weak gravitational lensing yields con-
straints over 3 decades in radius. This is comparable
to the best simulations and is thus suitable for detailed
comparison of the DM profile shape if the baryonic mass
can be constrained. On small scales in relaxed clusters,
the latter is dominated by stars in the central brightest
cluster galaxy (BCG).

Sand et al. (2002, 2004) demonstrated the utility of
combining resolved stellar kinematics with strong lens-
ing to constrain two-component mass models, i.e., the
BCG and DM halo separately (see Miralda-Escude 1995;
Natarajan & Kneib 1996). Sand et al. (2004) studied 6
clusters and inferred a mean 〈β〉 = 0.52 ± 0.05, where
ρDM ∝ r−β , significantly shallower than an NFW cusp
having β = 1. They further noted possible variation in
β from cluster to cluster. Sand et al. (2008) improved
on this analysis for two clusters (MS2137 and A383) by
relaxing the assumption of axial symmetry in the lens-
ing analysis, instead conducting a full two-dimensional
study. They found this did not alter their earlier find-
ings, but noted that the inferred DM slope β is sensi-
tive to the adopted scale radius rs, which could only be
constrained by additional mass probes at larger radii.
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This was implemented by Newman et al. (2009) in A611
through the addition of weak lensing data. In Newman
et al. (2011), we further extended the methodology in
A383 by constraining the role of projection effects (i.e.,
line-of-sight ellipticity; Gavazzi 2005) via the comparison
of X-ray and lensing data. We also presented a radially-
extended velocity dispersion profile measured in a very
deep spectroscopic observation. In both A611 and A383,
we confirmed a shallow inner DM cusp with β < 0.3 (68%
CL) and β = 0.59+0.30

−0.35, respectively.4

In Paper I of the present series, we presented strong
and weak lensing and stellar kinematic data for a sam-
ple of 7 massive (M200 = 0.4 − 2 × 1015 M�), relaxed
galaxy clusters at z = 0.19 − 0.31. This built upon
our earlier papers by enlarging the sample of clusters
with the highest-quality data: weak lensing measured us-
ing deep multi-color imaging, primarily from the Subaru
telescope, extended stellar kinematic profiles in the BCG
obtained primarily at the Keck telescopes, and multiply-
imaged sources located in Hubble Space Telescope (HST )
imaging (25 strongly-lensed sources in total, of which
21 have spectroscopic redshifts). We showed that the
total inner density profile is remarkably well-described
by numerical simulations containing only CDM at radii
& 5− 10 kpc, despite the significant contribution of stel-
lar mass on these scales.

Here we extend Paper I by dissecting the stellar and
DM contributions, using improved versions of the tech-
niques developed in our earlier papers. We first show how
the mass content of the BCGs can be constrained using
information from the entire sample. We then isolate the
DM density profiles and quantify their behavior on small
scales. We show that the DM profiles become shallower
than NFW models within ≈ 30 kpc, roughly the typi-
cal effective radius of the BCGs. Furthermore, the inner
DM density profiles exhibit likely variation from cluster
to cluster, and this variation is correlated with the prop-
erties of the BCG. Finally, we interpret our results in
the context of the recent theoretical literature, focusing
on the interactions between baryons and DM in galaxy
clusters and the likelihood that cores in galaxy clusters
are imprints of DM particle physics.

Throughout we adopt a ΛCDM cosmology with Ωm =
0.3, ΩΛ = 0.7, and H0 = 70 km s−1 Mpc−1. Error bars
and upper limits encompass the 68% confidence interval.
When pairs of errors are quoted, they refer to the random
and systematic components, respectively.

2. DATA AND MODELING

Whereas the total density profiles were studied in Pa-
per I, the goal of this paper is to use our two-component
fits to separate the stellar and dark mass contributions
in the cluster cores. All aspects of the data and modeling
were discussed extensively in Paper I (Section 7). Here
we provide a summary of the features most relevant for
this paper. Firstly, the stellar mass in the BCG is mod-
eled based on fits to the surface luminosity in HST imag-
ing. A uniform stellar mass-to-light ratio Υ∗ is assumed
within each BCG. As discussed in Paper I (Sections 5.1
and 9.3), this is justified by the mild or null color gradi-
ents observed over the relevant radial interval. Non-BCG

4 In the present paper we present a significantly revised mea-
surement for A611; see Section 5.3.

cluster galaxies – relevant as perturbations in the strong
lens model – are included via scaling relations based on
the fundamental plane (Paper I, Section 7).

Secondly, the the cluster-scale smooth DM halo is
parametrized using either a generalized NFW (gNFW)
model

ρDM(r) =
ρs

(r/rs)β(1 + r/rs)3−β (1)

or a cored NFW (cNFW) model with

ρDM(r) =
bρs

(1 + br/rs)(1 + r/rs)2
. (2)

Both models have the same large scale behavior (ρDM ∝
r−3), but the gNFW model contains a central power-
law cusp with d log ρDM/d log r → −β as r → 0, while
the cNFW model asymptotes to a constant-density core
within a characteristic radius rcore = rs/b. Both models
contain the NFW profile in the limits β = 1 and rcore → 0
and therefore allow us to explore deviations from canon-
ical CDM halos in the central regions. Broad, uninfor-
mative priors are placed on the halo parameters (ρs, rs,
and β or b) and Υ∗ (Paper I, Table 7).

Based on the close alignment between the optical cen-
ters of the BCGs and both the X-ray centroids (typically
separated by ' 3 kpc, comparable to the measurement
errors) and the lensing-derived centers of mass, we fix the
center of the halo to that of the BCG (Paper I, Sections
2 and 7.3). Furthermore, mass estimates derived from
lensing agree well with independent X-ray observations,
which constrains the line-of-sight ellipticity of the halo to
be mild in all clusters except A383 (see Paper I, Section
8 and Newman et al. 2011).

We do not specifically distinguish the hot gas in the
intracluster medium (ICM), which is thus implicitly in-
cluded in the halo in our models. Since the distribution of
the ICM is similar to that of the halo and comprises only
a ' 10% mass fraction (e.g., Allen et al. 2004), subtract-
ing the ICM to isolate the DM has very little effect on
the slope of the density profile (∆d log ρ/d log r . 0.05;
Newman et al. 2009; Sommer-Larsen & Limousin 2010),
which is the main focus of this paper.

These models are constrained by three data sets.
Firstly, the mass on scales of ' 100 kpc to 3 Mpc
is constrained using gravitational shear (weak lensing)
measured in deep, multi-color images primarily from
the Subaru telescope. Secondly, the angular positions
and redshifts of background galaxies that are strongly
lensed by the clusters precisely constrain the mass from
' 20− 100 kpc, varying from cluster to cluster. In total
we located 25 multiply-imaged sources, of which 21 have
spectroscopic redshifts (7 were first presented in Paper I).
Finally, the most unique aspect of our analysis is the in-
clusion of spatially-resolved stellar kinematics within the
BCGs. These measures are derived from long-slit spec-
tra primarily obtained at the Keck telescopes. The stellar
kinematic data typically extend to R ≈ 10− 20 kpc and
display a very homogenous shape that rises with radius,
indicating a rising total mass-to-light ratio as expected
at the centers of massive clusters. As demonstrated in
Paper I (Section 9), the mass models provide good fits
to the full range of data.

For the purpose of distinguishing dark and stellar mass,
the most important physical assumptions are that stel-
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Fig. 1.— Degeneracy between Υ∗V and the DM inner density profile when the halo is parametrized with a gNFW (left axis, filled
contours) or cNFW (right axis, lines) model. The 68% and 95% confidence regions are shown. Arrows at the bottom of each panel show
estimates ΥSPS

∗V derived from SPS fits to the broadband colors of the BCGs, assuming Chabrier and Salpeter IMFs; the distribution of

these is shown in the bottom right panel. The permitted range in Υ∗V is set proportionally to ΥSPS
∗V and therefore varies slightly from

cluster to cluster.

lar mass follows light, as justified above, and that the
DM halo is adequately described by a gNFW- or cNFW-
like profile. The precise parametric form is not as criti-
cal as the presumption that the DM density turns over
smoothly at small radii – either to a power-law cusp in
the gNFW case, or to a constant density in the cNFW
models – without a sharp upturn on small scales. This is
reasonable: by design these profiles describe pure CDM
halos in the appropriate limits, and although the effects
of adding baryons are uncertain, adiabatic contraction
prescriptions (Gnedin et al. 2004, 2011) predict DM pro-
files that are well-fit by gNFW models when applied
to halos and BCGs representative of our sample. Due
to the density and radial extent of observational con-
straints (extended stellar kinematic profiles, strongly-
lensed galaxies usually at multiple redshifts, weak lens-
ing), we emphasize that we are able to consider quite
general families of DM halos in each cluster.

3. SEPARATING LUMINOUS AND DARK MASS: THE ROLE
OF THE STELLAR MASS-TO-LIGHT RATIO

In individual clusters there is a degeneracy between the
stellar mass-to-light ratio Υ∗V = M∗/LV and the inner
DM slope. This is illustrated in Figure 1, which shows
results for the mass models summarized in Section 2 and
derived in Paper I (Section 9). This degeneracy is ex-
pected, since stellar mass in the BCG can be traded
against DM. Owing to the multiplicity of constraints de-
scribed above, particularly kinematic measurements at
small radii in the stellar-dominated regime, the model
degeneracy is not complete, and each cluster does carry
information on both Υ∗ and β or b.

It is already evident in Figure 1 that most of the clus-
ters in our sample prefer a DM inner slope that is shal-
lower than an NFW profile (i.e., β < 1), consistent with

our previous findings (Sand et al. 2002, 2004, 2008; New-
man et al. 2009, 2011). However, it is also clear that the
precision of the constraints on the inner slope could be
increased if additional information regarding Υ∗ is avail-
able. Indeed, most clusters are consistent with a wide
range of Υ∗ when viewed in isolation, due to the uncer-
tainty arising from the degeneracy described above. Fur-
thermore, the figure suggests a possible variation from
cluster to cluster in the DM inner slope, but this con-
clusion may be contingent upon substantial variations in
Υ∗ as well. We do not have strong a priori expectations
about the possible variation from cluster to cluster in the
DM inner slope, particularly recalling the uncertain role
of baryons in theoretical predictions. There are, however,
several strong reasons to believe that the true physical
variation in Υ∗ within our sample is small.

Firstly, Figure 1 shows estimates of the stellar mass-to-
light ratio ΥSPS

∗V derived by fitting stellar population syn-
thesis (SPS) models to the broadband colors of the BCGs
(see Paper I, Section 5.2). Currently, SPS models cannot
predict absolute masses more accurately than a factor of
' 2, primarily due to the unknown initial mass function
(IMF), which we discuss further in Section 5.1. On the
other hand, relative stellar masses are more robust, espe-
cially within a homogeneous galaxy population. As the
bottom right panel of Figure 1 demonstrates, the range
in ΥSPS

∗V within our sample at a fixed IMF is small. As-
suming a Chabrier (2003) IMF, the median 〈ΥSPS

∗V 〉 = 2.2;
the full range is only 1.80− 2.32, and the rms scatter is
9%.5

5 Throughout, LV and Υ∗V refer to the observed luminosity,
including any internal reddening from dust within the BCG. If
we removed the reddening to obtain the intrinsic LV and Υ∗V of
the stellar populations, their scatter would increase. (Reddening
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Fig. 2.— Probability densities for logαSPS, which parametrizes
the stellar mass-to-light ratio Υ∗V relative to SPS models (Equa-
tion 3), are shown for each cluster (thin lines) and jointly for the
entire sample (thick). The dotted curve shows the effective prior,
composed of the flat prior on log Υ∗V convolved with a Gaussian
uncertainty on ΥSPS

∗V of σSPS = 0.07 dex. Arrows indicate the
effect of adopting mildly anisotropic orbits with βaniso = ±0.2.

Secondly, the rms dispersion in their absolute V-band
luminosities LV of the BCGs in our sample is only
0.1 dex. This small variation is consistent with previ-
ous studies of BCGs as “standard candles” with uniform
luminosities and colors (e.g., Sandage 1972; Postman &
Lauer 1995; Collins & Mann 1998; Bernardi et al. 2007).
Finally, the environments of the BCGs are the same: by
construction they are all central galaxies in massive clus-
ters, and their central velocity dispersions are compa-
rable. It would be very surprising if this uniformity in
luminosity and ΥSPS

∗V , which are thought to derive from
a similar assembly history, were the result of a conspir-
acy that masks larger variations in stellar mass. Instead,
based on these physical similarities, it is very likely that
the BCGs in our sample have similar stellar masses and
Υ∗V. As we discuss in Section 5.1, this is further sup-
ported by recent, independent studies.

With the well-motivated assumption that the BCGs in
our sample have a similar Υ∗V, we can use the full sam-
ple of 7 clusters to jointly constrain its value, thereby

is indicated only in cool core clusters hosting some current star
formation.) However, the SPS stellar mass estimates, which are
significant for our analysis, are much more robust.

improving the precision and robustness of our measure-
ments of the DM profile. Before embarking on this, we
consider how to handle the small variations in Υ∗V that
we do anticipate, despite the overall similarity. The sam-
ple spans a redshift range z = 0.19− 0.31, so some mild
passive evolution is expected. Additionally, the BCGs
with the lowest ΥSPS

∗V estimates show optical emission
lines and far-infrared photometry indicative of ongoing
star formation (although it involves a small fraction of
the stellar mass; see Paper I). These BCGs reside in the
cool core clusters, consistent with earlier studies (Bildfell
et al. 2008; Loubser et al. 2009; Sanderson et al. 2009).

Therefore, a more precise technique is to define Υ∗ for
each cluster relative to the SPS measurement :

logαSPS = log Υ∗V/Υ
SPS
∗V . (3)

We can then use the full cluster sample to constrain
〈logαSPS〉, which parametrizes a common, systematic
offset from photometrically-derived stellar mass-to-light
ratios. As describe in Section 5.1, the most probable
source for large systematic offsets is an IMF that differs
from that assumed in the SPS models: in this case, that
of Chabrier. However, our analysis does not depend on
the physical origin of the offset, only that is it common
among our BCGs. Since the variation in ΥSPS

∗V is small
compared to the range of Υ∗V explored in our fits (25%
versus a factor of 5.3), this approach is not radically dif-
ferent from assuming a common Υ∗V. However, it im-
proves on that assumption by making use of SPS models
to adjust for small differences in Υ∗V arising from age
and dust, while making no assumption on the validity of
their absolute mass scale.

3.1. Constraining the stellar mass scale

Figure 2 shows the probability distribution for logαSPS

derived in each cluster. The uncertainty in logαSPS

arises from two sources: that in the Υ∗V derived from
dynamics and lensing, and the uncertainty in ΥSPS

∗V aris-
ing from random photometric errors. In Paper I we esti-
mated the latter as σSPS = 0.07 dex. Thus, the probabil-
ity distributions for logαSPS are derived by broadening
those for log Υ∗V by a Gaussian with a dispersion of σSPS.

We have argued that there are strong a priori rea-
sons to expect that αSPS is uniform across our sample
of BCGs. Using the probability distributions in Fig-
ure 2, we can ask whether the lensing and kinematic data
are indeed consistent with this assumption. One way
to quantify this is to suppose that the true distribution
of logαSPS is Gaussian and infer its intrinsic dispersion
σlogα. The formalism for inferring the probability dis-
tribution P (σlogα) was discussed in Paper I (Section 9,
and see Bolton et al. 2012). The preference for non-zero
intrinsic scatter can then be assessed by

∆P =
√

2 ln[P (σlogα = σpeak)/P (σlogα = 0)], (4)

where σpeak is the location of the maximum of P (σlogα).
For a Gaussian distribution, ∆P is the number of stan-
dard deviations from the mean. We find ∆P = 0.85, i.e.,
a < 1σ preference for intrinsic scatter. Thus, the lensing
and kinematic data are consistent with (although they
alone cannot prove) our assumption that there is little
intrinsic variation in αSPS within our sample.
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With the physically-motivated assumption that αSPS

is the same for each BCG, we can constrain its com-
mon value simply by multiplying the 7 independent
probability distributions. The results are shown by
the thick curves in Figure 2. Very similar values of
logαSPS = 0.28± 0.05 and 0.26± 0.05 are derived using
the gNFW and cNFW models, respectively, demonstrat-
ing that these results do not strongly depend on the exact
halo model. Given the closeness of these results, in the
following analysis we adopt logαSPS = 0.27 ± 0.05. De-
spite marginalizing over fairly general parameterizations
of the DM profile, we are able to obtain informative re-
sults due to the high density of observational constraints
and the sample size.

Taking the median 〈ΥSPS
∗V 〉 = 2.2, we find that

logαSPS = 0.27 corresponds to Υ∗V = 4.1. In Section 4.3
we describe sources of systematic uncertainty leading to
a final estimate logαSPS = 0.27 ± 0.05+0.10

−0.16. In Sec-
tion 5.1, we discuss the physical implications of this re-
sult and compare to the recent literature on the stellar
mass-to-light ratio and IMF in early-type galaxies.

4. THE INNER DARK MATTER DENSITY PROFILE

We now turn to the the inner DM density profiles. In
our earlier papers, we studied the inner DM density slope
β by marginalizing over the uncertainty in Υ∗ separately
in each cluster. With the benefit of a larger sample with
improved data, we have now combined constraints from
7 clusters to arrive at a joint measurement of the stellar
mass scale αSPS (Section 3.1). Incorporating this infor-
mation, we can now conduct our analysis in a more phys-
ically consistent way that recognizes the homogeneity of
the BCGs, as well as further reducing the remaining de-
generacies between dark and stellar mass.

Technically, we implement the joint constraint on
logαSPS via importance sampling (e.g., Lewis & Bri-
dle 2002), reweighting the Markov chain samples to ef-
fectively convert our flat prior on logαSPS to a Gaus-
sian with mean 〈logαSPS〉 = 0.27 and dispersion σ =
(σ2
α + σ2

SPS)1/2 = 0.09. Here σα = 0.05 dex is the uncer-
tainty in 〈logαSPS〉, and σSPS = 0.07 dex is the random
error in ΥSPS

∗V for each BCG. The latter accounts for the
fact that αSPS refers to a systematic offset from SPS-
based mass estimates, but random errors due to photo-
metric noise remain in each cluster.6

4.1. Dark and stellar mass profiles

Figure 3 shows the resulting spherically-averaged den-
sity profiles for the DM halo, BCG stars, and their sum.
The results based on gNFW and cNFW models are again
quite similar, showing that the choice of parametrization
does not strongly affect the derived density profiles. We
do not detect an overall preference for one model over
the other: the ratio of the total Bayesian evidence is
consistent with unity.

The black line segment in each panel spans r = (0.003−
0.03)r200, which is the interval over which the total den-
sity slope γtot was defined in Paper I. Its slope r−1.13 is

6 This estimate of σSPS may be conservative, given that the
dispersion in ΥSPS

∗V measurements among the BCGs is smaller, and

χ2/dof ≤ 1 in the SPS model fits. Thus, in practice we are likely
allowing for some mild intrinsic variation in αSPS.

TABLE 1
Parameters Describing the Inner DM Profile

Cluster β (gNFW) log rcore/kpc (cNFW)

MS2137 0.65+0.23
−0.30 0.45+0.38

−0.48

A963 0.50+0.27
−0.30 0.87+0.61

−0.71

A383 0.37+0.25
−0.23 0.37+0.72

−0.64

A611 0.79+0.14
−0.19 0.47+0.39

−0.50

A2537 0.23+0.18
−0.16 1.67+0.24

−0.23

A2667 0.42+0.23
−0.25 1.29+0.49

−0.49

A2390 0.82+0.13
−0.18 0.30+0.53

−0.34

Ensemble average

All clusters 0.50± 0.13 1.14± 0.13
βaniso = +0.2 0.38+0.09

−0.07 1.11+0.14
−0.10

βaniso = −0.2 0.64+0.05
−0.09 0.96+0.24

−0.11

Separate αSPS 0.62± 0.14 1.09+0.12
−0.21

Note. — Median parameters are shown, obtained after weight-
ing samples to incorporate our joint constraint on αSPS, as de-
scribed in the text. Error bars encompass the 16−84th percentiles
and account for random uncertainties only; see Section 4.3 for a
discussion of systematic errors. Results are shown for individual
clusters (top) and for the ensemble mean (bottom), including for
several alternative assumptions described in Section 4.3.

the average measured in CDM-only cluster simulations
from the Phoenix project (Gao et al. 2012b). As quanti-
fied in Paper I, the stars and DM sum to produce a slope
very close to CDM-only simulations over this interval.

Now we can see that both stars and DM contribute
significantly to the mass in this regime: stars dominate
the density in the inner radius, while virtually all the
mass is DM at the outer radius. This demonstrates a
tight coordination between the inner DM profile and the
distribution of stars: the NFW-like density slope is not
a property of the DM halo or the BCG alone, but of
their sum. As noted in Paper I, at yet smaller radii
r . 5−10 kpc where stars are dominant – well within the
mean effective radius 〈Re〉 = 30 kpc – the total density
profile generally steepens.

As expected if the total density is NFW-like, the DM
profiles become shallower only on scales where the BCG
contributes significantly, roughly within Re. As we de-
scribe in Section 5, our results thus do not conflict with
other studies that claim the DM alone follows an NFW
profile but are confined to r & Re. The stellar mass den-
sity in our models reaches that of the DM at a median
radius of 〈r〉 = 7 kpc. In terms of enclosed mass, equality
occurs at 〈r〉 = 12 kpc. Within 5 kpc the median DM
fraction is 〈fDM〉 = 25%, similar to massive field ellip-
ticals (e.g., Auger et al. 2010a), but within their three-
dimensional half-light radii rh the BCGs are far more
DM-dominated: 〈fDM〉 = 80%.

4.2. Inner DM density slopes and core radii

Figure 4 shows the probability distributions for β
(gNFW) and rcore (cNFW) obtained by marginalizing
over the other parameters, again weighting the samples
to incorporate our joint constraint on αSPS. Results for
the individual clusters are listed in Table 1. Every cluster
prefers β < 1, i.e., an inner slope shallower than an NFW
model. Thick black lines shows constraints on the mean:
〈β〉 = 0.50 ± 0.13 and 〈log rcore/kpc〉 = 1.14 ± 0.13; the
method for deriving these is outlined in the Appendix.
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We note that while the typical rcore ≈ 14 kpc is small,
the cNFW profile turns over rather slowly at small radii.
Thus, while rcore is the radius where the density falls to
half of the corresponding NFW profile, significant devi-
ations extend to r ' (3− 4)rcore.

We can also ask whether there is evidence for intrinsic
variation in the inner DM profiles. This can be quan-
tified by assuming that the parent distributions of β
and log rcore are Gaussian, and using the method de-
scribed in Section 3.1 to infer its dispersion. We find
some evidence for intrinsic scatter with σβ = 0.22+0.15

−0.11

and σlog rcore = 0.57+0.33
−0.21. Its statistical significance can

be assessed with the ∆P statistic (Equation 4): we derive
∆P = 1.5 and 2.6 for β and log rcore, respectively. This
indicates a ' 2σ preference for the presence of intrinsic
scatter in the inner DM profile shape.

A possible physical origin of this scatter is illustrated
in Figure 5. Grey points in the top panel show the total

density slope γtot. As described in Paper I, these show
mild scatter around the mean slope measured in CDM-
only simulations (dashed line, Gao et al. 2012b) over the
same radial interval (r/r200 = 0.003 − 0.03). Here we
see signs of a correlation with the size of the BCG, with
more extended BCGs corresponding to shallower total
slopes. The effect on the DM slope (colored points) ap-
pears stronger: larger BCGs are hosted by clusters with
shallower DM slopes β, or equivalently larger core radii
rcore (bottom panel). Such a correlation is necessary for
the dark and stellar mass to combine to a similar total
density profile. The significance can be assessed using
the Spearman rank correlation test. We find a probabil-
ities P0 = 0.18 and 0.07 of obtaining an equally strong
correlation between Re and β or rcore, respectively, in
the null hypothesis of uncorrelated data (see caption to
Figure 5).

Figure 5 shows that the mass profile in the cluster core
is closely connected to the build-up of stars in the BCG.
We return to this point in Section 6 and discuss physical
scenarios that can explain this. Although the correla-
tions with Re are most convincing, they are not unique:
we find correlations between β or rcore and the stellar
mass or luminosity with nearly equal statistical signifi-
cance. There is no sign of a correlation with the virial
mass M200 (ρ = 0.11 and 0.04 for the gNFW and cNFW
models; see caption to Figure 5).7

We emphasize that it is preferable to compare directly
to the physical density profiles (Figure 3) when possi-
ble, rather than only marginalized distributions for β.
These results do not imply, for example, that a CDM
density profile should be modified simply by maintaining
the same rs and changing β = 1 to β = 0.5. Rather, rs
also shifts in our fits such that significant changes in ρDM

are kept within r . 30 kpc. This degeneracy is simply a
result of the gNFW parametrization.

4.3. Systematic uncertainties

A full discussion of the systematic uncertainty affecting
our analysis was presented in Paper I, Section 9.3 (see
also Sand et al. 2004). In the following, we review the
most important effects and estimate their impact on αSPS

and the inner DM halo parameters β and b.
One of the main sources of systematic uncertainty is

our use of spherical dynamical models based on isotropic
velocity dispersion tensors. As discussed in Paper I (Sec-
tion 9.3), this is a good approximation for luminous, non-
rotating giant ellipticals in their central regions (e.g.,
Gerhard et al. 2001; Cappellari et al. 2007). Nonethe-
less, individual galaxies can exhibit mild anistotropy with
|βaniso| = |1 − σ2

θ/σ
2
r | ≈ 0.2, and the population as a

whole also may be slightly radially biased. To estimate
the impact this has on our analysis, we repeated the dy-
namical analysis taking a constant anisotropy parameter
βaniso = ±0.2. Arrows in Figure 2 show that individual
clusters may shift by ∆ log Υ∗ = −0.16 (βaniso = +0.2)
or ∆ log Υ∗ = +0.10 (βaniso = −0.2). Since this bias
may be correlated among the BCGs, we consider these

7 Interestingly, the reverse seems to hold for γtot: there is no sign
of a correlation with the stellar mass or luminosity, but a possible
correlation with M200 (ρ = −0.68, P0 = 0.09). The latter may
simply be because the radial range over which γtot is measured is
proportional to r200.
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as systematic uncertainties in the mean: 〈logαSPS〉 =
0.27± 0.05+0.10

−0.16. We note that the effects of anistotropy
are larger here than for studies of field elliptical lenses
(e.g., Auger et al. 2010b), since the latter do not resolve
kinematics well within Re where the impact of anisotropy
on the line-of-sight velocity dispersion is largest.

Uncertainties in the orbital distribution have a milder
effect on the parameters describing inner DM profile. If
we adopt the same prior in 〈logαSPS〉, taking βaniso =
±0.2 leads to systematic shifts of ∆〈β〉 = ±0.13 and
∆〈log rcore〉 ≈ −0.18 (Table 1). If we instead shift the
prior on 〈logαSPS〉 to match the results obtained with the
corresponding βaniso, we find ∆〈β〉 = +0.11,−0.02 and
∆〈log rcore〉 = −0.21,+0.08. Based on these results, we
estimate systematic uncertainties of ∆〈β〉 = ±0.13 and
∆〈log rcore〉 = −0.2,+0.1 due to the orbital anisotropy.

We note that the clusters with the lowest inferred αSPS

in Figure 2 (MS2137 and A611) are those with the high-
est halo concentration parameters (Paper I, Section 10).
These clusters have NFW-like total density profiles down
to unusually small radii, with very weak steeping on
small scales. In view of the similarity of αSPS among
the other 5 clusters and the agreement with independent
results discussed in Section 5.1, a likely explanation is
that some of the stellar mass is effectively counted in the
halo when Υ∗ is allowed to vary freely from cluster to
cluster. Nevertheless, omitting MS2137 and A611 would
shift 〈logαSPS〉 by only +0.02. In this respect our results
are encouragingly robust. This highlights the utility of
the ensemble of clusters as a robust constraint on Υ∗.

Line-of-sight (l.o.s.) ellipticity in the cluster halo can
complicate the coupling of lensing and dynamical mass
measurements, since lensing measures the mass con-
tained in cylinders, while dynamical and X-ray measure-
ments nearly measure the spherically-averaged mass dis-
tribution. The close agreement between lensing- and X-
ray-based mass measurements shows that this is not a
major effect in our sample; the only exception is A383,
in which the l.o.s. shape is explicitly accounted for in our
analysis (Paper I, Section 8.1, and Newman et al. 2011).
Specifically, the mean ratio of spherical mass measures
〈MX/Mlens〉 = 1.1 at r ' 60 kpc, the typical Einstein
radius in our sample (Paper I, Section 8). This could be
explained by a mean elongation of the cluster halos along
the l.o.s. with ellipticity 〈q− 1〉 ≈ 0.1− 0.2 (although, as
described in Paper I, 〈MX/Mlens〉 and thus 〈q〉 are actu-
ally consistent with unity within the systematic uncer-
tainties). Based on our study of A383, we estimate that a
mean l.o.s. ellipticity of this magnitude would cause sys-
tematic shifts of ∆〈β〉 ≈ 0.06 and ∆〈log rcore〉 ≈ −0.1.

Combining the effects of l.o.s. ellipticity and orbital
anisotropy in quadrature, we arrive at final measure-
ments 〈β〉 = 0.50 ± 0.13+0.14

−0.13 and 〈log rcore〉 = 1.14 ±
0.13+0.14

−0.22 including random and systematic error esti-
mates. Naturally, variations in orbital anisotropy or
l.o.s. ellipticity could cause larger shifts on a cluster-by-
cluster basis. Such effects could decrease the intrinsic
scatter in β and rcore that we infer, but they would have
to be correlated with the size or mass of the BCG (Fig-
ure 5). While we have argued that our method of de-
riving a common value of αSPS is superior, we note that
marginalizing over Υ∗V separately in each cluster as in
our earlier papers would shift the mean 〈β〉 by < 1σ (see

“Separate αSPS” Table 1).
Finally, we recall evidence presented in Paper I that

A2537 is a possible l.o.s. merger. Such an alignment
could produce a spuriously shallow DM profile in a lens-
ing analysis, and A2537 indeed has the shallowest slope
in our sample. However, Figure 5 provides another expla-
nation: A2537 has the second-largest BCG in the sam-
ple. Thus, it does not appear that our results for A2537
are exceptional. Nevertheless, recognizing its unique na-
ture in our sample, we note that excluding A2537 yields
〈β〉 = 0.69+0.10

−0.14 and log rcore = 0.59+0.26
−0.37, which does not

change our main conclusions.

5. COMPARISON TO PREVIOUS RESULTS

5.1. Stellar mass-to-light ratio

These results on the inner DM profile are informed by
the common stellar mass normalization that we infer, so
it is important to compare this result to other measure-
ments to assess its reliability (see also Cappellari et al.
2012b for a recent review). As shown in Section 3.1, we
find logαSPS = 0.27±0.05 for isotropic orbits, with a cor-
responding Υ∗V = 4.1 ± 0.5 and Υ∗B = 5.3 ± 0.6 at the
median ΥSPS

∗V and ΥSPS
∗B . When comparing mass-to-light

ratios at different redshifts, it is essential to account for
luminosity evolution. Where necessary, we evolve sam-
ples as d log Υ∗V/dz = −0.64 (Treu et al. 2001). We note
that the ' 0.05 dex systematic uncertainty in ΥSPS

∗V (Pa-
per I, Section 5.2) is relevant only for the interpretation
of Υ∗V in terms of stellar populations, but it does not af-
fect the stellar mass and so has no effect on the derived
mass profiles.

Discussion of Υ∗ is often tied to the IMF. This is be-
cause the unknown IMF is the dominant source of un-
certainty in the absolute mass scale for stellar popula-
tion synthesis models, especially for old galaxies (e.g.,
Bell & de Jong 2001; Bundy et al. 2005; Cappellari et al.
2006; Auger et al. 2009; Grillo et al. 2009; Stott et al.
2010). If interpreted as a difference in IMF, our measured
αSPS indicates a normalization consistent with that of the
Salpeter (1955) IMF, which has logM∗,Salp/M∗,Chab =
0.25 when extended down to 0.1 M�.

Several other studies have used lensing and stellar
dynamics to probe massive field and group ellipticals.
Auger et al. (2010b) probe the SLACS samples of early-
type lenses using strong and weak lensing and stellar
kinematics (see also Gavazzi et al. 2007; Treu et al. 2010).
Assuming an NFW halo, they infer logαSPS = 0.28 ±
0.03 at M∗ = 1011 M�.8 Assuming an adiabatically-
contracted halo lowers this value by 0.11 − 0.14, i.e.,
still heavier than a Chabrier IMF. They infer an intrin-
sic scatter of < 0.09 dex in logαSPS within their sample
of σ & 200 km s−1 lenses (Treu et al. 2010). Lagattuta
et al. (2010) study ellipticals at slightly higher redshift
using strong and weak lensing. Evolving their Υ∗ from
〈z〉 ≈ 0.6 to our 〈z〉 = 0.25 yields Υ∗V = 4.7 ± 0.7,
consistent with our results. Both of these works assume
an NFW halo and a mass–concentration relation that
follows theoretical expectations (i.e., a one-parameter
halo). Our models include much more general halos,
and the BCGs are much more DM-dominated. Thus,

8 Their αIMF is defined relative to a Salpeter IMF and so differs
from our definition by 0.25 dex.
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the uncertainty in Υ∗ on an object-by-object basis is
larger; nonetheless, the ensemble averages agree well.
Sonnenfeld et al. (2012) studied a rare early-type lens
that presents two Einstein rings, which allowed them
also to relax assumptions on the DM profile. They find
αSPS = 0.30 ± 0.09 in our notation (see also Spiniello
et al. 2011). Zitrin & Broadhurst (2009) took advantage
of the unusually flat surface density profile in the lensing
cluster MACS J1149.5+2223 (z = 0.544), which offers
a clean subtraction of the dark halo to isolate the mass
of the BCG. They estimate Υ∗B ≈ 4.5 ± 1 (≈ 7 ± 2 if
evolved to our 〈z〉 = 0.25).

Other studies have used intregral field spectroscopy
to construct detailed dynamical models of local ellipti-
cals. Cappellari et al. (2012a,b,c) discuss the ATLAS3D

sample of early-type galaxies. At the highest velocity
dispersions present, they infer logαSPS = 0.25 (Cappel-
lari et al. 2012b, Figure 9, converted to our definition
of αSPS). Interestingly, there appears to be little or no
intrinsic scatter in αSPS at σe & 250 km s−1, nearly at
the lower limit of our BCGs, although only a handful of
such objects are present in their sample. Along with the
tightness of the M/L−σe relation at high σe (Cappellari
et al. 2012c), this supports our claim that αSPS should be
nearly constant within our sample of BCGs. McConnell
et al. (2011) studied the BCG of A2162 using long-slit
kinematics and integral field spectroscopy with adaptive
optics, finding Υ∗R = 4.6+0.3

−0.7 in their “maximum halo”
solution. For comparison, our result evolved to z = 0 is
Υ∗R = 4.1± 0.5.

Finally, the IMF in early-type galaxies has recently
been studied using detailed spectral synthesis models
that take advantage of surface gravity-sensitive stellar
absorption lines. In very high-quality spectra, these con-
strain the abundance of low-mass dwarfs that contribute
much to the stellar mass but very little to the integrated
light. Although the degree of scatter remains unclear,
these studies suggest that a Salpeter-like IMF – or pos-
sibly even heavier – is typical in high-dispersion ellipti-
cals (van Dokkum & Conroy 2010, 2012; Conroy & van
Dokkum 2012; Smith et al. 2012).

In summary, our measurements are consistent with
a variety of other recent works indicating a heavy
(Salpeter-like) Υ∗ in massive early-type galaxies. En-
couragingly, studies based on completely independent
techniques are beginning to converge on the same results.

5.2. The total inner density slope

When comparing results on the inner density profiles
of clusters, it is essential to understand the radial range
that is being fit and whether the total density profile
or that of the dark matter is being considered. This
distinction is most important at radii . 30 kpc where
the BCG contributes noticeably to the total mass. In
Paper I we showed that the total density profiles in
our sample are consistent with CDM-only simulations
down to r ' 5 − 10 kpc. The mean total density slope
〈γtot〉 = 1.16 ± 0.05+0.05

−0.07 was precisely measured over
(0.003− 0.03)r200 and found to be consistent with colli-
sionless CDM-only simulations, which have 〈γtot〉 = 1.13
(Paper I, Section 9). Note that γtot is measured over
a specific radial interval and is distinct from the asymp-
totic inner slopes of gNFW models, which we denote βtot

and βDM in the following.
Most observational studies have focused on the total

density profile. Umetsu et al. (2011) stacked density pro-
files for four clusters with high-quality lensing data and
found that βtot = 0.89+0.27

−0.39, with the inner 40 kpc/h ex-
cluded from their fit. Morandi et al. (2011) measured
βtot = 0.90± 0.05 in A1689, excluding the inner 30 kpc,
and Coe et al. (2010) also found that the total mass dis-
tribution is NFW-like. Using imaging from the CLASH
survey (Postman et al. 2012), Umetsu et al. (2012)
and Zitrin et al. (2011) derived βtot = 0.96+0.31

−0.49 (their
“method 7”) and βtot = 1.08 ± 0.07 in MACS J1206.2-
0847 and A383, respectively. These lensing results are
consistent with our claims that the total density profile
is NFW-like at r & 5− 10 kpc.

Morandi & Limousin (2012) use lensing and X-ray data
to derive a total slope βtot = 1.02±0.06 in A383 and con-
trast this with our earlier finding that βDM = 0.59+0.30

−0.35

in the same cluster (Newman et al. 2011).9 These results
are not inconsistent. Figure 3 shows that the DM pro-
file we infer in A383 becomes shallower than an NFW
model only at r . 30 kpc. These scales are excluded
by Morandi & Limousin in their fits precisely because of
the uncertainty in the BCG stellar mass that we have
addressed using stellar kinematics. At r & 30 kpc the
total density profile in our models – nearly equal to that
of the DM – is NFW-like.

5.3. The dark matter inner density slope

Among the main scientific goals of studying the inner
regions of clusters are testing predictions of the collision-
less CDM paradigm, and understanding the formation
of the central galaxy and its impact on the DM halo.
Thus, although precise and robust measurements of the
total density profile are very valuable, for these goals it is
clearly important to understand how much of this mass
is DM and how much is baryonic. Over the past decade,
we have been developing tools to perform this separation
(Sand et al. 2002, 2004, 2008; Newman et al. 2009, 2011).
The history of this progress was described in Section 1.

Sand et al. (2004) measured a mean 〈βtot〉 = 0.52±0.05
in a sample of 6 clusters. We have improved on this ear-
lier work in many ways: through the use of elliptical lens
models, the addition of weak lensing data, the incorpora-
tion of multiple strongly-lensed sources (usually located
at different redshifts), the comparison with X-ray results
to quantify line-of-sight effects, the deeper spectroscopic
observations of the BCGs that have yielded more precise
and radially-extended kinematic profiles, and through
joint constraints on the stellar mass scale αSPS. This
work has essentially confirmed our initial findings, with
the present value 〈βDM〉 = 0.50 ± 0.10+0.14

−0.13 consistent
with Sand et al. (2004). (The smaller error bars quoted
in the latter work are due to the more restrictive model
assumptions, particularly a fixed scale radius rs.)

Four of the clusters in the present sample have been
previously studied in our earlier papers. In general our
results for MS2137 and A963 are consistent with Sand
et al. (2004, 2008) within their uncertainties, although

9 The present measurement of β in A383 (Table 1) is slightly
shallower, but consistent with, Newman et al. (2011) due to our
new joint constraint on αSPS.



10 Newman et al.

the present measurements supercede earlier ones due to
the improvements described above. Our analysis of A383
is consistent with Newman et al. (2011). The results
presented here for A611, on the other hand, are signif-
icantly different from Newman et al. (2009): we find
β = 0.79+0.14

−0.19, rather than β < 0.3 (68% confidence).
This is attributable to two changes in the data: a re-
vised spectroscopic redshift for a multiply-imaged galaxy,
and improved stellar kinematic measurements (see Sec-
tions 4.4 and 6.4 in Paper I).

As we have shown, it is difficult to separate the BCG
and DM profiles with lensing alone due to the low den-
sity (or lack) of constraints near the center. Only in clus-
ters with exceptional lensing configurations is this feasi-
ble. An interesting such case is A1703, which presents
an unusual quad image close to the BCG. Limousin
et al. (2008) and Richard et al. (2009) performed a two-
component fit – a gNFW halo and BCG stars following
light, as in this work – and derive βDM = 0.92+0.05

−0.04. (See
Oguri et al. 2009 for a consistent result with a much
larger error bar.) This may not be inconsistent with our
findings, since two clusters in our sample prefer a similar
slope (A611 and A2390, see Figure 4), and there may
be scatter from cluster to cluster.10 Zitrin et al. (2010)
found that the total density profile in A1703 is well-fit
by an NFW model.

X-ray studies of two nearby clusters (A2589 and
A2029) have also shown that the total density follows
an NFW profile down to ≈ 0.002− 0.01rvir (Lewis et al.
2003; Zappacosta et al. 2006). The latter authors noted
that for any reasonable Υ∗, this implies a shallower DM
profile in the central regions where the stellar mass is sig-
nificant. Their finding agrees well with our work, which
has quantified the split between stars and DM. Schmidt
& Allen (2007) studied a large sample of distant X-ray
clusters. By assuming a typical BCG stellar mass, they
estimated 〈βDM〉 = 0.88±0.29 (95% CL). Often the inner
' 40 kpc must be excluded from their analysis, making
a direct comparison difficult.

6. DISCUSSION AND CONCLUSIONS

By combining strong lensing, weak lensing, and stellar
kinematic observations that extend from ' 3 kpc to be-
yond the virial radius, thus spanning the baryon- to DM-
dominated regimes, we constrained flexible, physically-
motivated models of the dark and stellar mass distribu-
tions in 7 massive, relaxed galaxy clusters. As discussed
extensively in Paper I, the density profiles of stars and
DM sum to produce a slope close to CDM-only simu-
lations, at least outside the very central ≈ 5 − 10 kpc
where stars strongly dominate the mass. In this pa-
per we isolated the dark and stellar density profiles to
quantify the behavior of the DM on small scales, find-
ing a mean asymptotic inner power law slope of 〈β〉 =
0.50± 0.13+0.14

−0.13, or equivalently a mean DM core radius

〈log rcore〉 = 1.14±0.13+0.14
−0.22. We also presented evidence

10 Limousin et al. (2008) imposed a tight prior on the BCG
stellar mass derived from SPS fits, but did not consider uncertainty
from the IMF. Their SPS estimates are quite high: ΥSPS

∗B ≈ 11,

whereas we find ΥSPS
∗B = 3.0 from fitting the SDSS photometry to

this BCG, also using a Chabrier IMF. Adjusting the latter to our
preferred αSPS = 0.27 yields Υ∗B = 5.7, which agrees with the
estimate Υ∗B ≈ 6 by Zitrin et al. (2010) in this cluster.
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Fig. 6.— Top: Total density profiles, including baryons and DM,
for our sample are overlaid on CDM-only simulations of massive
clusters (Gao et al. 2012b, dashed line, with grey band indicat-
ing the full range of the simulated clusters; see Paper I, Section
10). The dot-dashed line shows a system in which an NFW halo
with concentration c200 = 4.5 is altered using the modified adi-
abatic contraction model of Gnedin et al. (2011). Parameters of
A0 = 1.5, w0 = 0.85 were used, with the BCG described by a Jaffe
(1983) profile with scale length rJ/r200 = 0.02 and mass fraction
M∗/M200 = 0.002, which are representative of our sample. The
radial extent of the data is indicated at the bottom of the panel.
Bottom: As in the top panel, but showing DM only. (The Phoenix
simulations thus do not change.) Note that CDM halos match the
observed total density profiles better than those of DM alone. The
inclusion of halo contraction (dot-dashed line) only exacerbates the
difference with the mean observed DM slope (thick black segment).

for possible variation in the inner DM profile from clus-
ter to cluster, which correlates with the size and mass
of the BCG (Figure 5). This implies a close connection
between the DM profile in cluster cores and the assembly
of stars in the BCG.

The conclusion that the inner DM profile is shallower
than that of pure CDM halos is fully consistent with
our previous claims (Sand et al. 2002, 2004, 2008; New-
man et al. 2009, 2011). We have improved upon these
earlier works by collecting improved data for a larger
sample of clusters and refining our analysis techniques,
as discussed in Section 5.3. A particular advance en-
abled by this enlarged, improved sample was a joint
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constraint on the stellar mass-to-light ratio Υ∗ of the
BCGs in our sample, which we found to be elevated by
〈logαSPS〉 = 0.27 ± 0.05+0.10

−0.16 dex relative to fits to stel-
lar population synthesis models that assume a Chabrier
IMF. Our measurements are instead consistent with a
Salpeter IMF (or any equivalently “heavy” IMF). As
reviewed in Section 5.1, this agrees with recent, inde-
pendent studies of massive, early-type galaxies based on
lensing, dynamics, and detailed spectroscopy (Treu et al.
2010; Auger et al. 2010b; Cappellari et al. 2012a,b; van
Dokkum & Conroy 2010, 2012; Conroy & van Dokkum
2012). These rapid developments in our understanding
of stellar populations promise significant advances in dis-
entangling the distributions of dark and baryonic mass
across a range of systems.

Figure 6 compares our measurements to high-
resolution CDM cluster simulations from the Phoenix
project (Gao et al. 2012b), clearly demonstrating these
DM-only simulations are a better match to the total den-
sity profile than that of the DM alone. In assessing the
role of baryons on their host halos, much of the focus of
the theoretical literature has been on the halo contrac-
tion (e.g., Blumenthal et al. 1986; Gnedin et al. 2004,
2011) expected to result from a central dissipative build-
up of baryons. The dot-dashed lines in Figure 6 show
the effect of applying the modified adiabatic contraction
(AC) model of Gnedin et al. (2011) to an NFW halo
and BCG with parameters typical of our sample and of
the Phoenix simulations (see details in caption). As ex-
pected, the DM profile steepens (bottom panel), only
worsening the disagreement with our observations. It
has been argued that this increase in central DM density
from AC will boost the gamma ray flux from DM an-
nihilation in clusters (Ando & Nagai 2012).11 However,
our results suggest that AC is not the main process that
sets the density profile and that the net effect on the
halo is actually opposite to predictions. (As discussed
in Paper I, this does not necessarily imply that the same
theory cannot make valid predictions at the galaxy scale,
where the star formation efficiency and assembly history
are very different.)

The uniformity of the total density slope across a range
of combinations of DM and stellar density profiles, and
its close similarity to CDM halos, suggests that the pro-
cesses that set the inner density profile are mainly gravi-
tational. A possible formation scenario is that early, dis-
sipative star formation in the main BCG progenitor cre-
ates a steep total density slope in the inner ' 5−10 kpc,
where stars dominate the mass. This size scale is indeed
similar to the observed sizes of very massive galaxies at
z & 2.5 (e.g., Trujillo et al. 2006; van Dokkum et al.
2008; Newman et al. 2012). Subsequent assembly of the
extended stellar envelope of the BCG – thought to be
dominated by low-mass, dry accretion of satellites (e.g.,
Naab et al. 2009; Laporte et al. 2012) – then mostly re-
places the DM already in place with satellite material,
roughly maintaining the density.

Controlled simulations have indeed shown that dynam-
ical friction between infalling satellites and the DM halo
can heat the cusp and reduce the central DM density
(e.g., El-Zant et al. 2001, 2004; Nipoti et al. 2004; Jardel

11 In any case, the highly uncertain contribution from subhalos
may dominate this signal (e.g., Gao et al. 2012a).

& Sellwood 2009; Cole et al. 2011). This process is dissi-
pationless, since the orbital energy lost by the satellites
is transferred to the halo, and thus contrasts with the AC
picture, in which the baryons’ energy is radiated away.
A connection between the assembled stellar mass and
the central DM density is naturally expected. Indeed,
Nipoti et al. (2004) find an anti-correlation between the
amount of stellar mass assembled in the BCG and the
inner DM density slope β, similar to our observations
(Figure 5; we note the satellites in their simulations in-
cluded no DM). The strength of the effect depends on
the density of the satellites and their resistance to strip-
ping. Laporte et al. (2012) showed that when a stellar
mass–size relation in line with z & 2 observations is im-
posed in their simulations (offset by 3− 5× in size from
the local relation), the central DM cusp is flattened to
β ' 0.3− 0.7, comparable to our observations. It is im-
portant to realize that numerical experiments investigat-
ing this effect have generally lacked a fully realistic and
consistent treatment of the satellites, so improved simu-
lations are needed. Nonetheless, the current results are
promising and likely indicate that the relevant physics is
primarily dissipationless (Lackner & Ostriker 2010). We
note that full hydrodynamical, cosmological simulations
that include cooling, star formation, and feedback gener-
ally do not produce shallow DM cusps or cores (Paper I,
Section 10), which probably reflects known overcooling
effects, although Martizzi et al. (2012) recently showed
that the inclusion of AGN feedback greatly improves this
situation.

Various DM particle scenarios have also been proposed
to reduce tension between CDM and observations on
small scales, including the “missing satellites” problem
and evidence for central DM cores or shallow cusps (for
a recent review, see Primack 2009). These include warm
sterile neutrinos at the ∼ keV scale (e.g., Abazajian et al.
2001; Boyarsky et al. 2009; Macciò et al. 2012; Menci
et al. 2012), “fuzzy” CDM composed from an ultralight
scalar particle (Hu et al. 2000; Woo & Chiueh 2009), dark
matter produced from early decays (Kaplinghat 2005),
and dark matter that itself decays with a long timescale
(Peter et al. 2010), among many other possibilties. The
goal is to preserve the large-scale successes of CDM, while
allowing for modifications at higher densities where the
detailed properties of the DM particle might manifest. A
scenario for which halo density profiles has been worked
out in detail is a self-interacting dark matter particle
(Spergel & Steinhardt 2000; Yoshida et al. 2000; Davé
et al. 2001). Rocha et al. (2012) and Peter et al. (2012)
showed that a cross-section σ ∼ 0.1 cm2 g−1 can produce
≈ 20 kpc cores in clusters without violating any current
constraints, e.g., from the asphericity of cluster cores or
the Bullet Cluster (Randall et al. 2008). Only the dense
central regions of the halo are affected, where scattering
can occur within a Hubble time.

These≈ 20 kpc core sizes are intriguingly similar to our
observations. On the other hand, they are also very sim-
ilar to the scale of the baryons, i.e., the size of the BCG.
It is unclear why the total density profile should then
match the shape expected of collisionless CDM. In these
scenarios, the core size arises from the microphysics of the
DM particle and presumably should not “know” about
the size of the central galaxy (Figure 5), for example.
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Thus, observations of clusters alone cannot provide un-
ambiguous support for alternative DM theories. Global
comparisons across a wide range of mass scales (for in-
stance, a cross-section that also produces correct core
sizes and densities in dwarf galaxies) remain an essential
test for attempts to explain low central halo densities in
terms of the DM particle.
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APPENDIX

In Section 4.2, we described how posterior probability distributions P (β) and P (log rcore) are derived for each cluster
by weighting the samples in the Markov chains derived in Paper I. The weights

w =
1√
2πσ

exp

[
−1

2

(
logαSPS − 〈logαSPS〉

σ

)2
]

(1)

effectively convert a flat prior on logαSPS (Paper I, Section 7) to a Gaussian with mean 〈logαSPS〉 = 0.27 and a
dispersion σ = (σ2

α +σ2
SPS)1/2. This dispersion accounts for two sources of error: the uncertainty σα = 0.05 dex in the

global systematic offset 〈logαSPS〉 from SPS estimates ΥSPS
∗V , and the random photometric uncertainty σSPS = 0.07 dex

in ΥSPS
∗V for each cluster. The first uncertainty is correlated across the entire sample, while the second is not.

Therefore, to obtain constrains on the mean 〈β〉 and 〈log rcore〉, the probability distributions derived for each cluster
in this manner cannot simply be multiplied, since they are not independent. Instead, we calculate the posterior
probability of 〈β〉 as

P (〈β〉) ∝
∫
P (〈β〉| logαSPS)P (logαSPS) dαSPS. (2)

Here P (〈β〉| logαSPS) is the posterior distribuion of 〈β〉 at a fixed value of logαSPS. It is obtained by multiplying
the probability densities P (β| logαSPS) for the seven clusters in our sample, which are each computed with Gaussian
weights centered at the fixed value of logαSPS and a dispersion σSPS (i.e., σ = σSPS in Equation 1; we now account
for only the random photometric errors in ΥSPS

∗V since logαSPS is fixed). P (logαSPS), which represents our constraint
on the common stellar mass scale, is simply a Gaussian with mean 〈logαSPS〉 = 0.27 and dispersion σα = 0.05 dex, as
derived in Section 3.1 for isotropic orbits.

We estimate the intrinsic scatter in β (Section 4.2) using the posterior probability densities P (β| logαSPS = 0.27)
for each cluster. That is, we evaluate the cluster-to-cluster scatter in β at a fixed value of logαSPS. All of the above
comments apply equally to our study of the cNFW models, simply replacing β by log rcore.
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