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Projection Effects

• Observed luminosity density
I(R)=integral over true density
distribution j(r)  (in some wavelength
band)

• Same sort of projection for velocity
field but weighted by the density
distribution of tracers

• I(R)!(r)2= 2" [(vr cos#-
v$sin#)2nr]/sqrt(r2-R2)

• Density distribution solution is an
Abel integral (see appendix B.2 in
B&T) with solution of the form

• while the velocity field solution is also
an Abel integral

• There are a few useful I(R) & j(r) pairs
that can both be expressed
algebraically

from M. Whittle 
http://www.astro.virginia.edu/class/whittle/astr553/Topic07/t7_projection.html

#
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Orbits in a static spherical potential B& T sec 3.1

angular momentum ( L) is conserved
– d2r/dt2=%(r)er  er is the unit vector in radial direction; the radial acceleration
%=d2r/dt2

– d/dt(r x dr/dt)=(dr/dt x dr/dt)+r x d2r/dt2=g(r)r xer =0;
– conservation of angular momentum L=rxdr/dt (eqs. 3.1-3.5)
– Define L=rxdr/dt; dL/drt=0

• Since this vector is constant, we conclude that the star moves in a plane, the orbital
plane.

• This simplifies the determination of the star's orbit, for since the star moves in a
plane, we may  use plane polar coordinates

• for which the center is at r = 0 and &  is the azimuthal angle in the orbital plane
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Stellar Dynamics B&T ch 3, S&G 3
• Orbits in a static spherical potential:

angular momentum is conserved
– d2r/dt2=g(r)er  er is the unit vector in radial direction; the radial acceleration

g=d2r/dt2

– d/dt(r x dr/dt)=(dr/dt x dr/dt)+r x d2r/dt2=g(r)r xer =0; conservation of angular
momentum L=rxdr/dt (eqs. 3.1-3.5)around the z axis

Conservation of energy:
total energy =PE+KE or in above formalism

– stars move in a plane (orbital plane) $=0
– Use plane polar coordinates (R,&,z) (Appendix B)
– eqs of orbits
R coordinate: d2R/dt2-R(d2&/dt2)=%(R)
' coordinate :2(dR/dt)(d&/dt)+R(d2&/dt2)=0

equation of motion is (d2R/dt2)-(L2/R3)=%(R)

33

Stellar Dynamics B&T ch 3
• Orbits in a static spherical potential:

angular momentum is conserved
– d2r/dt2=g(r)er  er is the unit vector in radial direction; the radial acceleration

g=d2r/dt2

– d/dt(r x dr/dt)=(dr/dt x dr/dt)+r x d2r/dt2=g(r)r xer=0; conservation of angular
momentum L=rxdr/dt (eqs. 3.1-3.5)

Conservation of energy:
total energy =PE+KE or in above formalism
• if substitute u  = 1/r ,   the   energy   equation takes  the form :
• 2E/L 2 = 2%/ L 2 + u2 + (du/d% )2 .
• bound   orbits are  those in which the   radius r is always finite ,   Thus, for bound

orbits   u = 1/r  is finite while for  unbound orbits  u tends to  zero.
•   In a bound orbit the condition   du/d% = 0 ,  when this occurs
•  u2  +2 [%(1/ u)- E ] / L 2   =   0 .
• This equation has 2 roots,   u1  and  u2 .  And thus  a  " bound "  star  orbiting in a

conservative potential will thus move in an orbit twixt 2 radii  r1 =1/u1 and r2 =1/u2
; the pericenter and apocenter
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Read B&T 143-147
• Since L=R2d&/dt
• (L2/R2)d/d&(1/R2dR/d&)-L2/R3=%(r);
• using u=1/R

d2u/d&2+u=-%(1/u)/L2u2  eq. 3.11 in B&T

now putting in a spherical potential
 %=-GM/R2 and substituting
d2u/d&2+u=GM/ L2

two general solutions, bound and unbound
 bound orbits du/d& =0 and orbit is confined between pericenter and apocenter
• For a halo with outer radius rh a flat rotation curve, and circular velocity Vc the

escape velocity at R is Vesc(R)2 = 2V2
cln(1+rh/R) (Binney & Tremaine)
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Some Simple Cases
• Point source potential (pg 147 B&T; eq 3.23  and following)
%(R)=-GM/R2 ; %(u)=-GMu2

using
d2u/d&2+u=-%(1/u)/L2u2

d2u/d&2+u= -GM/u2

general solution:   u(&)=Ccos(&-&0)=GM/L2

C and &0 are constants
Nature of solutions; vcirc=sqrt(GM/r)
C=0 circular orbits (B&T define the eccentricity as CL2/GM so if C=0, eccentricity=0
if C> GM/L2 unbound orbit; e.g r can go to infinity if u=0
C<GM/L2  bound orbit; we know this solution(!); ellipse with pt source at one focus and

complete a radial period in ('=2)
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Constant Density
Sphere

From before
Potential energy (B&T) eq 2.41, 2.32
%(R)=-d/dr(M(R)) ;

R>a %(r)=4)Ga3*0=-G+/r
R<a %(r)=-2)G*0(a2-1/3r2));

Use Cartesian coordinates x=r cos&, y=rsin&
Fx=-4)GR*0 cos(&)ex=-4)Gx*0ex

Fy=-4)Gy*0ey

need to transform d2r/dt2=exd2x/dt2+eyd2y/dt2

define ,2=4)/3G*0 ;d2x/dt2=-,2x;d2y/dt2=-,2y
this the harmonic oscillator general solution
x=Acos (,t+kx); y=Bcos (,t+ky);
A,B are amplitudes and k's the initial phase
going backwards to polar coordinates
R=sqrt[A2cos2 (,t+kx)+ B2cos2 (,t+ky)]
'=tan-1[Bcos (,t+ky)/Acos (,t+kx);]

The R and  define a closed
ellipse on the center of the
sphere; A and B are the
major and semi-major axis.

Complete radial period in
!&=)
Most mass distributions
will lie between a pt mass
and a uniform sphere so
radial and azimuthal
periods not the same ;
rosette pattern for orbits
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'Real' Orbits

• A few orbits, ~2 Gyr of orbits- 20 Gyrs  from  C. Flynn



38

Stellar Dynamics B&T ch 3; S&G 3.3

• Orbits of disk stars
only the component of angular momentum parallel to symmetry axis is constant.

– Since L is conserved,  stars move in a plane - can use polar coordinates (R,&)
 (do not need z, appendix B B&T B.24)
– R eq of motion dR2/dt2-Rd&2/dt2=%(r)
– & eq of motion (2dR/dt*d&/dt)+Rd&2/dt2=0 ; L=R2d&/dt is a constant
– total equation of motion dR2/dt2-L/R2=%(r)

• Stars whose motions are confined to the equatorial plane of an axisymmetric
galaxy 'feel' only an effectively spherically symmetric  potential

• Therefore their orbits will be identical with those  discussed previously
• ;the radial coordinate R of a star on such an orbit oscillates between the peri and

apo-galacticon  as the star revolves around the center, and the orbit  forms a rosette
figure.
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Orbits in Axisymmetric Potentials- B&T 3.2, S&G 3.3
cylindrical coordinate system (R; &; z) with origin at the galactic
center, the z axis is the galaxy's symmetry axis.
• Stars in a axisymmetric galaxy 'see'  a potential which is spherically

symmetric. orbits will be identical to those in such a potential
• The situation is much more complex for stars whose motions carry them

out of the equatorial plane of the system.
• orbits in axisymmetric galaxies can be reduced to a two-dimensional

problem by exploiting the conservation of the z-component of angular
momentum

• S&G give nice physical description

• d2r/dt2 =--. (R,z); which can be written in cylindrical coordinates as
• d2R/dt2 -Rd&2/dt2 =-/.//R
• Motion in the & direction : d/dt (R2 d&/dt)=0; Lz= R2(d&/dt)= 0 constant
• z direction : d2z/dt2 =-/.//z
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Orbits in Axisymmetric Potentials- B&T 3.2

• Eliminating d&/dt and putting in angular momentum

• d2R/dt2 -L2
z/R3=-/.//R - if we define an effective potential .eff=. (R,z)+L2

z/2R2

•  d2R/dt2 =-/.eff//R (see B&T eq 3.67-3.68)

• Unless it has enough energy to escape from the Galaxy, each star must remain
within some apogalactic outer limit.
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Orbits in Axisymmetric Potentials- B&T 3.2
The three-dimensional motion of a star in an axisymmetric potential !(R; z) can be

reduced to the two dimensional motion of the star in the (R; z) plane (the
meridional plane

•  Since the change in ang mom in the z direction is zero (planar orbits)
///z(L2

z/2R2) = 0;   d2z/dt2 =-/.eff//z;
The effective potential is the sum of  gravitational potential and KE in the & direction.
and rises very steeply near the z axis

The minimum in .eff has a "simple" physical meaning (see next page)
0= /.eff//R = /.//R-L2

z/R3
  ; which  is satisfied at a particular radius - the guiding

center radius RG where
 (/.//R)|RG

=L2
z/R3

  =RG (d&/dt)2

and    0=/.eff//z which is satisfied in the equatorial plane

these are the  conditions for  a circular orbit with angular speed d&/dt
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Orbits in Axisymmetric Potentials- B&T 3.2

• the minimum of .eff  occurs at the radius at which a circular orbit has angular
momentum Lz, and the value of .eff  at the minimum is the energy of this circular
orbit

• Unless . has a special form these eq's cannot be solved analytically
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Orbits in Axisymmetric Potentials- B&T 3.2.3
If assume in disk galaxies that the orbits are nearly circular
What approx can we make to the orbits??

let x = R- Rg;  where Rg(Lz) is the guiding-center radius for an orbit of
angular momentum Lz (eq. 3.72).

Expand .eff  around x (see B&T eq 3.76) ; the epicycling approx ignores
all terms of xz2 or higher

Then define 2 new quantities:
02(RG) =(/2.eff//R2); 12(RG) =(/2.eff//z2); then keeping the lower orders
d2x/dt2=-02x; d2z/dz2=-12z; these are the harmonic oscillator eq's around
x and z with frequencies 0 and 1.
0 is the epicycle freq and 1 the vertical frequency
this gives a vertical period T=2)/1~6x107 yrs for the MW
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EpiCycles B&T,S&G 3.3
• Remember the Oort constants??
• Well in the same limit (remember vcircle =R,(R))
,=A-B; 02 =-4B(A-B)=4B, 2 2,2  (eq 3.84); using the measured values of these

constants one finds that near the sun 00
2= 37km/sec/kpc and the ratio of the freq of

the suns orbit around the GC and the radial freq 00/,0=sqrt(34/(534))=  1.35

• Stellar orbits do not close on themselves in an inertial frame, but form a rosette
figure like those discussed above for stars in spherically symmetric potentials

• The ratio 12/02 23/2  */<*>   a measure of how concentrated the mass is near the
plane

• The value of this approximation is in its ability to describe the motions of stars in the
disk plane (does not work well for motion perpendicular to the plane) .

• The angular momentum on a circular orbit is R2,(R);
     if it increases outward at radius R, the circular orbit  is stable. This condition always

holds for circular orbits in galaxy-like potentials.
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Motion in Both Coordinates B&T 3.91-3.94
• d2x/dt2=-02x; d2z/dz2=-12z; these are the harmonic oscillator eq's around x and z with

frequencies 0 and 1.
• and the general solution is
• x(t)=C cos(0t+A); C>0 and A are arbitrary constants
• the solution for the & direction is a bit messier and is
• &=(Lz/R2

g)t-(0/2B)(C/Rg)sin(0t+A)+&0

• B&T go back to Cartesian coordinates (argh!) and define
• y= -(0/2B)Csin(0t+A)=Ysin(0t+A)
• In the (x; y) plane the star moves on an ellipse called the epicycle around the guiding

center

circular motion of guiding center

 star

GC
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Epicycles
• Why did we go thru all that??
• Want to understand how to use stellar

motions determine where the mass is.
• the orbits of stars take them through

different regions of the galaxies -their
motions at the time we observe them
have been affected by the gravitational
fields through which they have
travelled earlier.

• use the equations for motion under
gravity to infer from observed motions
how mass is distributed in those parts
of galaxies that we cannot see directly.

• The motions we have considered so
far are the simplest !

• Using epicycles, we can explain the
observed motions of disk stars near the
Sun.
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Virial Theorem
• S+G pg 120-121, MBW 5.4.4, B&T

pg 360
• A rather different derivation (due to H

Rix)
• Consider (for simplicity) the 1-D Jeans

eq in steady state (more later)
•  ∂/∂x[*v2]+*∂%/∂x=o
• Integrate over velocities and

then over positions...
• -2Ekin=Epot

• or restating in terms of forces
• if T= total KE of system of N

particles < >= time average
• 2<T>=-6(Fk•rk); summation

over all particles k=1,N

call the 'virial 'Q

Q=

dQ/dt=
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Virial Theorem - Simple Cases
• Circular orbit: mV2/r=GmM/r2

• Multiply both sides by r mV2=GmM/r
• mV2=2KE; GmM/=-W so 2KE+W=0

• Time averaged Keplerian orbit
 define U=KE/|W|; as show in figure it

clearly changes over the orbit; but
take averages
,-W.=<GM/r>=GM<1/r>=GM(1/a)
KE=<1/2mV2>=GM<1/r-1/2a>

=1/2GM(1/a) and again 2KE+W=0

Red: kinetic energy (positive) starting at perigee
Blue: potential energy (negative) 
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Virial Theorem
• Another derivation following Bothun

http://ned.ipac.caltech.edu/level5/Bothun2/Bothun4_1_1.html
• Moment of inertia, I,  of a system of N particles
• I=6miri

2  sum over i=1,N (express ri
2  as (xi

2+yi
2+zi

2)
• take the first and second time derivatives ; let dx2/dt2 be symbolized by x,y,z
• dI2/dt2 =6mi ( dxi

2/dt+dyi
2/dt+dzi

2/dt)+6mi(xi
 x+yiy+ziz)

    mv2  (KE)+Potential energy (W) r •(ma)

after a few dynamical times, if unperturbed a system will
come into Virial equilibrium-time averaged inertia will
not change so 2<T>+W=0

For self gravitating systems W=-GM2/2RH     ; is the harmonic radius- the sum of the
distribution of particles appropriately weighted

1/RH =1/N 6i 1/ri

The virial mass estimator is M=2!2RH/G; for many mass distributions RH~1.25 Reff

where Reff  is the half light radius  ! is the 3-d velocity dispersion
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Virial Thm MBW 5.4.4
• If I is the moment of inertia
• 1/2d2I/t2 =2KE+W+6

– where 6 is the work done by
external pressure

– KE is the kinetic energy of the
system

– w is the potential energy (only if
the mass outside some surface S
can be ignored)

• For a static system (d2I/t2 =0) 
2KE+W+6 =0

51

Time Scales for Collisions
• N particles of radius rp; Cross section for a direction collision !d=)r2

p

• Definition of mean free path; if V is the volume of a particle 4/3)r3
p

 7=V/n!d  where n is the number density of particles (particles per unit volume)
n=3N/4)r3

p

 and the characteristic time between collisions (Dim analysis)is
 tcollision=7/v~ ( l/rp)2tcros/N where v is the velocity of the particle.
 for a body of size l, tcross= l/v

 So lets consider a galaxy with l~10kpc, N=1010 stars and v~200km/sec
 if rp = Rsun, tcollision~1021 yrs

• For indirect collisions the argument is more complex (see S+G sec 3.2.2, MWB pg
231) but the answer is the same - it takes a very long time for star interactions to
exchange energy (relaxation).

• trelax~Ntcross/10lnN
• Its only in the centers of the densest globular clusters and galactic nuclei that this is

important
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How Often Do Stars Encounter Each Other
For a 'strong' encounter GmM/r>1/2mv2 e.g.
potential energy exceeds KE
So a critical radius is r<rs=2GM/v2

Putting in some typical numbers m~1/2M!

v=30km/sec rs=1AU
So how often do stars get that close?

consider a cylinder Vol=)r2
svt; if have n stars

per unit volume than on average the encounter
occurs when
n)r2

svt=1, ts=v3/ 4)nG2m3

Putting in typical numbers
=4x1012(v/10km/sec)3(m/M!)-2(n/pc3)-1 yr- a
very long time (universe is only 1010yrs old-
galaxies are essentially collisionless
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What About Collective Effects ?  sec 3.2.2

For a weak encounter b >> rs
Need to sum over individual interactions- effects are also small


