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Relaxation Times
• Star passes by a system of N stars of

mass m
• assume that the perturber is stationary

during the encounter and that !v/v<<1-
large b >Gm/v2  (B&T pg 33-sec 1.2.1.
sec 3.1 for exact calculation)

• Newton's Laws m(dv/dt)=F
• (b2+x2) =r2

• F=Gm2cos"/(b2+x2)=Gbm2/(b2+x2)3/2=
(Gm2/b2)(1+(vt/b)2)-3/2  if v is constant

• Now integrate over time !v =!(F/m)dt=

(Gm/bv)! (1+(vt/b)2)-3/2  dt (change variables
s=(vt/b)) ; !v =2Gm/bv

• In words, !v is roughly equal to the
acceleration at closest approach,
Gm/b2,

times the duration of this acceleration
2b/v.

=vt

The surface density of stars is ~N/#r2
N is the number of stars

let  !n be the number of interactions a 
star encounters with impact parameter
between b and !b crossing the galaxy once
~(N/#r2)2#b!b=~(2N/r2)b!b
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Relaxation...continued
• The net vectoral velocity due to these encounters is zero, but the mean square

change is not
     !v2=(2Gm/bv)2(2N/r2)b!b (see B&T pg 34 eq. 1.3.2) - now integrating this over all

impact parameters from bmin to bmax

• one gets !v2  ~8N(Gm/rv)2ln $ ; where r is the galaxy radius
      $ is  the Coulomb integral ~ln( bmax/bmin)
• For gravitationally bound systems  the typical speed of a  star is roughly v2~GNm/r
      and thus !v2/v2~8Nln $/%

• For each 'crossing' of a galaxy one gets the same !v so the number of crossing for a
star to change its velocity by order of its own velocity is nrelax~N/8ln $

• So how long is this?? well tcross~r/v; and ~rv2/(Gm) and thus
• trelax~(0.1N/lnN)tcross  ; if we use N~1011 ; trelax is very very long
• In all of these systems the dynamics over timescales t< trelax is that of a collisionless

system in which the constituent particles move under the influence of the
gravitational field generated by a smooth mass distribution,rather than a collection
of mass points
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Relaxation
• Values for some representative systems

<m> N r(pc) trelax(yr) age(yrs
Pleiades 1 120 4 1.7x107 <107

Hydaes 1 100 5 2.2x107 4108

Glob cluster         0.6 106 5             2.9x109 109-1010

E galaxy 0.6 1011 3x104 4x1017 1010

Cluster of gals 1011 103 107 109 109-1010

scaling laws trelax~(R3/Nm)1/2

• However numerical experiments (Michele Trenti and Roeland van der Marel 2013 astro-ph
1302.2152) show that even globular clusters never reach energy equipartition (!) to quote
from this paper 'Gravitational encounters within stellar systems in virial equilibrium, such as
globular clusters, drive evolution over the two-body relaxation timescale. The evolution is
toward a thermal velocity distribution, in which stars of different mass have the same energy
(Spitzer 1987). This thermalization also induces mass segregation. As the system evolves
toward energy equipartition, high mass stars lose energy, decrease their velocity dispersion
and tend to sink toward the central regions. The opposite happens for low mass stars, which
gain kinetic energy, tend to migrate toward the outer parts of the system, and preferentially
escape the system in the presence of a tidal field''
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So Why Are Stars in Rough Equilibrium
• It seems that another process 'violent relaxation' (MBW pg 251) is

crucial.
• This is due to rapid change in the gravitational potential.
• Stellar dynamics describes in a statistical way the collective motions

of stars subject to their mutual gravity-The essential difference from
celestial mechanics is that each star contributes more or less equally to
the total gravitational field, whereas in celestial mechanics the pull of
a massive body dominates any satellite orbits

• The long range of gravity and the slow "relaxation" of stellar systems
prevents the use of the methods of statistical physics  as stellar
dynamical orbits tend to be much more irregular and chaotic than
celestial mechanical orbits-....woops.
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How to Relax
• There are four different relaxation mechanisms at work in gravitational N-body

systems:MBW sec 5.5.1-5.5.5
•  phase mixing,  chaotic mixing, Landau damping.
•  Violent relaxation

–  time-dependent changes in the potential induce changes in the energies of
the particles involved Exactly how the energy of a particle changes depends
in a complex way on the initial position and energy of the particle (effects are
independent of the mass of the particles)

– Time scale is very fast ~free-fall time
• These processes are not well approximated by analytic calculations- need to

resort to numerical simulations
– simulations show that the final state depends strongly on the initial conditions,

in particular on the initial virial ratio |2T/W|, collapse factor inversely related
to virial ratio.

– Since T ~ M&2 and W ~GM2/r =MV2
c with Vc the circular velocity at r,

smaller values for the initial virial ratio |2T/W| ~(&/Vc )2 indicate cold initial
conditions - these come naturally out of CDM models (MBW pg 257)
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Collisionless Boltzmann Eq (Vlasov eq)S+G
sec 3.4

• When considering the structure of galaxies cannot follow each individual
star (1011 of them!),

• Consider instead stellar density and velocity distributions. However, a fluid
model not really appropriate since a fluid element has a single velocity,
which is maintained by particle-particle collisions on a scale much smaller
than the element. For stars in the galaxy this not true-stellar collisions are
very rare, and even encounters where the gravitational field of an individual
star is important in determining the motion of another are very infrequent

• So taking this to its limit, treat each particle as being collisionless,  moving
under the influence of the mean potential generated by all the other particles
in the system '(x,t)
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Collisionless Boltzmann Eq
• The distribution function is defined

such that f(r,v,t)d3xd3v specifies
the number of stars inside the
volume of phase space d3xd3v
centered on (x,v) at time t-

At  time t a full description of the
state of this system is given by
specifying the number of stars

f(x, v, t)d3xd3v
Then f(x, v, t) is called the

“distribution function” (or “phase
space number density”) in 6
dimensions (x and v) of the system.

f " 0 since no negative star densities
Since potential is smooth nearby

particles in phase space move
together-- fluid approx.

For a collisionless stellar system
in dynamic equilibrium, the
gravitational potential,' #, relates
to the phase-space distribution
of stellar tracers f(x, v, t), via the
collisionless Boltzmann
Equation

number density of particles
n(x,t)=! f(x, v, t)d3v
average velocity
<v(x,t)>=! f(x, v, t) vd3v/f(x, v, t)d3v=
(1/n(x,t))! f(x, v, t) vd3v
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See S&G sec 3.4
• The collisionless Boltzmann equation is like the

equation of continuity,
• $n/$t+ $(nv)$x= 0. but it allows for changes in

velocity and relates the changes in f (x, v, t) to
the forces acting on individual stars

• In one dimension CBE is
• $f/$t+ v$ f/$x- $'(x, t) /$x(x, t) $f/$v= 0.
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Analogy with Gas- continuity eq see MBW sec 4.1.4
•  $(/ $t +)•((v)=0 which is equiv to

• $(/ $t +v)•(=0

• In the absence of encounters f satisfies
the continuity eq , flow is smooth,
stars do no jump discontinuously in
phase space

• Continuity equation :
define w=(x,v) pair (generalize to 3-D)
dw/dt=(v,)')

• $f/$t+ )6(f  dw/dt)=0
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Collisionless Boltzmann Eq
• This results in (S+G pg 143)

•  the flow of stellar phase points
through phase space is incompressible
– the phase-space density of points
around a given star is always the same

• The distribution function f is a
function of seven variables, so solving
the collisionless Boltzmann equation
in general is hard. So need either
simplifying assumptions (usually
symmetry), or try to get insights by
taking moments of the equation.

• Moment of an eq-- multipying f  by
powers of v

define n(x,t) as the number
density of stars at position x

then the first moment is
∂n/∂t+∂/∂x(nv)=0; the same eq
as continuity equation of a fluid

second moment
n∂v/dt+nv∂v/dx=-n∂'/∂x-
∂/∂x(n&)
& is the velocity dispersion
But unlike fluids do not have
thermodynamics to help out....
nice math but not clear how
useful
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Collisionless Boltzmann Eq
• .

astronomical structural and kinematic observations provide information only
about the projections of phase space distributions along lines of sight,
limiting knowledge about f and hence also about ' #.

Therefore all efforts to translate existing data sets into constraints on #
involve simplifying assumptions.
• dynamic equilibrium,
• symmetry assumptions
• particular functional forms for the distribution function and/or the
gravitational potential.
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Jeans Equations MBW sec 5.4.3
• Since f is a function of 7 variables obtaining a solution is challenging
• Take moments (e.g. integrate over all v)
• let n be the space density of 'stars'

$n/$t+$(n<vi> )/$xi =0; continuity eq. zeroth moment
first moment (multiply by v and integrate over all velocities)
$(n<vj> /$t) +$(n<vivi>)/$xi +n$'/$xj=0
equivalently
n$(<vj> /$t) +n<vi> $<vj>/$xi =-n$'/$xj-$(n&2

ij)/$xi

so n is the integral over velocity of f ;  n=! f d3v
<vi> is the mean velocity in the ith direction =1/n! f vi d3v
the term -$(n&2

ij)/$xi  is like a pressure, but allows for different pressures
in different directions- important in elliptical galaxies and bulges
'pressure supported' systems
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Collisionless Boltzmann Eq
• Some simplifications

• n∂v/dt+nv∂v/dx=-n∂'/∂x-
∂/∂x(n&)

• assume isotropy, steady state,
non-rotating

• then
• -n !'=!n&2

• using Poissons eq
• !2'=4#(G and solve for &(r)2
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Jeans Eq
• So what are these terms??
• n$'/$xj  :gravitational pressure

• n&2
ij stress tensor (an anisotropic

pressure) (with a bit of coordinate
transform one can make this
symmetric e.q. &2

ij=&2
ji)
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Jeans Equations Another Formulation
• Jeans equations follow from the

collisionless Boltzmann equation;
Binney & Tremaine (1987), MBW
5.4.2. S+G sec 3.4 .

cylindrical coordinates and assuming an
axi-symmetric and steady-state
system, the accelerations in the
radial (R) and vertical (Z) directions
can be expressed in terms of
observable quantities:

the stellar number density distribution
**

and 4 velocity components
a rotational velocity v'

and 4 components of random velocities
(velocity dispersion components)

&'',&RR, &ZZ, &RZ

where aZ, aR are accelerations in the
appropriate directions-
given these values (which are
the gradient of the gravitational potential),
the dark matter contribution can be estimated
after accounting for the contribution from
visible matter
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Use of Jeans Eqs
• Surface mass density near sun
• Poissons eq !2'=4#(G=-!•F
• Use cylindrical coordinates
• (1/R)$/$R(RFR) + $Fz/$z=+4#(G

• FR=-vc/R   vc circular velocity (roughly constant near sun) -
(FR force in R direction) so
$FR/$R =(+1/4#G)$Fz/$z; only vertical gradients count
since the surface mass density ,=2! (dz =-Fz/2#G
(integrate 0 to +! thru plane)
Now use Jeans eq: nFz-$(n&2

z)/$z+(1/R)$/$R(Rn&2
zR); if R+z are separable

e.g '(R,z) ='(R)+'(z)  then &2
zR~0 and voila! (eq 3.94 in S+G)

,=1/2#Gn $(n&2
z)/$z; need to observe the number density distribution of

some tracer of the potential above the plane and its velocity dispersion
distribution perpendicular to the plane goes at n exp(-z/z0)
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viral theorem
• The quick way
• Consider for simplicity the one-dimensional analog of the Jeans Equation in steady

state:
• $/$x[(v2]+($-/$x=o
• After integrating over velocities, let‘s now integrate over x :
• [one needs to use Gauss’ theorem etc..]

• one gets -2Ekin=Epot

71

Spherical systems- Elliptical Galaxies and Globular Clusters
• For a spherical system the Jeans equations simplify to
(1/n)d/dr (n<v2

r> )+ 2.<v2
r>/r =-GM(R)/r2

•  where G(M(R)/r2 is the potential and n(r), <v2
r>  and .(r) describe the 3-

dimensional density, radial velocity dispersion and orbital anisotropy of the tracer
component (stars)
.(r) =1-<v2

">/<v2
r> ; . =0 is isotropic, .=1 is radial

• We can then present the mass profile as
• GM(r)=r <v2

r> (d ln n/dlnr+dln <v2
r> /dlnr+2.)

• while apparently simple we have 3 sets of unknowns <v2
r>, .(r) , n(r)

• and 2 sets of observables I(r)- surface brightness of radiation (in some
wavelength band) and the lines of sight  projected velocity field (first
moment is velocity dispersion)

• It turns out that one has to 'forward fit'- e.q. propose a particular form
for the unknowns and fit for them. This will become very important

for elliptical galaxies 
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Motion Perpendicular to the Plane- Alternate Analysis-( S+G
pgs140-144,  MBW pg 163)

For the motion of stars in the vertical direction only-stars whose motions
carry them out of the equatorial plane of the system.
d/dz[n*(z)&z(z)2]=-n*(z)d'(z,R)/dz; where  '(z,R)is the vertical grav potential
The study of such general orbits in axisymmetric galaxies can be reduced to a
two-dimensional problem by exploiting the conservation of the z-component of
angular momentum of any star
the first derivative of the potential is the grav force perpendicular to the
plane - call it K(z)
n*(z)  is the density of the tracer population and
&z(z) is its velocity dispersion

then the 1-D Poisson's eq 4#G(tot(z,R)=d2'(z,R)/dz2

where (tot is the total mass density - put it all together to get

4#G(tot(z,R)=-dK(z)/dz (S+G 3.93)
d/dz[n*(z)&z(z)2]=n*(z)K(z) - to get the data to solve this have to determine
n*(z) and &z(z)  for the tracer populations(s)
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Use of Jeans Eq For Galactic Dynamics
• Accelerations in the z direction from the Sloan

digital sky survey for
1) all matter
2) ‘known' baryons only
ratio of the 2 (bottom panel
use this data + Jeans eq (see below, to get the total

acceleration
(in eqs * is the density of tracers, v' is the azimuthal

velocity (rotation)
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Jeans Continued
• Using dynamical data and velocity

data get estimate of surface mass
density in MW

,total~70 +/- 6M!/pc2

,disk~48+/-9 M!/pc2

,star~35M!/pc2

,gas~13M!/pc2

we know that there is very little light in
the halo so direct evidence for dark
matter
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What Does One Expect The Data To Look Like
• A full-up numerical

simulation from
cosmological conditions of
a MW like galaxy-this
'predicts' what aZ should be
near the sun (Loebman et al
2012)

• Notice that it is not
smooth or monotonic

     and the the simulation is
neither perfectly
rotationally symmetric
nor steady state..

• errors are on the order of
20-30%- figure shows
comparison of true radial
and z accelerations
compared to Jeans model
fits

1 kpc x 1kpc bins; acceleration units of 2.9x10-13 km/sec2
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Full Up Equations of Motion- Stars as an Ideal Fluid( S+G
pgs140-144,  MBW pg 163)

Continuity equation (particles not created or destroyed)
d(/dt+().v=0; d(/dt+d((v)/dr=0

Eq's of motion (Eulers eq)
dv/dr=)P/(+)-

Poissons eq )2-(r)=-4#G((r)
example potential
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Analogy of Stellar Systems to Gases
- Discussion due to Mark Whittle

•  similarities :
comprise many, interacting objects which act as points (separation >> size)
 can be described by distributions in space and velocity  eg Maxwellian velocity

distributions; uniform density; spherically concentrated etc.
Stars or atoms are neither created nor destroyed -- they both obey continuity equations-

not really true, galaxies are growing systems!
All interactions as well as the system as a whole obeys conservation laws (eg energy,

momentum)if isolated
• But  :
• The relative importance of short and long range forces is radically different :

–  atoms interact only with their neighbors, however
–  stars interact continuously with the entire ensemble via the long range attractive

force of gravity
• eg uniform medium : F ~ G /( /r2  ~  r2dr;  r2 ~ ( dr  ~equal force from all

distances
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Analogy of Stellar Systems to Gases
- Discussion due to Mark Whittle

•  The relative frequency of strong encounters is radically different :
• -- for atoms, encounters are frequent and all are strong (ie  !V ~ V)
• -- for stars, pairwise encounters are very rare, and the stars move in the smooth

global potential (e.g. S+G 3.2)

• Some  parallels between gas (fluid) dynamics and stellar dynamics many of the
same equations can be used as well as  :

• ---> concepts such as Temperature and Pressure can be applied to stellar systems
• ---> we use analogs to the equations of fluid dynamics and hydrostatics
• there are also some interesting differences
• ---> pressures in stellar systems can be anisotropic
• ---> stellar systems have negative specific heat and evolve away from uniform

temperature.
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• Separate potential into r and z parts
'(r,z)=B(R)Z(z)
outside disk)2'=0; find Z(z)=Aexp(-k|z|)
eq for R dependence of potential is
(1/R)(d/dR(RdB/dr)+k2B(R)=0- the solutions of this are Bessel functions J(r); but it gets

even messier
Important result
• Rd'/dR=v2

c = GM(R)/R to within 10% for most 'reasonable' forms of
mass distribution

see http://www.ast.cam.ac.uk/~ccrowe/Teaching/Handouts for lots of
derivations/
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Rotation Curve Mass Estimates sec 2.6 of B&T
• sec sec 11.1.2 in MBW
• Galaxy consists of a axisysmmetric disk and spherical dark matter halo
• Balance centrifugal force and gravity
• V2(R)=RF(R); F(R) is the acceleration in the disk
• Split rotation into 2 parts due to disk and halo
      V2(R)=V2

d(R)+V2
h(R)

• for a spherical system
     V2(R)=rd'/dr=GM(r)/r
• Few analytic solutions: point mass Vc(R)~r-1/2

                                 singular isothermal sphere Vc(R)=constant (see S+G eq 3.14)
    uniform sphere Vc(R)~r

for a pseudo-isothermal (S+G problem 2.20)
((r)=((0)(R2

c/R2+R2
c); ((0)= V(%)2/4#G R2

c and the velocity profile is
V(R)2=V(%)2(1-Rc/R tan-1 R/Rc);for a NFW potential get a rather messy formula
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Disks are Messy (MVW ch 11)
• Skipping the integrals of Bessel functions (eq 11.2 MBW) one gets
• V2

c,d(R)= 4#G,0Rdy2[Io(y)K0(y)-I1(y)K1(y)]
y=R/(2Rd) and I and K are Bessel functions of the first and second kinds:which do not

have simple asymptotic forms
Important bits: V2

c,d(R) depends only on radial scale length Rd and its central surface
density ,0

Radial scale length of a spiral disk
,(r)=,0exp(-R/ Rd); integrate over r to get total mass Md=2#,0R2

d

Vertical density distribution is also an exponential exp(-z/z0) so total distribution is
product of the two

((R,z)=(0 exp(-R/ Rd)exp(-z/z0)
while we may know the scale length of the stars, that of the dark matter is not known.
Also the nature of the dark matter halo is not known:- disk/halo degeneracy
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Nature is Cruel
• mathematics seems to be saying that

it is as easy to determine a disk's
surface density from measurements of
its circular speed, as to obtain the
circular speed from the surface
density.

•Unfortunately, observational constraints destroy
this symmetry.
•The key point is that the leftside of either equation
(2.188) or (2.190) can be determined at any given
value of R only if the variable on the right side can
be measured out to radii at which its value becomes
negligible.

•The surface density declines rapidly with radius, so equation (2.188) can be used to
derive accurate values of vc.
•Circular speeds, by contrast, decline little if at all out to the largest observable radii.
Consequently, in practice we cannot obtain the data needed to determine , accurately
from equation (2.190)

•(2.190)

(2.188) 
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Disk Halo Degeneracy
• MBW fig 11.1: two solutions to rotation curve of NGC2403: stellar disk (blue

lines), dark matter halo - red lines.

• Left panel is a 'maximal' disk, using the highest reasonable mass to light ratio for
the stars, the right panel a lower value of M/L
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Potential of Spiral Galaxies B&T 2.7
• The potential of spirals is most often modeled as a 3 component system
• Bulge
• Dark halo
• Disk
as stressed by B&T usually one assumes that the potential has a certain form and is well

traced by stars/gas
On pg 111 B&T give the observational constraints which models have to match.
Bulge; B&T assume  ((r)=(0(0)(m/ab) +1b exp(-m/rb)2

c); m=sqrt(R2+z2/q2)which for q<1
is an oblate spheroidal power-law model (no justification is given !)

They use IR star counts in the bulge (which is dominated by old stars) to get values for
the parameters.

They use a similar form for the halo, but the parameters are much less well determined.
Disk: use a double exponential disk (thin and thick) for the stars and a somewhat more

complex form for the gas ( in the MW gas is ~25% of the mass of stars in the disk).

The most important parameter is the disk scale length :
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MW Mass Model
• Notice that the mass of the

bulge and the surafce mass
density of the disk are
highly uncertain (more
later)
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Virial Theorem B&T 4.8.3(a)
• This fundamental result describes how the total energy (E) of a self-gravitating

system is  shared between kinetic energy and potential energy .
• Go to one dimension and assume steady state

Integrate over velocity and space and one finds

-2Ekinetic=PE potential   (W=PE)
see S&G pgs 120-121 for full derivation

This is important for find the masses of systems whose orbital
distribution is unknown or very complex and more or less in steady state
(so assumptions in derivation are ok)
In general <v2>=W/M=GM/rg;rg the gravitational radius (which depends
on the form of the potential)
Many of the forms of the potential have their scale parameter ~1/2rg (pg
361 B&T)
Then if E is the total energy E=KE+PE=-KE=1/2PE (!); where does the
energy go?? (radiation)
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Use of Virial Theorem
• Consider a statistically steady state, spherical, self gravitating system of N

objects with average mass m and velocity dispersion &.

• Total KE=(1/2)Nm&2

• If average separation is r the PE of the system is U=(-1/2)N(N-1)Gm2/r
• Virial theorem E=-U/2 so the total mass is M=Nm=2#&2/G or using L as

light and , as surface light density
 &2~(M/L),R-picking a scale (e.g. half light radius Re)
 Re~&1,. 1 =2,.=1 from viral theorem

 value of proportionality constants depends on shape of potential

 For clusters of galaxies and globular clusters often the observables are the
light distribution and velocity dispersion. then one measures the ratio of
mass to light as

 M/L~9&2/2#GI(0)rc  for spherical isothermal systems
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Jeans Again
• Jeans Mass MJ=1/8(#kT/Gµ)3/2 (-1/2

• In astronomical units this is
MJ=0.32M!(T/10k)3/2(mH/µ)3/2(106cm-3/nH)1/2

So for star formation in the cold molecular medium with T~10k and nH~105- MJ~2M

The growth time for the Jeans instability is
2J=1/sqrt(4#G() = 2.3x104yr(nH/106cm-3)-1/2

For pure free fall
2J= (3#/32G()1/2= 4.4x104yr(nH/106cm-3)-1/2

Jeans growth rate about 1/2 the free fall time

 2s  time scale is the sound crossing time across the Jeans Length
cs= sqrt(kT/mHµ)   3J= (#c2

s/G()1/2       2s
=3J/cs


