Galaxy Dynamics part 2

Physics of Galaxies 2013
part 10




Orbits of stars in spherical
SysStems

® |n a time-independent gravitational potential, energy is
conserved:

E = 2mv? + mP(x) = constant
» pecause 0®/0t = 0

® |n a spherical potential, the angular momentum is

also conserved: L =X X mvV

dL d

E:XX mdtv = —mx X VO

® put the force V@ always points towards the center,
so L does not change

® SO
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» [herefore the motion of a star Is restricted to an orbital
plane

= and only two coordinates are needed to describe the
location of the star

» typically, polar coordinates in the plane (r, ¢) are
used to describe the motion
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Orbits in an axisymmetric
galaxy

® |n an axisymmetric system, like a disk, we use (of
course) a cylindrical coordinate system (R, ¢, z) where
z=0 corresponds to the symmetry plane (e.qg., the mid-
plane of the disk)

® |n an axisymmetric system, the mass distribution and
therefore the potential is iIndependent of the angular
coordinate: 9P /0¢ = 0

®x NO force In the ¢-direction: stars conserve
angular momentum about the z-axis

= neglect non-axisymmetric features like the bar and the spiral arms!
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= [he equations of motion for a star in the disk are

= |n each direction, using r = RR + 27, we have
2
0;5 i <%> B ‘g—i (1
2 b
ARg/a) G =0 EmEREe ()

= Equation (3) implies conservation of angular momentum
around the z-axis:
L. = R*— = constant
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® |n the R-direction, we can rewrite Equation (1) as
d’R _R<@>2 00 0%en
dt? dt OR OR

» where the effective potential P (R, z; L,)is

L2

2R

» |f we multiply Equation (4) bydR/dt and integrate with respect
to t, we find

1 (dR\’
5 (E) + P (R, z; L,) = constant

® a sort of energy conservation law!

(I)eﬁr — (I)(R, Z) |
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» Therefore the effective potential ®.¢ (R, z; L) acts as a
potential energy for the star’s motion in R and z

® [he effective potential is constant if

0P 4 L0, Lg
» R = (0 and thus R =\
0P 4 910,
| = — O
and 0z 0z

= [he second equation is satisfied for motion in the mid-plane,
so that z=0; combined with dR/dt = 0, this implies a circular
orbit in the disk mid-plane

® [he radius of this circular orbit is Ry, where

2 2
6’_(1) — & — R g @ remewmber the definition of L.!
iR|, ~ R i
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« Since R* > 0,the L2 term ,,| ¢
In the effective potential
acts as an angular 0 | |
momentum barrier
preventing a star coming 27
closer to R=0 than some

04T

perigalactic radius where \._/

R=0

= [he circular orbit is that
with the least energy for a
given angular momentum
L e

-0.6 T

08T

()

Effective potential for a star with
[ ,=0.595 in a Plummer potential
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Epicycles

® | et’'s now derive approximate solutions for the
equations of motion for stars on (nearly) circular orbits

iNn the disk (symmetry) plane

» Define a distance around Ry, + = R — R, , and expand

the effective potential around (Rg,0):

O,
Dot (R, 2) ~ P (Ry,0) + —t| 2

0P

OR |p

groningen
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® | et’s define two quantities:

,  0°Dg ,  0?Dg
K BYiE oo and v 5.2 oo
= [hen the equations of motion become
d’R 0D g d?x 82(1363‘ .
a2~ or Car T omer |, , ddaz T "7
d?z 0D d?z 0’ P g : 1 }
e~ 0z YR T 7 a2 |y, a2

®= [hese are the equations of motion of two o’ecouc
oscillators with frequencies K and v

| L , 02 d L?
x K is the epicyclic frequency: ~“(R,) = SRz +355
82¢ R Rg,0 Rg

= vis the vertical frequency: ° = 9.2
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= [he solution to the

equations of motion is \ T
then Py
2wX /K
= X cos(kt + U) for k* > 0 y l

= Zycos(vt +0) for v* > 0 X

= [he motion of a star in the
disk can be described as
the oscillation about a
quiding center moving on
a circular orbit at Rq
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® |n order to conserve angular momentum Lz, the
azimuthal speed must also vary:

do L. w(R,)R? 2
it~ R® (R, + 1) w(fy) R,

® |[ntegrating, we find

B(t) = do(t) + wt — — =29 X, sin(skt + )
R, kK
x [he first two terms give the guiding center motion (¢o
IS an arbitrary constant); the third term is harmonic
motion with the same frequency as the x oscillation
out 90° out of phase and with a different amplitude
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= [his motion Is known as
the epicyclic motion

= |t is retrograde because
it Is In the opposite
sense to the guiding
center’'s motion: speeds
the star up closer to the
center and slows it
down farther out
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= Note that the approximation to second order in z in the

effective potential (Pog o< 27) is only valid if the density is
constant in the z-direction (since V°® ~ p). But the disk
density decreases exponentially away from the mid-plane —
so the approximation is valid at most one scale height away
from the plane (z<300 pc). Since a good fraction of the disk
stars move to greater heights, the motion in the z-direction is
not well-described as a harmonic oscillation...
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® [here Is a relation between the epicyclic frequency K
and the angular frequency w:

® [irst, the centrifugal force=gravitation pull, so

0P
Rw’® = —
“ T OR
L2
2 z
'aﬂdw _ﬁ
2
® SO K% = Rdw L 4w?
dR R

® |[ngeneral, w < Kk < 2w

» for a sphere of uniform density, w(R) = cnst and k = 2w

» for the Kepler problem (a point mass),
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®x SO the epicyclic frequency is also related to the Oort
constants...

dw dw
» R IIthtA_—— — B = —
ecall tha R ¥z Roand <w+ 2RdR>

®x 50 at the Sun, /4:0 = —4B(A — B) = —4Buwy

» Using the measured value of B, xg/wp ~ 1.3 0.2

= SO the Sun makes 1.3 radial oscillations in the time
it takes to make one complete revolution around
the Galactic Center...
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The Collisionless Boltzmann
Fquation (CBE)

® All of these equations can actually be derived from the
“collisionless Boltzmann equation” (or the Liouville

equation), which describes the paths of stars in phase
space

® | et’s assume we have a large number of stars
moving In a Smooth potential

= [hen phase space is well-populated and a
distribution function applies: f(x,v,t)d°xd>v is
the number of particles per unit volume in phase
space (x, v)
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» Since the potential is smooth, neighboring particles in
phase space (at the same x,v) move together, and we
can use the fluid approximation:

w = (x,V)

w = (v,—-V)

» Finally, the flow is smooth: stars do not jump
discontinuously from one region of phase space to
another — no collisions
= [hen f has to satisfy a continuity equation:
o0f .
Y Ve (fw) =0 (5)
/ \phase space
phase space “current”
dive rgence ‘glfg;’l‘fgsgg of / A /




» Expand equation (5):

g{ - V6 (W) +W-Vgf =0

» Consider the term Vg - (w). This is the divergence of
the flow In phase space. Let’s now show that this is

Incompressible:

S OW, =[O, OO
VG.(W):;(p)’wi :Z;(@xi | (9%‘) !

1= /
vi and x are independent @SSUMed a potential, so
8”0@/8?]7; =0

®» Flow In phase space is incompressible as long as the
forces do not depend on particle velocity
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= The result is the CBE for incompressible flow in phase
space:

o, .
8{ | W'V@f:()
® Or
8f 8f
D .
ot v-Vi=V ov =0

= [his means that the convective derivative, the
change In the local density of phase-space particles
seen by an observer moving with the phase-space fluid
at a velocity w, is zero: pf  af °L . Of

Note that this is also called the 1=1

“Lagrangian derivative”
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» This Liouville’s theorem: phase-space densities along
particle trajectories are constant

® [wo key assumptions:

= No small scale structure in the potential inside a
volume element and no discontinuous jumps out
of the volume element, so stars in the element are
conserved: collisionless system

» No frictional drag or encounters where energy and/
or momentum can be exchanged with other stars:
no entropy increase
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Moments of the CBE: the
Jeans Equations

» \\e are going to “take moments” of the CBE by
multiplying f by powers of v

® [irst, let’s define the space density (of the stellar
population component we’re interested in) as

VE/deV

= [his is the zeroth moment in the velocity of the
distribution function
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= [he first and second moments in velocity of f are

b)) = l/mffv

14
1
(vivy) = — /ijf d>v
1%
= Now, the zeroth moment (in velocity) of the CBE is
8 f 0 f
3 _
/‘ oVt Vg a o, " V=0

= note that here I've used the summation convention,
where repeated indices are summed over
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= [his can be rewritten as

s, 5 0 5 O veTEee
&ffdv | &Ui/%fdv 3$¢//dvldv2/v3<>o o7 =0

= But the last term is O, because

f)IX =0if lim f=0

Ov 0 T
* And SO | ) —
gt . (vv;) =0
1
B QOr | : —
5 V-(vv)=0 (7)

= Which Is the continuity equation in X space
(conservation of mass)
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= [his can be rewritten as

s, 5 0 5 O veTEee
E/fdv | 33%'/%de 3%//@1@2/@300 o7 =0

= But the last term is O, because

f)IX =0if lim f=0

V; — 00

= which is the continuity equation in x space
(conservation of mass)
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= The first moment in velocity of the CBE is

/%ﬁd% +/ O goy — 02 [, 98 3y

B Vivj g AV = a | Vig, @
= Now,
8f B 3 (9’Uj 3
8@@ — //dvldvg /vg_oo af /(avz) fd VvV
= 0 — 0,V
9, 9, 0P
SO a(”(“j» | 8xi(y<ij>)+yﬁ—a:j =0
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» Subtracting off the zeroth moment, we have

O(v;) 9, -0 - 0o
et~ ) g () + o)) 4w =0

® \We usually rewrite this in terms of the velocity
dispersion tensor, the velocity dispersion about the
mean (streaming) motion:

o = ((vi — (Vi) (v — (v3))) = (Vivs) — (Vi) (V)
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» Substituting and rearranging, we finally

0z, 0 ; Ox; |

» The left-hand side of this equation is the Lagrangian
derivative of the momentum: vDv /Dt

®» [he right-hand side is the sum of the gravity and a
stress term, which is the anisotropic pressure

® [his equation is a force equation: the conservation
of momentum along particle trajectories
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® Since the velocity dispersion tensor o;; IS symmetric, it
can be diagonalized. This diagonalized tensor is the
velocity ellipsoid, which we met earlier...

= SO what use are the Jeans equations (moments of the
CBE)?

= Can relate observables like v, v, and o7, to the
gravitational potential 0P /0x;

® they give us a way to “weigh” galaxies
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= But!

® Jeans equations describe a massless tracer
population in an external potential — need to add
Poisson’s equation to get the potential from the (total)
mass density p: Jeans equations are incomplete

®» There is no “equation of state” relating v to o (like the
ideal gas law relates p and T in a gas). You have to
assume o;,;, and thus flv) — every different
assumption leads to a different solution: Jeans
equations depend on flv) and are non-unique

®» [he equations never close; have always to assume
a higher-order tensor, i.e., some form for f(v).

university Of faculty of mathematics astronomy
. and natural sciences
groningen / /



Asymmetric drift: an
application of the Jeans egn

» | et’s evaluate the quantity v, = v. — (vg)

®» the amount a population lags behind the circular
velocity

® \Write second moment of the Jeans equation in
cylindrical coordinates to find:
R , i
N 3 O0lnv 1) | [ ()
Pete X R | T2y T2 T 20l R T 3 (k) “<<v%> Y
» |n the Solar Neighborhood, the term in brackets is ~4

N\
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®» S0 the lag is

Vg ~ 4{v%)/440kms™! ~ (v%) /110 km s~

» |n the absence of radial streaming, (v%) = 0%

» Aso% increases, the population lags more behind the
circular motion — hot populations rotate slower

®» Energy comes out of ordered motion and is put
Into disordered motion
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= [his is why Vg
depends on the

velocity ©
the popu

tO measu

Ispersion of
ation used
re it —

older populations
have higher velocity
dispersions and
rotate slower

401 , , :
30F V E
20 - ,E,n—z—*«@ S

E X g ]
R ® Y E

T ot L | |

n

g20¢ I | |

~
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Weighing the MW disk

® | et’'s use the Jeans eqgns to see if we can measure the
mass of the MW disk in the Solar Neighborhood

® [irst, select a tracer population like K dwarfs

» Now assume that the potential is constant with time

= [hen v and f are also constant
» High above the plane, (v.)v(z) — 0

» Then from the first Jeans egn, Eq. (7),{(v.) =0
everywhere
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= Now we can use the second Jeans egn, Eq. (8):

d 0D
= u(2)0?] = — - u(2)

x Next we need Poisson’s equation in cylindrical
coordinates:

0*’d 1 0O 0P
drGp(R, z) = 5,2 | 7R (R@>

x [hen we can write
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» and so we have
df 1 d o\, 1 OvZ(R)
dz V(2) dz[y(z)02]> "R OR

\ /

AnGp(R, z) =

= Near the Sun, the rotation curve is nearly flat, so the
last term can be ignored

= [0 find p we need to differentiate v twice, which is very
sensitive to small errors! |Let’'s concentrate on the
surface density instead:

+z
2mGY(< z) = 27TG/ p(2)dz ~ L d v(z)07]

— Xz
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= Qort was the first to try this (and derive the equations),
using K giants and F dwarfs

» He assumed 0 did not vary with distance from the
olane and found (< 700 pc) ~ 90 M pc~?

» But at z>1 kpc, 2(z) began to decrease!
® J;Is not constant with distance from the plane...

®» Using K dwarfs and allowing o3 to vary, Kuijken &
Gilmore (1991) found (< 1100 pc) = 71 + 6 M pc™?
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» [he total surface density in gas and stars in this range
is ~40-55 Mo pc2

» But not all of the surface density determined by K&G is
actually in the disk (some must be in the halo), so the
amount of dark matter in the disk is probably negligible
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