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Orbits of stars in spherical 
systems

In a time-independent gravitational potential, energy is 
conserved:

because 

In a spherical potential, the angular momentum is 
also conserved:

so 

but the force       always points towards the center, 
so    does not change
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Therefore the motion of a star is restricted to an orbital 
plane

and only two coordinates are needed to describe the 
location of the star

typically, polar coordinates in the plane         are 
used to describe the motion

(r, �)



In an axisymmetric system, like a disk, we use (of 
course) a cylindrical coordinate system              where  
z=0 corresponds to the symmetry plane (e.g., the mid-
plane of the disk)

In an axisymmetric system, the mass distribution and 
therefore the potential is independent of the angular 
coordinate:

no force in the ϕ-direction: stars conserve 
angular momentum about the z-axis

neglect non-axisymmetric features like the bar and the spiral arms!

Orbits in an axisymmetric 
galaxy
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The equations of motion for a star in the disk are

In each direction, using                     , we have

Equation (3) implies conservation of angular momentum 
around the z-axis:
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In the R-direction, we can rewrite Equation (1) as

where the effective potential                      is

If we multiply Equation (4) by           and integrate with respect 
to t, we find

a sort of energy conservation law!
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Therefore the effective potential                      acts as a 
potential energy for the star’s motion in R and z

The effective potential is constant if

 

and 

The second equation is satisfied for motion in the mid-plane, 
so that z=0; combined with                 , this implies a circular 
orbit in the disk mid-plane

The radius of this circular orbit is Rg, where             
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Since            , the      term 
in the effective potential 
acts as an angular 
momentum barrier 
preventing a star coming 
closer to R=0 than some 
perigalactic radius where

The circular orbit is that 
with the least energy for a 
given angular momentum 
Lz

Effective potential for a star with 
Lz=0.595 in a Plummer potential

Ṙ2 � 0 L2
z

Ṙ = 0



Epicycles
Let’s now derive approximate solutions for the 
equations of motion for stars on (nearly) circular orbits 
in the disk (symmetry) plane

Define a distance around Rg,                    , and expand 
the effective potential around (Rg,0):
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Let’s define two quantities:

Then the equations of motion become

These are the equations of motion of two decoupled harmonic 
oscillators with frequencies κ and ν

κ is the epicyclic frequency:

ν is the vertical frequency:
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The solution to the 
equations of motion is 
then

The motion of a star in the 
disk can be described as 
the oscillation about a 
guiding center moving on 
a circular orbit at Rg

x = X0 cos(⇥t + �) for ⇥2 > 0
z = Z0 cos(⇤t + �) for ⇤2 > 0
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In order to conserve angular momentum Lz, the 
azimuthal speed must also vary:

Integrating, we find

The first two terms give the guiding center motion (ϕ0 
is an arbitrary constant); the third term is harmonic 
motion with the same frequency as the x oscillation 
but 90º out of phase and with a different amplitude
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This motion is known as 
the epicyclic motion

It is retrograde because 
it is in the opposite 
sense to the guiding 
center’s motion: speeds  
the star up closer to the 
center and slows it 
down farther out
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Note that the approximation to second order in z in the 
effective potential                  is only valid if the density is 
constant in the z-direction (since               ).  But the disk 
density decreases exponentially away from the mid-plane — 
so the approximation is valid at most one scale height away 
from the plane (z<300 pc).  Since a good fraction of the disk 
stars move to greater heights, the motion in the z-direction is 
not well-described as a harmonic oscillation...
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There is a relation between the epicyclic frequency κ 
and the angular frequency ω:

First, the centrifugal force=gravitation pull, so

and

so

In general, 

for a sphere of uniform density,
for the Kepler problem (a point mass),
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So the epicyclic frequency is also related to the Oort 
constants...

Recall that                           and

so at the Sun,

Using the measured value of B,

So the Sun makes 1.3 radial oscillations in the time 
it takes to make one complete revolution around 
the Galactic Center...
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All of these equations can actually be derived from the 
“collisionless Boltzmann equation” (or the Liouville 
equation), which describes the paths of stars in phase 
space

Let’s assume we have a large number of stars 
moving in a smooth potential

Then phase space is well-populated and a 
distribution function applies:                            is 
the number of particles per unit volume in phase 
space

The Collisionless Boltzmann 
Equation (CBE)

f(x,v, t)d3x d3v

(x,v)



Since the potential is smooth, neighboring particles in 
phase space (at the same x,v) move together, and we 
can use the fluid approximation:

Finally, the flow is smooth: stars do not jump 
discontinuously from one region of phase space to 
another — no collisions

Then f has to satisfy a continuity equation:
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Expand equation (5):

Consider the term              .  This is the divergence of 
the flow in phase space.  Let’s now show that this is 
incompressible:

Flow in phase space is incompressible as long as the 
forces do not depend on particle velocity
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The result is the CBE for incompressible flow in phase 
space:

or

This means that the convective derivative, the 
change in the local density of phase-space particles 
seen by an observer moving with the phase-space fluid 
at a velocity   , is zero:
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“Lagrangian derivative”



This Liouville’s theorem: phase-space densities along 
particle trajectories are constant

Two key assumptions:

No small scale structure in the potential inside a 
volume element and no discontinuous jumps out 
of the volume element, so stars in the element are 
conserved: collisionless system

No frictional drag or encounters where energy and/
or momentum can be exchanged with other stars: 
no entropy increase



We are going to “take moments” of the CBE by 
multiplying f by powers of v

First, let’s define the space density (of the stellar 
population component we’re interested in) as

This is the zeroth moment in the velocity of the 
distribution function

Moments of the CBE: the 
Jeans Equations
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The first and second moments in velocity of f are

Now, the zeroth moment (in velocity) of the CBE is

note that here I’ve used the summation convention, 
where repeated indices are summed over
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This can be rewritten as

But the last term is 0, because

And so

or

which is the continuity equation in x space 
(conservation of mass)
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This can be rewritten as

But the last term is 0, because

And so

or
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(conservation of mass)
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The first moment in velocity of the CBE is

Now,
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Subtracting off the zeroth moment, we have

We usually rewrite this in terms of the velocity 
dispersion tensor, the velocity dispersion about the 
mean (streaming) motion:
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Substituting and rearranging, we finally have

The left-hand side of this equation is the Lagrangian 
derivative of the momentum:

The right-hand side is the sum of the gravity and a 
stress term, which is the anisotropic pressure

This equation is a force equation: the conservation 
of momentum along particle trajectories
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Since the velocity dispersion tensor      is symmetric, it 
can be diagonalized.  This diagonalized tensor is the 
velocity ellipsoid, which we met earlier...

So what use are the Jeans equations (moments of the 
CBE)?

Can relate observables like   , v, and      to the 
gravitational potential             

they give us a way to “weigh” galaxies

�ij
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ij�
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But!

Jeans equations describe a massless tracer 
population in an external potential — need to add 
Poisson’s equation to get the potential from the (total) 
mass density ρ: Jeans equations are incomplete

There is no “equation of state” relating ν to σ (like the 
ideal gas law relates ρ and T in a gas).  You have to 
assume      , and thus f(v) — every different 
assumption leads to a different solution: Jeans 
equations depend on f(v) and are non-unique

The equations never close; have always to assume 
a higher-order tensor, i.e., some form for f(v).

�ij



Let’s evaluate the quantity

the amount a population lags behind the circular 
velocity

Write second moment of the Jeans equation in 
cylindrical coordinates to find:

In the Solar Neighborhood, the term in brackets is ~4

Asymmetric drift: an 
application of the Jeans eqn
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So the lag is

In the absence of radial streaming,

As      increases, the population lags more behind the 
circular motion — hot populations rotate slower

Energy comes out of ordered motion and is put 
into disordered motion
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This is why   
depends on the 
velocity dispersion of 
the population used 
to measure it — 
older populations 
have higher velocity 
dispersions and 
rotate slower

V�

Strömberg’s asymmetric drift equation [e.g. equation (4-34) of

Binney & Tremaine (1987, hereafter BT)]. That is, V increases

systematically with S2 because the larger a stellar group’s velocity

dispersion is, the more slowly it rotates about the Galactic Centre

and the faster the Sun moves with respect to its lagging frame.

For very early-type stars with B ¹ V ! 0:1 mag and/or S!

15 km s¹1, the V-component of vh i decreases with increasing S,

colour, and hence age contradicting the explanation given in the last

paragraphs. However, the stars concerned are very young, and there

are several possibilities for them not to follow the general trend.

First, because of their youth these stars are unlikely to constitute a

kinematically well-mixed sample; rather, they move close to the

orbit of their parent cloud; many will belong to a handful of moving

groups. Secondly, Strömberg’s asymmetric drift relation predicts a

linear relation between V and S2 only if both the shape of the

velocity ellipsoid, i.e. the ratios of the eigenvalues of j, and the

radial density gradient are independent of S. Young stars probably

violate these assumptions, especially the latter one.

The radial and vertical components U0 and W0 of the velocity of

the Sun with respect to the LSR (the velocity of the closed orbit in

the plane that passes through the location of the Sun) can be derived

from hvi estimated for all stars together. The component in the

direction of rotation, V0, may be read off from Fig. 4 by linearly

extrapolating back to S ¼ 0. Ignoring stars blueward of

B ¹ V ¼ 0 mag we find

U0 ¼ 10:00 " 0:36 ð"0:08Þ km s¹1
;

V0 ¼ 5:25 " 0:62 ð"0:03Þ km s¹1
;

W0 ¼ 7:17 " 0:38 ð"0:09Þ km s¹1
;

ð20Þ

where the possible effect arising from a systematic error of 0:1 mas

in the parallax is given in brackets. When we use this value of the

Local stellar kinematics 391

! 1998 RAS, MNRAS 298, 387–394

Figure 3. The components U, V and W of the solar motion with respect to stars with different colour B ¹ V. Also shown is the variation of the dispersion S with

colour.

Figure 4. The dependence of U, V and W on S2. The dotted lines correspond to the linear relation fitted (V) or the mean values (U and W) for stars bluer than

B ¹ V ¼ 0:



Weighing the MW disk
Let’s use the Jeans eqns to see if we can measure the 
mass of the MW disk in the Solar Neighborhood

First, select a tracer population like K dwarfs

Now assume that the potential is constant with time

Then ν and f are also constant

High above the plane,

Then from the first Jeans eqn, Eq. (7),              
everywhere
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�vz� = 0



Now we can use the second Jeans eqn, Eq. (8):

Next we need Poisson’s equation in cylindrical 
coordinates:

Then we can write
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and so we have

Near the Sun, the rotation curve is nearly flat, so the 
last term can be ignored

To find ρ we need to differentiate ν twice, which is very 
sensitive to small errors!  Let’s concentrate on the 
surface density instead:
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Oort was the first to try this (and derive the equations), 
using K giants and F dwarfs

He assumed σz did not vary with distance from the 
plane and found 

But at z>1 kpc, Σ(z) began to decrease!

σz is not constant with distance from the plane...

Using K dwarfs and allowing σz to vary, Kuijken & 
Gilmore (1991) found 

�(< 700 pc) � 90 M� pc�2

�(< 1100 pc) = 71± 6 M� pc�2



The total surface density in gas and stars in this range 
is ~40–55 M⊙ pc–2

But not all of the surface density determined by K&G is 
actually in the disk (some must be in the halo), so the 
amount of dark matter in the disk is probably negligible


