Homework # 1, Physics 235, fall 2002.

due Friday Oct.11

problems

1) A simple model for starlight from our Galaxy. Assume the
stars radiate as blackbodies, and that their radius and luminosi-
ties are given by (BM table 3.13)

R M 0.8 M 0.57
U min () 14—
= m(G) Gr) )

L M 3.9 M 2.2 A M
— = ' — 05— 10— . (1
L. min (mam ((M@> ; <M®> ) ) M@> (1)

For main sequence stars, the number of stars per logarithmic
mass bin in the disk of our Galaxy is roughly (Shapiro and
Teukolsky table 1.3)
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Make a plot of the energy radiated per unit time per logarith-
mic wavelength interval for main sequence stars. Compute the
amount of energy radiated in the U, B, V and K filters from BM
table 2.1. What mass stars emit most of the U, B, V, K band
light? Which stars have most of the mass? Why might it be
important to include red giant stars?
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2) A simple model for infrared dust emission from a galaxy.
Assume that dust grains are perfect absorbers of starlight (and
consequently, by Kirchoff’s law, they are perfect emitters.) De-
rive the equilibrium dust temperature by balancing the heating
due to absorption of blackbody light from hot stars, with cool-
ing from blackbody emission from the dust grain. Be sure to
include the “dilution” factor, W, for the ultraviolet light, which
measures the decline of the radiation field with distance from
the stellar surface (i.e., W ~ (R,/D)? where R, is the radius
of the star and D is the mean distance from the stars to the
dust grain.) Give the grain temperature, and associated photon
wavelength for thermal emission from the dust, for two cases: (a)
an HI region with warm, neutral gas, which is at D ~ 1pc from
stars of temperature T,;; ~ 10*K, and (b) an HII region with
hot gas at D = 0.1 pc from a star with T.;; = 30,000K. A more
realistic assumption might be that the absorption coefficient for
dust scales as A~!. Would this cause the dust temperature to go
up or down relative to the perfect absorber case?

3) Black holes with masses Mj;, ~ 10 — 109M,, are thought
to reside in the centers of many galaxies. It has been proposed
that these black holes are built up by the successive merger of
galaxies. However, the black hole may not find itself smack in
the center after a merger. What is the maximum initial radius
for a black hole for which it has had time to spiral into the center

in less than 10" years. (Hint: follow the discussion in section
7.1.a of BT.)



4) It has recently been proposed that a certain globular clus-
ter of mass M, ~ 10°M; has 10% of its mass in free-floating
(not tightly bound to any star) Jupiter-sized objects. Compute
the timescale over which these Jupiters will be “evaporated”
from the cluster due to collisions with the cluster stars.

5) Estimate the relaxation time for the following systems: (a)
a galaxy of size R = 10 kpc composed of N = 101! stars, (b) a
dark matter halo of size R = 100 kpc total mass My, = 102M,
composed of dark matter particles of mass my,, = 1Tev, (c) an
open cluster of size R = 1 pc composed of N = 10° stars, and
(d) the Oort cloud of size R = 10° au with N = 10'? comets of
mass m, = 10'° g. Speculate on the future of the human race.

6) Brownian motion. A particle of velocity v is subject to a
drag acceleration ag.,, = —yv in addition to a random acceler-
ation f(¢) with the following properties: (1) (f) = 0, where the
average is over many collisions with the background particles,
and (2) the acceleration produced by different collisions is un-
correlated, so that (f(¢) - f(¢')) = Fdé(t —t'). Here v = D(dv) is
the drag coefficient, and F = D(dv?) is is the velocity diffusion
coefficient. Let these coefficients be independent of v.

Now the questions. (a) Write down the equation of motion for
the particle’s velocity, including the drag force and the random
force. Using an integrating factor, solve this equation for the
velocity of the particle in terms of an integral over the force
f. (b) Average this velocity over long times (compared to the
collision time) using the known properties of (f). (c) Compute



(v%(t)) by using the known expressions for (f) and (f(¢) - f(¢')).
(d) At large times, the mean velocity squared (v%(t)) — 3072,
where o is the 1D velocity dispersion. Use this fact to relate F
to v and o2 (the fluctuation-dissipation theorem.) (f) Does the
velocity asymptote to a finite (nonzero and not infinite) value if
you set either v or F to zero?

7) Galaxy formation. The Galaxy may have formed by ei-
ther slow or rapid collapse compared to a star’s orbit period.
The orbits of old stars (identified by metallicity) and globular
clusters (dated by stellar evolution) may give information about
the rate of collapse if they formed early on. In this problem we
will examine how an initial set of orbits changes if the Galaxy
collapses slowly or quickly.

Assume the stars feel a Galactic potential ¢ = —GM(t)/r,
and express the orbits in terms of the usual semi-major axis a
and eccentricity e. Questions: (a) How does the orbital time
vary with position in the galaxy. (b) Assume that M (t) changes
slowly compared to an orbit. Starting from the conserved ac-
tions (BT eq. 3.22b and 3.177), which are adiabatic invariants,
describe the change in a and e due to M (t) increasing slowly.
(c) Now let M(t) increase much more rapidly than the orbital
time. How do a and e change? For a set of orbits with a given
eccentricity and random orbital phase, will the mean change be
positive or negative? (d) Put parts a, b, and ¢ together and
discuss what trends might be expected in the observed eccen-
tricities of halo objects. For disk orbits, how is this picture
complicated by star formation?



