• Our galactic neighborhood consists of one more 'giant' spiral (M31, Andromeda), a smaller spiral M33 and lots of (>35 galaxies), most of which are dwarf ellipticals and irregulars with low mass; most are satellites of MW, M31 or M33
• The gravitational interaction between these systems is complex but the local group is apparently bound.
• Major advantages
 – close and bright— all nearby enough that individual stars can be well measured as well as HI, H₂, IR, x-ray sources and even γ-rays
 – wider sample of universe than MW (e.g. range of metallicities, star formation rate etc etc) to be studied in detail

allows study of dark matter on larger scales and first glimpse at galaxy formation
–calibration of Cepheid distance scale

ARA&A1999, V 9, pp 273-318 The local group of galaxies S. van den Bergh
Star formation histories in local group dwarf galaxies
Skillman, Evan D.
Local Group Galaxies - Wide Range of Luminosity

- Local Group dwarfs galaxies trace out a narrow line in the surface brightness luminosity- plane (Tolstoy et al 2009)
- see table 4.1 in S&G

Wide Range of Luminosities

- MW/M31~2x10^{10}L_\odot
- LMC~2x10^9L_\odot
- Formax dSph 1x10^7L_\odot
- Carina dSph 3x10^5L_\odot

- Because of closeness and relative brightness of stars the Color Magnitude Diagram combined with Spectroscopy of resolved stars can produce 'accurate'
 - star formation histories
 - Chemical evolution

Despite wide variety of 'local' environments (near/far from MW/M31) trends in chemical composition seem to depend primarily on galaxies properties
Star Formation Histories

- Analysis of CMDs shows presence of both old and (some) young stars in the dwarfs - complex SF history
- The galaxies do not show the same SF history- despite their physical proximity and being in a bound system
- Their relative chemical abundances show some differences with low metallicity stars in the MW.

Star Formation Histories Local Group Dwarfs

- With HST can observed color magnitude diagram for individual stars in local group galaxies
- Using the techniques discussed earlier can invert this to get the star formation history
- Note 2 extremes: very old systems Cetus, wide range of SF histories (Leo A)
- (Tolstoy, Hill, Tosi Annual Reviews 2009)
• Overall metallicity of LG dwarfs is low but some patterns similar to others different to stars in MW (black dots- Tolstoy et al 2009)!
• How to reconcile their low observed metallicity with the fairly high SFR of the most metal-poor systems many of which are actively star-forming!
• best answer metal-rich gas outflows, e.g. galactic winds, triggered by supernova explosions in systems with shallow potential wells, efficiently remove the metal-enriched gas from the system.
• In LG can wind models be well constrained by chemical abundance observations.

Metallicities In LG Dwarfs Vs MW

Hisotry of SFR In Local Group Dwarfs

Sagittarius

Ursa Minor

Draco

Sextans

Sculptor

Carina

Fornax

Leo II

Leo I

Grebel and Favata
Abundances in Local Group Dwarfs

- Clear difference in metal generation history

Closed Box Approximation - Tinsley 1980, Fund. Of Cosmic Physics, 5, 287-388

- To get a feel for how chemical evolution and SF are related (S+G q 4.13-4.17) - but a different approach (Veilleux 2010)

- at time t, mass ΔM_{total} of stars formed, after the massive stars die left with $\Delta M_{\text{low mass}}$ which live 'forever',
- massive stars inject into ISM a mass $p\Delta M_{\text{total}}$ of heavy elements (p depends on the IMF and the yield of SN- normalized to total mass of stars).
- Assumptions: galaxies gas is well mixed, no infall or outflow, high mass stars return metals to ISM faster than time to form new stars)

$M_{\text{total}} = M_{\text{gas}} + M_{\text{star}} = \text{constant (M_{baryons})}$; M_h, mass of heavy elements in gas = $Z M_{\text{gas}}$

$dM'_{\text{stars}} = \text{total mass made into stars, } dM''_{\text{stars}} = \text{amount of mass instantaneously returned to ISM enriched with metals}$

$dM_{\text{stars}} = dM'_{\text{stars}} - dM''_{\text{stars}}$ net matter turned into stars

define y as the yield of heavy elements- $y M_h = \text{mass of heavy elements returned to ISM}$
Closed Box- continued

- Net change in metal content of gas
 \[dM_h = y dM_{\text{star}} - Z dM_{\text{star}} = (y - Z) dM_{\text{star}} \]

- Change in \(Z \) since \(dM_g = -dM_{\text{star}} \) and \(Z = M_h / M_g \) then
 \[dZ = dM_h / M_g - M_h dM_{\text{star}} / M_g^2 = (y - Z) dM_{\text{star}} / M_g + (M_h / M_g)(dM_{\text{star}} / M_g) = ydM_{\text{star}} / M_g \]

- If we assume that the yield \(y \) is independent of time and metallicity \(Z \) then
 \[Z(t) = Z(0) - y \ln \left(\frac{M_g(t)}{M_g(0)} \right) = Z(0) - y \ln \mu \text{ metallicity of gas grows with time as log mass of stars that have a metallicity less than } Z(t) \text{ is } M_{\text{star}}[<Z(t)] = M_{\text{star}}(t) = M_g(0) - M_g(t) \]
 or
 \[M_{\text{star}}[<Z(t)] = M_g(0) \left[1 - \exp \left(\frac{(Z(t) - Z(0))}{y} \right) \right] \]

when all the gas is gone mass of stars with metallicity \(Z \), \(Z + dZ \) is

\[M_{\text{star}}[Z] \alpha \exp \left(\frac{(Z(t) - Z(0))}{y} \right) dZ \] is we use this to derive the yield from data

- \(Z(\text{today}) \sim Z(0) + y \ln \left(\frac{M_g(\text{today})}{M_g(0)} \right) \)
- \(Z(\text{today}) \sim 0.7 Z_{\odot} \)

since initial mass of gas was sum of gas today and stars today \(M_g(0) = M_g(\text{today}) + M_\text{stars}(\text{today}) \)

- with \(M_\text{g}(\text{today}) \sim 40M_\odot/pc^2 \)
- \(M_{\text{stars}}(\text{today}) \sim 10M_\odot/pc^2 \)

get \(y = 0.43 Z_{\odot} \) go to pg 180 in text to see sensitivity to average metallicity of stars

Closed Box- Problems

- Problem is that closed box connects todays gas and stars yet have systems like globulars with no gas and more or less uniform abundance.

- Also need to tweak yields and/or assumptions to get good fits to different systems like local group dwarfs.

- Also 'G dwarf' problem in MW (S+G pg 180-181) and different relative abundances (e.g C,N,O,Fe) amongst stars

Green is closed box model red is observations of local stars

• Go to more complex models - leaky box (e.g inflow/outflow);
 - if we assume outflow of metal enriched material \(g(t) \); and assume this is proportional to star formation rate \(g(t) = c dM_g / dt \);
 - result is \(Z(t) = Z(0) - [(y/(1+c)) \ln (M_g(t)/M_g(0))] \) - reduces effective yield but does not change relative abundances

- if we assume outflow of metal enriched material \(g(t) \);
 - result is \(Z(t) = Z(0) - y [(1+c) \ln (M_g(t)/M_g(0))] \) - reduces effective yield but does not change relative abundances
Leaky box

Outflow and/or accretion is needed to explain

- Metallicity distribution of stars in Milky Way disk
- Mass-metallicity relation of local star-forming galaxies
- Metallicity-radius relation in disk galaxies

Leaky-Box Model

- If there is an outflow of processed material, \(g(t) \), the conservation of mass becomes

\[
dM_g / dt + dM_s / dt + g(t) = 0
\]

- And the rate of change in the metal content of the gas mass becomes

\[
dM_n / dt = y dM_s / dt - Z dM_s / dt - Z g
\]

- Example: Assume that the rate at which the gas flows out of the box is proportional to the star formation rate:
 - \(g(t) = c \ dM_g / dt \) (\(c \) is a constant; \(c = 0.01 - 5 \))
 - As before \(dZ / dt = y \star (dM_s / dt) / M_g(t) \)
 - Where \(dM_s / dt = -(1/(1+c)) \ dM_g / dt \)
 - So \(dZ / dt = [y/(1+c)] \star [1/M_g] \star dM_g / dt \)
 - Integrating this equation, we get

\[
Z(t) = Z(0) - [y/(1+c)] \star \ln(M_g(t)/M_g(0))
\]

- The only effect of an outflow is to reduce the yield to an effective yield \(= y/(1+c) \)
Accreting-Box Model

- **Example**: Accretion of pristine (metal-free) gas to the box
- Since the gas accreted is pristine, the mass of heavy elements produced in a SF episode is
 \[\frac{dM_h}{dt} = (y - Z) \frac{dM_s}{dt} \]
- However, for the conservation of mass in the box becomes:
 \[\frac{dM_g}{dt} = - \frac{dM_s}{dt} + f(t) \]
- Consider the simple case in which the mass in gas in the box is constant. This implies then
 \[\frac{dZ}{dt} = \frac{1}{M_g} \left((y - Z) \frac{dM_s}{dt} - Z \frac{dM_g}{dt} \right) = \frac{1}{M_g} \left((y - Z) \frac{dM_s}{dt} \right) \]

Accreting-Box Model

- Integrating and assuming that \(Z(0) = 0 \)
 \[Z = y \left(1 - e^{-\frac{M_s}{M_g}} \right) \]
- Therefore when \(M_s \gg M_g \), the metallicity \(Z \sim y \)
- The mass in stars that are more metal-poor than \(Z \) is
 \[M_{s, < Z} = M_g \ln \left(1 - \frac{Z}{y} \right) \]
- In this case, for \(M_g \sim 10 \frac{M_{sun}}{pc^2} \) and \(M_s \sim 40 \frac{M_{sun}}{pc^2} \), and for \(Z = 0.7 \frac{Z_{sun}}{Z_{sun}} \) then \(y \sim 0.71 \frac{Z_{sun}}{Z_{sun}} \). Thus the fraction of stars more metal-poor than \(0.25 \frac{Z_{sun}}{Z_{sun}} \) is \(\frac{M(<0.25)}{M(<0.7)} \sim 10\% \), in much better agreement with the observations of the solar neighborhood
• But simple closed-box model works well for bulge of Milky Way
• Outflow and/or accretion is needed to explain
 Metallicity distribution of stars in Milky Way disk
Mass-metallicity relation of local star-forming galaxies
Metallicity-radius relation in disk galaxies
Merger-induced starburst galaxies
Mass-metallicity relation in distant star-forming galaxies

Galactic bulge metallicity distributions of stars S&G fig 4.16- solid line is closed box model

Local Star-Forming Galaxies

- Mass-metallicity relation of galaxies favors leaky-box models:
 \[Y_{ef} = \frac{1}{1+c} \] \[y \rightarrow \] winds are more efficient at removing metals from shallower galaxy potential wells (\(V_{rot} < 150 \text{ km s}^{-1} \))

Reminder: \(Z(t) = Z(0) - \left[\frac{y}{1+c} \right] \times \ln\left[\frac{M(t)}{M(0)} \right] \) (here assume \(Z(0) = 0 \))

(e.g., Garnett10, Tremonti10, Kauffmann03)
The LMC

- Distance 50kpc
- Dwarf Irregular
 - Type Sm
- Tarantula Nebula
 - active star forming region
- Barred galaxy
- $L \approx 1.7 \times 10^9 \, L_\odot$

Xray: ROSAT AAO optical 3 color

IRAS (Jason Surace) Radio (RAIUB/MPIFR Bonn)

Each image is about 4°.5 on a side (9x moon’s diameter)
• Clues to the MC's dynamics
 - Common HI envelope
 - Stream of gas "following" the MC's

Magellanic Clouds
- Satellites of the MW: potentially dynamics of SMC and LMC and the Magellanic stream can allow detailed measurement of mass of the MW.
- LMC D~50kpc $M_{\text{gas}} \sim 0.6x10^9 M_\odot$ (~10% of Milky Way) Supernova rate ~0.2 of Milky Way
 Position of LMC and SMC over time- in full up dynamical model; no merger with MW in 2 Gyrs

R.C. Bruens
Analytic Estimate How Fast Will Local Group Merge?

- **Dynamical friction** (S+G 7.1.1 MBW sec 12.3, sec 8.1 MBW) - occurs when an object has a relative velocity wrt to a stationary set of masses. The moving stars are deflected slightly, producing a higher density 'downstream' - producing a net drag on the moving particles.
- Net force \(= M \frac{dv}{dt} \sim C \frac{G^2 M^2 \rho}{V^2} \) for particles of equal mass - so time to 'lose' significant energy-timescale for dynamical friction - slower galaxy moves larger its deacceleration.
- \(t_{\text{friction}} \sim \frac{V}{(dv/dt)} \sim \frac{V^3}{4 \pi G^2 M m \rho \ln \Lambda} \)

\(M \sim 10^{10} M; m=1M; \rho \sim 3 \times 10^{-4} M/pc^3 \) Galactic density at distance of LMC (problem 7.6)

Putting in typical values \(t_{\text{friction}} \sim 3\text{Gyrs} \)

- Accurate estimates of the effects of dynamical friction and the timescale for an orbiting satellite to lose its energy and angular momentum to merge with a host are essential for many astrophysical problems.
- The growth of galaxies depends on their dynamical evolution within larger dark matter halos.
- Dynamical friction provides a critical link between dark matter halo mergers and the galaxy mergers that determine, e.g., stellar masses, supermassive black hole masses, galaxy colors, and galaxy morphologies. (Boylan-Kolchin et al 2007)
Dynamical Friction Derivation pg 285 S&G

- As M moves past it gets a change in velocity in the perpendicular direction
 \[\delta V = \frac{2Gm}{bV} \] (in the limit that \(b \gg \frac{2G(M+m)}{V^2} \))

 momentum is conserved so change in kinetic energy in the perpendicular direction is
 \[\delta (KE) = \frac{(M/2)(2Gm/bV)^2 + (m/2)(2GM/bV)^2}{2G^2mM(M+m)/b^2V^2} \]
 \[\delta V \sim \frac{2G^2m(M+m)/b^2V^2}{(eq \ 7.5 \ S&G)} \]
 and \(dV/dt \sim 4\pi G^2(M+m)/V^2 \)

 notice that the smaller object acquires the most energy which can only come from the forward motion of galaxy M

Dynamical Friction

- However Chandrasekar's derivation had to make certain assumptions which turn out not be be completely valid.

- Recently Boylan-Kolchin et al (2007) showed that the timescales were too short by factors of 1.7-3.5 depending on the ratio of the masses.
Dynamical Friction-cont

- This basically allows the exchange of energy between a smaller 'incoming' mass and the larger host galaxy.
- The smaller object acquires more energy.
- Removes energy from the directed motion small particles (e.g. stars) and transfers it to random motion (heat) - incoming galaxy 'bloats' and it loses stars.
- It is not identical to hydrodynamic drag in the low velocity limit the force is \(\sim \text{velocity} \), while in the high limit it goes as \(v^{-2} \).
- It is also independent of the mass of the particles but depends on their total density - e.g. massive satellite slowed more quickly than a small one.

LMC Merger??

- Depends sensitively on LMC orbit and model of MW potential.
- At the Clouds’ present-day position, a large fraction of their observed line of sight and proper motion speeds are due to the Sun’s motion around the Galactic center.
- The origin of the Magellanic Clouds is still an enigma as they are the only blue, gas-rich irregulars in the local group.

K. Johnston
To get orbit to MCs need all 6 quantities \((x,y,z)\) and \(v_x,v_y,v_z\) measure position and radial velocity easy tangent velocity is hard recent results differ a lot \(v_x,v_y,v_z\) \([\text{km/s}]\) 41±44, -200±31, 169±37

Distance to LMC

- LMC is unique in that many Cepheids can be detected in a galaxy with rather different metallicity with no effect of crowding distance modulus, \(\mu\), \((\log d=1+\mu/5)\) pc
- LMC \(\mu= 18.48 \pm 0.04\) mag; (49.65 Kpc)

This sets the distance scale for comparison with Cepheids in nearby galaxies (Freedman+Madore 2010)
Cosmic Rays and γ-rays

- LMC and SMC are only galaxies, other than MW, for which γ-ray images exist.
- Look for correlations with sites of CR acceleration and/or for dense gas which the CRs interact with to produce γ-rays.

LMC Cosmic Rays and γ-rays

γ-ray emission correlates with massive star forming regions and not with the gas distribution (simulated images if the γ-ray emission was distributed like the source)

- Compactness of emission regions suggests little CR diffusion
- 30 Doradus star forming region is a bright source of gamma rays and very likely a cosmic-ray accelerator

- Neutral & molecular hydrogen templates poorly fit the data
- Ionized hydrogen template provides best fit γ-ray emission poorly correlated with dense gas (!)
Dwarf Galaxies

• As we will discuss later one of the main problems with the present cold dark matter (CDM) paradigm for galaxy formation is the relative absence of small, low mass galaxies

• It is only in the local group that such systems can be discovered and studied

• they are the most dark matter dominated of all objects- and the smallest and least luminous galaxies known.

• very faint and very low surface brightness, very hard to find (Walker 2012).

• Many people believe that some dwarf spheroidals are 'relics' of the early universe

Number of Satellites around MW- Observed vs Theoretical

• Number of satellites vs their circular velocity: theory - between black lines
red points observed objects (Klypin 2010)- order of magnitude discrepancy at low masses?

• Odd property that satellites all have same mass, but 10^5 range in luminosity
Where are the Satellites of MW-Bullock 2010

- Know satellites of MW within 100kpc-left
- Right- CDM simulation of LG/ MW halo- cones show where sample of dwarfs is complete- SDSS data, only in the north

Dwarfs

- Have VERY low internal velocity dispersion~10km/sec, \(r_{\text{scale}} \sim 50-1000 \text{pc} \)
- IF mass follows light- very dark matter dominated- but precise mass is not well determined even with \(\sim 3000 \) stars individually measured (!)
- using Jeans method: all solutions (different shapes of the potential or orbital distributions) are ok
Dwarfs

• They are detected as overdensities of intrinsically bright red giant stars which detectable as point sources with \(m_V < 21 \) mag out to distances of \(\sim 0.5 \) Mpc- (modern large telescopes can reach 4 mags fainter; - since red giants have a 'unique' luminosity can use them as distance selector)

• the ‘ultrafaint’ satellites discovered with SDSS data are not apparent to the eye, even in deep images- detected by correlating spatial overdensities with overdensities in color-magnitude space

• the low surface densities of dSphs imply internal relaxation timescales of \(> 10^3 \) Hubble times 27 are known in M31

Image of Boo I

Local Group Summary

• What is important
 – local group enables detailed studies of objects which might be representative of the rest of the universe (e.g CMDs of individual stars to get SF history, spectra of stars to get metallicity, origin of cosmic rays etc)
 – wide variety of objects -2 giant spirals, lots of dwarfs
 – chemical composition of other galaxies in local group (focused on dwarfs and satellites of the MW) similar in gross terms, different in detail; indications of non-gravitational effects (winds); went thru 'closed box' approximation allowed analytic estimate of chemical abundance
 – dynamics of satellites of MW (Magellanic clouds) clues to their formation, history and amount of dark matter
 – dwarfs are the most dark matter dominated galaxies we know of- closeness allows detailed analysis.
 – dwarf galaxy 'problem' are there enough low mass dwarfs around MW??- lead to discussion later in class about galaxy formation and Cold dark matter models
M31 and the MW

- the Milky Way and M31 have different properties
- M31 shows a lower star formation rate (SFR) than the Milky Way
- M31 appears to be a more typical spiral galaxy than the Milky Way (Hammer et al. 2007).
- M31 shows evidence for a formation and evolution history affected by merging and/or accretion events, including substructures in its halo.

MW does not

- scale length of 6kpc is 3x that of the MW 2.3 kpc but similar rotation curve.
- stellar mass $M_{\text{star}} \sim 10.3 \times 10^{10} M_\odot$ for M31; disk $7.2 \times 10^{10} M_\odot$ and bulge $3.1 \times 10^{10} M_\odot$.

Tully Fisher Relation

- The relationship of luminosity to rotation speed for spirals—also relation of scale length to rotation velocity
- M31 and MW have similar v_{rot} but factor of 2 different luminosities+scale lengths - MW is more discrepant

M31, compared to the Milky Way, has 2 x more stellar mass and 2.5 x more specific angular momentum

Hammer 2007
Comparison of Metallicity of Halo Stars in M31 and MW

- The vastly different chemical compositions of the halo of MW and M31 indicate different formation histories or processes EVEN in the Local Group
- Chemical composition of stars in the dwarfs differs subtly from stars in globular clusters or MW halo.
- Comparison of observed metallicities to theoretical yields from a closed box approx (S+G 4.13-4.16) indicates outflow of enriched material (or according to S+G inflow of material enriched to 0.15 solar)

Mass Models For M31

- Several different potential forms give reasonable fits to velocity data; differ in 'total' mass by <50%
- the merging history of a galaxy, together with its star formation history, and mass re-arrangement (such as gas flows or stellar radial migration) is written in its structure, stellar ages, kinematic and chemical-elemental abundance distribution functions.

Fig. 6. Outer rotation curve observations and models (upper
Comparison of Rotation Curve for MW, M31, M33

- Black is total curve
- Blue is bulge (notice no bulge in M33), green is DM and red is disk (data from van der Maerl 2012)
- Observed maximum circular velocity for each galaxy: $V_c \approx 239 \text{ km/s}$ at
- The solar radius for the MW, $V_c \approx 250\text{ km/s}$ for M31, $V_c \approx 120 \text{ km/s}$ M33
- S+G says that M31 has a higher rotation velocity, latest data on MW has changed that! Notice where DM becomes dominant- 22 kpc for M31, 18 kpc for MW, 8 kpc for M33
- Virial mass of M33=$2.2 \times 10^{11} M_\odot$

![Rotation Curve Graphs]

Star Formation in M31, M33

- The specific star formation rate in M31 is less than in the MW with a present rate of $\sim 0.6\text{ M/yr}$.
- The SF is concentrated in a ring 10kpc out.
- M33 on the other hand is vigorously forming stars 0.45 M/yr all over (why??)

![Star Formation Graphs]

M33 UV and IR images

![M33 Images]
The future of the local group (S+G 4.5)

- It seems clear that M31 has had a much more active merger history than the MW-so beware of close by objects
- given what we know about the mass of M31, M33 and MW they will all merge in~6Gyrs (van den Maerl 2012)

M33

- M33 is almost unique in having very tight constraints placed on the presence of a supermassive black hole in its nucleus.
- It is probably tidally involved with M31-220kpc away

\[M_{\text{disk,stellar}} \approx 3.8 \times 10^9 M_\odot \]
\[M_{\text{bulge,stellar}} \approx 1 \times 10^8 M_\odot \]
\[M_{\text{virial}} \approx 2.2 \times 10^{11} M_\odot \]

Fig. 9. Integrated H\textsubscript{i} emission from the subset of detected features apparently associated with M31 and M33. The grey-scale
Chemical Evolution

- The one zone no infall or outgo model while analytic (eq 4.13-4.16) does not really represent what has happened
- LMC and SMC are more 'metal poor' than the MW or M31; [Fe/H]~0.35 and -0.6 respectively - but with considerable variation from place to place.

In general line of trend for less massive galaxies to be more metal poor (but large scatter)

Black Holes

- It is now believed that 'all' massive galaxies have super massive black holes in their nuclei whose mass scales with the bulge properties of the galaxies
- What about the smaller galaxies in the local group?
- Search for BHs 2 ways
 - dynamics
 - presence of an AGN (active galactic nucleus)
- None of the Local group galaxies host an AGN (today)
- Of the small galaxies only M32 shows dynamical evidence for a black hole (van der Maerl 2009) of M~2.5x10^6 M_☉ for a galaxy of luminosity -16.83 compared to -21.8 for M31 (100x less luminous) which has a similar mass BH- M32 is spheroidal (all bulge)

<table>
<thead>
<tr>
<th></th>
<th>M_BH(M_☉)</th>
<th>M_{bulge}M_☉</th>
</tr>
</thead>
<tbody>
<tr>
<td>M33 Scd</td>
<td>< 3 x 10^3</td>
<td>1.5 x 10^8</td>
</tr>
<tr>
<td>NGC205 E</td>
<td>< 2.4x10^4</td>
<td>2.7 x 10^8</td>
</tr>
<tr>
<td>M32 E</td>
<td>~2.5x10^6</td>
<td>~2.5 x 10^8</td>
</tr>
</tbody>
</table>
• Black hole mass vs bulge velocity dispersion
• Local group galaxies

Local Group timing argument

• Use dynamics of M31 and the MW to estimate the total mass in the LG.
• the radial velocity of M31 with respect to the MW ~-120km/sec e.g. towards MW presumably because their mutual gravitational attraction has halted, and eventually reversed their initial velocities from the Hubble flow.
• neglect other galaxies in LC, and treat the two galaxies as an isolated system of two point masses.
• assume the orbit to be radial, then Newton's law gives \(\frac{dr}{dt^2} = \frac{GM_{\text{total}}}{r} \)
• Period of orbit less than age of the universe: Kepler's Law \(P^2 = \frac{4\pi a^3}{GM} \)
• Assume purely radial orbits (no ang Mom) so \(\frac{GM}{2a} = \frac{GM}{d-E} \); \(d \) = distance to center of mass and \(E \) is KE/unit mass
derive total \(M > 1.8 \times 10^{12} M_\odot \)
Local Group timing argument

\(M_{\text{total}} \) is the sum of the 2 masses Initially, take \(r=0 \) at \(t=0 \)

- solution of the form \(r=R_{\text{max}}/2(1-\cos \theta) \) and \(t=(R_{\text{max}}^3/8M_{\text{total}}G_{\text{total}})^{1/2}(\theta-\sin \theta) \)
- The distance increases from 0 (for \(\theta=0 \)) to some maximum value \(R_{\text{max}} \) (for \(\theta=\pi \)), and then decreases again. The relative velocity is
- \(v=dr/dt=(dr/d\theta)/(d\theta/dt)=(2GM_{\text{total}}/R_{\text{max}})^{1/2}(\sin \theta/(1-\cos \theta)) \)
- The last three equations can be combined to eliminate \(R_{\text{max}} \), and \(M_{\text{total}} \), to give
- \(v/t=\sin \theta*(\theta-\sin \theta)/(1-\cos \theta)^{1/2} \)

\(v \) can be measured from Doppler shifts, and \(r \) from Cepheid variables. For \(t \) take the age of the Universe, 13.8Gyrs.

Local Group timing argument

solve the previous equation (numerically) to find \(\theta=4.32 \) radians, assuming M31 is on its first approach to the MW

- \(M_{\text{total}}=3.66\times10^{12} M_{\odot} \) and mass MW \(\sim1/3 \) of total
- the estimate of \(M_{\text{total}} \) is increased if the orbit is not radial, or M31 and the MW have already had one (or more) pericenter passages since the Big Bang.

- So the very large mass inferred from the LG dynamics strongly corroborates the evidence from rotation curves and Oort's constants, that most of the mass in the MW (and presumably also in M31) is dark.

- estimate the extent of such a putative dark halo. If \(V_c^2 \) is circular velocity out to \(R_{\text{halo}} \), then \(R_{\text{halo}} =GM_{\text{MW}}/V_c^2 =G*10^{12}/(220\text{km/s})^2 =90\text{kpc} \)
- If, the rotation speed drops at large R, then \(R_{\text{halo}} \) is even bigger.
- Hence the extent of the dark matter halo around the MW and M31 is very large. the size of the stellar disk is of order 20kpc or so, and 780kpc is the distance to M31 . So the dark matter haloes of the MW and M31 may almost overlap.
timing argument

- \(M_{\text{total}} = 3.66 \times 10^{12} \, M_\odot \) and mass MW \(\sim 1/3 \) of total
- \(R_{\text{halo}} = \frac{G M_{\text{MW}}}{V_c^2} = G \times 10^{12}/(220 \, \text{km/s})^2 \)
 \(= 90 \, \text{kpc} \)
- If, the rotation speed drops at large R, then \(R_{\text{halo}} \) is even bigger
Local Volume of Space

As indicated by CDM simulations the universe is lumpy.
Here is a 'map' (Hudson 1994) of the nearby universe.
Objects labled 'A' are rich clusters.
Other massive clusters are labeled Virgo Coma, Cen, Perseus.
of galaxies from Abells catalog - axis are labeled in velocity units (km/sec).
Notice filamentary structure.

Constrained Realization

- In order for numerical galaxy formation models to 'work' properly need to sample a large volume of space.
- Constrained to have properties of Local group.
Where is the Local Group

- This visualization shows our "Local Universe", as simulated in the constrained realization project.
- The Local Group is in the centre of the sphere. In the initial orientation of the sphere, the Great Attractor is on the left, and the Cetus Wall on the lower right.
- Credit: Volker Springel
- Simulation code: Gadget

Summary of Today Lecture Local Group

- Introduction of Tully-Fisher scaling relation- how to compare galaxies- much more in discussion of spirals next week.
- Discussion of detailed properties of M31, M33 comparison to MW; differences in how they formed; MW very few 'major mergers' M31 more; not all galaxies even those close to each other do not have the same history.
- Dynamics of local group allow prediction that M31 and MW (and presumably the Magellanic clouds) will merge in ~6 gyr
- A supermassive black hole exists in the centers of 'all' massive galaxies- properties of BH are related to the bulge and not the disk of the galaxy
- Use 'timing argument' to estimate the mass of the local group (idea is that this is the first time MW and M31 are approaching each other and the orbit is radial) use 'simple' mechanics to get mass
- Local group is part of a larger set of structures- the 'cosmic web' galaxies do not exist in isolation