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Preface

The vast ocean of space is full of starry islands called galaxies. These objects, extraordinar-
ily beautiful and diverse in their own right, not only are the localities within which stars form
and evolve, but also act as the lighthouses that allow us to explore our Universe over cosmo-
logical scales. Understanding the majesty and variety of galaxies in a cosmological context is
therefore an important, yet daunting task. Particularly mind-boggling is the fact that, in the cur-
rent paradigm, galaxies only represent the tip of the iceberg in a Universe dominated by some
unknown ‘dark matter’ and an even more elusive form of ‘dark energy’.

How do galaxies come into existence in this dark Universe, and how do they evolve? What is
the relation of galaxies to the dark components? What shapes the properties of different galaxies?
How are different properties of galaxies correlated with each other and what physics underlies
these correlations? How do stars form and evolve in different galaxies? The quest for the answers
to these questions, among others, constitutes an important part of modern cosmology, the study of
the structure and evolution of the Universe as a whole, and drives the active and rapidly evolving
research field of extragalactic astronomy and astrophysics.

The aim of this book is to provide a self-contained description of the physical processes and
the astronomical observations which underlie our present understanding of the formation and
evolution of galaxies in a Universe dominated by dark matter and dark energy. Any book on
this subject must take into account that this is a rapidly developing field; there is a danger that
material may rapidly become outdated. We hope that this can be avoided if the book is appropri-
ately structured. Our premises are the following. In the first place, although observational data
are continually updated, forcing revision of the theoretical models used to interpret them, the
general principles involved in building such models do not change as rapidly. It is these prin-
ciples, rather than the details of specific observations or models, that are the main focus of this
book. Secondly, galaxies are complex systems, and the study of their formation and evolution is
an applied and synthetic science. The interest of the subject is precisely that there are so many
unsolved problems, and that the study of these problems requires techniques from many branches
of physics and astrophysics – the formation of stars, the origin and dispersal of the elements, the
link between galaxies and their central black holes, the nature of dark matter and dark energy,
the origin and evolution of cosmic structure, and the size and age of our Universe. A firm grasp
of the basic principles and the main outstanding issues across this full breadth of topics is needed
by anyone preparing to carry out her/his own research, and this we hope to provide.

These considerations dictated both our selection of material and our style of presentation.
Throughout the book, we emphasize the principles and the important issues rather than the details
of observational results and theoretical models. In particular, special attention is paid to bringing
out the physical connections between different parts of the problem, so that the reader will not
lose the big picture while working on details. To this end, we start in each chapter with an
introduction describing the material to be presented and its position in the overall scenario. In a
field as broad as galaxy formation and evolution, it is clearly impossible to include all relevant
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xviii Preface

material. The selection of the material presented in this book is therefore unavoidably biased by
our prejudice, taste, and limited knowledge of the literature, and we apologize to anyone whose
important work is not properly covered.

This book can be divided into several parts according to the material contained. Chapter 1 is
an introduction, which sketches our current ideas about galaxies and their formation processes.
Chapter 2 is an overview of the observational facts related to galaxy formation and evolution.
Chapter 3 describes the cosmological framework within which galaxy formation and evolution
must be studied. Chapters 4–8 contain material about the nature and evolution of the cosmo-
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Introduction

This book is concerned with the physical processes related to the formation and evolution of
galaxies. Simply put, a galaxy is a dynamically bound system that consists of many stars. A
typical bright galaxy, such as our own Milky Way, contains a few times 1010 stars and has a
diameter (∼ 20kpc) that is several hundred times smaller than the mean separation between
bright galaxies. Since most of the visible stars in the Universe belong to a galaxy, the number
density of stars within a galaxy is about 107 times higher than the mean number density of
stars in the Universe as a whole. In this sense, galaxies are well-defined, astronomical identities.
They are also extraordinarily beautiful and diverse objects whose nature, structure and origin
have intrigued astronomers ever since the first galaxy images were taken in the mid-nineteenth
century.

The goal of this book is to show how physical principles can be used to understand the for-
mation and evolution of galaxies. Viewed as a physical process, galaxy formation and evolution
involve two different aspects: (i) initial and boundary conditions; and (ii) physical processes
which drive evolution. Thus, in very broad terms, our study will consist of the following parts:

• Cosmology: Since we are dealing with events on cosmological time and length scales, we
need to understand the space-time structure on large scales. One can think of the cosmological
framework as the stage on which galaxy formation and evolution take place.

• Initial conditions: These were set by physical processes in the early Universe which are
beyond our direct view, and which took place under conditions far different from those we
can reproduce in Earth-bound laboratories.

• Physical processes: As we will show in this book, the basic physics required to study galaxy
formation and evolution includes general relativity, hydrodynamics, dynamics of collision-
less systems, plasma physics, thermodynamics, electrodynamics, atomic, nuclear and particle
physics, and the theory of radiation processes.

In a sense, galaxy formation and evolution can therefore be thought of as an application of (rela-
tively) well-known physics with cosmological initial and boundary conditions. As in many other
branches of applied physics, the phenomena to be studied are diverse and interact in many differ-
ent ways. Furthermore, the physical processes involved in galaxy formation cover some 23 orders
of magnitude in physical size, from the scale of the Universe itself down to the scale of individual
stars, and about four orders of magnitude in time scales, from the age of the Universe to that of
the lifetime of individual, massive stars. Put together, it makes the formation and evolution of
galaxies a subject of great complexity.

From an empirical point of view, the study of galaxy formation and evolution is very different
from most other areas of experimental physics. This is due mainly to the fact that even the
shortest time scales involved are much longer than that of a human being. Consequently, we
cannot witness the actual evolution of individual galaxies. However, because the speed of light
is finite, looking at galaxies at larger distances from us is equivalent to looking at galaxies when
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the Universe was younger. Therefore, we may hope to infer how galaxies form and evolve by
comparing their properties, in a statistical sense, at different epochs. In addition, at each epoch
we can try to identify regularities and correspondences among the galaxy population. Although
galaxies span a wide range in masses, sizes, and morphologies, to the extent that no two galaxies
are alike, the structural parameters of galaxies also obey various scaling relations, some of which
are remarkably tight. These relations must hold important information regarding the physical
processes that underlie them, and any successful theory of galaxy formation has to be able to
explain their origin.

Galaxies are not only interesting in their own right, they also play a pivotal role in our study
of the structure and evolution of the Universe. They are bright, long-lived and abundant, and so
can be observed in large numbers over cosmological distances and time scales. This makes them
unique tracers of the evolution of the Universe as a whole, and detailed studies of their large
scale distribution can provide important constraints on cosmological parameters. In this book we
therefore also describe the large scale distribution of galaxies, and discuss how it can be used to
test cosmological models.

In Chapter 2 we start by describing the observational properties of stars, galaxies and the large
scale structure of the Universe as a whole. Chapters 3 through 10 describe the various physical
ingredients needed for a self-consistent model of galaxy formation, ranging from the cosmolog-
ical framework to the formation and evolution of individual stars. Finally, in Chapters 11–16 we
combine these physical ingredients to examine how galaxies form and evolve in a cosmological
context, using the observational data as constraints.

The purpose of this introductory chapter is to sketch our current ideas about galaxies and
their formation process, without going into any detail. After a brief overview of some observed
properties of galaxies, we list the various physical processes that play a role in galaxy formation
and outline how they are connected. We also give a brief historical overview of how our current
views of galaxy formation have been shaped.

1.1 The Diversity of the Galaxy Population

Galaxies are a diverse class of objects. This means that a large number of parameters is required
in order to characterize any given galaxy. One of the main goals of any theory of galaxy formation
is to explain the full probability distribution function of all these parameters. In particular, as we
will see in Chapter 2, many of these parameters are correlated with each other, a fact which any
successful theory of galaxy formation should also be able to reproduce.

Here we list briefly the most salient parameters that characterize a galaxy. This overview is
necessarily brief and certainly not complete. However, it serves to stress the diversity of the
galaxy population, and to highlight some of the most important observational aspects that galaxy
formation theories need to address. A more thorough description of the observational properties
of galaxies is given in Chapter 2.

(a) Morphology One of the most noticeable properties of the galaxy population is the existence
of two basic galaxy types: spirals and ellipticals. Elliptical galaxies are mildly flattened, ellip-
soidal systems that are mainly supported by the random motions of their stars. Spiral galaxies, on
the other hand, have highly flattened disks that are mainly supported by rotation. Consequently,
they are also often referred to as disk galaxies. The name ‘spiral’ comes from the fact that the gas
and stars in the disk often reveal a clear spiral pattern. Finally, for historical reasons, ellipticals
and spirals are also called early- and late-type galaxies, respectively.

Most galaxies, however, are neither a perfect ellipsoid nor a perfect disk, but rather a combi-
nation of both. When the disk is the dominant component, its ellipsoidal component is generally
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called the bulge. In the opposite case, of a large ellipsoidal system with a small disk, one typically
talks about a disky elliptical. One of the earliest classification schemes for galaxies, which is still
heavily used, is the Hubble sequence. Roughly speaking, the Hubble sequence is a sequence
in the admixture of the disk and ellipsoidal components in a galaxy, which ranges from early-
type ellipticals that are pure ellipsoids to late-type spirals that are pure disks. As we will see
in Chapter 2, the important aspect of the Hubble sequence is that many intrinsic properties of
galaxies, such as luminosity, color, and gas content, change systematically along this sequence.
In addition, disks and ellipsoids most likely have very different formation mechanisms. There-
fore, the morphology of a galaxy, or its location along the Hubble sequence, is directly related to
its formation history.

For completeness, we stress that not all galaxies fall in this spiral vs. elliptical classification.
The faintest galaxies, called dwarf galaxies, typically do not fall on the Hubble sequence. Dwarf
galaxies with significant amounts of gas and ongoing star formation typically have a very irreg-
ular structure, and are consequently called (dwarf) irregulars. Dwarf galaxies without gas and
young stars are often very diffuse, and are called dwarf spheroidals. In addition to these dwarf
galaxies, there is also a class of brighter galaxies whose morphology neither resembles a disk nor
a smooth ellipsoid. These are called peculiar galaxies and include, among others, galaxies with
double or multiple subcomponents linked by filamentary structure and highly distorted galax-
ies with extended tails. As we will see, they are usually associated with recent mergers or tidal
interactions. Although peculiar galaxies only constitute a small fraction of the entire galaxy pop-
ulation, their existence conveys important information about how galaxies may have changed
their morphologies during their evolutionary history.

(b) Luminosity and Stellar Mass Galaxies span a wide range in luminosity. The brightest
galaxies have luminosities of ∼ 1012 L�, where L� indicates the luminosity of the Sun. The exact
lower limit of the luminosity distribution is less well defined, and is subject to regular changes,
as fainter and fainter galaxies are constantly being discovered. In 2007 the faintest galaxy known
was a newly discovered dwarf spheroidal Willman I, with a total luminosity somewhat below
1000L�.

Obviously, the total luminosity of a galaxy is related to its total number of stars, and thus to its
total stellar mass. However, the relation between luminosity and stellar mass reveals a significant
amount of scatter, because different galaxies have different stellar populations. As we will see in
Chapter 10, galaxies with a younger stellar population have a higher luminosity per unit stellar
mass than galaxies with an older stellar population.

An important statistic of the galaxy population is its luminosity probability distribution func-
tion, also known as the luminosity function. As we will see in Chapter 2, there are many more
faint galaxies than bright galaxies, so that the faint ones clearly dominate the number density.
However, in terms of the contribution to the total luminosity density, neither the faintest nor the
brightest galaxies dominate. Instead, it is the galaxies with a characteristic luminosity similar
to that of our Milky Way that contribute most to the total luminosity density in the present-day
Universe. This indicates that there is a characteristic scale in galaxy formation, which is accen-
tuated by the fact that most galaxies that are brighter than this characteristic scale are ellipticals,
while those that are fainter are mainly spirals (at the very faint end dwarf irregulars and dwarf
spheroidals dominate). Understanding the physical origin of this characteristic scale has turned
out to be one of the most challenging problems in contemporary galaxy formation modeling.

(c) Size and Surface Brightness As we will see in Chapter 2, galaxies do not have well-defined
boundaries. Consequently, several different definitions for the size of a galaxy can be found in
the literature. One measure often used is the radius enclosing a certain fraction (e.g. half) of the
total luminosity. In general, as one might expect, brighter galaxies are bigger. However, even for
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a fixed luminosity, there is a considerable scatter in sizes, or in surface brightness, defined as the
luminosity per unit area.

The size of a galaxy has an important physical meaning. In disk galaxies, which are rotation
supported, the sizes are a measure of their specific angular momenta (see Chapter 11). In the
case of elliptical galaxies, which are supported by random motions, the sizes are a measure
of the amount of dissipation during their formation (see Chapter 13). Therefore, the observed
distribution of galaxy sizes is an important constraint for galaxy formation models.

(d) Gas Mass Fraction Another useful parameter to describe galaxies is their cold gas mass
fraction, defined as fgas = Mcold/[Mcold + M�], with Mcold and M� the masses of cold gas and
stars, respectively. This ratio expresses the efficiency with which cold gas has been turned into
stars. Typically, the gas mass fractions of ellipticals are negligibly small, while those of disk
galaxies increase systematically with decreasing surface brightness. Indeed, the lowest surface
brightness disk galaxies can have gas mass fractions in excess of 90 percent, in contrast to our
Milky Way which has fgas ∼ 0.1.

(e) Color Galaxies also come in different colors. The color of a galaxy reflects the ratio of
its luminosity in two photometric passbands. A galaxy is said to be red if its luminosity in the
redder passband is relatively high compared to that in the bluer passband. Ellipticals and dwarf
spheroidals generally have redder colors than spirals and dwarf irregulars. As we will see in
Chapter 10, the color of a galaxy is related to the characteristic age and metallicity of its stellar
population. In general, redder galaxies are either older or more metal rich (or both). Therefore, the
color of a galaxy holds important information regarding its stellar population. However, extinc-
tion by dust, either in the galaxy itself, or along the line-of-sight between the source and the
observer, also tends to make a galaxy appear red. As we will see, separating age, metallicity and
dust effects is one of the most daunting tasks in observational astronomy.

(f) Environment As we will see in §§2.5–2.7, galaxies are not randomly distributed throughout
space, but show a variety of structures. Some galaxies are located in high-density clusters con-
taining several hundreds of galaxies, some in smaller groups containing a few to tens of galaxies,
while yet others are distributed in low-density filamentary or sheet-like structures. Many of these
structures are gravitationally bound, and may have played an important role in the formation
and evolution of the galaxies. This is evident from the fact that elliptical galaxies seem to prefer
cluster environments, whereas spiral galaxies are mainly found in relative isolation (sometimes
called the field). As briefly discussed in §1.2.8 below, it is believed that this morphology–density
relation reflects enhanced dynamical interaction in denser environments, although we still lack a
detailed understanding of its origin.

(g) Nuclear Activity For the majority of galaxies, the observed light is consistent with what
we expect from a collection of stars and gas. However, a small fraction of all galaxies, called
active galaxies, show an additional non-stellar component in their spectral energy distribution.
As we will see in Chapter 14, this emission originates from a small region in the centers of these
galaxies, called the active galactic nucleus (AGN), and is associated with matter accretion onto a
supermassive black hole. According to the relative importance of such non-stellar emission, one
can separate active galaxies from normal (or non-active) galaxies.

(h) Redshift Because of the expansion of the Universe, an object that is farther away will have a
larger receding velocity, and thus a larger redshift. Since the light from high-redshift galaxies was
emitted when the Universe was younger, we can study galaxy evolution by observing the galaxy
population at different redshifts. In fact, in a statistical sense the high-redshift galaxies are the
progenitors of present-day galaxies, and any changes in the number density or intrinsic properties
of galaxies with redshift give us a direct window on the formation and evolution of the galaxy
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population. With modern, large telescopes we can now observe galaxies out to redshifts beyond
six, making it possible for us to probe the galaxy population back to a time when the Universe
was only about 10 percent of its current age.

1.2 Basic Elements of Galaxy Formation

Before diving into details, it is useful to have an overview of the basic theoretical framework
within which our current ideas about galaxy formation and evolution have been developed. In
this section we give a brief overview of the various physical processes that play a role dur-
ing the formation and evolution of galaxies. The goal is to provide the reader with a picture
of the relationships among the various aspects of galaxy formation to be addressed in greater
detail in the chapters to come. To guide the reader, Fig. 1.1 shows a flow chart of galaxy for-
mation, which illustrates how the various processes to be discussed below are intertwined. It
is important to stress, though, that this particular flow chart reflects our current, undoubtedly
incomplete view of galaxy formation. Future improvements in our understanding of galaxy for-
mation and evolution may add new links to the flow chart, or may render some of the links shown
obsolete.

Fig. 1.1. A logic flow chart for galaxy formation. In the standard scenario, the initial and boundary con-
ditions for galaxy formation are set by the cosmological framework. The paths leading to the formation of
various galaxies are shown along with the relevant physical processes. Note, however, that processes do
not separate as neatly as this figure suggests. For example, cold gas may not have the time to settle into a
gaseous disk before a major merger takes place.
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1.2.1 The Standard Model of Cosmology

Since galaxies are observed over cosmological length and time scales, the description of their
formation and evolution must involve cosmology, the study of the properties of space-time on
large scales. Modern cosmology is based upon the cosmological principle, the hypothesis that
the Universe is spatially homogeneous and isotropic, and Einstein’s theory of general relativity,
according to which the structure of space-time is determined by the mass distribution in the
Universe. As we will see in Chapter 3, these two assumptions together lead to a cosmology (the
standard model) that is completely specified by the curvature of the Universe, K, and the scale
factor, a(t), describing the change of the length scale of the Universe with time. One of the basic
tasks in cosmology is to determine the value of K and the form of a(t) (hence the space-time
geometry of the Universe on large scales), and to show how observables are related to physical
quantities in such a universe.

Modern cosmology not only specifies the large-scale geometry of the Universe, but also has
the potential to predict its thermal history and matter content. Because the Universe is expanding
and filled with microwave photons at the present time, it must have been smaller, denser and
hotter at earlier times. The hot and dense medium in the early Universe provides conditions
under which various reactions among elementary particles, nuclei and atoms occur. Therefore,
the application of particle, nuclear and atomic physics to the thermal history of the Universe in
principle allows us to predict the abundances of all species of elementary particles, nuclei and
atoms at different epochs. Clearly, this is an important part of the problem to be addressed in this
book, because the formation of galaxies depends crucially on the matter/energy content of the
Universe.

In currently popular cosmologies we usually consider a universe consisting of three main com-
ponents. In addition to the ‘baryonic’ matter, the protons, neutrons and electrons1 that make up
the visible Universe, astronomers have found various indications for the presence of dark matter
and dark energy (see Chapter 2 for a detailed discussion of the observational evidence). Although
the nature of both dark matter and dark energy is still unknown, we believe that they are respon-
sible for more than 95 percent of the energy density of the Universe. Different cosmological
models differ mainly in (i) the relative contributions of baryonic matter, dark matter, and dark
energy, and (ii) the nature of dark matter and dark energy. At the time of writing, the most pop-
ular model is the so-called ΛCDM model, a flat universe in which ∼ 75 percent of the energy
density is due to a cosmological constant, ∼ 21 percent is due to ‘cold’ dark matter (CDM),
and the remaining 4 percent is due to the baryonic matter out of which stars and galaxies are
made. Chapter 3 gives a detailed description of these various components, and describes how
they influence the expansion history of the Universe.

1.2.2 Initial Conditions

If the cosmological principle held perfectly and the distribution of matter in the Universe were
perfectly uniform and isotropic, there would be no structure formation. In order to explain the
presence of structure, in particular galaxies, we clearly need some deviations from perfect uni-
formity. Unfortunately, the standard cosmology does not in itself provide us with an explanation
for the origin of these perturbations. We have to go beyond it to search for an answer.

A classical, general relativistic description of cosmology is expected to break down at very
early times when the Universe is so dense that quantum effects are expected to be important. As
we will see in §3.6, the standard cosmology has a number of conceptual problems when applied
to the early Universe, and the solutions to these problems require an extension of the standard

1 Although an electron is a lepton, and not a baryon, in cosmology it is standard practice to include electrons when
talking of baryonic matter
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cosmology to incorporate quantum processes. One generic consequence of such an extension
is the generation of density perturbations by quantum fluctuations at early times. It is believed
that these perturbations are responsible for the formation of the structures observed in today’s
Universe.

As we will see in §3.6, one particularly successful extension of the standard cosmology is the
inflationary theory, in which the Universe is assumed to have gone through a phase of rapid,
exponential expansion (called inflation) driven by the vacuum energy of one or more quantum
fields. In many, but not all, inflationary models, quantum fluctuations in this vacuum energy can
produce density perturbations with properties consistent with the observed large scale structure.
Inflation thus offers a promising explanation for the physical origin of the initial perturbations.
Unfortunately, our understanding of the very early Universe is still far from complete, and we are
currently unable to predict the initial conditions for structure formation entirely from first prin-
ciples. Consequently, even this part of galaxy formation theory is still partly phenomenological:
typically initial conditions are specified by a set of parameters that are constrained by observa-
tional data, such as the pattern of fluctuations in the microwave background or the present-day
abundance of galaxy clusters.

1.2.3 Gravitational Instability and Structure Formation

Having specified the initial conditions and the cosmological framework, one can compute how
small perturbations in the density field evolve. As we will see in Chapter 4, in an expand-
ing universe dominated by non-relativistic matter, perturbations grow with time. This is easy
to understand. A region whose initial density is slightly higher than the mean will attract its
surroundings slightly more strongly than average. Consequently, over-dense regions pull matter
towards them and become even more over-dense. On the other hand, under-dense regions become
even more rarefied as matter flows away from them. This amplification of density perturbations is
referred to as gravitational instability and plays an important role in modern theories of structure
formation. In a static universe, the amplification is a run-away process, and the density contrast
δρ/ρ grows exponentially with time. In an expanding universe, however, the cosmic expansion
damps accretion flows, and the growth rate is usually a power law of time, δρ/ρ ∝ tα , with
α > 0. As we will see in Chapter 4, the exact rate at which the perturbations grow depends on
the cosmological model.

At early times, when the perturbations are still in what we call the linear regime (δρ/ρ � 1),
the physical size of an over-dense region increases with time due to the overall expansion of
the universe. Once the perturbation reaches over-density δρ/ρ ∼ 1, it breaks away from the
expansion and starts to collapse. This moment of ‘turn-around’, when the physical size of
the perturbation is at its maximum, signals the transition from the mildly nonlinear regime to
the strongly nonlinear regime.

The outcome of the subsequent nonlinear, gravitational collapse depends on the matter con-
tent of the perturbation. If the perturbation consists of ordinary baryonic gas, the collapse creates
strong shocks that raise the entropy of the material. If radiative cooling is inefficient, the sys-
tem relaxes to hydrostatic equilibrium, with its self-gravity balanced by pressure gradients. If the
perturbation consists of collisionless matter (e.g. cold dark matter), no shocks develop, but the
system still relaxes to a quasi-equilibrium state with a more-or-less universal structure. This pro-
cess is called violent relaxation and will be discussed in Chapter 5. Nonlinear, quasi-equilibrium
dark matter objects are called dark matter halos. Their predicted structure has been thoroughly
explored using numerical simulations, and they play a pivotal role in modern theories of galaxy
formation. Chapter 7 therefore presents a detailed discussion of the structure and formation of
dark matter halos. As we shall see, halo density profiles, shapes, spins and internal substructure
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all depend very weakly on mass and on cosmology, but the abundance and characteristic density
of halos depend sensitively on both of these.

In cosmologies with both dark matter and baryonic matter, such as the currently favored CDM
models, each initial perturbation contains baryonic gas and collisionless dark matter in roughly
their universal proportions. When an object collapses, the dark matter relaxes violently to form a
dark matter halo, while the gas shocks to the virial temperature, Tvir (see §8.2.3 for a definition)
and may settle into hydrostatic equilibrium in the potential well of the dark matter halo if cooling
is slow.

1.2.4 Gas Cooling

Cooling is a crucial ingredient of galaxy formation. Depending on temperature and density,
a variety of cooling processes can affect gas. In massive halos, where the virial temperature
Tvir ∼> 107 K, gas is fully collisionally ionized and cools mainly through bremsstrahlung emission
from free electrons. In the temperature range 104 K < Tvir < 106 K, a number of excitation and
de-excitation mechanisms can play a role. Electrons can recombine with ions, emitting a pho-
ton, or atoms (neutral or partially ionized) can be excited by a collision with another particle,
thereafter decaying radiatively to the ground state. Since different atomic species have different
excitation energies, the cooling rates depend strongly on the chemical composition of the gas.
In halos with Tvir < 104 K, gas is predicted to be almost completely neutral. This strongly sup-
presses the cooling processes mentioned above. However, if heavy elements and/or molecules are
present, cooling is still possible through the collisional excitation/de-excitation of fine and hyper-
fine structure lines (for heavy elements) or rotational and/or vibrational lines (for molecules).
Finally, at high redshifts (z ∼> 6), inverse Compton scattering of cosmic microwave background
photons by electrons in hot halo gas can also be an effective cooling channel. Chapter 8 will
discuss these cooling processes in more detail.

Except for inverse Compton scattering, all these cooling mechanisms involve two particles.
Consequently, cooling is generally more effective in higher density regions. After nonlinear grav-
itational collapse, the shocked gas in virialized halos may be dense enough for cooling to be
effective. If cooling times are short, the gas never comes to hydrostatic equilibrium, but rather
accretes directly onto the central protogalaxy. Even if cooling is slow enough for a hydrostatic
atmosphere to develop, it may still cause the denser inner regions of the atmosphere to lose pres-
sure support and to flow onto the central object. The net effect of cooling is thus that the baryonic
material segregates from the dark matter, and accumulates as dense, cold gas in a protogalaxy at
the center of the dark matter halo.

As we will see in Chapter 7, dark matter halos, as well as the baryonic material associated
with them, typically have a small amount of angular momentum. If this angular momentum is
conserved during cooling, the gas will spin up as it flows inwards, settling in a cold disk in
centrifugal equilibrium at the center of the halo. This is the standard paradigm for the formation
of disk galaxies, which we will discuss in detail in Chapter 11.

1.2.5 Star Formation

As the gas in a dark matter halo cools and flows inwards, its self-gravity will eventually dominate
over the gravity of the dark matter. Thereafter it collapses under its own gravity, and in the
presence of effective cooling, this collapse becomes catastrophic. Collapse increases the density
and temperature of the gas, which generally reduces the cooling time more rapidly than it reduces
the collapse time. During such runaway collapse the gas cloud may fragment into small, high-
density cores that may eventually form stars (see Chapter 9), thus giving rise to a visible galaxy.
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Unfortunately, many details of these processes are still unclear. In particular, we are still unable
to predict the mass fraction of, and the time scale for, a self-gravitating cloud to be transformed
into stars. Another important and yet poorly understood issue is concerned with the mass dis-
tribution with which stars are formed, i.e. the initial mass function (IMF). As we will see in
Chapter 10, the evolution of a star, in particular its luminosity as function of time and its eventual
fate, is largely determined by its mass at birth. Predictions of observable quantities for model
galaxies thus require not only the birth rate of stars as a function of time, but also their IMF.
In principle, it should be possible to derive the IMF from first principles, but the theory of star
formation has not yet matured to this level. At present one has to assume an IMF ad hoc and
check its validity by comparing model predictions to observations.

Based on observations, we will often distinguish two modes of star formation: quiescent star
formation in rotationally supported gas disks, and starbursts. The latter are characterized by
much higher star-formation rates, and are typically confined to relatively small regions (often
the nucleus) of galaxies. Starbursts require the accumulation of large amounts of gas in a small
volume, and appear to be triggered by strong dynamical interactions or instabilities. These pro-
cesses will be discussed in more detail in §1.2.8 below and in Chapter 12. At the moment,
there are still many open questions related to these different modes of star formation. What
fraction of stars formed in the quiescent mode? Do both modes produce stellar populations
with the same IMF? How does the relative importance of starbursts scale with time? As we
will see, these and related questions play an important role in contemporary models of galaxy
formation.

1.2.6 Feedback Processes

When astronomers began to develop the first dynamical models for galaxy formation in a CDM
dominated universe, it immediately became clear that most baryonic material is predicted to
cool and form stars. This is because in these ‘hierarchical’ structure formation models, small
dense halos form at high redshift and cooling within them is predicted to be very efficient. This
disagrees badly with observations, which show that only a relatively small fraction of all baryons
are in cold gas or stars (see Chapter 2). Apparently, some physical process must either prevent
the gas from cooling, or reheat it after it has become cold.

Even the very first models suggested that the solution to this problem might lie in feedback
from supernovae, a class of exploding stars that can produce enormous amounts of energy (see
§10.5). The radiation and the blast waves from these supernovae may heat (or reheat) surrounding
gas, blowing it out of the galaxy in what is called a galactic wind. These processes are described
in more detail in §§8.6 and 10.5.

Another important feedback source for galaxy formation is provided by active galactic nuclei
(AGN), the active accretion phase of supermassive black holes (SMBH) lurking at the centers of
almost all massive galaxies (see Chapter 14). This process releases vast amounts of energy – this
is why AGN are bright and can be seen out to large distances, which can be tapped by surrounding
gas. Although only a relatively small fraction of present-day galaxies contain an AGN, obser-
vations indicate that virtually all massive spheroids contain a nuclear SMBH (see Chapter 2).
Therefore, it is believed that virtually all galaxies with a significant spheroidal component have
gone through one or more AGN phases during their life.

Although it has become clear over the years that feedback processes play an important role
in galaxy formation, we are still far from understanding which processes dominate, and when
and how exactly they operate. Furthermore, to make accurate predictions for their effects, one
also needs to know how often they occur. For supernovae this requires a prior understanding of
the star-formation rates and the IMF. For AGN it requires understanding how, when and where
supermassive black holes form, and how they accrete mass.
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Fig. 1.2. A flow chart of the evolution of an individual galaxy. The galaxy is represented by the dashed box
which contains hot gas, cold gas, stars and a supermassive black hole (SMBH). Gas cooling converts hot gas
into cold gas, star formation converts cold gas into stars, and dying stars inject energy, metals and gas into
the gas components. In addition, the SMBH can accrete gas (both hot and cold) as well as stars, producing
AGN activity which can release vast amounts of energy which affect primarily the gaseous components of
the galaxy. Note that in general the box will not be closed: gas can be added to the system through accretion
from the intergalactic medium and can escape the galaxy through outflows driven by feedback from the
stars and/or the SMBH. Finally, a galaxy may merge or interact with another galaxy, causing a significant
boost or suppression of all these processes.

It should be clear from the above discussion that galaxy formation is a subject of great com-
plexity, involving many strongly intertwined processes. This is illustrated in Fig. 1.2, which
shows the relations between the four main baryonic components of a galaxy: hot gas, cold gas,
stars, and a supermassive black hole. Cooling, star formation, AGN accretion, and feedback
processes can all shift baryons from one of these components to another, thereby altering the
efficiency of all the processes. For example, increased cooling of hot gas will produce more
cold gas. This in turn will increases the star-formation rate, hence the supernova rate. The addi-
tional energy injection from supernovae can reheat cold gas, thereby suppressing further star
formation (negative feedback). On the other hand, supernova blast waves may also compress the
surrounding cold gas, so as to boost the star-formation rate (positive feedback). Understanding
these various feedback loops is one of the most important and intractable issues in contemporary
models for the formation and evolution of galaxies.

1.2.7 Mergers

So far we have considered what happens to a single, isolated system of dark matter, gas and
stars. However, galaxies and dark matter halos are not isolated. For example, as illustrated in
Fig. 1.2, systems can accrete new material (both dark and baryonic matter) from the intergalactic
medium, and can lose material through outflows driven by feedback from stars and/or AGN. In
addition, two (or more) systems may merge to form a new system with very different properties
from its progenitors. In the currently popular CDM cosmologies, the initial density fluctuations
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Fig. 1.3. A schematic merger tree, illustrating the merger history of a dark matter halo. It shows, at three
different epochs, the progenitor halos that at time t4 have merged to form a single halo. The size of each
circle represents the mass of the halo. Merger histories of dark matter halos play an important role in
hierarchical theories of galaxy formation.

have larger amplitudes on smaller scales. Consequently, dark matter halos grow hierarchically, in
the sense that larger halos are formed by the coalescence (merging) of smaller progenitors. Such
a formation process is usually called a hierarchical or ‘bottom-up’ scenario.

The formation history of a dark matter halo can be described by a ‘merger tree’ that traces
all its progenitors, as illustrated in Fig. 1.3. Such merger trees play an important role in modern
galaxy formation theory. Note, however, that illustrations such as Fig. 1.3 can be misleading. In
CDM models part of the growth of a massive halo is due to merging with a large number of much
smaller halos, and to a good approximation, such mergers can be thought of as smooth accretion.
When two similar mass dark matter halos merge, violent relaxation rapidly transforms the orbital
energy of the progenitors into the internal binding energy of the quasi-equilibrium remnant. Any
hot gas associated with the progenitors is shock-heated during the merger and settles back into
hydrostatic equilibrium in the new halo. If the progenitor halos contained central galaxies, the
galaxies also merge as part of the violent relaxation process, producing a new central galaxy in
the final system. Such a merger may be accompanied by strong star formation or AGN activity if
the merging galaxies contained significant amounts of cold gas. If two merging halos have very
different mass, the dynamical processes are less violent. The smaller system orbits within the
main halo for an extended period of time during which two processes compete to determine its
eventual fate. Dynamical friction transfers energy from its orbit to the main halo, causing it to
spiral inwards, while tidal effects remove mass from its outer regions and may eventually dissolve
it completely (see Chapter 12). Dynamical friction is more effective for more massive satellites,
but if the mass ratio of the initial halos is large enough, the smaller object (and any galaxy
associated with it) can maintain its identity for a long time. This is the process for the build-up of
clusters of galaxies: a cluster may be considered as a massive dark matter halo hosting a relatively
massive galaxy near its center and many satellites that have not yet dissolved or merged with the
central galaxy.
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As we will see in Chapters 12 and 13, numerical simulations show that the merger of two
galaxies of roughly equal mass produces an object reminiscent of an elliptical galaxy, and the
result is largely independent of whether the progenitors are spirals or ellipticals. Indeed, current
hierarchical models of galaxy formation assume that most, if not all, elliptical galaxies are merger
remnants. If gas cools onto this merger remnant with significant angular momentum, a new disk
may form, producing a disk–bulge system like that in an early-type spiral galaxy.

It should be obvious from the above discussion that mergers play a crucial role in galaxy
formation. Detailed descriptions of halo mergers and galaxy mergers are presented in Chapter 7
and Chapter 12, respectively.

1.2.8 Dynamical Evolution

When satellite galaxies orbit within dark matter halos, they experience tidal forces due to the
central galaxy, due to other satellite galaxies, and due to the potential of the halo itself. These
tidal interactions can remove dark matter, gas and stars from the galaxy, a process called tidal
stripping (see §12.2), and may also perturb its structure. In addition, if the halo contains a hot
gas component, any gas associated with the satellite galaxy will experience a drag force due to
the relative motion of the two fluids. If the drag force exceeds the restoring force due to the
satellite’s own gravity, its gas will be ablated, a process called ram-pressure stripping. These
dynamical processes are thought to play an important role in driving galaxy evolution within
clusters and groups of galaxies. In particular, they are thought to be partially responsible for the
observed environmental dependence of galaxy morphology (see Chapter 15).

Internal dynamical effects can also reshape galaxies. For example, a galaxy may form in a
configuration which becomes unstable at some later time. Large scale instabilities may then
redistribute mass and angular momentum within the galaxy, thereby changing its morphology. A
well-known and important example is the bar-instability within disk galaxies. As we shall see in
§11.5, a thin disk with too high a surface density is susceptible to a non-axisymmetric instability,
which produces a bar-like structure similar to that seen in barred spiral galaxies. These bars
may then buckle out of the disk to produce a central ellipsoidal component, a so-called ‘pseudo-
bulge’. Instabilities may also be triggered in otherwise stable galaxies by interactions. Thus, an
important question is whether the sizes and morphologies of galaxies were set at formation, or are
the result of later dynamical process (‘secular evolution’, as it is termed). Bulges are particularly
interesting in this context. They may be a remnant of the first stage of galaxy formation, or, as
mentioned in §1.2.7, may reflect an early merger which has grown a new disk, or may result from
buckling of a bar. It is likely that all these processes are important for at least some bulges.

1.2.9 Chemical Evolution

In astronomy, all chemical elements heavier than helium are collectively termed ‘metals’. The
mass fraction of a baryonic component (e.g. hot gas, cold gas, stars) in metals is then referred to
as its metallicity. As we will see in §3.4, the nuclear reactions during the first three minutes of the
Universe (the epoch of primordial nucleosynthesis) produced primarily hydrogen (∼ 75%) and
helium (∼ 25%), with a very small admixture of metals dominated by lithium. All other metals
in the Universe were formed at later times as a consequence of nuclear reactions in stars. When
stars expel mass in stellar winds, or in supernova explosions, they enrich the interstellar medium
(ISM) with newly synthesized metals.

Evolution of the chemical composition of the gas and stars in galaxies is important for several
reasons. First of all, the luminosity and color of a stellar population depend not only on its age
and IMF, but also on the metallicity of the stars (see Chapter 10). Secondly, the cooling efficiency
of gas depends strongly on its metallicity, in the sense that more metal-enriched gas cools faster
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(see §8.1). Thirdly, small particles of heavy elements known as dust grains, which are mixed with
the interstellar gas in galaxies, can absorb significant amounts of the starlight and reradiate it in
infrared wavelengths. Depending on the amount of the dust in the ISM, which scales roughly
linearly with its metallicity (see §10.3.7), this interstellar extinction can significantly reduce the
brightness of a galaxy.

As we will see in Chapter 10, the mass and detailed chemical composition of the material
ejected by a stellar population as it evolves depend both on the IMF and on its initial metallicity.
In principle, observations of the metallicity and abundance ratios of a galaxy can therefore be
used to constrain its star-formation history and IMF. In practice, however, the interpretation of
the observations is complicated by the fact that galaxies can accrete new material of different
metallicity, that feedback processes can blow out gas, perhaps preferentially metals, and that
mergers can mix the chemical compositions of different systems.

1.2.10 Stellar Population Synthesis

The light we receive from a given galaxy is emitted by a large number of stars that may have
different masses, ages, and metallicities. In order to interpret the observed spectral energy dis-
tribution, we need to predict how each of these stars contributes to the total spectrum. Unlike
many of the ingredients in galaxy formation, the theory of stellar evolution, to be discussed in
Chapter 10, is reasonably well understood. This allows us to compute not only the evolution of
the luminosity, color and spectrum of a star of given initial mass and chemical composition, but
also the rates at which it ejects mass, energy and metals into the interstellar medium. If we know
the star-formation history (i.e. the star-formation rate as a function of time) and IMF of a galaxy,
we can then synthesize its spectrum at any given time by adding together the spectra of all the
stars, after evolving each to the time under consideration. In addition, this also yields the rates
at which mass, energy and metals are ejected into the interstellar medium, providing important
ingredients for modeling the chemical evolution of galaxies.

Most of the energy of a stellar population is emitted in the optical, or, if the stellar population
is very young (∼< 10Myr), in the ultraviolet (see §10.3). However, if the galaxy contains a lot of
dust, a significant fraction of this optical and UV light may get absorbed and re-emitted in the
infrared. Unfortunately, predicting the final emergent spectrum is extremely complicated. Not
only does it depend on the amount of the radiation absorbed, it also depends strongly on the
properties of the dust, such as its geometry, its chemical composition, and (the distribution of)
the sizes of the dust grains (see §10.3.7).

Finally, to complete the spectral energy distribution emitted by a galaxy, we also need to
add the contribution from a possible AGN. Chapter 14 discusses various emission mechanisms
associated with accreting SMBHs. Unfortunately, as we will see, we are still far from being able
to predict the detailed spectra for AGN.

1.2.11 The Intergalactic Medium

The intergalactic medium (IGM) is the baryonic material lying between galaxies. This is and
has always been the dominant baryonic component of the Universe and it is the material from
which galaxies form. Detailed studies of the IGM can therefore give insight into the properties
of the pregalactic matter before it condensed into galaxies. As illustrated in Fig. 1.2, galaxies
do not evolve as closed boxes, but can affect the properties of the IGM through exchanges of
mass, energy and heavy elements. The study of the IGM is thus an integral part of understanding
how galaxies form and evolve. As we will see in Chapter 16, the properties of the IGM can be
probed most effectively through the absorption it produces in the spectra of distant quasars (a
certain class of active galaxies; see Chapter 14). Since quasars are now observed out to redshifts
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beyond 6, their absorption line spectra can be used to study the properties of the IGM back to a
time when the Universe was only a few percent of its present age.

1.3 Time Scales

As discussed above, and as illustrated in Fig. 1.1, the formation of an individual galaxy in the
standard, hierarchical formation scenario involves the following processes: the collapse and viri-
alization of dark matter halos, the cooling and condensation of gas within the halo, and the
conversion of cold gas into stars and a central supermassive black hole. Evolving stars and AGN
eject energy, mass and heavy elements into the interstellar medium, thereby determining its struc-
ture and chemical composition and perhaps driving winds into the intergalactic medium. Finally,
galaxies can merge and interact, reshaping their morphology and triggering further starbursts and
AGN activity. In general, the properties of galaxies are determined by the competition among all
these processes, and a simple way to characterize the relative importance of these processes is to
use the time scales associated with them. Here we give a brief summary of the most important
time scales in this context.

• Hubble time: This is an estimate of the time scale on which the Universe as a whole evolves.
It is defined as the inverse of the Hubble constant (see §3.2), which specifies the current cosmic
expansion rate. It would be equal to the time since the Big Bang if the Universe had always
expanded at its current rate. Roughly speaking, this is the time scale on which substantial
evolution of the galaxy population is expected.

• Dynamical time: This is the time required to orbit across an equilibrium dynamical sys-
tem. For a system with mass M and radius R, we define it as tdyn =

√
3π/16Gρ , where

ρ = 3M/4πR3. This is related to the free-fall time, defined as the time required for a uniform,
pressure-free sphere to collapse to a point, as tff = tdyn/

√
2.

• Cooling time: This time scale is the ratio between the thermal energy content and the energy
loss rate (through radiative or conductive cooling) for a gas component.

• Star-formation time: This time scale is the ratio of the cold gas content of a galaxy to its
star-formation rate. It is thus an indication of how long it would take for the galaxy to run out
of gas if the fuel for star formation is not replenished.

• Chemical enrichment time: This is a measure for the time scale on which the gas is enriched
in heavy elements. This enrichment time is generally different for different elements, depend-
ing on the lifetimes of the stars responsible for the bulk of the production of each element (see
§10.1).

• Merging time: This is the typical time that a halo or galaxy must wait before experiencing a
merger with an object of similar mass, and is directly related to the major merger frequency.

• Dynamical friction time: This is the time scale on which a satellite object in a large halo
loses its orbital energy and spirals to the center. As we will see in §12.3, this time scale is
proportional to Msat/Mmain, where Msat is the mass of the satellite object and Mmain is that of
the main halo. Thus, more massive galaxies will merge with the central galaxy in a halo more
quickly than smaller ones.

These time scales can provide guidelines for incorporating the underlying physical processes
in models of galaxy formation and evolution, as we describe in later chapters. In particu-
lar, comparing time scales can give useful insights. As an illustration, consider the following
examples:

• Processes whose time scale is longer than the Hubble time can usually be ignored. For exam-
ple, satellite galaxies with mass less than a few percent of their parent halo normally have
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dynamical friction times exceeding the Hubble time (see §12.3). Consequently, their orbits do
not decay significantly. This explains why clusters of galaxies have so many ‘satellite’ galax-
ies – the main halos are so much more massive than a typical galaxy that dynamical friction is
ineffective.

• If the cooling time is longer than the dynamical time, hot gas will typically be in hydrostatic
equilibrium. In the opposite case, however, the gas cools rapidly, losing pressure support,
and collapsing to the halo center on a free-fall time without establishing any hydrostatic
equilibrium.

• If the star formation time is comparable to the dynamical time, gas will turn into stars during
its initial collapse, a situation which may lead to the formation of something resembling an
elliptical galaxy. On the other hand, if the star formation time is much longer than the cooling
and dynamical times, the gas will settle into a centrifugally supported disk before forming
stars, thus producing a disk galaxy (see §1.4.5).

• If the relevant chemical evolution time is longer than the star-formation time, little metal
enrichment will occur during star formation and all stars will end up with the same, initial
metallicity. In the opposite case, the star-forming gas is continuously enriched, so that stars
formed at different times will have different metallicities and abundance patterns (see §10.4).

So far we have avoided one obvious question, namely, what is the time scale for galaxy for-
mation itself? Unfortunately, there is no single useful definition for such a time scale. Galaxy
formation is a process, not an event, and as we have seen, this process is an amalgam of many
different elements, each with its own time scale. If, for example, we are concerned with its stellar
population, we might define the formation time of a galaxy as the epoch when a fixed fraction
(e.g. 1% or 50%) of its stars had formed. If, on the other hand, we are concerned with its struc-
ture, we might want to define the galaxy’s formation time as the epoch when a fixed fraction
(e.g. 50% or 90%) of its mass was first assembled into a single object. These two ‘formation’
times can differ greatly for a given galaxy, and even their ordering can change from one galaxy
to another. Thus it is important to be precise about definition when talking about the formation
times of galaxies.

1.4 A Brief History of Galaxy Formation

The picture of galaxy formation sketched above is largely based on the hierarchical cold dark
matter model for structure formation, which has been the standard paradigm since the beginning
of the 1980s. In the following, we give an historical overview of the development of ideas and
concepts about galaxy formation up to the present time. This is not intended as a complete his-
torical account, but rather as a summary for young researchers of how our current ideas about
galaxy formation were developed. Readers interested in a more extensive historical review can
find some relevant material in the book The Cosmic Century: A History of Astrophysics and
Cosmology by Malcolm Longair (2006).

1.4.1 Galaxies as Extragalactic Objects

By the end of the nineteenth century, astronomers had discovered a large number of astronomical
objects that differ from stars in that they are fuzzy rather than point-like. These objects were
collectively referred to as ‘nebulae’. During the period 1771 to 1784 the French astronomer
Charles Messier cataloged more than 100 of these objects in order to avoid confusing them
with the comets he was searching for. Today the Messier numbers are still used to designate a
number of bright galaxies. For example, the Andromeda Galaxy is also known as M31, because
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it is the 31st nebula in Messier’s catalog. A more systematic search for nebulae was carried
out by the Herschels, and in 1864 John Herschel published his General Catalogue of Galaxies
which contains 5079 nebular objects. In 1888, Dreyer published an expanded version as his New
General Catalogue of Nebulae and Clusters of Stars. Together with its two supplementary Index
Catalogues, Dreyer’s catalogue contained about 15,000 objects. Today, NGC and IC numbers
are still widely used to refer to galaxies.

For many years after their discovery, the nature of the nebular objects was controversial. There
were two competing ideas: one assumed that all nebulae are objects within our Milky Way,
the other that some might be extragalactic objects, individual ‘island universes’ like the Milky
Way. In 1920 the National Academy of Sciences in Washington invited two leading astronomers,
Harlow Shapley and Heber Curtis, to debate this issue, an event which has passed into astro-
nomical folklore as ‘The Great Debate’. The controversy remained unresolved until 1925, when
Edwin Hubble used distances estimated from Cepheid variables to demonstrate conclusively
that some nebulae are extragalactic, individual galaxies comparable to our Milky Way in size
and luminosity. Hubble’s discovery marked the beginning of extragalactic astronomy. During
the 1930s, high-quality photographic images of galaxies enabled him to classify galaxies into a
broad sequence according to their morphology. Today Hubble’s sequence is still widely adopted
to classify galaxies.

Since Hubble’s time, astronomers have made tremendous progress in systematically searching
the skies for galaxies. At present deep CCD imaging and high-quality spectroscopy are available
for about a million galaxies.

1.4.2 Cosmology

Only four years after his discovery that galaxies truly are extragalactic, Hubble made his second
fundamental breakthrough: he showed that the recession velocities of galaxies are linearly related
to their distances (Hubble, 1929; see also Hubble & Humason 1931), thus demonstrating that
our Universe is expanding. This is undoubtedly the greatest single discovery in the history of
cosmology. It revolutionized our picture of the Universe we live in.

The construction of mathematical models for the Universe actually started somewhat earlier.
As soon as Albert Einstein completed his theory of general relativity in 1916, it was realized that
this theory allowed, for the first time, the construction of self-consistent models for the Universe
as a whole. Einstein himself was among the first to explore such solutions of his field equations.
To his dismay, he found that all solutions require the Universe either to expand or to contract, in
contrast with his belief at that time that the Universe should be static. In order to obtain a static
solution, he introduced a cosmological constant into his field equations. This additional constant
of gravity can oppose the standard gravitational attraction and so make possible a static (though
unstable) solution. In 1922 Alexander Friedmann published two papers exploring both static and
expanding solutions. These models are today known as Friedmann models, although this work
drew little attention until Georges Lemaitre independently rediscovered the same solutions in
1927.

An expanding universe is a natural consequence of general relativity, so it is not surprising
that Einstein considered his introduction of a cosmological constant as ‘the biggest blunder of
my life’ once he learned of Hubble’s discovery. History has many ironies, however. As we will
see later, the cosmological constant is now back with us. In 1998 two teams independently used
the distance–redshift relation of Type Ia supernovae to show that the expansion of the Universe is
accelerating at the present time. Within general relativity this requires an additional mass/energy
component with properties very similar to those of Einstein’s cosmological constant. Rather than
just counterbalancing the attractive effects of ‘normal’ gravity, the cosmological constant today
overwhelms them to drive an ever more rapid expansion.
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Since the Universe is expanding, it must have been denser and perhaps also hotter at earlier
times. In the late 1940s this prompted George Gamow to suggest that the chemical elements may
have been created by thermonuclear reactions in the early Universe, a process known as primor-
dial nucleosynthesis. Gamow’s model was not considered a success, because it was unable to
explain the existence of elements heavier than lithium due to the lack of stable elements with
atomic mass numbers 5 and 8. We now know that this was not a failure at all; all heavier ele-
ments are a result of nucleosynthesis within stars, as first shown convincingly by Fred Hoyle
and collaborators in the 1950s. For Gamow’s model to be correct, the Universe would have to
be hot as well as dense at early times, and Gamow realized that the residual heat should still
be visible in today’s Universe as a background of thermal radiation with a temperature of a few
degrees kelvin, thus with a peak at microwave wavelengths. This was a remarkable prediction
of the cosmic microwave background radiation (CMB), which was finally discovered in 1965.
The thermal history suggested by Gamow, in which the Universe expands from a dense and hot
initial state, was derisively referred to as the Hot Big Bang by Fred Hoyle, who preferred an
unchanging steady state cosmology. Hoyle’s cosmological theory was wrong, but his name for
the correct model has stuck.

The Hot Big Bang model developed gradually during the 1950s and 1960s. By 1964, it had
been noticed that the abundance of helium by mass is everywhere about one third that of hydro-
gen, a result which is difficult to explain by nucleosynthesis in stars. In 1964, Hoyle and Tayler
published calculations that demonstrated how the observed helium abundance could emerge
from the Hot Big Bang. Three years later, Wagoner et al. (1967) made detailed calculations
of a complete network of nuclear reactions, confirming the earlier result and suggesting that
the abundances of other light isotopes, such as helium-3, deuterium and lithium, could also be
explained by primordial nucleosynthesis. This success provided strong support for the Hot Big
Bang. The 1965 discovery of the cosmic microwave background showed it to be isotropic and
to have a temperature (2.7K) exactly in the range expected in the Hot Big Bang model (Penzias
& Wilson, 1965; Dicke et al., 1965). This firmly established the Hot Big Bang as the standard
model of cosmology, a status which it has kept up to the present day. Although there have been
changes over the years, these have affected only the exact matter/energy content of the model
and the exact values of its characteristic parameters.

Despite its success, during the 1960s and 1970s it was realized that the standard cosmology
had several serious shortcomings. Its structure implies that the different parts of the Universe
we see today were never in causal contact at early times (e.g. Misner, 1968). How then can
these regions have contrived to be so similar, as required by the isotropy of the CMB? A second
shortcoming is connected with the spatial flatness of the Universe (e.g. Dicke & Peebles, 1979).
It was known by the 1960s that the matter density in the Universe is not very different from the
critical density for closure, i.e. the density for which the spatial geometry of the Universe is flat.
However, in the standard model any tiny deviation from flatness in the early Universe is amplified
enormously by later evolution. Thus, extreme fine tuning of the initial curvature is required to
explain why so little curvature is observed today. A closely related formulation is to ask how our
Universe has managed to survive and to evolve for billions of years, when the time scales of all
physical processes in its earliest phases were measured in tiny fractions of a nanosecond. The
standard cosmology provides no explanations for these puzzles.

A conceptual breakthrough came in 1981 when Alan Guth proposed that the Universe may
have gone through an early period of exponential expansion (inflation) driven by the vacuum
energy of some quantum field. His original model had some problems and was revised in 1982
by Linde and by Albrecht & Steinhardt. In this scenario, the different parts of the Universe
we see today were indeed in causal contact before inflation took place, thereby allowing physi-
cal processes to establish homogeneity and isotropy. Inflation also solves the flatness/time-scale
problem, because the Universe expanded so much during inflation that its curvature radius grew
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to be much larger than the presently observable Universe. Thus, a generic prediction of the
inflation scenario is that today’s Universe should appear flat.

1.4.3 Structure Formation

(a) Gravitational Instability In the standard model of cosmology, structures form from small
initial perturbations in an otherwise homogeneous and isotropic universe. The idea that structures
can form via gravitational instability in this way originates from Jeans (1902), who showed that
the stability of a perturbation depends on the competition between gravity and pressure. Density
perturbations grow only if they are larger (heavier) than a characteristic length (mass) scale [now
referred to as the Jeans’ length (mass)] beyond which gravity is able to overcome the pressure
gradients. The application of this Jeans criterion to an expanding background was worked out
by, among others, Gamow & Teller (1939) and Lifshitz (1946), with the result that perturbation
growth is power-law in time, rather than exponential as for a static background.

(b) Initial Perturbations Most of the early models of structure formation assumed the Uni-
verse to contain two energy components, ordinary baryonic matter and radiation (CMB photons
and relativistic neutrinos). In the absence of any theory for the origin of perturbations, two dis-
tinct models were considered, usually referred to as adiabatic and isothermal initial conditions.
In adiabatic initial conditions all matter and radiation fields are perturbed in the same way, so
that the total density (or local curvature) varies, but the ratio of photons to baryons, for example,
is spatially invariant. Isothermal initial conditions, on the other hand, correspond to initial per-
turbations in the ratio of components, but with no associated spatial variation in the total density
or curvature.2

In the adiabatic case, the perturbations can be considered as applying to a single fluid with
a constant specific entropy as long as the radiation and matter remain tightly coupled. At such
times, the Jeans’ mass is very large and small-scale perturbations execute acoustic oscillations
driven by the pressure gradients associated with the density fluctuations. Silk (1968) showed that
towards the end of recombination, as radiation decouples from matter, small-scale oscillations
are damped by photon diffusion, a process now called Silk damping. Depending on the matter
density and the expansion rate of the Universe, the characteristic scale of Silk damping falls
in the range of 1012–1014 M�. After radiation/matter decoupling the Jeans’ mass drops precipi-
tously to � 106 M� and perturbations above this mass scale can start to grow,3 but there are no
perturbations left on the scale of galaxies at this time. Consequently, galaxies must form ‘top-
down’, via the collapse and fragmentation of perturbations larger than the damping scale, an idea
championed by Zel’dovich and colleagues.

In the case of isothermal initial conditions, the spatial variation in the ratio of baryons to
photons remains fixed before recombination because of the tight coupling between the two fluids.
The pressure is spatially uniform, so that there is no acoustic oscillation, and perturbations are
not influenced by Silk damping. If the initial perturbations include small-scale structure, this
survives until after the recombination epoch, when baryon fluctuations are no longer supported
by photon pressure and so can collapse. Structure can then form ‘bottom-up’ through hierarchical
clustering. This scenario of structure formation was originally proposed by Peebles (1965).

By the beginning of the 1970s, the linear evolution of both adiabatic and isothermal perturba-
tions had been worked out in great detail (e.g. Lifshitz, 1946; Silk, 1968; Peebles & Yu, 1970;
Sato, 1971; S. Weinberg, 1971). At that time, it was generally accepted that observed struc-
tures must have formed from finite amplitude perturbations which were somehow part of the
2 Note that the nomenclature ‘isothermal’, which is largely historical, is somewhat confusing; the term ‘isocurvature’

would be more appropriate.
3 Actually, as we will see in Chapter 4, depending on the gauge adopted, perturbations can also grow before they enter

the horizon.
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initial conditions set up at the Big Bang. Harrison (1970) and Zel’dovich (1972) independently
argued that only one scaling of the amplitude of initial fluctuations with their wavelength could
be consistent with the formation of galaxies from fluctuations imposed at very early times. Their
suggestion, now known as the Harrison–Zel’dovich initial fluctuation spectrum, has the property
that structure on every scale has the same dimensionless amplitude, corresponding to fluctuations
in the equivalent Newtonian gravitational potential, δΦ/c2 ∼ 10−4.

In the early 1980s, immediately after the inflationary scenario was proposed, a number of
authors realized almost simultaneously that quantum fluctuations of the scalar field (called the
inflaton) that drives inflation can generate density perturbations with a spectrum that is close to
the Harrison–Zel’dovich form (Hawking, 1982; Guth & Pi, 1982; Starobinsky, 1982; Bardeen
et al., 1983). In the simplest models, inflation also predicts that the perturbations are adiabatic
and that the initial density field is Gaussian. When parameters take their natural values, however,
these models generically predict fluctuation amplitudes that are much too large, of order unity.
This apparent fine-tuning problem is still unresolved.

In 1992 anisotropy in the cosmic microwave background was detected convincingly for the
first time by the Cosmic Background Explorer (COBE) (Smoot et al., 1992). These anisotropies
provide an image of the structure present at the time of radiation/matter decoupling, ∼400,000
years after the Big Bang. The resolved structures are all of very low amplitude and so can be
used to probe the properties of the initial density perturbations. In agreement with the inflationary
paradigm, the COBE maps were consistent with Gaussian initial perturbations with the Harrison–
Zel’dovich spectrum. The fluctuation amplitudes are comparable to those inferred by Harrison
and Zel’dovich. The COBE results have since been confirmed and dramatically refined by sub-
sequent observations, most notably by the Wilkinson Microwave Anisotropy Probe (WMAP)
(Bennett et al., 2003; Hinshaw et al., 2007). The agreement with simple inflationary predictions
remains excellent.

(c) Nonlinear Evolution In order to connect the initial perturbations to the nonlinear structures
we see today, one has to understand the outcome of nonlinear evolution. In 1970 Zel’dovich
published an analytical approximation (now referred to as the Zel’dovich approximation) which
describes the initial nonlinear collapse of a coherent perturbation of the cosmic density field.
This model shows that the collapse generically occurs first along one direction, producing a
sheet-like structure, often referred to as a ‘pancake’. Zel’dovich imagined further evolution to
take place via fragmentation of such pancakes. At about the same time, Gunn & Gott (1972)
developed a simple spherically symmetric model to describe the growth, turn-around (from the
general expansion), collapse and virialization of a perturbation. In particular, they showed that
dissipationless collapse results in a quasi-equilibrium system with a characteristic radius that is
about half the radius at turn-around. Although the nonlinear collapse described by the Zel’dovich
approximation is more realistic, since it does not assume any symmetry, the spherical collapse
model of Gunn & Gott has the virtue that it links the initial perturbation directly to the final quasi-
equilibrium state. By applying this model to a Gaussian initial density field, Press & Schechter
(1974) developed a very useful formalism (now referred to as Press–Schechter theory) that allows
one to estimate the mass function of collapsed objects (i.e. their abundance as a function of mass)
produced by hierarchical clustering.

Hoyle (1949) was the first to suggest that perturbations (and the associated protogalax-
ies) might gain angular momentum through the tidal torques from their neighbors. A linear
perturbation analysis of this process was first carried out correctly and in full generality by
Doroshkevich (1970), and was later tested with the help of numerical simulations (Peebles,
1971; Efstathiou & Jones, 1979). The study of Efstathiou and Jones showed that clumps formed
through gravitational collapse in a cosmological context typically acquire about 15% of the angu-
lar momentum needed for full rotational support. Better simulations in more recent years have
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shown that the correct value is closer to 10%. In the case of ‘top-down’ models, it was suggested
that objects could acquire angular momentum not only through gravitational torques as pancakes
fragment, but also via oblique shocks generated by their collapse (Doroshkevich, 1973).

1.4.4 The Emergence of the Cold Dark Matter Paradigm

The first evidence that the Universe may contain dark matter (undetected through electromag-
netic emission or absorption) can be traced back to 1933, when Zwicky studied the velocities
of galaxies in the Coma Cluster and concluded that the total mass required to hold the Cluster
together is about 400 times larger than the luminous mass in stars. In 1937 he reinforced this anal-
ysis and noted that galaxies associated with such large amounts of mass should be detectable as
gravitational lenses producing multiple images of background galaxies. These conclusions were
substantially correct, but remarkably it took more than 40 years for the existence of dark matter
to be generally accepted. The tide turned in the mid-1970s with papers by Ostriker et al. (1974)
and Einasto et al. (1974) extending Zwicky’s analysis and noting that massive halos are required
around our Milky Way and other nearby galaxies in order to explain the motions of their satellites.
These arguments were supported by continually improving 21 cm and optical measurements of
spiral galaxy rotation curves which showed no sign of the fall-off at large radius expected if
the visible stars and gas were the only mass in the system (Roberts & Rots, 1973; Rubin et al.,
1978, 1980). During the same period, numerous suggestions were made regarding the possible
nature of this dark matter component, ranging from baryonic objects such as brown dwarfs, white
dwarfs and black holes (e.g. White & Rees, 1978; Carr et al., 1984), to more exotic, elemen-
tary particles such as massive neutrinos (Gershtein & Zel’dovich, 1966; Cowsik & McClelland,
1972).

The suggestion that neutrinos might be the unseen mass was partly motivated by particle
physics. In the 1960s and 1970s, it was noticed that grand unified theories (GUTs) permit the
existence of massive neutrinos, and various attempts to measure neutrino masses in labora-
tory experiments were initiated. In the late 1970s, Lyubimov et al. (1980) and Reines et al.
(1980) announced the detection of a mass for the electron neutrino at a level of cosmological
interest (about 30 eV). Although the results were not conclusive, they caused a surge in stud-
ies investigating neutrinos as dark matter candidates (e.g. Bond et al., 1980; Sato & Takahara,
1980; Schramm & Steigman, 1981; Klinkhamer & Norman, 1981), and structure formation in a
neutrino-dominated universe was soon worked out in detail. Since neutrinos decouple from other
matter and radiation fields while still relativistic, their abundance is very similar to that of CMB
photons. Thus, they must have become non-relativistic at the time the Universe became matter-
dominated, implying thermal motions sufficient to smooth out all structure on scales smaller than
a few tens of Mpc. The first nonlinear structures are then Zel’dovich pancakes of this scale, which
must fragment to make smaller structures such as galaxies. Such a picture conflicts directly with
observation, however. An argument by Tremaine & Gunn (1979), based on the Pauli exclusion
principle, showed that individual galaxy halos could not be made of neutrinos with masses as
small as 30 eV, and simulations of structure formation in neutrino-dominated universes by White
et al. (1984) demonstrated that they could not produce galaxies without at the same time produc-
ing much stronger galaxy clustering than is observed. Together with the failure to confirm the
claimed neutrino mass measurements, these problems caused a precipitous decline in interest in
neutrino dark matter by the end of the 1980s.

In the early 1980s, alternative models were suggested, in which dark matter is a different kind
of weakly interacting massive particle. There were several motivations for this. The amount of
baryonic matter allowed by cosmic nucleosynthesis calculations is far too little to provide the
flat universe preferred by inflationary models, suggesting that non-baryonic dark matter may be
present. In addition, strengthening upper limits on temperature anisotropies in the CMB made it
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increasingly difficult to construct self-consistent, purely baryonic models for structure formation;
there is simply not enough time between the recombination epoch and the present day to grow the
structures we see in the nearby Universe from those present in the high-redshift photon–baryon
fluid. Finally, by the early 1980s, particle physics models based on the idea of supersymmetry
had provided a plethora of dark matter candidates, such as neutralinos, photinos and gravitinos,
that could dominate the mass density of the Universe. Because of their much larger mass, such
particles would initially have much smaller velocities than a 30 eV neutrino, and so they were
generically referred to as warm or cold dark matter (WDM or CDM, the former corresponding to
a particle mass of order 1 keV, the latter to much more massive particles) in contrast to neutrino-
like hot dark matter (HDM). The shortcomings of HDM motivated consideration of a variety of
such scenarios (e.g. Peebles, 1982; Blumenthal et al., 1982; Bond et al., 1982; Bond & Szalay,
1983).

Lower thermal velocities result in the survival of fluctuations of galactic scale (for WDM and
CDM) or below (for CDM). The particles decouple from the radiation field long before recombi-
nation, so perturbations in their density can grow at early times to be substantially larger than the
fluctuations visible in the CMB. After the baryons decouple from the radiation, they quickly fall
in these dark matter potential wells, causing structure formation to occur sufficiently fast to be
consistent with observed structure in today’s Universe. M. Davis et al. (1985) used simulations of
the CDM model to show that it could provide a good match to the observed clustering of galaxies
provided either the mass density of dark matter is well below the critical value, or (their preferred
model) that galaxies are biased tracers of the CDM density field, as expected if they form at the
centers of the deepest dark matter potential wells (e.g. Kaiser, 1984). By the mid-1980s, the
‘standard’ CDM model, in which dark matter provides the critical density, Hubble’s constant has
a value ∼ 50kms−1Mpc−1, and the initial density field was Gaussian with a Harrison–Zel’dovich
spectrum, had established itself as the ‘best bet’ model for structure formation.

In the early 1990s, measurements of galaxy clustering, notably from the APM galaxy survey
(Maddox et al., 1990a; Efstathiou et al., 1990), showed that the standard CDM model predicts
less clustering on large scales than is observed. Several alternatives were proposed to remedy this.
One was a mixed dark matter (MDM) model, in which the universe is flat, with ∼ 30% of the
cosmic mass density in HDM and ∼ 70% in CDM and baryons. Another flat model assumed all
dark matter to be CDM, but adopted an enhanced radiation background in relativistic neutrinos
(τCDM). A third possibility was an open model, in which today’s Universe is dominated by CDM
and baryons, but has only about 30% of the critical density (OCDM). A final model assumed the
same amounts of CDM and baryons as OCDM but added a cosmological constant in order to
make the universe flat (ΛCDM).

Although all these models match observed galaxy clustering on large scales, it was soon real-
ized that galaxy formation occurs too late in the MDM and τCDM models, and that the open
model has problems in matching the perturbation amplitudes measured by COBE. ΛCDM then
became the default ‘concordance’ model, although it was not generally accepted until Garnavich
et al. (1998) and Perlmutter et al. (1999) used the distance–redshift relation of Type Ia super-
novae to show that the cosmic expansion is accelerating, and measurements of small-scale CMB
fluctuations showed that our Universe is flat (de Bernardis et al., 2000). It seems that the present-
day Universe is dominated by a dark energy component with properties very similar to those of
Einstein’s cosmological constant.

At the beginning of this century, a number of ground-based and balloon-borne experiments
measured CMB anisotropies, notably Boomerang (de Bernardis et al., 2000), MAXIMA (Hanany
et al., 2000), DASI (Halverson et al., 2002) and CBI (Sievers et al., 2003). They successfully
detected features, known as acoustic peaks, in the CMB power spectrum, and showed their wave-
lengths and amplitudes to be in perfect agreement with expectations for a ΛCDM cosmology. In
2003, the first year data from WMAP not only confirmed these results, but also allowed much
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more precise determinations of cosmological parameters. The values obtained were in remark-
ably good agreement with independent measurements; the baryon density matched that estimated
from cosmic nucleosynthesis, the Hubble constant matched that found by direct measurement,
the dark-energy density matched that inferred from Type Ia supernovae, and the implied large-
scale clustering in today’s Universe matched that measured using large galaxy surveys and weak
gravitational lensing (see Spergel et al., 2003, and references therein). Consequently, the ΛCDM
model has now established itself firmly as the standard paradigm for structure formation. With
further data from WMAP and from other sources, the parameters of this new paradigm are now
well constrained (Spergel et al., 2007; Komatsu et al., 2009).

1.4.5 Galaxy Formation

(a) Monolithic Collapse and Merging Although it was well established in the 1930s that
there are two basic types of galaxies, ellipticals and spirals, it would take some 30 years before
detailed models for their formation were proposed. In 1962, Eggen, Lynden-Bell & Sandage
considered a model in which galaxies form from the collapse of gas clouds, and suggested that
the difference between ellipticals and spirals reflects the rapidity of star formation during the
collapse. If most of the gas turns into stars as it falls in, the collapse is effectively dissipationless
and infall motions are converted into the random motion of stars, resulting in a system which
might resemble an elliptical galaxy. If, on the other hand, the cloud remains gaseous during
collapse, the gravitational energy can be effectively dissipated via shocks and radiative cooling.
In this case, the cloud will shrink until it is supported by angular momentum, leading to the
formation of a rotationally supported disk. Gott & Thuan (1976) took this picture one step further
and suggested that the amount of dissipation during collapse depends on the amplitude of the
initial perturbation. Based on the empirical fact that star-formation efficiency appears to scale
as ρ2 (Schmidt, 1959), they argued that protogalaxies associated with the highest initial density
perturbations would complete star formation more rapidly as they collapse, and so might produce
an elliptical. On the other hand, protogalaxies associated with lower initial density perturbations
would form stars more slowly and so might make spirals.

Larson (1974a,b, 1975, 1976) carried out the first numerical simulations of galaxy formation,
showing how these ideas might work in detail. Starting from near-spherical rotating gas clouds,
he found that it is indeed the ratio of the star-formation time to the dissipation/cooling time which
determines whether the system turns into an elliptical or a spiral. He also noted the importance of
feedback effects during galaxy formation, arguing that in low-mass galaxies, supernovae would
drive winds that could remove most of the gas and heavy elements from a system before they
could turn into stars. He argued that this mechanism might explain the low surface brightnesses
and low metallicities of dwarf galaxies. However, he was unable to obtain the high observed
surface brightnesses of bright elliptical galaxies without requiring his gas clouds to be much
more slowly rotating than predicted by the tidal torque theory; otherwise they would spin up and
make a disk long before they became as compact as the observed galaxies. The absence of highly
flattened ellipticals and the fact that many bright ellipticals show little or no rotation (Bertola &
Capaccioli, 1975; Illingworth, 1977) therefore posed a serious problem for this scenario. As we
now know, its main defect was that it left out the effects of the dark matter.

In a famous 1972 paper, Toomre & Toomre used simple numerical simulations to demon-
strate convincingly that some of the extraordinary structures seen in peculiar galaxies, such as
long tails, could be produced by tidal interactions between two normal spirals. Based on the
observed frequency of galaxies with such signatures of interactions, and on their estimate of the
time scale over which tidal tails might be visible, Toomre & Toomre (1972) argued that most
elliptical galaxies could be merger remnants. In an extreme version of this picture, all galax-
ies initially form as disks, while all ellipticals are produced by mergers between pre-existing
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galaxies. A virtue of this idea was that almost all known star formation occurs in disk gas. Early
simulations showed that the merging of two spheroids produces remnants with density profiles
that agree with observed ellipticals (e.g. White, 1978). The more relevant (but also the more dif-
ficult) simulations of mergers between disk galaxies were not carried out until the early 1980s
(Gerhard, 1981; Farouki & Shapiro, 1982; Negroponte & White, 1983; Barnes, 1988). These
again showed merger remnants to have properties similar to those of observed ellipticals.

Although the merging scenario fits nicely into a hierarchical formation scheme, where larger
structures grow by mergers of smaller ones, the extreme picture outlined above has some prob-
lems. Ostriker (1980) pointed out that observed giant ellipticals, which are dense and can have
velocity dispersions as high as ∼ 300kms−1, could not be formed by mergers of present-day spi-
rals, which are more diffuse and almost never have rotation velocities higher than 300kms−1.
As we will see below, this problem may be resolved by considering the dark halos of the
galaxies, and by recognizing that the high-redshift progenitors of ellipticals were more com-
pact than present-day spirals. The merging scenario remains a popular scenario for the formation
of (bright) elliptical galaxies.

(b) The Role of Radiative Cooling An important question for galaxy formation theory is why
galaxies with stellar masses larger than ∼ 1012 M� are absent or extremely rare. In the adiabatic
model, this mass scale is close to the Silk damping scale and could plausibly set a lower limit to
galaxy masses. However, in the presence of dark matter Silk damping leaves no imprint on the
properties of galaxies, simply because the dark matter perturbations are not damped. Press &
Schechter (1974) showed that there is a characteristic mass also in the hierarchical model, corre-
sponding to the mass scale of the typical nonlinear object at the present time. However, this mass
scale is relatively large, and many objects with mass above 1012 M� are predicted, and indeed
are observed as virialized groups and clusters of galaxies. Apparently, the mass scale of galaxies
is not set by gravitational physics alone.

In the late 1970s, Silk (1977), Rees & Ostriker (1977) and Binney (1977) suggested that radia-
tive cooling might play an important role in limiting the mass of galaxies. They argued that
galaxies can form effectively only in systems where the cooling time is comparable to or shorter
than the collapse time, which leads to a characteristic scale of ∼ 1012 M�, similar to the mass
scale of massive galaxies. They did not explain why a typical galaxy should form with a mass
near this limit, nor did they explicitly consider the effects of dark matter. Although radiative cool-
ing plays an important role in all current galaxy formation theories, it is still unclear if it alone
can explain the characteristic mass scale of galaxies, or whether various feedback processes must
also be invoked.

(c) Galaxy Formation in Dark Matter Halos By the end of the 1970s, several lines of argu-
ment had led to the conclusion that dark matter must play an important role in galaxy formation.
In particular, observations of rotation curves of spiral galaxies indicated that these galaxies are
embedded in dark halos which are much more extended than the galaxies themselves. This moti-
vated White & Rees (1978) to propose a two-stage theory for galaxy formation: dark halos form
first through hierarchical clustering; the luminous content of galaxies then results from cooling
and condensation of gas within the potential wells provided by these dark halos. The mass func-
tion of galaxies was calculated by applying these ideas within the Press & Schechter model for
the growth of nonlinear structure. The model of White and Rees contains many of the basic ideas
of the modern theory of galaxy formation. They noticed that feedback is required to explain the
low overall efficiency of galaxy formation, and invoked Larson’s (1974a) model for supernova
feedback in dwarf galaxies to explain this. They also noted, but did not emphasize, that even
with strong feedback, their hierarchical model predicts a galaxy luminosity function with far too
many faint galaxies. This problem is alleviated but not solved by adopting CDM initial condi-
tions rather than the simple power-law initial conditions they adopted. In 1980, Fall & Efstathiou
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developed a model of disk formation in dark matter halos, incorporating the angular momentum
expected from tidal torques, and showed that many properties of observed disk galaxies can be
understood in this way.

Many of the basic elements of galaxy formation in the CDM scenario were already in place
in the early 1980s, and were summarized nicely by Efstathiou & Silk (1983) and in Blumenthal
et al. (1984). Blumenthal et al. invoked the idea of biased galaxy formation, suggesting that disk
galaxies may be associated with density peaks of typical heights in the CDM density field, while
giant ellipticals may be associated with higher density peaks. Efstathiou & Silk (1983) discussed
in some detail how the two-stage theory of White & Rees (1978) can solve some of the problems
in earlier models based on the collapse of gas clouds. In particular, they argued that, within an
extended halo, cooled gas can settle into a rotation-supported disk of the observed scale in a
fraction of the Hubble time, whereas without a dark matter halo it would take too long for a
perturbation to turn around and shrink to form a disk (see Chapter 11 for details). They also
argued that extended dark matter halos around galaxies make mergers of galaxies more likely, a
precondition for Toomre & Toomre’s (1972) merger scenario of elliptical galaxy formation to be
viable.

Since the early 1990s many studies have investigated the properties of CDM halos using both
analytical and N-body methods. Properties studied include the progenitor mass distributions
(Bond et al., 1991), merger histories (Lacey & Cole, 1993), spatial clustering (Mo & White,
1996), density profiles (Navarro et al., 1997), halo shapes (e.g. Jing & Suto, 2002), substructure
(e.g. Moore et al., 1998a; Klypin et al., 1999), and angular-momentum distributions (e.g. Warren
et al., 1992; Bullock et al., 2001a). These results have paved the way for more detailed models for
galaxy formation within the CDM paradigm. In particular, two complementary approaches have
been developed: semi-analytical models and hydrodynamical simulations. The semi-analytical
approach, originally developed by White & Frenk (1991) and subsequently refined in a num-
ber of studies (e.g. Kauffmann et al., 1993; Cole et al., 1994; Dalcanton et al., 1997; Mo et al.,
1998; Somerville & Primack, 1999), uses knowledge about the structure and assembly history
of CDM halos to model the gravitational potential wells within which galaxies form and evolve,
treating all the relevant physical processes (cooling, star formation, feedback, dynamical fric-
tion, etc.) in a semi-analytical fashion. The first three-dimensional, hydrodynamical simulations
of galaxy formation including dark matter were carried out by Katz in the beginning of the 1990s
(Katz & Gunn, 1991; Katz, 1992) and focused on the collapse of a homogeneous, uniformly
rotating sphere. The first simulation of galaxy formation by hierarchical clustering from proper
cosmological initial conditions was that of Navarro & Benz (1991), while the first simulation
of galaxy formation from CDM initial conditions was that of Navarro & White (1994). Since
then, numerical simulations of galaxy formation with increasing numerical resolution have been
carried out by many authors.

It is clear that the CDM scenario has become the preferred scenario for galaxy formation,
and we have made a great deal of progress in our quest towards understanding the structure and
formation of galaxies within it. However, as we will see later in this book, there are still many
important unsolved problems. It is precisely the existence of these outstanding problems that
makes galaxy formation such an interesting subject. It is our hope that this book will help you to
equip yourself for your own explorations in this area.
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Observational Facts

Observational astronomy has developed at an extremely rapid pace. Until the end of the 1940s
observational astronomy was limited to optical wavebands. Today we can observe the Universe
at virtually all wavelengths covering the electromagnetic spectrum, either from the ground or
from space. Together with the revolutionary growth in computer technology and with a dramatic
increase in the number of professional astronomers, this has led to a flood of new data. Clearly
it is impossible to provide a complete overview of all this information in a single chapter (or
even in a single book). Here we focus on a number of selected topics relevant to our forthcoming
discussion, and limit ourselves to a simple description of some of the available data. Discussion
regarding the interpretation and/or implication of the data is postponed to Chapters 11–16, where
we use the physical ingredients described in Chapters 3–10 to interpret the observational results
presented here. After a brief introduction of observational techniques, we present an overview of
some of the observational properties of stars, galaxies, clusters and groups, large scale structure,
the intergalactic medium, and the cosmic microwave background. We end with a brief discussion
of cosmological parameters and the matter/energy content of the Universe.

2.1 Astronomical Observations

Almost all information we can obtain about an astronomical object is derived from the radiation
we receive from it, or by the absorption it causes in the light of a background object. The radiation
from a source may be characterized by its spectral energy distribution (SED), fλ dλ , which is the
total energy of emitted photons with wavelengths in the range λ to λ + dλ . Technology is now
available to detect electromagnetic radiation over an enormous energy range, from low frequency
radio waves to high energy gamma rays. However, from the Earth’s surface our ability to detect
celestial objects is seriously limited by the transparency of our atmosphere. Fig. 2.1 shows the
optical depth for photon transmission through the Earth’s atmosphere as a function of photon
wavelength, along with the wavelength ranges of some commonly used wavebands. Only a few
relatively clear windows exist in the optical, near-infrared and radio bands. In other parts of the
spectrum, in particular the far-infrared, ultraviolet, X-ray and gamma-ray regions, observations
can only be carried out by satellites or balloon-borne detectors.

Although only a very restricted range of frequencies penetrate our atmosphere, celestial objects
actually emit over the full range accessible to our instruments. This is illustrated in Fig. 2.2, a
schematic representation of the average brightness of the sky as a function of wavelength as
seen from a vantage point well outside our own galaxy. With the very important exception of
the cosmic microwave background (CMB), which dominates the overall photon energy content
of the Universe, the dominant sources of radiation at all energies below the hard gamma-ray
regime are related to galaxies, their evolution, their clustering and their nuclei. At radio, far-
UV, X-ray and soft gamma-ray wavelengths the emission comes primarily from active galactic
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Fig. 2.1. The altitude above sea level at which a typical photon is absorbed as a function of the photon’s
wavelength. Only radio waves, optical light, the hardest γ-ray, and infrared radiation in a few wavelength
windows can penetrate the atmosphere to reach sea level. Observations at all other wavebands have to be
carried out above the atmosphere.

nuclei. Galactic starlight dominates in the near-UV, optical and near-infrared, while dust emis-
sion from star-forming galaxies is responsible for most of the far-infrared emission. The hot
gas in galaxy clusters emits a significant but non-dominant fraction of the total X-ray back-
ground and is the only major source of emission from scales larger than an individual galaxy.
Such large structures can, however, be seen in absorption, for example in the light of distant
quasars.

2.1.1 Fluxes and Magnitudes

The image of an astronomical object reflects its surface brightness distribution. The surface
brightness is defined as the photon energy received by a unit area at the observer per unit time
from a unit solid angle in a specific direction. Thus if we denote the surface brightness by I,
its units are [I] = ergs−1 cm−2 sr−1. If we integrate the surface brightness over the entire image,
we obtain the flux of the object, f , which has units [ f ] = ergs−1 cm−2. Integrating the flux over
a sphere centered on the object and with radius equal to the distance r from the object to the
observer, we obtain the bolometric luminosity of the object:

L = 4πr2 f , (2.1)

with [L] = ergs−1. For the Sun, L = 3.846×1033 ergs−1.
The image size of an extended astronomical object is usually defined on the basis of its isopho-

tal contours (curves of constant surface brightness), and the characteristic radius of an isophotal
contour at some chosen surface brightness level is usually referred to as an isophotal radius of the
object. A well-known example is the Holmberg radius defined as the length of the semimajor axis
of the isophote corresponding to a surface brightness of 26.5magarcsec−2 in the B-band.Two
other commonly used size measures in optical astronomy are the core radius, defined as the
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Fig. 2.2. The energy density spectrum of cosmological background radiation as a function of wavelength.
The value of νIν measures the radiation power per decade of wavelength. This makes it clear that the cosmic
microwave background (CMB) contributes most to the overall background radiation, followed by the far-
(FIB) and near-infrared (NIB) backgrounds, the X-ray background (XRB) and the gamma-ray background
(GRB). [Courtesy of D. Scott; see Scott (2000)]

radius where the surface brightness is half of the central surface brightness, and the half-light
radius (also called the effective radius), defined as the characteristic radius that encloses half of
the total observed flux. For an object at a distance r, its physical size, D, is related to its angular
size, θ , by

D = rθ . (2.2)

Note, though, that relations (2.1) and (2.2) are only valid for relatively small distances. As we
will see in Chapter 3, for objects at cosmological distances, r in Eqs. (2.1) and (2.2) has to be
replaced by the luminosity distance and angular diameter distance, respectively.

(a) Wavebands and Bandwidths Photometric observations are generally carried out in some
chosen waveband. Thus, the observed flux from an object is related to its SED, fλ , by

fX =
∫

fλFX (λ )R(λ )T (λ )dλ . (2.3)

Here FX (λ ) is the transmission of the filter that defines the waveband (denoted by X), T (λ ) repre-
sents the atmospheric transmission, and R(λ ) represents the efficiency with which the telescope
plus instrument detects photons. In the following we will assume that fX has been corrected for
atmospheric absorption and telescope efficiency (the correction is normally done by calibrating
the data using standard objects with known fλ ). In this case, the observed flux depends only on
the spectral energy distribution and the chosen filter. Astronomers have constructed a variety of
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Table 2.1. Filter characteristics of the UBVRI photometric system.

Band: U B V R I J H K L M

λeff (nm): 365 445 551 658 806 1220 1630 2190 3450 4750
FWHM (nm): 66 94 88 138 149 213 307 390 472 460
M�: 5.61 5.48 4.83 4.42 4.08 3.64 3.32 3.28 3.25 –
L�(1032 erg/s): 1.86 4.67 4.64 6.94 4.71 2.49 1.81 0.82 0.17 –

Fig. 2.3. The transmission characteristics of Johnson UBV and Kron Cousins RI filter systems. [Based on
data published in Bessell (1990)]

photometric systems. A well-known example is the standard UBV system originally introduced
by Johnson. The filter functions for this system are shown in Fig. 2.3. In general, a filter function
can be characterized by an effective wavelength, λeff, and a characteristic bandwidth, usually
quoted as a full width at half maximum (FWHM). The FWHM is defined as |λ1 − λ2|, with
FX (λ1) = FX (λ2) = half the peak value of FX (λ ). Table 2.1 lists λeff and the FWHM for the fil-
ters of the standard UBVRI photometric system. In this system, the FWHM are all of order 10%
or larger of the corresponding λeff. Such ‘broad-band photometry’ can be used to characterize the
overall shape of the spectral energy distribution of an object with high efficiency. Alternatively,
one can use ‘narrow-band photometry’ with much narrower filters to image objects in a particular
emission line or to study its detailed SED properties.

(b) Magnitude and Color For historical reasons, the flux of an astronomical object in the
optical band (and also in the near-infrared and near-ultraviolet bands) is usually quoted in terms
of apparent magnitude:

mX = −2.5log( fX/ fX ,0), (2.4)

where the flux zero-point fX ,0 has traditionally been taken as the flux in the X band of the bright
star Vega. In recent years it has become more common to use ‘AB-magnitudes’, for which

fX ,0 = 3.6308×10−20 ergs−1cm−2Hz−1
∫

FX (c/ν)dν. (2.5)

Here ν is the frequency and c is the speed of light. Similarly, the luminosities of objects (in
waveband X) are often quoted as an absolute magnitude: MX = −2.5log(LX )+CX , where CX
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is a zero-point. It is usually convenient to write LX in units of the solar luminosity in the same
band, L�X . The values of L�X in the standard UBVRI photometric system are listed in Table 2.1.
It then follows that

MX = −2.5log

(
LX

L�X

)
+M�X , (2.6)

where M�X is the absolute magnitude of the Sun in the waveband in consideration. Using
Eq. (2.1), we have

mX −MX = 5log(r/r0), (2.7)

where r0 is a fiducial distance at which mX and MX are defined to have the same value. Conven-
tionally, r0 is chosen to be 10 pc (1 pc = 1 parsec = 3.0856×1018 cm; see §2.1.3 for a definition).
According to this convention, the Vega absolute magnitudes of the Sun in the UBVRI photometric
system have the values listed in Table 2.1.

The quantity (mX −MX ) for an astronomical object is called its distance modulus. If we know
both mX and MX for an object, then Eq. (2.7) can be used to obtain its distance. Conversely, if
we know the distance to an object, a measurement of its apparent magnitude (or flux) can be used
to obtain its absolute magnitude (or luminosity).

Optical astronomers usually express surface brightness in terms of magnitudes per square
arcsecond. In such ‘units’, the surface brightness in a band X is denoted by μX , and is related to
the surface brightness in physical units, IX , according to

μX = −2.5log

(
IX

L� pc−2

)
+21.572+M�X . (2.8)

Note that it is the flux, not the magnitude, that is additive. Thus in order to obtain the total
(apparent) magnitude from an image, one must first convert magnitude per unit area into flux per
unit area, integrate the flux over the entire image, and then convert the total flux back to a total
magnitude.

If observations are made for an object in more than one waveband, then the difference between
the magnitudes in any two different bands defines a color index (which corresponds to the slope
of the SED between the two wavebands). For example,

(B−V ) ≡ mB −mV = MB −MV (2.9)

is called the (B−V ) color of the object.

2.1.2 Spectroscopy

From spectroscopic observations one obtains spectra for objects, i.e. their SEDs fλ or fν defined
so that fλ dλ and fν dν are the fluxes received in the elemental wavelength and frequency ranges
dλ at λ and dν at ν. From the relation between wavelength and frequency, λ = c/ν, we then
have that

fν = λ 2 fλ/c and fλ = ν2 fν/c. (2.10)

At optical wavelengths, spectroscopy is typically performed by guiding the light from an object
to a spectrograph where it is dispersed according to wavelength. For example, in multi-object
fiber spectroscopy, individual objects are imaged onto the ends of optical fibers which take the
light to prism or optical grating where it is dispersed. The resulting spectra for each individual
fiber are then imaged on a detector. Such spectroscopy loses all information about the distri-
bution of each object’s light within the circular aperture represented by the end of the fiber.
In long-slit spectroscopy, on the other hand, the object of interest is imaged directly onto the
spectrograph slit, resulting in a separate spectrum from each point of the object falling on the



30 Observational Facts

slit. Finally, in an integral field unit (or IFU) the light from each point within the image of
an extended object is led to a different point on the slit (for example, by optical fibers) result-
ing in a three-dimensional data cube with two spatial dimensions and one dimension for the
wavelength.

At other wavelengths quite different techniques can be used to obtain spectral information. For
example, at infrared and radio wavelengths the incoming signal from a source may be Fourier
analyzed in time in order to obtain the power at each frequency, while at X-ray wavelengths the
energy of each incoming photon can be recorded and the energies of different photons can be
binned to obtain the spectrum.

Spectroscopic observations can give us a lot of information which photometric observations
cannot. A galaxy spectrum usually contains a slowly varying component called the continuum,
with localized features produced by emission and absorption lines (see Fig. 2.12 below for some
examples). It is a superposition of the spectra of all the individual stars in the galaxy, modified
by emission and absorption from the gas and dust lying between the stars. From the ultraviolet
through the near-infrared the continuum is due primarily to bound–free transitions in the pho-
tospheres of the stars, in the mid- and far-infrared it is dominated by thermal emission from
dust grains, in the radio it is produced by diffuse relativistic and thermal electrons within the
galaxy, and in the X-ray it comes mainly from accretion of gas onto compact stellar remnants
or a central black hole. Emission and absorption lines are produced by bound–bound transitions
within atoms, ions and molecules, both in the outer photospheres of stars and in the interstellar
gas. By analyzing a spectrum, we may infer the relative importance of these various processes,
thereby understanding the physical properties of the galaxy. For example, the strength of a par-
ticular emission line depends on the abundance of the excited state that produces it, which in turn
depends not only on the abundance of the corresponding element but also on the temperature and
ionization state of the gas. Thus emission line strengths can be used to measure the temperature,
density and chemical composition of interstellar gas. Absorption lines, on the other hand, mainly
arise in the atmospheres of stars, and their relative strengths contain useful information regard-
ing the age and metallicity of the galaxy’s stellar population. Finally, interstellar dust gives rise
to continuum absorption with broad characteristic features. In addition, since dust extinction is
typically more efficient at shorter wavelengths, it also causes reddening, a change of the overall
slope of the continuum emission.

Spectroscopic observations have another important application. The intrinsic frequency of
photons produced by electron transitions between two energy levels E1 and E2 is ν12 = (E2 −
E1)/hP, where hP is Planck’s constant, and we have assumed E2 > E1. Now suppose that these
photons are produced by atoms moving with velocity v relative to the observer. Because of the
Doppler effect, the observed photon frequency will be (assuming v � c),

νobs =
(

1− v · r̂
c

)
ν12, (2.11)

where r̂ is the unit vector of the emitting source relative to the observer. Thus, if the source
is receding from the observer, the observed frequency is redshifted, νobs < ν12; conversely, if
the source is approaching the observer, the observed frequency is blueshifted, νobs > ν12. It is
convenient to define a redshift parameter to characterize the change in frequency,

z ≡ ν12

νobs
−1. (2.12)

For the Doppler effect considered here, we have z = v · r̂/c. Clearly, by studying the properties
of spectral lines from an object, one may infer the kinematics of the emitting (or absorbing)
material.



2.1 Astronomical Observations 31

Fig. 2.4. (a) An illustration of the broadening of a spectral line by the velocity dispersion of stars in a
stellar system. A telescope collects light from all stars within a cylinder through the stellar system. Each
star contributes a narrow spectral line with rest frequency ν12, which is Doppler shifted to a different
frequency ν = ν12 +Δν due to its motion along the line-of-sight. The superposition of many such line
profiles produces a broadened line, with the profile given by the convolution of the original stellar spectral
line and the velocity distribution of the stars in the cylinder. (b) An illustration of long-slit spectroscopy of
a thin rotating disk along the major axis of the image. In the plot, the rotation speed is assumed to depend
on the distance from the center as Vrot(x) ∝

√
x/(1+ x2).

As an example, suppose that the emitting gas atoms in an object have random motions along
the line-of-sight drawn from a velocity distribution f (v)dv . The observed photons will then have
the following frequency distribution:

F(νobs)dνobs = f (v)(c/ν12)dνobs, (2.13)

where v is related to νobs by v = c(1 − νobs/ν12), and we have neglected the natural width
of atomic spectral lines. Thus, by observing F(νobs) (the emission line profile in frequency
space), we can infer f (v). If the random motion is caused by thermal effects, we can infer
the temperature of the gas from the observed line profile. For a stellar system (e.g. an ellip-
tical galaxy) the observed spectral line is the convolution of the original stellar line profile
S(ν) (which is a luminosity weighted sum of the spectra of all different stellar types that con-
tribute to the flux) with the line-of-sight velocity distribution of all the stars in the observational
aperture,

F(νobs) =
∫

S [νobs(1+ v/c)] f (v)dv . (2.14)

Thus, each narrow, stellar spectral line is broadened by the line-of-sight velocity dispersion
of the stars that contribute to that line (see Fig. 2.4a). If we know the type of stars that domi-
nate the spectral lines in consideration, we can estimate S(ν) and use the above relation to infer
the properties of f (v), such as the mean velocity, v =

∫
v f (v)dv , and the velocity dispersion,

σ = [
∫
(v − v)2 f (v)dv ]1/2.

Similarly, long-slit and IFU spectroscopy of extended objects can be used not only to study
random motions along each line-of-sight through the source, but also to study large-scale flows
in the source. An important example here is the rotation of galaxy disks. Suppose that the rotation
of a disk around its axis is specified by a rotation curve, Vrot(R), which gives the rotation velocity
as a function of distance to the disk center. Suppose further that the inclination angle between
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the rotation axis and the line-of-sight is i. If we put a long slit along the major axis of the image
of the disk, it is easy to show that the frequency shift along the slit is

νobs(R)−ν12 = ±Vrot(R)sin i
c

ν12, (2.15)

where the + and − signs correspond to points on opposite sides of the disk center (see Fig. 2.4b).
Thus the rotation curve of the disk can be measured from its long-slit spectrum and from its
apparent shape (which allows the inclination angle to be estimated under the assumption that the
disk is intrinsically round).

2.1.3 Distance Measurements

A fundamental task in astronomy is the determination of the distances to astronomical objects.
As we have seen above, the direct observables from an astronomical object are its angular size
on the sky and its energy flux at the position of the observer. Distance is therefore required in
order to convert these observables into physical quantities. In this subsection we describe the
principles behind some of the most important methods for estimating astronomical distances.

(a) Trigonometric Parallax The principle on which this distance measure is based is very sim-
ple. We are all familiar with the following: when walking along one direction, nearby and distant
objects appear to change their orientation with respect to each other. If the walked distance b
is much smaller than the distance to an object d (assumed to be perpendicular to the direction
of motion), then the change of the orientation of the object relative to an object at infinity is
θ = b/d. Thus, by measuring b and θ we can obtain the distance d. This is called the trigono-
metric parallax method, and can be used to measure distances to some relatively nearby stars.
In principle, this can be done by measuring the change of the position of a star relative to one
or more background objects (assumed to be at infinity) at two different locations. Unfortunately,
the baseline provided by the Earth’s diameter is so short that even the closest stars do not have a
measurable trigonometric parallax. Therefore, real measurements of stellar trigonometric paral-
lax have to make use of the baseline provided by the diameter of the Earth’s orbit around the Sun.
By measuring the trigonometric parallax, πt , which is half of the angular change in the position
of a star relative to the background as measured over a six month interval, we can obtain the
distance to the star as

d =
A

tan(πt)
, (2.16)

where A = 1AU = 1.49597870×1013 cm is the length of the semimajor axis of the Earth’s orbit
around the Sun. The distance corresponding to a trigonometric parallax of 1 arcsec is defined as
1 parsec (or 1 pc). From the Earth the accuracy with which πt can be measured is restricted by
atmospheric seeing, which causes a blurring of the images. This problem is circumvented when
using satellites. With the Hipparcos satellite reliable distances have been measured for nearby
stars with πt ∼> 10−3 arcsec, or with distances d ∼< 1kpc. The GAIA satellite, which is currently
scheduled for launch in 2012, will be able to measure parallaxes for stars with an accuracy of
∼ 2 × 10−4 arcsec, which will allow distance measurements to 10% accuracy for ∼ 2 × 108

stars.

(b) Motion-Based Methods The principle of this distance measurement is also very simple.
We all know that the angle subtended by an object of diameter l at a distance d is θ = l/d
(assuming l � d). If we measure the angular diameters of the same object from two distances,
d1 and d2, then the difference between them is Δθ = lΔd/d2 = θ Δd/d, where Δd = |d1 − d2|
is assumed to be much smaller than both d1 and d2, and d = (d1d2)1/2 can be considered the
distance to the object. Thus, we can estimate d by measuring Δθ and Δd. For a star cluster
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consisting of many stars, the change of its distance over a time interval Δt is given by Δd = vrΔt,
where vr is the mean radial velocity of the cluster and can be measured from the shift of its
spectrum. If we can measure the change of the angular size of the cluster during the same time
interval, Δθ , then the distance to the cluster can be estimated from d = θvrΔt/Δθ . This is called
the moving-cluster method.

Another distance measure is based on the angular motion of cluster stars caused by their veloc-
ity with respect to the Sun. If all stars in a star cluster had the same velocity, the extensions of
their proper motion vectors would converge to a single point on the celestial sphere (just like
the two parallel rails of a railway track appear to converge to a point at large distance). By mea-
suring the proper motions of the stars in a star cluster, this convergent point can be determined.
Because of the geometry, the line-of-sight from the observer to the convergent point is parallel
to the velocity vector of the star cluster. Hence, the angle, φ , between the star cluster and its con-
vergent point, which can be measured, is the same as that between the proper motion vector and
its component along the line-of-sight between the observer and the star cluster. By measuring the
cluster’s radial velocity vr, one can thus obtain the transverse velocity vt = vr tanφ . Comparing
vt to the proper motion of the star cluster then yields its distance. This is called the convergent-
point method and can be used to estimate accurate distances of star clusters up to a few hundred
parsec.

(c) Standard Candles and Standard Rulers As shown by Eqs. (2.1) and (2.2), the luminos-
ity and physical size of an object are related through the distance to its flux and angular size,
respectively. Since the flux and angular size are directly observable, we can estimate the distance
to an object if its luminosity or its physical size can be obtained in a distance-independent way.
Objects whose luminosities and physical sizes can be obtained in such a way are called standard
candles and standard rulers, respectively. These objects play an important role in astronomy, not
only because their distances can be determined, but more importantly, because they can serve as
distance indicators to calibrate the relation between distance and redshift, allowing the distances
to other objects to be determined from their redshifts, as we will see below.

One important class of objects in cosmic distance measurements is the Cepheid variable stars
(or Cepheids for short). These objects are observed to change their apparent magnitudes regu-
larly, with periods ranging from 2 to 150 days. The period is tightly correlated with the star’s
luminosity, such that

M = −a−b logP, (2.17)

where P is the period of light variation in days, and a and b are two constants which can be deter-
mined using nearby Cepheids whose distances have been measured using another method. For
example, using the trigonometric parallaxes of Cepheids measured with the Hipparcos satellite,
Feast & Catchpole (1997) obtained the following relation between P and the absolute magnitude
in the V band: MV = −1.43− 2.81logP, with a standard error in the zero-point of about 0.10
magnitudes (see Madore & Freedman, 1991, for more examples of such calibrations). Once the
luminosity–period relation is calibrated, and if it is universally valid, it can be applied to distant
Cepheids (whose distances cannot be obtained from trigonometric parallax or proper motion) to
obtain their distances from measurements of their variation periods. Since Cepheids are relatively
bright, with absolute magnitudes MV ∼−3, telescopes with sufficiently high spatial resolution,
such as the Hubble Space Telescope (HST), allow Cepheid distances to be determined for objects
out to ∼ 10Mpc.

Another important class of objects for distance measurements are Type Ia supernovae (SNIa),
which are exploding stars with well-calibrated light profiles. Since these objects can reach peak
luminosities up to ∼ 1010 L� (so that they can outshine an entire galaxy), they can be observed
out to cosmological distances of several thousand megaparsecs. Empirically it has been found
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that the peak luminosities of SNIa are remarkably similar (e.g. Branch & Tammann, 1992). In
fact, there is a small dispersion in peak luminosities, but this has been found to be correlated
with the rate at which the luminosity decays and so can be corrected (e.g. Phillips et al., 1999).
Thus, one can obtain the relative distances to Type Ia supernovae by measuring their light curves.
The absolute distances can then be obtained once the absolute values of the light curves of some
nearby Type Ia supernovae are calibrated using other (e.g. Cepheid) distances. As we will see in
§2.10.1, SNIa play an important role in constraining the large scale geometry of the Universe.

(d) Redshifts as Distances One of the most important discoveries in modern science was
Hubble’s (1929) observation that almost all galaxies appear to move away from us, and that
their recession velocities increase in direct proportion to their distances from us, vr ∝ r. This
relation, called the Hubble law, is explained most naturally if the Universe as a whole is assumed
to be expanding. If the expansion is homogeneous and isotropic, then the distance between any
two objects comoving with the expanding background can be written as r(t) = a(t)r(t ′)/a(t ′),
where a(t) is a time-dependent scale factor of the Universe, describing the expansion. It then
follows that the relative separation velocity of the objects is

vr = ṙ = H(t)r, where H(t) ≡ ȧ(t)/a(t). (2.18)

This relation applied at the present time gives vr = H0r, as observed by Hubble. Since the reces-
sion velocity of an object can be measured from its redshift z, the distance to the object simply
follows from r = cz/H0 (assuming vr � c). In practice, the object under consideration may
move relative to the background with some (gravitationally induced) peculiar velocity, vpec, so
that its observed velocity is the sum of this peculiar velocity along the line-of-sight, vpec,r, and
the velocity due to the Hubble expansion:

vr = H0r + vpec,r. (2.19)

In this case, the redshift is no longer a precise measurement of the distance, unless vpec,r � H0r.
Since for galaxies the typical value for vpec is a few hundred kilometers per second, redshifts can
be used to approximate distances for cz 	 1000kms−1.

In order to convert redshifts into distances, we need a value for the Hubble constant, H0. This
can be obtained if the distances to some sufficiently distant objects can be measured indepen-
dently of their redshifts. As mentioned above, such objects are called distance indicators. For
many years, the value of the Hubble constant was very uncertain, with estimates ranging from
∼ 50kms−1 Mpc−1 to ∼ 100kms−1 Mpc−1 (current constraints on H0 are discussed in §2.10.1).
To parameterize this uncertainty in H0 it has become customary to write

H0 = 100hkms−1 Mpc−1, (2.20)

and to express all quantities that depend on redshift-based distances in terms of the reduced
Hubble constant h. For example, distance determinations based on redshifts often contain a factor
of h−1, while luminosities based on these distances contain a factor h−2, etc. If these factors are
not present, it means that a specific value for the Hubble constant has been assumed, or that the
distances were not based on measured redshifts.

2.2 Stars

As we will see in §2.3, the primary visible constituent of most galaxies is the combined light
from their stellar population. Clearly, in order to understand galaxy formation and evolution it
is important to know the main properties of stars. In Table 2.1 we list some of the photomet-
ric properties of the Sun. These, as well as the Sun’s mass and radius, M� = 2× 1033 g and
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Table 2.2. Solar abundances in number relative to hydrogen.

Element: H He C N O Ne Mg Si Fe
(N/NH)×105: 105 9800 36.3 11.2 85.1 12.3 3.80 3.55 4.68

Fig. 2.5. Spectra for stars of different spectral types. fλ is the flux per angstrom, and an arbitrary constant
is added to each spectrum to avoid confusion. [Based on data kindly provided by S. Charlot]

R� = 7×1010 cm, are usually used as fiducial values when describing other stars. The abun-
dance by number of some of the chemical elements in the solar system is given in Table 2.2. The
fraction in mass of elements heavier than helium is referred to as the metallicity and is denoted
by Z, and our Sun has Z� ≈ 0.02. The relative abundances in a star are usually specified relative
to those in the Sun:

[A/B] ≡ log

[
(nA/nB)�
(nA/nB)�

]
, (2.21)

where (nA/nB)� is the number density ratio between element A and element B in the star, and
(nA/nB)� is the corresponding ratio for the Sun.

Since all stars, except a few nearby ones, are unresolved (i.e. they appear as point sources),
the only intrinsic properties that are directly observable are their luminosities, colors and spec-
tra. These vary widely (some examples of stellar spectra are shown in Fig. 2.5) and form the
basis for their classification. The most often used classification scheme is the Morgan–Keenan
(MK) system, summarized in Tables 2.3 and 2.4. These spectral classes are further divided into
decimal subclasses [e.g. from B0 (early) to B9 (late)], while luminosity classes are divided into
subclasses such as Ia, Ib, etc. The importance of this classification is that, although entirely based
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Table 2.3. MK spectral classes.

Class Temperature Spectral characteristics

O 28,000–50,000 K Hot stars with He II absorption; strong UV continuum
B 10,000–28,000 K He I absorption; H developing in later classes
A 7,500–10,000 K Strong H lines for A0, decreasing thereafter; Ca II increasing
F 6,000–7,500 K Ca II stronger; H lines weaker; metal lines developing
G 5,000–6,000 K Ca II strong; metal lines strong; H lines weaker
K 3,500–5,000 K Strong metal lines; CH and CN developing; weak blue continuum
M 2,500–3,500 K Very red; TiO bands developing strongly

Table 2.4. MK luminosity classes.

I Supergiants
II Bright giants
III Normal giants
IV Subgiants
V Dwarfs (main-sequence stars)

on observable properties, it is closely related to the basic physical properties of stars. For exam-
ple, the luminosity classes are related to surface gravities, while the spectral classes are related
to surface temperatures (see e.g. Cox, 2000).

Fig. 2.6 shows the color–magnitude relation of a large number of stars for which accurate
distances are available (so that their absolute magnitudes can be determined). Such a diagram is
called a Hertzsprung–Russell diagram (abbreviated as H-R diagram), and features predominantly
in studies of stellar astrophysics. The MK spectral and luminosity classes are also indicated.
Clearly, stars are not uniformly distributed in the color–magnitude space, but lie in several well-
defined sequences. Most of the stars lie in the ‘main sequence’ (MS) which runs from the lower-
right to the upper-left. Such stars are called main-sequence stars and have MK luminosity class
V. The position of a star in this sequence is mainly determined by its mass. Above the main
sequence one finds the much rarer but brighter giants, making up the MK luminosity classes I to
IV, while the lower-left part of the H-R diagram is occupied by white dwarfs. The Sun, whose MK
type is G2V, lies in the main sequence with V -band absolute magnitude 4.8 and (atmospheric)
temperature 5780K.

As a star ages it moves off the MS and starts to traverse the H-R diagram. The location of
a star in the H-R diagram as function of time is called its evolutionary track which, again, is
determined mainly by its mass. An important property of a stellar population is therefore its
initial mass function (IMF), which specifies the abundance of stars as function of their initial
mass (i.e. the mass they have at the time when reach the MS shortly after their formation). For
a given IMF, and a given star-formation history, one can use the evolutionary tracks to predict
the abundance of stars in the H-R diagram. Since the spectrum of a star is directly related to
its position in the H-R diagram, this can be used to predict the spectrum of an entire galaxy, a
procedure which is called spectral synthesis modeling. Detailed calculations of stellar evolution
models (see Chapter 10) show that a star like our Sun has a MS lifetime of about 10 Gyr, and
that the MS lifetime scales with mass roughly as M−3, i.e. more massive (brighter) stars spend
less time on the MS. This strong dependence of MS lifetime on mass has important observational
consequences, because it implies that the spectrum of a stellar system (a galaxy) depends on its
star-formation history. For a system where the current star-formation rate is high, so that many
young massive stars are still on the main sequence, the stellar spectrum is expected to have a
strong blue continuum produced by O and B stars. On the other hand, for a system where star
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Fig. 2.6. The color–magnitude diagram (i.e. the H-R diagram) of 22,000 stars from the Hipparcos Cata-
logue together with 1,000 low-luminosity stars (red and white dwarfs) from the Gliese Catalogue of Nearby
Stars. The MK spectral and luminosity classes are also indicated, as are the luminosities in solar units.
[Diagram from R. Powell, taken from Wikipedia]

formation has been terminated a long time ago, so that all massive stars have already evolved off
the MS, the spectrum (now dominated by red giants and the low-mass MS stars) is expected to
be red.

2.3 Galaxies

Galaxies, whose formation and evolution is the main topic of this book, are the building blocks
of the Universe. They not only are the cradles for the formation of stars and metals, but also
serve as beacons that allow us to probe the geometry of space-time. Yet it is easy to forget that it
was not until the 1920s, with Hubble’s identification of Cepheid variable stars in the Andromeda
Nebula, that most astronomers became convinced that the many ‘nebulous’ objects cataloged
by John Dreyer in his 1888 New General Catalogue of Nebulae and Clusters of Stars and the
two supplementary Index Catalogues are indeed galaxies. Hence, extragalactic astronomy is a
relatively new science. Nevertheless, as we will see, we have made tremendous progress: we
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Fig. 2.7. Examples of different types of galaxies. From left to right and top to bottom, NGC 4278 (E1),
NGC 3377 (E6), NGC 5866 (SO), NGC 175 (SBa), NGC 6814 (Sb), NGC 4565 (Sb, edge on), NGC 5364
(Sc), Ho II (Irr I), NGC 520 (Irr II). [All images are obtained from the NASA/IPAC Extragalactic Database
(NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration]

have surveyed the local population of galaxies in exquisite detail covering the entire range of
wavelengths, we have constructed redshift surveys with hundreds of thousands of galaxies to
probe the large scale structure of the Universe, and we have started to unveil the population of
galaxies at high redshifts, when the Universe was only a small fraction of its current age.

2.3.1 The Classification of Galaxies

Fig. 2.7 shows a collage of images of different kinds of galaxies. Upon inspection, one finds
that some galaxies have smooth light profiles with elliptical isophotes, others have spiral arms
together with an elliptical-like central bulge, and still others have irregular or peculiar morpholo-
gies. Based on such features, Hubble ordered galaxies in a morphological sequence, which is
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(Normal spirals)

(Barred spirals)

Fig. 2.8. A schematic representation of the Hubble sequence of galaxy morphologies. [Courtesy of
R. Abraham; see Abraham (1998)]

now referred to as the Hubble sequence or Hubble tuning-fork diagram (see Fig. 2.8). Hubble’s
scheme classifies galaxies into four broad classes:

(i) Elliptical galaxies: These have smooth, almost elliptical isophotes and are divided into
subtypes E0, E1, . . . , E7, where the integer is the one closest to 10(1−b/a), with a and
b the lengths of the semimajor and semiminor axes.

(ii) Spiral galaxies: These have thin disks with spiral arm structures. They are divided into
two branches, barred spirals and normal spirals, according to whether or not a recogniz-
able bar-like structure is present in the central part of the galaxy. On each branch, galaxies
are further divided into three classes, a, b and c, according to the following three criteria:

• the fraction of the light in the central bulge;
• the tightness with which the spiral arms are wound;
• the degree to which the spiral arms are resolved into stars, HII regions and ordered dust

lanes.

These three criteria are correlated: spirals with a pronounced bulge component usually
also have tightly wound spiral arms with relatively faint HII regions, and are classified
as Sa. On the other hand, spirals with weak or absent bulges usually have open arms
and bright HII regions and are classified as Sc. When the three criteria give conflicting
indications, Hubble put most emphasis on the openness of the spiral arms.

(iii) Lenticular or S0 galaxies: This class is intermediate between ellipticals and spirals. Like
ellipticals, lenticulars have a smooth light distribution with no spiral arms or HII regions.
Like spirals they have a thin disk and a bulge, but the bulge is more dominant than that in
a spiral galaxy. They may also have a central bar, in which case they are classified as SB0.

(iv) Irregular galaxies: These objects have neither a dominating bulge nor a rotationally sym-
metric disk and lack any obvious symmetry. Rather, their appearance is generally patchy,
dominated by a few HII regions. Hubble did not include this class in his original sequence
because he was uncertain whether it should be considered an extension of any of the other
classes. Nowadays irregulars are usually included as an extension to the spiral galaxies.

Ellipticals and lenticulars together are often referred to as early-type galaxies, while the spirals
and irregulars make up the class of late-type galaxies. Indeed, traversing the Hubble sequence
from the left to the right the morphologies are said to change from early- to late-type. Although
somewhat confusing, one often uses the terms ‘early-type spirals’ and ‘late-type spirals’ to refer
to galaxies at the left or right of the spiral sequence. We caution, though, that this historical
nomenclature has no direct physical basis: the reference to ‘early’ or ‘late’ should not be
interpreted as reflecting a property of the galaxy’s evolutionary state. Another largely historical
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Table 2.5. Galaxy morphological types.

Hubble E E-SO SO SO-Sa Sa Sa-b Sb Sb-c Sc Sc-Irr Irr
deV E SO− SO0 SO+ Sa Sab Sb Sbc Scd Sdm Im
T −5 −3 −2 0 1 2 3 4 6 8 10

Fig. 2.9. Fractional luminosity of the spheroidal bulge component in a galaxy as a function of morphologi-
cal type (based on the classification of de Vaucouleurs). Data points correspond to individual galaxies, and
the curve is a fit to the mean. Elliptical galaxies (Type = −5) are considered to be pure bulges. [Based on
data presented in Simien & de Vaucouleurs (1986)]

nomenclature, which can be confusing at times, is to refer to faint galaxies with MB ∼> −18 as
‘dwarf galaxies’. In particular, early-type dwarfs are often split into dwarf ellipticals (dE) and
dwarf spheroidals (dSph), although there is no clear distinction between these types – often the
term dwarf spheroidals is simply used to refer to early-type galaxies with MB ∼> −14.

Since Hubble, a variety of other classification schemes have been introduced. A commonly
used one is due to de Vaucouleurs (1974). He put spirals in the Hubble sequence into a finer
gradation by adding new types such as SOa, Sab, Sbc (and the corresponding barred types). After
finding that many of Hubble’s irregular galaxies in fact had weak spiral arms, de Vaucouleurs
also extended the spiral sequence to irregulars, adding types Scd, Sd, Sdm, Sm, Im and I0, in
order of decreasing regularity. (The m stands for ‘Magellanic’ since the Magellanic Clouds are
the prototypes of this kind of irregulars.) Furthermore, de Vaucouleurs used numbers between
−6 and 10 to represent morphological types (the de Vaucouleurs’ T types). Table 2.5 shows
the correspondence between de Vaucouleurs’ notations and Hubble’s notations – note that the
numerical T types do not distinguish between barred and unbarred galaxies. As shown in Fig. 2.9,
the morphology sequence according to de Vaucouleurs’ classification is primarily a sequence
in the importance of the bulge.

The Hubble classification and its revisions encompass the morphologies of the majority of
the observed galaxies in the local Universe. However, there are also galaxies with strange
appearances which defy Hubble’s classification. From their morphologies, these ‘peculiar’
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Fig. 2.10. The peculiar galaxy known as the Antennae, a system exhibiting prominent tidal tails (the left
inlet), a signature of a recent merger of two spiral galaxies. The close-up of the center reveals the presence
of large amounts of dust and many clusters of newly formed stars. [Courtesy of B. Whitmore, NASA, and
Space Telescope Science Institute]

galaxies all appear to have been strongly perturbed in the recent past and to be far from dynam-
ical equilibrium, indicating that they are undergoing a transformation. A good example is the
Antennae (Fig. 2.10) where the tails are produced by the interaction of the two spiral galaxies,
NGC 4038 and NGC 4039, in the process of merging.

The classifications discussed so far are based only on morphology. Galaxies can also be clas-
sified according to other properties. For instance, they can be classified into bright and faint
according to luminosity, into high and low surface brightness according to surface brightness,
into red and blue according to color, into gas-rich and gas-poor according to gas content, into
quiescent and starburst according to their current level of star formation, and into normal and
active according to the presence of an active nucleus. All these properties can be measured obser-
vationally, although often with some difficulty. An important aspect of the Hubble sequence (and
its modifications) is that many of these properties change systematically along the sequence (see
Figs. 2.11 and 2.12), indicating that it reflects a sequence in the basic physical properties of galax-
ies. However, we stress that the classification of galaxies is far less clear cut than that of stars,
whose classification has a sound basis in terms of the H-R diagram and the evolutionary tracks.

2.3.2 Elliptical Galaxies

Elliptical galaxies are characterized by smooth, elliptical surface brightness distributions, contain
little cold gas or dust, and have red photometric colors, characteristic of an old stellar pop-
ulation. In this section we briefly discuss some of the main, salient observational properties.
A more in-depth discussion, including an interpretation within the physical framework of galaxy
formation, is presented in Chapter 13.

(a) Surface Brightness Profiles The one-dimensional surface brightness profile, I(R), of an
elliptical galaxy is usually defined as the surface brightness as a function of the isophotal
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Fig. 2.11. Galaxy properties along the Hubble morphological sequence based on the RC3-UGC sample.
Filled circles are medians, open ones are mean values. The bars bracket the 25 and 75 percentiles. Properties
plotted are LB (blue luminosity in L�), R25 (the radius in kpc of the 25magarcsec−2 isophote in the B-band),
MT (total mass in solar units within a radius R25/2), MHI (HI mass in solar units), MHI/LB, ΣT (total mass
surface density), ΣHI (HI mass surface density), and the B−V color. [Based on data presented in Roberts
& Haynes (1994)]

semimajor axis length R. If the position angle of the semimajor axis changes with radius, a
phenomenon called isophote twisting, then I(R) traces the surface brightness along a curve that
connects the intersections of each isophote with its own major axis.

The surface brightness profile of spheroidal galaxies is generally well fit by the Sérsic profile
(Sérsic, 1968), or R1/n profile,1

I(R) = I0 exp

[
−βn

(
R
Re

)1/n
]

= Ie exp

[
−βn

{(
R
Re

)1/n

−1

}]
, (2.22)

where I0 is the central surface brightness, n is the so-called Sérsic index which sets the concen-
tration of the profile, Re is the effective radius that encloses half of the total light, and Ie = I(Re).
Surface brightness profiles are often expressed in terms of μ ∝−2.5log(I) (which has the units
of mag arcsec−2), for which the Sérsic profile takes the form

μ(R) = μe +1.086βn

[(
R
Re

)1/n

−1

]
. (2.23)

1 A similar formula, but with R denoting 3-D rather than projected radius, was used by Einasto (1965) to describe the
stellar halo of the Milky Way.



2.3 Galaxies 43

Fig. 2.12. Spectra of different types of galaxies from the ultraviolet to the near-infrared. From ellipticals
to late-type spirals, the blue continuum and emission lines become systematically stronger. For early-type
galaxies, which lack hot, young stars, most of the light emerges at the longest wavelengths, where one sees
absorption lines characteristic of cool K stars. In the blue, the spectrum of early-type galaxies show strong
H and K absorption lines of calcium and the G band, characteristic of solar type stars. Such galaxies emit
little light at wavelengths shorter than 4000Å and have no emission lines. In contrast, late-type galaxies
and starbursts emit most of their light in the blue and near-ultraviolet. This light is produced by hot young
stars, which also heat and ionize the interstellar medium giving rise to strong emission lines. [Based on data
kindly provided by S. Charlot]

The value for βn follows from the definition of Re and is well approximated by βn = 2n−0.324
(but only for n ∼> 1). Note that Eq. (2.22) reduces to a simple exponential profile for n = 1. The
total luminosity of a spherical system with a Sérsic profile is

L = 2π
∫ ∞

0
I(R)RdR =

2πnΓ(2n)
(βn)2n I0 R2

e , (2.24)

with Γ(x) the gamma function. Early photometry of the surface brightness profiles of normal
giant elliptical galaxies was well fit by a de Vaucouleurs profile, which is a Sérsic profile with
n = 4 (and βn = 7.67) and is therefore also called a R1/4-profile. With higher accuracy photometry
and with measurements of higher and lower luminosity galaxies, it became clear that ellipticals
as a class are better fit by the more general Sérsic profile. In fact, the best-fit values for n have
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Fig. 2.13. Correlation between the Sérsic index, n, and the absolute magnitude in the B-band for a sample
of elliptical galaxies. The vertical dotted lines correspond to MB = −18 and MB = −20.5 and are shown
to facilitate a comparison with Fig. 2.14. [Data compiled and kindly made available by A. Graham (see
Graham & Guzmán, 2003)]

Fig. 2.14. The effective radius (left panel) and the average surface brightness within the effective radius
(right panel) of elliptical galaxies plotted against their absolute magnitude in the B-band. The vertical dotted
lines correspond to MB =−18 and MB =−20.5. [Data compiled and kindly made available by A. Graham
(see Graham & Guzmán, 2003), combined with data taken from Bender et al. (1992)]

been found to be correlated with the luminosity and size of the galaxy: while at the faint end
dwarf ellipticals have best-fit values as low as n ∼ 0.5, the brightest ellipticals can have Sérsic
indices n ∼> 10 (see Fig. 2.13).

Instead of I0 or Ie, one often characterizes the surface brightness of an elliptical galaxy via the
average surface brightness within the effective radius, 〈I〉e = L/(2πR2

e), or, in magnitudes, 〈μ〉e.
Fig. 2.14 shows how Re and 〈μ〉e are correlated with luminosity. At the bright end (MB ∼< −18),
the sizes of elliptical galaxies increase strongly with luminosity. Consequently, the average sur-
face brightness actually decreases with increasing luminosity. At the faint end (MB ∼> −18),
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however, all ellipticals have roughly the same effective radius (Re ∼ 1kpc), so that the average
surface brightness increases with increasing luminosity. Because of this apparent change-over in
properties, ellipticals with MB ∼> −18 are typically called ‘dwarf’ ellipticals, in order to distin-
guish them from the ‘normal’ ellipticals (see §2.3.5). However, this alleged ‘dichotomy’ between
dwarf and normal ellipticals has recently been challenged. A number of studies have argued that
there is actually a smooth and continuous sequence of increasing surface brightness with increas-
ing luminosity, except for the very bright end (MB ∼< −20.5) where this trend is reversed (e.g.
Jerjen & Binggeli, 1997; Graham & Guzmán, 2003).

The fact that the photometric properties of elliptical galaxies undergo a transition around
MB ∼−20.5 is also evident from their central properties (in the inner few hundred parsec). High
spatial resolution imaging with the HST has revealed that the central surface brightness profiles
of elliptical galaxies are typically not well described by an inward extrapolation of the Sérsic pro-
files fit to their outer regions. Bright ellipticals with MB ∼< −20.5 typically have a deficit in I(R)
with respect to the best-fit Sérsic profile, while fainter ellipticals reveal excess surface bright-
ness. Based on the value of the central cusp slope γ ≡ dlog I/dlogr the population of ellipticals
has been split into ‘core’ (γ < 0.3) and ‘power-law’ (γ ≥ 0.3) systems. The majority of bright
galaxies with MB ∼< −20.5 have cores, while power-law galaxies typically have MB > −20.5
(Ferrarese et al., 1994; Lauer et al., 1995). Early results, based on relatively small samples, sug-
gested a bimodal distribution in γ , with virtually no galaxies in the range 0.3 < γ < 0.5. However,
subsequent studies have significantly weakened the evidence for a clear dichotomy, finding a
population of galaxies with intermediate properties (Rest et al., 2001; Ravindranath et al., 2001).
In fact, recent studies, using significantly larger samples, have argued for a smooth transition in
nuclear properties, with no evidence for any dichotomy (Ferrarese et al., 2006b; Côté et al., 2007;
see also §13.1.2).

(b) Isophotal Shapes The isophotes of elliptical galaxies are commonly fitted by ellipses and
characterized by their minor-to-major axis ratios b/a (or, equivalently, by their ellipticities ε =
1−b/a) and by their position angles. In general, the ellipticity may change across the system, in
which case the overall shape of an elliptical is usually defined by some characteristic ellipticity
(e.g. that of the isophote which encloses half the total light). In most cases, however, the variation
of ε with radius is not large, so that the exact definition is of little consequence. For normal
elliptical galaxies the axis ratio lies in the range 0.3 ∼< b/a ≤ 1, corresponding to types E0 to E7.
In addition to the ellipticity, the position angle of the isophotes may also change with radius, a
phenomenon called isophote twisting.

Detailed modeling of the surface brightness of elliptical galaxies shows that their isophotes are
generally not exactly elliptical. The deviations from perfect ellipses are conveniently quantified
by the Fourier coefficients of the function

Δ(φ) ≡ Riso(φ)−Rell(φ) = a0 +
∞

∑
n=1

(an cosnφ +bn sinnφ) , (2.25)

where Riso(φ) is the radius of the isophote at angle φ and Rell(φ) is the radius of an ellipse at
the same angle (see Fig. 2.15). Typically one considers the ellipse that best fits the isophote in
question, so that a0, a1, a2, b1 and b2 are all consistent with zero within the errors. The deviations
from this best-fit isophote are then expressed by the higher-order Fourier coefficients an and
bn with n ≥ 3. Of particular importance are the values of the a4 coefficients, which indicate
whether the isophotes are ‘disky’ (a4 > 0) or ‘boxy’ (a4 < 0), as illustrated in Fig. 2.15. The
diskiness of an isophote is defined as the dimensionless quantity, a4/a, where a is the length
of the semimajor axis of the isophote’s best-fit ellipse. We caution that some authors use an
alternative method to specify the deviations of isophotes from pure ellipses. Instead of using
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Fig. 2.15. An illustration of boxy and disky isophotes (solid curves). The dashed curves are the
corresponding best-fit ellipses.

isophote deviation from an ellipse, they quantify how the intensity fluctuates along the best-fit
ellipse:

I(φ) = I0 +
∞

∑
n=1

(An cosnφ +Bn sinnφ) , (2.26)

with I0 the intensity of the best-fit ellipse. The coefficients An and Bn are (approximately) related
to an and bn according to

An = an

∣∣∣∣ dI
dR

∣∣∣∣ , Bn = bn

∣∣∣∣ dI
dR

∣∣∣∣ , (2.27)

where R = a
√

1− ε , with ε the ellipticity of the best-fit ellipse.
The importance of the disky/boxy classification is that boxy and disky ellipticals turn out to

have systematically different properties. Boxy ellipticals are usually bright, rotate slowly, and
show stronger than average radio and X-ray emission, while disky ellipticals are fainter, have
significant rotation and show little or no radio and X-ray emission (e.g. Bender et al., 1989;
Pasquali et al., 2007). In addition, the diskiness is correlated with the nuclear properties as well;
disky ellipticals typically have steep cusps, while boxy ellipticals mainly harbor central cores
(e.g. Jaffe et al., 1994; Faber et al., 1997).

(c) Colors Elliptical galaxies in general have red colors, indicating that their stellar contents
are dominated by old, metal-rich stars (see §10.3). In addition, the colors are tightly correlated
with the luminosity such that brighter ellipticals are redder (Sandage & Visvanathan, 1978). As
we will see in §13.5, the slope and (small) scatter of this color–magnitude relation puts tight
constraints on the star-formation histories of elliptical galaxies. Ellipticals also display color
gradient. In general, the outskirt has a bluer color than the central region. Peletier et al. (1990)
obtained a mean logarithmic gradient of Δ(U −R)/Δ logr = −0.20±0.02 mag in U −R, and of
Δ(B−R)/Δ logr = −0.09±0.02 mag in B−R, in good agreement with the results obtained by
Franx et al. (1989b).

(d) Kinematic Properties Giant ellipticals generally have low rotation velocities. Observa-
tionally, this may be characterized by the ratio of maximum line-of-sight streaming motion vm

(relative to the mean velocity of the galaxy) to σ , the average value of the line-of-sight velocity
dispersion interior to ∼ Re/2. This ratio provides a measure of the relative importance of ordered
and random motions within the galaxy. For isotropic, oblate galaxies flattened by the centrifu-
gal force generated by rotation, vm/σ ≈√ε/(1− ε), with ε the ellipticity of the spheroid (see
§13.1.7). As shown in Fig. 2.16a, for bright ellipticals, vm/σ lies well below this prediction,
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Fig. 2.16. (a) The ratio vm/σ for ellipticals and bulges (with bulges marked by horizontal bars) versus ellip-
ticity. Open circles are for bright galaxies with MB ≤ 20.5, with upper limits marked by downward arrows;
solid circles are for early types with −20.5 < MB < −18. The solid curve is the relation expected for an
oblate galaxy flattened by rotation. [Based on data published in Davies et al. (1983)] (b) The rotation param-
eter (v/σ)∗ (defined as the ratio of vm/σ to the value expected for an isotropic oblate spheroid flattened
purely by rotation) versus the average diskiness of the galaxy. [Based on data published in Kormendy &
Bender (1996)]

indicating that their flattening must be due to velocity anisotropy, rather than rotation. In con-
trast, ellipticals of intermediate luminosities (with absolute magnitude −20.5 ∼< MB ∼< −18.0)
and spiral bulges have vm/σ values consistent with rotational flattening. Fig. 2.16b shows, as
noted above, that disky and boxy ellipticals have systematically different kinematics: while disky
ellipticals are consistent with rotational flattening, rotation in boxy ellipticals is dynamically
unimportant.

When the kinematic structure of elliptical galaxies is examined in more detail a wide range of
behavior is found. In most galaxies the line-of-sight velocity dispersion depends only weakly on
position and is constant or falls at large radii. Towards the center the dispersion may drop weakly,
remain flat, or rise quite sharply. The behavior of the mean line-of-sight streaming velocity is
even more diverse. While most galaxies show maximal streaming along the major axis, a sub-
stantial minority show more complex behavior. Some have non-zero streaming velocities along
the minor axis, and so it is impossible for them to be an oblate body rotating about its sym-
metry axis. Others have mean motions which change suddenly in size, in axis, or in sign in the
inner regions, the so-called kinematically decoupled cores. Such variations point to a variety of
formation histories for apparently similar galaxies.

At the very center of most nearby ellipticals (and also spiral and S0 bulges) the velocity dis-
persion is observed to rise more strongly than can be understood as a result of the gravitational
effects of the observed stellar populations alone. It is now generally accepted that this rise sig-
nals the presence of a central supermassive black hole. Such a black hole appears to be present
in virtually every galaxy with a significant spheroidal component, and to have a mass which is
roughly 0.1% of the total stellar mass of the spheroid (Fig. 2.17). A more detailed discussion of
supermassive black holes is presented in §13.1.4.

(e) Scaling Relations The kinematic and photometric properties of elliptical galaxies are cor-
related. In particular, ellipticals with a larger (central) velocity dispersion are both brighter,
known as the Faber–Jackson relation, and larger, known as the Dn-σ relation (Dn is the isophotal
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Fig. 2.17. The masses of central black holes in ellipticals and spiral bulges plotted against the absolute
magnitude (left) and velocity dispersion (right) of their host spheroids. [Adapted from Kormendy (2001)]
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Fig. 2.18. The fundamental plane of elliptical galaxies in the logRe-logσ0-〈μ〉e space (σ0 is the central
velocity dispersion, and 〈μ〉e is the mean surface brightness within Re expressed in magnitudes per square
arcsecond). [Plot kindly provided by R. Saglia, based on data published in Saglia et al. (1997) and Wegner
et al. (1999)]

diameter within which the average, enclosed surface brightness is equal to a fixed value). Fur-
thermore, when plotted in the three-dimensional space spanned by logσ0, logRe and log〈I〉e,
elliptical galaxies are concentrated in a plane (see Fig. 2.18) known as the fundamental plane. In
mathematical form, this plane can be written as

logRe = a logσ0 +b log〈I〉e + constant, (2.28)
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where 〈I〉e is the mean surface brightness within Re (not to be confused with Ie, which is the
surface brightness at Re). The values of a and b have been estimated in various photometric bands.
For example, Jørgensen et al. (1996) obtained a = 1.24±0.07, b = −0.82±0.02 in the optical,
while Pahre et al. (1998) obtained a = 1.53±0.08, b = −0.79±0.03 in the near-infrared. More
recently, using 9,000 galaxies from the Sloan Digital Sky Survey (SDSS), Bernardi et al. (2003b)
found the best fitting plane to have a = 1.49±0.05 and b =−0.75±0.01 in the SDSS r-band with
a rms of only 0.05. The Faber–Jackson and Dn-σ relations are both two-dimensional projections
of this fundamental plane. While the Dn-σ projection is close to edge-on and so has relatively
little scatter, the Faber–Jackson projection is significantly tilted resulting in somewhat larger
scatter. These relations can not only be used to determine the distances to elliptical galaxies, but
are also important for constraining theories for their formation (see §13.4).

(f) Gas Content Although it was once believed that elliptical galaxies contain neither gas nor
dust, it has become clear over the years that they actually contain a significant amount of inter-
stellar medium which is quite different in character from that in spiral galaxies (e.g. Roberts et al.,
1991; Buson et al., 1993). Hot (∼ 107 K) X-ray emitting gas usually dominates the interstellar
medium (ISM) in luminous ellipticals, where it can contribute up to ∼ 1010 M� to the total mass
of the system. This hot gas is distributed in extended X-ray emitting atmospheres (Fabbiano,
1989; Mathews & Brighenti, 2003), and serves as an ideal tracer of the gravitational potential in
which the galaxy resides (see §8.2).

In addition, many ellipticals also contain small amounts of warm ionized (104 K) gas as well
as cold (< 100K) gas and dust. Typical masses are 102–104 M� in ionized gas and 106–108 M�
in the cold component. Contrary to the case for spirals, the amounts of dust and of atomic and
molecular gas are not correlated with the luminosity of the elliptical. In many cases, the dust
and/or ionized gas is located in the center of the galaxy in a small disk component, while other
ellipticals reveal more complex, filamentary or patchy dust morphologies (e.g. van Dokkum &
Franx, 1995; Tran et al., 2001). This gas and dust either results from accumulated mass loss from
stars within the galaxy or has been accreted from external systems. The latter is supported by the
fact that the dust and gas disks are often found to have kinematics decoupled from that of the
stellar body (e.g. Bertola et al., 1992).

2.3.3 Disk Galaxies

Disk galaxies have a far more complex morphology than ellipticals. They typically consist of a
thin, rotationally supported disk with spiral arms and often a bar, plus a central bulge component.
The latter can dominate the light of the galaxy in the earliest types and may be completely absent
in the latest types. The spiral structure is best seen in face-on systems and is defined primarily
by young stars, HII regions, molecular gas and dust absorption. Edge-on systems, on the other
hand, give a better handle on the vertical structure of the disk, which often reveals two separate
components: a thin disk and a thick disk. In addition, there are indications that disk galaxies
also contain a spheroidal, stellar halo, extending out to large radii. In this subsection we briefly
summarize the most important observational characteristics of disk galaxies. A more in-depth
discussion, including models for their formation, is presented in Chapter 11.

(a) Surface Brightness Profiles Fig. 2.19 shows the surface brightness profiles of three disk
galaxies, as measured along their projected, major axes. A characteristic of these profiles is that
they typically reveal a range over which μ(R) can be accurately fitted by a straight line. This
corresponds to an exponential surface brightness profile

I(R) = I0 exp(−R/Rd) , I0 =
L

2πR2
d

, (2.29)
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Fig. 2.19. The surface brightness profiles of three disk galaxies plus their decomposition in an exponential
disk (solid line) and a Sérsic bulge (dot-dashed line). [Based on data published in MacArthur et al. (2003)
and kindly made available by L. MacArthur]

Fig. 2.20. The effective radius (left panel) and the surface brightness at the effective radius (right panel) of
disk dominated galaxies plotted against their absolute magnitude in the B-band. [Based on data published
in Impey et al. (1996b)]

(i.e. a Sérsic profile with n = 1). Here R is the cylindrical radius, Rd is the exponential scale-
length, I0 is the central luminosity surface density, and L is the total luminosity. The effective
radius enclosing half of the total luminosity is Re � 1.67Rd. Following Freeman (1970) it has
become customary to associate this exponential surface brightness profile with the actual disk
component. The central regions of the majority of disk galaxies show an excess surface brightness
with respect to a simple inward extrapolation of this exponential profile. This is interpreted as a
contribution from the bulge component, and such interpretation is supported by images of edge-
on disk galaxies, which typically reveal a central, roughly spheroidal, component clearly thicker
than the disk itself (see e.g. NGC 4565 in Fig. 2.7). At large radii, the surface brightness profiles
often break to a much steeper (roughly exponential) profile (an example is UGC 927, shown in
Fig. 2.19). These breaks occur at radii Rb = αRd with α in the range 2.5 to 4.5 (e.g. Pohlen et al.,
2000; de Grijs et al., 2001).

Fig. 2.20 shows Re and μe as functions of the absolute magnitude for a large sample of disk
dominated galaxies (i.e. with a small or negligible bulge component). Clearly, as expected, more
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luminous galaxies tend to be larger, although there is large scatter, indicating that galaxies of a
given luminosity span a wide range in surface brightnesses. Note that, similar to ellipticals with
MB ∼> −20.5, more luminous disk galaxies on average have a higher surface brightness (see
Fig. 2.14).

When decomposing the surface brightness profiles of disk galaxies into the contributions of
disk and bulge, one typically fits μ(R) with the sum of an exponential profile for the disk and a
Sérsic profile for the bulge. We caution, however, that these bulge–disk decompositions are far
from straightforward. Often the surface brightness profiles show clear deviations from a simple
sum of an exponential plus Sérsic profile (e.g. UGC 12527 in Fig. 2.19). In addition, seeing
tends to blur the central surface brightness distribution, which has to be corrected for, dust can
cause significant extinction, and bars and spiral arms represent clear deviations from perfect
axisymmetry. In addition, disks are often lop-sided (the centers of different isophotes are offset
from each other in one particular direction) and can even be warped (the disk is not planar, but
different disk radii are tilted with respect to each other). These difficulties can be partly overcome
by using the full two-dimensional information in the image, by using color information to correct
for dust, and by using kinematic information. Such studies require much detailed work and even
then ambiguities remain.

Despite these uncertainties, bulge–disk decompositions have been presented for large samples
of disk galaxies (e.g. de Jong, 1996a; Graham, 2001; MacArthur et al., 2003). These studies have
shown that more luminous bulges have a larger best-fit Sérsic index, similar to the relation found
for elliptical galaxies (Fig. 2.13): while the relatively massive bulges of early-type spirals have
surface brightness profiles with a best-fit Sérsic index n ∼ 4, the surface brightness profiles of
bulges in late-type spirals are better fit with n ∼< 1. In addition, the ratio between the effective
radius of the bulge and the disk scale length is found to be roughly independent of Hubble type,
with an average of 〈re,b/Rd〉 = 0.22± 0.09. The fact that the bulge-to-disk ratio increases from
late-type to early-type therefore indicates that brighter bulges have a higher surface brightness.

Although the majority of bulges have isophotes that are close to elliptical, a non-negligible
fraction of predominantly faint bulges in edge-on, late-type disk galaxies have isophotes that are
extremely boxy, or sometimes even have the shape of a peanut. As we will see in §11.5.4, these
peanut-shaped bulges are actually bars that have been thickened out of the disk plane.

(b) Colors In general, disk galaxies are bluer than elliptical galaxies of the same luminosity.
As discussed in §11.7, this is mainly owing to the fact that disk galaxies are still actively forming
stars (young stellar populations are blue). Similar to elliptical galaxies, more luminous disks are
redder, although the scatter in this color–magnitude relation is much larger than that for elliptical
galaxies. Part of this scatter is simply due to inclination effects, with more inclined disks being
more extincted and hence redder, although the intrinsic scatter (corrected for dust extinction) is
still significantly larger than for ellipticals. In general, disk galaxies also reveal color gradients,
with the outer regions being bluer than the inner regions (e.g. de Jong, 1996b).

Although it is often considered standard lore that disks are blue and bulges are red, this is not
supported by actual data. Rather, the colors of bulges are in general very similar to, or at least
strongly correlated with, the central colors of their associated disks (e.g. de Jong, 1996a; Peletier
& Balcells, 1996; MacArthur et al., 2004). Consequently, bulges also span a wide range in
colors.

(c) Disk Vertical Structure Galaxy disks are not infinitesimally thin. Observations suggest
that the surface brightness distribution in the ‘vertical’ (z-) direction is largely independent of the
distance R from the disk center. The three-dimensional luminosity density of the disk is therefore
typically written in separable form as

ν(R,z) = ν0 exp(−R/Rd) f (z). (2.30)
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A general fitting function commonly used to describe the luminosity density of disks in the
z-direction is

fn(z) = sech2/n
(

n|z|
2zd

)
, (2.31)

where n is a parameter controlling the shape of the profile near z = 0 and zd is called the scale
height of the disk. Note that all these profiles project to face-on surface brightness profiles given
by Eq. (2.29) with I0 = anν0zd, with an a constant. Three values of n have been used extensively
in the literature:

fn(z) =

⎧⎨⎩ sech2(z/2zd) an = 4 n = 1
sech(z/zd) an = π n = 2
exp(−|z|/zd) an = 2 n = ∞.

(2.32)

The sech2-form for n = 1 corresponds to a self-gravitating isothermal sheet. Although this model
has been used extensively in dynamical modeling of disk galaxies (see §11.1), it is generally
recognized that the models with n = 2 and n = ∞ provide better fits to the observed surface
brightness profiles. Note that all fn(z) decline exponentially at large |z|; they only differ near the
mid-plane, where larger values of n result in steeper profiles. Unfortunately, since dust is usually
concentrated near the mid-plane, it is difficult to accurately constrain n. The typical value of the
ratio between the vertical and radial scale lengths is zd/Rd ∼ 0.1, albeit with considerable scatter.

Finally, it is found that most (if not all) disks have excess surface brightness, at large distances
from the mid-plane, that cannot be described by Eq. (2.31). This excess light is generally ascribed
to a separate ‘thick disk’ component, whose scale height is typically a factor of 3 larger than for
the ‘thin disk’. The radial scale lengths of thick disks, however, are remarkably similar to those
of their corresponding thin disks, with typical ratios of Rd,thick/Rd,thin in the range 1.0–1.5, while
the stellar mass ratios Md,thick/Md,thin decrease from ∼ 1 for low mass disks with Vrot ∼< 75kms−1

to ∼ 0.2 for massive disks with Vrot ∼> 150kms−1 (Yoachim & Dalcanton, 2006).

(d) Stellar Halos The Milky Way contains a halo of old, metal-poor stars with a density dis-
tribution that falls off as a power law, ρ ∝ r−α (α ∼ 3). In recent years, however, it has become
clear that the stellar halo reveals a large amount of substructure in the form of stellar streams (e.g.
Helmi et al., 1999; Yanny et al., 2003; Bell et al., 2008). These streams are associated with mater-
ial that has been tidally stripped from satellite galaxies and globular clusters (see §12.2), and in
some cases they can be unambiguously associated with their original stellar structure (e.g. Ibata
et al., 1994; Odenkirchen et al., 2002). Similar streams have also been detected in our neighbor
galaxy, M31 (Ferguson et al., 2002).

However, the detection of stellar halos in more distant galaxies, where the individual stars
cannot be resolved, has proven extremely difficult due to the extremely low surface brightnesses
involved (typically much lower than that of the sky). Nevertheless, using extremely deep imaging,
Sackett et al. (1994) detected a stellar halo around the edge-on spiral galaxy NGC 5907. Later and
deeper observations of this galaxy suggest that this extraplanar emission is once again associated
with a ring-like stream of stars (Zheng et al., 1999). By stacking the images of hundreds of edge-
on disk galaxies, Zibetti et al. (2004) were able to obtain statistical evidence for stellar halos
around these systems, suggesting that they are in fact rather common. On the other hand, recent
observations of the nearby late-type spiral M33 seem to exclude the presence of a significant
stellar halo in this galaxy (Ferguson et al., 2007). Currently the jury is still out as to what fraction
of (disk) galaxies contain a stellar halo, and as to what fraction of the halo stars are associated
with streams versus a smooth, spheroidal component.

(e) Bars and Spiral Arms More than half of all spirals show bar-like structures in their inner
regions. This fraction does not seem to depend significantly on the spiral type, and indeed S0
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galaxies are also often barred. Bars generally have isophotes which are more squarish than
ellipses and can be fit by the ‘generalized ellipse’ formula, (|x|/a)c + (|y|/b)c = 1, where a,
b and c are constants and c is substantially larger than 2. Bars are, in general, quite elongated,
with axis ratios in their equatorial planes ranging from about 2.5 to 5. Since it is difficult to
observe bars in edge-on galaxies, their thickness is not well determined. However, since bars are
so common, some limits may be obtained from the apparent thickness of the central regions of
edge-on spirals. Such limits suggest that most bars are very flat, probably as flat as the disks
themselves, but the bulges complicate this line of argument and it is possible that some bulges
(for example, the peanut-shaped bulges) are directly related to bars (see §11.5.4).

Galaxy disks show a variety of spiral structure. ‘Grand-design’ systems have arms (most fre-
quently two) which can be traced over a wide range of radii and in many, but far from all, cases
are clearly related to a strong bar or to an interacting neighbor. ‘Flocculent’ systems, on the other
hand, contain many arm segments and have no obvious large-scale pattern. Spiral arms are clas-
sified as leading or trailing according to the sense in which the spiral winds (moving from center
to edge) relative to the rotation sense of the disk. Almost all spirals for which an unambiguous
determination can be made are trailing.

Spiral structure is less pronounced (though still present) in red light than in blue light. The
spiral structure is also clearly present in density maps of atomic and molecular gas and in maps
of dust obscuration. Since the blue light is dominated by massive and short-lived stars born in
dense molecular clouds, while the red light is dominated by older stars which make up the bulk of
the stellar mass of the disk, this suggests that spiral structure is not related to the star-formation
process alone, but affects the structure of all components of disks, a conclusion which is more
secure for grand-design than for flocculent spirals (see §11.6 for details).

(f) Gas Content Unlike elliptical galaxies which contain gas predominantly in a hot and highly
ionized state, the gas component in spiral galaxies is mainly in neutral hydrogen (HI) and molec-
ular hydrogen (H2). Observations in the 21-cm lines of HI and in the mm-lines of CO have
produced maps of the distribution of these components in many nearby spirals (e.g. Young &
Scoville, 1991). The gas mass fraction increases from about 5% in massive, early-type spirals
(Sa/SBa) to as much as 80% in low mass, low surface brightness disk galaxies (McGaugh & de
Blok, 1997). In general, while the distribution of molecular gas typically traces that of the stars,
the distribution of HI is much more extended and can often be traced to several Holmberg radii.
Analysis of emission from HII regions in spirals provides the primary means for determining
their metal abundance (in this case the abundance of interstellar gas rather than of stars). Metal-
licity is found to decrease with radius. As a rule of thumb, the metal abundance decreases by
an order of magnitude for a hundred-fold decrease in surface density. The mean metallicity also
correlates with luminosity (or stellar mass), with the metal abundance increasing roughly as the
square root of stellar mass (see §2.4.4).

(g) Kinematics The stars and cold gas in galaxy disks move in the disk plane on roughly
circular orbits. Therefore, the kinematics of a disk are largely specified by its rotation curve
Vrot(R), which expresses the rotation velocity as a function of galactocentric distance. Disk rota-
tion curves can be measured using a variety of techniques, most commonly optical long-slit or
IFU spectroscopy of HII region emission lines, or radio or millimeter interferometry of line emis-
sion from the cold gas. Since the HI gas is usually more extended than the ionized gas associated
with HII regions, rotation curves can be probed out to larger galactocentric radii using spatially
resolved 21-cm observations than using optical emission lines. Fig. 2.21 shows two examples of
disk rotation curves. For massive galaxies these typically rise rapidly at small radii and then are
almost constant over most of the disk. In dwarf and lower surface brightness systems a slower
central rise is common. There is considerable variation from system to system, and features in
rotation curves are often associated with disk structures such as bars or spiral arms.
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Fig. 2.21. The rotation curves of the Sc galaxy NGC 3198 (left) and the low surface brightness galaxy F568-
3 (right). The curve in the left panel shows the contribution from the disk mass assuming a mass-to-light
ratio of 3.8M�/L�. [Based on data published in Begeman (1989) and Swaters et al. (2000)]

The rotation curve is a direct measure of the gravitational force within a disk. Assuming, for
simplicity, spherical symmetry, the total enclosed mass within radius r can be estimated from

M(r) = rV 2
rot(r)/G. (2.33)

In the outer region, where Vrot(r) is roughly a constant, this implies that M(r) ∝ r, so that the
enclosed mass of the galaxy (unlike its enclosed luminosity) does not appear to be converging.
For the rotation curve of NGC 3198 shown in Fig. 2.21, the last measured point corresponds to
an enclosed mass of 1.5× 1011 M�, about four times larger than the stellar mass. Clearly, the
asymptotic total mass could even be much larger than this. The fact that the observed rotation
curves of spiral galaxies are flat at the outskirts of their disks is evidence that they possess massive
halos of unseen, dark matter. This is confirmed by studies of the kinematics of satellite galaxies
and of gravitational lensing, both suggesting that the enclosed mass continues to increase roughly
with radius out to at least 10 times the Holmberg radius.

The kinematics of bulges are difficult to measure, mainly because of contamination by disk
light. Nevertheless, the existing data suggests that the majority are rotating rapidly (consistent
with their flattened shapes being due to the centrifugal forces), and in the same sense as their
disk components.

(h) Tully–Fisher Relation Although spiral galaxies show great diversity in luminosity, size,
rotation velocity and rotation-curve shape, they obey a well-defined scaling relation between
luminosity L and rotation velocity (usually taken as the maximum of the rotation curve well away
from the center, Vmax). This is known as the Tully–Fisher relation, an example of which is shown
in Fig. 2.22. The observed Tully–Fisher relation is usually expressed in the form L = AVα

max,
where A is the zero-point and α is the slope. The observed value of α is between 2.5 and
4, and is larger in redder bands (e.g. Pierce & Tully, 1992). For a fixed Vmax, the scatter in
luminosity is typically 20%. This tight relation can be used to estimate the distances to spiral
galaxies, using the principle described in §2.1.3(c). However, as we show in Chapter 11, the
Tully–Fisher relation is also important for our understanding of galaxy formation and evolu-
tion, as it defines a relation between dynamical mass (due to stars, gas, and dark matter) and
luminosity.
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Fig. 2.22. The Tully–Fisher relation in the I-band. Here W is the linewidth of the HI 21-cm line which
is roughly equal to twice the maximum rotation velocity, Vmax. [Adapted from Giovanelli et al. (1997) by
permission of AAS]

2.3.4 The Milky Way

We know much more about our own Galaxy, the Milky Way, than about most other galaxies,
simply because our position within it allows its stellar and gas content to be studied in consider-
able detail. This ‘internal perspective’ also brings disadvantages, however. For example, it was
not demonstrated until the 1920s and 30s that the relatively uniform brightness of the Milky Way
observed around the sky does not imply that we are close to the center of the system, but rather
is a consequence of obscuration of distant stars by dust. This complication, combined with the
problem of measuring distances, is the main reason why many of the Milky Way’s large scale
properties (e.g. its total luminosity, its radial structure, its rotation curve) are still substantially
more uncertain than those of some external galaxies.

Nevertheless, we believe that the Milky Way is a relatively normal spiral galaxy. Its main
baryonic component is the thin stellar disk, with a mass of ∼ 5×1010 M�, a radial scale length
of ∼ 3.5kpc, a vertical scale height of ∼ 0.3kpc, and an overall diameter of ∼ 30kpc. The Sun
lies close to the mid-plane of the disk, about 8kpc from the Galactic center, and rotates around
the center of the Milky Way with a rotation velocity of ∼ 220kms−1. In addition to this thin disk
component, the Milky Way also contains a thick disk whose mass is 10–20% of that of the thin
disk. The vertical scale height of the thick disk is ∼ 1kpc, but its radial scale length is remarkably
similar to that of the thin disk. The thick disk rotates slower than the thin disk, with a rotation
velocity at the solar radius of ∼ 175kms−1.

In addition to the thin and thick disks, the Milky Way also contains a bulge component with
a total mass of ∼ 1010 M� and a half-light radius of ∼ 1kpc, as well as a stellar halo, whose
mass is only about 3% of that of the bulge despite its much larger radial extent. The stellar halo
has a radial number density distribution n(r) ∝ r−α , with 2 ∼< α ∼< 4, reaches out to at least
40kpc, and shows no sign of rotation (i.e. its structure is supported against gravity by random
rather than ordered motion). The structure and kinematics of the bulge are more complicated.
The near-infrared image of the Milky Way, obtained with the COBE satellite, shows a modest,
somewhat boxy bulge. As discussed in §11.5.4, it is believed that these boxy bulges are actually
bars. This bar-like nature of the Milky Way bulge is supported by the kinematics of atomic and
molecular gas in the inner few kiloparsecs (Binney et al., 1991), by microlensing measurements
of the bulge (Zhao et al., 1995), and by asymmetries in the number densities of various types of
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stars (Whitelock & Catchpole, 1992; Stanek et al., 1994; Sevenster, 1996). The very center of
the Milky Way is also known to harbor a supermassive black hole with a mass approximately
2× 106 M�. Its presence is unambiguously inferred from the radial velocities, proper motions
and accelerations of stars which pass within 100 astronomical units (1.5×1015cm) of the central
object (Genzel et al., 2000; Schödel et al., 2003; Ghez et al., 2005).

During World War II the German astronomer W. Baade was interned at Mount Wilson in
California, where he used the unusually dark skies produced by the blackout to study the stellar
populations of the Milky Way. He realized that the various components are differentiated not
only by their spatial distributions and their kinematics, but also by their age distributions and their
chemical compositions. He noted that the disk population (which he called Population I) contains
stars of all ages and with heavy element abundances ranging from about 0.2 to 1 times solar. The
spheroidal component (bulge plus halo), which he called Population II, contains predominantly
old stars and near the Sun its heavy element abundances are much lower than in the disk. More
recent work has shown that younger disk stars are more concentrated to the mid-plane than older
disk stars, that disk stars tend to be more metal-rich near the Galactic center than at large radii,
and that young disk stars tend to be somewhat more metal-rich than older ones. In addition,
it has become clear that the spheroidal component contains stars with a very wide range of
metal abundances. Although the majority are within a factor of 2 or 3 of the solar value, almost
the entire metal-rich part of the distribution lies in the bulge. At larger radii the stellar halo is
predominantly metal-poor with a metallicity distribution reaching down to very low values: the
current record holder has an iron content that is about 200,000 times smaller than that of the
Sun! Finally, the relative abundances of specific heavy elements (for example, Mg and Fe) differ
systematically between disk and spheroid. As we will see in Chapter 10, all these differences
indicate that the various components of the Milky Way have experienced very different star-
formation histories (see also §11.8).

The Milky Way also contains about 5×109 M� of cold gas, almost all of which is moving on
circular orbits close to the plane of the disk. The majority of this gas (∼ 80%) is neutral, atomic
hydrogen (HI), which emits radio emission at 21 cm. The remaining ∼ 20% the gas is in molec-
ular form and is most easily traced using millimeter-wave line emission from carbon monoxide
(CO). The HI has a scale height of ∼ 150pc and a velocity dispersion of ∼ 9kms−1. Between
4 and 17 kpc its surface density is roughly constant, declining rapidly at both smaller and larger
radii. The molecular gas is more centrally concentrated than the atomic gas, and mainly resides
in a ring-like distribution at ∼ 4.5kpc from the center, and with a FWHM of ∼ 2kpc. Its scale
height is only ∼ 50pc, while its velocity dispersion is ∼ 7kms−1, somewhat smaller than that of
the atomic gas. The molecular gas is arranged in molecular cloud complexes with typical masses
in the range 105–107 M� and typical densities of order 100 atoms per cm3. New stars are born
in clusters and associations embedded in the dense, dust-enshrouded cores of these molecular
clouds (see Chapter 9). If a star-forming region contains O and B stars, their UV radiation soon
creates an ionized bubble, an ‘HII region’, in the surrounding gas. Such regions produce strong
optical line emission which makes them easy to identify and to observe. Because of the (ongo-
ing) star formation, the ISM is enriched with heavy elements. In the solar neighborhood, the
metallicity of the ISM is close to that of the Sun, but it decreases by a factor of a few from the
center of the disk to its outer edge.

Three other diffuse components of the Milky Way are observed at levels which suggest that
they may significantly influence its evolution. Most of the volume of the Galaxy near the Sun is
occupied by hot gas at temperatures of about 106K and densities around 10−4 atoms per cm3.
This gas is thought to be heated by stellar winds and supernovae and contains much of the
energy density of the ISM. A similar energy density resides in relativistic protons and electrons
(cosmic rays) which are thought to have been accelerated primarily in supernova shocks. The
third component is the Galactic magnetic field which has a strength of a few μG, is ordered on
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large scales, and is thought to play a significant role in regulating star formation in molecular
clouds.

The final and dominant component of the Milky Way appears to be its dark halo. Although
the ‘dark matter’ out of which this halo is made has not been observed directly (except perhaps
for a small fraction in the form of compact objects, see §2.10.2), its presence is inferred from the
outer rotation curve of the Galaxy, from the high velocities of the most extreme local Population
II stars, from the kinematics of globular star clusters and dwarf galaxies in the stellar halo, and
from the infall speed of our giant neighbor, the Andromeda Nebula. The estimated total mass of
this unseen distribution of dark matter is about 1012 M� and it is thought to extend well beyond
100kpc from the Galactic center.

2.3.5 Dwarf Galaxies

For historical reasons, galaxies with MB ∼> −18 are often called dwarf galaxies (Sandage &
Binggeli, 1984). These galaxies span roughly six orders of magnitude in luminosity, although
the faint end is subject to regular changes as fainter and fainter galaxies are constantly being
discovered. The current record holder is Willman I, a dwarf spheroidal galaxy in the local group
with an estimated magnitude of MV �−2.6 (Willman et al., 2005; Martin et al., 2007).

By number, dwarfs are the most abundant galaxies in the Universe, but they contain a relatively
small fraction of all stars. Their structure is quite diverse, and they do not fit easily into the Hubble
sequence. The clearest separation is between gas-rich systems with ongoing star formation – the
dwarf irregulars (dIrr) – and gas-poor systems with no young stars – the dwarf ellipticals (dE)
and dwarf spheroidals (dSph). Two examples of them are shown in Fig. 2.23.

Fig. 2.24 sketches the regions in the parameter space of effective radius and absolute mag-
nitude that are occupied by different types of galaxies. Spirals and dwarf irregulars cover
roughly four orders of magnitude in luminosity, almost two orders of magnitude in size, and
about three orders of magnitude in surface brightness. As their name suggests, dwarf irregu-
lars have highly irregular structures, often being dominated by one or a few bright HII regions.
Their gas content increases with decreasing mass and in extreme objects, such as blue com-
pact dwarfs, the so-called ‘extragalactic HII regions’, the HI extent can be many times larger
than the visible galaxy. The larger systems seem to approximate rotationally supported disks, but
the smallest systems show quite chaotic kinematics. The systems with regular rotation curves

Fig. 2.23. Images of two dwarf galaxies: the Large Magellanic Cloud (LMC, left panel), which is a
proto typical dwarf irregular, and the dwarf spheroidal Fornax (right panel). [Courtesy of NASA/IPAC
Extragalactic Database]
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Fig. 2.24. A sketch of the regions in the parameter space of effective radius and absolute magnitude (both in
the B-band) occupied by different types of galaxies. The spheroidal systems are split into ellipticals, dwarf
ellipticals (dE), compact ellipticals (cE), dwarf spheroidals (dSph), and ultra-compact dwarfs (UCD). The
dashed, vertical line corresponds to MB = −18, and reflects the magnitude limit below which galaxies are
often classified as dwarfs. The diagonal lines are lines of constant surface brightness; galaxies roughly span
five orders of magnitude in surface brightness, from 〈μB〉e ∼−18.5 to 〈μB〉e ∼−30.5.

often appear to require substantial amounts of dark matter even within the visible regions of the
galaxy.

Dwarf ellipticals are gas-poor systems found primarily in groups and clusters of galaxies. Their
structure is regular, with luminosity profiles closer to exponential than to the de Vaucouleurs law
(see Fig. 2.13). In addition, they have lower metallicities than normal ellipticals, although they
seem to follow the same relation between metallicity and luminosity.

Dwarf spheroidals (dSphs) are faint objects of very low surface brightness, which have so
far only been identified unambiguously within the Local Group (see §2.5.2). Their structure is
relatively regular and they appear to contain no gas and no, or very few, young stars with ages less
than about 1 Gyr. However, several dSphs show unambiguous evidence for several distinct bursts
of star formation. Their typical sizes range from a few tens to several hundreds of parsec, while
their luminosities span almost five orders of magnitude. Their kinematics indicate dynamical
mass-to-light ratios that can be as large as several hundred times that of the Sun, which is usually
interpreted as implying a large dark matter content (Mateo, 1998; Gilmore et al., 2007). One of
the most luminous dSphs, the Sagittarius dwarf, currently lies only about 20 kpc from the center
of the Milky Way and is being torn apart by the Milky Way’s tidal forces.

The distinction between ‘dwarf’ and ‘regular’ galaxies had its origin in the observation that
ellipticals with MB ∼> −18 are not well described by the de Vaucouleurs R1/4 law. Instead,
their surface brightness profiles were found to be closer to exponential (e.g. Faber & Lin, 1983;
Binggeli et al., 1984). This distinction was further strengthened by the work of Kormendy (1985)
who found that bright ellipticals have their surface brightness decrease with increasing luminos-
ity, while dEs have increasing surface brightness with increasing luminosity (see Fig. 2.14). This
gave rise to the concept of a clear dichotomy between dwarf and regular ellipticals. More recently,
however, it has been argued that this ‘dichotomy’, with a characteristic scale at MB �−18, is an
artefact of sample selection and of the fact that the surface brightness profiles were fit with either
an R1/4 profile or an exponential. Fitting with the more general Sérsic profiles instead indicates
clearly that there is a smooth trend between the best-fit Sérsic index and absolute magnitude
(see Fig. 2.13) and an equally smooth trend between absolute magnitude and central surface
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brightness (see Graham & Guzmán, 2003, and references therein). Hence, there seems to be no
clear distinction between dEs and ‘regular’ ellipticals. Neither is there a clear distinction between
dEs and dSphs; the latter simply make up the low luminosity extreme of the dEs, typically with
MB ∼> −14. Although we will adhere to the ‘historical’ nomenclature throughout this book, we
caution that there is no clear physical motivation for discriminating between dSphs, dEs, and
‘regular’ ellipticals (but see §13.6).

Fig. 2.24 also sketches the location in size–luminosity space occupied by a special class of
(dwarf) galaxies known as compact ellipticals (cEs). These are characterized by unusually high
surface brightness for their luminosity, although they do seem to form a smooth continuation
of the size–luminosity relation of ‘regular’ ellipticals. The prototypical example is M32, a com-
panion of the Andromeda Galaxy, M31. Compact ellipticals are very rare, and only a handful of
these systems are known. Some authors have argued that the bulges of (early-type) disk galaxies
occupy the same region in parameter space as the cEs, suggesting that these two types of objects
are somehow related (e.g. Bender et al., 1992). Finally, Drinkwater et al. (2003) have recently
identified a new class of (potential) galaxies, called ultra-compact dwarfs (UCDs). They typi-
cally have MB ∼−11 and effective radii of 10–20 pc, giving them an average surface brightness
comparable to that of cEs. Their nature is still very uncertain. In particular, it is still unclear
whether they should be classified as galaxies, or whether they merely reflect the bright end of the
population of globular clusters. Alternatively, they may also be the remnant nuclei of disrupted
low surface brightness galaxies (see below).

2.3.6 Nuclear Star Clusters

In their landmark study of the Virgo Cluster, Binggeli et al. (1987) found that ∼ 25% of the dEs
contain a massive star cluster at their centers (called the nucleus), which clearly stands out against
the low surface brightness of its host galaxy. Following this study it has become customary to
split the population of dEs into ‘nucleated’ and ‘non-nucleated’. Binggeli et al. (1987) did not
detect any nuclei in the more luminous ellipticals, although they cautioned that these might have
been missed in their photographic survey due to the high surface brightness of the underlying
galaxy. Indeed, more recent studies, capitalizing on the high spatial resolution afforded by the
HST, have found that as much as ∼ 80% of all early-type galaxies with MB ∼<−15 are nucleated
(e.g. Grant et al., 2005; Côté et al., 2006). In addition, HST imaging of late-type galaxies has
revealed that 50–70% of these systems also have compact stellar clusters near their photomet-
ric centers (e.g. Phillips et al., 1996; Böker et al., 2002). These show a remarkable similarity
in luminosity and size to those detected in early-type galaxies. However, the nuclear star clus-
ters in late-type galaxies seem to have younger stellar ages than their counterparts in early-type
galaxies (e.g. Walcher et al., 2005; Côté et al., 2006). Thus a large fraction of all galaxies, inde-
pendent of their morphology, environment or gas content, contain a nuclear star cluster at their
photometric center. The only exception seem to be the brightest ellipticals, with MB ∼< −20.5,
which seem to be devoid of nuclear star clusters. Note that this magnitude corresponds to the
transition from disky, power-law ellipticals to boxy, core ellipticals (see §2.3.2), supporting the
notion of a fundamental transition at this luminosity scale.

On average, nuclear star clusters are an order of magnitude more luminous than the peak of
the globular cluster luminosity function of their host galaxies, have stellar masses in the range
∼ 106–108 M�, and typical radii of ∼ 5pc. This makes nuclear star clusters the densest stellar
systems known (e.g. Geha et al., 2002; Walcher et al., 2005). In fact, they are not that dissimilar
to the ultra-compact dwarfs, suggesting a possible relation (e.g. Bekki et al., 2001).

As discussed in §2.3.2 (see also §13.1.4), the majority of bright spheroids (ellipticals and
bulges) seem to contain a supermassive black hole (SMBH) at their nucleus. The majority
of spheroids with secure SMBH detections have magnitudes in the range −22 ∼< MB ∼< −18.
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Although it is unclear whether (the majority of) fainter spheroids also harbor SMBHs, cur-
rent data seems to support a view in which bright galaxies (MB ∼< −20) often, and perhaps
always, contain SMBHs but not stellar nuclei, while at the faint end (MB ∼> −18) stellar nuclei
become the dominant feature. Intriguingly, Ferrarese et al. (2006a) have shown that stellar nuclei
and SMBHs obey a common scaling relation between their mass and that of their host galaxy,
with MCMO/Mgal = 0.018+0.034

−0.012 (where CMO stands for central massive object), suggesting that
SMBHs and nuclear clusters share a common origin. This is somewhat clouded, though, by the
fact that nuclear star clusters and SMBHs are not mutually exclusive. The two best known cases
in which SMBHs and stellar nuclei coexist are M32 (Verolme et al., 2002) and the Milky Way
(Ghez et al., 2003; Schödel et al., 2003).

2.3.7 Starbursts

In normal galaxies like the Milky Way, the specific star-formation rates are typically of order
0.1Gyr−1, which implies star-formation time scales (defined as the ratio between the total stellar
mass and the current star-formation rate) that are comparable to the age of the Universe. There
are, however, systems in which the (specific) star-formation rates are 10 or even 100 times higher,
with implied star-formation time scales as short as 108 years. These galaxies are referred to as
starbursts. The star-formation activity in such systems (at least in the most massive ones) is often
concentrated in small regions, with sizes typically about 1 kpc, much smaller than the disk sizes
in normal spiral galaxies.

Because of the large current star-formation rate, a starburst contains a large number of young
stars. Indeed, for blue starbursts where the star-formation regions are not obscured by dust, their
spectra generally have strong blue continuum produced by massive stars, and show strong emis-
sion lines from HII regions produced by the UV photons of O and B stars (see Fig. 2.12). Since
the formation of stars is, in general, associated with the production of large amounts of dust,2

most of the strong starbursts are not observed directly via their strong UV emission. Rather, the
UV photons produced by the young stars are absorbed by dust and re-emitted in the far-infrared.
In extreme cases these starbursting galaxies emit the great majority of their light in the infrared,
giving rise to the population of infrared luminous galaxies (LIRGs) discovered in the 1980s with
the Infrared Astronomical Satellite (IRAS). A LIRG is defined as a galaxy with a far-infrared
luminosity exceeding 1011 L� (Soifer et al., 1984). If its far-infrared luminosity exceeds 1012 L�
it is called an ultraluminous infrared galaxy (ULIRG).

The fact that starbursts are typically confined to a small region (usually the nucleus) of the star-
bursting galaxy, combined with their high star-formation rates, requires a large amount of cold
gas to be accumulated in a small region in a short time. The most efficient way of achieving this
is through mergers of gas-rich galaxies, where the interstellar media of the merging systems can
be strongly compressed and concentrated by tidal interactions (see §12.4.3). This scenario is sup-
ported by the observation that massive starbursts (in particular ULIRGs) are almost exclusively
found in strongly interacting systems with peculiar morphologies.

2.3.8 Active Galactic Nuclei

The centers of many galaxies contain small, dense and luminous components known as active
galactic nuclei (AGN). An AGN can be so bright that it outshines its entire host galaxy, and differs
from a normal stellar system in its emission properties. While normal stars emit radiation primar-
ily in a relatively narrow wavelength range between the near-infrared and the near-UV, AGN are
powerful emitters of non-thermal radiation covering the entire electromagnetic spectrum from the

2 It is believed that dust is formed in the atmospheres of evolved stars and in supernova explosions.
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radio to the gamma-ray regime. Furthermore, the spectra of many AGN contain strong emission
lines and so contrast with normal stellar spectra which are typically dominated by absorption
lines (except for galaxies with high specific star-formation rates). According to their emission
properties, AGN are divided into a variety of subclasses, including radio sources, Seyferts, liners,
blazars and quasars (see Chapter 14 for definitions).

Most of the emission from an AGN comes from a very small, typically unresolved region;
high-resolution observations of relatively nearby objects with HST or with radio interferometry
demonstrate the presence of compact emitting regions with sizes smaller than a few parsecs.
These small sizes are consistent with the fact that some AGN reveal strong variability on time
scales of only a few days, indicating that the emission must emanate from a region not much
larger than a few light-days across. The emission from these nuclei typically reveals a rela-
tively featureless power-law continuum at radio, optical and X-ray wavelengths, as well as broad
emission lines in the optical and X-ray bands. On somewhat larger scales, AGN often manifest
themselves in radio, optical and even X-ray jets, and in strong but narrow optical emission lines
from hot gas. The most natural explanation for the energetics of AGN, combined with their small
sizes, is that AGN are powered by the accretion of matter onto a supermassive black hole (SMBH)
with a mass of 106–109 M�. Such systems can be extremely efficient in converting gravitational
energy into radiation. As mentioned in §2.3.2, virtually all spheroidal galaxy components (i.e.
ellipticals and bulges) harbor a SMBH whose mass is tightly correlated with that of the spheroid,
suggesting that the formation of SMBHs is tightly coupled to that of their host galaxies. Indeed,
the enormous energy output of AGN may have an important feedback effect on the formation
and evolution of galaxies. Given their importance for galaxy formation, Chapter 14 is entirely
devoted to AGN, including a more detailed overview of their observational properties.

2.4 Statistical Properties of the Galaxy Population

So far our description has focused on the properties of separate classes of galaxies. We now turn
our attention to statistics that describe the galaxy population as a whole, i.e. that describe how
galaxies are distributed with respect to these properties. As we will see in §§2.5 and 2.7, the
galaxy distribution is strongly clustered on scales up to ∼ 10 Mpc, which implies that one needs
to probe a large volume in order to obtain a sample that is representative of the entire population.
Therefore, the statistical properties of the galaxy population are best addressed using large galaxy
redshift surveys. Currently the largest redshift surveys available are the two-degree Field Galaxy
Redshift Survey (2dFGRS; Colless et al., 2001a) and the Sloan Digital Sky Survey (SDSS; York
et al., 2000), both of which probe the galaxy distribution at a median redshift z ∼ 0.1. The
2dFGRS has measured redshifts for ∼ 220,000 galaxies over ∼ 2000 square degrees down to
a limiting magnitude of b j ∼ 19.45. The source catalogue for the survey is the APM galaxy cat-
alogue, which is based on Automated Plate Measuring machine (APM) scans of photographic
plates (Maddox et al., 1990b). The SDSS consists of a photometrically and astrometrically cali-
brated imaging survey covering more than a quarter of the sky in five broad optical bands (u, g,
r, i, z) that were specially designed for the survey (Fukugita et al., 1996), plus a spectroscopic
survey of ∼ 106 galaxies (r < 17.77) and ∼ 105 quasars detected in the imaging survey.

The selection function of these and other surveys plays an important role in the observed sam-
ple properties. For example, most surveys select galaxies above a given flux limit (i.e. the survey
is complete down to a given apparent magnitude). Since intrinsically brighter galaxies will reach
the flux limit at larger distances, a flux limited survey is biased towards brighter galaxies. This
is called the Malmquist bias and needs to be corrected for when trying to infer the intrinsic
probability distribution of galaxies. There are two ways to do this. One is to construct a volume
limited sample, by only selecting galaxies brighter than a given absolute magnitude limit, Mlim,
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Table 2.6. Relative number densities of
galaxies in the local Universe.

Type of object Number density

Spirals 1
Lenticulars 0.1
Ellipticals 0.2
Irregulars 0.05
Dwarf galaxies 10
Peculiar galaxies 0.05
Starbursts 0.1
Seyferts 10−2

Radio galaxies 10−4

QSOs 10−5

Quasars 10−7

and below a given redshift, zlim, where zlim is the redshift at which a galaxy with absolute mag-
nitude Mlim has an apparent magnitude equal to the survey limit. Alternatively, one can weight
each galaxy by the inverse of Vmax, defined as the survey volume out to which the specific galaxy
in question could have been detected given the flux limit of the survey. The advantage of this
method over the construction of volume-limited samples is that one does not have to discard any
data. However, the disadvantage is that intrinsically faint galaxies can only be seen over a rela-
tively small volume (i.e. Vmax is small), so that they get very large weights. This tends to make
the measurements extremely noisy.

As a first example of a statistical description of the galaxy population, Table 2.4 lists the
number densities of the various classes of galaxies described in the previous section, relative to
that of spiral galaxies. Note, however, that these numbers are only intended as a rough description
of the galaxy population in the nearby Universe. The real galaxy population is extremely diverse,
and an accurate description of the galaxy number density is only possible for a well-defined
sample of galaxies.

2.4.1 Luminosity Function

Arguably one of the most fundamental properties of a galaxy is its luminosity (in some wave-
band). An important statistic of the galaxy distribution is therefore the luminosity function,
φ(L)dL, which describes the number density of galaxies with luminosities in the range L±dL/2.
Fig. 2.25 shows the luminosity function in the photometric b j-band obtained from the 2dFGRS.
At the faint end φ(L) seems to follow a power- law which truncates at the bright end, where the
number density falls roughly exponentially. A similar behavior is also seen in other wavebands,
so that the galaxy luminosity function is commonly fitted by a Schechter function (Schechter,
1976) of the form

φ(L)dL = φ ∗
(

L
L∗

)α
exp

(
− L

L∗

)
dL
L∗ . (2.34)

Here L∗ is a characteristic luminosity, α is the faint-end slope, and φ ∗ is an overall normalization.
As shown in Fig. 2.25, this function fits the observed luminosity function over a wide range. From
the Schechter function, we can write the mean number density, ng, and the mean luminosity
density, L , of galaxies in the Universe as

ng ≡
∫ ∞

0
φ(L)dL = φ ∗Γ(α+1), (2.35)
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Fig. 2.25. The luminosity function of galaxies in the b j-band as obtained from the 2-degree Field Galaxy
Redshift Survey. [Based on data published in Norberg et al. (2002b)]

and

L ≡
∫ ∞

0
φ(L)LdL = φ ∗L∗Γ(α+2), (2.36)

where Γ(x) is the gamma function. Note that ng diverges for α ≤ −1, while L diverges for
α ≤−2. Observations from the near-UV to the near-infrared show that −2 < α <−1, indicating
that the number density is dominated by faint galaxies while the luminosity density is dominated
by bright ones.

As we will see in Chapter 15, the luminosity function of galaxies depends not only on the
waveband, but also on the morphological type, the color, the redshift, and the environment of the
galaxy. One of the most challenging problems in galaxy formation is to explain the general shape
of the luminosity function and the dependence on other galaxy properties.

2.4.2 Size Distribution

Size is another fundamental property of a galaxy. As shown in Figs. 2.14 and 2.20, galaxies of
a given luminosity may have very different sizes (and therefore surface brightnesses). Based on
a large sample of galaxies in the SDSS, Shen et al. (2003) found that the size distribution for
galaxies of a given luminosity L can roughly be described by a log-normal function,

P(R|L)dR =
1√

2πσlnR
exp

[
− ln2(R/R)

2σ2
lnR

]
dR
R

, (2.37)

where R is the median and σlnR the dispersion. Fig. 2.26 shows that R increases with galaxy lumi-
nosity roughly as a power law for both early-type and late-type galaxies, and that the dependence
is stronger for early types. The dispersion σlnR, on the other hand, is similar for both early-type
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Fig. 2.26. The median (upper panel) and dispersion (lower panel) of the size distribution of galaxies in the
SDSS as function of their r-band magnitude. Results are shown separately for early-type (solid dots) and
late-type (open triangles) galaxies defined according to the Sérsic index n. [Kindly provided to us by S.
Shen, based on data published in Shen et al. (2003)]

and late-type galaxies, decreasing from ∼ 0.5 for galaxies with Mr ∼>−20.5 to ∼ 0.25 for brighter
galaxies.

2.4.3 Color Distribution

As shown in Fig. 2.5, massive stars emit a larger fraction of their total light at short wavelengths
than low-mass stars. Since more massive stars are in general shorter-lived, the color of a galaxy
carries important information about its star-formation history. However, the color of a star also
depends on its metallicity, in the sense that stars with higher metallicities are redder. In addition,
dust extinction is more efficient at bluer wavelengths, so that the color of a galaxy also contains
information regarding its chemical composition and dust content.

The left panel of Fig. 2.27 shows the distribution of the 0.1(g− r) colors of galaxies in the
SDSS, where the superscript indicates that the magnitudes have been converted to the same
rest-frame wavebands at z = 0.1. The most salient characteristic of this distribution is that it
is clearly bimodal, revealing a relatively narrow peak at the red end of the distribution plus a
significantly broader distribution at the blue end. To first order, this simply reflects that galaxies
come in two different classes: early-type galaxies, which have relatively old stellar populations
and are therefore red, and late-type galaxies, which have ongoing star formation in their disks
and are therefore blue. However, it is important to realize that this color–morphology relation is
not perfect: a disk galaxy may be red due to extensive dust extinction, while an elliptical may be
blue if it had a small amount of star formation in the recent past.

The bimodality of the galaxy population is also evident from the color–magnitude relation,
plotted in the right-hand panel of Fig. 2.27. This shows that the galaxy population is divided
into a red sequence and a blue sequence (also sometimes called the blue cloud). Two trends are
noteworthy. First of all, at the bright end the red sequence dominates, while at the faint end the
majority of the galaxies are blue. As we will see in Chapter 15, this is consistent with the fact
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Fig. 2.27. The probability density of galaxy colors (left) and the color–magnitude relation (right) of
∼ 365,000 galaxies in the SDSS. Each galaxy has been weighted by 1/Vmax to correct for Malmquist
bias. Note the pronounced bimodality in the color distribution, and the presence of both a red sequence and
a blue sequence in the color–magnitude relation.

that the bright (faint) end of the galaxy luminosity function is dominated by early-type (late-type)
galaxies. Secondly, within each sequence brighter galaxies appear to be redder. As we will see
in Chapters 11 and 13 this most likely reflects that the stellar populations in brighter galaxies are
both older and more metal rich, although it is still unclear which of these two effects dominates,
and to what extent dust plays a role.

2.4.4 The Mass–Metallicity Relation

Another important parameter to characterize a galaxy is its average metallicity, which reflects the
amount of gas that has been reprocessed by stars and exchanged with its surroundings. One can
distinguish two different metallicities for a given galaxy: the average metallicity of the stars and
that of the gas. Depending on the star-formation history and the amount of inflow and outflow,
these metallicities can be significantly different. Gas-phase metallicities can be measured from
the emission lines in a galaxy spectrum, while the metallicity of the stars can be obtained from the
absorption lines which originate in the atmospheres of the stars.

Fig. 2.28 shows the relation between the gas-phase oxygen abundance and the stellar mass
of SDSS galaxies. The oxygen abundance is expressed as 12 + log[(O/H)], where O/H is the
abundance by number of oxygen relative to hydrogen. Since the measurement of gas-phase abun-
dances requires the presence of emission lines in the spectra, all these galaxies are still forming
stars, and the sample is therefore strongly biased towards late-type galaxies. Over about three
orders of magnitude in stellar mass the average gas-phase metallicity increases by an order of
magnitude. The relation is remarkably tight and reveals a clear flattening above a few times
1010 M�. The average stellar metallicity follows a similar trend with stellar mass but with much
larger scatter at the low-mass end (Gallazzi et al., 2005). An interpretation of these results in
terms of the chemical evolution of galaxies is presented in Chapter 10.

2.4.5 Environment Dependence

As early as the 1930s it was realized that the morphological mix of galaxies depends on environ-
ment, with denser environments (e.g. clusters, see §2.5.1) hosting larger fractions of early-type
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Fig. 2.28. The relation between stellar mass, in units of solar masses, and the gas-phase oxygen abundance
for ∼53,400 star-forming galaxies in the SDSS. For comparison, the Sun has 12+ log[(O/H)] = 8.69. The
large black points represent the median in bins of 0.1 dex in mass. The solid lines are the contours which
enclose 68% and 95% of the data. The gray line shows a polynomial fit to the data. The inset shows the
residuals of the fit. [Adapted from Tremonti et al. (2004) by permission of AAS]

galaxies (Hubble & Humason, 1931). This morphology–density relation was quantified more
accurately in a paper by Dressler (1980b), who studied the morphologies of galaxies in 55 clus-
ters and found that the fraction of spiral galaxies decreases from ∼ 60% in the lowest density
regions to less than 10% in the highest density regions, while the elliptical fraction basically
reveals the opposite behavior (see Fig. 2.29). Note that the fraction of S0 galaxies is significantly
higher in clusters than in the general field, although there is no strong trend of S0 fraction with
density within clusters.

More recently, the availability of large galaxy redshift surveys has paved the way for far
more detailed studies into the environment dependence of galaxy properties. It is found that in
addition to a larger fraction of early-type morphologies, denser environments host galaxies that
are on average more massive, redder, more concentrated, less gas-rich, and have lower specific
star-formation rates (e.g. Kauffmann et al., 2004; Baldry et al., 2006; Weinmann et al., 2006b).
Interpreting these findings in terms of galaxy formation processes, however, is complicated by
the fact that various galaxy properties are strongly correlated even at a fixed environment. An
important outstanding question, therefore, is which relationship with environment is truly causal,
and which are just reflections of other correlations that are actually independent of environment
(see §15.5 for a more detailed discussion).
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Fig. 2.29. The morphology–density relation, which shows the fractions of galaxies of individual morpho-
logical types as functions of galaxy surface number density. The lower panel shows such relations for 55
clusters, while the upper panel shows the number of galaxies in each density bin. [After Dressler (1980a)]

2.5 Clusters and Groups of Galaxies

A significant fraction of the galaxies in the present-day Universe is collected into groups and
clusters in which the number density of galaxies is a few tens to a few hundred times higher
than the average. The densest and most populous of these aggregations are called galaxy clus-
ters, which typically contain more than 50 relatively bright galaxies in a volume only a few
megaparsecs across. The smaller, less populous aggregations are called ‘groups’, although there
is no well-defined distinction. Groups and clusters are the most massive, virialized objects in
the Universe, and they are important laboratories to study the evolution of the galaxy population.
Because of their high surface densities and large number of very luminous member galaxies, they
can be identified out to very large distances, making them also useful as cosmological probes.
In this section we summarize some of their most important properties, focusing in particular on
their populations of galaxies.

2.5.1 Clusters of Galaxies

In order to select clusters (or groups) of galaxies from the observed galaxy distribution, one needs
to adopt some selection criteria. In order for the selected clusters to be dynamically significant,
two selection criteria are usually set. One is that the selected system must have high enough
density, and the other is that the system must contain a sufficiently large number of galaxies.

According to these criteria, Abell (1958) selected 1,682 galaxy clusters from the Palomar Sky
Survey, which are now referred to as the Abell clusters. The two selection criteria set by Abell are

(i) Richness criterion: each cluster must have at least 50 member galaxies with apparent
magnitudes m < m3 +2, where m3 is the apparent magnitude of the third brightest mem-
ber. The richness of a cluster is defined to be the number of member galaxies with
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apparent magnitudes between m3 and m3 + 2. Rich Abell clusters are those with rich-
ness greater than 50, although Abell also listed poor clusters with richness in the range
from 30 to 50.

(ii) Compactness criterion: only galaxies with distances to the cluster center smaller than
1.5h−1Mpc (the Abell radius) are selected as members. Given the richness criterion, the
compactness criterion is equivalent to a density criterion.

Abell also classified a cluster as regular if its galaxy distribution is more or less circularly sym-
metric and concentrated, otherwise as irregular. The two most well-studied clusters, because of
their proximity, are the Virgo Cluster and the Coma Cluster. The Virgo Cluster, which is the
rich cluster nearest to our Galaxy, is a very representative example. It lacks clear symmetry, and
reveals significant substructure, indicating that the dynamical relaxation on the largest scales is
not yet complete. The Coma Cluster, on the other hand, is a fairly rare species. It is extremely
massive, and is richer than 95% of all clusters catalogued by Abell. Furthermore, it appears
remarkably relaxed, with a highly concentrated and symmetric galaxy distribution with no sign
of significant subclustering.

The Abell catalogue was constructed using visual inspections of photographic sky plates. Since
its publication, this has been improved upon using special purpose scanning machines (such as
the APM at Cambridge and COSMOS at Edinburgh), which resulted in digitized versions of the
photographic plates allowing for a more objective identification of clusters (e.g. Lumsden et al.,
1992; Dalton et al., 1997). More recently, several cluster catalogues have been constructed from
large galaxy redshift surveys such as the 2dFGRS and the SDSS (e.g. Bahcall et al., 2003; Miller
et al., 2005; Koester et al., 2007). Based on all these catalogues it is now well established that the
number density of rich clusters is of the order of 10−5 h3 Mpc−3, about 1000 times smaller than
that of L∗ galaxies.

(a) Galaxy Populations As we have seen in §2.4.5, clusters are in general rich in early-type
galaxies. The fraction of E+S0 galaxies is about 80% in regular clusters, and about 50% in
irregular clusters, compared to about 30% in the general field. This is generally interpreted as
evidence that galaxies undergo morphological transformations in dense (cluster) environments,
and various mechanisms have been suggested for such transformations (see §12.5).

The radial number density distribution of galaxies in clusters is well described by n(r) ∝
1/[rγ(r + rs)3−γ ], where rs is a scale radius and γ is the logarithmic slope of the inner profile.
The value of γ is typically ∼ 1 and the scale radius is typically ∼ 20% of the radius of the
cluster (e.g. van der Marel et al., 2000; Lin et al., 2004b). As we will see in Chapter 7 this
is very similar to the density distribution of dark matter halos, suggesting that within clusters
galaxies are a reasonably fair tracer of the mass distribution. There is, however, evidence for
some segregation by mass and morphology/color, with more massive, red, early-type galaxies
following a more concentrated number density distribution than less massive, blue, late-type
galaxies (e.g. Quintana, 1979; Carlberg et al., 1997; Adami et al., 1998; Yang et al., 2005b; van
den Bosch et al., 2008b).

Often the brightest cluster galaxy (BCG) has an extraordinarily diffuse and extended outer
envelope, in which case it is called a cD galaxy (where the ‘D’ stands for diffuse). They typi-
cally have best-fit Sérsic indices that are much larger than 4, and are often located at or near the
center of the cluster (because of this, it is a useful mnemonic to think of ‘cD’ as meaning ‘cen-
trally dominant’). cD galaxies are the most massive galaxies known, with stellar masses often
exceeding 1012 M�, and their light can make up as much as ∼ 30% of the entire visible light of
a rich cluster of galaxies. However, it is unclear whether the galaxy’s diffuse envelope should
be considered part of the galaxy or as ‘intracluster light’ (ICL), stars associated with the cluster
itself rather than with any particular galaxy. In a few cD galaxies the velocity dispersion appears
to rise strongly in the extended envelope, approaching a value similar to that of the cluster in
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which the galaxy is embedded. This supports the idea that these stars are more closely associated
with the cluster than with the galaxy (i.e. they are the cluster equivalent of the stellar halo in the
Milky Way). cD galaxies are believed to have grown through the accretion of multiple galaxies
in the cluster, a process called galactic cannibalism (see §12.5.2). Consistent with this, nearby
cDs frequently appear to have multiple nuclei (e.g. Schneider et al., 1983)

(b) The Butcher–Oemler Effect When studying the galaxy populations of clusters at inter-
mediate redshifts (0.3 ∼< z ∼< 0.5), Butcher & Oemler (1978) found a dramatic increase in the
fraction of blue galaxies compared to present-day clusters, which has become known as the
Butcher–Oemler effect. Although originally greeted with some skepticism (see Dressler, 1984,
for a review), this effect has been confirmed by numerous studies. In addition, morphological
studies, especially those with the HST, have shown that the Butcher–Oemler effect is associated
with an increase of the spiral fraction with increasing redshift, and that many of these spirals
show disturbed morphologies (e.g. Couch et al., 1994; Wirth et al., 1994).

In addition, spectroscopic data has revealed that a relatively large fraction of galaxies in
clusters at intermediate redshifts have strong Balmer lines in absorption and no emission lines
(Dressler & Gunn, 1983). This indicates that these galaxies were actively forming stars in the
past, but had their star formation quenched in the last 1–2 Gyr. Although they were originally
named ‘E+A’ galaxies, currently they are more often referred to as ‘k+a’ galaxies or as post-
starburst galaxies (since their spectra suggest that they must have experienced an elevated amount
of star formation prior to the quenching). Dressler et al. (1999) have shown that the fraction of
k+a galaxies in clusters at z ∼ 0.5 is significantly larger than in the field at similar redshifts, and
that they have mostly spiral morphologies.

All these data clearly indicate that the population of galaxies in clusters is rapidly evolving
with redshift, most likely due to specific processes that operate in dense environments (see §12.5).

(c) Mass Estimates Galaxies are moving fast in clusters. For rich clusters, the typical line-of-
sight velocity dispersion, σlos, of cluster member galaxies is of the order of 1,000kms−1. If the
cluster has been relaxed to a static dynamical state, which is roughly true for regular clusters, one
can infer a dynamical mass estimate from the virial theorem (see §5.4.4) as

M = A
σ2

losRcl

G
, (2.38)

where A is a pre-factor (of order unity) that depends on the density profile and on the exact
definition of the cluster radius Rcl. Using this technique one obtains a characteristic mass of
∼ 1015h−1 M� for rich clusters of galaxies. Together with the typical value of the total luminosity
in a cluster, this implies a typical mass-to-light ratio for clusters,

(M/LB)cl ∼ 350h(M�/L�)B. (2.39)

Hence, only a small fraction of the total gravitational mass of a cluster is associated with
galaxies.

Ever since the first detection by the UHURU satellite in the 1970s, it has become clear that
clusters are bright X-ray sources, with characteristic luminosities ranging from LX ∼ 1043 to
∼ 1045 erg s−1. This X-ray emission is spatially extended, with detected sizes of ∼ 1Mpc, and so
it cannot originate from the individual member galaxies. Rather, the spectral energy distribution
of the X-ray emission suggests that the emission mechanism is thermal bremsstrahlung (see
§B1.3) from a hot plasma. The inferred temperatures of this intracluster medium (ICM) are in
the range 107–108 K, corresponding to a typical photon energy of 1–10keV, so that the gas is
expected to be fully ionized.
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Fig. 2.30. Hubble Space Telescope image of the cluster Abell 2218. The arcs and arclets around the center
of the cluster are images of background galaxies that are strongly distorted due to gravitational lensing.
[Courtesy of W. Couch, R. Ellis, NASA, and Space Telescope Science Institute]

For a fully ionized gas, the thermal bremsstrahlung emissivity, i.e. the emission power per unit
frequency per unit volume, is related to its density and temperature roughly as

εff(ν) ∝ n2T−1/2 exp

(
− hPν

kBT

)
. (2.40)

The quantity we observe from a cluster is the X-ray surface brightness, which is the integration
of the emissivity along the line-of-sight:3

Sν(x,y) ∝
∫
εff(ν;x,y,z)dz. (2.41)

If Sν is measured as a function of ν (i.e. photon energy), the temperature at a given projected
position (x,y) can be estimated from the shape of the spectrum. Note that this temperature is
an emissivity-weighted mean along the line-of-sight, if the temperature varies with z. Once the
temperature is known, the amplitude of the surface brightness can be used to estimate

∫
n2 dz

which, together with a density model, can be used to obtain the gas density distribution. Thus,
X-ray observations of clusters can be used to estimate the corresponding masses in hot gas.
These are found to fall in the range (1013–1014)h−5/2 M�, about 10 times as large as the total
stellar mass in member galaxies. Furthermore, as we will see in §8.2.1, if the X-ray gas is in
hydrostatic equilibrium with the cluster potential, so that the local pressure gradient is balanced
by the gravitational force, the observed temperature and density distribution of the gas can also
be used to estimate the total mass of the cluster.

Another method to measure the total mass of a cluster of galaxies is through gravitational
lensing. According to general relativity, the light from a background source is deflected when it
passes a mass concentration in the foreground, an effect called gravitational lensing. As discussed
in more detail in §6.6, gravitational lensing can have a number of effects: it can create multiple
images on the sky of the same background source, it can magnify the flux of the source, and it
can distort the shape of the background source. In particular, the image of a circular source is
distorted into an ellipse if the source is not close to the line-of-sight to the lens so that the lensing
effect is weak (weak lensing). Otherwise, if the source is close to the line-of-sight to the lens, the
image is stretched into an arc or an arclet (strong lensing).

3 Here we ignore redshifting and surface brightness dimming due to the expansion of the Universe; see §3.1.
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Both strong and weak lensing can be used to estimate the total gravitational mass of a cluster.
In the case of strong lensing, one uses giant arcs and arclets, which are the images of background
galaxies lensed by the gravitational field of the cluster (see Fig. 2.30). The location of an arc in
a cluster provides a simple way to estimate the projected mass of the cluster within the circle
traced by the arc. Such analyses have been carried out for a number of clusters, and the total
masses thus obtained are in general consistent with those based on the internal kinematics, the
X-ray emission, or weak lensing. Typically the total cluster masses are found to be an order
of magnitude larger than the combined masses of stars and hot gas, indicating that clusters are
dominated by dark matter, as first pointed out by Fritz Zwicky in the 1930s.

2.5.2 Groups of Galaxies

By definition, groups are systems of galaxies with richness less than that of clusters, although
the dividing line between groups and clusters is quite arbitrary. Groups are selected by apply-
ing certain richness and compactness criteria to galaxy surveys, similar to what Abell used for
selecting clusters. Typically, groups selected from redshift surveys include systems with at least
three galaxies and with a number density enhancement of the order of 20 (e.g. Geller & Huchra,
1983; Nolthenius & White, 1987; Eke et al., 2004; Yang et al., 2005b; Berlind et al., 2006; Yang
et al., 2007). Groups so selected typically contain 3–30 L∗ galaxies, have a total B-band luminos-
ity in the range 1010.5–1012h−2 L�, have radii in the range (0.1− 1)h−1Mpc, and have typical
(line-of-sight) velocity dispersion of the order of 300kms−1. As for clusters, the total dynamical
mass of a group can be estimated from its size and velocity dispersion using the virial theorem
(2.38), and masses thus obtained roughly cover the range 1012.5–1014h−1 M�. Therefore, the typ-
ical mass-to-light ratio of galaxy groups is (M/LB) ∼ 100h(M�/L�)B, significantly lower than
that for clusters.

(a) Compact Groups A special class of groups are the so-called compact groups. Each of
these systems consists of only a few galaxies but with an extremely high density enhancement.
A catalogue of about 100 compact groups was constructed by Hickson (1982) from an analysis
of photographic plates. These Hickson Compact Groups (HCGs) typically consist of only four
or five galaxies and have a projected radius of only 50–100kpc. A large fraction (∼ 40%) of
the galaxies in HCGs show evidence for interactions, and based on dynamical arguments, it
is expected that the HCGs are each in the process of merging to perhaps form a single bright
galaxy.

(b) The Local Group The galaxy group that has been studied in most detail is the Local Group,
of which the Milky Way and M31 are the two largest members. The Local Group is a loose
association of galaxies which fills an irregular region just over 1Mpc across. Because we are
in it, we can probe the members of the Local Group down to much fainter magnitudes than
is possible in any other group. Table 2.7 lists the 30 brightest members of the Local Group,
while Fig. 2.31 shows their spatial distribution. Except for a few of the more distant objects, the
majority of the Local Group members can be assigned as satellites of either the Milky Way or
M31. The largest satellite of the Milky Way is the Large Magellanic Cloud (LMC). Its luminosity
is about one tenth of that of its host and it is currently actively forming stars. Together with its
smaller companion, the Small Magellanic Cloud (SMC), it follows a high angular momentum
orbit almost perpendicular to the Milky Way’s disk and currently lies about 50kpc from the
Galactic center. Both Magellanic Clouds have metallicities significantly lower than that of the
Milky Way. All the other satellites of our Galaxy are low mass, gas-free and metal-poor dwarf
spheroidals. The most massive of these are the Fornax and Sagittarius systems. The latter lies
only about 20kpc from the Galactic center and is in the process of being disrupted by the tidal
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Fig. 2.31. Schematic distribution of galaxies in the local group. [Courtesy of E. Grebel, see Grebel (1999)]

effects of its host. Several of the dwarf spheroidals contain stellar populations with a range of
ages, some being 10 times younger than typical Population II stars.

The Andromeda Nebula itself is similar to but more massive than the Milky Way, with a more
prominent bulge population and somewhat less active current star formation. Its largest satellite
is the bulge-less dwarf spiral M33, which is only slightly brighter than the LMC and is actively
forming stars. M31 also has two close dwarf elliptical companions, M32 and NGC 205, and
two similar satellites, NGC 147 and NGC 185, at somewhat larger distances. These galaxies are
denser and more luminous than dwarf spheroidals, but are also devoid of gas and young stars.
(NGC 205 actually has a small star-forming region in its nucleus.) Finally M31 has its own
retinue of dwarf spheroidal satellites.

The more distant members of the Local Group are primarily dwarf irregular galaxies with
active star formation, similar to but less luminous than the Magellanic Clouds. Throughout the
Local Group there is a very marked tendency for galaxies with a smaller stellar mass to have a
lower metallicity, with the smallest dwarfs having metallicities about one-tenth of the solar value
(Mateo, 1998).

2.6 Galaxies at High Redshifts

Since galaxies at higher redshifts are younger, a comparison of the (statistical) properties of
galaxies at different redshifts provides a direct window on their formation and evolution. How-
ever, a galaxy of given luminosity and size is both fainter and of lower surface brightness when
located at higher redshifts (see §3.1.6). Thus, if high-redshift galaxies have similar luminosities
and sizes as present-day galaxies, they would be extremely faint and of very low surface bright-
ness, making them very difficult to detect. Indeed, until the mid-1990s, the known high-redshift
galaxies with z ∼> 1 were almost exclusively active galaxies, such as quasars, QSOs and radio
galaxies, simply because these were the only galaxies sufficiently bright to be observable with
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Table 2.7. Local Group members.

Name Type MV l,b Distance (kpc)

Milky Way (Galaxy) Sbc −20.6 0, 0 8
LMC Irr −18.1 280,−33 49
SMC Irr −16.2 303,−44 58
Sagittarius dSph/E7 −14.0 6,−14 24
Fornax dSph/E3 −13.0 237,−65 131
Leo I (DDO 74) dSph/E3 −12.0 226,49 270
Sculptor dSph/E3 −10.7 286,−84 78
Leo II (DDO 93) dSph/E0 −10.2 220,67 230
Sextans dSph/E4 −10.0 243,42 90
Carina dSph/E4 −9.2 260,−22 87
Ursa Minor (DDO 199) dSph/E5 −8.9 105,45 69
Draco (DDO 208) dSph/E3 −8.6 86,35 76
M 31 (NGC 224) Sb −21.1 121,−22 725
M 33 (NGC 598) Sc −18.9 134,−31 795
IC 10 Irr −17.6 119,−03 1250
NGC 6822 (DDO 209) Irr −16.4 25,−18 540
M 32 (NGC 221) dE2 −16.4 121,−22 725
NGC 205 dE5 −16.3 121,−21 725
NGC 185 dE3 −15.3 121,−14 620
IC 1613 (DDO 8) Irr −14.9 130,−60 765
NGC 147 (DDO 3) dE4 −14.8 120,−14 589
WLM (DDO 221) Irr −14.0 76,−74 940
Pegasus (DDO 216) Irr −12.7 94,−43 759
Leo A Irr −11.7 196, 52 692
And I dSph/E0 −11.7 122,−25 790
And II dSph/E3 −11.7 129,−29 587
And III dSph/E6 −10.2 119,−26 790
Phoenix Irr −9.9 272,−68 390
LGC 3 Irr −9.7 126,−41 760
Tucana dSph/E5 −9.6 323,−48 900

the facilities available then. Thanks to a number of technological advancements in both tele-
scopes and detectors, we have made enormous progress, and today the galaxy population can be
probed out to z ∼> 6.

The search for high-redshift galaxies usually starts with a photometric survey of galaxies in
multiple photometric bands down to very faint magnitude limits. Ideally, one would like to have
redshifts for all these galaxies and study the entire galaxy population at all different redshifts. In
reality, however, it is extremely time-consuming to obtain spectra of faint galaxies even with the
10-meter class telescopes available today. In order to make progress, different techniques have
been used, which basically fall in three categories: (i) forsake the use of spectra and only use
photometry either to analyze the number counts of galaxies down to very faint magnitudes or to
derive photometric redshifts; (ii) use broad-band color selection to identify target galaxies likely
to be at high redshift for follow-up spectroscopy; and (iii) use narrow-band photometry to find
objects with a strong emission line in a narrow redshift range. Here we give a brief overview of
these different techniques.

2.6.1 Galaxy Counts

In the absence of redshifts, some information about the evolution of the galaxy population can
be obtained from galaxy counts, N (m), defined as the number of galaxies per unit apparent
magnitude (in a given waveband) per unit solid angle:
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d2N(m) = N (m)dmdω. (2.42)

Although the measurement of N (m) is relatively straightforward from any galaxy catalogue
with uniform photometry, interpreting the counts in terms of galaxy number density as a func-
tion of redshift is far from trivial. First of all, the waveband in which the apparent magnitudes are
measured corresponds to different rest-frame wavebands at different redshifts. To be able to test
for evolution in the galaxy population with redshift, this shift in waveband needs to be corrected
for. But such correction is not trivial to make, and can lead to large uncertainties (see §10.3.6).
Furthermore, both cosmology and evolution can affect N (m). In order to break this degen-
eracy, and to properly test for evolution, accurate constraints on cosmological parameters are
required.

Despite these difficulties, detailed analyses of galaxy counts have resulted in a clear detection
of evolution in the galaxy population. Fig. 2.32 shows the galaxy counts in four wavebands
obtained from a variety of surveys. The solid dots are obtained from the Hubble Deep Fields
(Ferguson et al., 2000) imaged to very faint magnitudes with the HST. The solid lines in Fig. 2.32
show the predictions for a realistic cosmology in which it is assumed that the galaxy population
does not evolve with redshift. A comparison with the observed counts shows that this model

Fig. 2.32. Galaxy counts in the U , B, I and K bands obtained from the Hubble deep fields (solid symbols)
and a number of other ground-based surveys (other symbols). The solid lines show the predictions for
a realistic cosmology in which it is assumed that the galaxy population does not evolve with redshift.
[Adapted from Ferguson et al. (2000) by permission of ARAA]
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severely underpredicts the galaxy counts of faint galaxies, especially in the bluer wavebands.
The nature of this excess of faint blue galaxies will be discussed in §15.2.2.

2.6.2 Photometric Redshifts

Since spectroscopy relies on dispersing the light from an object according to wavelength, accu-
rate redshifts, which require sufficient signal-to-noise in individual emission and/or absorption
lines, can only be obtained for relatively bright objects. An alternative, although less reliable,
technique to measure redshifts relies on broad-band photometry. By measuring the flux of an
object in a relatively small number of wavebands, one obtains a very crude sampling of the
object’s SED. As we have seen, the SEDs of galaxies reveal a number of broad spectral features
(see Fig. 2.12). An important example is the 4000Å break, which is due to a sudden change
in the opacity at this wavelength in the atmospheres of low mass stars, and therefore features
predominantly in galaxies with stellar population ages ∼> 108 yr. Because of this 4000Å break
and other broad spectral features, the colors of a population of galaxies at a given redshift only
occupy a relatively small region of the full multi-dimensional color space. Since this region
changes as function of redshift, the broad-band colors of a galaxy can be used to estimate its
redshift.

In practice one proceeds as follows. For a given template spectrum, either from an observed
galaxy or computed using population synthesis models, one can determine the relative fluxes
expected in different wavebands for a given redshift. By comparing these expected fluxes with
the observed fluxes one can determine the best-fit redshift and the best-fit template spectrum
(which basically reflects the spectral type of the galaxy). The great advantage of this method is
that photometric redshifts can be measured much faster than their spectroscopic counterparts, and
that it can be extended to much fainter magnitudes. The obvious downside is that photometric
redshifts are far less reliable. While a spectroscopic redshift can easily be measured to a relative
error of less than 0.1%, photometric errors are typically of the order of 3–10%, depending on
which and how many wavebands are used. Furthermore, the error is strongly correlated with the
spectral type of the galaxy. It is typically much larger for star-forming galaxies, which lack a
pronounced 4000Å break, than for galaxies with an old stellar population.

A prime example of a photometric redshift survey, illustrating the strength of this technique,
is the COMBO-17 survey (Wolf et al., 2003), which comprises a sample of ∼ 25,000 galaxies
with photometric redshifts obtained from photometry in 17 relatively narrow optical wavebands.
Because of the use of a relatively large number of filters, this survey was able to reach an aver-
age redshift accuracy of ∼ 3%, sufficient to study various statistical properties of the galaxy
population as a function of redshift.

2.6.3 Galaxy Redshift Surveys at z ∼ 1

In order to investigate the nature of the excess of faint blue galaxies detected with galaxy counts,
a number of redshift surveys out to z ∼ 1 were carried out in the mid-1990s using 4-m class
telescopes, including the Canada–France Redshift Survey (CFRS; Lilly et al., 1995) and the
Autofib-LDSS survey (Ellis et al., 1996). These surveys, containing the order of 1,000 galaxies,
allowed a determination of galaxy luminosity functions (LFs) covering the entire redshift range
0 < z ∼< 1. The results, although limited by small-number statistics, confirmed that the galaxy
population is evolving with redshift, in agreement with the results obtained from the galaxy
counts.

With the completion of a new class of 10-meter telescopes, such as the KECK and the VLT,
it became possible to construct much larger redshift samples at intermediate to high redshifts.
Currently the largest redshift survey at z ∼ 1 is the DEEP2 Redshift Survey (Davis et al., 2003),
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Fig. 2.33. Luminosity functions measured in different redshift bins for ‘All’ galaxies (top row), ‘Blue’
galaxies (middle row), and ‘Red’ galaxies (bottom row). Different symbols correspond to results obtained
from different redshift surveys (DEEP1, DEEP2, COMBO-17 and VVDS, as indicated). The solid black
lines indicate Schechter functions fitted to the DEEP2 results. For comparison, the dashed gray lines show
the Schechter functions for local samples obtained from the SDSS. Overall the agreement between the
different surveys is very good. [Adapted from Faber et al. (2007) by permission of AAS]

which contains about 50,000 galaxies brighter than RAB ≈ 24.1 in a total of ∼ 3 square degrees in
the sky. The adopted color criteria ensure that the bulk of the galaxies selected for spectroscopy
have redshifts in the range 0.7 ∼< z ∼< 1.4. Results from DEEP2 show, among others, that the
color bimodality observed in the local Universe (see §2.4.3) is already present at z ∼ 1 (Bell
et al., 2004; Willmer et al., 2006; Cooper et al., 2007). Together with COMBO-17, the DEEP2
survey has provided accurate measurements of the galaxy luminosity function, split according to
color, out to z ∼ 1.2. As shown in Fig. 2.33, the different surveys yield results in excellent mutual
agreement. In particular, they show that the characteristic luminosity, L∗, of the galaxy population
in the rest-frame B-band becomes fainter by ∼ 1.3 mag from z = 1 to z = 0 for both the red and
blue populations. However, the number density of L∗ galaxies, φ ∗, behaves very differently for
red and blue galaxies: while φ ∗ of blue galaxies has roughly remained constant since z = 1, that
of red galaxies has nearly quadrupled (Bell et al., 2004; Brown et al., 2007; Faber et al., 2007).
As we will see in §13.2, this puts important constraints on the formation history of elliptical
galaxies.

Another large redshift survey, which is being conducted at the time of writing, is the VIRMOS
VLT Deep Survey (VVDS; Le Fèvre et al., 2005) which will ultimately acquire ∼ 150,000 red-
shifts over ∼ 4 square degrees in the sky. Contrary to DEEP2, the VVDS does not apply any
color selection; rather, spectroscopic candidates are purely selected on the basis of their appar-
ent magnitude in the IAB band. Consequently the redshift distribution of VVDS galaxies is very
broad: it peaks at z ∼ 0.7, but has a long high-redshift tail extending all the way out to z ∼ 5.
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The luminosity functions obtained from ∼ 8,000 galaxies in the first data of the VVDS are in
excellent agreement with those obtained from DEEP2 and COMBO-17 (see Fig. 2.33).

2.6.4 Lyman-Break Galaxies

As discussed above, broad features in the SEDs of galaxies allow for the determination of pho-
tometric redshifts, and for a very successful pre-selection of candidate galaxies at z ∼ 1 for
follow-up spectroscopy. The same principle can also be used to select a special subset of galax-
ies at much higher redshifts. A star-forming galaxy has a SED roughly flat down to the Lyman
limit at λ ∼ 912Å, beyond which there is a prominent break due to the spectra of the stellar
population (see the spectra of the O9 and B0 stars in Fig. 2.5) and to intervening absorption. Phys-
ically this reflects the large ionization cross-section of neutral hydrogen. A galaxy revealing a
pronounced break at the Lyman limit is called a Lyman-break galaxy (LBG), and is characterized
by a relatively high star-formation rate.

For a LBG at z∼ 3, the Lyman break falls in between the U and B bands (see Fig. 2.34). There-
fore, by selecting those galaxies in a deep multi-color survey that are undetected (or extremely
faint) in the U band, but detected in the B and redder bands, one can select candidate star-
forming galaxies in the redshift range z = 2.5–3.5 (Steidel et al., 1996). Galaxies selected this
way are called UV drop-outs. Follow-up spectroscopy of large samples of UV drop-out candi-
dates has confirmed that this Lyman-break technique is very effective, with the vast majority of
the candidates being indeed star-forming galaxies at z ∼ 3.

To date more than 1,000 LBGs with 2.5 ∼< z ∼< 3.5 have been spectroscopically confirmed. The
comoving number density of bright LBGs is estimated to be comparable to that of present-day
bright galaxies. However, contrary to typical bright galaxies at z∼ 0, which are mainly early-type
galaxies, LBGs are actively forming stars (note that they are effectively selected in the B band,
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Fig. 2.34. An illustration of how the ‘Lyman-break’ or ‘drop-out’ technique can be used to select star-
forming galaxies at redshifts z ∼ 3. The spectrum of a typical star-forming galaxy has a break at the Lyman
limit (912Å), which is redshifted to a wavelength λ ∼ 4000Å if the galaxy is at z∼ 3. As a result, the galaxy
appears very faint (or may even be undetectable) in the U band, but bright in the redder bands. [Courtesy of
M. Dickinson; see Dickinson (1998)]



78 Observational Facts

corresponding to rest-frame UV at z ∼ 3) with inferred star-formation rates in the range of a few
times 10M� yr−1 up to ∼ 100M� yr−1, depending on the uncertain amount of dust extinction
(Adelberger & Steidel, 2000).

The Lyman break (or drop-out) technique has also been applied to deep imaging surveys in
redder bands to select galaxies that drop out of the B band, V band and even the I band. If these
are indeed LBGs, their redshifts correspond to z∼ 4, z∼ 5, and z∼ 6, respectively. Deep imaging
surveys with the HST and ground-based telescopes have already produced large samples of these
drop-out galaxies. Unfortunately, most of these galaxies are too faint to follow-up spectroscopi-
cally, so that it is unclear to what extent these samples are contaminated by low redshift objects.
With this caveat in mind, the data have been used to probe the evolution of the galaxy luminosity
function (LF) in the rest-frame UV all the way from z ∼ 0 (using data from the GALEX satellite)
to z ∼ 6. Over the redshift range 4 ∼< z ∼< 6 this LF is found to have an extremely steep faint-end
slope, while the characteristic luminosity L∗

UV is found to brighten significantly from z = 6 to
z = 4 (Bouwens et al., 2007).

2.6.5 Lyα Emitters

In addition to the broad-band selection techniques mentioned above, one can also search for high-
redshift galaxies using narrow-band photometry. This technique has been used extensively to
search for Lyα emitters (LAEs) at redshifts z ∼> 3 for which the Lyα emission line (λ = 1216Å)
appears in the optical.

Objects with strong Lyα are either QSOs or galaxies actively forming stars. However, since
the Lyα flux is easily quenched by dust extinction, not all star-forming galaxies feature Lyα
emission. In fact, a large fraction of LBGs, although actively forming stars, lack an obvious Lyα
emission line. Therefore, by selecting LAEs one is biased towards star-forming galaxies with
relatively little dust, or in which the dust has a special geometry so that part of the Lyα flux can
leave the galaxy unextincted.

One can search for LAEs at a particular redshift, zLAE, using a narrow-band filter centered on
a wavelength λ = 1216Å× (1 + zLAE) plus another, much broader filter centered on the same
λ . The objects in question then show up as being particularly bright in the narrow-band fil-
ter in comparison to the broad-band image. A potential problem is that one might also select
emission-line galaxies at very different redshifts. For example, a galaxy with strong [OII] emis-
sion (λ = 3727Å) would shift into the same narrow-band filter if the galaxy is at a redshift
z[OII] = 0.33zLAE −0.67. To minimize this kind of contamination one generally only selects sys-
tems with a large equivalent width4 in the emission line (∼> 150Å), which excludes all but the
rarest [OII] emitters. Another method to check whether the object is indeed a LAE at zLAE is to
use follow-up spectroscopy to see whether (i) there are any other emission lines visible that help
to determine the redshift, and (ii) the emission line is asymmetric, as expected for Lyα due to
preferential absorption in the blue wing of the line.

This technique can be used to search for high-redshift galaxies in several narrow redshift bins
ranging from z ∼ 3 to z ∼ 6.5, and at the time of writing ∼ 100 LAEs covering this redshift
range have been spectroscopically confirmed. Since these systems are typically extremely faint,
the nature of these objects is still unclear.

2.6.6 Submillimeter Sources

Since the Lyman-break technique and Lyα imaging select galaxies according to their rest-frame
UV light, they may miss dust-enshrouded star-forming galaxies, the high-redshift counterparts of
4 The equivalent width of an emission line, a measure for its strength, is defined as the width of the wavelength range

over which the continuum needs to be integrated to have the same flux as measured in the line (see §16.4.4).
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local starbursts. Most of the UV photons from young stars in such galaxies are absorbed by dust
and re-emitted in the far-infrared. Such galaxies can therefore be detected in the submillimeter
(sub-mm) band, which corresponds to rest-frame far-infrared at z ∼ 3. Deep surveys in the sub-
mm bands only became possible in the mid-1990s with the commissioning of the Submillimeter
Common-User Bolometer Array (SCUBA; see Holland et al., 1999), operating at 450 μm and
850 μm, on the James Clerk Maxwell Telescope (JCMT). This led to the discovery of an unex-
pectedly large population of faint sub-mm sources (Smail et al., 1997). An extensive and difficult
observational campaign to identify the optical counterparts and measure their redshifts has shown
that the majority of these sources are indeed starburst galaxies at a median redshift of z ∼ 2.5.
Some of the strong sub-mm sources with measured redshifts have inferred star-formation rates
as high as several 100M� yr−1, similar to those of ULIRGS at z � 0. Given the large number
density of SCUBA sources, and their inferred star-formation rates, the total number of stars
formed in these systems may well be larger than that formed in the Lyman-break galaxies at the
same redshift (Blain et al., 1999).

2.6.7 Extremely Red Objects and Distant Red Galaxies

Another important step forward in the exploration of the galaxy population at high redshift came
with the development of large format near-infrared (NIR) detectors. Deep, wide-field surveys
in the K band led to the discovery of a class of faint galaxies with extremely red optical-to-
NIR colors (R−K > 5). Follow-up spectroscopy has shown that these extremely red objects
(EROs) typically have redshifts in the range 0.7 ∼< z ∼< 1.5. There are two possible explanations
for their red colors: either they are galaxies dominated by old stellar populations with a pro-
nounced 4000Å break that has been shifted red-wards of the R-band filter, or they are starbursts
(or AGN) strongly reddened due to dust extinction. Spectroscopy of a sample of ∼ 50 EROs
suggests that they are a roughly equal mix of both (Cimatti et al., 2002a).

Deep imaging in the NIR can also be used to search for the equivalent of ‘normal’ galaxies
at z ∼> 2. As described above, the selections of LBGs, LAEs and sub-mm sources are strongly
biased towards systems with relatively high star-formation rates. Consequently, the population of
high-redshift galaxies picked out by these selections is very different from the typical, present-
day galaxies whose light is dominated by evolved stars. In order to select high-redshift galaxies
in a way similar to how ‘normal’ galaxies are selected at low redshift, one has to go to the
rest-frame optical, which corresponds to the NIR at z ∼ 2–3. Using the InfraRed ExtraGalactic
Survey (FIRES; Labbé et al., 2003), Franx et al. (2003) identified a population of galaxies on the
basis of their red NIR color, Js −Ks > 2.3, where the Ks and Js filters are similar to the classical
J and K filters, but centered on somewhat shorter wavelengths. The galaxies so selected are
now referred to as distant red galaxies (DRGs). The color criterion efficiently isolates galaxies
with prominent Balmer or 4000Å breaks at z ∼> 2, and can therefore be used to select galaxies
with the oldest stellar populations at these redshifts. However, the NIR color criterion alone
also selects galaxies with significant current star formation, even dusty starbursts. The brightest
DRGs (Ks < 20) are among the most massive galaxies at z ∼> 2, with stellar masses ∼> 1011 M�,
likely representing the progenitors of present-day massive ellipticals. As EROs, DRGs are largely
missed in UV-selected (e.g. LBG) samples. Yet, as shown by van Dokkum et al. (2006), among
the most massive population of galaxies in the redshift range 2 ∼< z ∼< 3, DRGs dominate over
LBGs both in number density and in stellar mass density.

Using photometry in the B, z, and K bands, Daddi et al. (2004) introduced a selection criterion
which allows one to recover the bulk of the galaxy population in the redshift range 1.4 ∼< z ∼< 2.5,
including both active star-forming galaxies as well as passively evolving galaxies, and to distin-
guish between the two classes. In particular, the color criterion BzK ≡ (z−K)AB − (B− z)AB >
−0.2 is very efficient in selecting star-forming galaxies with 1.4 ∼< z ∼< 2.5, independently of
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their dust reddening, while the criteria BzK < −0.2 and (z−K)AB > 2.5 predominantly select
passively evolving galaxies in the same redshift interval. At z ∼ 2 the BzK-selected star-forming
galaxies typically have higher reddening and higher star-formation rates than UV-selected galax-
ies. A comparison of BzK galaxies with DRGs in the same redshift range shows that many of the
DRGs are reddened starbursts rather than passively evolving galaxies.

2.6.8 The Cosmic Star-Formation History

The data on star-forming galaxies at different redshifts can in principle be used to map out the
production rate of stars in the Universe as a function of redshift. If we do not care where stars
form, the star-formation history of the Universe can be characterized by a global quantity, ρ̇�(z),
which is the total gas mass that is turned into stars per unit time per unit volume at redshift z.

In order to estimate ρ̇�(z) from observation, one requires estimates of the number density
of galaxies as a function of redshift and their (average) star-formation rates. In practice, one
observes the number density of galaxies as a function of luminosity in some waveband, and
estimates ρ̇�(z) from

ρ̇�(z) =
∫

dṀ� Ṁ�

∫
P(Ṁ�|L,z)φ(L,z)dL =

∫
〈Ṁ�〉(L,z)φ(L,z)dL, (2.43)

where P(Ṁ�|L,z)dṀ� is the probability for a galaxy with luminosity L (in a given band) at
redshift z to have a star-formation rate in the range (Ṁ�,Ṁ� + Ṁ�), and 〈Ṁ�〉(L,z) is the mean
star-formation rate for galaxies with luminosity L at redshift z. The luminosity function φ(L,z)
can be obtained from deep redshift surveys of galaxies, as summarized above. The transformation
from luminosity to star-formation rate depends on the rest-frame waveband used to measure

Fig. 2.35. The global star-formation rate (in M� yr−1 Mpc−3) as a function of redshift. Different symbols
correspond to different rest-frame wavelength ranges used to infer the star-formation rates, as indicated.
[Based on the data compilation of Hopkins (2004)]
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the luminosity function, and typically involves many uncertainties (see §10.3.8 for a detailed
discussion).

Fig. 2.35 shows a compilation of various measurements of the global star-formation rate at
different redshifts, obtained using different techniques. Although there is still considerable scat-
ter, and the data may be plagued by systematic errors due to uncertain extinction corrections, it
is now well established that the cosmic star-formation rate has dropped by roughly an order of
magnitude from z ∼ 2 to the present. Integrating this cosmic star-formation history over time,
one can show that the star-forming populations observed to date are already sufficient to account
for the majority of stars observed at z ∼ 0 (e.g. Dickinson et al., 2003).

2.7 Large-Scale Structure

An important property of the galaxy population is its overall spatial distribution. Since each
galaxy is associated with a large amount of mass, one might naively expect that the galaxy distri-
bution reflects the large-scale mass distribution in the Universe. On the other hand, if the process
of galaxy formation is highly stochastic, or galaxies only form in special, preferred environ-
ments, the relation between the galaxy distribution and the matter distribution may be far from
straightforward. Therefore, detailed studies of the spatial distribution of galaxies in principle can
convey information regarding both the overall matter distribution, which is strongly cosmology
dependent, and the physics of galaxy formation.

Fig. 2.36 shows the distribution of more than 80,000 galaxies in the 2dFGRS, where the dis-
tances of the galaxies have been estimated from their redshifts. Clearly the distribution of galaxies
in space is not random, but shows a variety of structures. As we have already seen in §2.5, some
galaxies are located in high-density clusters containing several hundreds of galaxies, or in smaller
groups containing a few to tens of galaxies. The majority of all galaxies, however, are distributed
in low-density filamentary or sheet-like structures. These sheets and filaments surround large

2dF Galaxy redshift survey
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Fig. 2.36. The spatial distribution of ∼ 80,000 galaxies in the 2dFGRS in a 4◦ slice projected onto the
redshift/right-ascension plane. Clearly galaxies are not distributed randomly, but are clumped together in
groups and clusters connected by large filaments that enclose regions largely devoid of galaxies. [Adapted
from Peacock (2002)]
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voids, which are regions with diameters up to ∼ 100Mpc that contain very few, or no, galaxies.
One of the challenges in studying the spatial distribution of galaxies is to properly quantify the
complexity of this ‘cosmic web’ of filaments, sheets and voids. In this section we consider the
galaxy distribution as a point set in space and study the spatial correlations among these points
in a statistical sense.

2.7.1 Two-Point Correlation Functions

One of the most important statistics used to characterize the spatial distribution of galaxies is the
two-point correlation function, defined as the excess number of galaxy pairs of a given separation,
r, relative to that expected for a random distribution:

ξ (r) =
DD(r)Δr
RR(r)Δr

−1. (2.44)

Here DD(r)Δr is the number of galaxy pairs with separations in the range r±Δr/2, and RR(r)Δr
is the number that would be expected if galaxies were randomly distributed in space. Galaxies
are said to be positively correlated on scale r if ξ (r) > 0, to be anticorrelated if ξ (r) < 0, and
to be uncorrelated if ξ (r) = 0. Since it is relatively straightforward to measure, the two-point
correlation function of galaxies has been estimated from various samples. In many cases, red-
shifts are used as distances and the corresponding correlation function is called the correlation
function in redshift space. Because of peculiar velocities, this redshift-space correlation is differ-
ent from that in real space. The latter can be estimated from the projected two-point correlation
function, in which galaxy pairs are defined by their separations projected onto the plane perpen-
dicular to the line-of-sight so that it is not affected by using redshift as distance (see Chapter 6
for details). Fig. 2.37 shows an example of the redshift-space correlation function and the corre-
sponding real-space correlation function. On scales smaller than about 10h−1Mpc the real-space
correlation function can well be described by a power law,5

ξ (r) = (r/r0)
−γ , (2.45)

with γ ∼ 1.8 and with a correlation length r0 ≈ 5h−1Mpc. This shows that galaxies are strongly
clustered on scales ∼< 5h−1Mpc, and the clustering strength becomes weak on scales much
larger than ∼ 10h−1Mpc. The exact values of γ and r0 are found to depend significantly on
the properties of the galaxies. In particular the correlation length, r0, defined by ξ (r0) = 1, is
found to depend on both galaxy luminosity and color in the sense that brighter and redder galax-
ies are more strongly clustered than their fainter and bluer counterparts (e.g. Norberg et al., 2001,
2002a; Zehavi et al., 2005; Wang et al., 2008b).

One can apply exactly the same correlation function analysis to groups and clusters of galaxies.
This shows that their two-point correlation functions has a logarithmic slope, γ , that is similar
to that of galaxies, but a correlation length, r0, which increases strongly with the richness of the
systems in question, from about 5h−1Mpc for poor groups to about 20h−1Mpc for rich clusters
(e.g. Yang et al., 2005c).

Another way to describe the clustering strength of a certain population of objects is to calculate
the variance of the number counts within randomly placed spheres of given radius r:

σ2(r) ≡ 1
(nV )2

M

∑
i=1

(Ni −nV )2, (2.46)

5 Note that, because of the definition of the two-point correlation function, ξ (r) has to become negative on large scales.
Therefore, a power law can only fit the data up to a finite scale.
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where n is the mean number density of objects, V = 4πr3/3, and Ni (i = 1, . . . ,M) are the number
counts of objects in M randomly placed spheres. For optically selected galaxies with a luminosity
of the order of L∗ one finds that σ ∼ 1 on a scale of r = 8h−1Mpc and decreases to σ ∼ 0.1 on
a scale of r = 30h−1Mpc. This confirms that the galaxy distribution is strongly inhomogeneous
on scales of ∼< 8h−1Mpc, but starts to approach homogeneity on significantly larger scales.

Since galaxies, groups and clusters all contain large amounts of matter, we expect their spatial
distribution to be related to the mass distribution in the Universe to some degree. However, the
fact that different objects have different clustering strengths makes one wonder if any of them are
actually fair tracers of the matter distribution. The spatial distribution of luminous objects, such
as galaxies, groups and clusters, depends not only on the matter distribution in the Universe, but
also on how they form in the matter density field. Therefore, without a detailed understanding of
galaxy formation, it is unclear which, if any, population of galaxies accurately traces the matter
distribution. It is therefore very important to have independent means to probe the matter density
field.

One such probe is the velocity field of galaxies. The peculiar velocities of galaxies are gen-
erated by the gravitational field, and therefore contain useful information regarding the matter
distribution in the Universe. In the past, two different methods have been used to extract this
information from observations. One is to estimate the peculiar velocities of many galaxies by
measuring both their receding velocities (i.e. redshifts) and their distances. The peculiar veloci-
ties then follow from Eq. (2.19), which can then be used to trace out the matter distribution. Such
analyses not only yield constraints on the mean matter density in the Universe, but also on how
galaxies trace the mass distribution. Unfortunately, although galaxy redshifts are easy to mea-
sure, accurate distance measurements for a large sample of galaxies are very difficult to obtain,
severely impeding the applicability of this method. Another method, which is more statistical in
nature, extracts information about the peculiar velocities of galaxies from a comparison of the
real-space and redshift-space two-point correlation functions. This method is based on the fact
that an isotropic distribution in real space will appear anisotropic in redshift space due to the
presence of peculiar velocities. Such redshift-space distortions are the primary reason why the
redshift-space correlation function has a shape different from that of the real-space correlation
function (see Fig. 2.37). As described in detail in §6.3, by carefully modeling the redshift space
distortions one can obtain useful constraints on the matter distribution in the Universe.

Fig. 2.37. The two-point correlation function of galaxies in redshift space (left) and real space (right). The
straight line is a power law, ξ (r) = (r/r0)−γ , with r0 = 5.05h−1Mpc and γ = 1.67. [Based on data published
in Hawkins et al. (2003)]
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2.7.2 Probing the Matter Field via Weak Lensing

A very promising way to probe the mass distribution in the Universe is through weak gravita-
tional lensing. Any light beam we observe from a distant source has been deflected and distorted
due to the gravitational tidal field along the line-of-sight. This cumulative gravitational lensing
effect due to the inhomogeneous mass distribution between source and observer is called cosmic
shear, and holds useful information about the statistical properties of the matter field. The great
advantage of this technique over the clustering analysis discussed above is that it does not have
to make assumptions about the relation between galaxies and matter.

Unless the beam passes very close to a particular overdensity (i.e. a galaxy or cluster), in which
case we are in the strong lensing regime, these distortions are extremely weak. Typical values
for the expected shear are of the order of one percent on angular scales of a few arcminutes,
which means that the distorted image of an intrinsically circular source has an ellipticity of 0.01.
Even if one could accurately measure such a small ellipticity, the observed ellipticity holds no
information without prior knowledge of the intrinsic ellipticity of the source, which is generally
unknown. Rather, one detects cosmic shear via the spatial correlations of image ellipticities.
The light beams from two distant sources that are close to each other on the sky have roughly
encountered the same large-scale structure along their lines-of-sight, and their distortions (i.e.
image ellipticities) are therefore expected to be correlated (both in magnitude and in orientation).
Such correlations have been observed (see Fig. 2.38), and detailed modeling of these results

Fig. 2.38. In the limit of weak lensing, the shear field at a position in the sky is proportional to the ellipticity
of the image of a circular source at that position. This plot shows the mean square of the shear field averaged
within circular regions of given radius, θ , obtained from various observations. The non-zero values of this
‘cosmic shear’ are due to gravitational lensing induced by the line-of-sight projected mass distribution in
the Universe. The solid curves are theoretical predictions (see §6.6) and are in good agreement with the
data. [Adapted from Refregier et al. (2002) by permission of AAS]
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shows that the variance of the matter density field on scales of 8h−1Mpc is about 0.7–0.9 (e.g.
Van Waerbeke et al., 2001), slightly lower than that of the distribution of bright galaxies.

Since the matter distribution around a given galaxy or cluster will cause a distortion of its
background galaxies, weak lensing can also be used to probe the matter distributions around
galaxies and clusters. In the case of clusters, one can often detect a sufficient number of back-
ground galaxies to reliably measure the shear induced by its gravitational potential. Weak lensing
therefore offers a means of measuring the total gravitational mass of an individual (massive) clus-
ter. In the case of individual galaxies, however, one typically has only a few background galaxies
available. Consequently, the weak lensing signal is far too weak to detect around individual
galaxies. However, by stacking the images of many foreground galaxies (for example, according
to their luminosity), one obtains sufficient signal-to-noise to measure the shear, which reflects the
average mass distribution around the stacked galaxies. This technique is called galaxy–galaxy
lensing, and has been used to demonstrate that galaxies are surrounded by extended dark matter
halos with masses 10–100 times more massive than the galaxies themselves (e.g. Mandelbaum
et al., 2006b).

2.8 The Intergalactic Medium

The intergalactic medium (IGM) is the medium that permeates the space in between galaxies. In
the framework laid out in Chapter 1, galaxies form by the gravitational aggregation of gas in a
medium which was originally quite homogeneous. In this scenario, the study of the IGM is an
inseparable part of galaxy formation, because it provides us with the properties of the gas from
which galaxies form.

The properties of the IGM can be probed observationally by its emission and by its absorp-
tion of the light from background sources. If the medium is sufficiently dense and hot, it can
be observed in X-ray emission, as is the case for the intracluster medium described in §2.5.1.
However, in general the density of the IGM is too low to produce detectable emission, and its
properties have to be determined from absorption studies.

2.8.1 The Gunn–Peterson Test

Much information about the IGM has been obtained through its absorption of light from distant
quasars. Quasars are not only bright, so that they can be observed out to large distances, but also
have well-behaved continua, against which absorption can be analyzed relatively easily. One of
the most important tests of the presence of intergalactic neutral hydrogen was proposed by Gunn
& Peterson (1965). The Gunn–Peterson test makes use of the fact that the Lyα absorption of
neutral hydrogen at λα = 1216Å has a very large cross-section. When the ultraviolet continuum
of a distant quasar (assumed to have redshift zQ) is shifted to 1216Å at some redshift z < zQ,
the radiation would be absorbed at this redshift if there were even a small amount of neutral
hydrogen. Thus, if the Universe were filled with a diffuse distribution of neutral hydrogen, pho-
tons bluer than Lyα would be significantly absorbed, causing a significant decrement of flux in
the observed quasar spectrum at wavelengths shorter than (1 + zQ)λα . Using the hydrogen Lyα
cross-section and the definition of optical depth (see Chapter 16 for details), one obtains that the
proper number density of HI atoms obeys

nHI(z) ∼ 2.42×10−11τ(z)hH(z)/H0 cm−3, (2.47)

where H(z) is Hubble’s constant at redshift z, and τ(z) is the absorption optical depth out to
z that can be determined from the flux decrements in quasar spectra. Observations show that
the Lyα absorption optical depth is much smaller than unity out to z ∼< 6. The implied density
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of neutral hydrogen in the diffuse IGM is thus much lower than the mean gas density in the
Universe (which is about 10−7 cm−3). This suggests that the IGM must be highly ionized at
redshifts z ∼< 6.

As we will show in Chapter 3, the IGM is expected to be highly neutral after recombina-
tion, which occurs at a redshift z ∼ 1000. Therefore, the fact that the IGM is highly ionized at
z ∼ 6 indicates that the Universe must have undergone some phase transition, from being largely
neutral to being highly ionized, a process called re-ionization. It is generally believed that photo-
ionization due to energetic photons (with energies above the Lyman limit) are responsible for the
re-ionization. This requires the presence of effective emitters of UV photons at high redshifts.
Possible candidates include quasars, star-forming galaxies and the first generation of stars. But
to this date the actual ionizing sources have not yet been identified, nor is it clear at what red-
shift re-ionization occurred. The highest redshift quasars discovered to date, which are close to
z = 6.5, show almost no detectable flux at wavelengths shorter than (1+ z)λα (Fan et al., 2006).
Although this seems to suggest that the mass density of neutral hydrogen increases rapidly at
around this redshift, it is not straightforward to convert such flux decrements into an absorp-
tion optical depth or a neutral hydrogen fraction, mainly because any τ 	 1 can result in an
almost complete absorption of the flux. Therefore it is currently still unclear whether the Uni-
verse became (re-)ionized at a redshift just above 6 or at a significantly higher redshift. At the
time of writing, several facilities are being constructed that will attempt to detect 21cm line emis-
sion from neutral hydrogen at high redshifts. It is anticipated that these experiments will shed
important light on the detailed re-ionization history of the Universe, as we discuss in some detail
in §16.3.4.

2.8.2 Quasar Absorption Line Systems

Although the flux blueward of (1+zQ)λα is not entirely absorbed, quasar spectra typically reveal
a large number of absorption lines in this wavelength range (see Fig. 2.39). These absorption lines
are believed to be produced by intergalactic clouds that happen to lie along the line-of-sight from
the observer to the quasar, and can be used to probe the properties of the IGM. Quasar absorption
line systems are grouped into several categories:

• Lyα forest: These are narrow lines produced by HI Lyα absorption. They are numerous and
appear as a ‘forest’ of lines blueward of the Lyα emission line of a quasar.

• Lyman-limit systems (LLS): These are systems with HI column densities NHI ∼> 1017 cm−2,
at which the absorbing clouds are optically thick to the Lyman-limit photons (912Å). These
systems appear as continuum breaks in quasar spectra at the redshifted wavelength (1+ za)×
912Å, where za is the redshift of the absorber.

• Damped Lyα systems (DLAs): These systems are produced by HI Lyα absorption of gas
clouds with HI column densities, NHI ∼> 2 × 1020 cm−2. Because the Lyα absorption opti-
cal depth at such column densities is so large, the quasar continuum photons are completely
absorbed near the line center and the line profile is dominated by the damping wing due to the
natural (Lorentz) broadening of the absorption line. DLAs with column densities in the range
1019 cm−2 < NHI < 2×1020 cm−2 also exhibit damping wings, and are sometimes called sub-
DLAs (Péroux et al., 2002). They differ from the largely neutral DLAs in that they are still
significantly ionized.

• Metal absorption line systems: In addition to the hydrogen absorption line systems listed
above, QSO spectra also frequently show absorption lines due to metals. The best-known
examples are MgII systems and CIV systems, which are caused by the strong resonance-
line doublets MgIIλλ2796,2800 and CIVλλ1548,1550, respectively. Note that both doublets
have rest-frame wavelengths longer than λLyα = 1216Å. Consequently, they can appear on the
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Fig. 2.39. The spectrum of a QSO that reveals a large number of absorption lines due to the IGM. The
strongest peak at 5473Å is the emission line due to Lyα at a rest-frame wavelength of 1216Å. The numerous
absorption lines at λ < 5473Å make up the Lyα forest which is due to Lyα absorption of neutral hydrogen
clouds between the QSO and the Earth. The break at 4150Å is due to a Lyman-limit cloud which is optically
thick at the hydrogen Lyman edge (rest-frame wavelength of 912Å). The relatively sparse lines to the
right of the Lyα emission line are due to absorption by metal atoms associated with the absorbing clouds.
[Adapted from Songaila (1998) by permission of AAS]

red side of the Lyα emission line of the QSO, which makes them easily identifiable because
of the absence of confusion from the Lyα forest.

Note that a single absorber may be detected as more than one absorption system. For example,
an absorber at za may be detected as a HI Lyα line at λ = (1+ za)×1216Å, as a CIV system at
λ = (1+ za)×1548Å, if it has a sufficiently large abundance of CIV ions, and as a Lyman-limit
system at λ = (1+ za)×912Å, if its HI column density is larger than ∼ 1017 cm−2.

In addition to the most common absorption systems listed above, other line systems are also
frequently identified in quasar spectra. These include low ionization lines of heavy elements,
such as CII, MgI, FeII, etc., and the more highly ionized lines, such as SiIV and NV. Highly
ionized lines such as OVI and OVII are also detected in the UV and/or X-ray spectra of quasars.
Since the ionization state of an absorbing cloud depends on its temperature, highly ionized lines,
such as OVI and OVII, in general signify the existence of hot (∼ 106 K) gas, while low-ionization
lines, such as HI, CII and MgII, are more likely associated with relatively cold (∼ 104 K) gas.

For a given quasar spectrum, absorption line systems are identified by decomposing the spec-
trum into individual lines with some assumed profiles (e.g. the Voigt profile, see §16.4.3). By
modeling each system in detail, one can in principle obtain its column density, b parameter
(defined as b =

√
2σ , where σ is the velocity dispersion of the absorbing gas), ionization state,

and temperature. If both hydrogen and metal systems are detected, one may also estimate the
metallicity of the absorbing gas. Table 2.8 lists the typical values of these quantities for the most
commonly detected absorption systems mentioned above.

The evolution of the number of absorption systems is described by the number of systems per
unit redshift, dN /dz, as a function of z. This relation is usually fitted by a power law dN /dz ∝
(1 + z)γ , and the values of γ for different systems are listed in Table 2.9. The distribution of
absorption line systems with respect to the HI column density is shown in Fig. 2.40. Over the
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Table 2.8. Properties of common absorption lines in quasar spectra.

System log(NHI/cm−2) b/(kms−1) Z/Z� log(NHI/NH)

Lyα forest 12.5 − 17 15 − 40 < 0.01 < −3
Lyman limit > 17 ∼ 100 ∼ 0.1 > −2
sub-DLA 19 − 20.3 ∼ 100 ∼ 0.1 > −1
DLA > 20.3 ∼ 100 ∼ 0.1 ∼ 0
CIV > 15.5 ∼ 100 ∼ 0.1 > −3
MgII > 17 ∼ 100 ∼ 0.1 > −2

Table 2.9. Redshift evolution of quasar absorption line systems.

System z range γ Reference

Lyα forest 2.0 − 4.0 ∼ 2.5 Kim et al. (1997)
Lyα forest 0.0 − 1.5 ∼ 0.15 Weymann et al. (1998)
Lyman limit 0.3 − 4.1 ∼ 1.5 Stengler-Larrea et al. (1995)
Damped Lyα 0.1 − 4.7 ∼ 1.3 Storrie-Lombardi et al. (1996a)
CIV 1.3 − 3.4 ∼−1.2 Sargent et al. (1988)
MgII 0.2 − 2.2 ∼ 0.8 Steidel & Sargent (1992)

whole observed range, this distribution follows roughly a power law, dN /dNHI ∝ N−β
HI , with

β ∼ 1.5.
From the observed column density distribution, one can estimate the mean mass density of

neutral hydrogen that is locked up in quasar absorption line systems:

ρHI(z) =
(

dl
dz

)−1

mH

∫
NHI

d2N

dNHI dz
dNHI, (2.48)

where dl/dz is the physical length per unit redshift at z (see §3.2.6). Given that dN /dNHI is a
power law with index ∼−1.5, ρHI is dominated by systems with the highest NHI, i.e. by damped
Lyα systems. Using the observed HI column density distribution, one infers that about 5% of the
baryonic material in the Universe is in the form of HI gas at z ∼ 3 (e.g. Storrie-Lombardi et al.,
1996b). In order to estimate the total hydrogen mass density associated with quasar absorption
line systems, however, one must know the neutral fraction, NHI/NH, as a function of NHI. This
fraction depends on the ionization state of the IGM. Detailed modeling shows that the Lyα forest
systems are highly ionized, and that the main contribution to the total (neutral plus ionized) gas
density comes from absorption systems with NHI ∼ 1014 cm−2. The total gas mass density at
z ∼ 3 thus inferred is comparable to the total baryon density in the Universe (e.g. Rauch et al.,
1997; Weinberg et al., 1997b).

Quasar absorption line systems with the highest HI column densities are expected to be gas
clouds in regions of high gas densities where galaxies and stars may form. It is therefore not
surprising that these systems contain metals. Observations of damped Lyα systems show that
they have typical metallicities about 1/10 of that of the Sun (e.g. Pettini et al., 1990; Kulkarni
et al., 2005), lower than that of the ISM in the Milky Way. This suggests that these systems may
be associated with the outer parts of galaxies, or with galaxies in which only a small fraction of
the gas has formed stars. More surprising is the finding that most, if not all, of the Lyα forest lines
also contain metals, although the metallicities are generally low, typically about 1/1000 to 1/100
of that of the Sun (e.g. Simcoe et al., 2004). There is some indication that the metallicity increases
with HI column density, but the trend is not strong. Since star formation requires relatively high
column densities of neutral hydrogen (see Chapter 9), the metals observed in absorption line
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Fig. 2.40. The HI column density distribution of QSO absorption line systems. Here F (NHI) is defined
as the number of absorption lines per unit column density, per unit X (which is a quantity that is related
to redshift according to Eq. [16.92]). The solid line corresponds to F (NHI) ∝ N−1.46

HI , which fits the data
reasonably well over the full 10 orders of magnitude in column density. [Based on data published in Petitjean
et al. (1993) and E. M. Hu et al. (1995)]

systems with low HI column densities most likely originate from, and have been expelled by,
galaxies at relatively large distances.

2.9 The Cosmic Microwave Background

The cosmic microwave background (CMB) was discovered by Penzias and Wilson in 1965 when
they were commissioning a sensitive receiver at centimeter wavelengths in Bell Telephone Labo-
ratories. It was quickly found that this radiation background was highly isotropic on the sky and
has a spectrum close to that of a blackbody with a temperature of about 3K. The existence of
such a radiation background was predicted by Gamow, based on his model of a Hot Big Bang
cosmology (see §1.4.2), and it therefore did not take long before the cosmological significance
of this discovery was realized (e.g. Dicke et al., 1965).

The observed properties of the CMB are most naturally explained in the standard model of cos-
mology. Since the early Universe was dense, hot and highly ionized, photons were absorbed and
re-emitted many times by electrons and ions and so a blackbody spectrum could be established
in the early Universe. As the Universe expanded and cooled and the density of ionized material
dropped, photons were scattered less and less often and eventually could propagate freely to the
observer from a last-scattering surface, inheriting the blackbody spectrum.

Because the CMB is so important for our understanding of the structure and evolution of the
Universe, there have been many attempts in the 1970s and 1980s to obtain more accurate mea-
surements of its spectrum. Since the atmospheric emission is quite close to the peak wavelength
of a 3K blackbody spectrum, most of these measurements were carried out using high-altitude
balloon experiments (for a discussion of early CMB experiments, see Partridge, 1995).
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A milestone in CMB experiments was the launch by NASA in November 1989 of the Cosmic
Background Explorer (COBE), a satellite devoted to accurate measurements of the CMB over the
entire sky. Observations with the Far InfraRed Absolute Spectrophotometer (FIRAS) on board
COBE showed that the CMB has a spectrum that is perfectly consistent with a blackbody spec-
trum, to exquisite accuracy, with a temperature T = 2.728±0.002K. As we will see in §3.5.4 the
lack of any detected distortions from a pure blackbody spectrum puts strong constraints on any
processes that may change the CMB spectrum after it was established in the early Universe.

Another important observational result from COBE is the detection, for the first time, of
anisotropy in the CMB. Observations with the Differential Microwave Radiometers (DMR) on
board COBE have shown that the CMB temperature distribution is highly isotropic over the sky,
confirming earlier observational results, but also revealed small temperature fluctuations (see
Fig. 2.41). The observed temperature map contains a component of anisotropy on very large
angular scales, which is well described by a dipole distribution over the sky,

T (α) = T0

(
1+

v
c

cosα
)

, (2.49)

where α is the angle of the line-of-sight relative to a specific direction. This component can be
explained as the Doppler effect caused by the motion of the Earth with a velocity v = 369±
3kms−1 towards the direction (l,b) = (264.31◦ ±0.20◦,48.05◦ ±0.10◦) in Galactic coordinates

WMAP

41 GHz map

Combination map

Linear scale from –200→200 μK

COBE

T = 2.728 K

ΔT = 3.353 mK

ΔT = 18 μK

DMR 53 GHz Maps

Fig. 2.41. Temperature maps of the CMB in galactic coordinates. The three panels on the left show the
temperature maps obtained by the DMR on board the COBE satellite [Courtesy of NASA Goddard Space
Flight Center]. The upper panel shows the near-uniformity of the CMB brightness; the middle panel is the
map after subtraction of the mean brightness, showing the dipole component due to our motion with respect
to the background; and the bottom panel shows the temperature fluctuations after subtraction of the dipole
component. Emission from the Milky Way is evident in the bottom image. The two right panels show the
temperature maps observed by WMAP from the first year of data [Courtesy of WMAP Science Team]; one
is from the 41 GHz channel and the other is a linear combination of five channels. Note that the large-scale
temperature fluctuations in the COBE map at the bottom are clearly seen in the WMAP maps, and that the
WMAP angular resolution (about 0.5◦) is much higher than that of COBE (about 7◦).
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(Lineweaver et al., 1996). Once this dipole component is subtracted, the map of the temperature
fluctuations looks like that shown in the lower left panel of Fig. 2.41. In addition to emission
from the Milky Way, it reveals fluctuations in the CMB temperature with an amplitude of the
order of ΔT/T ∼ 2×10−5.

Since the angular resolution of the DMR is about 7◦, COBE observations cannot reveal
anisotropy in the CMB on smaller angular scales. Following the detection by COBE, there
have been a large number of experiments to measure small-scale CMB anisotropies, and many
important results have come out in recent years. These include the results from balloon-borne
experiments such as Boomerang (de Bernardis et al., 2000) and Maxima (Hanany et al., 2000),
from ground-based interferometers such as the Degree Angular Scale Interferometer (DASI;
Halverson et al., 2002) and the Cosmic Background Imager (CBI; Mason et al., 2002), and
from an all-sky satellite experiment called the Wilkinson Microwave Anisotropy Probe (WMAP;
Bennett et al., 2003; Hinshaw et al., 2007). These experiments have provided us with extremely
detailed and accurate maps of the anisotropies in the CMB, such as that obtained by WMAP
shown in the right panels of Fig. 2.41.

In order to quantify the observed temperature fluctuations, a common practice is to expand the
map in spherical harmonics,

ΔT
T

(ϑ ,ϕ) ≡ T (ϑ ,ϕ)−T

T
=∑

�,m

a�mY�,m(ϑ ,ϕ). (2.50)

The angular power spectrum, defined as C� ≡ 〈|a�m|2〉1/2 (where 〈. . .〉 denotes averaging over m),
can be used to represent the amplitudes of temperature fluctuations on different angular scales.
Fig. 2.42 shows the temperature power spectrum obtained by the WMAP satellite. As one can
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Fig. 2.42. The angular power spectrum, C�, of the CMB temperature fluctuations in the WMAP full-sky
map. This shows the relative brightness of the ‘spots’ in the CMB temperature map vs. the size of the spots.
The shape of this curve contains a wealth of information about the geometry and matter content of the
Universe. The curve is the model prediction for the best-fit ΛCDM cosmology. [Adapted from Hinshaw
et al. (2007) by permission of AAS]
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see, the observed C� as a function of � shows complex features. These observational results are
extremely important for our understanding of the structure formation in the Universe. First of
all, the observed high degree of isotropy in the CMB gives strong support for the assumption of
the standard cosmology that the Universe is highly homogeneous and isotropic on large scales.
Second, the small temperature fluctuations observed in the CMB are believed to be caused by
the density perturbations at the time when the Universe became transparent to CMB photons.
These same density perturbations are thought to be responsible for the formation of structures
in the Universe. So the temperature fluctuations in the CMB may be used to infer the proper-
ties of the initial conditions for the formation of galaxies and other structures in the Universe.
Furthermore, the observations of CMB temperature fluctuations can also be used to constrain
cosmological parameters. As we will discuss in detail in Chapter 6, the peaks and valleys in
the angular power spectrum are caused by acoustic waves present at the last scattering surface
of the CMB photons. The heights (depths) and positions of these peaks (valleys) depend not
only on the density of baryonic matter, but also on the total mean density of the Universe, Hub-
ble’s constant and other cosmological parameters. Modeling the angular power spectrum of the
CMB temperature fluctuations can therefore provide constraints on all of these cosmological
parameters.

2.10 The Homogeneous and Isotropic Universe

As we will see in Chapter 3, the standard cosmological model is based on the ‘cosmological
principle’ according to which the Universe is homogeneous and isotropic on large scales. As we
have seen, observations of the CMB and of the large-scale spatial distribution of galaxies offer
strong support for this cosmological principle. Since according to Einstein’s general relativity
the space-time geometry of the Universe is determined by the matter distribution in the Universe,
this large-scale distribution of matter has important implications for the large-scale geometry of
space-time.

For a homogeneous and isotropic universe, its global properties (such as density and pressure)
at any time must be the same as those in any small volume. This allows one to study the global
properties of the Universe by examining the properties of a small volume within which Newto-
nian physics is valid. Consider a (small) spherical region of fixed mass M. Since the Universe is
homogeneous and isotropic, the radius R of the sphere should satisfy the Newtonian equation6

R̈ = −GM
R2 . (2.51)

Note that, because of the homogeneity, there is no force due to pressure gradients and that only
the mass within the sphere is relevant for the motion of R. This follows directly from Birkhoff’s
theorem, according to which the gravitational acceleration at any radius in a spherically symmet-
ric system depends only on the mass within that radius. For a given M, the above equation can
be integrated once to give

1
2

Ṙ2 − GM
R

= E, (2.52)

6 As we will see in Chapter 3, in general relativity it is the combination of energy density ρ and pressure P, ρ+3P/c2,
instead of ρ , that acts as the source of gravitational acceleration. Therefore, Eq. (2.51) is not formally valid, even
though Eq. (2.53), which derives from it, happens to be correct.
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where E is a constant, equal to the specific energy of the spherical shell. For simplicity, we write
R = a(t)R0, where R0 is independent of t. It then follows that

ȧ2

a2 − 8πGρ
3

= −Kc2

a2 , (2.53)

where ρ is the mean density of the Universe and K = −2E/(cR0)2. Unless E = 0, which corre-
sponds to K = 0, we can always choose the value of R0 so that |K| = 1. So defined, K is called
the curvature signature, and takes the value +1, 0, or −1. With this normalization, the equation
for a is independent of M. As we will see in Chapter 3, Eq. (2.53) is identical to the Friedmann
equation based on general relativity. For a universe dominated by a non-relativistic fluid, this is
not surprising, as it follows directly from the assumption of homogeneity and isotropy. However,
as we will see in Chapter 3, it turns out that Eq. (2.53) also holds even if relativistic matter and/or
the energy density associated with the cosmological constant are included.

The quantity a(t) introduced above is called the scale factor, and describes the change of the
distance between any two points fixed in the cosmological background. If the distance between
a pair of points is l1 at time t1, then their distance at some later time t2 is related to l1 through
l2 = l1a(t2)/a(t1). It then follows that at any time t the velocity between any two (comoving)
points can be written as

l̇ = [ȧ(t)/a(t)]l, (2.54)

where l is the distance between the two points at time t. Thus, ȧ > 0 corresponds to an expanding
universe, while ȧ < 0 corresponds to a shrinking universe; the universe is static only when ȧ = 0.
The ratio ȧ/a evaluated at the present time, t0, is called the Hubble constant,

H0 ≡ ȧ0/a0, (2.55)

where a0 ≡ a(t0), and the relation between velocity and distance, l̇ = H0l, is known as Hub-
ble’s expansion law. Another quantity that characterizes the expansion of the Universe is the
deceleration parameter, defined as

q0 ≡− ä0a0

ȧ2
0

. (2.56)

This quantity describes whether the expansion rate of the Universe is accelerating (q0 < 0) or
decelerating (q0 > 0) at the present time.

Because of the expansion of the Universe, waves propagating in the Universe are stretched.
Thus, photons with a wavelength λ emitted at an earlier time t will be observed at the present
time t0 with a wavelength λobs = λa0/a(t). Since a0 > a(t) in an expanding universe, λobs > λ
and so the wavelength of the photons is redshifted. The amount of redshift z between time t and
t0 is given by

z ≡ λobs

λ
−1 =

a0

a(t)
−1. (2.57)

Note that a(t) is a monotonically increasing function of t in an expanding universe, and so
redshift is uniquely related to time through the above equation. If an object has redshift z,
i.e. its observed spectrum is shifted to the red relative to its rest-frame (intrinsic) spectrum by
Δλ = λobs −λ = zλ , then the photons we observe today from the object were actually emitted
at a time t that is related to its redshift z by Eq. (2.57). Because of the constancy of the speed of
light, an object’s redshift can also be used to infer its distance.
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From Eq. (2.53) one can see that the value of K is determined by the mean density ρ0 at the
present time t0 and the value of Hubble’s constant. Indeed, if we define a critical density

ρcrit,0 ≡ 3H2
0

8πG
, (2.58)

and write the mean density in terms of the density parameter,

Ω0 ≡ ρ0/ρcrit,0, (2.59)

then K = H2
0 a2

0(Ω0−1). So K =−1, 0 and +1 corresponds toΩ0 < 1, = 1 and > 1, respectively.
Before discussing the matter content of the Universe, it is illustrative to write the mean density
as a sum of several possible components:

(i) non-relativistic matter whose (rest-mass) energy density changes as ρm ∝ a−3;
(ii) relativistic matter (such as photons) whose energy density changes as ρr ∝ a−4 (the

number density changes as a−3 while energy is redshifted according to a−1);
(iii) vacuum energy, or the cosmological constant Λ, whose density ρΛ = c2Λ/8πG is a

constant.

Thus,

Ω0 =Ωm,0 +Ωr,0 +ΩΛ,0, (2.60)

and Eq. (2.53) can be written as (
ȧ
a

)2

= H2
0 E2(z), (2.61)

where

E(z) =
[
ΩΛ,0 +(1−Ω0)(1+ z)2 +Ωm,0(1+ z)3 +Ωr,0(1+ z)4]1/2

(2.62)

with z related to a(t) by Eq. (2.57). In order to solve for a(t), we must know the value of H0

and the energy (mass) content (Ωm,0, Ωr,0, ΩΛ,0) at the present time. The deceleration parameter
defined in Eq. (2.56) is related to these parameters by

q0 =
Ωm,0

2
+Ωr,0 −ΩΛ,0. (2.63)

A particularly simple case is the Einstein–de Sitter model in which Ωm,0 = 1, Ωr,0 =ΩΛ,0 = 0
(and so q0 = 1/2). It is then easy to show that a(t)∝ t2/3. Another interesting case is a flat model
in which Ωm,0 +ΩΛ,0 = 1 and Ωr,0 = 0. In this case, q0 = 3Ωm,0/2− 1, so that q0 < 0 (i.e. the
expansion is accelerating at the present time) if Ωm,0 < 2/3.

2.10.1 The Determination of Cosmological Parameters

As shown above, the geometry of the Universe in the standard model is specified by a set of cos-
mological parameters. The values of these cosmological parameters can therefore be estimated
by measuring the geometrical properties of the Universe. The starting point is to find two observ-
ables that are related to each other only through the geometrical properties of the Universe. The
most important example here is the redshift–distance relation. As we will see in Chapter 3, two
types of distances can be defined through observational quantities. One is the luminosity dis-
tance, dL, which relates the luminosity of an object, L, to its flux, f , according to L = 4πd2

L f .
The other is the angular-diameter distance, dA, which relates the physical size of an object, D,
to its angular size, θ , via D = dAθ . In general, the redshift–distance relation can formally be
written as

d(z) =
cz
H0

[1+Fd(z;Ωm,0,ΩΛ,0, . . .)] , (2.64)
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where d stands for either dL or dA, and by definition Fd � 1 for z � 1. For redshifts much
smaller than 1, the redshift–distance relation reduces to the Hubble expansion law cz = H0d, and
so the Hubble constant H0 can be obtained by measuring the redshift and distance of an object
(ignoring, for the moment, that objects can have peculiar velocities). Redshifts are relatively easy
to obtain from the spectra of objects, and in §2.1.3 we have seen how to measure the distances
of a few classes of astronomical objects. The best estimate of the Hubble constant at the present
comes from Cepheids observed by the HST, and the result is

H0 = 100hkms−1 Mpc−1, with h = 0.72±0.08 (2.65)

(Freedman et al., 2001).
In order to measure other cosmological parameters, one has to determine the nonlinear terms in

the redshift–distance relation, which typically requires objects at z ∼> 1. For example, measuring
the light curves of Type Ia supernovae out to z ∼ 1 has yielded the following constraints:

0.8Ωm,0 −0.6ΩΛ,0 ∼−0.2±0.1 (2.66)

(e.g. Perlmutter et al., 1999). Using Eq. (2.63) and neglecting Ωr,0 because it is small, the above
relation gives q0 ∼−0.33−0.83Ωm,0. Since Ωm,0 > 0, we have q0 < 0, i.e. the expansion of the
Universe is speeding up at the present time.

Important constraints on cosmological parameters can also be obtained from the angular
spectrum of the CMB temperature fluctuations. As shown in Fig. 2.42, the observed angular
spectrum C� contains peaks and valleys, which are believed to be produced by acoustic waves
in the baryon–photon fluid at the time of photon–matter decoupling. As we will see in §6.7, the
heights/depths and positions of these peaks/valleys depend not only on the density of baryonic
matter in the Universe, but also on the total mean density, Hubble’s constant and other cosmo-
logical parameters. In particular, the position of the first peak is sensitive to the total density
parameter Ω0 (or the curvature K). Based on the observational results shown in Fig. 2.42, one
obtains

Ω0 = 1.02±0.02; Ωm,0h2 = 0.14±0.02;

h = 0.72±0.05; Ωb,0h2 = 0.024±0.001, (2.67)

where Ωm,0 and Ωb,0 are the density parameters of total matter and of baryonic matter, respec-
tively (Spergel et al., 2007). Note that this implies that the Universe has an almost flat geometry,
that matter accounts for only about a quarter of its total energy density, and that baryons account
for only ∼ 17% of the matter.

2.10.2 The Mass and Energy Content of the Universe

There is a fundamental difficulty in directly observing the mass (or energy) densities in different
mass components: all that is gold does not glitter. There may well exist matter components with
significant mass density which give off no detectable radiation. The only interaction which all
components are guaranteed to exhibit is gravity, and thus gravitational effects must be studied
if the census is to be complete. The global gravitational effect is the curvature of space-time
which we discussed above. Independent information on the amount of gravitating mass can only
be derived from the study of the inhomogeneities in the Universe, even though such studies may
never lead to an unambiguous determination of the total matter content. After all, one can imagine
adding a smooth and invisible component to any amount of inhomogeneously distributed mass,
which would produce no detectable effect on the inhomogeneities.

The most intriguing result of such dynamical studies has been the demonstration that the total
mass in large-scale structures greatly exceeds the amount of material from which emission can be
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detected. This unidentified ‘dark matter’ (or ‘invisible matter’) is almost certainly the dominant
contribution to the total mass density Ωm,0. Its nature and origin remain one of the greatest
mysteries of contemporary astronomy.

(a) Relativistic Components One of the best observed relativistic components of the Universe
is the CMB radiation. From its blackbody spectrum and temperature, TCMB = 2.73K, it is easy
to estimate its energy density at the present time:

ργ ,0 ≈ 4.7×10−34 gcm−3, or Ωγ ,0 = 2.5×10−5h−2. (2.68)

As we have seen in Fig. 2.2, the energy density of all other known photon backgrounds is much
smaller. The only other relativistic component which is almost certainly present, although not yet
directly detected, is a background of neutrinos. As we will see in Chapter 3, the energy density in
this component can be calculated directly from the standard model, and it is expected to be 0.68
times that of the CMB radiation. Since the total energy density of the Universe at the present
time is not much smaller than the critical density (see the last subsection), the contribution from
these relativistic components can safely be ignored at low redshift.

(b) Baryonic Components Stars are made up of baryonic matter, and so a lower limit on
the mass density of baryonic matter can be obtained by estimating the mass density of stars
in galaxies. The mean luminosity density of stars in galaxies can be obtained from the galaxy
luminosity function (see §2.4.1). In the B band, the best-fit Schechter function parameters are
α ≈−1.2, φ ∗ ≈ 1.2×10−2h3 Mpc−3 and M ∗ ≈−20.05+5logh (corresponding to L∗ = 1.24×
1010h−2 L�), so that

LB ≈ 2×108hL� Mpc−3. (2.69)

Dividing this into the critical density leads to a value for the mass per unit observed luminosity of
galaxies required for the Universe to have the critical density. This critical mass-to-light ratio is(

M
L

)
B,crit

=
ρcrit

LB
≈ 1500h

(
M�
L�

)
B
. (2.70)

Mass-to-light ratios for the visible parts of galaxies can be estimated by fitting their spectra with
appropriate models of stellar populations. The resulting mass-to-light ratios tend to be in the
range of 2 to 10(M�/L�). Adopting M/L = 5(M�/L�) as a reasonable mean value, the global
density contribution of stars is

Ω�,0 ∼ 0.003h−1. (2.71)

Thus, the visible parts of galaxies provide less than 1% of the critical density. In fact, combined
with the WMAP constraints on Ωb,0 and the Hubble constant, we find that stars only account for
less than 10% of all baryons.

So where are the other 90% of the baryons? At low redshifts, the baryonic mass locked up
in cold gas (either atomic or molecular), and detected via either emission or absorption, only
accounts for a small fraction, Ωcold ∼ 0.0005h−1 (Fukugita et al., 1998). A larger contribution
is due to the hot intracluster gas observed in rich galaxy clusters through their bremsstrahlung
emission at X-ray wavelengths (§2.5.1). From the number density of X-ray clusters and their
typical gas mass, one can estimate that the total amount of hot gas in clusters is about (ΩHII)cl ∼
0.0016h−3/2 (Fukugita et al., 1998). The total gas mass in groups of galaxies is uncertain. Based
on X-ray data, Fukugita et al. obtained (ΩHII)group ∼ 0.003h−3/2. However, the plasma in groups
is expected to be colder than that in clusters, which makes it more difficult to detect in X-ray
radiation. Therefore, the low X-ray emissivity from groups may also be due to low tempera-
tures rather than due to small amounts of plasma. Indeed, if we assume that the gas/total mass
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ratio in groups is comparable to that in clusters, then the total gas mass in groups could be
larger by a factor of two to three. Even then, the total baryonic mass detected in stars, cold
gas and hot gas only accounts for less than 50% of the total baryonic mass inferred from
the CMB.

The situation is very different at higher redshifts. As discussed in §2.8, the average density
of hydrogen inferred from quasar absorption systems at z ∼ 3 is roughly equal to the total
baryon density as inferred from the CMB data. Hence, although we seem to have detected the
majority of all baryons at z ∼ 3, at low redshifts roughly half of the expected baryonic mass
is unaccounted for observationally. One possibility is that the gas has been heated to tempera-
tures in the range 105–106 K at which it is very difficult to detect. Indeed, recent observations
of OVI absorption line systems seem to support the idea that a significant fraction of the IGM
at low redshift is part of such a warm-hot intergalactic medium (WHIM), whose origin may be
associated with the formation of large-scale sheets and filaments in the matter distribution (see
Chapter 16).

An alternative explanation for the ‘missing baryons’ is that a large fraction of the gas detected
at z ∼ 3 has turned into ‘invisible’ compact objects, such as brown dwarfs or black holes.
The problem, though, is that most of these objects are stellar remnants, and their formation
requires a star-formation rate between z = 3 and z = 0 that is significantly higher than nor-
mally assumed. Not only is this inconsistent with the observation of the global star-formation
history of the Universe (see §2.6.8), but it would also result in an over-production of metals.
This scenario thus seems unlikely. Nevertheless, some observational evidence, albeit contro-
versial, does exist for the presence of a population of compact objects in the dark halo of our
Milky Way. In 1986 Bohdan Paczyński proposed to test for the presence of massive compact
halo objects (MACHOs) using gravitational lensing. Whenever a MACHO in our Milky Way
halo moves across the line-of-sight to a background star (for example, a star in the LMC),
it will magnify the flux of the background star, an effect called microlensing. Because of
the relative motion of source, lens and observer, this magnification is time-dependent, giving
rise to a characteristic light curve of the background source. In the early 1990s two collabo-
rations (MACHO and EROS) started campaigns to monitor millions of stars in the LMC for
a period of several years. This has resulted in the detection of about 20 events in total. The
analysis by the MACHO collaboration suggests that about 20% of the mass of the halo of
the Milky Way could consist of MACHOs with a characteristic mass of ∼ 0.5M� (Alcock
et al., 2000). The nature of these objects, however, is still unclear. Furthermore, these results
are inconsistent with those obtained by the EROS collaboration, which obtained an upper limit
for the halo mass fraction in MACHOs of 8%, and rule out MACHOs in the mass range
0.6×10−7 M� < M < 15M� as the primary occupants of the Milky Way halo (Tisserand et al.,
2007).

(c) Non-Baryonic Dark Matter As is evident from the CMB constraints given by Eq. (2.67)
on Ωm,0 and Ωb,0, baryons can only account for ∼ 15–20% of the total matter content in the
Universe, and this is supported by a wide range of observations. As we will see in the following
chapters, constraints from a number of other measurements, such as cosmic shear, the abundance
of massive clusters, large-scale structure, and the peculiar velocity field of galaxies, all agree that
Ωm,0 is of the order of 0.3. At the same time, the total baryonic matter density inferred from
CMB observations is in excellent agreement with independent constraints from nucleosynthesis
and the observed abundances of primordial elements. The inference is that the majority of the
matter in the Universe (75–80%) must be in some non-baryonic form.

One of the most challenging tasks for modern cosmology is to determine the nature and
origin of this dark matter component. Particle physics in principle allows for a variety of candi-
date particles, but without a direct detection it is and will be difficult to discriminate between
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the various candidates. One thing that is clear from observations is that the distribution of
dark matter is typically more extended than that of the luminous matter. As we have seen
above, the mass-to-light ratios increase from M/L ∼ 30h(M/L)� at a radius of about 30h−1kpc
as inferred from the extended rotation curves of spiral galaxies, to M/L ∼ 100h(M/L)� at
the scale of a few hundred kpc, as inferred from the kinematics of galaxies in groups, to
M/L ∼ 350h(M/L)� in galaxy clusters, probing scales of the order of 1Mpc. This latter
value is comparable to that of the Universe as a whole, which follows from multiplying the
critical mass-to-light ratio given by Eq. (2.70) with Ωm,0, and suggests that the content of clus-
ters, which are the largest virialized structures known, is representative of that of the entire
Universe.

All these observations support the idea that galaxies reside in extended halos of dark matter.
This in turn puts some constraints on the nature of the dark matter, namely that it has to be rel-
atively cold (i.e. it needs to have initial peculiar velocities that are much smaller than the typical
velocity dispersion within an individual galaxy). This coldness is required because otherwise
the dark matter would not be able to cluster on galactic scales to form the dark halos around
galaxies. Without a better understanding of the nature of the dark matter, we have to live with
the vague term, cold dark matter (or CDM), when talking about the main mass component of the
Universe.

(d) Dark Energy As we have seen above, the observed temperature fluctuations in the CMB
show that the Universe is nearly flat, implying that the mean energy density of the Universe
must be close to the critical density, ρcrit. However, studies of the kinematics of galaxies and of
large-scale structure in the Universe give a mean mass density that is only about 1/4 to 1/3 of
the critical density, in good agreement with the constraints on Ωm,0 from the CMB itself. This
suggests that the dominant component of the mass/energy content of the Universe must have
a homogenous distribution so that it affects the geometry of the Universe but does not follow
the structure in the baryonic and dark matter. An important clue about this dominant component
is provided by the observed redshift–distance relation of high-redshift Type Ia supernovae. As
shown in §2.10.1, this relation implies that the expansion of the Universe is speeding up at the
present time. Since all matter, both baryonic and non-baryonic, decelerates the expansion of the
Universe, the dominant component must be an energy component. It must also be extremely
dark, because otherwise it would have been observed.

The nature of this dark energy component is a complete mystery at the present time. As
far as its effect on the expansion of the Universe is concerned, it is similar to the cosmolog-
ical constant introduced by Einstein in his theory of general relativity to achieve a stationary
Universe (Einstein, 1917). The cosmological constant can be considered as an energy com-
ponent whose density does not change with time. As the Universe expands, it appears as if
more and more energy is created to fill the space. This strange property is due to its pecu-
liar equation of state that relates its pressure, P, to its energy density, ρ . In general, we may
write P = wρc2, and so w = 0 for a pressureless fluid and w = 1/3 for a radiation field (see
§3.1.5). For a dark energy component with constant energy density, w = −1, which means that
the fluid actually gains internal energy as it expands, and acts as a gravitational source with a
negative effective mass density (ρ+ 3P/c2 = −2ρ < 0), causing the expansion of the Universe
to accelerate. In addition to the cosmological constant, dark energy may also be related to a
scalar field (with −1 < w < −1/3). Such a form of dark energy is called quintessence, which
differs from a cosmological constant in that it is dynamic, meaning that its density and equa-
tion of state can vary through both space and time. It has also been proposed that dark energy
has an equation of state parameter w < −1, in which case it is called phantom energy. Clearly,
a measurement of the value of w will allow us to discriminate between these different models.
Currently, the value of w is constrained by a number of observations to be within a relatively
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narrow range around −1 (e.g. Spergel et al., 2007), consistent with a cosmological constant, but
also with both quintessence and phantom energy. The next generation of galaxy redshift surveys
and Type Ia supernova searches aim to constrain the value of w to a few percent, in the hope
of learning more about the nature of this mysterious and dominant energy component of our
Universe.



3

Cosmological Background

Cosmology, the branch of science dealing with the origin, evolution and structure of the Universe
on large scales, is closely related to the study of galaxy formation and evolution. Cosmology
provides not only the space-time frame within which galaxy formation and evolution ought to
be described, but also the initial conditions for the formation of galaxies. Modern cosmology
is founded upon Einstein’s theory of general relativity (GR), according to which the space-time
structure of the Universe is determined by the matter distribution within it. This perspective on
space-time is very different from that in classical physics, where space-time is considered eternal
and absolute, independent of the existence of matter.

A complete description of GR is beyond the scope of this book. As a remedy, we provide a
brief summary of the basics of GR in Appendix A and we refer the reader to the references cited
there for details. It should be emphasized, however, that modern cosmology is a very simple
application of GR, so simple that even a reader with little knowledge of GR can still learn it.
This simplicity is owing to the simple form of the matter distribution in the Universe, which, as
we have seen in the last chapter, is observed to be approximately homogeneous and isotropic on
large scales. We do not yet have sufficient evidence to rule out inhomogeneity or anisotropy on
very large scales, but the assumption of homogeneity and isotropy is no doubt a good basis for
studying the observable Universe. If indeed the matter distribution in the Universe is completely
homogeneous and isotropic, as is the ansatz on which modern cosmology is based,1 GR would
imply that space itself must also be homogeneous and isotropic. Such a space is the simplest
among all possibilities. To see this more clearly, let us consider a two-dimensional space, i.e.
a surface. We all know that the properties of a general two-dimensional surface can be very
complicated. But if the surface is homogeneous and isotropic, we are immediately reminded of
an infinite plane and a sphere. These two surfaces differ in their overall curvature. The plane is
flat, while the sphere is said to have a positive curvature. In both cases the distance between any
two infinitesimally close points on the surface can be written as

dl2 = a2
(

dr2

1−Kr2 + r2 dϑ 2
)

, (3.1)

where K = 0 for a plane and K = 1 for a sphere. In the case of a plane, (r,ϑ) are just the
polar coordinates and a is a length scale (scale factor) relating the coordinate radius r to dis-
tance. To see that K = 1 corresponds to a sphere, we make the coordinate transformation
r = sinχ . In terms of (χ,ϑ), the distance measure becomes dl2 = a2(dχ2 + sin2 χ dϑ 2) , which
is clearly that of a sphere in terms of the spherical coordinates, with a being the radius of
the sphere. In this case, r is a spherical coordinate in the three-dimensional space in which
the two-dimensional surface is embedded; r is not a distance measure on the surface, but

1 Although on relatively small scales the present-day Universe deviates strongly from homogeneity and isotropy, we will
see in Chapter 4 that these structures arise from small perturbations of an otherwise homogeneous and isotropic matter
distribution.
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rather a coordinate used to label positions on the surface. Actual distances have to be com-
puted from the metric (3.1). Only in the case with K = 0 is r both coordinate and distance
measure.

Mathematically it can be shown that there is another two-dimensional homogeneous and
isotropic surface for which K = −1. Changing r to sinhχ , we can write the distance measure
on such a surface as dl2 = a2(dχ2 +sinh2 χ dϑ 2) , where the factor a is again a length scale relat-
ing coordinates to distance. This negatively curved, hyperbolic surface, which is locally similar
to the surface near a saddle point, is not very familiar to us because it cannot be embedded in
a three-dimensional Euclidean space. The existence of a low-dimensional ‘space’ which cannot
be embedded in a space of higher dimensionality is, however, not as strange as it might seem;
for example it is easy to envision that it is impossible to embed a hairspring (an intrinsically
one-dimensional object) into a plane.

These examples show that the description of a homogeneous and isotropic two-dimensional
surface is extremely simple. What we need to do is just to determine the value of K (1, 0, or
−1), which specifies the global geometry of the surface, and the scale factor a, which relates
coordinates to distances. In general, the scale factor a can change with time without violating the
requirement of homogeneity and isotropy, corresponding to a surface that is uniformly expanding
or contracting.

The above discussion can be extended to three-dimensional spaces. As we will see in §3.1,
a homogeneous and isotropic space is also completely determined by the curvature signature K
(again equal to 1 or 0 or −1), which determines the global geometry of the space, and the scale
factor a(t) as a function of time. Thus, as far as the space-time geometry is concerned, the task
of modern cosmology is simply to determine the value of K and the functional form of a(t) from
the matter content of the Universe (see §3.2).

According to GR, the relationships among cosmological events are assumed to be governed
by the physical laws that we are familiar with, while the effects of gravity are included in the
properties of the space-time (i.e. in the transformations of reference frames). This equivalence
principle (that a local gravitational field can be transformed away by choosing an appropriate
frame of reference) allows one to derive physical equations in GR from their ordinary forms by
general coordinate transformations (see Appendix A). Hence, once the value of K and the func-
tional form of a(t) are known, the relationships among cosmological events can be described in
terms of physical laws. Similarly, if we believe that physical laws are applicable on cosmological
scales, the predictions for these relationships will depend only on the space-time geometry, and
so observations of such relationships can be used to test cosmological models.

One of the most important observations in cosmology is that the Universe is expanding [i.e.
a(t) increases with time], which implies that it must have been smaller in the past. Together with
the observational fact that our Universe is filled with microwave photons, this time evolution
of the scale factor determines the thermal history of the Universe. Because the Universe was
denser in the past, it must also have been hotter. Since high density and temperature imply high
probabilities for particles to collide with each other with high energy, the early Universe is an
ideal place for the creation and transmutation of matter. As we will see in §3.3–§3.5, the applica-
tions of particle, nuclear and atomic physics to the thermal history of the early Universe lead to
important predictions for the current matter content of the Universe. Although many of these pre-
dictions are still uncertain, they provide the basis for calculating relations between the dominant
mass components of the Universe. Finally, in §3.6, we discuss some of the most fundamental
problems of the standard model and show how the ‘inflationary hypothesis’ may help to solve
them. Although this chapter gives a fairly detailed description of modern cosmology, readers
interested in more details are referred to the textbooks by Kolb & Turner (1990), Peebles (1993),
Peacock (1999), Coles & Lucchin (2002), Padmanabhan (2002), Börner (2003) and Weinberg
(2008).
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3.1 The Cosmological Principle and the Robertson–Walker Metric

3.1.1 The Cosmological Principle and its Consequences

The cosmological principle is the hypothesis that, on sufficiently large scales, the Universe can
be considered spatially homogeneous and isotropic. While this may appear a reasonable extrap-
olation from current observations (see Chapter 2), it was originally proposed for quite different
reasons. As stated by Milne (1935), this hypothesis follows from the belief that ‘Not only the
laws of Nature, but also the events occurring in Nature, the world itself, must appear the same to
all observers.’ In this sense, the cosmological principle can be thought of as a generalized Coper-
nican principle: our location in the Universe should be typical, and should not be distinguished in
any fundamental way from any other. The cosmological principle is, however, stronger than this
simple statement implies, since it also eliminates the possibility of a self-similar, fractal structure
on the largest scales. All points of such a structure are equivalent, but there are no scales on
which it approaches homogeneity. Milne’s statement is also incomplete, since it is possible to
have a universe which appears the same from each point but is anisotropic, as in Gödel’s model
(Gödel, 1949).

An even stronger hypothesis is the perfect cosmological principle of Bondi & Gold (1948)
and Hoyle (1948). This requires invariance not only under rotations and displacements in space,
but also under displacements in time. The Universe looks the same in all directions, from all
locations, and at all times. This hypothesis led to the steady state cosmology which requires
a continuous creation of matter to keep the mean matter density constant with time. However,
the discovery of the cosmic microwave background radiation, and in particular the demonstration
that it has a perfect blackbody spectrum, has proven an unsurmountable problem for this cosmol-
ogy. Additional evidence against the steady state cosmology comes from numerous detections
of evolution in the galaxy population. We therefore will not discuss this theory further in this
book.

What are the consequences of the cosmological principle for the geometric structure of the
Universe? To answer this question, we put the cosmological principle in a slightly different
form. The cosmological principle can also be stated as the existence of a fundamental observer
at each location, to whom the Universe appears isotropic. The concept of a fundamental observer
is required because two observers at the same point, but in relative motion, cannot both see
the surrounding Universe as isotropic. The fundamental observer thus defines a cosmologi-
cal ‘rest frame’ at each location in space. To better understand the meaning of a fundamental
observer, let us define the fundamental observer, or the cosmological rest frame, in our neigh-
borhood. As discussed in Chapter 2, galaxies in the Universe are strongly clustered on scales

∼< 10h−1Mpc, and have random motions of the order of 100 to 1,000kms−1 with respect to
each other. It is thus unlikely that our own Galaxy defines a cosmological rest frame. On the
other hand, we expect the mean motion of galaxies within a radius much larger than 10h−1Mpc
around us to be small with respect to the cosmological rest frame. In particular the cosmic
microwave background (CMB) should appear isotropic to such a frame. As shown in Chap-
ter 2, the CMB map given by the COBE satellite appears very isotropic around us, when the
dipole component is subtracted. The dipole in the CMB map is best explained by the motion of
the Local Group of galaxies relative to the CMB with a velocity (627±22)kms−1 (Lineweaver
et al., 1996). Thus, an observer in our neighborhood, traveling at the same speed relative to the
Local Group but in the opposite direction, should be close to a fundamental observer. If the
cosmological principle is correct, then the rest frame defined by the mean motion of galax-
ies within a large radius around us should converge to the one defined by the CMB. There
are indeed indications of such convergence in present observational data (e.g. Schmoldt et al.,
1999).
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Since the Universe is isotropic to a fundamental observer, the velocity field in her neighbor-
hood cannot have any preferred direction. The only allowed motion is therefore pure expansion
(or pure contraction),

δv = H δx , (3.2)

where δx and δv are the position and velocity of a particle relative to the fundamental observer,
and H is a constant. Once some definition of distance is adopted, we can consider the set
of all observers, O′, which are equidistant from a given observer O at some given local time
of O. Because of the isotropy, all the observers O′ must measure the same local values of den-
sity, temperature, expansion rate, and other physical quantities. Furthermore, they must remain
equidistant from O at any later time recorded by the clock of O. Thus they can in principle syn-
chronize their clocks using a light signal from O, and once synchronized, the clocks must remain
so. Since the original fundamental observer O is arbitrary, this argument shows that there exists
a three-dimensional hypersurface in space-time, on which density, temperature, expansion rate,
and all other locally defined properties are uniform and evolve according to a universally agreed
time. Such a time is called the cosmic time. Since quantities such as the temperature of the CMB
and the mean density of the Universe are monotonic functions of cosmic expansion, the value of
these quantities can be used to label the cosmic time, as we will see below.

The isotropic and homogeneous three-dimensional hypersurfaces discussed above are maxi-
mally symmetric. As a result their metric can be written as

dl2 = a2(t)
[

dr2

1−Kr2 + r2(dϑ 2 + sin2ϑ dϕ2)
]

. (3.3)

A proof of this can be found in Weinberg (1972). In this formula a(t) is a time-dependent scale
factor which relates the coordinate labels (r,ϑ ,ϕ) of the fundamental observers to true physical
distances, and K is a constant which can take the values +1, 0, and −1. The radial coordinate r is
dimensionless in Eq. (3.3). When physical distances are required, a length scale can be assigned
to the scale factor.

To understand better the geometric meanings of a(t) and K, consider an expanding or contract-
ing three-sphere (the three-dimensional analog of the two-dimensional surface of an expanding
or shrinking spherical balloon) whose radius is R(t) = a(t)R0 at time t. The scale factor a(t)
therefore simply relates the radius of the three-sphere at time t to its comoving radius, R0, whose
value does not change as the sphere expands or contracts. (Thus the comoving radius is just
the true radius measured in units of the scale factor.) In Cartesian coordinates (x,y,z,w), this
three-surface is defined by

x2 + y2 + z2 +w2 = a2(t)R2
0 . (3.4)

With the change of coordinates from (x,y,z,w) to the polar coordinates (r,ϑ ,ϕ):⎧⎪⎪⎨⎪⎪⎩
x = a(t)r sinϑ cosϕ
y = a(t)r sinϑ sinϕ
z = a(t)r cosϑ
w = a(t)

(
R2

0 − r2
)1/2

,

(3.5)

the line element in the four-dimensional Euclidean space is

dl2 = dx2 +dy2 +dz2 +dw2

= a2(t)
[

dr2

1− r2/R2
0

+ r2(dϑ 2 + sin2ϑ dϕ2)
]
. (3.6)



104 Cosmological Background

The curvature scalar of such a three-sphere is

R =
6

R2
0a2(t)

(3.7)

(see Appendix A). Comparing Eqs. (3.3) and (3.6) we immediately see that Eq. (3.3) with
K = +1 is the metric of a three-sphere with comoving radius R0 = 1, and with the true radius at
time t given by the value of a(t). This three-sphere has a finite volume V = 2π2a3(t), and the
dimensionless radial coordinate r ∈ [0,1].

For K = 0, metric (3.3) is the same as that given by Eq. (3.6) with R0 → ∞, and so it describes
a Euclidean flat space with infinite volume. In this case the scale factor a(t) describes the change
of the length scale due to the uniform expansion (or contraction) of the space.

Metric (3.3) with K = −1 can be obtained by the replacement R0 → i in Eq. (3.6). The same
replacement in Eq. (3.7) shows that such a metric describes a negatively curved three-surface with
curvature radius set by a(t). Such a three-surface cannot be embedded in a four-dimensional
Euclidean space, but can be embedded in a four-dimensional Minkowski space with line ele-
ment dl2 = dw2 − dx2 − dy2 − dz2. In this space, the negatively curved three-surface with
curvature radius a(t) can be written as x2 + y2 + z2 −w2 = a2(t). Thus, the metric (3.3) with
K = −1 describes a hyperbolic three-surface, with unit comoving curvature radius, embedded
in a four-dimensional Minkowski space. Such a three-surface has no boundaries and has infinite
volume.

3.1.2 Robertson–Walker Metric

Since the isotropic and homogeneous three-dimensional surfaces described above are the space-
like hypersurfaces corresponding to a constant cosmic time t, the four-metric of the space-time
can be written as

ds2 = c2dt2 −dl2

= c2dt2 −a2(t)
[

dr2

1−Kr2 + r2(dϑ 2 + sin2ϑ dϕ2)
]

, (3.8)

with c the speed of light. This is the Robertson–Walker metric. As in special relativity, the space-
time interval, ds, is real for two events with a time-like separation, is zero for two events on the
same light path (null geodesic), and is imaginary for two events with a space-like separation.
As before, the coordinates (r,ϑ ,ϕ), which label fundamental observers, are called comoving
coordinates, and the function a(t) is the cosmic scale factor. If we define the proper time of an
observer as the one recorded by the clock at rest with the observer, then the cosmic time t is
the proper time of all fundamental observers. A proper distance l can be defined for any two
fundamental observers at any given cosmic time t: l =

∫
dl. Without losing generality we can

assume one of the observers to be at the origin r = 0 and the other at (r1,ϑ ,ϕ). The proper
distance can then be written as

l = a(t)
∫ r1

0

dr√
1−Kr2

= a(t)χ(r1) , (3.9)

where

χ(r) =

⎧⎨⎩
sin−1 r (K = +1)
r (K = 0)
sinh−1 r (K = −1).

(3.10)
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The χ in the above equations is called the comoving distance between the two fundamental
observers; it is the proper distance l measured in units of the scale factor. It is often useful to
change the time variable from proper time t to a conformal time,

τ(t) =
∫ t

0

cdt ′

a(t ′)
. (3.11)

In terms of χ and τ the Robertson–Walker metric can be written in another useful form:

ds2 = a2(τ)
[
dτ2 −dχ2 − f 2

K(χ)(dϑ 2 + sin2ϑ dϕ2)
]
, (3.12)

where

fK(χ) = r =

⎧⎨⎩
sinχ (K = +1)
χ (K = 0)
sinhχ (K = −1).

(3.13)

This form of the metric is especially useful to gain insight into the causal properties of space-time.
It is instructive to look at the metric on a hypersurface with constant ϕ . In the K = +1 case

the spatial part of the metric is dl2 = a2(τ)(dχ2 + sin2 χ dϑ 2), which is just the metric of a two-
dimensional sphere in terms of the ‘polar angle’ χ and the ‘azimuthal angle’ ϑ (see Fig. 3.1). We
see that χ is the (comoving) geodesic distance, because it measures the length of the shortest path
(arc) connecting two points on the hypersurface, while the radial coordinate r is not a distance
measure on the surface. This conclusion is also true for the case of K = −1. Only for a flat space
(K = 0) where r = χ , is the radial coordinate r also a geodesic distance.

The Hubble parameter, H(t), at a cosmic time t is defined to be the rate of change of the proper
distance l between any two fundamental observers at time t in units of l: dl/dt ≡ H(t)l. It then
follows from Eq. (3.9) that

Fig. 3.1. The ϕ = constant section of a Robertson–Walker metric with K = 1, showing the geometric
meanings of various coordinates.
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H(t) =
ȧ(t)
a(t)

, (3.14)

where an over-dot denotes the derivative with respect to t. The Hubble parameter at the present
time is called the Hubble constant, and is denoted by H0. Quantities that depend on the value of
H0 are often expressed in terms of

h ≡ H0

100kms−1 Mpc−1 . (3.15)

The time dependence of the scale factor a(t) is determined by general relativity and the equa-
tion of state appropriate for the matter content of the Universe. This will be discussed in §3.2.
However, some kinematic properties of an isotropic and homogeneous universe can already be
inferred from the form of the metric [either Eq. (3.8) or Eq. (3.12)] without specifying the form
of a(t). Such discussion is useful, because it is based only on the cosmological principle, and is
valid even if general relativity fails on cosmological scales or if our knowledge about the mat-
ter content of the Universe is incomplete. In the following four subsections, we examine these
‘kinematic’ properties of the Robertson–Walker metric.

3.1.3 Redshift

Almost all observations about astronomical objects are made through light signals. It is therefore
important to understand how photons propagate in a homogeneous and isotropic universe. With-
out losing generality, consider a light signal propagating to the origin along a radial direction
(dϑ = dϕ = 0). Since photons travel along null geodesics on which ds = 0, their trajectories can
be written as

dτ = dχ (3.16)

[see Eq. (3.12)]. Thus, if a wave crest is emitted at the time te from a fundamental observer
(re,ϑe,ϕe), then the time t0 when it reaches the origin is given by

τ(t0)− τ(te) = χ(re)−χ(0) = χ(re) . (3.17)

Since the comoving distance χ(re) between the fundamental observer and the origin does not
change with time, a successive wave crest emitted at a later time te + δ te reaches the origin at a
time t0 +δ t0 given by

τ(t0 +δ t0)− τ(te +δ te) = χ(re) . (3.18)

Combining Eqs. (3.17) and (3.18) gives

τ(t0 +δ t0)− τ(t0) = τ(te +δ te)− τ(te) . (3.19)

In real applications δ te � te and δ t0 � t0, and so we can use the definition of τ to obtain

δ t0
a(t0)

=
δ te

a(te)
. (3.20)

Thus the period of the wave, and hence its wavelength, increases (or its frequency decreases) in
proportion to the scale factor:

λ0

λe
=
νe

ν0
=
δ t0
δ te

=
a(t0)
a(te)

. (3.21)

Defining the relative change of wavelength by a redshift parameter, z ≡ (λ0 −λe)/λe, we have

1+ z ≡ λ0

λe
=

a(t0)
a(te)

. (3.22)
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If the light wave is emitted from the transitions of a given kind of atoms between two energy lev-
els E1 and E2, and if these atoms are at rest with respect to the fundamental observer (re,ϑe,ϕe)
at time te, then νe = |E1 −E2|/hP (where hP is Planck’s constant). Eq. (3.21) then describes the
relation between the observed wavelength and the rest-frame wavelength which can be deter-
mined by the observer in his local laboratory. In an expanding universe a(t0) > a(te) so that z > 0
and spectral features are shifted redwards (redshift). On the other hand, in a contracting universe
a(t0) < a(te), so that z < 0 and spectral features are shifted bluewards (blueshift). As we have
seen in Chapter 2, distant galaxies in the Universe are all observed to show redshifted spectra,
indicating that the Universe is expanding.

3.1.4 Peculiar Velocities

As we will see later in Chapter 4, small perturbations in the background energy density dis-
tribution cause the growth of structures, which in turn induce velocities that deviate from pure
expansion. These velocities with respect to the cosmological rest frame of fundamental observers
are called peculiar velocities.

The proper velocity of a particle with respect to a fundamental observer at the origin is defined
as v = dl/dt, with l(t) the proper distance between the particle and observer. Using Eq. (3.9) we
can write this as

v(t) = ȧ(t)χ(t)+a(t)χ̇(t) = vexp + vpec , (3.23)

where vexp = H(t)l(t) is the velocity component due to the universal expansion, and vpec is the
peculiar velocity.

Let O1 be a fundamental observer at the same location as a particle P which has a peculiar
velocity vpec with respect to O1. Since locally the geometry at O1 is that of a Minkowski space,
O1 will observe the light from P with a Doppler redshift

1+ zpec =

√
1+ vpec/c

1− vpec/c
. (3.24)

But what is the redshift of P observed by a fundamental observer O2, located at a proper distance
δ l12 from O1? For simplicity we assume that the peculiar velocity of P is along the geodesic
connecting O1 and O2. Using the definition of redshift in Eq. (3.22) we can write for the observed
redshift

1+ zobs =
λ2

λP
=
λ1

λP

λ2

λ1
, (3.25)

where λP is the wavelength emitted by P , and λ1 and λ2 are the wavelengths observed by
O1 and O2, respectively. The physical correspondence of the second equality is a simple relay
station at O1 that passes the information from P on to O2. The first factor on the right-hand side
of Eq. (3.25) is simply the Doppler redshift of Eq. (3.24), while the second factor corresponds to
the cosmological redshift zcos of O1, and thus also of P . Therefore

1+ zobs = (1+ zpec)(1+ zcos) , (3.26)

which shows that the observed redshift of any object consists of a contribution due to the univer-
sal expansion and one due to its peculiar velocity along the line-of-sight. In the non-relativistic
case we can approximate Eq. (3.24) with zpec = vpec/c, so that Eq. (3.26) reduces to

zobs = zcos +
vpec

c
(1+ zcos) . (3.27)
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Thus, for a cluster of galaxies at redshift z, the (peculiar) velocity dispersion of galaxies, σv , is
related to the observed dispersion in redshifts, σz, as

σv = σz
c

1+ z
. (3.28)

Next let us consider the motion of a non-relativistic particle P in a homogeneous and isotropic
universe. Consider once again the fundamental observers O1 and O2, and let P pass O1 at time
t1 with a peculiar velocity v1 in the direction of O2. If P moves freely to O2, what is the peculiar
velocity of P when it passes O2 at time t2? To answer this question, focus first on the velocity
of P at t = t2 with respect to O1. This velocity consists of two components: a peculiar velocity
v2 as well as a velocity vexp = H(t2)δ l12 due to the universal expansion. Since P has not been
accelerated with respect to O1, the sum of these two velocities has to be equal to v1, such that
from the perspective of O1 the line-of-sight velocity of P has not changed. Therefore

δv ≡ v2 − v1 = − ȧ(t2)
a(t2)

δ l12 . (3.29)

Using Taylor expansion we can write, to first order in δ t = t2 − t1, the proper distance between
O1 and O2 as δ l12 = v1δ t. Substitution in Eq. (3.29) and integration then yields

v2 = v1
a(t1)
a(t2)

. (3.30)

Therefore, the peculiar velocity of a free, non-relativistic particle decreases as the inverse of the
scale factor:

vpec(t) ∝ a−1(t) . (3.31)

Since the momentum p of a non-relativistic particle is proportional to its peculiar velocity,
Eq. (3.31) also implies that p(t) ∝ a−1(t). Note that for a photon with zero rest mass pc = E =
hPν. As is evident from Eq. (3.21) ν ∝ a−1, so that the decay law p ∝ a−1 holds for photons as
well as for massive particles.

3.1.5 Thermodynamics and the Equation of State

The homogeneous and isotropic properties of the expanding Universe also allow an analysis of its
thermodynamic properties. Let us consider a uniform, perfect gas contained in a (small) comov-
ing volume V ∝ a3(t) which expands with the Universe. Since the Universe is homogeneous and
isotropic, there should not be any net heat flow across the boundaries of V . This implies that we
can consider V as an adiabatic system, and since V can be chosen arbitrarily small, no GR is
required to describe its thermodynamic properties.

According to the first law of thermodynamics, the increase in internal energy, dU , is equal to
the heat, dQ, transferred into the system plus the work, dW , done on the system: dU = dQ+dW .
The second law of thermodynamics is related to the entropy S, and states that dS = dQ/T , with
T the temperature. For our adiabatically expanding volume V we therefore have

dU +PdV = 0; dS = 0 , (3.32)

with P the pressure. This shows that the entropy per unit comoving volume is conserved, and that
the expansion of the Universe causes a decrease or increase of its internal energy depending on
whether P > 0 or P < 0.

In order to be able to apply the first law to both relativistic and non-relativistic fluids, we
write the internal energy, U , in terms of the energy density ρc2. In principle there may be many
different sources contributing to the energy density of the Universe: matter (both non-relativistic
and relativistic), radiation, vacuum energy, scalar fields, etc. As we shall see later in this chapter,
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the Universe transited from a radiation dominated phase early on to a matter dominated phase
at later stages. In addition, the Universe may have become dominated by vacuum energy in the
recent past. In what follows we therefore focus on these three energy components only, so that
the total energy density may be written as

ρc2 = ρmc2 +ρmε+
4σSB

c
T 4 +ρvacc2 . (3.33)

Here ρm is the matter density, and ε the internal energy per unity mass (ε = 3
2 kBT/m for

a monatomic ideal gas, with kB Boltzmann’s constant). The first two terms of Eq. (3.33)
therefore express the energy density due to non-relativistic matter, split in a contribution of
rest-mass energy and internal energy. The third term indicates the energy density of the radi-
ation, with σSB the Stefan–Boltzmann constant.2 Finally, ρvacc2 is the energy density of the
vacuum.

In terms of the energy density, the first law of thermodynamics for our adiabatically expanding
volume can now be written as

V dρ+(ρ+P/c2)dV = 0 . (3.34)

Using that V ∝ a3, and differentiating with respect to a we obtain

dρ
da

+3

(
ρ+P/c2

a

)
= 0 . (3.35)

For a given equation of state, P(ρ), this equation gives the density and pressure as functions of
a. It is common practice to introduce the equation of state parameter w and to write

P = wρc2 . (3.36)

If w is time-independent, then substitution of Eq. (3.36) into Eq. (3.35) gives

ρ ∝ a−3(1+w) . (3.37)

To describe the evolution of ρ , P, and T during the matter dominated phase, we approximate
the Universe as an ideal gas, for which PV = N kB T , with N the number of atoms of the gas. For
a monatomic gas consisting of particles of mass m we have ρm = mN/V , so that

Pm =
kBT
mc2 ρmc2 . (3.38)

Note that since ρm �= ρ , this does not imply that w = kBT/mc2. To determine the true equation
of state parameter, it is useful to write the equation of state as function of the adiabatic index γ
(for a monatomic gas γ = 5/3):

Pm = (γ−1)(ρ−ρm)c2 . (3.39)

Note that Eq. (3.39) makes it explicit that, in the non-relativistic limit, the rest-mass energy does
not contribute to the pressure of the gas. Combining Eqs. (3.38)–(3.39) we can write the pressure
in the form of Eq. (3.36) with

w = w(T ) =
kBT
mc2

(
1+

1
γ−1

kBT
mc2

)−1

. (3.40)

Since kBT � mc2 we immediately see that w(T )� 1. A non-relativistic gas is thus well approx-
imated by a fluid of zero pressure (w = 0), often referred to as a dust fluid. Since ρ ∝ a−3(1+w) a

2 Since the Universe is homogeneous and isotropic, the radiation fluid is in thermal equilibrium, and its energy density
follows from integrating the Planck function corresponding to a blackbody of temperature T .
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Table 3.1. Thermodynamics of a
homogeneous and isotropic universe.

Dominant component w ρ P T

matter 0 a−3 a−5 a−2

radiation 1/3 a−4 a−4 a−1

vacuum energy −1 a0 a0

dust fluid has ρm ∝ a−3, as expected. To obtain the relation between T and a we use kinetic the-
ory which relates the gas temperature to the peculiar motions of the gas particles: kBTm ∝m〈v2〉.
Since v ∝ a−1 [see Eq. (3.31)], we have that Tm ∝ a−2. Finally, using Eq. (3.38) we find that
Pm ∝ a−5. This rapid decrease of pressure with the scale factor indicates that the Universe quickly
approaches a dust fluid once it becomes matter dominated.

At early times the Universe is radiation dominated. To investigate how ρ , P and T scale with
a during this period, we approximate the fluid as an ultra-relativistic radiation fluid for which
w = 1/3. This implies that ρr ∝ a−4, which is consistent with the fact that the number density
of photons scales as a−3, while the energy per photon, E = hPν, scales as a−1 [see Eq. (3.21)].
From the equation of state we obtain that Pr ∝ a−4, while the scaling relation for the temperature,
Tr ∝ a−1, follows from the fact that for radiation ρ ∝ T 4 [see Eq. (3.33)]. As a result, a blackbody
radiation field remains blackbody with a temperature decreasing as a−1. This is an important
result which explains how the cosmic microwave background radiation maintains its blackbody
form as the Universe expands.

Finally, if the energy density is dominated by vacuum energy, it only depends on the energy
difference between the true and false vacua and so is independent of a. It then follows from
Eq. (3.35) that

Pvac = −ρvacc2 , (3.41)

i.e. w = −1. This equation of state can be understood as follows: in order to keep a constant
energy density ρvac as the Universe expands, the pressure Pvac must be negative so that the PdV
work in Eq. (3.32) is a positive contribution to the total internal energy in a given comoving
volume as it expands.

Although the above relations are derived from the application of thermodynamics to a small
volume in the Universe, they are applicable to the Universe as a whole, because the Universe is
assumed to be homogeneous and isotropic. These relations are important, because they allow us
to obtain the mean density, temperature and pressure of the Universe at any redshift from their
values at the present time. Table 3.1 summarizes how energy density, pressure, and temperature
evolve with the scale factor a for different dominating components of the energy density. Before
we continue, it is important to emphasize that these scaling relations only hold while the equa-
tion of state remains constant. In the early Universe, however, the adiabatic cooling due to the
expansion of the Universe may cause various particle species to change from relativistic to non-
relativistic. During these transitions, the true scaling relations follow from an application of the
entropy conservation law (see § 3.3).

3.1.6 Angular-Diameter and Luminosity Distances

The comoving distance χ and the proper distance a(t)χ from a source are not directly observ-
able, because the light from a distant source observed at the present time was emitted at an earlier
time. In this subsection we consider two other distances that can be measured directly from astro-
nomical observations. Consider an object of size D and intrinsic luminosity L at some distance
d. The observable properties of such an object are the angular size ϑ subtended by the object,
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and the flux F . These allow us to define the angular-diameter distance, dA, and the luminosity
distance, dL, according to

ϑ =
D
dA

, (3.42)

and

F =
L

4πd2
L

. (3.43)

In a static space, dA = dL = d, consistent with our everyday experience. However, when cosmic
distances are concerned in an expanding Universe, dA, dL, and d may all have different values,
as we will see in the following.

To obtain an expression for dA in a Robertson–Walker metric, we recall that the proper size D
can be considered as the proper distance between two light signals, sent from two points with the
same radial coordinate re at a given cosmic time te, and reaching the origin at the time t0. Thus,
the value of D is just the integral of dl in Eq. (3.8) over the transverse direction:

D = aere

∫
dϑ =

a0re

1+ z
ϑ , (3.44)

where a0 = a(t0) and ae = a(te). It then follows from Eq. (3.42) that

dA =
a0re

1+ ze
= aere . (3.45)

To get an expression for dL, we consider a proper area, A , which is at the origin (the position of
the observer) and subtends a solid angle, ω , at the object. By definition of the angular-diameter
distance dA, such a solid angle at the origin corresponds to a proper area ωd2

A at the position
of the object. If the universe were static, this area would, by symmetry arguments, be equal
to A . Because of expansion, however, the proper area at the origin subtended by a fixed solid
angle at a given object is stretched by a factor in proportion to the square of the scale factor,
and so

A = ωd2
A(a0/ae)2 = (a0re)2ω . (3.46)

Without losing generality, we can assume that the object emits monochromatic radiation with
rest-frame frequency νe. The number of photons emitted from the object into the solid angle ω
within a time interval δ te is Lδ teω/(4πhPνe). If the same number of photons pass through the
area A in a time interval δ t0, we have

Lδ teω
4πhPνe

=
F δ t0 A

hPν0
, (3.47)

where ν0 is the observed frequency of the photons at the origin. It then follows from Eqs. (3.21)
and (3.46) that

F =
ω
4π

L
A

[
ae

a0

]2

=
L

4π[a0re(1+ z)]2
. (3.48)

The luminosity distance defined in Eq. (3.43) can thus be written as

dL = a0re(1+ z) . (3.49)

Since we observe the object using photons, the quantity a0re in the expressions of dL and
dA is related to the redshift z by Eqs. (3.17) and (3.22).3 This relation can be obtained once the
dynamical equations have been solved to specify a(t). Although we will address the dynamical

3 In the case of a flat universe (K = 0), a0re is equal to the proper distance between object and observer at the time of
observation.
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behavior of a(t) in detail in §3.2, we can make a simple approximation by using the first few
terms of its Taylor expansion:

a(t) = a0

[
1+H0(t − t0)− 1

2
q0H2

0 (t − t0)2 + . . .

]
, (3.50)

where

q0 ≡− ä0 a0

ȧ2
0

(3.51)

is known as the deceleration parameter. Using Eq. (3.17), the power series can be manipulated
to give

a0re ≈ c
H0

[
z− 1

2
z2(1+q0)+ . . .

]
. (3.52)

Inserting this into Eqs. (3.44) and (3.48), we can obtain D as a function of ϑ and z, and L as
a function of F and z, respectively. Thus, for given values of H0 and q0, the proper size D
(or the intrinsic luminosity L) of an object can be obtained by measuring its redshift z and
its angular size ϑ (or its flux F). Similarly, if the proper sizes (or intrinsic luminosities) of
a set of objects are known, one can estimate the values of H0 and q0 by measuring ϑ (or
F) as a function of redshift. Although this way of using Eq. (3.52) to interpret observational
data is common practice, it is valid only for z � 1. It is therefore preferable to use the exact
equations for a0r as function of z (derived in the next section) rather than this small-z approxima-
tion. Nevertheless, the present values of H0 and q0 are often used to characterize cosmological
models.

Finally, Eqs. (3.44) and (3.48) can be combined to give the apparent surface brightness of an
object,

S ≡ F
1
4πϑ 2

=
L

π2D2 (1+ z)−4 . (3.53)

Unlike dA and dL, the apparent surface brightness S is independent of the relationship between
a0re and ze, and so is independent of the dynamical evolution of a(t). This arises because
Eq. (3.53) depends only on the local thermodynamics of the radiation field, and follows, in
fact, directly from S ∝ T 4. For given L and D, the apparent surface brightness decreases
with redshift as (1 + z)−4, which is usually referred to as cosmological surface brightness
dimming.

3.2 Relativistic Cosmology

In general relativity, the geometric properties of space-time are determined by the distribution of
matter/energy. The standard model of cosmology arises from the application of general relativity
to the very special class of matter/energy distributions implied by the cosmological principle, i.e.
homogeneous and isotropic distributions. As we have seen above, the geometric properties of
a homogeneous and isotropic universe are described by the Robertson–Walker metric which, in
turn, is specified by the scale factor a(t) and the curvature signature K. The task of this section
is to obtain an expression for a(t) and the value of K for any given homogeneous and isotropic
matter/energy content.
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3.2.1 Friedmann Equation

In the standard model of cosmology, the geometry of space-time is determined by the mat-
ter/energy content of the Universe through the Einstein field equation (see Appendix A):

Rμν − 1
2

gμνR−gμνΛ=
8πG
c4 Tμν . (3.54)

Here Rμν is the Ricci tensor, describing the local curvature of space-time, R is the curvature
scalar, gμν is the metric, T μν is the energy–momentum tensor of the matter content of the Uni-
verse, and Λ is the cosmological constant, which was introduced by Einstein to obtain a static
universe. Contracting Eq. (3.54) with gμν yields the trace of the field equation,

R+4Λ= −8πG
c4 T , (3.55)

where T = T λ λ . This allows the field equation to be written in the form

Rμν +gμνΛ=
8πG
c4

(
Tμν − 1

2
gμνT

)
. (3.56)

For a uniform ideal fluid,

T μν = (ρ+P/c2)UμUν −gμνP , (3.57)

with ρc2 the energy density, P the pressure, and Uμ = cdxμ/ds the four velocity of the fluid. In
a homogeneous and isotropic universe, the density and pressure depend only on the cosmic time,
and the four-velocity is Uμ = (c,0,0,0) (i.e. no peculiar motion is allowed). This implies that
T μν = diag(ρc2,−P,−P,−P) and T = ρc2 −3P.

For a homogeneous and isotropic universe, gμν is given by the Robertson–Walker metric,
which allows the Ricci tensor Rμν and curvature scalar R to be expressed in terms of the scale
factor a(t) and the curvature signature K (see Appendix A). Inserting the results into Eq. (3.56),
and using the energy–momentum tensor of a perfect fluid given in Eq. (3.57), one obtains

ä
a

= −4πG
3

(
ρ+3

P
c2

)
+
Λc2

3
(3.58)

for the time-time component, and

ä
a

+2
ȧ2

a2 +2
Kc2

a2 = 4πG

(
ρ− P

c2

)
+Λc2 (3.59)

for the space-space components. It then follows from substituting Eq. (3.58) into Eq. (3.59) that(
ȧ
a

)2

=
8πG

3
ρ− Kc2

a2 +
Λc2

3
. (3.60)

As one sees from Eqs. (3.58)–(3.60), the cosmological constant can be considered as an energy
component with ‘mass’ density ρΛ = Λc2/8πG and pressure PΛ = −ρΛc2. Indeed, the term of
Einstein’s cosmological constant in Eq. (3.54) can be included as an energy–momentum tensor,
Tμν = (c4Λ/8πG)gμν , on the right-hand side of the field equation.

Eq. (3.60) is the Friedmann equation, and a cosmology that obeys it is called a Friedmann–
Robertson–Walker (FRW) cosmology. Together with Eq. (3.35), an equation of state, and an
initial condition, it determines the time dependence of a, ρ , P, and other properties of the
Universe.

It is interesting to note that one can derive the Friedmann equation (without the cosmological
constant term) for a matter dominated universe purely from Newtonian gravity (see §2.10). This
follows from the assumption that the Universe is homogeneous and isotropic so that the global
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properties of the Universe can be represented by those in a small region where Newtonian physics
applies. The Newtonian derivation, however, does not contain the pressure term, 3P/c2, in the
equation for the acceleration, which can be considered a relativistic correction. As is evident
from Eq. (3.58), in general relativity this pressure term acts as a source of gravity.

The density which appears in Eq. (3.60) can be made up of various components. At the moment
we distinguish a non-relativistic matter component, a radiation component, and a possible vac-
uum energy (cosmological constant) component. We denote their energy densities (written in
terms of mass densities) at the present time t0 by ρm,0, ρr,0 and ρΛ,0, respectively. As the Uni-
verse expands, these quantities scale with a in different ways, as described in §3.1.5. We can then
write the Friedmann equation as(

ȧ
a

)2

= H2(t) =
8πG

3

[
ρm,0

(a0

a

)3
+ρr,0

(a0

a

)4
+ρΛ,0

]
− Kc2

a2 , (3.61)

where a0 = a(t0).4 Using the fact that the Universe is in its expanding phase at the present time
(i.e. H0 = ȧ0/a0 > 0), we can examine the behavior of a(t) in various cases, even without solving
the Friedmann equation explicitly.

If Λ≥ 0 and if K = 0 or K = −1, the right-hand side of Eq. (3.61) is always larger than zero,
and a(t) always increases with t. If K = +1 and Λ= 0, the right-hand side of Eq. (3.61) becomes
zero in the future as the scale factor increases until the curvature term, K/a2, is as large as the sum
of the matter and radiation terms. Thereafter a(t) decreases with t, and the Universe contracts
until a = 0. If K = +1 and Λ> 0, the situation is similar to that with K = +1 and Λ= 0, provided
that the Λ term in Eq. (3.61) is smaller than the matter plus radiation terms at the present time.
If the Λ term is sufficiently large at the present time, there may have been a minimum value of
a at some previous epoch. This corresponds to a time when the right-hand side of Eq. (3.61) is
equal to zero, and an initially contracting universe ‘bounced’ on its vacuum energy density and
started to re-expand. As one can see from Eq. (3.61), this re-expansion will continue forever. For
positive Λ a static (but unstable) solution is also possible – Einstein’s original static model –
as are solutions which asymptotically approach this model in the infinite future or infinite past.
Finally, if Λ < 0, the expansion will eventually halt and be followed by recollapse, giving a
history qualitatively similar to that of a K = +1, Λ= 0 universe.

3.2.2 The Densities at the Present Time

To solve Eq. (3.61), we need to know K and the various densities at the present time, ρm,0, ρr,0 and
ρΛ,0. Here we summarize constraints on these quantities based on observational and theoretical
considerations.

The total rest mass density of non-relativistic matter in the Universe is conventionally
expressed as

ρm,0 =Ωm,0ρcrit,0 ≈ 1.88×10−29Ωm,0h2 gcm−3 , (3.62)

where, for reasons that will soon become clear, the density

ρcrit(t) ≡ 3H2(t)
8πG

(3.63)

is known as the critical density at time t. The subscript ‘0’ denotes the values at the present time.
The dimensionless quantity, Ωm,0, is the present cosmic density parameter for non-relativistic

4 Note, however, that Eq. (3.61) only applies if there is no transformation from one density component to another. If
such transformation occurs, the time dependence of the equation of state must be taken into account.
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matter, and h is defined in Eq. (3.15). As discussed in §2.10, current observational constraints
suggest

Ωm,0 = 0.27±0.05; h = 0.72±0.05 . (3.64)

The current density in the relativistic component appears to be dominated by the cosmic
microwave background which is, to high accuracy, a blackbody at temperature Tγ = 2.73K. Thus,
using ργ = 4σSBT 4/c3 with σSB the Stefan–Boltzmann constant, we have

ργ ,0 ≈ 4.7×10−34 gcm−3 or Ωγ ,0 ≡ ργ ,0/ρcrit,0 ≈ 2.5×10−5h−2 . (3.65)

In addition, if the three species of neutrinos and their antiparticles are all massless (or relativistic
at the present time), they will have a temperature Tν = (4/11)1/3Tγ (see §3.3). Because each
neutrino has only one spin state (while a photon has two) and because neutrinos are fermions
(and so for a given temperature the statistical weight of each degree of freedom is only 7/8
of that for photons; see §3.3 for details), the energy density in neutrinos at the present time is
3× (7/8)× (4/11)4/3 times that of the CMB photons. This brings the total energy density in the
relativistic component to

ρr,0 ≈ 7.8×10−34 gcm−3 or Ωr,0 ≈ 4.2×10−5h−2 . (3.66)

Combining Eqs. (3.62) and (3.66) shows that the ratio of the energy densities in the non-
relativistic and relativistic components varies with redshift as

ρm

ρr
≈ 2.4×104Ωm,0h2(1+ z)−1 , (3.67)

where we have used that ρm ∝ a−3 and ρr ∝ a−4 (see Table 3.1). Thus, provided the Universe did
not bounce in the recent past due to a large cosmological constant, it has been matter dominated
and effectively pressure-free since the epoch of matter/radiation equality defined by ρr = ρm, i.e.
since the redshift given by

1+ zeq ≈ 2.4×104Ωm,0h2 . (3.68)

To constrain the present day energy density provided by the cosmological constant, we use the
Friedmann equation (3.61), which we rewrite as

8πG
3
ρΛ,0 = H2

0 [1−Ωm,0 −Ωr,0]+
Kc2

a2
0

. (3.69)

As discussed in §2.9, observations of the microwave background show that our Universe is almost
flat and that the current density in non-relativistic matter is significant [see Eq. (3.64)]. This
excludes the possibility of a bounce in the recent past due to a large cosmological constant. Such
an expansion history is also excluded by the observation of objects out to redshifts beyond 6, so
we will not consider such cosmological models any further. Setting K = 0 in Eq. (3.69) we obtain

ρΛ,0 = ρcrit,0(1−Ωm,0 −Ωr,0) i.e. ΩΛ,0 = 1−Ωm,0 −Ωr,0 . (3.70)

Data from WMAP combined with other observations give ΩΛ,0 ∼ 0.75± 0.02 (Spergel et al.,
2007).

3.2.3 Explicit Solutions of the Friedmann Equation

(a) The Evolution of Cosmological Quantities Taking t = t0, the Friedmann equation can be
rewritten as

ΩK,0 ≡− Kc2

H2
0 a2

0

= 1−Ω0 , (3.71)
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where

Ω0 =Ωm,0 +ΩΛ,0 +Ωr,0 (3.72)

is the total density parameter at the present time. As is immediately evident from Eq. (3.71), the
curvature of space-time depends on the matter density of the Universe. In particular, Ω0 is less
than 1 for a negatively curved, open universe, is equal to 1 for a flat universe, and is bigger than 1
for a positively curved, closed universe. The terminology ‘open’ and ‘closed’ only has a logical
meaning for a Λ = 0 universe; open (and flat) universes expand forever, while closed universes
recollapse in the future. For non-zero Λ, however, open and flat universes can recollapse and
closed universes can expand forever, depending on the values of the various density parameters
(see discussion at the end of §3.2.1). Since Ω0 is just the total energy density of the Universe
in units of ρcrit,0, it follows that ρcrit,0 defines a critical density for closure. Note that Eq. (3.71)
defines the scale factor a0 at the present time:

a0 =
c

H0

√
K

Ω0 −1
, (3.73)

which goes to infinity as Ω0 approaches 1 from either side. This follows from our definition of
the coordinate r in Eqs. (3.3) and (3.8). Since a0 is only a scale factor, its value does not have
physical meaning and so can be set to any positive value. A choice for the value of a0 corresponds
to a choice in the definition of the coordinate r. In fact, physical distances are all related to a0

through the combination a0r, which is well behaved near Ω0 = 1 and independent of the choice
of a0. It is common practice to adopt a0 = 1.

Substituting Eq. (3.71) into Eq. (3.61) gives

H(z) ≡
(

ȧ
a

)
(z) = H0E(z) , (3.74)

where

E(z) =
[
ΩΛ,0 +(1−Ω0)(1+ z)2 +Ωm,0(1+ z)3 +Ωr,0(1+ z)4]1/2

. (3.75)

Defining the cosmic density parameters at cosmic time t as

Ω(t) ≡ ρ(t)
ρcrit(t)

, (3.76)

we have

ΩΛ(z) =
ΩΛ,0

E2(z)
; Ωm(z) =

Ωm,0(1+ z)3

E2(z)
; Ωr(z) =

Ωr,0(1+ z)4

E2(z)
. (3.77)

Thus, once H, ΩΛ, Ωm and Ωr are known at the present time, Eqs. (3.74)–(3.77) can be used
to obtain their values at any given redshift. It is also clear from Eqs. (3.61) and (3.71) that the
geometry of a FRW universe is completely determined by the values of H0, ΩΛ,0, Ωm,0 and
Ωr,0. Since Ωr,0 �Ωm,0 (see §3.2.2), the deceleration parameter, q0, defined in Eq. (3.51) can be
written as

q0 =Ωm,0/2−ΩΛ,0 , (3.78)

where we have used Eq. (3.58) with P = 0, as appropriate for a matter dominated universe.
Finally, using Eq. (3.71) and the definition of E(z), we can write down the redshift evolution

of the total density parameter

Ω(z)−1 = (Ω0 −1)
(1+ z)2

E2(z)
. (3.79)
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As long asΩm,0 orΩr,0 are non-zero,Ω(z) always approaches unity at high redshifts, independent
of the present day values of H0, ΩΛ,0, Ωm,0 and Ωr,0. Therefore, every FRW universe with non-
zero matter or radiation content must have started out with a total density parameter very close
to unity. As we will see in §3.6, this results in the so-called flatness problem.

(b) Radiation Dominated Epoch In the absence of a contracting phase in the past, the right-
hand side of Eq. (3.61) is dominated by the radiation term at z 	 zeq. In this case, integration of
Eq. (3.61) yields

a
a0

=
(

32πGρr,0

3

)1/4

t1/2. (3.80)

Using that ρr ∝ a−4, ρm ∝ a−3 and Tr ∝ a−1 (see Table 3.1), this gives the following rough
scalings for the early Universe:

T
1010 K

∼ kBT
1MeV

∼
[

ρ
107 gcm−3

]1/4

∼
[

ρm

1gcm−3

]1/3

∼ 1+ z
1010 ∼

[ t
1s

]−1/2
. (3.81)

These relations are approximately correct for 0 < t < 1010 s, or z > 105. The arbitrarily high
temperatures and densities which are achieved at sufficiently early times have given this standard
cosmological model its generic name, the Hot Big Bang.

(c) Matter Dominated Epoch and ΩΛ,0 = 0 At redshift z � zeq, the radiation content of the
Universe has little effect on its global dynamics, and assuming Λ= 0, Eq. (3.61) reduces to(

ȧ
a

)2

= H2
0

[
Ωm,0

(a0

a

)3 − Kc2

H2
0 a2

0

(a0

a

)2
]

. (3.82)

For K = 0 the solution is particularly simple:

a
a0

=
(

3
2

H0t

)2/3

. (3.83)

This is the solution for an Einstein–de Sitter (EdS) universe. For K = −1, the solution can be
expressed in parametric form:

a
a0

=
1
2

Ωm,0

(1−Ωm,0)
(coshϑ −1) ; H0t =

1
2

Ωm,0

(1−Ωm,0)3/2
(sinhϑ −ϑ) , (3.84)

where ϑ goes from 0 to ∞. At early epochs, a ∝ t2/3, which follows directly from the fact that
the curvature term in Eq. (3.82) can be neglected when a is sufficiently small. At later epochs
when ϑ 	 1 and sinhϑ = coshϑ so that a ∝ t, the universe enters a phase of free expansion,
unretarded by gravity.

The corresponding parametric solution for a K = +1 universe is

a
a0

=
1
2

Ωm,0

(Ωm,0 −1)
(1− cosϑ) ; H0t =

1
2

Ωm,0

(Ωm,0 −1)3/2
(ϑ − sinϑ) , (3.85)

where 0 ≤ ϑ ≤ 2π . Such models reach a maximum size, amax, at a time, tmax, given by

amax

a0
=

Ωm,0

Ωm,0 −1
; H0tmax =

π
2

Ωm,0

(Ωm,0 −1)3/2
. (3.86)

This maximum expansion is followed by recollapse to a singularity. At early epochs, a ∝ t2/3,
for the same reason as that for the K = −1 case.

Note that H0t0 depends only on Ωm,0 in these models. Since the normalization time, t0, can be
chosen arbitrarily, it is easy to see that H(t)t depends only on Ωm(t).
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(d) Flat (Ωm,0 +ΩΛ,0 = 1) Models at z � zeq In this case Eq. (3.61) can be written as(
ȧ
a

)2

= H2
0

[
Ωm,0

(a0

a

)3
+ΩΛ,0

]
. (3.87)

When the matter term is negligible, the model is called a de Sitter universe for which the solution
of Eq. (3.87) is particularly simple:

a
a0

= exp [H0(t − t0)] , (3.88)

and the universe expands exponentially without an initial singularity. For 0 < Ωm,0 < 1, using
the fact that H0 ≡ ȧ/a > 0, Eq. (3.87) can be easily solved to give

a
a0

=
(
Ωm,0

ΩΛ,0

)1/3 [
sinh

(
3
2
Ω1/2
Λ,0H0t

)]2/3

. (3.89)

At early epochs, a ∝ t2/3 as in an Einstein–de Sitter universe; when t is large, a ∝ exp(Ω1/2
Λ,0H0t)

so that the universe approximates the de Sitter model.

(e) Open and Closed Models withΩΛ,0 �= 0 at z � zeq The Friedmann equation in this case is(
ȧ
a

)2

= H2
0

[
Ωm,0

(a0

a

)3 − Kc2

H2
0 a2

0

(a0

a

)2
+ΩΛ,0

]
. (3.90)

This equation can be cast into a dimensionless form:

1
2

(
dx
dη

)2

=
1
x
−κ+λx2, (3.91)

where x = a/a0, η =
√
Ωm,0/2H0t, λ =ΩΛ,0/Ωm,0, and κ = Kc2/(H2

0 a2
0Ωm,0). The evolution of

x can thus be discussed in terms of the Newtonian motion of a particle with total energy ε = −κ
in a potential φ(x) = −1/x−λx2.

When λ < 0, the potential φ(x) monotonically increases from 0 to ∞ so that x is confined, and
all solutions evolve from an initial singularity into a final singularity.

When λ > 0, the potential φ(x) is always negative, and x can go to infinity if ε > 0 or K =−1.
Hence an open universe with ΩΛ,0 > 0 expands from an initial singularity forever. If λ > 0 and
K = +1, the potential φ(x) has a maximum, φmax = −(27λ/4)1/3, at x = xmax = 1/(2λ )1/3. In
this case, if the total energy ε > φmax, i.e.

λ > λc ≡ 4
27

[
c2

H2
0 a2

0Ωm,0

]3

, (3.92)

the universe still expands forever, starting from an initial singularity. If, however, ε < φmax or
λ < λc, then there is the possibility that the universe contracts from large radii to a minimum
radius, amin, given by φ(amin/a0) = ε , and expands thereafter to infinity. This happens if the
universe starts with a radius a > a0xmax. If the universe starts with an initial singularity, then it
will evolve into a final singularity, giving a situation similar to that of a closed universe without
cosmological constant.

If λ > 0 and K = +1, a special situation occurs when ε = φmax or λ = λc. In this case, there
is a static solution with a constant radius aE = a0/(2λc)1/3. Such a model is called the ‘Einstein
universe’. If the universe expands from an initial singularity, or contracts from a large radius, it
will coast asymptotically towards the radius aE. If the universe expands from an initial radius
larger than aE, it will do so forever.
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3.2.4 Horizons

A light ray emitted by an event (re, te) reaches an observer at the origin at time, t0, given by

χ(re) =
∫ t0

te

cdt
a(t)

=
∫ a0

ae

da
a

[
8πGρ(a)a2

3c2 −K

]−1/2

, (3.93)

with ρ = ρm +ρr +ρΛ. The second equality follows from substituting dt = da/ȧ and using the
Friedmann equation (3.60). If the t (or a) integral converges, as te → 0, to a value χh = χ(rh),
then there may exist particles (fundamental observers) for which χ(r) > χh and from which no
communication can have reached the origin by time t0. Such particles (or values of r) are said
to lie beyond the particle horizon of the origin at time t0. From the form of the last integral in
Eq. (3.93) it is clear that convergence requires ρa2 → ∞ as a → 0. Thus particle horizons exist
in a universe which is matter or radiation dominated at the earliest times, but do not exist in a
universe which was initially dominated by vacuum energy density. As t0 increases, χh becomes
bigger, all particle horizons expand, and signals can be received from more and more distant
particles.

If the t integral in Eq. (3.93) converges as t0 → ∞ (or as t0 approaches the recollapse time for
a universe with a finite lifetime), there may exist events which the observer at the origin will
never see, and which therefore can never influence him/her by any physical means. Such events
are said to lie beyond the event horizon of this observer. Event horizons exist in closed models
and in models that are vacuum dominated at late times, but do not exist in flat or open universes
with zero cosmological constant. In the latter case, therefore, any event will eventually be able
to influence every fundamental observer in the Universe.

The existence of particle horizons in the Big Bang model has important implications, because
it means that many parts of the presently observable Universe may not have been in causal contact
at early times. This gives rise to certain difficulties, as we will see in §3.6.

3.2.5 The Age of the Universe

In currently viable models the Universe has been expanding since the Big Bang, so that ȧ > 0
holds over its entire history. The age of the Universe at redshift z can then be obtained from
Eqs. (3.22) and (3.74):

t(z) ≡
∫ a(z)

0

da
ȧ

=
1

H0

∫ ∞

z

dz
(1+ z)E(z)

, (3.94)

where E(z) is given by Eq. (3.75). With this, the lookback time at redshift z, defined as t0 − t(z),
can also be obtained. For a given set of cosmological parameters, t(z) can be calculated easily
from Eq. (3.94) by numerical integration. In some special cases, the integration can even be
carried out analytically.

In the radiation dominated epoch (i.e. at z 	 zeq), the solution of the Friedmann equation is
given by Eq. (3.80), and the age of the Universe is

t(z) ≈
(

1+ z
1010

)−2

s . (3.95)

In the matter dominated epoch (z � zeq), we can neglect the radiation term in E(z). It can then
be shown that for an EdS universe (i.e. for Ωm,0 = 1 and ΩΛ,0 = 0),

t(z) =
1

H0

2
3
(1+ z)−3/2 ≈ 2

3
(1+ z)−3/2 ×1010h−1 yr . (3.96)
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For an open universe with ΩΛ,0 = 0 and Ω0 =Ωm,0 < 1,

t(z) =
1

H0

Ω0

2(1−Ω0)3/2

[
2
√

(1−Ω0)(Ω0z+1)
Ω0(1+ z)

− cosh−1
(
Ω0z−Ω0 +2
Ω0z+Ω0

)]
. (3.97)

For a closed universe with ΩΛ,0 = 0 and Ω0 =Ωm,0 > 1,

t(z) =
1

H0

Ω0

2(Ω0 −1)3/2

[
−2
√

(Ω0 −1)(Ω0z+1)
Ω0(1+ z)

+ cos−1
(
Ω0z−Ω0 +2
Ω0z+Ω0

)]
. (3.98)

Finally, for a flat universe with Ωm,0 +ΩΛ,0 = 1,

t(z) =
1

H0

2

3
√
ΩΛ,0

ln

[√
ΩΛ,0(1+ z)−3 +

√
ΩΛ,0(1+ z)−3 +Ωm,0√
Ωm,0

]
. (3.99)

In all these cases, the behavior at z 	 1 is

t(z) ≈ 2
3H0

Ω−1/2
m,0 (1+ z)−3/2. (3.100)

Fig. 3.2 shows the product of the Hubble parameter, h, defined by Eq. (3.15), and the lookback
time, t0 − t(z), as a function of (1 + z) for models with ΩΛ,0 = 0, and for flat models with a

Fig. 3.2. The lookback time as a function of redshift for (a) models withΩΛ,0 = 0 andΩm,0 = 0.1, 0.3, 0.5,
1, 2 (from top down); and (b) flat models (Ωm,0 +ΩΛ,0 = 1) with Ωm,0 = 0.1, 0.3, 0.5, 1 (from top down).
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cosmological constant (Ωm,0 +ΩΛ,0 = 1). It is clear that for given h and Ωm,0, the age of the
Universe is larger in models with a cosmological constant. By definition, the age of the Universe
at the present time should be larger than that of the oldest objects it contains. The oldest objects
whose ages can be determined reliably are a class of star clusters called globular clusters, which
have ages ranging up to 13Gyr (e.g. Carretta et al., 2000). This requires h ∼< 0.5 for an EdS
universe, and h ∼< 0.7 for a flat universe with Ωm,0 = 0.3 and ΩΛ,0 = 0.7.

3.2.6 Cosmological Distances and Volumes

As defined in §3.1.6, the luminosity distance, dL, and the angular-diameter distance, dA, are
related to the redshift, z, and the comoving coordinate, r, by

dL =
(

L
4πF

)1/2

= a0r(1+ z) ; dA =
D
ϑ

=
a0r

1+ z
. (3.101)

In order to write dL and dA in terms of observable quantities, we need to express the unobservable
coordinate r as a function of z. To do this, recall that r(t) is the comoving coordinate of a light
signal (an event) that originates at cosmic time t and reaches us at the origin at the present time
t0. It then follows from Eq. (3.17) that the comoving distance corresponding to r is

χ(r) = τ(t0)− τ(t) = c
∫ a0

a(t)

da
aȧ

, (3.102)

where we have used the definition of the conformal time in Eq. (3.11) and the fact that dt = da/ȧ.
Using Eq. (3.74) and the fact that a(z) = a0/(1+ z) this can be rewritten as

χ(r) =
c

H0a0

∫ z

0

dz
E(z)

, (3.103)

where E(z) is given by Eq. (3.75). Using Eqs. (3.10) and (3.13), this gives

r = fK

[
c

H0a0

∫ z

0

dz
E(z)

]
. (3.104)

Note that r is the angular-diameter distance in comoving units. In general Eq. (3.103) can be
integrated numerically for a given set of cosmological parameters. When z � zeq and ΩΛ,0 = 0,
a closed expression can be derived for all three values of K,

a0r =
2c
H0

Ω0z+(2−Ω0)
[
1− (Ω0z+1)1/2

]
Ω2

0(1+ z)
, (3.105)

which is known as Mattig’s formula (Mattig, 1958). For a flat (Ωm,0 +ΩΛ,0 = 1) universe r = χ ,
so that for z � zeq

a0r =
c

H0

∫ z

0

dz

[ΩΛ,0 +Ωm,0(1+ z)3]1/2
. (3.106)

Luminosity (or angular-diameter) distances can be measured directly for objects of known
intrinsic luminosity (or proper size). Such objects are known as ‘standard candles’ (or ‘standard
rulers’). Since the relation of redshift to these distances depends on cosmological parameters, in
particular on H0, Ωm,0 and ΩΛ,0, measuring the redshift of properly calibrated standard candles
(or standard rulers) can provide estimates of these parameters.

One of the most reliable and historically most important standard candles is a class of pulsating
stars known as Cepheids, for which the pulsation period is tightly correlated with their mean
intrinsic luminosity (see §2.1.3). Using the HST, Cepheids have been measured out to distances
of about 10Mpc. At such distances, the dL-z relation is still linear, dL ≈ cz/H0, so interesting
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Fig. 3.3. The upper panel shows distance modulus, (m−M ) = 5log(dL/10pc), against redshift for Type
Ia supernovae for which the light curve shape has been used to estimate their absolute magnitudes (data
points). The predicted relations for three cosmological models are indicated by dashed (Ωm,0 = 1,ΩΛ,0 = 0),
dotted (Ωm,0 = 0.2, ΩΛ,0 = 0) and solid (Ωm,0 = 0.28, ΩΛ,0 = 0.72) curves. The lower panel shows the
difference between the distance modulus and the prediction for the (Ωm,0 = 0.2,ΩΛ,0 = 0) model. [Adapted
from Riess et al. (1998) by permission of AAS]

constraints can be obtained only for the Hubble constant. The current best estimate is H0 =
(72±8)kms−1 Mpc−1 (e.g. Freedman et al., 2001).

In order to measure other cosmological parameters we must go to sufficiently large distances so
that nonlinear terms in the distance–redshift relation are important, i.e. to z ∼> 1. In Chapter 2 we
have seen that Type Ia supernovae can be used as standard candles and that they have now been
observed out to z ∼ 1. In Fig. 3.3 the observed luminosity distance–redshift relation for Type
Ia supernovae is compared with the predictions of a number of cosmological models. Detailed
analyses of these data give the following constraint:

0.8Ωm,0 −0.6ΩΛ,0 �−0.2±0.1 (3.107)

(Perlmutter et al., 1999).
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The proper-distance element at time t is dl = a(t)dχ . Using Eq. (3.103) we have

dl
dz

=
c

H0

1
(1+ z)

1
E(z)

. (3.108)

This gives the proper distance per unit redshift at redshift z. Suppose that there is a population of
objects with proper number density n(z) = n0(z)(1+ z)3 (so that n0 is a constant if the number of
the objects is conserved) and with average proper cross-section σ(z). The number of intersections
between such objects and a sightline in a unit redshift interval around z is

dN

dz
= n0(z)(1+ z)3σ(z)

dl
dz

= n0(z)σ(z)
c

H0

(1+ z)2

E(z)
. (3.109)

The ‘optical depth’ for the intersection of objects up to redshift z is therefore

τ(z) =
∫ z

0
dN (z) =

c
H0

∫ z

0
n0(z)σ(z)

(1+ z)2

E(z)
dz . (3.110)

These quantities are relevant for the discussion of QSO absorption line systems (see Chapter 16).
In this case n0(z) is the comoving number density, σ(z) is the average absorption cross-section
of absorbers, and dN /dz is just the expected number of absorption systems per unit redshift.
Another application of Eqs. (3.109) and (3.110) concerns the interpretation of the observed
number of gravitational lensing events caused by foreground objects. In this case, n0(z) is the
comoving number density of lenses, and σ(z) is the average lensing cross-section. A third appli-
cation is to the scattering of the microwave background by ionized intergalactic gas. Here, σ(z)
is the Thomson cross-section and n0(z) is the comoving number density of free electrons.

Consider next the proper volume element at a redshift z. The proper-length element in the
radial direction is again a(t)dχ , and the proper distance subtended by an angle element dϑ is
a(t)r dϑ . The proper-volume element at redshift z corresponding to a solid angle dω = dϑ 2 and
a depth dz is thus

d2Vp = a3(t)r2 dχ dω =
c

H0

dz
(1+ z)E(z)

[a0r(z)]2 dω
(1+ z)2 , (3.111)

where r(z) is related to z by Eq. (3.104). Using Eq. (3.111), the total, proper volume out to redshift
z is

Vp(z) = 4πa3(t)
∫ r(z)

0

r′2 dr′√
1−Kr′2

=

⎧⎪⎪⎨⎪⎪⎩
2πa3(t)

(
sin−1 r− r

√
1− r2

)
(K = +1)

4π
3 a3(t)r3 (K = 0)

2πa3(t)
(

r
√

1+ r2 − sinh−1 r
)

(K = −1).

(3.112)

We can also use Eq. (3.111) to compute the total number of objects per unit volume. Assuming
the proper number density of objects at redshift z to be n(z) = n0(z)(1+ z)3, the predicted count
of objects per unit redshift and per unit solid angle is

d2N
dzdω

= n(z)
d2Vp

dzdω
= n0(z)

c
H0

[a0r(z)]2

E(z)
. (3.113)

Thus, if the z dependence of n0 is known, one can use Eq. (3.113) to put constraints on cosmolog-
ical parameters by simply counting objects (e.g. galaxies) as a function of z (see Loh & Spillar
(1986) for a discussion).

Another important quantity in cosmology is the comoving distance between any two observed
objects in the Robertson–Walker metric. Suppose that these two objects (labeled O1 and O2) are
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at redshifts z1 and z2, and are separated by an angle α on the sky. Their comoving distances from
an observer at the origin are given by Eq. (3.102), and we denote them by χ1 and χ2, respectively.
As shown in §3.1.2, for K = +1 the comoving distance, χ12, between O1 and O2 is equal to the
distance on the unit sphere between two points with polar angles χ1 and χ2 and with azimuthal
angles differing by α . Thus

cosχ12 = cosχ1 cosχ2 + sinχ1 sinχ2 cosα . (3.114)

The corresponding equation for K = −1 is

coshχ12 = coshχ1 coshχ2 − sinhχ1 sinhχ2 cosα , (3.115)

and for K = 0 is

χ2
12 = χ2

1 +χ2
2 −2χ1χ2 cosα . (3.116)

Finally, consider the case in which α is zero (or very small). In this case, the angular-diameter
distance from O1 to O2 can be written as

dA,12 =
a0r12

1+ z2
, (3.117)

where

r12 ≡ fK(χ12) = fK(χ2 −χ1) = r(z2)
√

1−Kr2(z1)− r(z1)
√

1−Kr2(z2) . (3.118)

For the ΩΛ,0 = 0 case this gives

dA,12 =
2c
H0

√
1+Ω0z1(2−Ω0 +Ω0z2)−

√
1+Ω0z2(2−Ω0 +Ω0z1)

Ω2
0(1+ z2)2(1+ z1)

(3.119)

(Refsdal, 1966). Note that |dA,12| �= |dA,21|, and that, as required, Eq. (3.119) reduces to Mattig’s
formula for z1 = 0. Eq. (3.119) plays an important role in gravitational lensing, where z1 and z2

are the redshifts of the lens and the source, respectively (see §6.6).

3.3 The Production and Survival of Particles

An important feature of the standard cosmology is that the temperature of the Universe was
arbitrarily high at the beginning of the Big Bang [see Eq. (3.81)] and has decreased continuously
as the Universe expanded to its present state. As we have seen in §3.1.5, the thermal history
of the Universe follows from a simple application of thermodynamics to a small patch of the
homogeneous and isotropic Universe. In this section we show that this thermal history, together
with particle, nuclear and atomic physics, allows a detailed prediction of the matter content of
the Universe at each epoch. The reason for this is simple: when the temperature of the Universe
was higher than the rest mass of a kind of charged particles, the photon energy is high enough
to create these particles and their antiparticles. This, in turn, could give rise to other kinds of
particles. For example, when the temperature of the Universe was higher than the rest mass
of an electron, i.e. kBT > mec2 ≈ 0.511MeV (corresponding to T ∼ 5.8×109 K), electrons and
positrons could be generated via pair production, γ+γ↔ e+e, and electronic neutrinos could be
produced via neutral current reactions, such as e+e ↔ νe +νe. When the density of the Universe
was sufficiently high, the creation and annihilation of (e,e) pairs, and the Compton scattering
between (e,e) and photons, could establish a thermal equilibrium among these particles, while
the neutrinos established such an equilibrium via their neutral current coupling to the electrons.
Consequently, the Universe was filled with a hot plasma that included γ , e, e, νe and νe, all in
thermal equilibrium at the same temperature.
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In order to maintain thermodynamic equilibrium the frequency of interactions among the var-
ious particle species involved needs to be sufficiently high. The interaction rate is Γ ≡ n〈vσ〉,
where n is the number density of particles, v is their relative velocity, and σ is the interaction
cross-section (which usually depends on v ). As the Universe expands and the temperature drops,
this rate in general decreases. When it becomes smaller than the expansion rate of the Universe,
given by the Hubble parameter, H(t), the particles ‘decouple’ from the photon fluid, and, as
long as the particles are stable, their comoving number density ‘freezes-out’ at its current value.
Except for possible particle species created out of thermal equilibrium (e.g. axions), and for par-
ticles that have been created more recently in high-energy processes, all elementary particles in
the present-day Universe are thermal relics that have decoupled from the photon fluid at some
time in the past.

In what follows we first present a brief outline of the chronology of the early Universe, and
then discuss the production and survival of particles during a number of important epochs. Since
the early Universe was dominated by relativistic particles, Eq. (3.81) can be used to relate tem-
perature T (or energy kBT ) to the cosmic time. As this section is concerned with high energy
physics, we will use the natural unit system in which the speed of light c, Boltzmann’s constant
kB, and Planck’s constant h̄ = hP/2π are all set to 1. In cgs units [c] = cms−1, [h̄] = g cm2 s−1,
and [kB] = g cm2 s−2 K−1. Therefore, making these constants dimensionless implies that

[energy] = [mass] = [temperature] = [time]−1 = [length]−1 , (3.120)

and all physical quantities can be expressed in one unit, usually mass or energy. However,
they can also be expressed in one of the other units using the following conversion fac-
tors: 1MeV = 1.602 × 10−6 erg = 1.161 × 1010 K = 1.783 × 10−27 g = 5.068 × 1010 cm−1 =
1.519× 1021 s−1. Whenever needed, the ‘missing’ powers of c, kB, and h̄ in equations can be
reinserted straightforwardly from a simple dimensional analysis.

3.3.1 The Chronology of the Hot Big Bang

Since our understanding of particle physics is only robust below energies of ∼ 1GeV (∼ 1013 K),
the physics of the very early Universe (t ∼< 10−6 s) is still very uncertain. In popular, although
speculative, extensions of the standard model for particle physics, this era is characterized by
a number of symmetry-breaking phase transitions. Particle physicists have developed a number
of models which suggest the existence of many exotic particles as a result of these symmetry
breakings, and it is a popular idea that the elusive dark matter consists of one or more of such
particle species. However, it should be kept in mind that the theories predicting the existence
of these exotic particles are not well established and that there is not yet any convincing, direct
experimental evidence for their existence.

For the purpose of the discussion here, the two most important events that (probably) took
place during this early period after the Big Bang are inflation and baryogenesis. Inflation is
a period of exponential expansion that resulted from a phase transition associated with some
unknown scalar field. Inflation is invoked to solve several important problems for the standard
Hot Big Bang cosmology, and is described in detail in §3.6. Baryogenesis is a mechanism that
is needed to explain the observed asymmetry between baryons and antibaryons: one does not
observe a significant abundance of antibaryons. If they were there, their continuous annihilation
with baryons would produce a much greater gamma-ray background than observed, unless they
are spatially segregated from the baryons, which is extremely contrived. Apparently, the Universe
has a non-zero baryon number. If baryon number is conserved, this asymmetry between baryons
and antibaryons must have originated at very early times through a process called baryogenesis.
The details of this process are still poorly understood, and will not be discussed in this book (see
Kolb & Turner, 1990).
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In what follows we give a brief overview of some of the most important events that took place
in the early Universe after it had cooled down to a temperature of ∼ 1013 K. At this point in time,
the temperature of the Universe was still higher than the binding energy of hadrons (baryons and
mesons). Quarks were not yet bound into hadronic states. Instead, the matter in the Universe was
in a form referred to as quark soup, which consists of quarks, leptons and photons.

• At T ∼ 3×1012 K (t ∼ 10−5 s), corresponding to an energy of 200–300MeV, the quark–hadron
phase transition occurs, confining quarks into hadrons. If the phase transition was strongly
first order, it may have induced significant inhomogeneities in the baryon-to-photon ratio, and
affected the later formation of elements, a topic discussed further in §3.4. Once the transition
was complete, the Universe was filled with a hot plasma consisting of three types of (rela-
tivistic) pions (π+, π−, π0), (non-relativistic) nucleons (protons, p, and neutrons, n), charged
leptons (e, e, μ , μ; the τ and τ have already annihilated), their associated neutrinos (νe, νe,
νμ , νμ ), and photons, all in thermal equilibrium. In addition, the Universe comprises several
decoupled species, such as the tau-neutrinos (ντ and ντ ) – their coupling has to be through
their reactions with τ and τ , and possible exotic particles that make up the (non-baryonic)
dark matter.

• At T ∼ 1012 K (t ∼ 10−4 s) the (π+,π−) pairs annihilate while the neutral pions π0 decay into
photons. From this point on the nucleons (and a small abundance of their antiparticles which
escaped annihilation) are the only hadronic species left. At around the same time, the muons
start to annihilate, and their number density becomes negligibly small as T drops to about
1011 K. At this time, νμ and νμ also decouple from the hot plasma, and expand freely with the
Universe.

• When T drops below 1011 K, the number of neutrons becomes smaller than that of protons by
a factor of about exp(−Δm/T ), where Δm≈ 1.3MeV is the mass difference between a neutron
and a proton. This asymmetry in the numbers of n and p continues to grow until the reaction
rate between neutrons and protons becomes negligible.

• At T ∼ 5× 109 K (t ∼ 4s), the annihilations of (e,e) pairs begins. As the number density of
(e,e) pairs drops, νe and νe decouple from the hot plasma. Since the (e,e) annihilations heat
the photons but not the decoupled neutrinos, the neutrinos expand freely with a temperature
that is lower than that of the photons. Because of the reduction in the number of (e,e) pairs
and the cooling of νe and νe, reactions such as n+νe ↔ p+e and n+e ↔ p+νe are no longer
effective. Consequently, the n/p ratio freezes out at a value of about exp(−Δm/T ) ∼ 1/10.
Note that this ratio does not change much due to beta decay of the neutrons, because the
half-time of the decay (about 10 minutes) is much longer than the age of the Universe at this
time.

• At T ∼ 109 K (t ∼ few minutes), nucleosynthesis starts, synthesizing protons and neutrons
to produce D, He and a few other elements. Since the temperature is still too high for the
formation of neutral atoms, all these elements are highly ionized. Consequently, the Universe
is now filled with freely expanding neutrinos (and possibly exotic particles) and a plasma of
electrons and highly ionized atoms (mainly protons and He++). However, as the temperature
continues to decrease, electrons start to combine with the ions to produce neutral atoms.

• At T ∼ 4000K (t ∼ 2× 105 yr) roughly 50% of the baryonic matter is in the form of neutral
atoms. This point in time is often called the time of recombination. Because of the resulting
drop in the number density of free electrons, the Universe suddenly becomes transparent to
photons. These photons are observed today as the cosmic microwave background. From this
point on, photons, neutrinos, H, He and other atoms all expand freely with the Universe. At
around the same time, the energy density in relativistic particles has become smaller than
that in the rest mass of non-relativistic matter, and the Universe enters the matter dominated
epoch.
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Once the processes involved are known from particle, nuclear and atomic physics, it is in
principle straightforward to calculate the matter content at different epochs summarized above.
A detailed treatment of such calculations is beyond the scope of this book, and can be found
in Börner (2003) and Kolb & Turner (1990), for example. In what follows, we present a
brief discussion about the basic principles involved and their applications to some important
examples.

3.3.2 Particles in Thermal Equilibrium

As discussed above, at any given epoch, some particles are in thermal equilibrium with the hot
plasma, some in free expansion with the Universe, and others are in transition between the two
states. The number density n, energy density ρ , and pressure P of a given particle species can
be written in terms of its distribution function f (x,p, t). Since the Universe is homogeneous and
isotropic f (x,p, t) = f (p, t), with p = |p|, so that

n(t) = 4π
∫

f (p, t) p2 dp , (3.121)

ρ(t) = 4π
∫

E(p) f (p, t) p2 dp , (3.122)

P(t) = 4π
∫

p2

3E(p)
f (p, t) p2 dp , (3.123)

where the energy E is related to the momentum p as E(p) = (p2 + m2)1/2. Eq. (3.123) fol-
lows from kinetic theory, according to which the pressure is related to momentum and velocity
as P = 1

3 n〈pv〉. Using the components of the four-momentum, we have v = pc2/E, so that
P = n〈p2c2/3E〉.

For a particle species in thermal equilibrium

f (p, t)d3p =
g

(2π)3

{
exp

[
E(p)−μ

T (t)

]
±1

}−1

d3p , (3.124)

where μ is the chemical potential of the species, and T (t) is its temperature at time t. The signa-
ture, ±, takes the positive sign for Fermi–Dirac species and the negative sign for Bose–Einstein
species. The factor 1/(2π)3 is due to Heisenberg’s uncertainty principle, which states that no
particle can be localized in a phase-space volume smaller than the fundamental element (2π h̄)3

(recall that we use h̄ = c = kB = 1), and g is the spin-degeneracy factor (neutrinos have g = 1,
photons and charged leptons have g = 2, and quarks have g = 6).

Substituting Eq. (3.124) in Eqs. (3.121)–(3.123) yields

neq =
g

2π2

∫ ∞

m

(E2 −m2)1/2EdE
exp[(E −μ)/T ]±1

; (3.125)

ρeq =
g

2π2

∫ ∞

m

(E2 −m2)1/2E2dE
exp[(E −μ)/T ]±1

; (3.126)

Peq =
g

6π2

∫ ∞

m

(E2 −m2)3/2dE
exp[(E −μ)/T ]±1

. (3.127)
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Let us consider two special cases. In the non-relativistic limit, i.e. when T � m, the number
density, the energy density and pressure are the same for both Bose–Einstein and Fermi–Dirac
species, and can be written in the following analytic forms:

neq = g

(
mT
2π

)3/2

e(μ−m)/T , (3.128)

ρeq = nm , Peq = nT . (3.129)

For a relativistic (T 	 m and E = p), non-degenerate (μ� T ) gas, the corresponding analytical
expressions are

neq =
{ [

ζ (3)/π2
]

gT 3 (Bose–Einstein)
(3/4)

[
ζ (3)/π2

]
gT 3 (Fermi–Dirac),

(3.130)

ρeq =
{ (

π2/30
)

gT 4 (Bose–Einstein)
(7/8)

(
π2/30

)
gT 4 (Fermi–Dirac).

(3.131)

Peq = ρeq/3 , (3.132)

where ζ (3) ≈ 1.2021... is the Riemann zeta function of 3.
In general, in order to use Eqs. (3.125)–(3.127) to calculate the density and pressure, one needs

to know the chemical potential μ . The principle for determining the chemical potential of a
species is that chemical potential is an additive quantity which is conserved during a ‘chem-
ical’ reaction (e.g. Landau & Lifshitz, 1959). Thus, if species ‘i’ takes part in a reaction like
i+ j ↔ k + l, then μi +μ j = μk +μl . The values of the chemical potentials therefore depend on
the various conservation laws under which the various reactions take place. For example, since
the number of photons is not a conserved quantity for a thermodynamic system, the chemical
potential of photons must be zero. This is consistent with the fact that photons at thermal equilib-
rium have the Planck distribution. It then follows that the chemical potential for a particle is the
negative of that for its antiparticle (because particle–antiparticle pairs can be annihilated to pho-
tons). Put differently, the difference in the number density of particles and antiparticles depends
only on the chemical potential. Similar to electric charge, particle reactions are thought to gen-
erally conserve baryon number (which explains the long lifetime of the proton, of > 1034 years)
and lepton number. Since the number densities of baryons and leptons are found to be (or, in the
case of leptons, believed to be) much smaller than the number density of photons, the chemical
potential of all species may be set to zero to good approximation in computing the mean energy
density and pressure in the early Universe.

There is one caveat, however. Since the chemical potential of a particle is the negative of that of
its antiparticle, it follows from Eq. (3.121) that, for fermions, their difference in number densities
is given by

n− n̄ =
gT 3

6π2

[
π2
(μ

T

)
+
(μ

T

)3
]

. (3.133)

When the Universe cools to temperatures below the rest mass of the particles, all particle–
antiparticle pairs will be annihilated5 leaving only this small excess, which is zero when μ = 0.
Therefore, the fact that we do have non-zero baryon and lepton number densities in the Uni-
verse today implies that μ cannot have been strictly zero at all times. In the early Universe, some
physics must have occurred that did not conserve baryon number or lepton number, and that
resulted in the present-day number densities of protons and electrons. The actual physics of this

5 In principle, because of the expansion of the Universe, tiny fractions of particles and antiparticles may survive, but
their number densities are negligibly small.
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baryon- and lepton-genesis are poorly understood, and will not be discussed further in this book.
Detailed descriptions can be found in Kolb & Turner (1990).

With all chemical potentials set to zero, it is evident from Eqs. (3.125) and (3.130) that the
number density of non-relativistic particles is suppressed exponentially with respect to that of
relativistic species. This reflects the coupling to the photon fluid. When T 	 m the photons
have sufficient energy to create a thermal background number density of particle–antiparticle
pairs. However, when T � m only an exponential tail of the photon distribution function has
sufficient energy for pair creation, causing a similar suppression of their number density. Conse-
quently, particles in thermal equilibrium with the photon gas can only contribute significantly to
the energy density and pressure when they are relativistic. Thus, to good accuracy, we can write
the total energy density, number density and pressure of the Universe, in the radiation dominated
era, as

ρ(T ) =
π2

30
g∗T 4 , n(T ) =

ζ (3)
π2 g∗,nT 3 , P(T ) = ρ(T )/3 , (3.134)

with

g∗ = ∑
i∈Boson

gi

(
Ti

T

)4

+
7
8 ∑

i∈Fermion

gi

(
Ti

T

)4

, (3.135)

g∗,n = ∑
i∈Boson

gi

(
Ti

T

)3

+
3
4 ∑

i∈Fermion

gi

(
Ti

T

)3

. (3.136)

Note that we have included the possibility that the temperature of a species Ti may be different
from that of the radiation background T . The values of g∗ and g∗,n at a given time can be calcu-
lated once the existing relativistic species are identified. For example, at T � 1MeV, the only
relativistic species are photons at temperature T and three species of neutrinos and their antipar-
ticles (all assumed to be massless) at temperature Tν = (4/11)1/3T (as we will see in §3.3.3).
Therefore g∗ = gγ +(7/8)(3×2×gν)(Tν/T )4 ≈ 3.36. At higher T (earlier times) more species
are relativistic, so that the degeneracy factors are larger. Fig. 3.4 shows g∗ as a function of T
obtained from the standard model of particle physics. It increases from 3.36 at the present-day
temperature of 2.73K to 106.75 at T ∼> 300GeV.

3.3.3 Entropy

An important thermodynamic quantity for describing the early Universe is the entropy S =
S(V,T ). If we continue to ignore the chemical potential, the second law of thermodynamics,
as applied to a comoving volume V ∝ a3(t), states that

dS(V,T ) =
1
T
{d [ρ(T )V ]+P(T )dV} , (3.137)

where ρ is the equilibrium energy density of the gas.
Alternatively, we can write the differential of S in terms of its general form

dS(V,T ) =
∂S
∂V

dV +
∂S
∂T

dT . (3.138)

Using Eq. (3.137) to identify the two partial derivatives, the integrability condition,

∂ 2S
∂T∂V

=
∂ 2S
∂V∂T

, (3.139)

yields
dP
dT

=
ρ(T )+P(T )

T
. (3.140)
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Fig. 3.4. The statistical weights g∗ and g∗,s as functions of temperature, T , in the standard SU(3)×SU(2)×
U(1) model of particle physics.

Inserting this in Eq. (3.137) we obtain

dS(V,T ) =
1
T

d{[ρ(T )+P(T )]V}− V
T 2 [ρ(T )+P(T )]dT , (3.141)

which may be integrated to show that, up to an additive constant, the entropy density, s(T ) ≡
S(V,T )/V , is given by

s(T ) =
ρ(T )+P(T )

T
. (3.142)

It is easy to show with the use of Eqs. (3.35) and (3.140) that

dS
da
∝

d(sa3)
da

= 0 , (3.143)

which is the ‘entropy conservation law’, owing to the adiabaticity of the universal expansion (see
§3.1.5).

Using Eqs. (3.131) and (3.132) the entropy density for non-degenerate, relativistic particles in
thermal equilibrium is

seq(T ) =
2π2

45
gT 3 . (3.144)

The entropy density of non-relativistic particles in thermal equilibrium with the photon fluid can
be expressed in terms of the entropy density of photons, sγ(T ), as

seq(T )
sγ(T )

=
3
4
ρ(T )
ργ(T )

(
1+

P
ρ

)
. (3.145)



3.3 The Production and Survival of Particles 131

Since ρ � ργ ,6 the contribution of non-relativistic particles to the total entropy density is neg-
ligible. To good accuracy, therefore, the total entropy density of the Universe is obtained by
summing over all relativistic species:

s(T ) =
2π2

45
g∗,sT 3 (3.146)

with

g∗,s = ∑
i∈Boson

gi

(
Ti

T

)3

+
7
8 ∑

i∈Fermion

gi

(
Ti

T

)3

. (3.147)

Combining Eq. (3.146) with the entropy conservation law we see that g∗,sT 3a3 is a conserved
quantity, so that

g1/3
∗,s (T )T ∝ a−1 . (3.148)

Therefore, as long as g∗,s remains constant, T ∝ a−1, consistent with the thermodynamic deriva-
tion in §3.1.5. However, as the Universe cools, every now and then particle species become
non-relativistic and stop contributing (significantly) to the entropy density of the Universe. Their
entropy is transferred to the remaining relativistic particle species, causing T to decrease some-
what slower. An interesting application of this is the decoupling of light neutrinos. Although
neutrinos do not couple directly to the photons, they can maintain thermal equilibrium via weak
reactions such as e + e ↔ νe + νe, etc. At a freeze-out temperature of Tf ∼ 1MeV the interac-
tion rate for these reactions drops below the expansion rate of the Universe, and the neutrinos
decouple from the photon fluid. From this point on, their temperature will decrease strictly as
Tν ∝ a−1, while the photon temperature, Tγ , obeys Eq. (3.148). Since the neutrinos are relativis-
tic both before and after decoupling, their freeze-out leaves g∗,s invariant. Consequently, despite
being decoupled, the temperature of the neutrinos remains exactly the same as that of the pho-
tons. This changes a little time later, when the temperature has dropped to T ∼ 0.51MeV and
electrons start to annihilate and freeze-out from the photon fluid. The entropy released in this
process is given to the photons, but not to the decoupled neutrinos (who conserve their entropy
density separately). Consequently, after electron annihilation, Tγ > Tν . Their ratio follows from
the entropy conservation law, according to

Tγ ,after

Tν,after
=

Tγ ,after

Tγ ,before
=
[

g∗,s(Tbefore)
g∗,s(Tafter)

]1/3

, (3.149)

where we have used that Tν,after = Tν,before = Tγ ,before. Before electron annihilation, the relativistic
species in the Universe are photons, electrons, positrons, and three flavors of neutrinos with
their antiparticles, all at the same temperature. Therefore, g∗,s(Tbefore) = gγ + (7/8)(ge + ge +
3gν + 3gν) = 2 + (7/8)(2 + 2 + 3 + 3) = 43/4. After electron annihilation, g∗,s(Tafter) = gγ +
(7/8)(3gν +3gν)(Tν,after/Tγ ,after)3. Substitution of these degeneracy parameters into Eq. (3.149)
yields

Tν,after =
(

4
11

)1/3

Tγ ,after . (3.150)

It is thus expected that the present-day Universe contains a relic neutrino background with a
temperature of Tν,0 � 0.71×2.73K = 1.95K. This difference in the temperature of the two rel-
ativistic species (neutrinos and photons) is also apparent from Fig. 3.4. At T ∼> 0.5MeV, g∗,s(T )
is identical to g∗, indicating that all relativistic particle species have a common temperature. At

6 The rest-mass density of particles should not be included as part of the equilibrium energy density of the gas, because
there is no creation or annihilation of particles.
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lower temperatures, however, electron annihilation has increased Tγ with respect to Tν , causing
an offset of g∗,s with respect to g∗.

3.3.4 Distribution Functions of Decoupled Particle Species

In §3.3.2 we discussed the distribution functions of particles in thermal equilibrium. We now
turn our attention to species that have dropped out of thermal equilibrium, and have decoupled
from the hot plasma. If particle species i decoupled at a time tf, where the subscript ‘f’ stands
for ‘freeze-out’, its temperature is approximately equal to the photon temperature at that time,
i.e. T ≈ Tf ≡ Tγ(tf). After decoupling, the mean interaction rate of the particle drops below the
expansion rate, and the particle basically moves on a geodesic. As we have seen in §3.1.4, the
momentum of the particle then scales as p ∝ a−1, which is valid for both relativistic and non-
relativistic species. Since the relative momenta are conserved, the actual distribution function at
t > tf can be written as

f (p, t) = f

(
p

a(t)
a(tf)

, tf

)
. (3.151)

In other words, the form of the distribution function is ‘frozen-in’ the moment the particles
decouple from the hot plasma.

If a species is still relativistic after decoupling, we have E = p, so that

f (p, t)d3p =
g

(2π)3

{
exp

[
pa(t)
Tfa(tf)

]
±1

}−1

d3p . (3.152)

Thus, the distribution function of a decoupled, relativistic species is self-similar to that of a
relativistic species in thermal equilibrium, but with a temperature

T = Tf
a(tf)
a(t)

. (3.153)

Note that this differs from the temperature scaling of species still in thermal equilibrium, which
is instead given by Eq. (3.148). As we discussed in §3.3.3 this explains why the present-day
temperature of the neutrino background is lower than that of the CMB.

If the species is already non-relativistic when it decouples, its energy is given by E = m +
p2/2m. Since for non-relativistic species we can ignore the ±1 term, the distribution function is
given by

f (p, t)d3p =
g

(2π)3 exp

[
−m

Tf

]
exp

[
− p2

2mT

]
d3p (3.154)

with

T = Tf

[
a(tf)
a(t)

]2

. (3.155)

Note that Eq. (3.154) is a Maxwell–Boltzmann distribution, and that the temperature scales as
expected from kinetic theory (see §3.1.5).

As is immediately evident from substituting Eq. (3.151) in Eq. (3.121), the number density of
decoupled particles (both relativistic and non-relativistic) is given by

n(t) =
[

a(tf)
a(t)

]3

neq(tf) , (3.156)
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so that n∝ a−3, as expected. For relativistic species, we can contrast this number density against
that of the photons:

n(t)
nγ(t)

=
geff

2

(
Tf

T

)3 [a(tf)
a(t)

]3

=
geff

2
g∗,s(T )
g∗,s(Tf)

(3.157)

with geff = g for bosons and geff = (3/4)g for fermions, where we have used that the pho-
ton temperature, T , scales as in Eq. (3.148). This illustrates that the number density of any
relic background of relativistic particles is comparable to the number density of photons. Note
that Eq. (3.156) remains valid even if the particles become non-relativistic some time after
decoupling.

3.3.5 The Freeze-Out of Stable Particles

Having discussed the distribution functions of particles before and after decoupling, we now turn
to discuss the actual process by which a species decouples (‘freezes out’) from the hot plasma. We
first consider cases where the particles involved are stable (i.e. their half-time of decay is much
longer than the age of the Universe), and derive their relic abundances. We distinguish between
‘hot’ relics, which correspond to species that decouple in the relativistic regime, and ‘cold’ relics,
whose decoupling takes place when the particles have already become non-relativistic.

The evolution of the particle number density is governed by the Boltzmann equation, which,
for a given species ‘i’, can be written as

d fi

dt
= Ci[ f ] , (3.158)

where Ci[ f ] (called the collisional term) describes the change of the distribution function of
species ‘i’ due to the interactions with other species. Since the Universe is homogeneous and
isotropic, fi depends only on the cosmic time, t, and the value of the momentum, p ∝ a−1(t). It
then follows from Eq. (3.158) that

∂ fi

∂ t
−H(t)p

∂ fi

∂ p
= Ci[ f ] , (3.159)

where H = ȧ/a is the Hubble parameter. Integrating both sides of Eq. (3.159) over momentum
space, and using the definition of ni, we obtain

dni

dt
+3H(t)ni =

∫
Ci[ f ]d3p . (3.160)

Here the second term on the left-hand side (often called the Hubble drag term) describes the
dilution of the number density due to the expansion of the Universe, while the right-hand side
describes the change in number density due to interactions. Note that in the limit Ci[ f ] → 0 the
number density scales as ni ∝ a−3, as expected.

In general, the collisional term Ci[ f ] depends on fi and on the distribution functions of all other
species that interact with ‘i’. If the cross-sections of all these interactions are known (from rele-
vant physics), we can obtain the functional form of Ci[ f ]. Species that do not have any channel
to interact with ‘i’ collisionally can still affect the distribution function of ‘i’ via their contribu-
tions to the general expansion of the Universe. Thus, the evolution of the matter content of the
Universe is described by a coupled set of Boltzmann equations for all important species in the
Universe, which can in principle be solved once the initial conditions are given.

For illustration, consider a case in which species ‘i’ takes part only in the following two-body
interactions:

i+ j ↔ a+b . (3.161)
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If the production and destruction rates of ‘i’ due to this reaction are α(T ) and β (T ), respectively,
then Eq. (3.160) can be written as

dni

d t
+3H(t)ni = α(T )nanb −β (T )nin j . (3.162)

The meaning of this equation is clear: particles of species ‘i’ are destroyed due to their reactions
with species ‘ j’, and are created due to the reactions between species ‘a’ and ‘b’. A similar
equation can be written for ‘ j’. Subtracting these two equations gives (ni − n j)a3 = constant.
Now suppose that ‘a’ and ‘b’ are in thermal equilibrium with the general hot plasma, so that their
distribution functions are given by Eq. (3.124) with Ta = Tb = T , while ‘i’ and ‘ j’ are coupled to
the hot plasma through their reactions with ‘a’ and ‘b’. We define an equilibrium density for ‘i’,
ni,eq, and an equilibrium density for ‘ j’, n j,eq, so that

β (T )ni,eqn j,eq = α(T )nanb . (3.163)

Thus defined, ni,eq and n j,eq are just the number densities of ‘i’ and ‘ j’ under the assumption that
they are in thermal equilibrium with the hot plasma. Consider the case in which ‘ j’ and ‘b’ are
the antiparticles of ‘i’ and ‘a’, respectively. As long as the chemical potential of ‘i’ is small, the
number densities of ‘i’ and ‘ j’ will be virtually identical [see Eq. (3.133)]. In what follows we
therefore set ni = n j, but note that the discussion is easily extended to cases where ni �= n j by

using that (ni−n j)a3 = constant. With these definitions, we can write the rate equation (3.162) as

dni

dt
+3H(t)ni = β (T )(n2

i,eq −n2
i ) . (3.164)

Since the entropy density s is proportional to a−3 (see §3.3.3), it is convenient to define both ni

and ni,eq in units of s:

Yi ≡ ni

s
, Yi,eq ≡ ni,eq

s
. (3.165)

Using ds/dt = −3Hs, Eq. (3.164) becomes

dYi

dt
= β (T )s(T )(Y 2

i,eq −Y 2
i ) . (3.166)

If we now introduce the dimensionless variable, x ≡ mi/T , and use the fact that, in the radiation
dominated era, t ∝ a2 ∝ T−2 (or t = tmx2, where tm is the cosmic time when x = 1), the rate
equation can be written in the following form:

x
Yi,eq

dYi

dx
= − Γ(x)

H(x)

[(
Yi

Yi,eq

)2

−1

]
, (3.167)

where Γ(x) ≡ ni,eq(x)β (x) and H = (2t)−1 = (2tmx2)−1 (which follows from a ∝ t1/2).
Given a particle species’ rest mass mi and its interaction cross-section β (T ) = 〈σv〉(T ), ther-

mally averaged over all reactions in which ‘i’ partakes, the rate equation (3.167) can be solved
for Yi(x) numerically. The initial conditions follow from the fact that for x � 1 the solution is
given by Yi = Yi,eq. Fig. 3.5 shows the solutions of Yi thus obtained for different values of β [here
assumed to be constant, β (T ) = β0]. A larger interaction cross-section (larger β0) implies that
the species can maintain thermal equilibrium for a longer time. As long as β0 is such that decou-
pling occurs in the relativistic regime (x � 1), the final freeze-out abundance will be comparable
to that of the photons [see Eq. (3.157)], and depend very little on the exact value of β0. For suffi-
ciently large β0, the particles remain in thermal equilibrium well into the non-relativistic regime
(x 	 1), causing an exponential suppression of their final freeze-out abundance. In this regime
the relic abundances are extremely sensitive to β , and thus to the exact epoch of decoupling.
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Fig. 3.5. The solution of Eq. (3.167) assuming a constant annihilation cross-section; β = β0 (dashed
curves). The solid curve shows the equilibrium abundance.

In what follows we present a simple, but relatively accurate, estimate of the relic abundances of
various particle species. Rather than solving Eq. (3.167), which needs to be done numerically or
by other approximate methods, we make the assumption that freeze-out occurs at a temperature
Tf, corresponding to xf, when Γ/H = 1, and that the relic abundance is simply given by Yi(x →
∞) = Yi,eq(xf). Using Eqs. (3.128) and (3.130) for ni,eq, and Eq. (3.146) for s, we have

Yi,eq(x) =
{

(45ζ (3)/2π4)[gi,eff/g∗,s(x)] (x � 1)
(90/(2π)7/2)[gi/g∗,s(x)]x3/2e−x (x 	 1),

(3.168)

where gi,eff = gi for bosons and gi,eff = (3/4)gi for fermions. The freeze-out temperature follows
from Γ(xf) = ni,eq(xf)β (xf) = H(xf). From Eq. (3.61) we have that in the radiation dominated era
H2(t) = (8πG/3)ρr(t). Substitution of Eq. (3.134) then gives

H(x) =
(mimPl

x

)2
√

4π3g∗(x)
45

, (3.169)

where mPl = G−1/2 is the Planck mass in the natural units used here. Our definition of freeze-out
then yields

xf =

√
45
π7

ζ (3)
2

gi,eff√
g∗,s(xf)

mPl miβ (xf) (xf � 1) ;

x−1/2
f exf =

√
45

32π6

gi√
g∗,s(xf)

mPl miβ (xf) (xf 	 1) . (3.170)

Note that since xf appears on both sides of these equations, they typically need to be solved
numerically.

Let us first consider the case of hot relics that have remained relativistic to the present day, i.e.
their rest mass mi � T0 = 2.4×10−4 eV. Its energy density follows from Eq. (3.131), which can
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be written in terms of the photon energy density, as is done in Eq. (3.157) for the number density.
Expressing this energy density in terms of the critical density for closure, we obtain

Ωi,0h2 =
gi,eff

2

[
g∗,s(x)
g∗,s(xf)

]4/3

Ωγ ,0h2 . (3.171)

Since g∗,s(x) ≤ g∗,s(xf), and since Ωγ ,0h2 = 2.5×10−5 [see Eq. (3.65)], we immediately see that
a relic particle that is still relativistic today (e.g. zero mass neutrinos) contributes negligibly to
the total energy density of the Universe at the present time.

Next we consider the case of weakly interacting massive particles, usually called WIMPs.
Examples of WIMPs are massive neutrinos and stable, light supersymmetric particles. Note that
WIMPs can be either hot or cold, depending on whether xf � 1 or xf 	 1. The present-day
mass density of massive relics is ρi,0 = miYi,eq(xf)s0, with s0 the present-day value of the entropy
density. After electron annihilation, g∗,s = 2 +(7/8)× 3× 2× 1× (4/11) = 3.91. Substituting
this in Eq. (3.146) and using T0 = 2.73K gives s0 = 2,906cm−3. For hot relics, we then obtain

Ωi,0h2 ≈ 7.64×10−2
[

gi,eff

g∗,s(xf)

]( mi

eV

)
. (3.172)

This abundance depends only very weakly on the exact moment of freeze-out, xf, reflecting the
fact that Yi(x) is virtually constant for x � 1. Since Ω0h2 ∼< 1, we obtain a cosmological bound
to the mass of hot relics,

mi ∼< 13.1eV

[
g∗,s(xf)

gi,eff

]
. (3.173)

For massive neutrinos, g∗,s(xf) = 43/4 and gi,eff = 6/4 (assuming gi = 2 to account for
antiparticles), the limit is mi ∼< 93.8eV.

Finally we examine cold WIMPs, which are considered to be candidates for the cold dark
matter. Solving Eq. (3.170) for e−xf , and substituting the result in Eq. (3.168) gives

Yi,eq(x) =

√
45
π

xf√
g∗,s(xf)

[mpl miβ (xf)]−1 . (3.174)

Using the present-day entropy density s0 we obtain a density parameter for cold relics:

Ωi,0h2 ≈ 0.86
xf√

g∗,s(xf)

[
β (xf)

1010 GeV−2

]−1

. (3.175)

Contrary to the case of hot relics, Ωi,0h2 now depends strongly on the interaction cross-section,
owing to the exponential decrease of Yi,eq(x) in the non-relativistic regime. As an example, con-
sider a (hypothetical) stable neutrino species with mi 	 1MeV but less than mZ ∼ 100GeV (the
mass of the Z boson). Because of its large mass, xf 	 1 and its relic abundance follows from
Eq. (3.175). For neutrinos, the annihilation rate can be approximately written as

β (x) ≈ c2

2π
G2

Fm2
i x−b , (3.176)

with GF the Fermi coupling constant, and c2 a constant depending on the type of neutrinos
(‘Dirac’ or ‘Majorana’). The value of b is determined by the details of the annihilation processes
involved, but is typically of the order unity. Substituting Eq. (3.176) in Eq. (3.175) yields

Ωi,0h2 ≈ 3.95
c2

xb+1
f√

g∗,s(xf)

[ mi

GeV

]−2
. (3.177)
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For Dirac-type neutrinos c2 ∼ 5 and b = 0 (Kolb & Turner, 1990). Taking gi = 2 (to also account
for the antiparticles) and g∗,s ∼ 60 at around the time of freeze-out, and solving Eq. (3.170) for
xf gives

xf ≈ 17.8+3ln(mi/GeV) , (3.178)

so that

Ωi,0h2 ≈ 1.82
( mi

GeV

)−2 [
1+0.17ln

( mi

GeV

)]
. (3.179)

The cosmological bound, Ω0h2 ∼< 1, to the mass of massive neutrinos is thus

mi ∼> 1.4GeV . (3.180)

Note that Ωi,0 decreases with increasing particle mass. This reflects the fact that the annihilation
cross-section in Eq. (3.176) increases as m2

i , so that more massive species can stay in thermal
equilibrium longer, resulting in a lower freeze-out abundance. The cross-section will not continue
to grow as m2

i indefinitely, however. For particles with mi 	 mZ � 100GeV the cross-section
actually decreases with particle mass as m−2

i . Using the same argument as above and inserting
the appropriate numbers, we find

Ωi,0h2 ≈
( mi

3TeV

)2
. (3.181)

Therefore, the cosmological bound to the mass of such species is

mi ∼< 3TeV . (3.182)

Fig. 3.6 summarizes the relation between the WIMP mass (assumed to interact as a Dirac-type
neutrino) and its relic contribution to the cosmological density parameter. At mwimp ∼< MeV the
WIMPs produce ‘hot’ relics for which Ωwimph2 ∝ mwimp.7 At particle masses above ∼ 1MeV,
decoupling occurs in the non-relativistic regime, resulting in ‘cold’ relics for which Ωwimph2 ∝
m−2

wimp. Finally, for particle masses above that of the Z boson (mwimp ∼> 100GeV) the scaling

changes to Ωwimph2 ∝m2
wimp. Combining these results with observational constraints on the cos-

mological density parameter (0.1 ∼< Ω0h2 ∼< 1.0), we find that there are only three narrow mass
ranges of WIMPs allowed, at ∼ 30eV, ∼ 2GeV and ∼ 2TeV (see Fig. 3.6). Note, however, that
these constraints are only valid under the assumption that the WIMPs have the same interaction
cross-sections as neutrinos. Since the nature of the dark matter particles is still unknown, there are
large uncertainties regarding the possible interaction cross-sections. Consequently, the observa-
tional constraints on Ω0h2 currently only constrain the combination of interaction cross-section
and WIMP mass, and large ranges of WIMP masses are still allowed.

3.3.6 Decaying Particles

So far we have discussed the freeze-out of stable particles (those with a lifetime much larger
than the age of the Universe) and their cosmological consequences. For unstable particles, the
situation is different. In particular, if massive particles decay into photons and other relativistic
particles, they will release energy into the Universe, and depending on how effectively this energy
is thermalized, the decay may produce a radiation background, increasing the entropy of the
Universe. Consider a heavy particle, ‘h’, with mass mh and with a mean lifetime τh, which decays

7 When their mass is this low, one normally would not speak of WIMPs, but of weakly interacting particles instead. For
brevity, we also refer to these particles as WIMPs in Fig. 3.6.
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Fig. 3.6. Cosmological constraints on the mass of weakly interactive dark matter particles under the
assumption that they interact as a Dirac-type neutrino. The solid curve shows the predicted cosmologi-
cal density parameter of the WIMPs as a function of WIMP mass, while the shaded area roughly brackets
the observed range of the cosmological density parameter. The mass ranges in which the particles make up
‘hot’ and ‘cold’ dark matter are indicated.

into light particles while it is non-relativistic. The number of decay events per proper volume at
any time t is nh(t)/τh, with nh(t) given by

dnh

dt
+3H(t)nh = α(T )nanb −β (T )nhn j −nh/τh , (3.183)

where, as an example, we assume that ‘h’ takes part in the reaction h + j ↔ a + b in addition to
the decay. Without implicitly solving Eq. (3.183), we can directly infer the evolution of nh(t) at
two extremes. At early time when the reaction rate (∼ βn j) is higher than both the decay rate
(1/τh) and the expansion rate (H), the species ‘h’ has the equilibrium abundance, and basically
behaves as stable particles. At later times, when the right-hand side of Eq. (3.183) is dominated
by decay, it is easy to show that

nh(t) = nh(tD)
[

a(t)
a(tD)

]−3

exp(−t/τh) , (3.184)

where tD is the time when the decay becomes more important than other reactions. If the rest mass
of the decaying particles is thermalized, then the entropy density per unit comoving volume (see
§3.1.5) increases with time as

dS = −d
(
nhmha3

)
T

=
ρha3

T
dt
τh

, (3.185)

where ρh ≡ mhnh. Using Eqs. (3.134) and (3.146), we have

dS
S

=
3
4

g∗
g∗,s

ρh

ρr

dt
τh

, (3.186)
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where ρr is the total energy density in relativistic particles. The entropy of the Universe can
therefore be increased significantly if ρh(τh)∼> ρr(τh), i.e. if the Universe is dominated by species
‘h’ at the time of decay. Since ρh ∝ a−3 while ρr ∝ a−4, we can define a time of equality for
species ‘h’ by ρr(teq,h) = ρh(teq,h), and express the relative increase in ρr due to the decay of ‘h’
in terms of the ratio of teq,h to the decay time τh:

Δρr

ρr
=
ρh(τh)
ρr(τh)

=
a(τh)

a(teq,h)
=
(
τh

teq,h

)2/3

. (3.187)

Therefore, any species with a decay time teq,h ∼< τh ∼< t0 can have caused a significant increase
of ρr. Such an increase can have profound impacts on the evolution of the Universe. If it occurs
before radiation–matter equality it may cause a delay in the time teq when the Universe eventually
becomes dominated by matter. Since perturbations cannot grow before the Universe becomes
matter dominated, as we will see in the next chapter, such a particle decay can have a significant
impact on the development of large-scale structure. An increase in ρr also causes the Universe
to expand faster in the period τh ∼< t ∼< teq, affecting the production of other particle species
during that era. For example, as we will see in the next section, the abundance of helium can be
significantly affected if the decay occurs before primordial nucleosynthesis.

If the decay product contains photons, there are additional stringent limits on the mass and
lifetime of the decaying particle. If the lifetime were comparable to the present age of the Uni-
verse, we would observe a strong radiation background in X-ray and gamma-ray produced by
the decay. The lack of such background requires that either τh 	 t0 (i.e. the particle is almost
stable) or that the decay occurs at a time when the Universe is still opaque to high-energy pho-
tons (so that they can be down-graded by scattering with matter). Another stringent constraint
comes from the fact that the observed CMB has a blackbody spectrum to a very high degree of
accuracy. This requires the decay occur at a time when high-energy photons can be effectively
thermalized (see §3.5).

3.4 Primordial Nucleosynthesis

We all know that the Universe contains not only hydrogen (whose nuclei are single protons) but
also heavier elements like helium, lithium, etc. An important question is therefore how these
heavier elements were synthesized. Since nuclear reactions are known to be taking place in
stars – for example, the luminosity of the Sun is powered mainly by the burning of hydrogen
into helium – one possibility is that all heavier elements are synthesized in stars. However, the
observed mass fraction of helium is roughly a constant everywhere in the Universe, suggesting
that most of the helium is in fact primordial. In this section we examine how nucleosynthesis
proceeds in the early Universe.

3.4.1 Initial Conditions

All nuclei are built up of protons and neutrons. Before we explore the nuclear reactions that syn-
thesize deuterium, helium, lithium, etc., we therefore examine the abundances of their building
blocks. Protons and neutrons have a very comparable rest mass of ∼ 940MeV, which implies that
they become non-relativistic at very early times (t � 10−6 s, T � 1013 K). Down to a temperature
of ∼ 0.8MeV they maintain thermal equilibrium through weak interactions like

p+ e ↔ n+νe , n+ e ↔ p+νe . (3.188)
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In thermal equilibrium, their number densities follow from Eq. (3.128):

nn,p = 2

(
mn,pT

2π

)3/2

exp

[
−mn,p −μn,p

T

]
, (3.189)

where we have used that both protons and neutrons have two helicity states (gn = gp = 2). Writing
the mass difference as Q ≡ mn−mp = 1.294MeV, and using that mn/mp � 1, we obtain the ratio
between the number densities of protons and neutrons in thermal equilibrium:

nn

np
= exp

(
−Q

T
+
μn −μp

T

)
≈ exp

(
−Q

T

)
, (3.190)

where μn −μp = μe −μν ≈ 0 (see §3.3). When T 	 1010 K the reactions (3.188) go equally fast
in both directions and there are as many protons as neutrons. When the temperature decreases
towards ∼ 1MeV, however, the number density of neutrons starts to drop with respect to that of
protons, because neutron is slightly more massive. If thermal equilibrium were to be maintained,
the ratio would continue to decrease to very small values. However, as we have seen in §3.3.3,
at about the same temperature of ∼ 1MeV, neutrinos start to decouple. Therefore, the rate of
the weak reactions (3.188) is no longer fast enough to establish thermal equilibrium against the
expansion rate of the Universe, and the ratio nn/np will eventually ‘freeze out’ at a value of
∼ exp(−1.294/0.8) ∼ 0.2. However, neutrons are unstable to beta decay,

n → p+ e+νe , (3.191)

so that even after freeze-out the neutron-to-proton ratio continuous to decrease. If we define the
neutron abundance as

Xn ≡ nn

nn +np
, (3.192)

then it evolves due to the neutron decay as

Xn ∝ exp

[
− t
τn

]
, (3.193)

where τn = (887± 2) s is the mean lifetime of neutrons. The main reason that the present-day
Universe contains a large abundance of neutrons is that, shortly before the Universe reaches
an age t = τn, most neutrons have already ended up in helium nuclei (which stabilizes them
against beta decay due to Pauli’s exclusion principle) through the process of nucleosynthesis to
be described below.

3.4.2 Nuclear Reactions

Nuclei can form in abundant amounts as soon as the temperature of the Universe has cooled down
to temperatures corresponding to their binding energy, and the number densities of protons and
neutrons are sufficiently high. For a (non-relativistic) species with mass number A and charge
number Z [such a species will be called A(Z), and contains Z protons and A−Z neutrons], the
equilibrium number density can be obtained from Eq. (3.128):

nA = gA

(
mAT
2π

)3/2

exp

(
−mA −μA

T

)
. (3.194)

The chemical potential μA is related to those of protons and neutrons as

μA = Zμp +(A−Z)μn , (3.195)
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which allows us to rewrite Eq. (3.194) as

nA = gA

(
mAT
2π

)3/2

exp
(
−m

T

)[
exp
(μp

T

)]Z [
exp
(μn

T

)](A−Z)
. (3.196)

Writing exp(μp/T ) and exp(μn/T ) in terms of the proton and neutron mass densities given by
Eq. (3.189), respectively, and defining the nucleon mass mN ≡ mA/A ≈ mn ≈ mp, we obtain

nA =
gAA3/2

2A nZ
p nA−Z

n

(
mNT
2π

)3(1−A)/2

exp

(
BA

T

)
, (3.197)

where

BA ≡ Zmp +(A−Z)mn −mA (3.198)

is the binding energy of the species A(Z). Next we define the ‘mass fraction’ or ‘abundance’ of
nucleus A as

XA ≡ AnA

nb
. (3.199)

Here nb ≡ nn + np +∑i AinA,i is the number density of baryons in the Universe, with the sum-
mation over all nuclear species so that ∑i XA,i = 1. Substituting Eq. (3.197) in Eq. (3.199) we
obtain

XA =
gA

2
A5/2

[
4ζ (3)√

2π

]A−1

XZ
p XA−Z

n ηA−1
(mN

T

)3(1−A)/2
exp

(
BA

T

)
, (3.200)

where η ≡ nb/nγ is the present-day baryon-to-photon ratio. Since nγ = [2ζ (3)/π2]T 3 [see
Eq. (3.130)], and T0 = 2.73K, we have

η ≡ nb/nγ ≈ 2.72×10−8Ωb,0h2 , (3.201)

where Ωb,0 is the present-day baryon density in terms of the critical density for closure.
Eq. (3.200) reveals that species A(Z), with A > 1, can only be produced in appreciable amounts
once the temperature has dropped to a value TA given by

TA ∼ |BA|
(A−1)

[|lnη |+ 3
2 ln(mN/T )

] . (3.202)

The binding energies of the lightest nuclei, such as deuterium and helium, are all of the order of
a few MeV, corresponding to a temperatures of a few ×1010 K. However, because of the small
number of baryons per photon (10−10 ∼< η ∼< 10−9), or, in other words, the high entropy per
baryon, their synthesis has to wait until the Universe has cooled down to temperatures of the
order of (1 → 3)×109 K.

At such low temperatures, however, the number densities of protons and neutrons are already
much too low to form heavy elements by direct many-body reactions, such as 2n+2p → 4He.
Therefore, nucleosynthesis must proceed through a chain of two-body reactions. The dominant
reactions in this chain are:

p(n,γ)D (3.203)

D(n,γ)3H, D(D,p)3H (3.204)

D(p,γ)3He, D(D,n)3He, 3H(p,n)3He, 3H( ,eνe)3He (3.205)
3H(p,γ)4He, 3H(D,n)4He, 3He(n,γ)4He, 3He(D,p)4He, (3.206)

23He( ,2p)4He, 7Li(p, )2 4He (3.207)
4He(3H,γ)7Li, 4He(3He,γ)7Be, 7Be(e,νe)7Li . (3.208)
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Here the notation X (a,b)Y indicates a reaction of the form X + a → Y + b. Since the cross-
sections for almost all these reactions are accurately known, the reaction network can be
integrated numerically to compute the final abundances of all elements.

Note that the reaction network does not produce any elements heavier than lithium. This is a
consequence of the fact that there are no stable nuclei with atomic weight 5 or 8. Since direct
many-body reactions at earlier epoch are very inefficient in producing heavy elements, we can
conclude that elements heavier than lithium are not produced by primordial nucleosynthesis.
Indeed, as we will see in Chapter 10, heavy elements can be synthesized in stars where the
density of helium is so high that a short-lived 8Be, formed through 4He–4He collisions, can
quickly capture another 4He to form a stable carbon nucleus (12C), thus allowing further nuclear
reactions to proceed.

Inspection of the reaction network of primordial nucleosynthesis given above reveals that it
can only proceed if the first step, the production of deuterium, is sufficiently efficient. Since
deuterium has the lowest binding energy of all nuclei in the network, its production serves as a
‘bottleneck’ to get nucleosynthesis started. The production of deuterium through p(n,γ)D has a
rate per free neutron given by

Γ= (4.55×10−20 cm3 s−1)np

≈ 2.9×104XpΩb,0h2
(

T
1010 K

)3

s−1 , (3.209)

which is much larger than the expansion rate H ∼ (T/1010 K)2 s−1. Therefore, for temperatures
T ∼> 5×108 K, deuterium nuclei are always produced with the equilibrium abundance:

XD ≈ 16.4ηXnXpη
(mN

T

)−3/2
exp

(
2.22MeV

T

)
. (3.210)

From this we see that large amounts of deuterium are only produced once the temperature drops
to TD ∼ 109 K [see also Eq. (3.202)]. This occurs when the Universe is about 100 seconds old,
and signals the onset of primordial nucleosynthesis. The subsequent reaction chain proceeds
very quickly, because at T � TD all nuclei heavier than deuterium can possess high equilibrium
abundances. However, nuclei heavier than helium are still rare because of the instability of nuclei
with A = 5 and A = 8, and because the temperature is already too low to effectively overcome the
large Coulomb barrier in reactions like 4He(3H,γ)7Li and 4He(3He,γ)7Be. As a result, almost
all free neutrons existing at the onset of nucleosynthesis will be bound into 4He, the most tightly
bound species with A < 5. The mass fraction of 4He can therefore be approximately written as

Y ≡ X4He ≈
4(nn/2)
nn +np

=
2(nn/np)D

1+(nn/np)D
, (3.211)

where (nn/np)D is the neutron-to-proton ratio at T = TD.

3.4.3 Model Predictions

Once the relevant reactions are specified and their cross-sections are given, the nucleosynthe-
sis reaction network can be integrated forwards from the initial conditions at early times to
make detailed predictions for the abundances of all species. This was first done with a com-
plete network by Wagoner et al. (1967), and subsequent work using updated cross-sections and
modernized computer codes (e.g. Wagoner, 1973; Walker et al., 1991; Cyburt et al., 2008) has
modified their conclusions rather little. Detailed calculations show that the bulk of nucleosyn-
thesis occurs at t ≈ 300 s (T ≈ 0.8 × 109 K = 0.07MeV), in agreement with the qualitative
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Fig. 3.7. Primordial abundances of light elements as a function of the baryon-to-photon ratio, η . The
line thicknesses in each panel reflect the remaining theoretical uncertainties, while the vertical shaded
band shows the range of η consistent with the WMAP measurements of fluctuations in the microwave
background. [Courtesy of R. Cyburt; see Cyburt et al. (2008)]

arguments given above. At this point in time, the neutron-to-proton ratio nn/np is about 1/7.
Using Eq. (3.211) this implies a final abundance of primordial 4He of

Yp ≡ X4He ≈ 1/4 . (3.212)

Observations of the mass fraction of helium everywhere and always give values of about 24%,
which would be very difficult to understand if such an abundance were not primordial. This
prediction (3.212) is therefore considered a great success of the standard Big Bang model.

The primordial abundances predicted by an updated version of the code of Wagoner et al.
(1967) are shown in Fig. 3.7. Note that the abundances of deuterium and 3He are about three
orders of magnitude below that of 4He, while that of 7Li is nine orders of magnitude smaller; all
other nuclei are expected to be much less abundant. The predicted abundances of light elements
depend on three parameters: the baryon-to-photon ratio, η , the mean lifetime of the neutron, τn,
and g∗(T ∼ 1010 K), which measures the number of degrees of freedom of effectively massless
particles at the relevant temperature T ∼ 1010 K [see Eq. (3.135)]. Given the discussion earlier
in this section, we can understand the sensitivity of the abundances to all these parameters.

As η increases (|lnη | decreases), nucleosynthesis of D, 3He and 3H starts slightly earlier
[see Eq. (3.202)]. As a result, the synthesis of 4He commences at an earlier epoch when the
depletion of neutrons by beta decay is less significant, and so more neutrons are bound into
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4He. This explains why the 4He abundance increases with η . Since the age of the Universe
at temperature TD is smaller than τn, the neutron-to-proton ratio decreases only slowly at the
time when nucleosynthesis begins. Therefore, the η-dependence of the 4He abundance is weak.
However, since the burning rates of D and 3He are proportional to their equilibrium abundances,
which increase with η as XA ∝ ηA−1 [see Eq. (3.200)], a larger baryon-to-photon ratio results in
a smaller abundance of these two nuclei. The more complex behavior of the 7Li abundance is
a result of competition between the formation and destruction reactions in the network. Direct
formation dominates at small η , and formation via 7Be dominates at large η .

The neutron mean lifetime affects the predicted helium abundance by influencing the num-
ber density of neutrons at the onset of nucleosynthesis. An increase of τn leads to an increase
in the number of neutrons and so to an increase in Yp. In the relevant range of η , ΔYp ∼
2×10−4(Δτn/1s), implying that the uncertainty in Yp arising from that of τn is quite small.

Finally, substituting Eq. (3.134) in Eq. (3.80), and using that ρr ∝ a−4, one finds

t =
(

45
16π3Gg∗

)1/2

T−2 . (3.213)

Since H = (2t)−1, the expansion rate H ∝ √
g∗ T 2. Consequently, an increase of g∗ leads to a

faster expansion rate for given T . This raises the temperature at which the reaction rates equal
the expansion rate, thus increasing the neutron-to-photon ratio at ‘freeze-out’. Consequently, the
predicted 4He abundance increases with increasing g∗. In the relevant range of η , ΔYp ∼ 0.01Δg∗.
Therefore, the abundance of primordial helium provides a stringent constraint on the number of
relativistic species at T ∼> 109 K. The standard model of primordial nucleosynthesis assumes
these species to be photons and three species of massless neutrinos.

3.4.4 Observational Results

The predictions of primordial nucleosynthesis are of vital importance in the standard cosmology,
and therefore much effort has been devoted to the observational determination of the primor-
dial abundances of the light elements. Such determination can be used not only to constrain
the number of relativistic species at the time of nucleosynthesis, but also to constrain η and
so the number density of baryons in the Universe through Eq. (3.201). Unfortunately, precise
determination of the primordial abundances is far from trivial. They usually rely on the emis-
sion or absorption of gas clouds due to the ions of the element in consideration. Turning this
into an abundance often requires careful modeling of the properties of the observed cloud. An
even greater problem comes from the fact that the material we observe today may have been
processed through stars, so that (often uncertain) corrections have to be applied in order to derive
a ‘primordial’ abundance. In the following we give a brief summary of the present observational
situation.

• Helium-4: Because the abundance of helium is large, it is relatively easy to determine. Most
measurements are made from HII clouds where the gas is highly ionized, and the abundance
of both helium and hydrogen can be inferred from the strengths of their recombination lines.
Since 4He is also synthesized in stars, some of the observed 4He may not be primordial. In
order to reduce this contamination, it is desirable to use metal-poor clouds, as stars which
produce the 4He contamination also produce metals. Observations have been made for clouds
with different metalicities, and an extrapolation to zero metalicity gives Yp = 0.24±0.01 (e.g.
Fields & Olive, 1998). From Fig. 3.7 we see that this observational result requires η = (1.2 →
8)×10−10. Since the predicted Yp depends only weakly on η , extremely precise measurements
are needed to give a more stringent constraint.
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• Deuterium: Because of its strong dependence on η , the measurement of the primordial deu-
terium abundance is crucial in determining Ωb,0. Accurate determinations of the deuterium
abundance have been obtained from UV absorption measurements in the local interstel-
lar medium (ISM). The deuterium-to-hydrogen ratio (in mass) is found to be [D/H]ISM ≈
1.6×10−5 (e.g. Linsky et al., 1995). Since deuterium is weakly bound, it is easy to destroy but
hard to produce in stars. Therefore, this observed ISM value represents a lower limit on the pri-
mordial abundance. An alternative estimate of the deuterium abundance can be obtained from
the absorption strength in Lyman-α clouds along the line-of-sight to quasars at high redshift.
Since these high-redshift clouds are metal poor and perhaps not yet severely contaminated by
stars, the deuterium abundance thus derived may actually be close to the primordial one. The
observational data are still relatively sparse. The values of [D/H] obtained originally ranged
from ∼ 2.4× 10−5 (Tytler et al., 1996) to ∼ 2× 10−4 (Webb et al., 1997) but now seem to
have settled at 2.82± 0.53× 10−5 (Pettini et al., 2008). This agrees well with the value of η
inferred from WMAP data on microwave background fluctuations.

• Helium-3: The abundance of 3He has been measured both in the solar system (using mete-
orites and the solar wind) and in HII regions (based on the strength of the 3He

+
hyperfine

line, the equivalent of the 21 cm hyperfine line of neutral hydrogen). The abundance inferred
from HII regions is [3He/H] = (1.3 → 3.0)×10−5 (e.g. Gloeckler & Geiss, 1996). A similar
abundance, [3He/H] = (1.4±0.4)×10−5, is obtained from the oldest meteorites, the carbona-
ceous chondrites. Since these meteorites are believed to have formed at about the same time
as the solar system, the observed abundance may be representative of pre-solar material. The
abundance of 3He in the solar wind has been determined by analyzing gas-rich meteorites and
lunar soil. Because D is burned to 3He during the Sun’s approach towards the main sequence,
the observed 3He in the solar system may be a good measure of the pre-solar sum (D+ 3He).
All the measurements are consistent with [(D+ 3He)/H] ≈ (4.1±0.6)×10−5. Although 3He
can be reduced by stellar burning, it is much more difficult to destroy than deuterium and the
reduction factor is no more than a factor of 2. The measurements in the solar system therefore
give an upper limit on the primordial abundance of [(D+ 3He)/H]p ∼< 10−4, corresponding to
a lower limit of η ∼> 3×10−10.

• Lithium-7: Estimates of the 7Li abundance come from stellar atmospheres. Since 7Li is
quite fragile, it can be depleted by circulation through the centers of stars. The observa-
tional estimates therefore vary from one stellar population to another. Since mass circulation
(convection) does not go as deep in metal-poor stars as in metal-rich ones, it is desirable
to use metal-poor stars where the depletion of 7Li from the atmosphere is expected to be
smaller. There have been attempts to observe 7Li lines in the atmospheres of old stars with
very low metalicity (e.g. Spite & Spite, 1982), from which the primordial 7Li abundance was
originally inferred to be [7Li/H]p ≈ (1.1± 0.4)× 10−10. More recent attempts paying close
attention to systematics give values in the range 1.0 to 1.5× 10−10 (Asplund et al., 2006).
From Fig. 3.7 we see that this abundance is inconsistent by a factor of about 4 with the value
[7Li/H]p = 5.24±0.7×10−10 inferred from the five-year WMAP data on fluctuations in the
microwave background.

At the present time, Big Bang nucleosynthesis is essentially a parameter-free theory. Improve-
ments in experimental determinations of the neutron lifetime have shrunk the uncertainties so that
they are no longer significant for this problem; the standard model of particle physics is now suf-
ficiently constrained by accelerator experiments that the number of light particle species present
at nucleosynthesis cannot differ significantly from the standard value; and WMAP measurements
of the power spectrum of the cosmic microwave background lead to a photon-to-baryon ratio esti-
mate, η = 6.23±0.17×10−10 (see §2.10.1). With these parameters the theory gives quite precise
predictions for all the light element abundances. These agree with observational estimates of the
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observed abundance of 4He and D, where the first is only weakly constraining because of its
logarithmic dependence on parameters, but the second can be considered a major success. The
situation with 3He is too complex for a meaningful comparison to be possible, and the results
for 7Li appear to disagree with observation. While this discrepancy may still reflect observa-
tional difficulties in inferring the primordial abundance of 7Li, it may also be an indicator of
unexpected physics in the early Universe. Notice that independent of inferences from microwave
background observations, the baryon density required for successful primordial nucleosynthesis
is much too small to be consistent with the large amounts of dark matter required to bind groups
and clusters of galaxies, thus providing an independent argument in favor of non-baryonic dark
matter (see §2.5).

3.5 Recombination and Decoupling

Immediately after primordial nucleosynthesis (when T ∼ 0.1MeV∼ 109 K) the Universe consists
mainly of the following particles: hydrogen nuclei (i.e. protons), 4He nuclei, electrons, photons,
and decoupled neutrinos. Since the temperature is already lower than me = 0.51MeV, baryons
and electrons can all be considered non-relativistic. All the particles (except the decoupled neu-
trinos) interact through electromagnetic processes, such as free–free interactions among charged
particles, Compton scattering between charged particles and photons, and the recombinations8

of ions with electrons to form atoms. In this section, we examine these processes in connection
to several important cosmological events at T < 109 K.

3.5.1 Recombination

As soon as the temperature of the Universe drops below ∼ 13.6eV, electrons and protons start to
combine to form hydrogen atoms. Here we examine how this ‘recombination’ process proceeds.
In addition, we compute the fractions of electrons and protons that remain unbound after recom-
bination, namely the ‘freeze-out’ abundances of free electrons and protons. For simplicity, we
ignore all elements heavier than hydrogen.

Let us start from an early enough time when recombination and ionization can maintain equi-
librium among the reacting particles. The number densities of electrons, protons, and hydrogen
atoms are then all given by Eq. (3.128) with i = e, p or H. As we will see below, the tempera-
tures of all three species are identical to that of the photons, so that Ti = T . Since the chemical
potentials are related by μH = μp + μe, we can write the equilibrium density of H as the Saha
equation:

nH,eq =
(

gH

gpge

)
np,eqne,eq

(
meT
2π

)−3/2

exp

(
BH

T

)
, (3.214)

where BH = mp + me −mH = 13.6eV is the binding energy of a hydrogen atom, and we have
used (mH/mp)3/2 ≈ 1 in the prefactor. Expressing the particle number densities in terms of the
baryon number density, nb = np + nH, and the ionization fraction, Xe ≡ ne/nb = np/nb, then
yields

1−Xe,eq

X2
e,eq

=

√
32
π
ζ (3)η

(me

T

)−3/2
exp

(
BH

T

)
, (3.215)

8 Note that the term ‘recombination’ is somewhat unfortunate, as this will be the first time in the history of the Universe
that the electrons combine with nuclei to form atoms.
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where we have used that ge = gp = 2, gH = 4, and nb = ηnγ . This is the Saha equation for the
ionization fraction in thermal equilibrium, which holds as long as the reaction rate p + e ↔ H is
larger than the expansion rate.

Assuming for the moment that thermal equilibrium holds, we can use Eq. (3.215) to com-
pute the temperature, Trec, and redshift, zrec, of recombination. For example, if we define
recombination as the epoch at which Xe = 0.1, we obtain that

θ 3/2
rec exp(13.6/θrec) = 3.2×1017 (Ωb,0h2)−1

, (3.216)

where

θ ≡ (T/1eV) ≈ (1+ z)/4250 . (3.217)

Taking logarithms and iterating once we get an approximate solution for θrec:

θ−1
rec ≈ 3.084−0.0735ln

(
Ωb,0h2) , (3.218)

which corresponds to a redshift given by

(1+ zrec) ≈ 1367
[
1−0.024ln

(
Ωb,0h2)]−1

. (3.219)

Assuming Ωb,0h2 = 0.02, we get Trec ≈ 0.3eV and zrec ≈ 1,300. Note that Trec � BH, which is a
reflection of the high entropy per baryon (i.e. the small value of η); since there are many times
more photons than baryons, there can still be sufficient photons with hPν > 13.6eV in the Wien
tail of the blackbody spectrum to keep the majority of the hydrogen atoms ionized, even when
the temperature has dropped below the ionization value.

As the Universe expands and the number densities of electrons and protons decrease, the rate
at which recombination and ionization can proceed may become smaller than the expansion rate.
The assumption of equilibrium will then no longer be valid. In order to examine in detail how
recombination proceeds, we need to understand the main reactions involved. In a normal cloud of
ionized hydrogen (HII cloud), recombination occurs mainly via two processes: (i) direct recom-
bination to the ground state, and (ii) the capture of an electron to an excited state which then
cascades to the ground level. In the first case, a Lyman continuum photon (with energy larger
than 13.6eV) is produced, while in the second case one of the recombination photons must have
an energy higher than or equal to that of Lyα . If the cloud is optically thin, all recombination
photons can escape and do not contribute to further ionization. In the case of cosmological recom-
bination, however, recombination photons will be absorbed again because they cannot escape
from the Universe. In fact, the direct capture of electrons to the ground state does not contribute
to the net recombination, because the resulting photon is energetic enough to ionize another
hydrogen atom from its ground state. The normal cascade process is also ineffective, because
the Lyman series photons produced can excite hydrogen atoms from their ground states, so that
multiple absorptions lead to re-ionization. Therefore, recombination in the early Universe must
have proceeded by different means.

There are two main channels by which cosmological recombination can proceed. One is the
two-photon decay from the metastable 2S level to the ground state (1S). In this process two pho-
tons must be emitted in order to conserve both energy and angular momentum, and it is possible
that the energies of the emitted photons fall below the ionization threshold. This process is forbid-
den to first order and so it has a slow rate: Γ2γ ≈ 8.23s−1. The second process is the elimination
of Lyα photons by cosmological redshift. Once redshifted to a lower energy, the Lyα photons
produced in the cascade will no longer be able to excite hydrogen atoms from their ground state.
The details of these recombination processes have been worked out by several authors (Peebles,
1968; Zel’dovich et al., 1968; Peebles, 1993). They show that, of the two processes discussed,
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Fig. 3.8. The ionization fraction as a function of redshift, z. The curve marked Xe,eq shows the redshift evo-
lution of the equilibrium ionization fraction, while the one marked Xe shows the actual ionization fraction
for a cosmology with Ωm,0h2 = 1 and Ωb,0h2 = 0.01.

the two-photon emission dominates, and that the ionization fraction drops from approximately
unity at z ∼> 2000, to a ‘freeze-out’ value of

Xe ≈ 1.2×10−5

(√
Ωm,0

Ωb,0h

)
(3.220)

at z ∼< 200. An example of the evolution of Xe with redshift is shown in Fig. 3.8.

3.5.2 Decoupling and the Origin of the CMB

Charged particles and photons interact with each other via Thomson scattering. The rate at which
a photon collides with an electron is ΓT = neσTc, where

σT =
8π
3

(
q2

e

mec2

)2

≈ 6.65×10−25 cm2 (3.221)

is the Thomson cross-section, with qe the charge of an electron. In what follows we only con-
sider this scattering between electrons and photons, since the interaction rate with ions is much
lower. Substituting the electron number density with ne = Xeηnγ , and using the Saha equation to
compute Xe in the limit Xe � 1, we obtain

ΓT = 1.01
(
Ωb,0h2)1/2 θ 9/4 exp(−6.8/θ) s−1 . (3.222)
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In order to estimate at what redshift the photons decouple from the matter, we compare this
interaction rate with the expansion rate. At z 	 1, we can use Eq. (3.74) to write

H(T ) =

{
3.8×10−13θ 2 s−1 (for z > zeq)

9.0×10−13
(
Ωm,0h2

)1/2 θ 3/2 s−1 (for z < zeq),
(3.223)

where zeq is the redshift at which the Universe becomes matter dominated, and we have used g∗ =
3.36 in calculating the energy density of relativistic species. Equating Eqs. (3.222) and (3.223)
with the assumption that decoupling occurs as z < zeq, we obtain the decoupling temperature:

θ−1
dec ≈ 3.927+0.074ln(Ωb,0/Ωm,0) . (3.224)

Taking Ωb,0/Ωm,0 = 0.1 we get

Tdec ≈ 0.26eV; (1+ zdec) ≈ 1,100 . (3.225)

As expected, the decoupling of matter and radiation occurs shortly after the number density of
free electrons has suddenly decreased due to recombination.

A somewhat more accurate derivation of the redshift of decoupling can be obtained by defining
an optical depth of Thomson scattering from an observer at z = 0 to a surface at a redshift z:

τ(z) =
∫ z

0
neσT

dt
dz

dz . (3.226)

Using the solution of Xe(z) shown in Fig. 3.8, rather than the equilibrium ionization fraction used
in the previous estimate, one finds to good approximation

τ(z) = 0.37(z/1,000)14.25 . (3.227)

The probability that a photon was last scattered in the redshift interval z ± dz/2 can be
approximated as

P(z) = e−τ
dτ
dz

≈ 5.26×10−3
(

z
1,000

)13.25

exp

[
−0.37

(
z

1,000

)14.25
]

. (3.228)

This distribution peaks sharply at z ≈ 1,067 and has a width Δz ≈ 80 (e.g. Jones & Wyse, 1985).
This represents the last scattering surface of photons, which is the surface probed by the cosmic
microwave background (CMB) radiation. Similar to the photosphere of the Sun, it acts as a kind
of photon barrier. No information carried by photons originating from z ∼> 1100 can reach the
Earth, as the photons involved will be scattered many times.

As discussed in §2.9, one of the most important properties of the observed CMB is that its
spectrum is very close to that of a blackbody. This implies that the emission must have originated
when the Universe was highly opaque. In the standard cosmology, such an epoch is expected
because photons and other particles are tightly coupled at z > 106. However, the CMB photons
have been scattered many times by electrons and ions between their redshift of origin and the
last scattering surface. An important question therefore is whether the background radiation can
retain a blackbody spectrum during this process. The answer is yes and the reason is, as we
show below, that the high entropy content of the Universe can keep the gas particles at the same
temperature as that of the photons. In this case, there is no net energy transfer between the
photons and electrons, ensuring that the radiation field remains blackbody. Furthermore, although
the finite thickness of the last scattering surface (Δz≈ 80) implies a spread in photon temperatures
at their last scattering event, this does not lead to observable distortions in the CMB temperature
spectrum. The reason is that the higher initial temperature of a photon that decoupled somewhat
earlier is exactly compensated by the larger redshift it experiences before reaching the observer.
Thus, the blackbody nature of the CMB is naturally explained in the standard cosmology. In
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what follows we examine more closely the temperature evolution of matter and radiation from
the epoch of electron–positron annihilation to that of decoupling.

3.5.3 Compton Scattering

By far the most dominant electromagnetic interaction during the era of decoupling is the
Coulomb interaction, which is sufficiently strong to maintain thermal equilibrium among var-
ious matter components. In the absence of any interactions between matter and radiation, the
temperature of the former would decrease as Tm ∝ a−2, while the photon temperature Tγ ∝ a−1

(see Table 3.1). However, as we have seen above, photons and electrons interact with each other
via Compton scattering. As long as Te > Tγ there will be a net energy transfer from the elec-
trons to the photons, and vice versa. The mean free path is lγ = 1/(neσT) for the photons, and
le = 1/(nγσT) for electrons. Their ratio can be expressed in terms of the ionization fraction
Xe = ne/nb as

le
lγ

= Xeη = 2.72×10−8(XeΩb,0h2) . (3.229)

Since Xe ≤ 1, we have le � lγ . This shows that it is much easier for photons to change the energy
distribution of the electrons than the other way around. This is, once again, a consequence of the
high entropy per baryon, or, put differently, of the fact that the heat capacity of the radiation is
many orders of magnitude larger than that of the electrons. Therefore, as long as the Compton
interaction rate is sufficiently large compared to the expansion rate, the matter temperature will
follow that of the photons.

To compute the redshift at which the matter temperature will finally decouple from that of the
radiation, we proceed as follows. The average energy transfer per Compton collision is

ΔE =
4
3

(v
c

)2
hPν̄ = 4

(
kBTe

mec2

)
εγ
nγ

, (3.230)

where we have used that the average electron energy is 1
2 mev2 = 3

2 kBTe and that the mean energy
of the photons is hPν̄ = εγ/nγ with εγ the photon energy density (see §B1.3.6). The rate at which
the energy density of the matter, εm, changes due to Compton interactions with the radiation
field is

dεm

dt
= nenγσTcΔE = 4neσTεγ

(
kBTe

mec

)
. (3.231)

This allows us to define the Compton rate at which electrons can adjust their energy density to
that of the photons as

Γγ→e ≡ 1
εm

dεm

dt
= 8.9×10−6

(
Xe

Xe +1

)
θ 4 s−1 , (3.232)

where we have used that εm = 3
2 nkBTe, with n = ne +nb, and εγ = (4σSB/c)T 4

γ . Comparing this to
the expansion rate given by Eq. (3.223), we find that decoupling of matter from radiation occurs
at a redshift

1+ z = 6.8

(
Xe

Xe +1

)−2/5 (
Ωm,0h2)1/5

. (3.233)

As we have seen above, before the onset of the first ionizing sources, the residual ionization

fraction at z ∼< 200 is Xe ∼ 10−5Ω1/2
m,0/(Ωb,0h) (see Fig. 3.8). Substituting this in Eq. (3.233),

and adopting Ωb,0h2 = 0.02, yields a redshift, z � 150, at which the temperatures of matter and
radiation decouple. This is a much lower redshift than the redshift of decoupling defined by an
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optical depth of unity for Compton scattering . This reflects the small values of η and Xe, which
ensure that there are about 3× 1012(Ωm,0h2)1/2 photons for every free electron. The electron
temperature can remain coupled to that of the photons even if only a tiny fraction of photons are
scattered by the electrons.

3.5.4 Energy Thermalization

In addition to Γγ→e defined above, we can also define the rate at which Compton scattering can
adjust the photon energy density to that of the electrons:

Γe→γ ≡ 1
εγ

dεγ
dt

= 1.3×10−13 (XeΩb,0h2)θ 4 s−1 , (3.234)

where we have used that in thermal equilibrium |dεγ/dt| = |dεm/dt|. This is equal to the
expansion rate in Eq. (3.223) at a redshift

1+ z = 7.2×103 (XeΩb,0h2)−1/2
. (3.235)

At z ∼> 2,000, Xe = 1 to good approximation. Using Ωb,0h2 = 0.02 we thus find that Compton
scattering can significantly modify the energy distribution of the photon fluid at z ∼> 5× 104.
Since Compton scattering (e+ γ → e+ γ) does not change the number of photons, this process
alone cannot lead to a Planck distribution. However, since the photon fluid starts out in thermal
equilibrium with the matter, it will remain properly thermalized (i.e. the Compton scattering does
not lead to any net energy transfer between matter and radiation). On the other hand, one might
envision scenarios in which physical processes (e.g. turbulence, black hole evaporation, decay
of heavy unstable leptons) heat the electrons to a temperature above that of the photons. If this
occurs at z∼> 5×104, Compton scattering is sufficiently efficient that photons experience multiple
scattering events, which bring them into thermal equilibrium with the electrons. Since there is
no change in the photon number, such scattering results in a modification of the photon energy
distribution from a Planck distribution to a Bose–Einstein distribution with a negative chemical
potential (μ < 0). Such a distortion is usually referred to as a μ-distortion. In the absence of
any photon-producing processes, an increase of the electron temperature therefore leads to a
Comptonization of the CMB, which is observable as a μ-distortion of its spectrum.

Two examples of photon producing processes, which may thermalize the injected energy and
bring the photon energy distribution back to that of a blackbody, are bremsstrahlung (also called
free–free emission) and the double-photon Compton process (e+ γ → e+2γ). In a medium with
relatively high photon density, such as that in the radiation dominated era, double Compton
emission is the dominant photon producing process and its rate is higher than the expansion rate
of the Universe at

z ∼> 2.0×106
(
Ωb,0h2

0.02

)−2/5(
1− Yp

2

)−2/5

, (3.236)

where Yp is the helium abundance in mass (e.g. Danese & de Zotti, 1982). Thus, any energy input
into the radiation field at z > 2×106 can be effectively thermalized into a blackbody distribution.
If the energy ejection occurs at z < 5× 104 the Compton rate is insufficient to establish a new
thermal equilibrium. Therefore, only energy injection in the redshift range 5×104 ∼< z ∼< 2×106

can lead to a μ-distortion in the CMB. Detailed observations with the COBE satellite have
established that the CMB has a blackbody spectrum to very high accuracy; the correspond-
ing limit on the chemical potential is |μ | ≤ 9× 10−5 (Fixsen et al., 1996). Apparently, there
have not been any major energy ejections into the baryonic gas in the above mentioned redshift
interval.
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Because multiple Compton scattering becomes rare at z ∼< 5 × 104, any energy input into
the electron distribution no longer drives the photon field towards a Bose–Einstein distribution
to produce a μ-distortion. However, single Compton scattering of low-energy photons in the
Rayleigh–Jeans tail of the CMB can still cause those photons to gain energy. Although this does
not bring the photons in thermal equilibrium with the electrons, it does result in a distortion of
the photon energy distribution. This kind of distortion is called y-distortion, because it is propor-
tional to the Compton y-parameter defined in §B1.3.6. Such distortions can be produced by the
hot intracluster medium, which is called the Sunyaev–Zel’dovich (SZ) effect, and is discussed in
detail in §6.7.4.

3.6 Inflation

So far we have seen that the standard relativistic cosmology provides a very successful frame-
work for interpreting observations. There are, however, a number of problems that cannot be
solved within the standard framework. Here we summarize some of these problems and show
how an ‘inflationary hypothesis’ can help to solve them.

3.6.1 The Problems of the Standard Model

(a) The Horizon Problem As shown in §3.2.4, the comoving radius of the particle horizon for
a fundamental observer, O , at the origin at cosmic time t is

χh =
∫ t

0

cdt ′

a(t ′)
. (3.237)

For a universe which did not have a contracting phase in its history, radiation was the dominant
component of the cosmic energy density at z > zeq, and the scale factor a(t)∝ t1/2. In this case χh

has a finite value, so that there must be fundamental observers (denoted by O ′) whose comoving
distances to O are larger than χh. No physical processes at any O ′ could have influenced O by
time t. To get a rough idea of the size of the particle horizon at the time of decoupling, assume for
simplicity an Einstein–de Sitter universe (Ωm,0 = 1), and ignore for the moment that the Universe
was radiation dominated at z > zeq. It then follows from Eqs. (3.74)–(3.75) that

χh(z) = 6,000h−1Mpc(1+ z)−1/2 . (3.238)

At the time of decoupling, which occurs at a redshift of ∼ 1,100 (see §3.5), the comoving radius
of the particle horizon is ∼ 180h−1Mpc. The comoving distance from us to the last scattering
surface is ∼ 5,820h−1Mpc, so that the particle horizon at decoupling subtends an angle of about
1.8 degrees on the sky. This implies that many regions that we observe on the CMB sky have not
been in causal contact. Yet, as discussed in §2.9, once measurements are corrected to the frame
of the fundamental observer at the position of the Sun, the temperature of the CMB radiation is
the same in all directions to an accuracy of better than one part in 105. The problem is how all
these causally disconnected regions can have extremely similar temperatures. This problem is
known as the horizon problem of the standard model.

(b) The Flatness Problem This problem concerns the processes which determine the density,
age, and size of the Universe at the present time. In the standard model, these properties are
assumed to ‘arise’ as initial conditions at the Planck time, when the Universe emerged from the
quantum gravity epoch. The problem arises if Ω = Ωm +ΩΛ+Ωr differs mildly from unity at
the present time, because such a universe requires extreme ‘fine-tuning’ of Ω at the Planck time.
A simple way to illustrate the situation is to focus on the quantity, Ω−1 −1, which measures the
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fractional deviation of the total density from the critical density. Using the Friedmann equation,
we can write that

Ω(a)−1 −1 = − 3Kc2

8πGρ(a)a2 , (3.239)

which is proportional to a2 at z > zeq and to a at z < zeq. Therefore, in the standard model,

Ω−1
Pl −1

Ω−1
0 −1

∼ T0

Teq

(
Teq

TPl

)2

∼ 10−60 , (3.240)

where subscripts ‘eq’ and ‘Pl’ denote the values at the time of radiation/matter equality, teq ∼
104 yr (corresponding to a temperature Teq ∼ 104 K), and the Planck time, tPl ≡ (h̄G/c5)1/2 ∼
10−43 s (corresponding to a temperature TPl ∼ 1032 K), respectively. This demonstrates thatΩPl is
about 60 orders of magnitude closer to unity thanΩ0. For example, ifΩ= 0.1 today, it must have
been 1− 10−59 at the Planck time, which clearly constitutes a fine-tuning problem. A ‘trivial’
way out of this problem is to postulate that Ω0 is exactly equal to unity, in which case it has
been exactly unity throughout the history of the Universe. However, this cannot be considered a
proper solution unless it has a proper physical explanation. This problem is known as the flatness
problem.

(c) Monopole Problem In the early stages of the Hot Big Bang, particle energies are well above
the threshold at which grand unification (GUT) is expected to occur (TGUT ∼ 1014–1015 GeV).
As the temperature drops through this threshold, a phase transition associated with spontaneous
symmetry breaking (SSB) can occur. One speaks of SSB when the fundamental equations of
a system possesses a symmetry which the ground state does not have. For example, one may
have a situation in which the Lagrangian density is invariant under a gauge transformation, while
the vacuum state, the state of the least energy, does not possess this symmetry. SSB plays a
crucial role in quantum field theory, where it provides a mechanism for assigning masses to the
gauge bosons without destroying the gauge invariance. As we will see below, SSB also plays an
important role in inflation.

Depending on the properties of the symmetry breaking, the phase transition can produce topo-
logical defects, such as magnetic monopoles, strings, domain walls or textures (see Vilenkin &
Shellard (1994) for a detailed description). In the case of the GUT phase transition, one expects
the formation of magnetic monopoles with a density of about one per horizon volume at that
epoch. The mass of each monopole is expected to be of the order of the energy scale in consid-
eration, i.e. m ∼ TGUT. This predicts a present-day energy density in magnetic monopoles of

ρmono,0 ∼ TGUT

t3
GUT

(
T0

TGUT

)3

∼
(

TGUT

1011 GeV

)4

ργ ,0 , (3.241)

where T0 and ργ ,0 are the temperature and energy density of the cosmic microwave background at
the present time, and we have used Eq. (3.81) to relate tGUT to TGUT. With Ωγ ,0 ≈ 2.5×10−5h−2

and TGUT ∼ 1015 GeV, we see that monopoles are expected to completely dominate the present
matter density with Ω0 ∼ 5 × 1011, in fatal conflict with observations. Since monopoles are
expected to arise in almost any GUT, there is a monopole problem in the standard cosmology.

(d) Structure Formation Problem This problem concerns the origin of the large-scale struc-
ture in the Universe. The observed structures such as the clusters of galaxies have an amplitude
which may be characterized by their dimensionless binding energy per unit mass, E /c2 ∼ 10−5.
Such structures are coherent over a mass of about 1015 M� (corresponding to ∼ 10Mpc in
comoving size) and are presumed to have grown via gravitational instability from small initial
perturbations. Since both the mass and binding energy of a perturbation are approximately con-
served during gravitational evolution, the perturbation must have been generated while its entire
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mass was within the particle horizon (i.e. when χh > 10Mpc), in order to explain its coherence.
This requires that the perturbations associated with present-day clusters be generated at z ∼< 106.
Since the standard scenario of structure formation via gravitational instability does not include
any processes which could produce the binding energy of clusters at such low redshift, the origin
of large, coherent density perturbations constitutes another problem for the standard cosmology.

It should be pointed out, however, that this particular problem is not fully generic for the
standard cosmology. In particular, the problem may be avoided if we abandon the assumption
that structures form via gravitational instability. For example, density perturbations with large
amplitudes may be generated in the early Universe within patches of the horizon size at the
time of generation. If these perturbations collapse and form objects which can eject energy to
large distances, structures of much larger scales may form out of the perturbations created by
these ejecta. Such non-gravitational models for the formation of large-scale structure have, for
example, been considered by Ostriker & Cowie (1981). However, as we will see later in the book,
the large-scale structure observed in the Universe is best explained by gravitational instability,
implying that the structure formation problem must be considered seriously.

(e) Initial Condition Problem It should be pointed out that the problems mentioned above do
not falsify the standard cosmology in any way. All of these problems can be incorporated into the
standard cosmology as initial conditions, even though the standard cosmology does not explain
them. In this sense, standard cosmology only provides a consistent theory to explain the state of
the observable Universe with some assumed initial conditions, but does not explain their origin.

For many years it was believed that the initial conditions for standard cosmology would arise
from quantum cosmology (a quantum treatment of space-time) at very early times when the
Universe was so small that classical cosmology is no longer valid. Unfortunately, such theory
is still highly incomplete and no reliable predictions can be presented. However, the situation
changed dramatically in the early 1980s when it was realized that a new concept, called inflation,
can solve all the aforementioned problems within the classical theory of space-time. Inflation
basically provides an explanation for the initial conditions, and it operates at an energy scale that
is much lower than the Planck scale, so that gravity can be treated classically. In what follows
we present a brief overview of cosmological inflation, and illustrate how it solves the problems
mentioned here. A more detailed treatment of this topic can be found in Kolb & Turner (1990)
and Liddle & Lyth (2000).

3.6.2 The Concept of Inflation

As discussed above, the horizon problem arises because the comoving radius of the particle
horizon of a fundamental observer (at time t),

χh =
∫ t

0

dct ′

a(t ′)
=
∫ a

0

da′

a′

[
8πGρ(a′)a′2

3c2 −K

]−1/2

, (3.242)

is finite in the standard model, where ρ(a) ∝ a−4 as a → 0. To get rid of this problem, χh must
diverge, making the radius of the particle horizon infinite. From Eq. (3.242) one sees that this
requires ρ(a) ∝ a−β with β < 2 as a → 0. Inserting this a-dependence of ρ into the first law of
thermodynamics, Eq. (3.35), one obtains

ρ+3P/c2 < 0 , (3.243)

which, in Eq. (3.58), gives ä > 0. Such a phase of accelerated expansion is called inflation, and
arises when the Universe is dominated by an energy component whose equation of state satisfies
Eq. (3.243).
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Fig. 3.9. A sketch of the light-cone structure in an inflationary universe. The cosmic time flows from bottom
up (with the Big Bang labeled by O) and the horizontal axis marks the comoving radius, χ , of the light cone.
In the absence of inflation, the forward light cone (the dashed lines) would be smaller than our past light
cone, χp, at the last scattering surface (corresponding to t = tls), resulting in the causality problem discussed
in §3.6.1. With a period of inflation (from ti to te), however, the forward light cone can be (much) larger
than the past light cone at tls (i.e. χf > χp).

An example of such an energy component is vacuum energy, whose equation of state is
P = −ρvacc2. In this case, the solution of the Friedmann equation corresponds to an exponentially
expanding universe,

a ∝ eHt where H =
√

8πGρvac/3 (3.244)

(see §3.2.3). Fig. 3.9 illustrates how such an inflationary period can solve the horizon problem.
Suppose that inflation begins at some very early time ti and ends at some later time te. The
period of inflation is therefore Δt = te − ti. During inflation, the forward light cone expands
exponentially, whereas the past light cone of an observer at the present time t0 is not affected by
the exponential expansion for t > te. Therefore, if Δt is sufficiently long, the size of the forward
light cone on the last scattering surface of the CMB photons, χf(tls), can be larger than the size of
the past light cone, χp(tls). Since tls � t0, the size of the past light cone is χp(tls) =

∫ t0
tls

dt/a(t) ≈
3t0. The size of the forward light cone at tls is χf(tls)∼

∫ tls
ti

dt/a(t) = (1/H)[eHΔt −1]a−1(te). The
condition that χf(tls) > χp(tls) therefore requires

eHΔt > 3Ha(te)t0 ∼ a(te)
t0
te

∼ 1√
1+ zeq

Te

T0
∼ 1025, (3.245)

where the final value is for Te ∼ 1014 GeV (roughly the GUT energy scale) and T0 ∼ 10−13 GeV
(the temperature of the CMB). Thus, in order to solve the horizon problem, an inflationary
period of

Δt ∼> 60H−1 (3.246)

is required, corresponding to 60 e-foldings in the scale factor.
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Inflation can also solve the flatness problem. To see this we use Eq. (3.79) to write

Ω−1(te)−1
Ω−1(ti)−1

=
[

a(ti)
a(te)

]2

∼< 10−52 , (3.247)

where we have inserted the number of e-foldings implied by Eq. (3.245). Therefore, even when
Ω(ti) deviates substantially from unity, at the end of inflation Ω(te) � 1 to very high accuracy. If
we assume that inflation ends at about the GUT time (i.e. Te ∼ 1015 GeV), then the present-day
value of Ω is related to that at the beginning of inflation according to

Ω−1(t0)−1
Ω−1(ti)−1

=
Ω−1(t0)−1
Ω−1(te)−1

× Ω−1(te)−1
Ω−1(ti)−1 ∼< 10−52

(
Teq

T0

)(
Te

Teq

)2

∼ 1 . (3.248)

Thus the same number of e-foldings needed to solve the horizon problem also solves the flatness
problem. Since the value of Ω at the present time depends very sensitively on the number of
e-foldings, unless it is exactly unity, extreme fine-tuning is required to give Ω �= 1. In this sense,
inflation predicts that the Universe is spatially flat, with Ωm,0 +ΩΛ,0 = 1. This can be under-
stood as follows. Because of inflation the curvature radius (measured in physical scale) increases
exponentially, and the observed piece of space in the past light cone looks essentially flat after
inflation even if it had a large curvature before.

If monopoles are produced before inflation, their number density will be diluted exponen-
tially during inflation. At the end of inflation, the number density would be reduced by a factor
∼ (eHΔt

)3 ∼ 1078, making the contribution of monopoles to the cosmic density completely
negligible. Thus, inflation also solves the monopole problem discussed in §3.6.1.

Finally, inflation also provides a mechanism to explain why structures like clusters can form in
a causal way. Because of inflation, small-scale structures present before and during inflation can
be blown up exponentially. Thus, the different parts of a perturbation responsible for a cluster
and a larger-scale structure, although not in causal contact after inflation, were actually in causal
contact before or during inflation. It is therefore possible to have causality if the perturbations
responsible for the formation of clusters were generated before or during inflation. In fact, infla-
tion not only allows such perturbations to exist, but also provides a mechanism to generate them,
as we will discuss in detail in §4.5.1.

3.6.3 Realization of Inflation

The above discussion shows that inflation can solve many problems (or, more appropriately,
puzzles) regarding the initial conditions of the Big Bang cosmology, as long as it operates for
a sufficiently long time. All that is needed is a dominant energy component with an equation
of state obeying Eq. (3.243). As already mentioned, the cosmological constant is an example of
such a component. However, it cannot serve to describe inflation for the simple reason that it
will never stop. By definition, Λ is a constant, and once it dominates the energy density of the
Universe it will continue to do so eternally. A successful inflation model, however, needs to stop
after some time, and it needs to end in a particular way. After all, at the end of inflation the
matter and radiation density of the Universe will be virtually zero, so will be its temperature: the
Universe is basically a vacuum. We thus need a mechanism, called reheating, which at the end of
inflation creates matter and radiation. In other words, at the end of inflation the Universe needs to
undergo a cosmological phase transition. The temperature at the end of this phase transition has
to be sufficiently low so that during the subsequent evolution no new phase transition can create
large quantities of magnetic monopoles. Otherwise we are back to where we started. In addition,
the temperature needs to be sufficiently high so that the process of baryogenesis can still operate.

It was Guth (1981) who first realized that all these requirements can be realized in a natural
way with scalar fields. These quantum fields, which describe scalar (spin-0) particles, play an



3.6 Inflation 157

important role in quantum field theory. Their dominant role is to cause spontaneous symmetry
breaking (SSB) via the Higgs mechanism. These so-called Higgs fields have a non-zero vacuum
expectation value. As a result, the interactions of the fermion and boson fields with the Higgs field
give a finite potential energy to the fermions and bosons, which is expressed as an effective mass.
Before the symmetry is broken, the Higgs field has a zero expectation value, and the fermions
and bosons are massless. In what follows we show that under certain conditions, a similar scalar
field can also cause inflation. The key point here is that the zero-point energy (vacuum energy)
of such fields can mimic a cosmological constant. A scalar field that causes inflation is generally
called an inflaton.

The Lagrangian density of a scalar field ϕ(x, t) is

L =
1
2
∂μϕ∂ μϕ−V (ϕ) , (3.249)

where V (ϕ) is the potential of the field. Different inflationary models, i.e. different inflatons,
correspond to different choices for V (ϕ). The energy–momentum tensor of the inflaton is

T μν = ∂ μϕ∂ νϕ−gμνL . (3.250)

If the inhomogeneity in ϕ is small, this T μν has the form of a perfect fluid, Eq. (3.57), with
energy density and pressure given by

ρ =
ϕ̇2

2
+

(∇ϕ)2

2a2 +V (ϕ) and P =
ϕ̇2

2
− (∇ϕ)2

6a2 −V (ϕ) , (3.251)

where ϕ̇ ≡ (∂ϕ/∂ t), and ∇ is the derivative with respect to the comoving coordinates x. We
therefore have

ρ+3P = 2
[
ϕ̇2 −V (ϕ)

]
, (3.252)

and the condition for inflation becomes

ϕ̇2 �V (ϕ) , (3.253)

which is called the slow-roll approximation. Note that in this case ρ = V (ϕ), and for inflation to
happen V (ϕ) thus needs to be sufficiently large to dominate the total energy density. As soon as
inflation operates it drives the curvature to zero so that the Friedmann equation (3.60) becomes

H =
√

8πGV (ϕ)/3 =
1

mPl

√
8πV

3
, (3.254)

where mPl ≡ (h̄c/G)1/2 is the Planck mass and we have used h̄ = c = 1.
Since the scale factor a increases exponentially during inflation, the spatial derivative term

∇ϕ/a in ρ and P rapidly becomes negligible, provided V is large enough for inflation to start in
the first place. Therefore any spatial inhomogeneities can be neglected and, under the slow-roll
approximation, one obtains P = −ρ , an equation of state similar to that for the cosmological
constant.

To translate the slow-roll requirement into a requirement for the shape of the potential, V (ϕ),
which is the ‘free parameter’ in the construction of inflation models, we need to look at the
dynamics of a scalar field. The classical equation of motion is obtained by writing down the
action

S =
∫

L
√−gd4x , (3.255)

where g is the determinant of the metric tensor gμν . The Euler–Lagrange equation, which follows
from the least-action principle, δS = 0, then yields

ϕ̈+3Hϕ̇+dV/dϕ = 0 , (3.256)
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where we have ignored any spatial inhomogeneity (∇ϕ = 0). Equivalently, Eq. (3.256) follows
from conservation of the energy–momentum tensor (T μν ;ν = 0), or from substituting Eq. (3.251)
in the continuity equation for a FRW cosmology, ρ̇ = −3H(ρ + P) [see Eq. (3.35)]. Note that
Eq. (3.256) is similar to the equation of motion of a ball moving under the influence of a potential
V in the presence of friction (the Hubble drag) proportional to 3H. Using that ϕ̇ ∼ ϕ/t, so that
ϕ̈ ∼ ϕ/t2 ∼ ϕ̇2/ϕ , the slow-roll approximation implies that ϕ̈ �V (ϕ)/ϕ ∼ dV/dϕ . Therefore,
the first term in Eq. (3.256) is negligible, and

3Hϕ̇+dV/dϕ = 0 . (3.257)

This equation expresses that the acceleration due to the gradient in the potential is balanced
by the Hubble drag due to the expansion. This together with Eq. (3.253) leads to the following
slow-roll condition:

ε ≡ m2
Pl

16π

(
dV/dϕ

V

)2

=
m2

Pl

16π
(3Hϕ̇)2

V 2 � m2
Pl

(3H)2

V
∼ 1 , (3.258)

where we have used the Friedmann equation (3.254). Similarly, since (d2V/dϕ2)/V ∼
(dV/dϕ)/(ϕV ) ∼ (dV/dϕ)2/V 2, we have

η ≡ m2
Pl

8π
1
V

d2V
dϕ2 � 1 . (3.259)

Conditions (3.258) and (3.259) indicate the intuitively obvious, namely that for the slow-roll
condition to be satisfied the potential needs to be very flat. Any scalar field that obeys these two
constraints will cause an inflationary phase, whose duration increases with the flatness of V (ϕ).

As emphasized above, inflation is only successful if it can also stop and reheat the Universe.
Below we illustrate how this comes about with scalar fields using three specific examples. In
each of these the end of inflation and the reheating mechanism are somewhat different.

3.6.4 Models of Inflation

(a) Old Inflation The ‘old inflation’ model, proposed by Guth (1981), is based on a scalar
field which initially gets trapped in a false vacuum at ϕ = 0 and which at some point undergoes
spontaneous symmetry breaking to its true vacuum state via a first order phase transition. The
prototype of such a potential has the form

V (ϕ) =
1
4
ϕ4 − 1

3
(α+β )|ϕ|3 +

1
2
αβϕ2 +V0 , (3.260)

where V0 = α3(α − 2β )/12 > 0 and α > 2β > 0. The field is assumed to be in thermal
equilibrium with a radiation field at temperature T , and so the effective potential of the field is

Veff(ϕ) = V (ϕ)+
1
2
λ̃T 2ϕ2 (3.261)

according to finite-temperature field theory (e.g. Brandenberger, 1995), where λ̃ is a coupling
constant. Fig. 3.10 a shows Veff(ϕ) at different temperatures. When the temperature is high, the
effective potential has a single minimum at ϕ = 0. As the temperature decreases, two other
minima develop. This occurs at a critical temperature Tc = (α − β )/(2λ̃ 1/2). For T � Tc, the
three minima are at ϕ = 0,±α , and the values of the potential at these points are Veff(0) = V0

and Veff(±α) = 0. Thus, the vacua at ϕ = ±α represent two true vacua of the field, while the
one at ϕ = 0 is called a false vacuum state. When T 	 Tc the expectation value of the inflaton
is ϕ = 0. At this stage no inflation occurs simply because the energy density of the radiation still
exceeds that of the inflaton. When the temperature drops below Tc, the field gets trapped in the
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Fig. 3.10. Two examples of effective scalar potentials, at three different temperatures, that can lead to infla-
tion. In example (a) ϕ experiences a first-order phase transition, characteristic of the old inflation models,
while in (b) the phase transition is of second order.

false vacuum at ϕ = 0, and the system is said to undergo supercooling. At this point, the slow-
roll condition is satisfied, and ρ ∼V (ϕ = 0) is dominated by the energy density of the inflaton.
Consequently, ϕ(x) acts like a cosmological constant, the Universe enters a de Sitter phase with
a Friedmann equation of the form (3.254), and the Universe expands exponentially. The epoch of
inflation only ends when thermal fluctuations or quantum tunneling moves ϕ across the barrier so
that it can proceed towards its true vacuum. This transition is a spontaneous symmetry breaking,
and since the field value changes discontinuously, it is of first order. During the transition the
energy V (ϕ = 0) associated with the inflaton field, the so-called latent heat, is rapidly liberated
and can be used for reheating. If the system stays in the false vacuum sufficiently long, the
Universe can be inflated by a sufficiently large number of e-foldings. It thus appears that this
model fulfills all requirements.

However, it was realized that this model has a ‘graceful exit’ problem (Guth, 1981; Guth &
Weinberg, 1981). Because the transition is of first order, it proceeds through the nucleation of
bubbles of the true vacuum in a surrounding sea of false vacuum. These bubbles must grow in
a causal way, and so their sizes at the end of inflation cannot be larger than the horizon size at
that time, which is much smaller than our past light cone. In addition, the latent heat needed
for reheating is stored in the kinetic energy of the nucleated bubbles, and reheating only occurs
when this kinetic energy is thermalized via bubble collisions. Thus, unless bubbles can collide
and homogenize in the Hubble radius, the model will predict too large inhomogeneities to match
the observed isotropy of the CMB and too little reheating. However, since the space between
the bubbles is filled with exponentially expanding false vacuum, while the volume of a bubble
expands only with a low power of time, percolation and homogenization of bubbles can never



160 Cosmological Background

happen. Instead, inflation continues indefinitely, and the bubbles of true vacuum have only a
small volume filling factor at any time. The volume filling factor can be increased by increasing
the nucleation rate of true-vacuum bubbles, but this would require a high tunneling rate, making
the inflation period too short.

(b) New Inflation Because of the ‘graceful exit’ problem, a modified scenario has been pro-
posed by Linde (1982) and Albrecht & Steinhardt (1982). The prototype potential in this scenario
has the form

V (ϕ) =
1
4
λ
(
ϕ2 −σ2)2

, (3.262)

and the effective potential Veff(ϕ) is plotted in Fig. 3.10 b for different temperatures. At high
temperature, the effective potential has a single minimum at ϕ = 0, but when the temperature
drops below a critical value, Tc = σ(λ/λ̃ )1/2, the minimum at ϕ = 0 disappears (and becomes a
local maxima) while two new minima develop. As in old inflation, the scalar field is confined to
the neighborhood of ϕ(x) = 0 by the thermal force at T 	 Tc, when the Universe is dominated by
radiation. As the temperature drops to T ∼ Tc (when the vacuum energy of ϕ begins to dominate
over radiation), the field configuration at ϕ(x) = 0 becomes unstable and it evolves towards
ϕ =±σ as the temperature decreases. The change from ϕ = 0 to ϕ =±σ is smooth everywhere,
and so the spontaneous symmetry breaking occurs via a second-order phase transition. As long
as the evolution obeys the slow-roll requirements derived above, inflation will occur. When ϕ
approaches σ (or −σ ), the field rolls rapidly towards the minimum (because of the large potential
gradient). Since this violates the slow-roll requirement, it signals the end of inflation. The inflaton
ϕ subsequently oscillates around the minimum with a frequencyω given byω2 = (d2V/dϕ2)σ =
λσ2. If the field is coupled to the radiation field, these oscillations will be damped by the decay
of ϕ into photons and other particles, and the Universe is reheated to a temperature T ∼ ω ∼ Ti,
with Ti the temperature at the onset of inflation. The Universe then enters the radiation dominated
era of the ordinary FRW cosmology.

The spatial fluctuations in ϕ(x) are expected to be correlated over some microphysical scale
and, as a result, the field is homogeneous within domains with sizes typically of the correlation
length. Since the correlated domains are established before the onset of inflation, any domain
boundaries are inflated outside the present Hubble radius and the inflation in a domain stops
when |ϕ| ∼ σ . Since our Universe is thus contained within a single domain, there is no ‘graceful
exit’ problem in this model. Hence the new inflation model is an improvement over the old one.
Unfortunately it also has problems. In order to obtain inflation, we must have d2V/dϕ2 �V/m2

Pl
[see Eq. (3.259)] which, for V = (ϕ2−σ2)2/4, requires σ 	 mPl. This is obviously an unnatural
condition, since mPl is the highest energy scale expected in particle physics. There is also a more
general problem. In order to ensure a large-enough number of e-foldings, the initial value of ϕ
must satisfy |ϕi| � σ . However, since the thermal fluctuations of ϕ at the initial time (when
T = Ti) are expected to be of the order λ−1/4Ti ∼ [V (0)/λ ]1/4 ∼ σ , fine-tuning is needed to get
the required initial condition, |ϕi| � σ .

(c) Chaotic Inflation Chaotic inflation was proposed to give a more natural explanation for the
initial conditions leading to inflation (Linde, 1986). Unlike in the old and new inflation models,
no phase transition is involved here so that no initial thermal bath is required. In this model, one
starts with a simple potential, e.g. V (ϕ) = mϕ2/2, and inflation simply arises because of the slow
motion of ϕ from some initial value, ϕi, towards the potential minimum. At any given point x,
the initial field configuration is assumed to be set by some chaotic processes. The values of ϕ are
expected to be the same within regions with a size set by the correlation length. Inflation only
occurs in those regions where the conditions needed for inflation are attained; the other regions
simply never inflate. Chaotic inflation therefore predicts that the Universe is locally homoge-
neous, but globally inhomogeneous. In a region where inflation persists for a sufficiently long
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period, the boundary of this region can be blown out of the current particle horizon, leaving a
universe in which the initial inhomogeneities generated by the chaotic processes have no observ-
able consequences. In this scenario our Universe is assumed to have emerged from one of such
regions.

In order to solve the horizon and flatness problems, the number of e-foldings must be N ∼> 60.
Using the slow-roll approximation, we can write the number of e-foldings between ti and te (the
times when inflation starts and terminates) as

N =
∫ te

ti
H dt ∼− 1

m2
Pl

∫ ϕe

ϕi

V
|dV/dϕ| dϕ . (3.263)

For a smooth potential such as V (ϕ) = m2ϕ2/2, |dV/dϕ | ∼V/ϕ and so N ∼ (ϕi/mPl)2 (assum-
ing that ϕe � ϕi). It then follows that ϕi 	 mPl is needed to have successful inflation. If inflation
starts near the Planck time, the fluctuations in V are about m4

Pl, and for the potential in consid-
eration m � mPl is required. It is unclear if such a small mass scale can be achieved in a Planck
time, because the most natural mass scale at this time is mPl. Indeed, if inflation happened at the
Planck time, it may not be really possible to construct a realistic inflation model without a proper
understanding of quantum gravity. In this sense, our initial hope that inflation models would
solve some of the problems in the standard model within the classical space-time framework is
not realized.

The schemes and problems discussed above are typical of many other inflation models sug-
gested. At the present time, it is fair to say that, although the concept of inflation can help to solve
several outstanding problems in standard cosmology, a truly successful model is still lacking.
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Cosmological Perturbations

In the standard model of cosmology described in the previous chapter, the Universe is assumed
to be highly homogeneous at early times. The structures observed today, such as galaxies and the
clusters of galaxies, are assumed to have grown from small initial density perturbations due to
the action of gravity. In this scenario, structure formation in the Universe involves the following
two aspects: (i) the properties and origin of the initial density perturbations, and (ii) the time
evolution of the cosmological perturbations in an expanding Universe.

In this chapter we examine the origin of cosmological perturbations and their evolution in the
regime where the amplitudes of the perturbations are small. We begin in §4.1 with a description
of Newtonian perturbation theory in the linear regime. This applies to structures with sizes much
smaller than the horizon size, so that causality can be considered instantaneous, and with a den-
sity contrast relative to the background much smaller than unity. The relativistic theory of small
perturbations is dealt with in §4.2. This is an extension of the Newtonian perturbation theory, and
is required when considering perturbations larger than the horizon size or when the matter con-
tent of the perturbations cannot be treated as a non-relativistic fluid. For a Universe with a given
matter content, the theories presented in these two sections allow one to trace the time evolution
of the cosmological perturbations in the linear regime. The nonlinear evolution will be discussed
in Chapter 5.

If we decompose the cosmological perturbations into Fourier modes, we will find that some
modes are amplified during the linear evolution while others are damped. The evolution there-
fore acts as a filter of the primordial density perturbations generated at some time in the early
Universe. In §4.3 we show that the results of the evolution at a later time are most conveniently
represented by a linear transfer function which describes the change in the perturbation ampli-
tude as a function of the Fourier mode. The importance of the linear transfer function is that,
once the perturbation spectrum (i.e. the perturbation amplitude as a function of Fourier mode)
is set at some time in the early Universe, it allows us to calculate the linear perturbation power
spectrum at any later times. In §4.4 we describe how to characterize the statistical properties of
the cosmological perturbations. As we will see, if the density perturbations have a Gaussian dis-
tribution, then the density field is completely specified by the power spectrum. Finally, in §4.5,
we briefly discuss the origin of cosmological perturbations.

4.1 Newtonian Theory of Small Perturbations

4.1.1 Ideal Fluid

Consider the Newtonian theory for the evolution of the density ρ and velocity u of a non-
relativistic fluid under the influence of a gravitational field with potential φ . The fluid description
is valid as long as the mean free path of the particles in consideration is much smaller than the

162



4.1 Newtonian Theory of Small Perturbations 163

scales of interest (see §B1.2). This applies to a baryonic gas, in which the frequent collisions
among the particles can establish local thermal equilibrium. The fluid description is also valid
for a pressureless dust (i.e. for collisionless dark matter), as long as the local velocity dispersion
of the dark matter particles is sufficiently small that particle diffusion can be neglected on the
scales of interest (see §4.1.4).

The time evolution of a fluid is given by the equation of continuity (which describes mass
conservation), the Euler equations (the equations of motion) and the Poisson equation (describing
the gravitational field):

Dρ
Dt

+ρ∇r ·u = 0 (continuity), (4.1)

Du
Dt

= −∇rP
ρ

−∇rφ (Euler), (4.2)

∇2
rφ = 4πGρ (Poisson), (4.3)

where r is the proper coordinate, ∂/∂ t is the partial derivative for fixed r, and

D
Dt

≡ ∂
∂ t

+u ·∇r (4.4)

is the convective time derivative that describes the time derivative as a quantity moves with the
fluid. Note that Eqs. (4.1)–(4.3) describe five relations for six unknowns (ρ , ux, uy, uz, P, and φ ).
Therefore, in order to close the set of equations, they need to be supplemented by the equation
of state to specify the fluid pressure P (see below).

To discuss the time evolution of the perturbations in an expanding Friedmann–Robertson–
Walker (FRW) universe, it is best to use the comoving coordinates x defined as

r = a(t)x. (4.5)

The proper velocity, u = ṙ, at a point x can then be written as

u = ȧ(t)x+v, v ≡ aẋ, (4.6)

where an overdot denotes derivative with respect to t, and v is the peculiar velocity describing
the motion of the fluid element relative to the fundamental observer (the one comoving with the
background) at x. With (x, t) replacing (r, t) as the space-time coordinates, the time and spatial
derivatives transform as

∇r → 1
a
∇x ;

∂
∂ t

→ ∂
∂ t

− ȧ
a

x ·∇x. (4.7)

Expressing the density ρ in terms of the density perturbation contrast against the background,

ρ(x, t) = ρ(t) [1+δ (x, t)] , (4.8)

and using the fact that ρ ∝ a−3, one can write Eqs. (4.1)–(4.3) in comoving coordinates as

∂δ
∂ t

+
1
a
∇ · [(1+δ )v] = 0, (4.9)

∂v
∂ t

+
ȧ
a

v+
1
a
(v ·∇)v = −∇Φ

a
− ∇P

aρ(1+δ )
, (4.10)

∇2Φ= 4πGρa2δ , Φ≡ φ +aäx2/2, (4.11)

where ∇≡ ∇x, and ∂/∂ t is now for fixed x. For a given cosmology [which specifies a(t)], and a
given equation of state, the above set of equations can in principle be solved.
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The above description, based on the assumption that the matter content of the Universe is
a non-relativistic fluid, can be extended to cases where the Universe contains a smooth back-
ground of relativistic particles (photons and neutrinos) or vacuum energy (e.g. the cosmological
constant). In such a case, both the continuity and Euler equations for a Newtonian fluid have
the same forms as Eqs. (4.1) and (4.2), but the gravitational potential φ should include the con-
tributions from these additional energy components. This can be done by replacing the Poisson
equation (4.3) by

∇2
rφ = 4πG(ρ+ ρ̃r + ρ̃v) , (4.12)

where ρ̃r and ρ̃v are the effective gravitational mass densities of the relativistic background and
the vacuum, respectively. As we have seen in §3.2.1, both the energy density and pressure of a
relativistic fluid act as sources of the gravitational acceleration, and in general the source term is
ρ̃ = ρ + 3P/c2. Thus, ρ̃r = ρr + 3Pr/c2 = 2ρr, and ρ̃v = ρv + 3Pv/c2 = −2ρv. These terms are
exactly the same as those in the equation for ä [see Eq. (3.58)], and are therefore subtracted from
the potential perturbation, Φ, defined in Eq. (4.11). Thus, the density perturbation δ (defined
against the mean density of the non-relativistic fluid, rather than the total mean density), the
peculiar velocity v, and the potential perturbation Φ still obey Eqs. (4.9)–(4.11). The effect of
adding a smooth component is only to change the general expansion of the background, i.e. to
change the form of a(t).

The equation of state of the fluid is determined by the thermodynamic process that the fluid
undergoes. In special cases where the pressure of the fluid depends only on the density ρ , the set
of fluid equations is completed with the equation of state, P = P(ρ). More generally, however,
we can write the equation of state as

P = P(ρ,S), (4.13)

where S is the specific entropy. Since this introduces a new quantity, we need an extra equation in
order to complete the set of equations. From the definition, dS = dQ/T (where dQ is the amount
of heat added to a fluid element with unit mass), we get

T
dS
dt

=
H −C

ρ
, (4.14)

where H and C are the heating and cooling rates per unit volume, respectively. As described in
Chapter 8, the forms of H and C are determined by physical processes such as radiative emis-
sion and absorption, and can be obtained from physical principles. If the evolution is adiabatic,
then dS/dt = 0.

For an ideal non-relativistic monatomic gas, the first law of thermodynamics applied to a unit
mass is

T dS = d

(
3
2

P
ρ

)
+Pd

(
1
ρ

)
. (4.15)

Using P = (ρ/μmp)kBT , with μ the mean molecular weight in units of the proton mass mp, to
substitute the temperature yields

d lnP =
5
3

dlnρ+
2
3
μmp

kB
SdlnS, (4.16)

and thus

P ∝ ρ5/3 exp

(
2
3
μmp

kB
S

)
. (4.17)
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From this we have

∇P
ρ

=
1
ρ

[(
∂P
∂ρ

)
S
∇ρ+

(
∂P
∂S

)
ρ
∇S

]

= c2
s∇δ +

2
3
(1+δ )T∇S, (4.18)

where

cs =
(
∂P
∂ρ

)1/2

S
(4.19)

is the adiabatic sound speed. Thus, the Euler equation (4.10) can be written as

∂v
∂ t

+
ȧ
a

v+
1
a
(v ·∇)v = −∇Φ

a
− c2

s

a
∇δ

(1+δ )
− 2T

3a
∇S. (4.20)

In special cases where both δ and v are small so that the nonlinear terms in Eqs. (4.9) and
(4.10) can be neglected, we get the following set of linear differential equations:

∂δ
∂ t

+
1
a
∇ ·v = 0, (4.21)

∂v
∂ t

+
ȧ
a

v = −∇Φ
a

− c2
s

a
∇δ − 2T

3a
∇S, (4.22)

where T is the temperature of the background, and cs is the sound speed evaluated using the
background quantities. Operating ∇× on both sides of Eq. (4.22) gives

∇×v ∝ a−1. (4.23)

Thus, in the linear regime, the curl of the peculiar velocity field dies off with the expansion and
can be neglected at late times. This basically expresses the conservation of angular momentum in
an expanding universe. Note that since the source terms in Eq. (4.22) are all gradients of scalars,
which are curl-free, there is no source for vorticity, at least not in the linear, Newtonian regime
considered here.

Differentiating Eq. (4.21) once with respect to t and using Eqs. (4.11) and (4.22) we obtain

∂ 2δ
∂ t2 +2

ȧ
a
∂δ
∂ t

= 4πGρδ +
c2

s

a2∇
2δ +

2
3

T
a2∇

2S. (4.24)

The second term on the left-hand side is the Hubble drag term, which tends to suppress pertur-
bation growth due to the expansion of the Universe. The first term on the right-hand side is the
gravitational term, which causes perturbations to grow via gravitational instability. The last two
terms on the right-hand side are both pressure terms: the ∇2δ term is due to the spatial variations
in density, while the ∇2S term is caused by the spatial variations of specific entropy.

In the linear regime, the equations governing the evolution of the perturbations are all linear
in perturbation quantities. It is then useful to expand the perturbation fields in some suitably
chosen mode functions. If the curvature of the Universe can be neglected, as is the case when the
Universe is flat or when the scales of interest are much smaller than the horizon size, the mode
functions can be chosen to be plane waves and the perturbation fields can be represented by their
Fourier transforms. For example, for δ (x, t) we can write

δ (x, t) =∑
k
δk(t)exp(ik ·x) ; δk(t) =

1
Vu

∫
δ (x, t)exp(−ik ·x)d3x, (4.25)

where Vu is the volume of a large box on which the perturbations are assumed to be periodic.
This convention of Fourier transformation is used throughout this book. Since we will always
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write the perturbation fields in terms of the comoving coordinates x, the wavevectors k are also
in comoving units.

We can obtain the evolution equation for each of the individual modes, δk(t) and Sk(t), corre-
sponding to δ (x, t) and S(x, t), by Fourier transforming Eq. (4.24). Using the fact that ∇ can be
replaced by ik and ∇2 by −k2 in the Fourier transformation, we obtain

d2δk

dt2 +2
ȧ
a

dδk

dt
=
[

4πGρ− k2c2
s

a2

]
δk − 2

3
T
a2 k2Sk. (4.26)

In addition, the Fourier transformed Poisson equation is

− k2Φk = 4πGρa2δk, (4.27)

where Φk is the Fourier transform of the perturbed gravitational potential field. Finally, since the
velocity field can be considered curl-free, we can write v as the gradient of a velocity potential:
v = ∇V , and so vk = ikVk. It then follows from the Fourier transformation of Eq. (4.21) that

vk =
iak
k2

dδk

dt
. (4.28)

4.1.2 Isentropic and Isocurvature Initial Conditions

As one can see from Eq. (4.24), both the density perturbation, δk, and the entropy perturbation,
Sk, act as sources for the evolution of the density fluctuations. Entropy perturbations correspond
to spatial variations in pressure and can generate density fluctuations through adiabatic expan-
sion and compression. Therefore, there are two distinct initial perturbations that can seed density
fluctuations: isentropic perturbations, for which the initial perturbation is in the density (δi �= 0)
but not in the specific entropy (δSi = 0), and isocurvature perturbations, for which δi = 0 but
δSi �= 0. In general, both isentropic and isocurvature perturbations may be present in the ini-
tial conditions. Since perturbations in the space-time metric are associated with perturbations in
the energy density, isentropic perturbations correspond to perturbations in space-time curvature,
while isocurvature perturbations do not. Because of this, isentropic perturbations are also called
curvature perturbations, in contrast to isocurvature perturbations.

Note that ‘isentropic’ and ‘isocurvature’ are nomenclature used to indicate the nature of initial
perturbations rather than the properties of the evolution. Even if the initial perturbation is isen-
tropic, entropy fluctuations can still be generated through non-adiabatic processes. In cosmology,
one sometimes uses ‘adiabatic perturbations’ to refer to isentropic initial conditions combined
with adiabatic evolution. Strictly speaking, however, the term ‘adiabatic’ should be used to spec-
ify the evolutionary process, while ‘isentropic’ should be used to indicate the nature of the spatial
fluctuations.

As we will see later in this chapter, isentropic initial perturbations are naturally predicted
by inflationary models, whereas isocurvature initial conditions may be generated in the early
Universe as spatial variations in the abundance ratios (e.g. the photon/baryon ratio) while keeping
the total energy density uniform in space.

4.1.3 Gravitational Instability

For isentropic initial perturbations with adiabatic evolution, one can set k2Sk = 0. If we ignore
for the moment the expansion of the Universe, then Eq. (4.26) becomes

d2δk

dt2 = −ω2δk with ω2 =
k2c2

s

a2 −4πGρ. (4.29)
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This defines a characteristic proper length, the Jeans length,

λJ ≡ 2πa
kJ

= cs

√
π

Gρ
, (4.30)

which expresses the distance a sound wave can travel in a gravitational free-fall time tff �
(Gρ)−1/2. For λ < λJ (k > kJ) we have ω2 > 0 and the solution of Eq. (4.29), given by
δk(t) = exp(±iωt), corresponds to a sound wave (also called acoustic wave), that propagates
with the sound speed. If λ > λJ (k < kJ), then ω2 < 0. In this case, the pressure can no longer
support the gravity and the solution of Eq. (4.29) represents a non-propagating, stationary wave
with an amplitude that either increases (growing mode) or decreases (decaying mode) with time
exponentially. This growing mode reflects the gravitational instability, or Jeans instability. If the
expansion is taken into account, the Hubble drag modifies these solutions: it causes a slow damp-
ing of the acoustic waves when λ < λJ, while the growth of the unstable modes in the case with
λ > λJ is slowed down (see §4.1.6).

It is clear from the above that only perturbations with k < kJ can grow. After recombination,
when baryonic matter decouples from radiation (i.e. at z∼< zdec ≈ 1,100), the relevant sound speed
can be approximated as that of a non-relativistic monatomic gas:

cs =
(

5kBT
3mp

)1/2

, (4.31)

where mp is the proton mass. The comoving Jeans length is then

λJ ≈ 0.01(Ωb,0h2)−1/2 Mpc. (4.32)

If we define the mass corresponding to a wavelength λ as the mass within a sphere of radius λ/2,
the corresponding Jeans mass is

MJ ≡ π
6
ρm,0λ

3
J ≈ 1.5×105(Ωb,0h2)−1/2 M�. (4.33)

Thus, shortly after recombination the Jeans mass is comparable to that of a globular cluster.
Before recombination, however, electrons and photons are tightly coupled via Compton scat-

tering. In this case, baryons and photons act like a single fluid with ρ = ρb +ρr and P = Pr =
1
3ρrc2 (see §3.1.5). For an adiabatic process, the energy densities ρb and ρr change due to adi-
abatic compression or contraction of volume elements as ρb ∝ V−1 and ρr ∝ V−4/3, and so the
adiabatic sound speed is

cs =
c√
3

[
3
4
ρb(z)
ργ(z)

+1

]−1/2

. (4.34)

Unfortunately, since the content of the fluid is not non-relativistic, the Newtonian treatment
considered above is no longer a good approximation. Nevertheless, for an order-of-magnitude
analysis, we may still use Eq. (4.30) to define a Jeans length. At the time when matter and
radiation have equal energy density, which is just prior to recombination, the Jeans mass is

MJ ≈ 1.2×1016(Ωb,0h2)−2 M�. (4.35)

Thus, isentropic baryonic perturbations with scale sizes smaller than that of a supercluster can-
not grow before recombination. At recombination, however, the Jeans mass rapidly decreases
by about 10 orders of magnitude, to the scale of globular clusters, and all perturbations of
intermediate scales can start to grow after recombination.

To see how isocurvature perturbations seed gravitational instability, let us consider a case
where the evolution is adiabatic so that Sk is independent of time. If we denote the two general
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solutions for the homogeneous equation corresponding to Eq. (4.26) (i.e. with the Sk term set to
zero) by δ+ (the growing mode) and δ− (the decaying mode), it can be shown that

δ̇+δ−− δ̇−δ+ = Ca−2, (4.36)

where C is a constant. One can then show that the special solution to Eq. (4.26) is

δ iso
k (t) = −2

3
k2Sk

×
[
δ+(k, t)

∫ t

ti
T (t ′)δ−(k, t ′)dt ′ −δ−(k, t)

∫ t

ti
T (t ′)δ+(k, t ′)dt ′

]
, (4.37)

where the amplitudes of δ+ and δ− are chosen so that C = 1. Hence, the general solution to
Eq. (4.26) can be written as δk(t) = δ iso

k (t) + A+δ+(k, t) + A−δ−(k, t), where A+ and A− are
constants to be determined by initial conditions. For isocurvature initial conditions, A+ = A− = 0,
and so δk(t) = δ iso

k (t). Thus, isocurvature initial conditions induce both growing and decaying
modes of density perturbations. At late times, when the decaying mode can be neglected, these
density perturbations evolve in exactly the same way as in the isentropic case.

4.1.4 Collisionless Gas

The fluid approximation discussed above is valid only when the mean free path of particles is
much smaller than the spatial scale of the perturbations in consideration. In other cases where the
collisions between particles are rare and the mean free path is large, the evolution of perturbations
is specified by the particle distribution function f (x,p, t), which gives the number of particles per
unit volume in phase space:

dN = f (x,p, t)d3xd3p. (4.38)

Here pi = ∂L /∂ ẋi is the canonical momentum conjugate to the comoving coordinates xi. To
obtain p, we use the Lagrangian of a particle with mass m in an expanding universe:

L =
1
2

m(aẋ+ ȧx)2 −mφ(x, t), (4.39)

which can be transformed into

L =
1
2

ma2ẋ2 −mΦ (4.40)

by a canonical transformation L → L − dX/dt with X = maȧx2/2. It then follows that the
canonical momentum and the equation of motion are

p =
∂L

∂ ẋ
= ma2ẋ = mav and

dp
dt

= −m∇Φ. (4.41)

According to Liouville’s theorem, the phase-space density f of a collisionless gas is a constant
along each particle trajectory and therefore obeys the Vlasov equation:

∂ f
∂ t

+
1

ma2 p ·∇ f −m∇Φ · ∂ f
∂p

= 0. (4.42)

This equation is just a result of conservation of particle number: the rate of change in particle
number in a unit phase-space volume is equal to the net flux of particles across its surface.

Although the full Vlasov equation is difficult to solve, one can obtain useful insights by con-
sidering the p moments (or the velocity moments) of f . Generally, the average value of a quantity
Q in the neighborhood of x is

〈Q〉 = 〈Q〉(x) ≡ 1
n

∫
Q f d3p, (4.43)
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where

n = n(x) ≡
∫

f d3p = ρa3 [1+δ (x)]/m (4.44)

is the comoving number density of particles at x, and for simplicity we assume the density of
the Universe to be dominated by the species of collisionless particles in question. Multiplying
Eq. (4.42) by Q and integrating over p we get

∂
∂ t

[n〈Q〉]+ 1
ma2∇ · [n〈Qp〉]+mn∇Φ ·

〈
∂Q
∂p

〉
= 0, (4.45)

where we have assumed f = 0 for p → ∞ so that the surface terms equal zero. Setting Q = m in
Eq. (4.45) and using Eq. (4.44) gives

∂δ
∂ t

+
1
a∑j

∂
∂x j

[(1+δ )〈v j〉] = 0, (4.46)

which is just a result of mass conservation. This is equivalent to the continuity equation for a non-
relativistic fluid given by Eq. (4.9), but with v replaced by the mean streaming motion 〈v〉. Note
that 〈v〉 is the average velocity of particles in the neighborhood of x and can be much smaller
than the typical velocity of individual particles.

The equation of motion can be obtained by setting Q = vi:

∂
∂ t

[(1+δ )〈vi〉]+ ȧ
a
(1+δ )〈vi〉 = −1+δ

a
∂Φ
∂xi

− 1
a∑j

∂
∂x j

[(1+δ )〈viv j〉] . (4.47)

Multiplying the continuity equation (4.46) with 〈vi〉 and subtracting the result from Eq. (4.47)
yields the collisionless equivalent of the Euler equations in an expanding universe:

∂ 〈vi〉
∂ t

+
ȧ
a
〈vi〉+ 1

a∑j
〈v j〉∂ 〈vi〉

∂x j
= −1

a
∂Φ
∂xi

− 1
a(1+δ )∑j

∂
∂x j

[
(1+δ )σ2

i j

]
, (4.48)

where we have defined

σ2
i j ≡ 〈viv j〉−〈vi〉〈v j〉. (4.49)

A comparison with Eq. (4.10) shows that ρσ2
i j, called the stress tensor, plays the role of pressure.

In principle, one can set Q = viv j and obtain the dynamical equation for 〈viv j〉 which, in turn,
will depend on the third velocity moment. As a result, the complete dynamics is given by an
infinite number of equations of velocity moments. In practice, we can truncate the hierarchy
by making some assumptions. If the velocity stress σ2

i j is small, so that the right-hand side of
Eq. (4.48) is dominated by the gravitational term, then to first order in δ (note that 〈v〉 ∼ δ in the
linear regime), Eqs. (4.46) and (4.48) can be combined to give

∂ 2δ
∂ t2 +2

ȧ
a
∂δ
∂ t

= 4πGρδ . (4.50)

This equation is the same as Eq. (4.24) with cs = 0. Thus, on scales where the velocity stress
is negligible, a collisionless gas can be treated as an ideal fluid with zero pressure. In general,
however, the velocity dispersion of a collisionless gas is not negligible, and the particles can
stream away from one place to another (see §4.1.5 below), making the fluid treatment invalid.

In the general case, therefore, one needs to consider the evolution of the full distribution func-
tion (or, equivalently, the full infinite hierarchy of moment equations). Here we will solve the full
Vlasov equation using perturbation theory. Without losing generality we can write

f = f0 + f1, (4.51)
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where f0 is the unperturbed distribution function and f1 is the perturbation. Note that f0 is inde-
pendent of x in a homogeneous and isotropic background. The comoving number density of
particles at x is n ≡ ∫ f d3p, and so the mass density at x is

ρ(x, t) =
m
a3

∫
f (x,p, t)d3p = ρ(t)

[
mn0

ρa3 +δ (x, t)
]
, (4.52)

where n0 ≡
∫

f0 d3p is the mean number density of particles (in comoving units), and

δ (x, t) =
m
ρa3

∫
f1 d3p (4.53)

is the density contrast with respect to the background. The gravitational potential Φ due to the
density perturbation is given by the Poisson equation (4.11). For a homogeneous and isotropic
background, f0 depends only on the magnitude of p and, since Φ is a first-order perturbation, the
unperturbed distribution function f0 obeys(

∂ f0

∂ t

)
q
= 0, (4.54)

where q = (∑i p2
i )

1/2 is the magnitude of p. [Note that p is reserved to denote (−gi j pi p j)1/2,
which is equal to q/a in a flat universe.] As we have seen in §3.3.2, the unperturbed particle

distribution function has the form f0 ∝
[
eE/kBT (a) ±1

]−1
, where E = p2/2m ∝ q2/a2 ∝ q2T (a)

for non-relativistic particles, and E = p ∝ q/a ∝ qT (a) for relativistic particles. We thus see that
f0 is independent of a for fixed q (or fixed |p|), instead of for fixed p.

To first order in the perturbation quantities, the equation for f1 is

∂ f1

∂ t
+

1
ma2 p ·∇ f1 −m∇Φ · ∂ f0

∂p
= 0 (4.55)

or, in terms of Fourier transforms,

∂ fk

∂ξ
+

ik ·p
m

fk(p,ξ ) = ma2
(

ik · ∂ f0

∂p

)
Φk(t), (4.56)

where dξ = dt/a2. This equation can be written in the form

∂
∂ξ

[
fk exp

(
ik ·p

m
ξ
)]

= ma2
(

ik · ∂ f0

∂p

)
Φk exp

(
ik ·p

m
ξ
)

. (4.57)

Integrating both sides from some initial time ξi to ξ , we get

fk(p,ξ ) = fk(p,ξi)exp

[
− ik ·p

m
(ξ −ξi)

]
+mik ·

(
∂ f0

∂p

)∫ ξ

ξi

dξ ′a2(ξ ′)Φk(ξ ′)exp

[
− ik ·p

m

(
ξ −ξ ′)] . (4.58)

Since the gravitational potential Φ depends on f1 through the Poisson equation, Eq. (4.58) is an
integral equation for fk and can be solved iteratively. The first term on the right-hand side of
Eq. (4.58) is a kinematic term due to the propagation of the initial condition, while the second
term describes the dynamical evolution of the perturbation due to gravitational interaction.

Inserting Eq. (4.58) into Eq. (4.53), it is straightforward to show that the dynamical part of δk
is given by

δk(ξ ) = −mk2

ρa3

∫ ξ

ξi

dξ ′(ξ −ξ ′)a2(ξ ′)Φk(ξ ′)G
[
k(ξ −ξ ′)/m

]
, (4.59)
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where G is the Fourier transform of f0:

G (s) =
∫

d3p f0(p)e−ip·s. (4.60)

Since f0 depends only on q (the amplitude of p), the angular part of the integration over p can be
carried out, giving

δk(ξ ) = −4πkm2

ρa3

∫ ξ

ξi

dξ ′a2(ξ ′)Φk(ξ ′)Ik(ξ −ξ ′), (4.61)

where

Ik(ξ −ξ ′) ≡
∫ ∞

0
dqq f0(q)sin

[
kq(ξ −ξ ′)

m

]
. (4.62)

4.1.5 Free-Streaming Damping

If (k ·p/m)	 ξ , i.e. (a/k)� vt, the phase of the dynamical part in Eq. (4.58) changes so rapidly
with ξ ′ that the integration over ξ ′ makes little contribution, implying that the perturbation can-
not grow with time. For the same reason, the contribution of the kinematic term to the density
perturbation, which is proportional to the integration of this term over p, is close to zero because
the integrand oscillates rapidly with p. The initial perturbation is therefore damped. What hap-
pens physically is that, because of their large random velocities and collisionless nature, particles
originally in the crests can move to the troughs and vice versa, leading to damping of the density
perturbations. This effect, owing to the random motions of the collisionless particles, is called
free-streaming damping and is similar to Landau damping in a plasma (see §5.5.4). The proper
length scale below which free-streaming damping becomes important is of the order vt, where t
is the age of the Universe, and v is the typical particle velocity at t. More precisely, we define the
free-streaming length as the comoving distance traveled by a particle before time t, which can be
written as

λfs =
∫ t

0

v(t ′)
a(t ′)

dt ′. (4.63)

If the particle becomes non-relativistic at tnr, then the peculiar velocity is v ∼ c at t < tnr, and
v ∝ a−1 at t > tnr. We will assume the Universe to be radiation dominated before tnr, i.e. tnr < teq,
as is almost always true in real applications. Using a(t) ∝ t1/2 at t < teq (see §3.2.3), one finds
that, at matter–radiation equality,

λfs =
2ctnr

anr

[
1+ ln(aeq/anr)

]
. (4.64)

For light neutrinos, the time at which the particles become non-relativistic is given by
3kBTν(tnr) � mνc2. With Tν = (4/11)1/3Tγ (see §3.3.3) this implies that (1 + znr) � 6 ×
104(mν/30eV). Using Eqs. (3.68) and (3.80) we then obtain

λfs � 31
( mν

30eV

)−1
Mpc, (4.65)

which corresponds to a free-streaming mass

Mfs ≡ π
6
ρm,0λ

3
fs � 1.3×1015

( mν
30eV

)−2
M�, (4.66)

where we have used thatΩνh2 = 0.32(mν/30eV) (see §3.3.5). Thus, if the Universe is dominated
by light neutrinos, all perturbations with masses smaller than that of a massive cluster are damped
out in the linear regime, and the first objects to form are superclusters.
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4.1.6 Specific Solutions

(a) Pressureless Fluid For isentropic perturbations in a pressureless fluid (or when k � kJ),
Eq. (4.26) reduces to

d2δk

dt2 +2
ȧ
a

dδk

dt
= 4πGρmδk, (4.67)

where ρm is the mean density of the fluid. It can be easily shown that if δ1(t) and δ2(t) are two
solutions then

δ2δ̇1 −δ1δ̇2 ∝ a−2. (4.68)

This is even true if the pressure term is included. Thus, if one solution of Eq. (4.67) is known, the
other one can be obtained by solving this first-order differential equation. To solve Eq. (4.67), we
recall that the Hubble constant, H(t) ≡ ȧ/a, obeys

dH
dt

+H2 = −4πG
3

(ρm −2ρv) (4.69)

(see §3.2.1). Since ρm ∝ a−3 and ρv = constant, differentiating the above equation once with
respect to t gives

d2H
dt2 +2

ȧ
a

dH
dt

= 4πGρmH. (4.70)

Thus, both δk(t) and H(t) obey the same equation. Since H(t) decreases with t [see Eq. (3.74)],

δ− ∝ H(t) (4.71)

represents the decaying mode of δ (t). By directly substituting the solution into Eq. (4.68), one
finds that the growing mode can be written as

δ+ ∝ H(t)
∫ t

0

dt ′

a2(t ′)H2(t ′)
∝ H(z)

∫ ∞

z

(1+ z′)
E3(z′)

dz′, (4.72)

where E(z) is given by Eq. (3.75).
For an Einstein–de Sitter universe,

δ+ ∝ t2/3; δ− ∝ H(t) ∝ t−1, (4.73)

which can be obtained directly by solving Eq. (4.67) with a(t) ∝ t2/3. For an open universe
with zero cosmological constant (Ωm,0 < 1, ΩΛ,0 = 0), the growing mode can be written in the
following closed form:

δ+ ∝ 1+
3
x

+
3(1+ x)1/2

x3/2
ln
[
(1+ x)1/2 − x1/2

]
, (4.74)

where x ≡ (Ω−1
m,0 − 1)/(1 + z). This growing mode has the asymptotic behavior that δ+ ∝

(1 + z)−1 as x → 0 and δ+ → 1 as x → ∞. In general, the growing mode can be obtained from
Eq. (4.72) numerically. A good approximation has been found by Carroll et al. (1992):

δ+ ∝ D(z) ∝ g(z)/(1+ z), (4.75)

where

g(z) ≈ 5
2
Ωm(z)

{
Ω4/7

m (z)−ΩΛ(z)+ [1+Ωm(z)/2][1+ΩΛ(z)/70]
}−1

, (4.76)

with Ωm(z) and ΩΛ(z) given by Eq. (3.77). Fig. 4.1 shows the linear growth rate D(z). Note that
linear perturbations grow faster in an Einstein–de Sitter (EdS) universe than in a universe with
Ωm,0 < 1. Physically this is due to the fact that in open universes, or in universes with a non-zero
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Fig. 4.1. The linear growth rates in cosmological models with Ωm,0 = 0.1, 0.2, 0.3, 0.5 and 1. The left
panel assumes ΩΛ,0 = 0 while the right panel assumes Ωm,0 +ΩΛ,0 = 1. The rates are all normalized so
that D(z = 0) = 1.

cosmological constant, the expansion rate is larger than in an EdS universe, and the perturbation
growth is reduced because of the enhanced Hubble drag.

It is also useful to look at the linear evolution of the potential perturbations during the matter
dominated regime. From the Poisson equation (4.27) we have thatΦk ∝ a2D(a)ρm(a)∝D(a)/a.
In an EdS universe where D(a) ∝ a, the potentials do not evolve (they are frozen in). In an open
universe, or in a flat universe with a cosmological constant, however, the linear growth rate is
suppressed and the potentials decay as the universe expands.

Inserting the growing mode of δ in Eq. (4.28), we have

vk =
ik
k2 Haδk f (Ωm), (4.77)

where

f (Ωm) ≡− dlnD(z)
dln(1+ z)

. (4.78)

To a good approximation f (Ωm) ≈ Ω0.6
m (Peebles, 1980). Thus, for a fixed matter power spec-

trum, a cosmology with a larger mean density produces larger peculiar velocities. Note also that
larger scale perturbations (smaller k) cause larger peculiar velocities than smaller perturbations
of the same magnitude. Thus, if we could somehow measure both the large scale (linear) den-
sity field and the peculiar velocity field (i.e. the deviations from the smooth Hubble flow), then
Eq. (4.77) would allow us to measure the mean density of the Universe. We will return to this in
Chapter 6.

(b) Perturbations in Two Non-Relativistic Components Next we consider isentropic per-
turbations in a fluid consisting of two non-relativistic components, one with and one without
pressure. An interesting example is the evolution of density perturbations in baryons induced by
a pressureless (cold) dark matter component. For simplicity, we assume the mean density of the
Universe to be dominated by the dark matter. In this case, the density perturbations in baryons,
δb, obeys the following equation (in Fourier space):
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d2δb

dt2 +2
ȧ
a

dδb

dt
+

k2c2
s a

a3 δb = 4πG
ρ0a3

0

a3 δdm, (4.79)

where δdm, the density perturbations in the dark matter, obey Eq. (4.67), and ρ0 � ρdm,0 is the
mean matter density at the present time. In the special case where c2

s a = constant (namely for a
polytropic fluid with P ∝ ρ4/3) and a(t) ∝ t2/3 (i.e. for an EdS universe), a special solution of
this equation is

δb(k, t) =
δdm(k, t)
1+ k2/k2

J

, with k2
J =

3a2H2

2c2
s

. (4.80)

On large scales (k � kJ) the baryonic perturbations closely follow the dark matter perturbations
(δb → δdm); this simply reflects that baryons are like a collisionless fluid when its pressure can be
neglected. On small scales (k 	 kJ), however, the baryonic pressure cannot be neglected, causing
baryon oscillations (i.e. acoustic waves, see below) that slowly damp due to the expansion of
the Universe (δb → 0). Although Eq. (4.80) is only a solution of Eq. (4.79) when the baryon
component is a polytropic fluid with adiabatic index γ = 4/3, it can be shown that the general
behavior is very similar for other values of γ .

The general solution of the homogeneous equation corresponding to Eq. (4.79), for which
the right-hand side is equal to zero, is δb ∝ t−(1±ε)/6 with ε = [1− 12(k/kJ)2]1/2. Since 1−
12(k/kJ)2 < 1, these two solutions correspond to modes which are either decaying or oscillating
with time. Thus, in the absence of perturbations in the dark matter (δdm = 0), there is no growing
mode for δb, simply because there is no source term (remember that we are assuming that ρdm 	
ρb). The only source term for δb in this case is δdm, and the corresponding growing mode is given
by Eq. (4.80).

(c) Acoustic Waves Consider once again the case of isentropic perturbations in a fluid consist-
ing of dark matter (with zero pressure) and baryons. As above, we assume that the mean density
of the Universe is dominated by the dark matter. If the time scale of interest is much shorter than
the Hubble time we can neglect the expansion and Eq. (4.26) reduces to

d2δb

dt2 +
k2c2

s

a2 δb = − k2

a2Φdm. (4.81)

Note that this differs from the case discussed in §4.1.3 in that the perturbations in the baryons are
not self-gravitating; the gravitational source term is due to the perturbations in the dark matter.

Eq. (4.81) is the equation of motion for a forced oscillator. If the potentialΦdm(k, t) is constant
over the time of interest, the solution can be written as

δb(η) =
[
δb(0)+

Φdm

c2
s

]
cos(kcsη)+

1
kcs

dδb

dη
(0)sin(kcsη)− Φdm

c2
s

, (4.82)

where we have introduced a new time variable η = t/a. Thus, δb(k, t) oscillates around a zero-
point, −Φdm(k, t)/c2

s , with a frequency ω = kcs, and with amplitude and phase set by the
initial conditions δb(0) = δb(k,0) and dδb/dη(0) = dδb/dη(k,0). Using the continuity equation
(4.28), we can also obtain the time evolution of the corresponding velocity perturbations:

vb(t) =
ik
k2

dδb

dη
= − icsk

k

[
δb(0)+

Φdm

c2
s

]
sin(kcsη)+

ik
k2

dδb

dη
(0)cos(kcsη). (4.83)

Note that there is a phase difference of π/2 between the velocity and density perturbations,
characteristic of a longitudinal (acoustic) wave.

Acoustic waves also play a role during the pre-recombination era. As shown in §3.5, photons
and baryons are tightly coupled before recombination and can be considered as a single fluid
with a sound speed given by Eq. (4.34). In this case the acoustic waves are driven by the photon
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pressure, and for a given mode, the oscillation frequency, amplitude and zero-point all depend
on the density ratio between baryons and photons through the sound speed cs. As we will show
in Chapter 6, the acoustic waves in the photon–baryon fluid at the epoch of decoupling give rise
to oscillations in the power spectrum of the cosmic microwave background. The amplitudes and
separations between peaks (or valleys) of these oscillations can thus be used to constrain the
baryon density of the Universe.

(d) Collisional Damping Although photons and baryons are tightly coupled to each other by
Compton scattering before recombination, the coupling is imperfect in the sense that the photon
mean-free path, λ = (σTne)−1, is not zero. Consequently, photons can diffuse from high-density
to low-density regions, thereby damping the perturbations in the photon distribution. Since the
acoustic waves in the pre-recombination era are driven by photon pressure, this photon diffusion
also leads to damping of the acoustic oscillations in the baryonic fluid. This damping mechanism
is known as Silk damping.

The scale on which Silk damping is important depends on the typical distance a photon can
diffuse in a Hubble time. To estimate this distance (which we denote by λd), consider the motion
of a photon to be a random walk with a mean ‘step length’ λ . The mean number of ‘steps’ a
photon takes over a time t is therefore N = ct/λ . It then follows from kinetic theory that

λd = (N/3)1/2λ = (ct/3σTne)
1/2 . (4.84)

At recombination (z ∼ zrec ∼ 1,100), this defines a Silk damping mass scale

Md ≡ π
6
ρm,0λ 3

d ∼ 2.8×1012(Ωb,0/Ωm,0)−3/2(Ωm,0h2)−5/4 M�, (4.85)

where we have used an ionization fraction of Xe = 0.1 (see §3.5) and we have assumed that
the Universe is dominated by matter at z = zrec. Note that this is only a rough estimate; more
accurate estimates yield a damping mass that is about an order of magnitude larger (see §4.2.5).
The perturbations in the baryon–photon fluid with masses below Md are expected to be damped
exponentially during the pre-recombination era. This may have an important impact on galaxy
formation. Consider for example a baryonic Einstein–de Sitter cosmology (Ωb,0 = Ωm,0 = 1).
Then Silk damping will erase all perturbations with masses smaller than ∼ 1013 M�. The only
way in which galaxies (which have baryonic masses ∼< 1011 M�) can form in such a cosmology
is through the fragmentation of non-damped structures with masses larger than ∼ 1013 M�. As
we will see later, this requires initial perturbations in the baryon component that are too large to
match the observed temperature fluctuations in the cosmic microwave background.

This problem can be circumvented if the matter component of the Universe is dominated by
non-baryonic, cold dark matter. Since cold dark matter is pressureless, it does not experience Silk
damping. Furthermore, because it decouples when already non-relativistic, cold dark matter does
not experience any significant amount of free-streaming either. Thus, at the end of recombination,
when the small-scale perturbations in the baryons have been damped away, the perturbations in
the dark matter component are still present. Since the baryons basically have become a pressure-
less fluid after recombination, they rapidly fall into the potential wells associated with these dark
matter perturbations. Consequently, in the presence of a significant amount of (cold) dark matter,
Silk damping is basically irrelevant for galaxy formation. The damped baryonic perturbations
can be ‘recreated’ at the end of recombination, as is expressed by Eq. (4.80).

(e) Perturbations on a Relativistic Background In the presence of a uniform relativistic back-
ground, the perturbations in the non-relativistic component (assumed to be pressureless) obey
Eq. (4.67), while the scale factor a is given by(

ȧ
a

)2

=
8πG

3
(ρm +ρ r) , (4.86)
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where ρm ∝ a−3 is the mean density in the non-relativistic component, ρ r ∝ a−4 is that in the
relativistic background, and for simplicity we assume an Einstein–de Sitter universe. Defining a
new time variable, ζ ≡ ρm/ρ r = a/aeq, the equation of motion for δk can be written as

d2δk

dζ 2 +
(2+3ζ )

2ζ (1+ζ )
dδk

dζ
=

3
2

δk

ζ (1+ζ )
. (4.87)

The two solutions of this equation are

δ+ ∝ 1+
3
2
ζ ; (4.88)

δ− ∝
(

1+
3
2
ζ
)

ln

[
(1+ζ )1/2 +1

(1+ζ )1/2 −1

]
−3(1+ζ )1/2. (4.89)

This shows that perturbations in the non-relativistic component cannot grow (δ+ = constant)
if the relativistic component dominates the energy density. As long as ζ � 1, the Hubble drag
therefore causes a stagnation of perturbation growth, known as the Mészáros effect (Mészáros,
1974). As is evident from Eq. (4.88), once the Universe becomes dominated by non-relativistic
matter, δ+ ∝ a, in agreement with Eq. (4.73).

4.1.7 Higher-Order Perturbation Theory

When deriving Eq. (4.24) we only used the linearized versions of the continuity equation (4.21)
and the Euler equation (4.22). In what followed we have therefore only considered perturbations
to linear order. However, some important new insights can be obtained by using a higher order
description.

Multiplying Eq. (4.9) by v and Eq. (4.10) by (1 + δ ), adding and then taking the divergence
gives

∂ 2δ
∂ t2 +2

ȧ
a
∂δ
∂ t

=
∇2P
ρa2 +

1
a2∇ · (1+δ )∇Φ+

1
a2∑

i, j

∂ 2

∂xi∂x j

[
(1+δ )v iv j] , (4.90)

which is equivalent to Eq. (4.24), but now without linearization. For simplicity, we consider only
pressureless gas. In this case, the above equation in Fourier space can be written as

d2δk

dt2 +2
ȧ
a

dδk

dt
= 4πGρδk +A −C , (4.91)

where

A = 2πGρ ∑
k′ �=(0,k)

[
k ·k′

k′2
+

k · (k−k′)
|k−k′|2

]
δk′δk−k′ , (4.92)

C =
1

Vu

∫
(1+δ ) ·

(
k ·v

a

)2

e−ik·x d3x, (4.93)

and the Euler equation (3.8) (with P = 0) can be written as

dvk

dt
+

ȧ
a

vk = 4πGρaδk
ik
k2 +E, (4.94)

with

E = − i
a∑k′

(
k′ ·vk−k′

)
vk′ . (4.95)

It is clear from these equations that different Fourier modes are coupled, something that is
absent in the first-order perturbation theory. However, it is also evident from these equations
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that these higher-order terms are negligibly small in the limit δ � 1. Mode coupling therefore
only becomes important when δ ∼ 1.

In general, the nonlinear equations (4.91)–(4.95) are difficult to solve. However, in the quasi-
linear regime, where δ ∼< 1, one can use high-order perturbation theory. One therefore expands
the density contrast (and the peculiar velocity) in a perturbation series like

δ (x, t) = δ (1)(x, t)+δ (2)(x, t)+δ (3)(x, t)+ . . ., (4.96)

where δ (1) is the linear solution and δ (�) = O[(δ (1))�] is the �th-order term obtained by inserting
the lower-order solutions into the nonlinear terms, A , C and E. In principle, such a procedure
is straightforward, although the calculations can be rather tedious. We refer the reader to Peebles
(1980) for a discussion on the second-order term, and to Bernardeau (1994) for some higher-order
solutions.

4.1.8 The Zel’dovich Approximation

Given that all fluctuations were small at early times, it is reasonable to assume that at more
recent epochs only the growing mode has a significant amplitude. Under this assumption, the
linear evolution of density perturbations reduces to the very simple form

δ (x,a) = D(a)δi(x), (4.97)

where δi(x) is the density perturbation at some initial time ti, and D(a) is normalized such that
D(ai) = 1. Thus the density field grows self-similarly with time. The same is also true both for the
gravitational acceleration and the peculiar velocity. This is easily seen by substituting Eq. (4.97)
into the Poisson equation (4.11). The scaling of the result with the expansion factor then implies
that

Φ(x,a) =
D(a)

a
Φi(x) where ∇2Φi = 4πGρma3δi(x). (4.98)

In an Einstein–de Sitter universe, where D ∝ a, this equation implies that Φ is independent of a.
Thus, the linearized Euler equation, v̇+(ȧ/a)v = −∇Φ/a, can be integrated for fixed x to give

v = −∇Φi

a

∫
D
a

dt. (4.99)

Because, by definition, D(a) satisfies the fluctuation growth equation, δ̈ +(2ȧ/a)δ̇ = 4πGρmδ ,
so that

∫
(D/a)dt = Ḋ/4πGρma, Eq. (4.99) can be written as

v = − Ḋ
4πGρma2∇Φi(x) = − 1

4πGρma
Ḋ
D
∇Φ, (4.100)

which shows that the peculiar velocity is proportional to the current gravitational acceleration.
Since v = aẋ, integrating the above equation once again and to the first order of the perturbations,
so that ∇Φi(x) can be replaced by ∇Φi(xi) (with xi the initial position of the mass element at x),
we obtain

x = xi − D(a)
4πGρma3∇Φi(xi). (4.101)

This formulation of linear perturbation theory, which is applicable to a pressureless fluid, is due
to Zel’dovich (1970). It is a Lagrangian description in that it specifies the growth of structure
by giving the displacement x− xi and the peculiar velocity v of each mass element in terms of
the initial position xi. Zel’dovich suggested that this formulation could be used to extrapolate
the evolution of structures into the regime where the displacements are no longer small (i.e. up
to δ ∼ 1). This procedure is known as the Zel’dovich approximation. Eqs. (4.100) and (4.101)
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show that it is a kinematic approximation; particle trajectories are straight lines, with the distance
traveled proportional to D. The corresponding density field is, by mass conservation, simply the
Jacobian of the mapping xi → x. Thus,

1+δ =
∣∣∣∣ ∂x
∂xi

∣∣∣∣−1

=
1

(1−λ1D)(1−λ2D)(1−λ3D)
, (4.102)

where λ1 ≥ λ2 ≥ λ3 are the three eigenvalues of the deformation tensor ∂ j∂k(Φi/4πGρma3). In
the linear case, where λ1D� 1, δ (x) = D(a)(λ1 +λ2 +λ3) = D(a)δi(x), as expected. Zel’dovich
proposed that Eq. (4.102) applies even for λ1D(a) ∼ 1. In this case, the density will become
infinite at a time when λ1D(a) = 1. The first nonlinear structures to form will then be two-
dimensional sheets, often called ‘pancakes’.

Clearly, the Zel’dovich approximation will not be valid after the formation of pancakes, when
shell crossing will occur. In reality, particles falling into pancakes will oscillate in the gravita-
tional potential, rather than move out along the directions of their initial velocities as predicted
by the approximation. This difficulty can be overcome to some degree in an improved scheme
where particles are assumed to stick together at shell crossing. This adhesion model is described
in considerable detail by Shandarin & Zel’dovich (1989).

4.2 Relativistic Theory of Small Perturbations

The Newtonian perturbation theory of small perturbations described above applies if (i) the
length scales of the perturbations are much smaller than the horizon size at the time in ques-
tion (so that causality can be considered instantaneous), and (ii) the matter content can be treated
as a non-relativistic fluid. If perturbations were created at an early time ti, then all perturbations
with scale sizes λ > cti would, at some time in the past, have failed to fulfill the first condition.
The second condition is not fulfilled for perturbations in relativistic particles, such as photons
and (massless) neutrinos.

In principle, a relativistic treatment of the evolution of small perturbations is straightforward.
The perturbations in the space-time metric are related to the density perturbation field through
Einstein’s field equation, [δG]μν = (8πG/c4)[δT ]μν , while the evolution of the perturbations
in the matter content follows from the conservation of energy–momentum: T μν ;ν = 0. For a
perfect, non-relativistic fluid the energy–momentum conservation law translates into a set of
simple fluid equations. In general, however, the fluid description is not appropriate and one has
to resort to the Boltzmann equation to describe the evolution of the full distribution functions in
phase space. The energy–momentum tensor can be related to this distribution function via a set
of moment equations. Thus, the Einstein field equations, combined with the energy–momentum
conservation law, basically are all that is needed to evolve cosmological perturbations in general
relativity. However, as we discuss below, the interpretation of fluctuations on scales larger than
the horizon size can sometimes cause confusion, because of the freedom in choosing coordinate
systems in general relativity.

Since the treatment here is quite tedious, the reader may want to skip this section on a first
reading and directly proceed to the next section where the results are summarized in terms of
linear transfer functions. Although some derivations there may depend on the material presented
in this section, the final forms of the linear transfer functions are sufficient for many of our
later discussions. Readers seeking an even more detailed description than what is given here are
referred to the references in the text and to the textbooks by Liddle & Lyth (2000) and Dodelson
(2003).

Throughout this section, we use the symbol δ to indicate the density perturbation field, and
[δA] to refer to A(x)−A. We use the conformal time τ =

∫
cdt/a as our time coordinate, and
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we distinguish between A′ ≡ dA/dτ and Ȧ ≡ dA/dt. The Kronecker symbol is written in three
different forms, δ i

j, δi j and δ i j. The summation rule is implied whenever there is a pair of
repeated indices in a term. Finally, we set c = 1 unless otherwise stated.

4.2.1 Gauge Freedom

To understand the meaning of gauge freedom, let us consider perturbations on a flat background
space-time. If we choose a coordinate system so that the metric of the background space-time
has the form

ds2 = gμν dxμ dxν = a2(τ)
(
dτ2 −δi j dxi dx j) , (4.103)

then the coordinates have explicit physical meaning: a(τ)(δi jdxidx j)1/2 is the proper distance,
and a(τ)dτ is the cosmic time. The importance of a background space-time in perturbation the-
ory is that all perturbations are defined with respect to the background. For example, the density
perturbation of a fluid is defined as δ (x,τ)≡ [ρ(x,τ)−ρ(τ)]/ρ(τ), where the density ρ(x,τ) is
the mass per unit proper volume as measured by an observer comoving with the fluid element at x
at time τ , while ρ(τ) is the mean density at this time. Thus, perturbations are defined by compar-
ing quantities in the physical space-time with those in a fictitious background, and a (one-to-one)
correspondence between points in these two space-times has to be chosen in order to define
perturbation quantities. Unfortunately, the choice of such correspondence (gauge choice) is not
unique, because general coordinate transformations on the perturbed space-time can change the
correspondence even for a given background space-time. As a result, different gauge choices
will typically yield different values for the same perturbation quantities (such as δ ). In addi-
tion, a perturbation quantity may be constant in one gauge, but increase or decrease with time in
another.

Because of curvature perturbations, the metric of the space-time becomes

gμν = gμν +[δg]μν , (4.104)

where [δg]μν is the metric perturbation relative to the background. Since one is allowed to
change coordinate systems in general relativity, one can use another set of coordinates to label the
same space-time. Suppose that the new coordinates x̃μ are related to xμ through an infinitesimal
transformation:

xμ → x̃μ = xμ +ξ μ(x), (4.105)

where ξ μ is small. The transformation of a quantity Q of the kind

Q(x) → Q̃(x) (4.106)

under the coordinate transformation (4.105) is called a gauge transformation. Note that a gauge
transformation is different from a general coordinate transformation Q(x) → Q̃(x̃). In a gauge
transformation, Q̃ and Q are both calculated at the same coordinate value corresponding to two
different space-time points, while in a general coordinate transformation both Q and x are trans-
formed so that we are dealing with the values of a quantity at the same space-time point observed
in the two systems.

From Eq. (4.105) we have

∂ x̃μ

∂xν
= δ μν +

∂ξ μ

∂xν
(x) and

∂xμ

∂ x̃ν
= δ μν − ∂ξ μ

∂xν
(x)+O(ξ 2), (4.107)
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and so to first order in ξ the gauge transformations for scalars (S), vectors (V ) and rank-2 tensors
(T ) are

S(x) → S̃(x) = S(x)−ξ μS,μ ;

Vμ(x) → Ṽμ(x) = Vμ(x)−Vμ,αξα −Vαξα ,μ ; (4.108)

Tμν(x) → T̃μν(x) = Tμν(x)−Tμν,αξα −Tμαξα ,ν −Tανξα ,μ ,

where Q,μ ≡ ∂Q/∂xμ . The partial derivatives can all be replaced by covariant differentiations
to the first order of ξ , and so S̃, Ṽμ and T̃μν are still scalars, vectors and tensors, respectively.
Applying these equations to the density (which is a scalar by definition), the four-velocity Uμ =
dxμ/ds (UμUμ = ŨμŨμ = 1), and the metric tensor, we have

ρ̃(x) = ρ [1+δ (x)]−ξ μ ∂ [ρ(1+δ )]
∂xμ

, and so δ̃ (x) = δ (x)− ρ ′

ρ
ξ 0 ; (4.109)

Ũ0(x) = U0(x)+
1
a
∂τξ 0 +

a′

a2 ξ
0, Ũ i(x) = Ui(x)+

1
a
∂τξ i ; (4.110)

g̃00(x) = g00(x)−2aa′ξ 0 −2a2∂τξ 0,

g̃0i(x) = g0i(x)+a2∂τξ i −a2∂iξ 0, (4.111)

g̃i j(x) = gi j(x)+2aa′δi jξ 0 +a2(∂iξ j +∂ jξ i),

where a prime denotes derivative with respect to the conformal time τ . The transformed metric
is still a valid solution of the Einstein equation for a new energy–momentum tensor T̃μν . Thus in
the new coordinate system, it looks as if extra perturbations (the terms containing ξ μ ) have been
introduced. We know that these extra ‘deviations’ are not physical, because they are just a result
of using inhomogeneous coordinates. For example, the extra term in the density perturbation in
Eq. (4.109) arises because we transform to a time coordinate τ + ξ 0(x) but define the density
contrast δ̃ relative to the mean background density at the time τ . The problem is how to get rid
of these spurious perturbations.

Since the spurious perturbations arise from the freedom in gauge transformations (i.e. the
gauge freedom), one may impose some gauge conditions on the coordinate system (i.e. on
the form of the metric) to try to eliminate the freedom. Of course, one should impose as
many gauge conditions as there are degrees of gauge freedom. Since the gauge transformation,
xμ → x̃μ = xμ + ξ μ(x), contains four arbitrary fields, ξ μ(x), in general one should impose four
independent gauge conditions on the metric. In other words, of the 10 fields associated with the
metric perturbation [δg]μν (which is symmetric), only six are physical.

There are different ways of imposing the gauge conditions (i.e. in choosing the space-time
coordinate systems). This freedom can sometimes be exploited to simplify the particular problem
at hand (just as one sometimes prefers to use spherical rather than Cartesian coordinates). There
are, however, two further problems related to a gauge choice. The first is the existence of residual
gauge freedom. As we will see below, even when four gauge conditions are imposed, not all
gauge freedom is necessarily eliminated. For example, even if we choose the metric to have the
form Eq. (4.103) (which is, of course, only valid for a flat space-time), there is still the freedom
in choosing the origin and length scale of the coordinates. In this simple case, the residual gauge
freedom is trivial, but in general it may appear in more complicated forms and must be taken
into account. Obviously, we prefer a gauge in which this residual gauge freedom is easy to deal
with. In general, we can single out the gauge part (gauge mode) in a perturbation quantity by
studying its response to the residual gauge freedom; the part that can be transformed away is the
gauge mode and should be discarded. The second problem is related to the interpretation of the
perturbation quantities. Unless it is gauge-invariant, a perturbation quantity can reveal different
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behavior in different gauges. This is not a problem of principle, because each observable is
defined only relative to a coordinate system specified by the corresponding measurement. For
example, the density and pressure of a fluid at a given point are defined as those measured by
an observer comoving with the fluid element at that point, while quantities like the temperature
anisotropy in the CMB may be defined to be that measured by an observer to whom the expansion
of the Universe appears isotropic. Once defined, these observables should be independent of
gauge. However, an observable may not correspond to a single perturbation quantity in a given
gauge; it may be a combination of several quantities.

The above discussion suggests the following approach for dealing with the gauge freedom:
(i) choose a specific gauge and evolve all perturbation quantities in this gauge; (ii) eliminate
all residual gauge modes; and (iii) interpret the perturbation quantities in terms of physical
observables. This approach was taken by Lifshitz (1946) in his classical paper on cosmological
perturbations. Alternatively, one can form gauge-invariant variables from linear combinations of
the perturbation quantities and study the evolution of these variables in any convenient gauge.
Being gauge-invariant, the results of the evolution can be interpreted in any given coordinate
system. Such a gauge-invariant approach is discussed in considerable detail in Bardeen (1980).

In what follows, we first describe some specific examples of gauge choices. These are the
synchronous gauge, first used by Lifshitz (1946) and subsequently adopted by many others (e.g.
Landau & Lifshitz, 1975; Peebles & Yu, 1970; Peebles, 1980), the Poisson gauge, advocated by
Bombelli et al. (1991) and Bertschinger (1996), and which has the advantage that the residual
gauge freedom is simple, and finally the conformal Newtonian gauge (Mukhanov et al., 1992),
which is a special case of the Poisson gauge with the advantage that it significantly simplifies the
equations and the corresponding interpretation.

4.2.2 Classification of Perturbations

Before describing specific examples of gauge choices, we first discuss some mathematical
properties of perturbations. In its most general form, the perturbed metric can be written as

ds2 = a2(τ)
{
(1+2Ψ)dτ2 −2wi dτ dxi − [(1−2Φ)δi j +Hi j] dxi dx j} . (4.112)

Note that for simplicity we have assumed the background to be flat; in general δi j in Eq. (4.112)
should be replaced by the spatial part of a Robertson–Walker metric. The perturbation quantities
wi are the components of a vector in the three-dimensional space, so that we can write w = wiei,
with ei a unit directional vector. Similarly, Hi j are the components of a traceless tensor (i.e.
δ i jHi j = 0) in the three-dimensional space, H = Hi jei ⊗ e j.

It is convenient to decompose w and H into longitudinal and transverse parts that are, respec-
tively, parallel and perpendicular to the gradient (or to the wavevector k in Fourier space). For
example, we can write

w = w|| +w⊥, (4.113)

so that

∇×w|| = 0, ∇ ·w⊥ = 0. (4.114)

Being curl-free, w|| can be written as the gradient of a scalar potential:

w|| ≡ ∇W . (4.115)

Similarly, we can write

H = H|| +H⊥ +HT, (4.116)
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where H|| has both components parallel to the gradient, HT has both components perpendicular
to the gradient, and H⊥ has one component parallel and one component perpendicular to the
gradient. It is straightforward to show that

εi jk∂ j∂lH
||
lk = 0, ∂i∂ jH

⊥
i j = 0, ∂iH

T
i j = 0, (4.117)

where εi jk is the three-dimensional Levi-Civita tensor. With these relations, we can write H ||
i j

in terms of the derivatives of a scalar field H , and H⊥
i j in terms of the derivatives of a vector

field Hi:

H ||
i j =

(
∂i∂ j − 1

3
δi j∇2

)
H ; H⊥

i j = ∂iH j −∂ jHi (with ∂iHi = 0). (4.118)

Thus, the metric perturbations are decomposed into parts of three different types: the scalar
modes, Ψ and Φ (both are scalars), and w||

i and H ||
i j (both are spatial derivatives of scalar fields);

the vector modes, w⊥
i (the transverse vector) and H⊥

i j (which is the gradient of a vector field);
and the tensor modes, HT

i j . The importance of decomposing metric perturbations into these
different modes is that they represent distinct physical phenomena. The scalar mode is con-
nected to the gravitational potential, the vector mode to gravito-magnetism, and the tensor mode
to gravitational radiation. In turn they describe density perturbations, vorticity perturbations, and
gravitational waves, respectively. Furthermore, in the linear regime, the scalar, vector, and tensor
modes evolve independently.

If we decompose the spatial part of the infinitesimal coordinate transformation (4.105) into
longitudinal and transverse parts and rewrite the transformation as

τ → τ̃ = τ+α(x) ; xi → x̃i = xi +∂iβ (x)+ ε i(x) (where ∂iε i = 0), (4.119)

then the gauge transformations of the perturbation quantities are

Ψ̃=Ψ−∂τα− a′

a
α, Φ̃=Φ+

1
3
∇2β +

a′

a
α, (4.120)

w̃||
i = w||

i +∂i (α−∂τβ ) , w̃⊥
i = w⊥

i −∂τεi, (4.121)

H̃ ||
i j = H ||

i j −2

(
∂i∂ j − δi j

3
∇2
)
β , H̃⊥

i j = H⊥
i j − (∂iε j +∂ jεi) , H̃T

i j = HT
i j. (4.122)

As one can see, the scalar part of the transformation (α,β ) only affects the scalar modes, the
vector part (ε) only affects the vector modes, while the tensor mode is gauge-invariant. For the
density and velocity perturbations, the transformations are

δ̃ = δ − ρ ′

ρ
α, θ̃ = θ +∂τ∇2β , (θ ≡ a∂ jU j = ∂ jv j). (4.123)

From these transformations, it can be shown that the following quantities (written in terms of
Fourier transforms) are gauge-invariant:

ΦA =Ψ+W ′ +
a′

a
W − 1

2
H ′′ − 1

2
a′

a
H ′, (4.124)

ΦH = −Φ+
a′

a
W +

k2

6
H − 1

2
a′

a
H ′, (4.125)

εg = δ +
ρ ′

ρ

(
W − 1

2
H ′
)

, θg = θ − k2

2
H ′. (4.126)



4.2 Relativistic Theory of Small Perturbations 183

In fact, these are the gauge-invariant potential, density and velocity perturbations defined by
Bardeen (1980), and these gauge-invariant quantities are the perturbations defined from the point
of view of the conformal Newtonian gauge, as we will see below. Another useful gauge-invariant
combination is

ε = εg − ρ ′

ρk2 θg = δ +
ρ ′

ρ
(
W −θ/k2) , (4.127)

which, as we will see below, is the density perturbation in the synchronous gauge.

4.2.3 Specific Examples of Gauge Choices

(a) Synchronous Gauge The synchronous gauge, first used by Lifshitz (1946), assumes that
the perturbed metric has the form

ds2 = gμν dxμ dxν = a2(τ)
[
dτ2 − (δi j +hi j)dxidx j] . (4.128)

The synchronous gauge therefore imposes the following four restrictions on the coordinate
system:

[δg]00 = [δg]0 j = 0, or equivalently, Ψ= wi = 0. (4.129)

The construction of such a coordinate system for a given space-time is discussed in Landau &
Lifshitz (1975, §97) and Peebles (1980, §81). In such a construction, one starts with an initial
spacelike hypersurface on which each point is assigned a clock and a set of spatial coordinates.
The clocks are synchronized on the initial spacelike hypersurface and move in free fall. The
space-time coordinates assigned to an event are the three spatial coordinates initially assigned to
the clock that happens to be at the location of the event and the time recorded by this clock.

Mathematically, we can transform an arbitrary metric (4.112) into the synchronous gauge
(which will be taken to be the x̃-system). The condition Ψ̃= 0 leads to

∂τα+
a′

a
α =Ψ, (4.130)

which can be solved to give

aα = A (x)+
∫

aΨdτ, (4.131)

with A (x) an arbitrary function of x. The condition w̃i = 0 gives

wi +∂i(α−∂τβ )−∂τεi = 0. (4.132)

Separated into longitudinal and transverse parts, this equation gives

β =
∫

(α+W )dτ+B(x), εi =
∫

w⊥
i dτ+Ei(x), (4.133)

where B(x) (an arbitrary scalar) and Ei(x) (an arbitrary transverse vector) depend only on x.
Notice that adding a purely time-dependent function to β is irrelevant, since the transformation
depends only on ∂iβ . Clearly, the synchronous gauge does not fix the coordinate system com-
pletely: we still have the freedom of choosing the forms of A (x), B(x) and Ei(x). Using the
gauge transformations given in Eqs. (4.120)–(4.123) it is easy to show that these residual gauge
modes appear in perturbation quantities (in Fourier space) as the terms containing A and B in
the following expressions:

δ − ρ ′

ρ
A

a
, θ − k2A /a, (4.134)

h−
(

6a′

a2 −2k2
∫

dτ
a

)
A +2k2B, η+

a′A
a2 , (4.135)
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where we have separated the scalar mode of the metric perturbation, hi j, into a trace part and a
traceless part,

hi j =
kik j

k2 h+
(

kik j

k2 − 1
3
δi j

)
6η , (4.136)

which defines the quantities h and η . These gauge modes arise from the freedom in defining the
initial spacelike hypersurface of simultaneity and from assigning the initial spatial coordinates
on this hypersurface.

(b) Poisson Gauge In the Poisson gauge (with coordinates denoted by x̃μ ), the following four
conditions are imposed on the metric:

∂iw̃i = 0, ∂iH̃i j = 0. (4.137)

Thus, the transformation from an arbitrary coordinate system (xμ ) to the Poisson gauge must
satisfy the conditions

∂iwi +∇2(α−∂τβ ) = 0, ∂iHi j − 4
3
∇2∂ jβ −∇2ε j = 0. (4.138)

In terms of the decompositions of wi and Hi j, these conditions imply

α = −W +
∂τH

2
+A (τ), β =

H

2
+B(τ), εi = Hi +Ei(τ), (4.139)

where A (τ), B(τ) and Ei(τ) are arbitrary functions of the conformal time τ . Therefore, the
Poisson gauge also contains residual gauge freedom (arising from the arbitrariness in A and Ei;
B is irrelevant since the gauge transformation involves only ∂iβ ). However, this residual freedom
is trivial: a uniform change of α in space is equivalent to the change of time and length units,
while a uniform change of εi is equivalent to a shift of the coordinate system.

(c) Conformal Newtonian Gauge A special case of the Poisson gauge is that with wi = 0 and
Hi j = 0. In this case the metric reduces to

ds2 = a2(τ)
[
(1+2Ψ)dτ2 − (1−2Φ)δi j dxi dx j] . (4.140)

This metric has a form similar to that in the Newtonian limit of gravity (see Appendix A1.5) and
is called the conformal Newtonian gauge or longitudinal gauge (Mukhanov et al., 1992). One
advantage of this gauge is that the metric tensor gμν is diagonal, which significantly simplifies
the calculations. However, since it imposes more conditions than there are gauge freedoms, the
conformal Newtonian gauge is a restrictive gauge which eliminates physical perturbations. In
fact, this gauge only permits scalar perturbations, and is invalid when vector and tensor perturba-
tions are concerned. However, because of its very simple form, the conformal Newtonian gauge
is extremely useful for dealing with scalar perturbations. As one can see from Eq. (4.140), the
perturbationΨ causes time dilation, while the perturbationΦ corresponds to an isotropic stretch-
ing of space. With wi and Hi j all set to zero in Eqs. (4.124)–(4.126), we see that the perturbations
in this gauge are directly related to the gauge-invariant variables: Ψ = ΦA, Φ = −ΦH , δ = εg

and θ = θg. Finally, in terms of the perturbation quantities defined in the synchronous gauge, the
perturbations in the conformal Newtonian gauge can be written (in Fourier space) as:

Ψ= ϖ ′ +
a′

a
ϖ , Φ= η− a′

a
ϖ , (4.141)

δcon = δsyn +ϖ
ρ ′

ρ
, [δP]con = [δP]syn +ϖP

′
, θcon = θsyn + k2ϖ , (4.142)

where ϖ = (h′ +6η ′)/(2k2).
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4.2.4 Basic Equations

Given that different gauge choices are physically equivalent, we can choose any convenient
gauge to describe the evolution of perturbation quantities. In what follows, we derive and solve
the dynamical equations in the conformal Newtonian gauge. This gauge has the advantage that
the metric is very simple, but is valid only for scalar perturbations. However, it can be easily
generalized to include vector and tensor perturbations (e.g. Bertschinger, 1996).

(a) Perturbed Einstein Equation As discussed in Chapter 3, the properties of space-time are
determined by the energy content through the Einstein field equation:

Gμν = 8πGTμν , (4.143)

where the energy–momentum tensor satisfies the conservation law,

T μν ;ν = 0 (4.144)

(see Appendix A). For the metric given by Eq. (4.140), it is not difficult to work out the linearized
Einstein field equation (see §A1.1). The time-time, longitudinal time-space, trace space-space,
and longitudinal traceless space-space parts of the Einstein equations give the following four
linear equations in k-space:

k2Φ+
3a′

a

(
Φ′ +

a′

a
Ψ
)

= −4πGa2[δT ]00, (4.145)

k2
(
Φ′ +

a′

a
Ψ
)

= 4πGa2(ρ+P)θ , (4.146)

Φ′′ +
a′

a

(
Ψ′ +2Φ′)+(2a′′

a
− a′2

a2

)
Ψ+

k2

3
(Φ−Ψ) = −4π

3
Ga2[δT ]ii, (4.147)

k2(Φ−Ψ) = 8πGa2PΠ, (4.148)

where

(ρ+P)θ ≡−ik j[δT ]0 j, PΠ≡ 3
2

[
kik j

k2 − 1
3
δi j

][
T i

j − 1
3
δ i

jT
l
l

]
. (4.149)

Note that there are more equations than variables, which reflects the fact that the Einstein field
equation has local conservation laws already built in.

(b) Fluid Equations For a single ideal fluid with density ρ and pressure P, the energy–
momentum tensor is

T μν = (ρ+P)UμUν −gμνP, (4.150)

where Uμ = dxμ/ds is the four-velocity. In this case, the perturbations of T μν are related to the
perturbations in ρ , P and v j ≡ aU j by:

[δT ]00 = ρδ , [δT ]0 j = −ρ(1+w)v j, [δT ]i j = −[δP]δ i
j, (4.151)

where

w ≡ P/ρ. (4.152)

In this case, Eqs. (4.145) and (4.146) can be combined to give

k2Φ= −4πGa2ρε, (4.153)
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where

ε = δ − 3a′

a
(1+w)θ/k2 (4.154)

is the gauge-invariant density perturbation defined in Eq. (4.127). Note that Eq. (4.153) has the
same form as the Poisson equation (4.11).

To linear order, the time and spatial components of the conservation law (4.144) give,
respectively, the following two equations for the density and velocity perturbations of the fluid:

δ ′ +(1+w)
(
θ −3Φ′)=

3a′

a

(
w− c2

s

)
δ , (4.155)

θ ′ +
a′

a
(1−3w)θ +

w′

1+w
θ +

∇2[δP]
ρ(1+w)

− k2Ψ= 0. (4.156)

Once the equation of state, w, is specified, Eqs. (4.155) and (4.156) can be solved together with
the perturbed Einstein equations.

(c) Boltzmann Equation The fluid approximation described above is valid for an ideal fluid,
but is inadequate for some important applications. For example, to describe the evolution of per-
turbations in photons and neutrinos, or to describe the interactions between photons and baryons,
we need to specify the evolution of the full distribution function, f (x,p,τ), which gives the
number density of particles in phase-space:

dN = f (x,p,τ)d3xd3p. (4.157)

As in classical statistical mechanics, the phase space is described by the three positions xi and
their conjugate momenta pi. Note that f is a scalar and is invariant under canonical transfor-
mation. Note also that the geodesic equation of a free particle can be derived from the action
principle through a Lagrangian L = m(gμν ẋμ ẋν)1/2 where m is the mass of the particle (e.g.
Peebles, 1980). It is then easy to prove that the conjugate momentum pi = ∂L /∂ ẋi is just the
spatial part of the four-momentum with lower indices (i.e. pi = mUi, where Ui = dxi/ds), and so
it obeys the geodesic equation

p0 dpμ
dτ

=
1
2

∂gαβ
∂xμ

pα pβ , (4.158)

where p0 = mU0 (see Appendix A). The energy–momentum tensor corresponding to the
distribution function f is

T μν =
∫

d4 p√−g
2δ (D)

(
gαβ pα pβ −m2

)
pμ pν f , (4.159)

with δ (D)(x) the Dirac delta-function.
Although the distribution function is defined by xi and the conjugate momenta pi, it is useful

to write the distribution function in terms of the momenta (Pi) and energy (E) defined in a local
Minkowski space. Note that the index of Pi is lowered by δi j and so Pi = Pi. Since by definition

E2 = P2 +m2, where P ≡ (δi jP
iP j)1/2

, (4.160)

and since gμν pμ pν = m2, we see that Pi and E are related to pμ by

Pi = Pi = a(1−Φ)pi, E = a(1+Ψ)p0 = (1−Ψ)p0/a. (4.161)

In practice, it is more convenient to work with another set of energy–momentum variables:

qi = aPi and Eq = aE. (4.162)
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It then follows that

E2
q = q2 +a2m2, where q2 = δ i jqiq j. (4.163)

Because P∝ a−1, qi so defined has the property that q2 is independent of a for uniform expansion.
Moreover, we shall write q j in terms of q and its direction cosines:

q j = qγ j, where δ i jγiγ j = 1. (4.164)

Thus, we will label phase space by (xi,q,γ j,τ) instead of (xi, p j,τ). Note that this is not a canon-
ical transformation (since q j is not the momentum conjugate to x j) and that we do not transform
f . Hence d3xd3q is not the phase-space volume element and f d3xd3q is not the particle number.

For particles that are collisionless the phase-space density is conserved, i.e. d f /dτ = 0. How-
ever, in general, a collisional term (which describes the change of the distribution function due
to collisions) should be included in the conservation law: d f /dτ = (∂ f /∂τ)c. In terms of the
variables (xi,q,γ j,τ), this conservation law can be written as

∂ f
∂τ

+
dxi

dτ
∂ f
∂xi +

dq
dτ
∂ f
∂q

+
dγi

dτ
∂ f
∂γi

=
(
∂ f
∂τ

)
c
. (4.165)

This is just the Boltzmann equation, but in non-canonical variables. Since f is independent of γi,
and γi is independent of τ , for a uniform and isotropic background, the last term on the left-hand
side of this equation is of second order in the perturbed quantities and can be neglected in a
first-order treatment. To complete the derivation we need to express dxi/dτ and dq/dτ in terms
of (xi,q,γ j,τ) to first order in the perturbation quantities. By definition pi = mUi = p0 dxi/dτ . It
then follows that, to first order in Φ and Ψ,

dxi

dτ
=

pi

p0 =
q

Eq
(1+Ψ+Φ)γ i, (4.166)

where γ i = δ i jγ j. Using the geodesic equation for p0, Eq. (4.158), it is straightforward to show
that, to the first order in Φ and Ψ,

dq
dτ

= q∂τΦ−Eqγ i∂iΨ. (4.167)

To study the perturbation of the distribution function, we write

f = f0 + f1, (4.168)

where f0 is the unperturbed distribution function and f1 is the perturbation. The unperturbed
distribution function is the Fermi–Dirac distribution for fermions (+ sign) and the Bose–Einstein
distribution for bosons (− sign):

f0(q) =
1

exp(q/kBT0)±1
, (4.169)

where T0 = aT is the temperature of the particles at the present time. Note that f0 is independent
of a for fixed q. To first order in the perturbed quantities, the Boltzmann equation (4.165), with
dxi/dτ and dq/dτ given above, yields the following equation for f1 (in Fourier space):

f ′1 + ikμ
q

Eq
f1 − q

4
∂ f0

∂q
Ψq =

(
∂ f1

∂τ

)
c
, (4.170)

where

Ψq ≡−4[Φ′ − ik(Eq/q)μΨ], and μ ≡ k ·q/|q||k|. (4.171)
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In terms of f1, the contributions of the species to the source terms in the Einstein equations can
be written as

T 0
0 =

1
a4

∫
q2 dqdω Eq( f0 + f1),

T 0
i = − 1

a4

∫
q2 dqdω qγi f1, (4.172)

T i
j = − 1

a4

∫
q2 dqdω

q2γiγ j

Eq
( f0 + f1),

where ω is the solid angle of q.
Multiplying both sides of Eq. (4.170) by exp(ikμτq/Eq) and integrating it from an initial time

τi to some later time τ , one finds

f1(χ) = f1(χi)e−ikμ(χ−χi) +
Eq

q

∫ χ

χi

[
q
4
∂ f0

∂q
Ψq +

(
∂ f1

∂τ

)
c

]
χ ′

e−ikμ(χ−χ ′) dχ ′, (4.173)

where χ = qτ/Eq. It is clear from this expression that perturbations in the distribution function
of a species can be produced (with a retarded time given by the exponential terms) by both
gravitational and collisional interactions. SinceΨq depends on f1 through the Einstein equations,
and (∂ f1/∂τ)c may also depend on f1, Eq. (4.173) is an integral equation for f1 and can be solved
iteratively for given q, k and μ . Note that this solution reduces to Eq. (4.58) in the Newtonian
limit.

For photons (Eq = q), it is convenient to consider the brightness perturbation,

Δ(k,q,μ , t) = − f1

(
q
4
∂ f0

∂q

)−1

= f1

(
T0

4
∂ f0

∂T0

)−1

, (4.174)

instead of the distribution function. Note that, for a Planck distribution, the brightness perturba-
tion is related to the temperature perturbation as

Δ= 4Θ, where Θ≡ ΔT
T

. (4.175)

It then follows from Eq. (4.170) that

Δ′ + ikμΔ+Ψq =
(
∂Δ
∂τ

)
c
. (4.176)

As we have done for f1 in Eq. (4.173), we can write

Δ(τ) = Δ(τi)e−ikμ(τ−τi) +
∫ τ

τi

[
Ψq −

(
∂Δ
∂τ

)
c

]
τ ′

e−ikμ(τ−τ ′) dτ ′. (4.177)

This equation can be solved iteratively together with the perturbed Einstein equations, once the
form of the collisional term is known.

Alternatively, one can expand the μ-dependence of Δ(k,q,μ , t) in Legendre polynomials:

Δ(k,q,μ , t) =
∞

∑
�=0

(−i)� (2�+1)Δ�(k,q, t)P�(μ). (4.178)

Substituting this into Eq. (4.176), using the orthonormality and recursion relation of P�, and
with the collisional term omitted for the sake of brevity, we obtain

δ ′γ = −4
3
θγ +4Φ′, (4.179)

θ ′γ =
k2

4
(δγ −2Δ2)+ k2Ψ, (4.180)
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Δ′2 =
8
15
θγ − 3k

5
Δ3, (4.181)

Δ′� =
k

(2�+1)
[�Δ�−1 − (�+1)Δ�+1] (� ≥ 3), (4.182)

where we have used the relations

Δ0 =
1
2

∫ 1

−1
Δdμ = δγ ; Δ1 =

1
2

∫ 1

−1
iΔμ dμ =

4
3k
θγ . (4.183)

With this expansion, the Boltzmann equation (4.176) is transformed into an infinite hierarchy of
coupled equations. However, since Δ� decreases rapidly with � for � ∼> kτ , sufficiently accurate
solutions can be obtained for each k by truncating the hierarchy at �max 	 kτ .

4.2.5 Coupling between Baryons and Radiation

Because dark matter particles are expected to have become non-interacting at very early
times, non-gravitational interactions are expected to be important only for baryonic matter
and photons. An important example is the coupling between baryons and photons during the
pre-recombination era.

As discussed in §3.5, before recombination photons and baryons are tightly coupled via
Compton scattering. The linearized collisional term for Compton scattering is(

∂Δ
∂τ

)
c
= σTnea

(
δγ +4ve · q̂−Δ) , (4.184)

where σT is the Thomson cross-section, ne is the electron density, ve is the peculiar velocity
of electrons in proper units, q̂ ≡ q/|q|, and for simplicity we have neglected the polarization
dependence of the scattering (see §6.7.3). Note that ve is parallel to k for a curl-free velocity field,
and so ve · q̂ = −(iθb/k)μ . Therefore, the Boltzmann equation for photons including Compton
scattering can be written as

Δ′ + ikμΔ+Ψq = σTnea
(
δγ −4iμθb/k−Δ) . (4.185)

The equation of motion for the baryonic matter (assumed to have negligible pressure) is

θ ′b +
a′

a
θb = k2Ψ+

4
3

ργ
ρb

aσTne
(
θγ −θb

)
, (4.186)

where the right-hand side describes the momentum transfer from the photons to the baryons. The
density perturbation in the baryonic component obeys

δ ′b +θb = 3Φ′. (4.187)

To complete the description, we need to supplement these equations with the equations for
the metric perturbations, Eqs. (4.145)–(4.148). In order to integrate the above set of perturbation
equations through recombination, one also needs to know how ne changes with time. This can
be done by solving the set of ionization equations described in §3.5. In general, the full set of
equations has to be solved through numerical calculations (e.g. Bond & Efstathiou, 1984; Ma &
Bertschinger, 1995). In what follows, we examine the behavior of the system in some limiting
cases.

(a) Tight-Coupling Limit If baryons and photons are tightly coupled, i.e. the mean free time
between collisions, tc ≡ 1/(σTne) � aτc, is much smaller than the age of the Universe t, we can
solve the perturbed quantities such as Δ in powers of τc/τ . For example, to solve for Δ we write
Eq. (4.185) as

Δ= X − τc
(
Δ′ + ikμΔ+Ψq

)
, where X ≡ δγ −4iμθb/k. (4.188)
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Iterating once we get

Δ≈ X − τc
(
X ′ + ikμX +Ψq + . . .

)
. (4.189)

Integrating both sides over μ , and using Eqs. (4.183) and (4.187), one obtains

δ ′γ =
4
3

(
3Φ′ −θb

)
=

4
3
δ ′b, (4.190)

which has the solution δγ = 4δb/3+ constant. Thus, the entropy fluctuation

δS ≡ 3
4
δγ −δb, (4.191)

which is gauge-invariant according to Eq. (4.123), is independent of time. That is, the evolution
is adiabatic in the tight-coupling limit. If the initial perturbation is isentropic, so that δS = 0 (i.e.
δb = 3δγ/4), it will remain so during the subsequent evolution in this limit.

(b) Damping of Small-Scale Perturbations during Recombination Before recombination,
baryons and photons are tightly coupled and they act like a single fluid. In this case, perturba-
tions with scale sizes smaller than the Jeans length oscillate like acoustic waves with amplitudes
that are declining slightly due to the Hubble expansion (see §4.1.3). However, because τc is not
exactly zero this coupling is not perfect. This imperfect coupling becomes more and more sig-
nificant as the Universe approaches the recombination epoch, when the number density of free
electrons starts to drop rapidly with time. Consequently, the photons can diffuse from high to low
density regions, leading to Silk damping of small-scale perturbations.

To show this, consider a plane-wave perturbation with wavelength λ = 2πa/k � ct during the
pre-recombination era. Since the wavelength is much smaller than the Jeans length λJ ∼ ct, we
can neglect the effect of gravity. Furthermore, since baryons and photons are still tightly coupled
during the pre-recombination era, we have that τc � τ . For simplicity, we will also neglect the
expansion of the Universe and set a′ = 0, which is a valid approximation as long as the damping
time scale is shorter than the expansion time scale. With all these assumptions and iterating
Eq. (4.188) twice we obtain

Δ= X − τc
(
X ′ + ikμX

)
+ τ2

c

(
X ′′ +2ikμX ′ − k2μ2X

)
. (4.192)

Integrating both sides over μ gives

δ ′γ ≈−4
3
θb +

τc

3

(
4θ ′b − k2δγ

)
. (4.193)

Multiplying both sides of Eq. (4.192) by μ and integrating over μ we obtain

θ ′b ≈
ργ
ρb

[
−4

3
θ ′b +

k2

3
δγ + τc

(
4
3
θ ′′b − 2k2

3
δ ′γ −

4k2

5
θb

)]
, (4.194)

where we have used Eq. (4.186) with a′ = 0. Eqs. (4.193) and (4.194) can be solved to give

δγ ∝ θb ∝ exp(−T τ) , (4.195)

where

T = ± ik√
3R

+
k2τc

6

(
1− 6

5R
+

1
R2

)
, R ≡ 1+

3
4
ρb

ργ
. (4.196)

The first term in T describes an acoustic oscillation, while the second term, which vanishes in
the perfect coupling limit (τc → 0), describes the effect of Silk damping.

The damping becomes significant for Re(T τ) ∼> 1. This defines a characteristic wavenumber

kd =
√

6/(ττc) so that all modes with k > kd are expected to suffer significant damping. Note
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that for these modes the damping time scale is shorter than the expansion time scale, and so
our assumption that a′ = 0 is justified. The comoving damping scale corresponding to kd at the
redshift of decoupling is

λd ∼ 1
kd

� 5.7
(
Ωm,0h2)−3/4

(
Ωb,0

Ωm,0

)−1/2( Xe

0.1

)−1/2(1+ zdec

1100

)−5/4

Mpc, (4.197)

and the corresponding damping mass is

Md � 2.7×1013 (Ωm,0h2)−5/4
(
Ωb,0

Ωm,0

)−3/2( Xe

0.1

)−3/2(1+ zdec

1100

)−15/4

M�, (4.198)

where Xe is the ionization fraction at z = zdec. Note that this damping mass is about an order
of magnitude larger than that obtained in §4.1.6 (d) from a simple argument based on pho-
ton diffusion. The implications of Silk damping for structure formation have been discussed
in §4.1.6 (d).

4.2.6 Perturbation Evolution

Once the initial conditions are specified, the equations described in §4.2.4 can be used to compute
the evolution of perturbations in the linear regime. In general, the problem is complicated and
numerical computations are required to find accurate solutions. In what follows, we describe
several analytical solutions based on various approximations.

Although any realistic analysis of cosmological perturbations must take into account that the
Universe contains several mass (energy) components, useful insight can be gained by consid-
ering a model in which the Universe is assumed to contain only radiation and dark matter. We
assume that the dark matter is a collisionless fluid that has decoupled from the hot plasma when
already non-relativistic (i.e. we assume the dark matter to be ‘cold’; see §3.3.5). We also assume
that the radiation is an ideal fluid, which is a valid treatment before recombination when the
photons are tightly coupled to the baryonic component. The baryonic matter density, however, is
here assumed to be negligible compared to that of the dark matter. Finally we assume the Uni-
verse to be flat, which is a valid assumption at sufficiently early times when the curvature and
cosmological constant terms in the Friedmann equation can be neglected.

With all these assumptions, the fluid equations (4.155)–(4.156) describing the perturba-
tions are

δ ′dm +θdm = 3Φ′, θ ′dm +
a′

a
θdm = k2Φ ; (4.199)

δ ′γ +
4
3
θγ = 4Φ′, θ ′γ −

1
4

k2δγ = k2Φ. (4.200)

Note that for an ideal fluid the stress tensor PΠ= 0 and therefore, using Eq. (4.148), we have that
Ψ = Φ. The metric perturbations are related to δdm, δγ , θdm and θγ through the three perturbed
Einstein equations (4.145)–(4.147). The first and third equations can be written as

k2Φ+
3a′

a

(
Φ′ +

a′

a
Φ
)

= −4πGa2(ρdmδdm +ργδγ), (4.201)

Φ′′ +
3a′

a
Φ′ +

(
2a′′

a
− a′2

a2

)
Φ=

4πG
3

a2ργδγ , (4.202)

and the combination of the first and second equations gives

k2Φ= −4πGa2
(
ρdmεdm +ργεγ

)
, (4.203)
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where εdm and εγ are defined according to Eq. (4.154). Note that the metric perturbations are
described by a single function, Φ, and so only one of these equations is needed to solve the fluid
equations. However, as we will see below, it is sometimes more convenient to use one equation
than another.

As all the equations are linear in the perturbation quantities, their evolution can be analyzed in
terms of any linear combination. Since we distinguish isentropic and isocurvature perturbations,
two quantities that are particularly important for our later discussion are the metric perturbation
Φ and the entropy perturbation

δS ≡ δnγ
nγ

− δndm

ndm
=

3
4
δγ −δdm, (4.204)

where the second equation follows from ndm ∝ ρdm and nγ ∝ T 3 ∝ ρ3/4
γ . So defined, δS is zero

if nγ/ndm = constant. Using the equations given above, one can show that these two quantities
obey the following two equations:

1
3c2

s
Φ′′ +

(
1+

1
c2

s

)
a′

a
Φ′ +

(
k2

3
+

1
4ζτ2

e

)
Φ=

δS

2ζτ2
e

; (4.205)

1
3c2

s
δ ′′S +

a′

a
δ ′S +

k2ζ
4
δS =

1
6
ζ 2k4τ2

eΦ, (4.206)

where τe is a characteristic, conformal time at around the time of matter–radiation equality, teq,

τe ≡ 1

H0
√
Ωdm,0(1+ zeq)

∼
∫ teq

0

dt
a

= τeq, (4.207)

and we have used Eq. (3.100). The sound speed is given by

cs ≡
(

P
′

ρ ′

)1/2

=
1√
3

(
1+

3ζ
4

)−1/2

, (4.208)

and

ζ ≡ ρdm

ργ
=

a
aeq

=
τ
τe

+
(
τ

2τe

)2

. (4.209)

Eq. (4.205) can be derived by replacing δdm in Eq. (4.201) with (3/4)δγ − δS, eliminating the
term ργδγ with the use of Eq. (4.202), and using the equations for the scale factor a. One
way to derive Eq. (4.206) is to use δ ′S = (3/4)δ ′γ − δ ′dm = θdm − θγ and δ ′′S = θ ′dm − θ ′γ =
−(a′/a)θdm − (1/4)k2δγ . These two relations, together with the definition of δS, give εγ =
−4[δ ′′S +(a′/a)δ ′S]/k2 and εdm = −3(δ ′′S + k2δS/3)/k2. Eq. (4.205) then follows from inserting
these expressions for εγ and εdm into Eq. (4.203).

In addition to τe, there is another important time scale in the evolution of Φ and δS, namely
the time when the perturbations enter the sound horizon. The corresponding conformal time is
τh ≡ π/(kcs). In what follows we discuss the solutions of the evolution equations in various time
regimes defined by τe and τh.

(a) Initial Conditions In order to connect the perturbation evolution to be described below
to the initial conditions of perturbations, let us first examine the solutions of Eqs. (4.205) and
(4.206) in the early radiation dominated era when ζ = τ/τe � 1, a∝ τ and c2

s = 1/3. In this case,
we can neglect the terms Φ/(4ζτ2

e ) and δS/(2ζτ2
e ) because 1/(ζτ2

e ) � 1/τ2, and so Eq. (4.205)
reduces to

Φ′′ +
4
τ
Φ′ +

k2

3
Φ= 0. (4.210)
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Defining u = Φτ , we can convert the above equation into u′′ + (2/τ)u′ + (k2/3− 2/τ2)u = 0,
which is the spherical Bessel equation of order 1 with solutions j1(kτ/

√
3), the spherical Bessel

function, and n1(kτ/
√

3), the spherical Neumann function. Since the latter solution diverges for
τ → 0, it should be discarded on the basis of initial conditions. Thus, the relevant solution of
Eq. (4.210) is

Φ(k,τ) =
3

(ωτ)3 (sinωτ−ωτ cosωτ)A(k), (4.211)

where ω ≡ k/
√

3, and A(k) is the integration constant chosen so that Φ(k,τ → 0) = A(k).
In the early radiation dominated era, Eq. (4.206) reduces to

δ ′′S +δ ′S/τ = 0, (4.212)

which has as solutions δS = constant and δS = lnτ . The second solution should be discarded
because it diverges as τ → 0, and so the relevant solution is

δS(k,τ) = I(k), (4.213)

where I(k) is time-independent.
Thus, the initial conditions for the metric and entropy perturbations are described by the two

functions, A(k) and I(k), with I(k) = 0 specifying isentropic initial conditions, and A(k) = 0
specifying isocurvature initial conditions. In general both isentropic and isocurvature modes may
exist in the initial perturbations. The relative importance of the two modes depends on how the
initial perturbations are generated.

In order to see how isocurvature initial conditions generate curvature perturbations, we need to
solve Eq. (4.205) including the source term δS/(2ζτ2

e ), with the initial condition A(k) = 0. In the
radiation dominated era considered here, we can replace δS in the source term by I(k), because
the source term is already a higher order term in τ/τe compared to theΦ′′ andΦ′ terms. Similarly,
we can replace Φ in Φ/(4ζτ2

e ) by A(k) = 0. Thus the equation to be solved is Eq. (4.210) with a
source term, I(k)/(2ζτ2

e ), on the right-hand side. The particular solution of this equation is

Φ(k,τ) =
τ
τe

1
(ωτ)4

[
1+

(ωτ)2

2
− (cosωτ+ωτ sinωτ)

]
I(k), (4.214)

which can be obtained straightforwardly using Green’s function method. For τ→ 0, this solution
gives Φ(k,τ) ∼ (1/8)(τ/τe)I(k), which shows that isocurvature initial conditions can give rise
to significant metric perturbations at the time when the Universe becomes matter dominated.

Similarly, the generation of entropy perturbations by isentropic initial conditions can be ana-
lyzed by studying the particular solution of Eq. (4.212) with a source term, (1/6)ζ 2k4τeA(k).
The particular solution of this equation, again obtained through Green’s function method, is

δS(k,τ) = 9

[
lnωτ+C −Ci(ωτ)+

1
2
(cosωτ−1)

]
A(k), (4.215)

where C = 0.5772 . . . is the Euler constant, and

Ci(x) = C + lnx+
∫ x

0

cos t −1
t

dt (4.216)

is the cosine integral. This solution scales as (kτ)4A(k) for kτ → 0, which shows that the isen-
tropic initial conditions can give rise to a significant mode of entropy perturbation at a time when
the horizon size τ becomes comparable to the size of the mode, 1/k. As we will see below,
once a perturbation in the radiation component approaches the horizon, the pressure gradient in
the perturbation causes it to decay. Since the same perturbation mode in the matter component
remains roughly constant in the radiation dominated regime due to the Mészáros effect, entropy
fluctuations are produced.
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(b) Super-Horizon Evolution of Isentropic Perturbations At sufficiently early times, all
modes of perturbations are super-horizon in the sense that their wavelengths are much larger than
the horizon size so that kτ→ 0. In such limit, δS remains constant according to Eq. (4.206). Thus,
for isentropic initial conditions, δS remains zero throughout the super-horizon evolution. Setting
δS = 0 and neglecting the term containing k2 in Eq. (4.205), and using ζ defined in Eq. (4.209)
to replace τ as the time variable, we can cast Eq. (4.205) into the following form:

d2Φ
dζ 2 +

21ζ 2 +54ζ +32
2ζ (ζ +1)(3ζ +4)

dΦ
dζ

+
Φ

ζ (ζ +1)(3ζ +4)
= 0. (4.217)

An analytical solution of this equation was found by Kodama & Sasaki (1984). In terms of the
new variable, u =Φζ 3/

√
ζ +1, the above equation can be converted into

d2u
dζ 2 −

[
2
ζ
− 3/2

1+ζ
+

3
3ζ +4

]
du
dζ

= 0, (4.218)

which can be integrated to give du/dζ = C1ζ 2(3ζ + 4)/(1 + ζ )3/2 with C1 a constant. The
general solution for Φ is therefore

Φ= C1

√
1+ζ
ζ 3

∫ ζ

0

y2(3y+4)
(1+ y)3/2

dy+C2

√
1+ζ
ζ 3 , (4.219)

where C2 is another constant. It can then be shown that the solution forΦwith the initial condition
Φ(k,ζ → 0) = A(k) is

Φ(k,τ) =
A(k)
10

1
ζ 3

[
16
√

1+ζ +9ζ 3 +2ζ 2 −8ζ −16
]
. (4.220)

In the radiation dominated era when ζ � 1, this solution reduces to Φ = A(k), the same as
that given by Eq. (4.211) in the same limit. Once the Universe becomes matter dominated so that
ζ 	 1, the above solution givesΦ→ (9/10)A(k). Hence, for perturbations that enter the horizon
after the epoch of matter–radiation equality, i.e. for kτe < 1, their amplitudes are reduced by a
factor of 1/10 through the epoch of radiation–matter equality.

(c) Sub-Horizon Evolution of Isentropic Perturbations Consider the case in which a mode
enters the horizon at a time when the Universe is dominated by radiation so that ζ = τ/τe � 1 and
ργδγ 	 ρdmδdm. In this limit, the evolution of isentropic perturbations is given by Eq. (4.211). In
the limit kτ	 1 (i.e. for perturbations well inside the horizon), the solution given by Eq. (4.211)
reduces to

Φ(k,τ) = −3
cosωτ
(ωτ)2 A(k). (4.221)

In the same limit, Eq. (4.201) reduces to the Poisson equation k2Φ = −4πGa2ργδγ . Inserting
Eq. (4.221) into this Poisson equation gives

δγ ≈− k2Φ
4πGa2ργ

≈ 6A(k)cosωτ. (4.222)

This represents acoustic waves in the photon–baryon plasma. In this limit, Newtonian perturba-
tion theory applies, and it is thus not surprising that the results are similar to those obtained in
§4.1.6(c). Because of the radiation pressure, δγ oscillates with roughly constant amplitude, caus-
ing the potential to oscillate and to decay as τ−2. Using the above solution for δγ and the solution
(4.215) for δS, we have

δdm =
3
4
δγ −δS ≈−9A(k) [ln(ωτ)+C −1/2] , (4.223)

where we have used the fact that Ci(ωτ) ≈ 0 in the limit kτ 	 1.
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The solutions discussed above are obtained with the assumption that ργδγ 	 ρdmδdm. Since
δdm increases with time while δγ oscillates with a constant amplitude, and since ργ decreases with
time faster than ρdm, the above assumption may not be valid at the later stages of the radiation
dominated era. In order to study the evolution of δdm in this regime, we can combine the two
equations in Eq. (4.199) to obtain

δ ′′dm +
a′

a
δ ′dm = 3Φ′′ +

3a′

a
Φ′ − k2Φ≈−k2Φ, (4.224)

where the last step follows from kτ 	 1. In the limit kτ 	 1, Eq. (4.201) reduces to the Poisson
equation k2Φ = −4πGa2(ργδγ + ρdmδdm). Substituting this in the above equation leads to an
equation for δdm that is exactly the same as that in Newtonian perturbation theory. Thus, if the
mean density of the Universe is dominated by radiation but ργδγ � ρdmδdm, the growing mode
solution is that given by Eq. (4.88), and the growth of perturbations in the matter component is
stagnated due to the Mészáros effect.

Once the Universe becomes matter dominated, sub-horizon perturbations evolve with time
according to the Newtonian theory described in §4.1: δdm ∝ D(a) and Φ ∝ D(a)/a. Note that
in an Einstein–de Sitter universe, where D(a) = a, the potentials are frozen in at their values
at around the time of matter–radiation equality. If the expansion of the Universe at late times
becomes dominated by the curvature term, or by a cosmological constant, the growth rate slows
down causing the potential to decay.

(d) Super-Horizon Evolution of Isocurvature Perturbations Since δS remains constant dur-
ing super-horizon evolution according to Eq. (4.206), we can set δS to be its initial value, I(k),
throughout this era of evolution. Replacing δS by I(k) in Eq. (4.205) and neglecting the term
containing k2 (because kτ � 1), we obtain

Φ′′ +3(1+ c2
s )

a′

a
Φ′ +

3c2
s

4ζτ2
e
Φ=

3c2
s

2ζτ2
e

I(k). (4.225)

It is easy to see that this equation has the particular solution Φ= 2I(k), but this solution does not
satisfy the isocurvature initial condition, Φ(k,τ → 0) = 0. The solution that satisfies this initial
condition can be obtained by a linear combination of the particular solution with the general solu-
tion of the homogeneous equation. The latter is given by Eq. (4.219). It is then straightforward to
show that the solution we are seeking is

Φ=
( x

5

) x2 +6x+10
(x+2)3 I(k), (4.226)

where x ≡ τ/(2τe).
During the early radiation dominated era when τ/τe � 1, the above solution reduces to

Φ(k,τ) =
1
8

I(k)
τ
τe

[
1− (ωτ)2

18

]
, (4.227)

where we have kept the first non-zero term in ωτ . Inserting this and δS = 3
4δγ −δdm = I(k) into

Eq. (4.201) gives

δγ ≈ 1
2

I(k)
[

1− 7
18

(ωτ)2
]
ζ , δdm ≈−I(k)

(
1− 3

8
ζ
)
− 7ζ

48
I(k)(ωτ)2. (4.228)

Using the first equation in Eq. (4.200) we see that the (ωτ)2 terms in δγ and δdm are due to
θγ , i.e. to the pressure gradient in the radiation component. Initially these terms are negligibly
small. Since ζ ∝ a∝ τ the above solutions imply that the density perturbations in the dark matter
component decrease, while those in the radiation field increase with time. However, once a mode
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starts to approach the horizon size (kτ ∼< 1) the (ωτ)2 terms can no longer be neglected. In fact,
the pressure gradient reduces the growth rate of δγ , adding a growing term to δdm. This effect
becomes important when ωτ ∼ 1, and ultimately causes a reversal in the decay of δdm.

In the matter dominated era (τ/τe 	 1), solution (4.226) gives

Φ=
1
5

I(k). (4.229)

Inserting this solution and δS = (3/4)δγ−δdm = I(k) into Eq. (4.201), and using the fact that the
k2 term can be neglected for super-horizon evolution and that ργ � ρdm in the matter dominated
era, we obtain

δdm = −2Φ= −2
5

I(k), δγ =
4
5

I(k). (4.230)

(e) Sub-Horizon Evolution of Isocurvature Perturbations In the early radiation dominated
era when τ/τe � 1, the evolution ofΦwith isocurvature initial conditions is given by Eq. (4.214).
In the limit kτ 	 1, i.e. for perturbations well inside the horizon, we have

Φ≈ I(k)
(ωτ)3

(ωτ
2

− sinωτ
)
ζ . (4.231)

In the same limit, Eq. (4.201) reduces to the Poisson equation k2Φ= −4πGa2(ργδγ +ρdmδdm).
Since δS = I(k) according to Eq. (4.213), the above solution for Φ gives

δγ ≈ ζ I(k)−2(ωτ)2Φ∼ 2sinωτ
ωτ

I(k)ζ , δdm ≈
[

3
2

sinωτ
ωτ

ζ −1

]
I(k). (4.232)

Thus, the potential, which builds up during horizon crossing, subsequently decays again. This is
similar to the isentropic case, and is due to the fact that perturbation growth is inhibited during
the radiation dominated era. The solution of δγ represents an acoustic wave with an amplitude
of 2I(k)/(ωτe) � I(k). Note that the isocurvature modes correspond to the sine part of the
acoustic solutions (4.82); they thus have a phase difference of π/2 with respect to the acoustic
waves associated with the isentropic modes (4.222). The dark matter perturbations δdm ∼−I(k),
as long as ζ < 1, because of the Mészáros effect described in §4.1.6(e). Note that, unlike in the
isentropic case, there is no logarithmic growth before the onset of the Mészáros effect in the
isocurvature case, because here ρdmδdm is always larger than ργδγ in the radiation dominated
era. Once the Universe becomes matter dominated, sub-horizon perturbations evolve with time
according to the Newtonian theory described in §4.1.

4.3 Linear Transfer Functions

In the last two sections we have seen how perturbations in the metric and the density field evolve
with time. We now address the relation between the initial conditions and the density pertur-
bations that we observe in the post-recombination Universe. A convenient way to describe this
relation is through a linear transfer function, T (k), which relates the amplitudes of sub-horizon
Fourier modes in the post-recombination era to the initial conditions. Different definitions have
been used for the transfer function in the literature. We define the linear transfer function for
isentropic and isocurvature perturbations as

Φ(k, t) = K β (k)T (k, tm)
D(t)
a(t)

a(tm)
D(tm)

, (4.233)

where D(t) is the linear growth factor in the post-recombination era (see §4.1.6), and tm is a time
when the Universe is already matter dominated but the cosmological constant and curvature
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are still negligible, i.e. the Universe is in the Einstein–de Sitter (EdS) phase. The function
β (k) specifies the initial conditions, and is equal to A(k) and I(k) for isentropic and isocur-
vature initial conditions, respectively. A constant K is included in the definition to normalize
the transfer function. As shown in §4.2.6, for isentropic perturbations that enter the horizon in
the matter dominated era, the amplitudes of the metric perturbations are Φ = (9/10)A(k) at
horizon-crossing and remain so in the Einstein–de Sitter phase. We thus choose K = 9/10 for
isentropic initial conditions so that T (k) is normalized for long-wavelength models. Similarly,
sinceΦ= (1/5)I(k) for isocurvature perturbations that enter the horizon in the matter-dominated
era, we set K = 1/5 for isocurvature perturbations.

Note that for an Einstein–de Sitter universe D(t) = a(t), and so a(tm)/D(tm) = 1 in Eq. (4.233)
and the transfer function is independent of tm. For all models of interest, the redshift correspond-
ing to tm, zm, can be chosen to be ∼< 10, so that almost all modes of interest have already entered
the horizon at z > zm and Eq. (4.233) conveniently separates the evolution into an early EdS
phase and a later phase represented by the k-independent linear growth factor. In a flat universe
where Λ dominates at late time, Eq. (4.233) is well defined also for modes that enter the horizon
after zm, becauseΦ(k, t) evolves with time as D(t)/a(t) even for super-horizon modes. However,
for an open or a closed universe, Eq. (4.233) is not valid for perturbation modes that have scales
comparable or larger than the curvature radius of the universe, because the plane waves are no
longer the normal modes of such space (e.g. Lyth & Woszczyna, 1995).

The post-recombination density perturbations are related to the metric perturbation through
the Poisson equation:

δ (k, t) = −k2Φ(k, t)
4πGa2ρ

(4.234)

= −2
3

K

H2
0Ωm,0

k2β (k)T (k)D(t). (4.235)

Thus, the power spectrum in the density perturbations can be written as

P(k, t) = 〈|δ (k, t)|2〉 = Pi(k)T 2(k)D2(t), (4.236)

where

Pi(k) ≡ 4
9

K 2

H4
0Ω

2
m,0

k4〈|β (k)|2〉 (4.237)

may be considered as the initial power spectrum of density perturbations. Thus, once the transfer
function is known, one can calculate the post-recombination power spectrum from the initial
conditions.

The linear transfer function can be calculated using the definition

T (k) =
Φ(k, tm)
K β (k)

. (4.238)

There are basically two kinds of effects that can affect T (k) during linear evolution. The first is
due to the damping processes, such as Silk damping for the baryons and free-streaming damping
for (collisionless) dark matter, which reduce the small-scale perturbations relative to large-scale
ones. The second is due to the fact that sub-horizon perturbations grow differently during the
radiation and matter dominated eras. Before considering more realistic models, we first show how
this second effect introduces a characteristic scale in the linear transfer function. For simplicity,
we assume that the Universe contains only radiation and a dark matter component for which free
streaming can be neglected. We start by defining the characteristic wavenumber

keq ≡ 2π
τeq

∝Ωm,0h2, (4.239)
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where τeq ≈ cteq/aeq is the conformal time at matter–radiation equality. The length scale corre-
sponding to keq characterizes the horizon size (in comoving units) at the time of matter–radiation
equality.

Based on the results obtained in the previous section, the linear evolution of Φ is character-
ized by the following properties: (i) long wavelength modes (k � keq) that enter the horizon
in the matter dominated era have constant amplitudes, Φ ∼ (9/10)A(k) at t < tm; (ii) since
short-wavelength density perturbations with k 	 keq grow logarithmically with time during
the radiation dominated era according to Eq. (4.223), and since the metric perturbations remain
constant over the time interval teq < t < tm, we have that

Φ(k, t) ∼Φ(k, teq) ∼ (27/2)H2
0Ωm,0k−2A(k)[ln(kτeq)−0.47]/a(teq) ;

(iii) at t > tm sub-horizon density perturbations grow with time as δdm ∝ D(t) and so Φ ∝
D(t)/a(t). Note that the growth in (iii) is independent of k and so does not affect the transfer
function. It then follows that the post-recombination transfer function for isentropic perturbations
has the properties

T (k) =
{

1 for (k/keq) � 1
CA(k/keq)−2ln(k/keq) for (k/keq) 	 1,

(4.240)

where CA is a constant. Thus, the transition of the Universe from being radiation dominated
to being matter dominated introduces a characteristic scale in the linear transfer function for
isentropic perturbations.

For the isocurvature modes, the evolution of Φ has the following properties: (i) long wave-
length modes (k� keq) entering the horizon in the matter dominated era have constant amplitudes
Φ ∼ 1

5 I(k) at t < tm; (ii) short-wavelength density perturbations with k 	 keq remain constant,
δdm ∼ I(k), in the radiation dominated era, so Φ(k, t) ∼ Φ(k, teq) ∼ 3

2 H2
0Ωm,0k−2I(k)/a(teq) at

teq < t < tm; (iii) sub-horizon perturbations evolve as Φ ∝ D(t)/a(t) at t > tm. The situation
is thus similar to that in the isentropic case except that the dark matter perturbations do not
grow (not even logarithmically) during radiation domination. Therefore the post-recombination
transfer function for isocurvature perturbations has the properties

T (k) =
{

1 for (k/keq) � 1
CI(k/keq)−2 for (k/keq) 	 1,

(4.241)

where CI is a constant. Detailed calculations show that CI is smaller than CAln(k/keq) for modes
with k/keq 	 1.

The above discussion illustrates how the horizon scale at matter–radiation equality introduces
a characteristic scale in the transfer function, and thus in the power spectrum at t > teq. We now
turn to more realistic models. After discussing a pure baryonic model (without dark matter), we
turn to various dark matter models. In particular, we distinguish between hot dark matter (HDM)
and cold dark matter (CDM) models that differ in the extent to which free streaming operates.

4.3.1 Adiabatic Baryon Models

Consider a universe consisting of baryons, photons and relativistic (effectively massless) neutri-
nos. In addition to the horizon effect described above, two additional processes play a role here.
Before recombination the Jeans length is

λJ = cs

√
π/Gρ � 6ct, (4.242)

where we have used that cs ∼ c/
√

3 [see Eq. (4.34)], ρ � ρcrit and H(t) = ȧ/a = (2t)−1.
Comparing this to the proper size of the particle horizon,
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Fig. 4.2. The transfer functions for adiabatic perturbations calculated with the CMBFAST code (Seljak &
Zaldarriaga, 1996): Results are shown for a purely baryonic model [the dotted parts of the curve indicate
negative values of T (k)], for a CDM model, a HDM model, and a so-called mixed dark matter (MDM)
model, consisting of 30% HDM and 70% CDM.

λH = a
∫ t

0

cdt
a

= aτ = 2ct (4.243)

(see §3.2.4), we see that all sub-horizon perturbations are smaller than the Jeans length. There-
fore, as soon as an adiabatic baryon perturbation enters the horizon, it starts to oscillate due to
the large pressure of the photon–baryon fluid. These oscillations continue until recombination,
after which the perturbations start to grow via gravitational instability. However, this only applies
for fluctuations with sizes larger than the Silk damping scale; fluctuations on smaller scales will
have damped out before recombination.

Detailed calculations of the transfer function for adiabatic baryon models (i.e. models with
isentropic initial perturbations in the baryons and photons that evolve adiabatically) have been
carried out by Peebles (1981). An example of the post-recombination transfer function is shown
in Fig. 4.2, along with several other transfer functions to be discussed below. On scales k > keq the
transfer function drops rapidly due to the horizon effect and due to Silk damping. The oscillations
on these scales in the post-recombination transfer function reflect the phases at recombination of
the perturbations that have not been entirely damped. The deep troughs (between the solid and
dotted peaks) reflect the scales on which this phase happens to be such that δb = 0, and are
separated by Δk ∼ πa(trec)/(cstrec) ∼ 0.3(Ωb,0h2)Mpc−1.

Because of Silk damping, structure formation models based on isentropic, baryonic pertur-
bations require large initial fluctuations in order to be able to form structures with masses
comparable to the damping scale (M ∼ Md ∼ 1014 M�). As we will see in Chapter 5, nonlinear
structures form when their corresponding perturbations have grown to δm ∼ 1. Since δm grows
with a rate∝ (1+z) in an EdS universe (or slower ifΩ0 < 1) during the matter dominated era, this
implies amplitudes of the order of δm ∼> 10−3 at z ∼ zrec. In the case of isentropic perturbations,
the temperature fluctuations in the photon field are related to the density fluctuations as

δT
T

=
1
4
δγ =

1
3
δb. (4.244)
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Thus, if clusters and superclusters (with masses ∼> 1014 M�) formed out of isentropic bary-
onic perturbations, the expected temperature fluctuations in the cosmic microwave background
(CMB) on angular scales of a few arcminutes would be of the order of δT/T ∼> 10−3. This is
much larger than what has been observed (see §2.9), providing strong evidence against this class
of models.

4.3.2 Adiabatic Cold Dark Matter Models

It is possible that the Universe is dominated by weakly interacting massive particles (WIMPs)
with masses in the range 1GeV ∼< m ∼< 3Tev, or by particles which are produced without thermal
velocities (see §3.3.5). Models in which the dark matter is made up of these kind of particles
are called cold dark matter (CDM) models. Since the velocity stress tensor of the corresponding
particles is negligible, free streaming does not play a role in these models, at least not on the
scales of interest for galaxy formation. The behavior of the linear transfer function of isentropic
(or ‘adiabatic’) CDM models is therefore given by Eq. (4.240). Detailed calculations of the linear
transfer function for adiabatic CDM models have been carried out by many authors (e.g. Peebles,
1982; Bond & Efstathiou, 1984; Bardeen et al., 1986). One example is shown in Fig. 4.2. In the
limit that Ωb,0 �Ωm,0, the linear transfer function is well fitted by

T (k) =
ln(1+2.34q)

2.34q

[
1+3.89q+(16.1q)2 +(5.46q)3 +(6.71q)4]−1/4

, (4.245)

where

q ≡ 1
Γ

(
k

hMpc−1

)
and Γ=Ωm,0h (4.246)

(Bardeen et al., 1986). Note that Γ is a shape parameter characterizing the horizon scale at teq.
A realistic CDM model also needs to include baryons, the substance out of which galaxies

are made. The presence of a non-negligible baryonic matter component influences the transfer
function. Increasing the baryonic mass fraction largely leaves the shape of T (k) intact, but it
causes a reduction of the shape parameter, which is well approximated by

Γ=Ωm,0hexp
[
−Ωb,0(1+

√
2h/Ωm,0)

]
(4.247)

(Sugiyama, 1995). However, if the baryonic mass fraction becomes sufficiently large, the trans-
fer function starts to develop oscillations (due to baryon acoustic fluctuations) and the fitting
functions (4.245) and (4.247) are no longer appropriate. In this case one has to resort to more
sophisticated fitting functions such as those of Eisenstein & Hu (1998). The baryon acoustic
oscillations (BAO) in the transfer function produces oscillatory features in the matter power
spectrum. The typical scale of the oscillations is that of the sound horizon at decoupling, which
is about 150(Ωb,0h2/0.02)−1Mpc in comoving units. Such features have indeed been observed
in the galaxy distribution on large scales (e.g. Percival et al., 2007).

As we have seen, the baryonic perturbations cannot grow until after decoupling, and experi-
ence Silk damping. In the absence of dark matter, this results in problems as it predicts CMB
temperature fluctuations of the order 10−3 or larger in order to form galaxies. The addition of
cold dark matter helps in two respects. First of all, the dark matter perturbations can already start
to grow after radiation–matter equality. This means that by the time of decoupling the dark matter
density perturbations have already grown by a factor ∼ 20(Ωm,0h2) with respect to the perturba-
tions in the photon–baryon fluid (or even a little bit more if one takes into account that isentropic
dark matter perturbations can grow logarithmically during the radiation dominated era). Sec-
ondly, after decoupling the baryons simply collapse gravitationally into the CDM perturbations,
so that Silk damping no longer plays a vital role.
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Adiabatic CDM models with a scale-invariant initial power spectrum, Pi ∝ k, have proven
remarkably successful in explaining the large-scale structure of the Universe (e.g. Blumenthal
et al., 1984; Davis et al., 1985). They also provide a framework for galaxy formation that seems
to be largely consistent with the data. Detailed analyses show that Γ∼ 0.2 is required in order for
the predicted mass distribution to match the observed two-point correlation function of galaxies
on large scales. Since current observational constraints suggest that h � 0.7 (see §2.10.1), the
implied value of Ωm is ∼ 0.3. If the Universe is flat, as suggested by inflationary models, the rest
of the energy density, about 70% of the critical density, has to be in another energy component,
such as the cosmological constant Λ. Currently, many studies are investigating the so-called
ΛCDM models, in which Ωb,0 ∼ 0.04, ΩCDM,0 ∼ 0.26 and ΩΛ,0 = 1−Ωb,0 −ΩCDM,0 ∼ 0.7.

4.3.3 Adiabatic Hot Dark Matter Models

If neutrinos have masses in the range 10 ∼< mν ∼< 100eV they can dominate the matter den-
sity of the Universe (see §3.3). In particular, if only a single species is massive then Ων,0h2 =
0.32(mν/30eV). Since massive neutrinos decouple from the hot plasma in the relativistic regime
(see §3.3.5), models in which the dark matter consists of massive neutrinos with masses in the
aforementioned range are called hot dark matter (HDM) models. The evolution of neutrino per-
turbations in such a HDM cosmogony is given by the Boltzmann equation (4.170), which can
be solved by iterating the formal solution (4.173). Fig. 4.3 shows the evolution of adiabatic neu-
trino perturbations on different scales. The massive neutrinos become non-relativistic at a time
when 3kBTν = mνc2, i.e. at a redshift znr = 57300(mν/30eV). At z 	 znr, they move with a
speed v ∼ c, while at z � znr they are slowed down by the expansion as v ∝ a−1 (see §4.1.6).
Thus, neutrino perturbations which enter the horizon at z > znr are significantly damped by free-
streaming, while large-scale perturbations which enter the horizon at z < znr are not. As a result,

Fig. 4.3. The evolution for adiabatic neutrino perturbations with various k/kν . The scale factor is nor-
malized to be unity at a redshift z = znr = 57,300(mν/30eV). [Adapted from Bond & Szalay (1983) by
permission of AAS]
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the present-day transfer function shows a sharp decline at the high-k end (see Fig. 4.2). To good
approximation, the transfer function can be written as

T (k) = exp(−3.9q−2.1q2), where q ≡ k/kν , (4.248)

and 2π/kν = 31(mν/30eV)−1 Mpc is the characteristic scale of free-streaming damping.
The free-streaming scale corresponds to a mass Mfs ∼ 1.3× 1014(Ων,0h2)−2, and perturba-

tions with smaller masses are damped. As a result, the first objects to form in HDM models
are pancakes (§4.1.8) with masses M ∼ Mfs, and smaller objects can only form through the
subsequent fragmentation of these pancakes. In order to allow for sufficient time for this frag-
mentation process to produce galaxies, a large fraction of mass must have already collapsed
into pancakes at an earlier epoch (say z ∼> 1). Numerical simulations by White et al. (1983),
however, show that this implies a large-scale clustering strength which is much larger than
observed.

In order to allow density perturbations on scales smaller than the free-streaming scale, a mixed
dark matter (MDM) model, in which ΩHDM,0 ∼ 0.3 and ΩCDM,0 ∼ 0.7, has been considered (e.g.
Ma, 1996). The linear transfer function of such a model is shown in Fig. 4.2.

4.3.4 Isocurvature Cold Dark Matter Models

The evolution of isocurvature perturbations in CDM models has been discussed in some detail in
§4.2.6, and the properties of the post-recombination transfer function of the CDM component are
summarized in Eq. (4.241). Detailed computations of the linear transfer function for isocurvature
CDM models are given by Efstathiou & Bond (1986), for example. In the limit that Ωb,0 �
Ω0 and for three species of massless neutrinos, the linear transfer function is found to be well
approximated by

T (k) =
{

1+
[
15.0q+(0.9q)3/2 +(5.6q)2

]1.24
}−1/1.24

, (4.249)

where q has the same definition as in Eq. (4.246).
The main difference of this model with respect to the adiabatic CDM models described earlier

is that the dark matter fluctuations here cannot grow during the radiation dominated era due
to the Mészáros effect, whereas they grow logarithmically in the adiabatic case. Consequently,
isocurvature CDM models have somewhat less power on small scales than the corresponding
adiabatic CDM models with the same large-scale power.

4.4 Statistical Properties

In the preceding sections we have examined the time evolution of individual Fourier modes of the
density perturbation field δ (x, t) ≡ ρ(x, t)/ρ(t)− 1. In the linear regime these different modes
evolve independently and the amplitudes of a given Fourier mode at different times are simply
related by the linear transfer function and the linear growth rate. In this section we describe
how to characterize the statistical properties of the cosmological perturbations. Such a statistical
description is needed in order to be able to relate theory to observation.

4.4.1 General Discussion

How can one specify a cosmic density field? In principle, one can do this by specifying the den-
sity perturbation δ (x) at every point in space (or, equivalently, to specify δk for all k). However,
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this is impractical since there is an infinite number of field values (or Fourier modes) to be spec-
ified. This is also unnecessary, because we consider the mass density field in the Universe as one
realization of a random process and seek a description of the cosmic density field only in a statis-
tical sense. In this case, one aims to specify the random process that generates the cosmic density
field, rather than the specific realization of the density field itself. The situation is quite similar
to that in statistical mechanics: to describe the properties of a gas we do not seek to trace the
positions and velocities of individual molecules but, instead, we are interested in the statistical
properties given by some distribution functions.

In analogy, the statistical properties of a random perturbation field (at some given time) are
specified if the probability for any particular realization of δ (x) is known. To see this more
clearly, let us divide the Universe into n infinitesimal cells which are centered at x1, x2, . . ., xn.
The random perturbation field δ (x) is then characterized by the probability distribution function,

Px (δ1,δ2, . . . ,δn) dδ1 dδ2 . . . dδn, (4.250)

which gives the probability that the field δ has values in the range δi to δi + dδi at positions xi

(i = 1,2, . . . ,n). This distribution function is completely determined if we know all of its moments〈
δ �1

1 δ
�2
2 . . .δ �n

n

〉
≡
∫
δ �1

1 δ
�2
2 . . .δ �n

n Px(δ1,δ2, . . . ,δn)dδ1 dδ2 . . . dδn, (4.251)

where �i are non-negative integers. Since the cosmological principle requires all positions and
directions in the Universe to be equivalent, the cosmological density field must be statistically
homogeneous and isotropic. This implies that all the moments are invariant under spatial trans-
lation and rotation. The first moment 〈δ (x)〉 = 0, which follows directly from the definition of
the perturbation field. The variance of the perturbation field is σ2 = 〈δ 2(x)〉, which, because of
ergodicity, is independent of x. Another important moment is

ξ (x) = 〈δ1δ2〉 , with x ≡ |x1 −x2|, (4.252)

which is called the two-point correlation function. Note that ξ (0) = σ2 and that ξ (x) only
depends on the distance between x1 and x2.

A density perturbation field δ (x) can also be represented by its Fourier transform:

δk =
1

Vu

∫
δ (x)exp(−ik ·x) d3x, (4.253)

where Vu = L3
u is the volume of a large box on which the perturbation field is assumed periodic,

and k = (2π/Lu)(ix, iy, iz) (where ix, iy, iz are integers). Note that δk are complex quantities, and
we therefore write

δk = Ak + iBk = |δk|exp(iϕk). (4.254)

Thus, the statistical properties of δk [and hence of δ (x)] can also be obtained from the distribution
function,

Pk (δk1 ,δk2 , . . . ,δkn) d|δk1 |d|δk2 |. . . d|δkn |dϕk1 dϕk2 . . .dϕkn , (4.255)

which gives the probability that the modes δki have amplitudes in the range |δki | to |δki |+d|δki |
and phases in the range ϕki to ϕki +dϕki .

Similar to Px, the distribution function Pk is determined if all of its moments are known. In
particular, the second moment,

P(k) ≡Vu
〈|δk|2

〉≡Vu 〈δkδ−k〉 , (4.256)
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is the power spectrum of the perturbation field. Inserting Eq. (4.253) into the above equation and
using the definition of ξ (r), we have

P(k) =
∫
ξ (x)e−ik·x d3x = 4π

∫ ∞

0
ξ (r)

sinkr
kr

r2 dr. (4.257)

The inverse relation is

ξ (r) =
1

(2π)3

∫
P(k)eik·r d3k =

1
2π2

∫ ∞

0
P(k)

sinkr
kr

k2dk. (4.258)

We thus see that the two-point correlation function is the Fourier transform of the power
spectrum, and vice versa.

4.4.2 Gaussian Random Fields

It is clear from the above discussion that it is quite difficult to specify a general random field,
because it involves the determination of an infinite number of moments. Fortunately, the initial
density field in the Universe is found to be well approximated by a homogeneous and isotropic
Gaussian random field which, as we show below, is completely determined, in a statistical sense,
by its power spectrum or its two-point correlation function.

A random field δ (x) is said to be Gaussian if the distribution of the field values, (δ1,δ2, . . . ,δn),
at an arbitrary set of n points is an n-variate Gaussian:

Px(δ1,δ2, . . . ,δn) =
exp(−Q)

[(2π)ndet(M )]1/2
; Q ≡ 1

2∑i, j
δi
(
M−1)

i j δ j, (4.259)

where Mi j ≡ 〈δiδ j〉 is the covariance matrix. For a homogeneous and isotropic field, all the
multivariate Gaussian distribution functions are invariant under spatial translation and rotation,
and so are completely determined by the two-point correlation function ξ (x). In particular, the
one-point distribution function of the field itself is

Px(δ )dδ =
1

(2πσ2)1/2
exp

(
− δ 2

2σ2

)
dδ , (4.260)

where σ2 = ξ (0) is the variance of the density perturbation field.
Any linear combination of Gaussian variates also has a Gaussian distribution. This allows us

to obtain the distribution function for the Fourier transforms, δk = Ak + iBk, which, after all, are
linear combinations of δ (x). Since δ (x) is real, we have that δ ∗k = δ−k and thus Ak = A−k and
Bk =−B−k. This implies that we only need Fourier modes with k in the upper half-space to fully
specify δ (x). It is then straightforward to prove that, for k in the upper half-space,

〈AkAk′ 〉 = 〈BkBk′ 〉 =
1
2

V−1
u P(k)δ (D)

kk′ ; 〈AkBk′ 〉 = 0, (4.261)

where

δ (D)
kk′ =

1
Vu

∫
ei(k−k′)·x d3x (4.262)

is the Kronecker delta function. As a result, the multivariate distribution functions of Ak and Bk
are factorized according to k, each factor being a Gaussian:

Pk(αk)dαk =
1

[πV−1
u P(k)]1/2

exp

[
− α2

k

V−1
u P(k)

]
dαk, (4.263)

where αk stands for either Ak or Bk. Thus, for a Gaussian random field, different Fourier modes
are mutually independent, and so are the real and imaginary parts of individual modes. This, in
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turn, implies that the phases ϕk of different modes are mutually independent, and have a random
distribution over the interval between 0 and 2π . In fact, in terms of |δk| and ϕk, the distribution
function for each mode can be written as

Pk(|δk|,ϕk)d|δk|dϕk = exp

[
− |δk|2

2V−1
u P(k)

] |δk|d|δk|
V−1

u P(k)
dϕk

2π
. (4.264)

Note that the power spectrum P(k), which is related to the two-point correlation function ξ (r)
by Eq. (4.257), is the only function needed to completely specify a Gaussian random field (in a
statistical sense). Note also that, during linear evolution, different Fourier modes evolve indepen-
dently and so Eq. (4.261) always holds. It is then easy to see that a Gaussian perturbation field
remains Gaussian in the linear regime.

Gaussian random fields are thus particularly easy to handle. The important question, of
course, is whether the initial density field is Gaussian or not. At the moment, there are at
least three reasons to prefer a Gaussian field to a non-Gaussian one. First of all, as discussed
in §4.5, a Gaussian perturbation field arises naturally from quantum fluctuations during infla-
tion. Since a Gaussian field remains Gaussian during linear evolution, the generic prediction
of inflationary models is thus that δ (x) in the linear regime follows Gaussian statistics. Sec-
ondly, according to the central limit theorem, the distribution of the sum of a large number
of independent variates approaches a Gaussian distribution without regard to the distribution
functions of the individual variates. The initial density perturbation field δ (x) is a sum over a
large number of Fourier modes, and so the central limit theorem guarantees a Gaussian distri-
bution, as long as the phases of the Fourier modes are independent of each other. And thirdly,
there is currently no convincing observational evidence to suggest that the linear density field is
non-Gaussian.

4.4.3 Simple Non-Gaussian Models

Although there are clear theoretical and practical reasons to prefer Gaussian random fields, it is
important to keep an open mind and not to exclude the possibility that the initial, linear density
field has non-Gaussian statistics. For example, it is possible that some topological defects might
be produced during some phase transitions in the early Universe. These defects are regions of
trapped energy and could therefore act as seeds for structure formation. The density perturbation
fields in defect models are generally non-Gaussian, as we briefly discuss in §4.5.

As mentioned above, a non-Gaussian density field is generally difficult to describe. However,
if a non-Gaussian field is a simple transformation of an underlying Gaussian field, it is still easy
to handle because in this case we only need to specify the transformation of the underlying
Gaussian field. Along this line, a few simple non-Gaussian models have been proposed. One
example is the χ2 model, for which δ (x) is defined via a Gaussian field δG(x) as

δχ(x) = δ 2
G(x)−σ2

G, (4.265)

where σ2
G = 〈δ 2

G〉, and the subtraction of σ2
G ensures that 〈δχ〉 = 0. Another simple example is

the log-normal model, defined as

δLN(x) = exp
[
δ 2

G(x)−σ2
G/2

]−1 (4.266)

(Coles & Jones, 1991). In both cases, all the moments of δ (x) can be written in terms of the
moments of δG(x), and so δ (x) is completely specified by the power spectrum of δG (or the two-
point correlation function ξG). For example, the two-point correlation functions corresponding
to Eqs. (4.265) and (4.266) are ξχ(r) = 2ξ 2

G(r) and ξLN = exp(ξG)−1, respectively.
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4.4.4 Linear Perturbation Spectrum

As discussed above, the power spectrum P(k) is an important quantity characterizing a random
field. In fact it is the only quantity required to specify a homogeneous and isotropic Gaussian
random field. As we have seen in §4.3, because different Fourier modes evolve independently of
each other in the linear regime, the linear power spectrum at any given time can be simply related
to the initial power spectrum via the linear transfer function. We now take a more detailed look
at the initial power spectrum.

(a) The Initial Power Spectrum In the absence of a complete theory for the origin of the
density perturbations, the initial (untransferred) perturbation spectrum is commonly assumed to
be a power law,

Pi(k) ∝ kn, (4.267)

where n is usually called the spectral index. As we will show in §4.5, the power spectra predicted
by inflation models generally have this form.

It is often useful to define the dimensionless quantity,

Δ2(k) ≡ 1
2π2 k3P(k), (4.268)

which expresses the contribution to the variance by the power in a unit logarithmic interval of k.
In terms of Δ2(k) we have that

Δ2(k) ∝ k3+n. (4.269)

The corresponding quantity for the gravitational potential is

Δ2
Φ(k) ≡ 1

2π2 k3PΦ(k) ∝ k−4Δ2(k) ∝ kn−1, (4.270)

which is independent of k for n = 1. Thus, for the special case of n = 1, which is called the
Harrison–Zel’dovich spectrum or scale-invariant spectrum, the gravitational potential is finite
on both large and small scales. This is clearly desirable, because divergence of the gravita-
tional potential on small or large scales would lead to perturbations on these scales that are too
large.

As we will see in §4.5, in inflation models the metric (potential) perturbations are generated
by quantum fluctuations during inflation. At the end of inflation, all perturbations become super-
horizon because of the huge amount of expansion caused by inflation. Since metric perturbations
remain roughly constant during super-horizon evolution, the amplitude of a metric perturbation at
the time when it re-enters the horizon should be approximately the same as the initial amplitude.
Thus, the amplitude of Δ2

Φ(k) evaluated at the time of horizon re-entry is proportional to kn−1,
which is independent of k for a scale-invariant spectrum.

(b) The Amplitude of the Linear Power Spectrum So far we have only discussed the shape of
the linear power spectrum. To completely specify P(k), we also need to fix its overall amplitude.
Because we do not yet have a refined theory for the origin of the cosmological perturbations,
the amplitude of P(k) is not predicted a priori but rather has to be fixed by observations. Even
for inflation models, where we can make detailed predictions for the shape of the initial power
spectrum, the current theory has virtually no predictive power regarding the amplitude (see next
section).

For a power spectrum with a given shape, the amplitude is fixed if we know the value of
P(k) at any k, or the value of any statistic that depends only on P(k). Not surprisingly, many
observational results can be used to normalize P(k). Different observations may probe the power
spectrum at different scales, providing additional constraints on the shape of P(k). In fact, trying
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to determine the shape and amplitude of the linear power spectrum is one of the most important
tasks of observational cosmology (see Chapter 6).

One historical prescription for normalizing a theoretical power spectrum involves the variance
of the galaxy distribution when sampled with randomly placed spheres of radii R. The predicted
variance of the density field is related to the power spectrum by

σ2(R) =
1

2π2

∫
P(k)Ŵ 2

R (k)k2dk, (4.271)

where

ŴR(k) =
3

(kR)2 [sin(kR)− kRcos(kR)] (4.272)

is the Fourier transform of the spherical top-hat window function

WR(r) =
{

3/(4πR3) if r ≤ R
0 otherwise.

(4.273)

The value of σ(R) derived from the distribution of galaxies is about unity for R = 8h−1Mpc
(§2.7.1). Thus, one could in principle normalize the theoretical power spectrum by requiring
σ(R) = 1 at R = 8h−1Mpc. However, there are several problems with this approach. First of all,
since σ(R) ∼ 1 we are not accurately probing the linear regime for which δ � 1. Secondly, this
normalization is based on the assumption that galaxies are accurate tracers of the fluctuations
in the mass distribution. This may not be true if, for example, galaxies formed preferentially in
high density regions. Indeed, if we adopt the less restrictive assumption that the fluctuations in
the galaxy distribution are proportional (but not necessarily equal) to the fluctuations in the mass
distribution, then

δgal = bδm, (4.274)

where b =constant is a bias parameter whose value depends on how galaxies have formed in the
mass density field. In this case

σm(8h−1Mpc) =
σgal(8h−1Mpc)

b
≈ 1

b
. (4.275)

Since an accurate theory for galaxy formation is still lacking at the present time, the value of b is
still uncertain. In fact, as we will see in Chapter 15, b is found to be a function of various galaxy
properties, such as luminosity and color.

To accurately normalize the linear power spectrum thus requires a method that is not affected
by nonlinear evolution and that does not depend on the assumption of galaxies tracing the mass
distribution. In Chapter 6 we will describe various statistical measures that can be used to probe
the power spectrum. Some of these methods are much better suited for normalizing the linear
power spectrum than σgal(8h−1Mpc) is. However, as a convention, and largely for historical
reasons, the amplitude of a power spectrum is usually represented by the value

σ8 ≡ σm(8h−1Mpc). (4.276)

It is important to realize that σ8 is evaluated from the initial power spectrum evolved to the
present time according to linear theory. Since perturbations on scales of ∼ 8h−1Mpc may well
have gone nonlinear by the present time, this is not necessarily the same as the variance of the
actual, present-day mass distribution.

Table 4.1 lists a number of adiabatic models and their power spectrum normalization as
obtained from the temperature fluctuations in the CMB obtained by COBE on large scales (see
§6.7 for details) and from the abundance of rich clusters of galaxies (see §7.2.5 for details). The
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Table 4.1. The values of σ8 in different cosmogonies.

Model Ωm,0 Ων,0 ΩΛ,0 h n σ8(COBE) σ8(cluster)

SCDM 1 0 0 0.5 n = 1 1.3 0.6
HDM 1 1 0 0.5 n = 1 1.3 –
MDM 1 0.3 0 0.5 n = 1 0.5 0.5
OCDM 0.3 0 0 0.7 n = 1 0.5 0.9
ΛCDM 0.3 0 0.7 0.7 n = 1 1.0 1.0

Fig. 4.4. The power spectra, P(k), as a function of k for various cosmogonic models. The initial power
spectrum is assumed to be scale invariant (i.e. n = 1), and the spectra are normalized to reproduce the
COBE observations of CMB anisotropies.

COBE-normalized, linear, dark matter power spectra are shown in Fig. 4.4. Not all models match
at small k, despite the fact that they are all normalized at these scales. This arises because the
observed temperature fluctuations are in angular scales and the conversion from angles to dis-
tances is cosmology-dependent. Note that the COBE and cluster-abundance normalizations are
only in agreement with each other for the ΛCDM model and the MDM model. Since they have
been obtained from measurements of the power spectrum amplitude at vastly different scales, a
discrepancy in the inferred values of σ8 signals that the shape of the model power spectrum is
inconsistent with the data. Indeed, as we shall see in Chapter 6, stringent constraints on the shape
and amplitude of the linear power spectrum can now be obtained from a variety of observations,
and the model that is currently favored is the ΛCDM model with parameters similar, but not
identical, to those listed in Table 4.1.
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4.5 The Origin of Cosmological Perturbations

Having discussed the (linear) evolution of cosmological perturbations we now turn to their origin.
Broadly speaking, two different mechanisms have been proposed, namely inflation and phase
transitions. In inflation models the perturbations arise from quantum fluctuations of the inflaton
scalar field. As we will see, these models typically predict isentropic, Gaussian perturbations
with a close to scale-invariant power-spectrum (although deviations from this typical prediction
are certainly possible). In the alternative model, perturbations arise from cosmological defects
that originate from phase transitions in the early Universe. Contrary to inflation models, these
models typically predict non-Gaussian perturbations.

4.5.1 Perturbations from Inflation

As discussed in §3.6, the concept of inflation is introduced to solve a number of nagging problems
related to the initial conditions of the standard cosmology. In inflation models, the Universe
experiences an early period of exponential expansion, driven by the false vacuum state of a scalar
field, called the inflaton. Because of quantum fluctuations the energy density of the inflaton is
expected to be inhomogeneous. These inhomogeneities are initially inflated to super-horizon
scales by the exponential expansion, but re-enter the horizon after the inflation is over to seed
structure formation.

(a) Heuristic Arguments Without going into details, we may use some simple arguments to
understand some of the most important properties of the density perturbations generated dur-
ing inflation. The arguments consist of the following four important points. First of all, since
the Universe is assumed to have gone through a phase of very fast expansion (inflation), all
structures that we observe in the present-day Universe had sizes that were much smaller than
the horizon size before inflation started. Therefore, inflation provides a mechanism for gener-
ating the initial perturbations in a causal way. Second, if the scalar field driving inflation has
negligible self-coupling (as is assumed in most models), then different modes in the quantum
fluctuations of the field should be independent of each other. Consequently, the density pertur-
bations are expected to follow Gaussian statistics. Third, the perturbations produced during the
inflation phase are perturbations in the energy density of the scalar field. At the end of inflation,
reheating converts this energy density into photons and other particles. Since we do not expect
any segregation between different particle species, the resulting perturbations are expected to be
isentropic. Finally, since during inflation space is invariant under time translation (i.e. it is a de
Sitter space), the perturbations generated by inflation are expected to be scale-invariant.

This final point is not very straightforward, and requires some more discussion. As shown
in §3.6, in order for inflation to solve the horizon problem, the period of inflation must last
long enough. This translates into a slow-roll condition, which states that the potential of the
inflaton must be sufficiently flat. As a result, the Hubble constant H, the inflaton expectation
value 〈ϕ〉, and the potential energy V (ϕ), are all roughly time-independent during inflation.
Therefore, if some physical process can generate perturbations in the inflaton, the properties of
these perturbations should be independent of their time of generation. Assume, for example, that
some physical process generates perturbations at all times (during inflation) on a fixed physical
scale λi. These perturbations will then all be generated with approximately the same amplitude.
Because of the (exponential) increase of the scale factor, a(t), perturbations generated at different
times are inflated into different scales. For example, for two perturbations generated at times t1
and t2, the ratio between their scales at any later time during the exponential expansion is

λ1

λ2
= eH(t2−t1). (4.277)
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The time tH when a perturbation of comoving scale λ reaches the horizon is given by λ ≈
c/a[tH(λ )]H[tH(λ )]. Since H is approximately constant, we can write

λ1

λ2
≈ a[tH(λ2)]

a[tH(λ1)]
= eH[tH(λ2)−tH(λ1)]. (4.278)

Comparing Eqs. (4.277) and (4.278), we see that

tH(λ2)− t2 = tH(λ1)− t1. (4.279)

Thus, the time between generation and horizon-exit is the same for all perturbations. Since the
properties of space change little during inflation, the amplitudes of all perturbations should be
approximately the same at horizon-exit, without depending on their scale at that time. Note that
the above discussion makes no reference to the value of λi, and so the conclusion is true even if
perturbations with a range of physical scales are generated at each time. Thus, the expectation
values of the perturbation amplitudes are scale-independent at horizon-exit. When such a pertur-
bation re-enters the horizon some time well after inflation has ended, its amplitude will be about
the same as it was at horizon-exit, since causal physics cannot act on super-horizon perturba-
tions to produce observable consequences.1 The perturbations are therefore scale-independent at
horizon-reentry. Thus, inflation generically predicts scale-invariant perturbations.

(b) Some Detailed Considerations To make detailed predictions for the density perturbations
in an inflation model, one needs to consider a specific model for the scalar field, which we denote
by ϕ(x, t). We write

ϕ(x, t) = ϕ0(t)+ψ(x, t), (4.280)

where ϕ0(t) is the background field and ψ(x, t) (with |ψ|� |ϕ0|) is the perturbation. The dynam-
ical properties of the scalar field are described in §3.6.3. Under the slow-roll condition, which is
required for inflation to occur, the evolution of ϕ is given by

ϕ̈+3Hϕ̇−a−2∇2ϕ = 0. (4.281)

Thus the equation of motion for the Fourier modes of the perturbation field, ψk, can be
written as

ψ ′′
k +

2a′

a
ψ ′

k + k2ψk = 0, (4.282)

where again a prime denotes derivative with respect to the conformal time τ . If the expansion of
the Universe is neglected (i.e. a′/a = 0), the above equation is that for a harmonic oscillator, and
the solutions are e±ikτ/

√
2k. Upon quantization, ψk becomes an operator:

ψ̂k = Q(k,τ)â+Q∗(k,τ)â†, (4.283)

where â and â† are the operators annihilating and creating a particle, respectively, and Q =
e−kτ/

√
2k. The expected quantum fluctuation of ψk in the ground state, |0〉, is then characterized

by the dispersion 〈0|ψ̂†
k ψ̂k|0〉. Using the properties of â and â†, it can be shown that

〈|ψk|2〉 ≡ 〈0|ψ̂†
k ψ̂k|0〉 = |Q(k,τ)|2 = 1/(2k). (4.284)

When the expansion term is included, Eq. (4.282) can be converted into the form

ψ̃ ′′
k +(k2 −a′′/a)ψ̃k = 0, (4.285)

1 Note, however, that the amplitudes of super-horizon perturbations may appear to be evolving with time in some gauges
(see §4.2.1). Such evolution, however, is completely geometrical and should not have any observable consequence,
such as changing the amplitude of a physical perturbation at horizon entry.
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where ψ̃k = aψk. Since during inflation H = a′/a2 is roughly constant, we have that τ =∫ a
ae

da/(Ha2) ≈ −1/Ha, where ae is the expansion factor at the end of the inflation and we
have set τ = 0 at this time. Using the fact that a � ae during inflation, we have that a′′/a ≈
2H2a2 ≈ 2/τ2. Inserting this into Eq. (4.285) one finds that its two solutions are Q and Q∗ with
Q = e−ikτ(1− i/kτ). Thus,

〈|ψ̃k|2〉 = |Q(k,τ)|2 =
1
2k

[
1+

1
(kτ)2

]
. (4.286)

After inflation, when kτ � 1, this gives

〈|ψk|2〉 ≈ 1
2k3(aτ)2 ≈ H2

2k3 . (4.287)

The typical amplitude of ψk due to quantum fluctuations in the ground state is then H/(
√

2k3/2).
The question is then how such fluctuations generate the metric perturbations responsible for
structure formation in the Universe.

A convenient way to make connections between 〈|ψk|2〉 and the metric perturbations Φ(k, t)
is to consider the following quantity:

ξ ≡ Haθ
k2 +Φ= − ik jHa[δT ]0 j

k2(ρ+P)
+Φ=

2
3

aΦ′/a′ +Φ
1+w

+Φ, (4.288)

where the second relation follows from the definition of θ in Eq. (4.149) and the third relation fol-
lows from Eq. (4.146) with Ψ = Φ. For the scalar field considered here, the energy–momentum
tensor defined in §3.6.3 leads to θ = −k2ψk/ϕ ′

0, and so ξ defined above is a combination of
the metric perturbation Φ and the perturbation in the inflaton. One important property of ξ
is that it is conserved, i.e. ξ ′ = 0, during super-horizon evolution. This can be proven using
the definition of ξ together with Eqs. (4.146) and (4.156) (again with Ψ = Φ) in the limit
kτ � 1. Since after inflation all perturbations are super-horizon and the Universe becomes radi-
ation dominated (so that w = 1/3), we obtain ξ = 3Φ/2 from the last relation in Eq. (4.288).
Because the amplitudes of the metric perturbations remain roughly constant during super-
horizon evolution, the amplitude of ξ at the time when the perturbation re-enters the horizon
in the post-inflation era should be equal to its value at the time when the perturbation exits
the horizon after it is generated during inflation. At the time of horizon exit, metric perturba-
tions are still negligible, and so ξ = −aHψ/ϕ ′

0. It then follows that the post-inflation metric
perturbations are

Φ=
[

2
3

H
ψk

ϕ̇0

]
horizon-exit

, (4.289)

where the subscript ‘horizon-exit’ indicates that the quantity is evaluated at the time when the
mode exits the horizon, i.e. at t ∼ a/k. The post-inflation power spectrum is therefore

PΦ(k) =
[

4
9

H2ψ2
k

ϕ̇2
0

]
horizon-exit

=
2
9

1
k3

[
H4

ϕ̇2
0

]
horizon-exit

, (4.290)

where the second equation follows from replacing ψ2
k with its quantum expectation value in

Eq. (4.287). Thus, if H4/ϕ̇2
0 is time-independent, the resulting post-inflation power spectrum is

scale-invariant, with n = 1 [see Eq. (4.270)].
A crucial requirement for obtaining the scale-invariant power spectrum is that the Universe

expands exponentially during the period of inflation. Deviations from a purely exponential
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expansion will cause deviations from a pure scale-invariant power spectrum. To see this, consider
the quantity

Δ2
Φ ≡ 1

2π2 k3PΦ(k) =
1

9π2

H4

ϕ̇2
0

≈ 1
27π2

(
8π
m2

Pl

)3 V 3

(dV/dϕ)2 , (4.291)

where we have used Eqs. (3.253) and (3.254). We define the tilt of the power spectrum as

1−n ≡−dlnΔ2
Φ

dlnk
, (4.292)

so that it is zero for a scale-invariant spectrum. At the time when a perturbation exits the horizon,
its wavelength is equal to the Hubble radius, and so a/k = H−1. Since H is nearly constant during
inflation, we can write

d
dlnk

≈ d
dlna

=
ϕ̇
H

d
dϕ

= −m2
Pl

8π
dV/dϕ

V
d
dϕ

. (4.293)

The tilt can then be written as

1−n = 6ε−2η , (4.294)

where ε and η are defined in Eqs. (3.258) and (3.259). Unless the potential V is perfectly flat, the
power spectrum is expected to be tilted slightly with respect to the scale-invariant form. However,
since the slow-roll condition demands that both ε and η are small, the tilt is expected to be small
as well.

The above analysis of quantum fluctuations in a scalar field is valid for all free quantum fields
with dynamics similar to that of a free oscillator. The expected amplitude of the quantum fluctu-
ations given by Eq. (4.287) is independent of the details of the field in consideration and so all
such fields are expected to have similar quantum fluctuations during inflation. In particular, under
the weak-field assumption, the gravitational Lagrangian is L = R/16πG≈ ∂αhμν∂αhμν/32πG,
where R is the perturbation in the curvature scalar and hμν is the perturbation in the metric tensor.
This suggests that hμν/

√
16πG can be effectively treated as a scalar field and so the amplitude

of the fluctuation in hμν at horizon crossing is given by

Δ2
h ≡

k3

2π2 〈|h|2〉 ∼
4
π

H2

m2
Pl

. (4.295)

The propagation of the tensor mode of the metric perturbations produces gravitational waves,
and so inflation models generically predict the existence of a background of gravitational waves.
Note that this mode of perturbations does not generate density perturbations (which correspond
to scalar mode), because these two modes evolve independently (see §4.2.2). At the time of
horizon crossing, the energy density of the gravitational waves is

ρGW ∼ ḣ2
μν

16πG
∼ m2

PlΔ
2
hH2. (4.296)

Once the mode re-enters the horizon, ρGW evolves as a−4, like radiation. For modes that re-enter
the horizon while the Universe is dominated by radiation, ρGW/ρr is a constant, and so

ΩGW ∼Ωr(H/mPl)2 ∼ 10−4 (V/m4
Pl

)
. (4.297)

This relation follows from the fact that Ωr = 8πρ r/(HmPl)2 ∼ 1 at t < teq, which gives ρ r ∼
(HmPl)2 and (ρGW/ρr) ∼ (H/mPl)2.
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The tensor metric perturbations generated during inflation can affect the cosmic microwave
background (CMB) anisotropies. For modes that re-enter the horizon after decoupling, the ten-
sor modes produce a CMB spectrum with the same scale dependence as the scalar modes. The
importance of the tensor (T) modes relative to the scalar (S) modes is represented by the ratio

Δ2
T

Δ2
S

∼ Δ2
h

Δ2
Φ
∼ 10ε, (4.298)

where the numerical coefficient is based on the detailed calculations of Starobinsky (1985). Thus,
the contribution of the gravitational waves to the CMB anisotropy can become significant in an
inflation model that has a relatively large gradient in the inflaton potential. Since such a gradient
also causes a tilt in the power spectrum, the ratio Δ2

T/Δ2
S is related to the tilt 1− n. Detailed

calculations show that Δ2
T/Δ2

S ≈ 7(1−n) (e.g. Davis et al., 1992).
So far we have seen that inflation is quite successful in predicting the initial density per-

turbations for structure formation. There is, however, a severe problem concerning the overall
amplitude of the perturbations predicted by such a scheme. As an illustration, consider a slowly
varying inflaton potential, V (ϕ) = V0 − (κ/4)ϕ4, where κ is a coupling constant describing
the flatness of the potential. Using the slow-roll equation (3.253) the number of e-foldings of
inflation is

N =
∫ te

ts
H dt =

∫ te

ts

H
ϕ̇0

dϕ0 = −
∫ te

ts

3H2

dV/dϕ0
dϕ0 ∼ H2

κϕ2
0 (ts)

, (4.299)

where ts and te are the times at which inflation starts and ends, respectively, and we have used the
fact that |ϕ0(ts)| � |ϕ0(te)|. Thus, the amplitudes of the metric perturbations predicted by this
model can be expressed as

Δ2
Φ ∼ H6

(dV/dϕ0)2 ∼ κN3. (4.300)

This model therefore predicts an initial power spectrum that is scale invariant, with an amplitude
that depends on the coupling constant κ . Since N ∼> 50 for a successful inflation (see §3.6.2),
the observed amplitude ΔΦ ∼ 10−5 requires that κ ∼< 10−15 according to Eq. (4.300). Such a
small coupling constant does not come naturally from current particle physics. Thus, although
inflation provides an attractive scheme to explain the origin of the cosmological density field, a
truly viable model has yet to be found.

4.5.2 Perturbations from Topological Defects

An alternative class of mechanisms for generating cosmological density perturbations is pro-
vided by topological defects which can be produced during some phase transitions in the early
Universe. According to the current view of particle physics, matter in the very early Universe is
described in terms of fields, and the theory governing the motions of these fields is symmetric
under certain transformations. As the Universe expands and the temperature drops, spontaneous
breaking of these internal symmetries can occur. During a symmetry breaking, the field makes
a phase transition from its original configuration to some final configuration with lower energy.
In fact, as discussed in §3.6, the inflaton is an example of such a field undergoing spontaneous
symmetry breaking. If there are more than one topologically distinct vacuum states for the final
configuration, different regions in the Universe can end up in different vacuum states after the
phase transition. These regions are separated by topological defects, which are still on the original
field configuration. The energy trapped in such defects can then produce density perturbations.

Depending on the symmetry of the field, the vacuum manifold can be in one of the follow-
ing forms: monopoles, domain walls, cosmic strings, and textures. Monopoles and domain walls
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can be ruled out immediately as the seeds for cosmic structure, since both would be produced
with an energy density that implies Ω0 	 1. Studies of topological defects as the origin of
cosmological density perturbations have therefore focused on cosmic strings and textures. In
contrast to inflation, cosmic strings and textures in general generate non-Gaussian and isocurva-
ture perturbations. However, the angular power spectrum of the temperature fluctuations in the
cosmic microwave background predicted by these models does not agree with current observa-
tions (e.g. Pen et al., 1997), so that virtually all present-day models focus on inflation as the main
mechanism to generate the primordial perturbations.



5

Gravitational Collapse and Collisionless Dynamics

Many objects in the present-day Universe, including galaxies and clusters of galaxies, have
densities orders of magnitude higher than the average density of the Universe. These objects
are thus in the highly nonlinear regime, where δ 	 1. To complete our description of structure
formation in the Universe, we therefore need to go beyond perturbation growth in the linear and
quasi-linear regimes, discussed in the previous chapter, and address the gravitational collapse of
overdensities in the nonlinear regime.

In this chapter, we study the nonlinear gravitational collapse and dynamics of collisionless
systems in which non-gravitational effects are negligible. In general, nonlinear gravitational
dynamics is difficult to deal with analytically, and so in many applications computer simula-
tions have to be used to follow the evolution in detail. However, if simple assumptions are
made about the symmetry of the system, analytical models can still be constructed (§§5.1–
5.3). Although these models are not expected to give accurate descriptions of the true nonlinear
problem of gravitational collapse, they provide valuable insight into the complex processes
involved. In §5.4 we describe the dynamics of collisionless equilibrium systems. These dynam-
ical models describe the end states of the nonlinear gravitational collapse of a collisionless
system, and are applicable to both galaxies and dark matter halos in a steady state. As such,
these models are often used to model the observed kinematics of galaxies in an attempt to
constrain their masses and their orbital structures. In §5.5 we present a description of the
physical relaxation mechanisms that cause the collapsing perturbation to settle in an equilib-
rium configuration. As we will see, in general we cannot predict the structural and dynamical
properties of a virialized object, even if its initial conditions are known. This is largely a
reflection of the nonlinear dynamics involved, but also reflects our continuing lack of a full
understanding of the various relaxation mechanisms at work. Finally, in §5.6, we use the models
described in this chapter to understand how gravitational collapse proceeds in the cosmic density
field.

5.1 Spherical Collapse Models

5.1.1 Spherical Collapse in a Λ= 0 Universe

In the absence of a cosmological constant, the radius r of a mass shell in a spherically symmetric
density perturbation evolves according to the Newtonian equation,

d2r
dt2 = −GM

r2 , (5.1)
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where M is the mass within the mass shell. Before shell crossing, M is independent of t for a
given mass shell, and so Eq. (5.1) can be integrated once to give

1
2

(
dr
dt

)2

− GM
r

= E , (5.2)

where E is the specific energy of the mass shell. For E = 0, the solution of this equation is
particularly simple: r = (9GM/2)1/3t2/3. For E �= 0, the motion of a mass shell can be written in
a parameterized form which depends on the sign of E . Since the descriptions for E > 0 and E < 0
are parallel, we will only present the E < 0 case for which the mass shell eventually collapses
rather than expands forever. The motion of a mass shell with E < 0 can be written as

r = A(1− cosθ); t = B(θ − sinθ), (5.3)

where A and B are two constants to be determined by the initial conditions for the mass shell in
question. At early times when θ � 1, we can expand Eq. (5.3) in powers of θ . Keeping the first
two non-zero terms we have r ≈ A[θ 2/2−θ 4/24] and t ≈ B[θ 3/6−θ 5/120]. Inserting these into
Eqs. (5.1) and (5.2) and keeping the lowest non-zero orders we get

A3 = GMB2 and A = GM/(−2E ). (5.4)

In order to specify A and B in terms of initial conditions, we assume that at an early time ti � 1
the radius and the velocity of the mass shell are ri and vi, respectively. The specific energy of the
mass shell (which is a constant during the evolution) is then E = v2

i /2−GM/ri. Inserting this
into the second expression of Eq. (5.4) gives

ri

2A
= 1− (vi/Hiri)2

Ωi(1+δi)
, (5.5)

where Hi is the Hubble constant, Ωi = ρ(ti)/ρcrit(ti) is the cosmic density parameter at time
ti, and δi is the average mass overdensity within the mass shell, related to M and ri by
(1 + δi)ρ(ti)(4πr3

i /3) = M. Since M is independent of t, the velocity of the mass shell can be
written as

vi =
dri

dti
= Hiri

[
1− 1

3Hiti

δi

1+δi

d lnδi

d ln ti

]
. (5.6)

At sufficiently early times when ti � 1, Ωi → 1 and δi → 0. To first order in δi and (Ω−1
i − 1),

we have Hiti ≈ 2/3, δi ∝ t2/3
i , and vi/(Hiri) ≈ 1−δi/3. It then follows from Eqs. (5.4) and (5.5)

that

A =
1
2

ri[
5δi/3+1−Ω−1

i

] ; B =
3
4

ti[
5δi/3+1−Ω−1

i

]3/2
. (5.7)

Thus, the motion of a mass shell is completely specified by Eq. (5.3) in a given cosmology via the
initial conditions on the radius r of the mass shell, and on the mean overdensity δ within it. Note
that the mass shell reaches its maximum expansion at θ = π . The radius and time at maximum
expansion are

rmax = 2A and tmax = πB. (5.8)

It is sometimes useful to specify the initial conditions in terms of quantities defined at the time
of interest (say t). For example, a mass shell can also be specified by its Lagrangian radius rl ≡
3M/4πρ(t) and δl(t), the initial perturbation δi evolved to time t according to linear perturbation
theory. For ti � t0 (where t0 is the present time), the linear growth factor gi ≈ 1 (see §4.1.6) and
so δi = δl(t)aigi/atgt ≈ (ai/at)[δl(t)/gt ], where at and gt are, respectively, the scale factor and
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linear growth factor evaluated at time t. Since (Ω−1
i −1) = (Ω−1

t −1)ai/at for a matter dominated
universe [which follows from Eqs. (3.79) and (3.77)], we can write Eq. (5.3) as

r
rl(t)

=
1
2

1− cosθ[
5δl(t)/3gt +(1−Ω−1

t )
] ; (5.9)

Htt =
1

2Ω1/2
t

θ − sinθ[
5δl(t)/3gt +(1−Ω−1

t )
]3/2

, (5.10)

where Ht ≡ H(t), and we have used the fact that

rl(t) ≈ riat/ai, t−1
i ≈ 3

2
Ω1/2

t Ht(at/ai)3/2, (5.11)

at ti � t0 when δi � 1 and Hiti ≈ 2/3. Eqs. (5.9) and (5.10) give a complete description of the
mass shell in terms of rl(t), δl(t) and the cosmological quantities at time t (Ωt and Ht ). Since
there is no shell crossing, the mean density within the mass shell at time t is just

ρ(t) = ρ(t)[rl(t)/r]3. (5.12)

In terms of rl(t) and δl(t), the maximum expansion radius rmax and time tmax can be written as

rmax/rl(t) =
[
5δl(t)/3gt +(1−Ω−1

t )
]−1

, (5.13)

and

Httmax =
π

2Ω1/2
t

[
5δl(t)/3gt +(1−Ω−1

t )
]−3/2

. (5.14)

For a mass shell turning around (i.e. reaching maximum expansion) at a time tta, its linear
overdensity δl at tta needs to be

δl(tta) =
3g(tta)

5

{[
π

2Ω1/2(tta)H(tta)tta

]2/3

− [1−Ω−1(tta)
]}

. (5.15)

For Ω= 1, this overdensity is

δl(tta) =
3
5

(
3π
4

)2/3

≈ 1.06, (5.16)

and the real density at this time is

ρ(tta) = ρ(tta)
[

rl(tta)
rmax(tta)

]3

=
(

3π
4

)2

ρ(tta) ≈ 5.55ρ(tta). (5.17)

According to Eqs. (5.9) and (5.10), the radius of a mass shell r becomes zero at t = 2tmax

(corresponding to θ = 2π), and it is usually said that the mass shell is collapsed by this time.
Strictly speaking, however, Eqs. (5.9) and (5.10) are not valid for arbitrarily small r. As the mass
shell turns around and begins to collapse, particles in the mass shell in question can cross the
mass shells that were originally inside it, and consequently the mass enclosed by the mass shell
is no longer constant, making the assumption of a constant M invalid. Indeed, as to be discussed
in §5.2, by the time t = 2tmax all the mass shells initially enclosed by the mass shell that has
just collapsed have crossed each other so many times that they form an extended, quasi-static
structure called a virialized halo. Thus, we may identify tcol ≡ 2tmax with the collapse time of the
mass shell, even though the spherical collapse model described above is no longer valid by this
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time. From Eq. (5.14) we see that for a mass shell to collapse at time tcol, the overdensity within
it, linearly extrapolated to the collapse time, must be

δc(tcol) =
3g(tcol)

5

{[
π

Ω1/2(tcol)H(tcol)tcol

]2/3

− [1−Ω−1(tcol)
]}

. (5.18)

Since H(t)t and g(t) depend only on Ω(t) in the matter dominated epoch (see §3.2.3 and §4.1.6),
the critical overdensity for collapse, δc(tcol), depends only on Ω(tcol). This critical overdensity
can be approximated by

δc(tcol) =
3
5

(
3π
2

)2/3

[Ω(tcol)]0.0185 ≈ 1.686[Ω(tcol)]0.0185, (5.19)

which is accurate to better than 1%. Note that the dependence on Ω is very weak.

5.1.2 Spherical Collapse in a Flat Universe with Λ> 0

In a universe with a non-zero cosmological constant, the motion of a mass shell in a spherically
symmetric perturbation is given by

d2r
dt2 = −GM

r2 +
Λ
3

r, (5.20)

where we have used the fact that the cosmological constant contributes to the gravitational accel-
eration through an effective density ρ + 3P/c2 = −2ρ = −Λc2/(4πG). Integrating the above
equation once we have

1
2

(
dr
dt

)2

− GM
r

− Λc2

6
r2 = E , (5.21)

where, as before, E is a constant. Before the mass shell reaches its maximum expansion, dr/dt >
0 and the solution of Eq. (5.21) can be written as

t =
∫ r

0
dr

[
2E +

2GM
r

+
Λc2

3
r2
]−1/2

. (5.22)

Suppose that the maximum-expansion radius of the mass shell is rmax. Since dr/dt = 0 at this
radius, we have E = −GM/rmax −Λc2r2

max/6. Eq. (5.22) can then be written as

H0t =
(

ζ
ΩΛ,0

)1/2 ∫ r/rmax

0
dx

[
1
x
−1+ζ (x2 −1)

]−1/2

, (5.23)

where

ζ ≡ (Λc2r3
max/6GM) < 1/2, (5.24)

with the inequality following from r̈ < 0 at r = rmax. After maximum expansion, the correspond-
ing equation is

H0(t − tmax) =
(

ζ
ΩΛ,0

)1/2 ∫ 1

r/rmax

dx

[
1− 1

x
−ζ (x2 −1)

]−1/2

, (5.25)

where

tmax =
1

H0

(
ζ
ΩΛ,0

)1/2 ∫ 1

0
dx

[
1
x
−1+ζ (x2 −1)

]−1/2

(5.26)

is the time at maximum expansion. Thus, for given Λ and M, the three quantities, rmax, ζ and
H0tmax, which are needed to specify the evolution given by Eqs. (5.23) and (5.25), are equivalent



5.1 Spherical Collapse Models 219

and only one of them needs to be determined through the initial conditions. At early times, when
ri � rmax, Eq. (5.23) can be approximated by

H0ti =
2
3

(
ζ
ΩΛ,0

)1/2( ri

rmax

)3/2 [
1+

3
10

(1+ζ )
ri

rmax

]
, (5.27)

which follows from approximating the integrand in Eq. (5.23) by x1/2[1+(x+ζx−ζx3)/2]. For
a flat universe with Ωm,0 +ΩΛ,0 = 1, Eq. (3.99) gives H0ti = 2

3

√
ωi/ΩΛ,0 at ti � t0, where ωi ≡

ΩΛ(ti)/Ωm(ti) = (ΩΛ,0/Ωm,0)(1 + zi)−3 = Ω−1
m,i −1. Since ri/rmax � 1, to first order Eq. (5.27)

gives ri/rmax ≈ (ωi/ζ )1/3. Replacing ri/rmax in the bracket on the right-hand side of Eq. (5.27)
by this first order relation, we get

ri

rmax
≈
(
ωi

ζ

)1/3
[

1− 1
5
(1+ζ )

(
ωi

ζ

)1/3
]

. (5.28)

This equation, together with the relation (1+δi)Ωm,iρcrit(ti)(4πr3
i /3) = M and the definition of

ζ , gives

δi =
3
5
(1+ζ )

(
ωi

ζ

)1/3

. (5.29)

In terms of δ0, which is δi linearly evolved to the present time, this relation is

δ0 =
a0g0

aigi
δi =

3
5

g0(1+ζ )
(
ω0

ζ

)1/3

, (5.30)

where we have used that ωi = ω0/(1 + zi)3 (ω0 ≡ ΩΛ,0/Ωm,0) and that gi → 1 for ai � a0.
Eq. (5.30) relates ζ to the initial condition (δ0, the initial overdensity within the mass shell
evolved to the present time using linear theory) and is the relation we are seeking. If, as before,
we assume that the collapse of a mass shell occurs at tcol = 2tmax, Eqs. (5.26) and (5.30) specify
the relation between tcol and δ0. At the time of collapse, the linear overdensity is

δc(tcol) =
3
5

g(tcol)(1+ζ )
[
ω(tcol)
ζ

]1/3

. (5.31)

The above relation can be approximated by

δc(tcol) =
3
5

(
3π
2

)2/3

[Ωm(tcol)]0.0055 ≈ 1.686[Ωm(tcol)]0.0055, (5.32)

which is accurate to better than 1%. As for cosmologies with zero cosmological constant,
the dependence on Ωm is extremely weak [see Eq. (5.19)]. To good approximation, therefore,
δc(tcol) � 1.68 for all realistic cosmologies.

5.1.3 Spherical Collapse with Shell Crossing

Because of its collisionless nature, a mass shell of collisionless particles in the spherical collapse
model will oscillate about the center after the collapse, with an amplitude that may change with
time. Gunn (1977) considered a simple model in which the oscillation amplitude of a mass shell
is assumed to be a constant proportional to the radius of the mass shell at its first turnaround.
Since the absolute value of the velocity of a mass shell is smaller at larger radius, the mass shell
is expected to spend most time near its apocenter, and the total mass within a mass shell at the
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apocenter may be approximated by the original mass enclosed by the mass shell. In this case, the
mean density within a radius r can be written as

ρ(r) =
3M

4πr3(M)
, (5.33)

where r(M)∝ rta(M), with rta(M) the turnaround radius of the mass shell M. The density profile
can then be obtained if we know how rta changes with M. As an example, consider a perturbation
δi ∝ r−3ε

i ∝ M−ε in an Einstein–de Sitter universe. In this case, rta ∝ ri/δi ∝ M(ε+1/3), and the
density profile is

ρ(r) ∝ r−γ with γ = 9ε/(1+3ε). (5.34)

For the special case in which the initial perturbation is associated with a point mass embedded
in an Einstein–de Sitter background, ε = 1 and ρ(r) ∝ r−9/4. This solution was first obtained by
Gunn & Gott (1972).

Unfortunately, the above treatment of shell crossing is not accurate. In general, the total mass
within a mass shell at apocenter includes not only the particles initially enclosed by the mass
shell, but also those shells which were initially outside it but have current radii smaller than its
apocentric radius. Because of this additional mass, the apocentric radius in general changes with
time, and so the density profile cannot be obtained simply by assuming the conservation of mass
within individual mass shells. In the following section we describe a more general model that
includes a more proper treatment of shell crossing.

5.2 Similarity Solutions for Spherical Collapse

5.2.1 Models with Radial Orbits

Consider an initial (spherical) density perturbation with density profile ρi(ri), where ri is the
radius to the center at some fiducial time ti. The initial mass within a mass shell with radius ri is

Mi(ri) = 4π
∫ ri

0
ρi(y)y2 dy. (5.35)

At a later time t > ti, the radius of the mass shell with initial radius ri [or with initial mass Mi(ri)]
becomes r(ri, t), and the mass enclosed by it becomes M(r, t). Assuming that all particles in the
mass shell have purely radial orbits, the equation of motion of the mass shell is given by

d2r
dt2 = −GM(r, t)

r2 . (5.36)

For simplicity we have assumed the cosmological constant to be zero. Before shell crossing,
M(r, t) = Mi(ri) is a constant, and the solution of this equation is the same as that discussed in
§5.1. In general, the solution to the above equation has to be obtained numerically by following
the time evolution of all individual mass shells. For a special set of problems where the collapse
proceeds in a self-similar way, simpler solutions can still be found (e.g. Fillmore & Goldreich,
1984; Bertschinger, 1985). Before presenting these solutions, we caution that none of them are
viable models for real halos since all are subject to strong non-radial instabilities which cause
evolution from these initial conditions to produce strongly prolate, rather than spherical, systems
(Carpintero & Muzzio, 1995; MacMillan et al., 2006). These similarity solutions nevertheless
give useful insight into how halos grow.

In order for a problem to admit self-similar solutions, the time, t, has to be the only independent
physical scale; all other characteristic scales are power laws of t. In such a case, the solution
looks the same when physical quantities are expressed in terms of their characteristic scales. For
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a problem with spherical symmetry, such as the one considered here, this means that any physical
quantity, q(r, t), can be written in the form, q(r, t) = Q(t)Q[r/R(t)], where R(t) and Q(t) are the
characteristic scales for the radius r and for the quantity q, respectively, both having power-law
dependence on t, and Q is an arbitrary function of the normalized radius. When considering
gravitational collapse in an expanding background, self-similarity requires the expansion of the
universe to be scale-free [i.e. a(t) is a power law of t], and so we need to assume an Einstein–de
Sitter universe. In this case, the turnaround radius and time (which again refer to the radius and
time at the first apocenter) are

rmax

ri
=

Cr

δi
;

tmax

ti
=
(

Ct

δi

)3/2

, (5.37)

where Cr = 3/5, Ct =Cr(3π/4)2/3 and δi is the initial mean density contrast within the mass shell
[see Eq. (5.8)]. In order for the problem to have self-similar solutions, we also need to assume
the initial density perturbation to be scale-free. We therefore write

δi ≡ δMi

Mi
=
(

Mi

M∗

)−ε
, (5.38)

where ε is a constant and M∗ is a reference mass scale. Denoting the turnaround radius at time t
by rt and the mass within it by Mt ≡ M(rt , t), we find from Eqs. (5.37) and (5.38) that

Mt

M∗
=

1

C1/ε
t

(
t
ti

)2/3ε
; (5.39)

rt =
Cr

Ct

[
3Mt

4πρ(ti)

]1/3( t
ti

)2/3

, (5.40)

where ρ(ti) is the background density at ti. Under the assumption of self-similarity, the mass
M(r, t) must have the self-similar form

M(r, t) = MtM (r/rt), (5.41)

where M is a dimensionless mass profile. Since M(r, t) contains all the mass in the mass shells
with current radii smaller than r(ri, t), we have for r < rt that

M (r/rt) =
1

Mt

∫ Mt

0
H
[
r(ri, t)− r(r′i, t)

]
dM′

i , (5.42)

where H (x) is the Heaviside step function: H (x) = 1 for x ≥ 0 and H (x) = 0 otherwise. In
terms of the dimensionless variables,

λ = r/rmax and τ = t/tmax, (5.43)

where rmax and tmax are the radius and time at the first apocenter, respectively, the equation of
motion, Eq. (5.36), can be written as

d2λ
dτ2 = −π

2

8
τ2/3ε

λ 2 M

[
λ
Λ(τ)

]
, (5.44)

where

M (x) =
2

3ε

∫ ∞

1

dy

y1+2/3ε H

[
x− λ (y)

Λ(y)

]
and Λ(τ) = τ2/3+2/9ε . (5.45)

The boundary conditions are λ = 1 and dλ/dτ = 0 at the turnaround time τ = 1. Eq. (5.44)
is independent of ri, and so it applies to all mass shells that have turned around before time t.
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Fig. 5.1. The scaled radius λ ≡ r/rmax as a function of the scaled time τ ≡ t/tmax in two self-similar radial
orbit models with ε = 0.2 and 1.0, respectively. [After Fillmore & Goldreich (1984)]

This obviously is a consequence of the assumption of self-similarity that makes the problem
scale-invariant. For a given ε , Eq. (5.44) can be integrated iteratively with an initial guess of the
mass distribution M (x) (Fillmore & Goldreich, 1984). As an illustration, Fig. 5.1 shows λ as a
function of τ for ε = 0.2 and 1.

As one sees from Fig. 5.1, each mass shell has an initial period of expansion which ends at
the time of turnaround (τ = 1). Thereafter, the mass shell oscillates around the center. Since
rmax and tmax are fixed for a given mass shell, while the current turnaround radius rt and time t
increase with the passage of time, Fig. 5.1 shows that, for a given mass shell, the ratio between
its apocentric radius ra and the current turnaround radius rt , as well as the ratio between its
oscillation period and the current time t, both decrease with time. Consequently, a given mass
shell becomes buried deeper and deeper in the halo of the collapsed material with the passage of
time. During an oscillation period of a deeply buried mass shell, the change in the halo density
profile is small – because the oscillation period is much smaller than the dynamical time scale of
the halo – so that the oscillation is adiabatic. These properties allow us to examine the asymptotic
behavior of the similarity solution.

The scale-free nature of the similarity solution suggests that the halo mass profile M(r, t), and
the time variation of the apocentric radius ra, may both be approximated by power laws:

M(r, t) = κ(t)rα ;
ra

rmax
=
(

t
tmax

)q

. (5.46)
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Note that this mass profile corresponds to a density profile ρ(r) ∝ r−γ with γ = 3 −α . The
remaining task is then to express α and q in terms of the index ε describing the initial
perturbation. Inserting the first expression into Eq. (5.36) we obtain

d2r
dt2 = Gκ(t)rα−2. (5.47)

As discussed above, for orbits with apocentric radius ra � rt , κ(t) can be treated as a constant
over one orbital period. With this approximation, Eq. (5.47) can be integrated to give(

dr
dt

)2

≈ 2Gκ(t)
α−1

[
rα−1

a − rα−1] . (5.48)

The corresponding radial action of motion, which is an adiabatic invariant (see §11.1.3), is

Jr ≡ 4
∫ ra

0

dr
dt

dr

≈ 4

[
2Gκ(t)
α−1

]1/2

r(α+1)/2
a

∫ 1

0

[
1− yα−1]1/2

dy. (5.49)

Thus, if we write κ(t) = ct−s, then q = s/(α + 1). The value of s can be obtained by using the
expressions of rt and Mt given by Eqs. (5.39) and (5.40) in the relation Mt = M(rt , t) = ct−srαt
[see Eq. (5.46)]: s = 2

3 (α/3+αε−1)/ε . It then follows that

q =
2

3ε(α+1)
[α/3+αε−1] . (5.50)

The time a particle spends inside a radius r, t ∝
∫ r

0 (dr/dt)−1 dr, can be obtained from
Eq. (5.48), and the fraction of time a particle with current apocentric radius ra spends inside r is

P

(
r
ra

)
=

{
T
(

r
ra

)/
T (1) (r ≤ ra)

1 (r > ra),
(5.51)

where

T (x) =
∫ x

0

[
1− yα−1]−1/2

dy. (5.52)

It then follows from the first expression of Eq. (5.46) that(
r
rt

)α
=

M(r, t)
M(rt , t)

=
∫ Mt

0

dMi

Mt
P

[
r

ra(Mi, t)

]
. (5.53)

Using Eqs. (5.37), (5.38) and (5.46) to express ri, rmax and tmax in terms of ti, t and ra, and making
use of Eqs. (5.39) and (5.40), we can write Eq. (5.53) as(

r
rt

)α−p

=
1
p

∫ ∞

r/rt

dy
y1+p P(y), (5.54)

where

p =
6

2+3(2−3q)ε
. (5.55)

For y� 1, P(y)∝ y. Thus, if p < 1, then the integration in Eq. (5.54) converges to a constant value
for r/rt → 0, giving α = p. On the other hand, if p > 1, the integration diverges as (r/rt)1−p,
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which gives α = 1. Inserting these results into Eqs. (5.50) and (5.55), we can finally express all
the power indices in terms of ε:

α = 1, p = 6
(4+3ε) ≥ 1, q = (3ε−2)

9ε , γ = 2, for ε ≤ 2
3 ;

α = p, p = 3
(1+3ε) < 1, q = 0, γ = 9ε

(1+3ε) , for ε > 2
3 .

(5.56)

The physical distinction between the two scaling solutions can be understood by examining the
initial specific binding energy of particles in different mass shells. Because a mass shell collapses
when δM/M ≈ 1.68, the mass accretion history implied by Eq. (5.38) is

M(t) ∝ [D(t)]1/ε ∝ [H(t)]−2/3ε , (5.57)

where D(t) is the linear growth factor at time t and is related to the Hubble parameter, H(t), as
D(t)∝ [H(t)]−2/3 in the Einstein–de Sitter universe considered here. The specific binding energy
of a mass shell with turnaround time t is

E(Mi) ∝−Mi

rt
∝−Miδi

ri
∝−M2/3

i δi ∝−M2/3−ε
i ∝−[H(z)]2(1−2/3ε)/3. (5.58)

For ε > 2/3, mass shells with smaller Mi have higher (negative) binding energy. In this case, the
mass in the inner halo is dominated by particles which have oscillated through the center many
times, and so the mass profile is almost independent of time. In this case, the apocentric radius
ra is a fixed fraction of rmax (see the ε = 1 case in Fig. 5.1) so that q = 0 and

M(r, t) ∝Mi(rmax = r) ∝ r3/(1+3ε), (5.59)

and the density distribution obeys Eq. (5.34). For ε < 2/3, on the other hand, mass shells with
smaller Mi are less bound and the mass in the inner halo comes from particles whose apocenters
spread throughout the halo. Consequently, α = 1 corresponds to ρ(r) ∝ r−2, independent of the
initial density profile. In this case, ra decreases with time because the loosely bound particles in
the inner part of the halo can lose energy to the mass shells that have recently collapsed.

5.2.2 Models Including Non-Radial Orbits

Self-similar models can also be constructed for spherical collapse with non-radial particle orbits.
White & Zaritsky (1992) considered a model in which the specific angular momentum of a
particle in a mass shell is specified by

L = J
√

GMmaxrmax, (5.60)

where rmax is the turnaround radius, and Mmax is the mass interior to rmax and is equal to the
initial mass within the mass shell. If J is the same constant for all mass shells, then no new
physical scale is introduced and the problem will still have self-similar solutions. Note that for a
spherical system, L is conserved for a given mass shell. In the presence of angular momentum,
the equation of motion for a mass shell becomes

d2r
dt2 = −GM(r, t)

r2 +
L 2

r3 , (5.61)

which is the same as Eq. (5.36) except for the centrifugal force term. Because of the centrifugal
force, the radius r cannot reach zero; instead it oscillates between a pericenter rp and an apocenter
ra, both being time-dependent. The equation corresponding to Eq. (5.44) is

d2λ
dτ2 = −π

2

8
τ2/3ε

λ 2 M

[
λ
Λ(τ)

]
+
π2

8
J 2

λ 3 , (5.62)

which can be solved in the same way as Eq. (5.44).



5.2 Similarity Solutions for Spherical Collapse 225

To study the asymptotic behavior of the solution, we again write M(r, t) and the apocentric
radius ra in the scale-free form of Eq. (5.46). Consider again mass shells with ra � rt so that κ(t)
can be treated as a constant over one orbital period. In this case, Eq. (5.61) can be integrated once
to give (

dr
dt

)2

≈−2Gκ(t)
α−1

rα−1 − L 2

r2 +2E, (5.63)

where E is a constant. Since dr/dt = 0 for both r = ra and r = rp, it is straightforward to show
that

2E =
2Gκ(t)
α−1

rα−1
a +

L 2

r2
a

;
2Gκ(t)
α−1

= L 2 r−2
p − r−2

a

rα−1
a − rα−1

p
. (5.64)

This in Eq. (5.63) gives

dr
dt

=
L

ra

[
(ζ−2 −1)

1− yα−1

1−ζα−1 +(1− y−2)
]1/2

, (5.65)

where y ≡ r/ra and ζ ≡ rp/ra. The radial action can then be written as

Jr ≡ 2
∫ ra

rp

dr
dt

dr

≈ 2L
∫ 1

ζ

[
(ζ−2 −1)

1− yα−1

1−ζα−1 +(1− y−2)
]1/2

dy, (5.66)

which is again an adiabatic invariant. Since L is conserved, invariance of Jr implies that ζ is time
independent. The conservation of L also implies that GMmaxrmax = GM(ra, t)ra = Gκ(t)rα+1

a =
(L /J )2. Using these relations in the second equation of Eq. (5.64), we obtain J 2(α − 1) =
2(ζ 2 − ζα+1)/(1− ζ 2). Since J is the same for all mass shells in the model considered here,
this relation implies that ζ is the same for all mass shells.

The same arguments that led to Eq. (5.54) are still valid in the present case, and can there-
fore be used to obtain the asymptotic density profile for r → 0. However, since P(y) = 0 for
y < ζ (i.e. for r < rp), the lower limit in the integration in Eq. (5.54) should be replaced by ζ for
r � ζ rt . The right-hand side of Eq. (5.54) is then independent of r, implying that α = p. This rela-
tion, together with Eqs. (5.50) and (5.55), implies that the asymptotic inner slope of the density
profile is

γ = −dlnρ
dlnr

= 9ε/(1+3ε) (5.67)

for all ε > 0 (Nusser, 2001). Note that for ε ≥ 2/3, this solution is the same as that for the model
assuming pure radial orbits. Because of the centrifugal force, the mixing of particles that leads to
α = 1 in the pure radial case is absent even for 0 < ε ≤ 2/3. Instead, the profile is determined by
the initial conditions specified by ε . For large enough J we may expect these models to be free
of the radial orbit instability which destroys the J = 0 similarity solutions, but their stability
has not yet been studied in detail.

If J is different for different mass shells, the problem in general does not admit self-similar
solutions. In this case, one has to follow the time evolution of every mass shell separately. Lu
et al. (2006) considered a model where the velocity of particles is isotropized during the collapse.
One-dimensional simulations show that the asymptotic slope in this case is γ = 9ε/(1+3ε)
for ε > 1/6 and γ = 1 for 0 < ε ≤ 1/6. Fig. 5.2 shows the γ-ε relation in this model com-
pared to the model assuming pure radial orbits and the model in which all particles have the
same J .
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Fig. 5.2. The relation between the inner logarithmic slope, γ ≡−dlnρ/dlnr = 3−α , as a function of the
exponent of the initial perturbation defined in Eq. (5.38). The long dashed curve shows the solution of the
model with pure radial motion and the dotted curve shows the solution when all particles have the same J .
The solution with an isotropized inner velocity distribution is shown as the solid curve, and is compared
with the result obtained directly from 1-D simulations (crosses). All the three curves overlap for ε ≥ 2/3.
[Adapted from Lu et al. (2006)]

One important feature of the γ-ε relation for the isotropized model is that γ ≈ 1 for all
0 < ε ∼< 1/6. As shown in Eq. (5.58), for ε in this range, the specific energy of the accreted
mass increases rapidly with time, with a time scale that is shorter than a Hubble time. In this
case, not only can particles with small apocenters (low orbital energies) reach the inner part, but
so can many particles with large apocenters (high orbital energies) and small angular momenta.
Velocity isotropization mixes these orbits, resulting in γ ≈ 1. For ε > 1/6 the gravitational poten-
tial is changing gradually and particles joining the inner halo all have a similar energy and
orbital shape. The resulting profile can then be described by the self-similar solution assum-
ing the same orbital shape for all particles. An inner logarithmic slope of d lnρ/dlnr ∼ −1
thus results from rapid collapse and orbit isotropization. Both conditions are required to pro-
duce such an inner slope. If the collapse is fast (ε ∼< 1/6) but the velocity dispersion is not
isotropic, the inner slope can be as shallow as 0 (for constant J ) and as steep as −2 [for
pure radial orbits, though these models are unstable and evolve to a shallower inner slope
(MacMillan et al., 2006)]. If the orbits are isotropized, but the mass accretion rate is small,
i.e. ε > 1, the inner slope can be much steeper than −1. As we will see in Chapter 7, cold
dark matter halos in numerical simulations typically have γ = −dlnρ/dlnr � 1 in the inner
region.

5.3 Collapse of Homogeneous Ellipsoids

So far we have assumed that the collapse of density perturbations occurs under spherical sym-
metry, which is clearly an over-simplification. As a simple non-spherical model for gravitational
collapse, let us consider the evolution of an overdense region that is spatially uniform inside an
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ellipsoidal volume. For simplicity, we assume that the ellipsoid consists of an ideal fluid of zero
pressure. The equation of motion of a fluid element at the comoving coordinates x inside the
ellipsoid can in general be written as

dv
dt

= −1
a
∇Φ(x), (5.68)

where v is the peculiar velocity of the fluid element, and the gravitational potential perturbation
Φ obeys the Poisson equation

∇2Φ= 4πGρm(t)a2δ (t), (5.69)

with δ (t) the overdensity of the ellipsoid at time t. In general, Φ can be separated into two parts,

Φ=Φint +Φext, (5.70)

where Φint and Φext are the potential perturbations due to matter interior and exterior to the
ellipsoid, respectively. Note that ∇2Φext = 0 for x inside the ellipsoid. For simplicity, we work
in the principal axes system of the ellipsoid. The potential perturbation due to the ellipsoid can
then be written as

Φint(x) = πGa2ρm(t)δ (t)
3

∑
i=1
αix

2
i , (5.71)

where

αi = X1X2X3

∫ ∞

0
dy(X2

i + y)−1
3

∏
j=1

(X2
j + y)−1/2, (5.72)

with Xi(t)(i = 1,2,3) the comoving lengths of the principal axes at time t (e.g. Chandrasekhar,
1969). SinceΦint obeys Eq. (5.69), it is straightforward to show that∑iαi = 2. Thus, the equation
of motion (5.68) applied to the mass elements near the ends of the principal axes gives

d2Xi

dt2 +
2ȧ
a

dXi

dt
= −2πGρmδ αiXi − 1

a2∇iΦext, (5.73)

where δ is given by the mass of the ellipsoid, M, as

4π
3

(1+δ )ρma3X1X2X3 = M. (5.74)

If the external potential can be neglected, as is the case when the density contrast in the ellipsoid
is high enough to dominate the dynamics, Eq. (5.73) can be integrated for a given initial condi-
tion. In this case, Eq. (5.73) is invariant under the transformation xi → kixi, so that the ellipsoid
remains ellipsoidal and homogeneous during the evolution.

Since Φext is of the same order as Φint for δ � 1 in a cosmological density field (see below),
Eq. (5.73) with Φext set to zero does not reproduce the linear evolution. In order to integrate
the equation of motion from a linear initial condition, the external potential has to be taken
into account properly. To find an expression for Φext in the linear regime, we assume that the
ellipsoid evolves from an initial Lagrangian sphere with radius r0. According to the Zel’dovich
approximation (see §4.1.8), the boundary of this sphere evolves into an ellipsoid with principal
axes Xi(t) = r0[1− λiD(t)] in the linear regime. Recall that λi (i = 1,2,3) are the eigenvalues
of the deformation tensor, ∇∇Φi/(4πGρma3), where Φi is the potential at some initial time ti,
related to the linear potential perturbation Φ� by Φ� = (D/a)Φi. Thus, the principal axes of
the ellipsoid are parallel to those of the deformation tensor in the Zel’dovich approximation.
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Expanding Φ� in the neighborhood of the center of the ellipsoid up to the second order, we
obtain

Φ�(x) =Φ�(0)−∑
i

xi

(
∂Φ�

∂xi

)
x=0

+
1
2∑i, j

xix j

(
∂ 2Φ�

∂xi∂x j

)
x=0

. (5.75)

Since the constant term has no effect on the motion and the linear gradient term represents the
motion of the center of mass, we keep only the quadratic term which describes the tidal field
around x = 0. The linear potential can then be written as

Φ�(x) =
1
2∑i, j

Ti jxix j

=Φ�,int(x)+
1
2∑i, j

(
T ′

i j −2πGa2ρmδ α
′
iδi j
)

xix j, (5.76)

where α ′
i = αi −2/3, and

Ti j =
∂ 2Φ�

∂xi∂x j
and T ′

i j = Ti j − 1
3
δi j∇2Φ� (5.77)

are the linear tidal tensor and its traceless part, respectively. Since to first order α ′
i ∝ δ , the term

involving δα ′
i in Eq. (5.76) is of second order in δ and can be ignored at early times. Hence, the

external potential perturbation in the linear regime is

Φ�,ext(x) =
1
2∑i, j

T ′
i jxix j, (5.78)

which represents the entire traceless part of the total tide and in general cannot be neglected. In
the principal-axis system, we can write

Φ�,ext(x) = 2πGρma2∑
j

(
λ j − δi

3

)
D(t)x2

j , (5.79)

where δi is the initial linear overdensity of the ellipsoid. As a simple approximation, we may
assume Φext = Φ�,ext during the entire evolution of the ellipsoid. This assumption is reasonable,
because by definition it reproduces the linear evolution and because once the ellipsoid turns
around and begins to collapse, the nonlinear internal gravitational field will overcome the external
tidal field so as to make the assumption regarding the external field irrelevant. The dynamical
equations of Xj can then be written as

d2Xj

dt2 +
2ȧ
a

dXj

dt
= −4πGρmXj

[
1
2
α jδ +D(t)

(
λ j − 1

3
δi

)]
. (5.80)

In this case, the ellipsoid remains both ellipsoidal and homogeneous during the evolution. Com-
bined with Eq. (5.74), Eq. (5.80) can be solved numerically for any given δi and λ j in a given
cosmology.

To proceed, we use that

α j ≈ 2Xh

3Xj
, (5.81)
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where Xh = 3/∑ j X−1
j . This approximation is accurate to about 10% (White & Silk, 1979).

Inserting this into Eq. (5.80) we obtain

a
d
dt

a2 dXj

dt
= −4πG

3
ρma3 [δXh −δiDXj +3λ jDXj] . (5.82)

Since the two terms involving DXj are expected to be important only in the linear regime when
Xj ∼ Xj(ti) ∼ Xh, this equation can formally be integrated twice to give

Xj(t) ≈ Xj(ti) [1−Dλ j]− 4πG
3
ρma3

∫
dt
a2

∫
dt
a

(δ −Dδi)Xh. (5.83)

This solution has the desired asymptotic properties: in the linear regime, when δ = Dδi, it is
the same as that given by the Zel’dovich approximation; in the highly nonlinear regime where
δ 	 Dδi it gives the solution of an ellipsoid with vanishing external tide. Note that the second
term on the right-hand side of Eq. (5.83) does not depend on the index j, and so the comoving
lengths of all three axes contract by the same amount relative to the Zel’dovich approximation.
For a uniform sphere with the same initial overdensity δi, the solution given by Eq. (5.83) is
exact for its comoving radius, X(t). Thus, if we assume that the time-dependence of Xh(δ −Dδi)
is independent of the shape of the perturbation, the last term of Eq. (5.83) can be replaced by
X(t)−X(ti)(1−Dδi/3), where X(ti) ≈ Xh(ti) is the initial radius of the uniform sphere. The
solution (5.83) can then be written as

Xj(t) ≈ Xj(ti) [1−Dλ j]−Xh(ti)
[

1− Dδi

3
− ae(t)

a(t)

]
, (5.84)

where ae(t) is the expansion factor in a universe with initial density (1 + δi)ρm(ti) at ti. This
solution is exact both for spherical collapse and in the linear regime, and is found to match the
exact solution of Eq. (5.80) reasonably well up until the collapse of the shortest axis (White,
1996; Shen et al., 2006).

From the above description, we see that the collapse of a uniform ellipsoid can be specified
by its initial overdensity δi = λ1 + λ2 + λ3, and the parameters e and p that characterize the
asymmetry of the tidal field:

e ≡ λ1 −λ3

2δi
, p ≡ λ1 +λ3 −2λ2

2δi
, (5.85)

assuming λ1 ≥ λ2 ≥ λ3. Thus defined, e (≥ 0) is a measure of the ellipticity in the (λ1,λ3)
plane, and p determines the oblateness (0 ≤ p ≤ e) or prolateness (0 ≥ p ≥ −e) of the tidal
ellipsoid. Oblate spheroids have p = e, prolate spheroids have p =−e and spheres have e = p = 0.
In general the shortest axis (the one parallel to λ1) will be the first to collapse to zero. When
this happens Eq. (5.80) is no longer valid. However, in order to study the collapse of the whole
ellipsoid, we need to make additional assumptions so as to integrate Eq. (5.80) all the way to
when the longest axis is considered to have collapsed. A common practice is to assume that all
axes are frozen at the same radius equal to (200)1/3 times the Lagrangian radius so that the mean
density within it is about 200 times the mean density of the universe at the time of collapse. This
choice is somewhat arbitrary but, by construction, reproduces the ‘virial’ density contrast from
the spherical collapse model, as we will see in §5.4.4.

In order for a particular axis to collapse at a given time, the initial overdensity δi must be
sufficiently high. For the ranges of e and p expected from cold dark matter models, a reasonable
approximation to the critical linear overdensity for the longest axis to collapse can be obtained
by solving

δec(e, p)
δsc

≈ 1+β
[

5
(
e2 ± p2) δ 2

ec(e, p)
δ 2

sc

]γ
(5.86)
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for δec(e, p), where β ≈ 0.47, γ ≈ 0.615, δsc = δc is the critical overdensity for spherical collapse
(i.e. for e = p = 0), and the plus (minus) sign is used if p is negative (positive). This relation has
been obtained by Sheth et al. (2001) fitting the values of δec(e, p) given by the ellipsoidal collapse
model described above. Thus, if the collapse time of an ellipsoid is defined to be the time when
its longest axis collapses, then for a given collapse time the required overdensity is higher for
ellipsoidal collapse than for spherical collapse. In other words, for a given initial overdensity,
collapse occurs later for an ellipsoidal perturbation than for a spherical perturbation. As shown
by White (1996) and Shen et al. (2006), the opposite is true for the collapse along the shortest
axis.

5.4 Collisionless Dynamics

In the previous sections we have described the gravitational collapse of density perturbations
consisting of collisionless particles. The ultimate end state of such a collapse is a system in equi-
librium, whose structure is governed by collisionless dynamics. Before discussing the physical
relaxation mechanisms that cause the collapsing system to reach equilibrium, we first describe the
dynamics of collisionless equilibrium. After demonstrating that galaxies and dark matter halos
can be well approximated as collisionless systems, we describe the collisionless Boltzmann equa-
tions, the Jeans equations, the virial theorem, orbit theory, the Jeans theorem, and present some
useful applications. A more detailed treatment of this topic can be found in Binney & Tremaine
(1987, 2008).

5.4.1 Time Scales for Collisions

Consider a system of size r consisting of N bodies of radius rp. The cross-section for a direct
collision is σd = πr2

p, and the mean free path of a particle is λ = 1/(nσd) with n = 3N/(4πr3)
the number density of particles. The collision time, defined as the characteristic time scale on
which a particle experiences a direct collision, is then

tdirect =
λ
v
�
(

r
rp

)2 tcross

N
, (5.87)

where tcross = r/v is the crossing time, which is the average time it takes a particle to cross the
system. As an example, consider a typical galaxy consisting of N = 1010 stars, having r ∼ 10kpc
and v ∼ 200kms−1. If rp is roughly the radius of the Sun (rp = 6.9× 105 km), one finds that
tdirect � 1021yrs, eleven orders of magnitude larger than the Hubble time, tH ∼ 1010yrs. Therefore,
direct collisions among stars are completely negligible in galaxies.

But what about encounters, also called indirect collisions? Consider the encounter of a particle
of mass m with another particle of mass m′. The equation of motion of the vector x separating m
and m′ is given by (

mm′

m+m′

)
ẍ = −Gmm′

r2 x̂. (5.88)

Let v0 = ẋ0 be the relative initial velocity (at t →−∞) between the two particles with an impact
parameter b, defined as the initial separation vector x0 projected in the direction perpendicu-
lar to v0. It can be shown that after the encounter, at t → ∞, the changes in the velocity of m
perpendicular and parallel to v0 are

|δvm,⊥| =
2m′bv3

0

G(m+m′)2

[
1+

b2v4
0

G2(m+m′)2

]−1

, (5.89)
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and

|δvm,||| =
2m′v0

m+m′

[
1+

b2v4
0

G2(m+m′)2

]−1

, (5.90)

respectively (see e.g. Binney & Tremaine, 2008). For simplicity, let us assume that all particles
have the same mass m. From Eqs. (5.89) and (5.90), it can be seen that the change in the velocity
δv becomes comparable to the approaching velocity v0 itself if the impact parameter is of the
order b ∼ b1 ≡ Gm/v2

0 � r/N. An encounter with b ∼< b1 is therefore called a close encounter,
and the time scale for such a close encounter to occur follows from tdirect by simply replacing rp

with b1:

tclose =
(

r
b1

)2 tcross

N
� Ntcross. (5.91)

The mean separation between particles in a system of radius r is roughly d = (r3/N)1/3 ∼
(Gm/σ2)(M/m)2/3, where M, r and σ ∼ (GM/r)1/2 are the mass, characteristic radius, and
characteristic velocity dispersion of the system, respectively. Since the approaching velocity of a
typical encounter is v0 ∼σ and m is in general much smaller than M, we have d 	 b1. Hence, typ-
ical encounters in a system with large N have δv/v0 � 1. In this limit, the velocity perturbation
in the perpendicular direction reduces to

|δv⊥| ≈ 2Gm
bv

. (5.92)

When a particle crosses the system once, the average number of encounters with impact
parameter less than b is given by

N (< b) = N
πb2

πr2 = N

(
b
r

)2

. (5.93)

Differentiating with respect to b yields the total number of encounters per crossing with impact
parameters in the range (b,b+db):

N (b)db =
2N
r2 bdb. (5.94)

Because the change in v is random, the cumulative δv⊥ due to all these encounters is zero.
However, the sum of the square of the velocity changes is non-zero:

δv2
⊥ ≈

(
2Gm
bv

)2 2N
r2 bdb. (5.95)

Integrating the above expression over the range [b1,r], we obtain that, for each crossing, the
change in v2

⊥ is

Δv2
⊥ ≡

∫ r

b1

δv2
⊥ db ≈ 8N

(
Gm
rv

)2

lnΛ, (5.96)

where lnΛ = ln(r/b1) is called the Coulomb logarithm. Using that v2 ∼ GNm/r, and that Λ =
r/b1 ≈ rv2/(Gm) ≈ N, we have

Δv2
⊥

v2 ∼ 8lnN
N

. (5.97)

Thus it takes of the order of N/(10lnN) crossings for Δv2
⊥ to become comparable to v2. This

defines the so-called two-body relaxation time,

trelax =
N

10lnN
tcross. (5.98)
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Thus, for all practical purposes, galaxies, as N-body systems with N 	 100, can almost always
be considered collisionless, with

tdirect 	 tclose 	 trelax 	 tH 	 tcross. (5.99)

This not only holds for galaxies, but even more so for the inner regions of their dark matter halos,
as long as non-gravitational interactions among their constituent particles can be neglected. In
the outer regions of halos orbital times become comparable to the Hubble time, i.e. tH ∼ tcross.

5.4.2 Basic Dynamics

Consider a large number of particles moving under the influence of a smooth potential field
Φ(x, t). At any time, a full description of the system is given by its distribution function (DF)
f (x,v, t), which describes the number density of particles in phase space (x,v).1 In particular,
the density structure is given by f (x,v, t) integrated over velocity:

ρ(x, t) = m
∫

f (x,v, t)d3v, (5.100)

where m is the particle mass, while the velocity structure is given by the velocity moments,

〈vi〉(x, t) =
m
ρ(x)

∫
vi f (x,v, t)d3v, (5.101)

〈
viv j
〉
(x, t) =

m
ρ(x)

∫
viv j f (x,v, t)d3v, (5.102)

and so on.
As long as the particles are collisionless, and are neither created nor destroyed, the flow in

phase space must conserve mass, which is expressed via the collisionless Boltzmann equation
(CBE):

d f
dt

=
∂ f
∂ t

+∑
i

vi
∂ f
∂xi

−∑
i

∂Φ
∂xi

∂ f
∂vi

= 0, (5.103)

with the subscript i ∈ (1,2,3) denoting the three spatial components. Note that d f /dt expresses
the Lagrangian derivative along trajectories through phase space, and so the CBE implies that
the phase-space density around a given particle remains constant.

The gravitational potential,Φ(x), is related to the mass density, ρ(x), via the Poisson equation

∇2Φ(x) = 4πGρ(x). (5.104)

For a spherical system, one can make use of Newton’s theorems to obtain a general solution for
Φ(r) given ρ(r). According to Newton’s first theorem, a body inside a spherical shell of matter
experiences no net gravitational force from that shell, while Newton’s second theorem states that
the gravitational force on a body outside a closed spherical shell of mass M is the same as that
of a point mass M at the center of the shell. Consequently, Φ(r) follows from splitting ρ(r) in
spherical shells, and adding the potentials of all these shells:

Φ(r) = −4πG

⎡⎣1
r

r∫
0

ρ(r′)r′2 dr′ +
∞∫

r

ρ(r′)r′ dr′
⎤⎦ . (5.105)

1 Note, however, that this interpretation becomes ill defined when examining phase space on very small scales, as we
will see in §5.5.
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In the more general case, of an ellipsoidal body whose isodensity surfaces are concentric, tri-
axial ellipsoids, and whose axis ratios are constant, the solution to the Poisson equation can be
written as

Φ(x) = −πG

(
a2a3

a1

)∫ ∞

0

μ(∞)−μ [s(x,τ)]√
(τ+a2

1)(τ+a2
2)(τ+a2

3)
dτ, (5.106)

where a1 ≥ a2 ≥ a3 are the lengths of the three principal axes, assumed to be aligned with the
Cartesian coordinate system (x1,x2,x3),

μ(s) ≡
∫ s2

0
ρ(s′2)ds′2, (5.107)

and

s(x,τ) = a2
1

3

∑
i=1

x2
i

τ+a2
i

. (5.108)

5.4.3 The Jeans Equations

In general, the complete solution of the CBE (5.103) is extremely difficult to obtain. Rather, it is
common practice to consider the velocity moments of f . To do this, we proceed in a similar way
as in §4.1.4.

The average value of a quantity Q in the neighborhood of x is

〈Q〉(x, t) ≡ 1
n(x, t)

∫
Q f d3v, n(x, t) ≡

∫
f d3v =

ρ(x, t)
m

. (5.109)

Multiplying Eq. (5.103) by Q and integrating over v we get

∂
∂ t

[n〈Q〉]+∑
i

∂
∂xi

[n〈Qvi〉]+n∑
i

∂Φ
∂xi

〈
∂Q
∂vi

〉
= 0, (5.110)

where the last term on the left-hand side follows from partial integration and the assumption that
f = 0 for v2 → ∞. Setting Q = 1 we obtain the continuity equation,

∂n
∂ t

+∑
i

∂
∂xi

[n〈vi〉] = 0, (5.111)

while setting Q = v j results in a set of three momentum equations (for j = 1,2,3)

∂
∂ t

[n〈v j〉]+∑
i

∂
∂xi

[n〈viv j〉]+n
∂Φ
∂x j

= 0. (5.112)

These momentum equations are the direct analogs of the Euler equations of fluid dynamics but
for a collisionless system. Writing the velocity tensor 〈v jvk〉 as the sum of that due to coherent
steaming motion and that due to random motion,

〈v jvk〉 = 〈v j〉〈vk〉+σ2
jk, (5.113)

and subtracting v j× Eq. (5.111) from Eq. (5.112), we obtain the Jeans equations

∂ 〈v j〉
∂ t

+∑
i
〈vi〉∂ 〈v j〉

∂xi
= −1

n∑i
∂
(

nσ2
i j

)
∂xi

− ∂Φ
∂x j

= 0. (5.114)

Note that nσ2
i j has a similar effect as the pressure in the Euler equation, except that it is

now a tensor (called the stress tensor), rather than a scalar. It is a local quantity that quanti-
fies the random motions of the particles relative to their local mean motion. Because σ2

i j is a
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symmetric second-rank tensor, one can always, locally, choose the coordinate system such that
it is diagonalized, i.e. σi j = diag(σ̂11, σ̂22, σ̂33), with σ̂ii the eigenvalues of the stress tensor. An
ellipsoid, whose principal axes are defined by the orthogonal eigenvectors of σ2

i j and have lengths
proportional to σ̂ii, is called the velocity ellipsoid.

In general, the Jeans equations have nine unknowns (three streaming motion components 〈vi〉
and six independent components of the stress tensor). With only three equations, this is clearly
not a closed set. Note that adding higher-order moment equations of the CBE will not help in
closing the set. Although this adds more equations, it also adds more unknowns, i.e. higher-order
velocity moments such as 〈viv jvk〉, etc. Therefore, in order to be able to solve the Jeans equa-
tions, one has to make assumptions regarding the form of the stress tensor (see §5.4.7 below).
For comparison, in fluid dynamics there are only five unknowns (three streaming motions, the
isotropic pressure and the density). The three Euler equations, together with the continuity equa-
tion, therefore form a closed set once they are combined with an equation of state relating the
pressure to the density. As a final warning, not all solutions to the Jeans equations can represent
physical systems, since the solutions are not guaranteed to correspond to a phase-space DF with
f ≥ 0 for all (x,v).

5.4.4 The Virial Theorem

Using the moment equations of the CBE we can also obtain a relation between global parameters
of a collisionless system. Multiplying Eq. (5.112) by mxk and integrating over space we obtain∫

xk
∂ [ρ〈v j〉]
∂ t

d3x = −∑
i

∫
xk
∂ [ρ〈viv j〉]

∂xi
d3x−

∫
ρxk

∂Φ
∂x j

d3x. (5.115)

Using the theorem of divergence, we can write the first term on the right-hand side as

−∑
i

∫
xk
∂ [ρ〈viv j〉]
∂xi

d3x = 2Kk j +Σk j, (5.116)

where

Kjk =
1
2

∫
ρ〈v jvk〉d3x (5.117)

is the kinetic energy tensor, and

Σ jk = −∑
i

∫
xkρ〈v jvi〉dSi (5.118)

is the surface pressure term. The last term on the right-hand side of Eq. (5.115) is the
Chandrasekhar potential energy tensor, Wjk. Therefore∫

xk
∂ [ρ〈v j〉]
∂ t

d3x = 2Kjk +Wjk +Σ jk. (5.119)

Using Eq. (5.113) we can write Kjk as

Kjk = Tjk +Π jk/2, (5.120)

where

Tjk =
1
2

∫
ρ〈v j〉〈vk〉d3x and Π jk =

∫
ρσ2

jk d3x. (5.121)

Note that the partial derivative on the left-hand side of Eq. (5.119) can be pulled outside the
integral and then changed into a complete derivative (because the spatial part is integrated out).
Using that Tjk, Π jk and Wjk are symmetric with respect to their subscripts, Eq. (5.119) can be
written as
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1
2

d
dt

∫
ρ [xk〈v j〉+ x j〈vk〉] d3x = 2Tjk +Π jk +Wjk +Σ jk. (5.122)

The left-hand side can be written in terms of the moment of inertia tensor,

I jk =
∫
ρx jxk d3x, (5.123)

because

dI jk

dt
=
∫ ∂ρ
∂ t

x jxk d3x = −
∫ ∂ (ρ〈vi〉)

∂xi
x jxk d3x

=
∫
ρ [xk〈v j〉+ x j〈vk〉] d3x, (5.124)

where we have used the continuity equation (5.111) in the second step. Finally, we obtain from
Eq. (5.122) that

1
2

d2I jk

dt2 = 2Tjk +Π jk +Wjk +Σ jk. (5.125)

This is the tensor virial theorem. Taking the trace on both sides of this equation gives

1
2

d2I
dt2 = 2K +W +Σ, (5.126)

where

I = Tr(Ii j) =
∫
ρr2 d3x, K = Tr(Ki j) =

1
2

∫
ρ〈v2〉d3x, (5.127)

W = Tr(Wi j) = −
∫
ρx ·∇Φd3x, Σ= Tr(Σi j) = −

∫
ρ〈v2〉x ·dS. (5.128)

Note that I is the moment of inertia, K is the kinetic energy of the system, and Σ is the work
done by the external pressure. The potential energy, W , is equal to the gravitational energy of
the system only if any mass outside the surface S can be ignored in the computation of the
potential. Eq. (5.126) is the important scalar virial theorem. Although it is derived for a system
of collisionless particles, it also applies for an ideal fluid, because the Jeans equations on which
the virial theorem is based have the same form as the Euler equations if the velocity dispersion
is isotropic. From Eq. (5.126) we see that, if surface pressure can be neglected, a system whose
kinetic energy is much larger (smaller) than the negative value of its potential energy tends to
expand (contract). For a static system, d2I/dt2 = 0, and

2K +W +Σ= 0, (5.129)

giving a constraint on the global properties of any system in a static state. Finally, for Σ = 0 we
have

E = −K =
W
2

, (5.130)

where E = K +W is the total energy.

Application to Spherical Collapse Consider the collapse of a uniform sphere of mass M. For
simplicity, we assume that the cosmological constant Λ = 0. As we have seen in §5.1, all mass
shells in such a sphere reach their maximum expansion at the same time, which we denote by
tmax. Since the kinetic energy is zero at maximum expansion, the total energy of this sphere is
E = −3GM2/5rmax, where rmax is the radius of the outermost mass shell at maximum expan-
sion. According to the spherical collapse model, the sphere will collapse to a point at t = 2tmax.
However, since a collisionless system cannot dissipate its energy, during the collapse the grav-
itational potential energy has to be converted into kinetic energy of the mass shells, or, more
realistically, into kinetic energy of the particles involved in the collapse. The sphere therefore
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eventually relaxes to a quasi-static structure supported by random motions. If the final object
were uniform, its potential energy would be W ≈−3GM2/5rvir, where rvir is the (virial) radius of
the object. The virial theorem, W = 2E, then implies that rvir = rmax/2. It is usually assumed that
virialization is achieved at tvir = 2tmax. The mean overdensity within rvir at tvir is then given by

1+Δvir =
ρ(tmax)(rmax/rvir)3

ρ(tvir)
=
ρ(tmax)
ρ(tmax)

ρ(tmax)
ρ(2tmax)

(
rmax

rvir

)3

, (5.131)

where ρ(t) is the background density at t. If Ωm,0 = 1, then according to Eq. (5.17) we have
ρ(tmax)/ρ(tmax) = 9π2/16, while ρ(tmax)/ρ(2tmax) = 4, so that Δvir = 18π2 ≈ 178. If Ωm �= 1
the situation is more complicated, because Δvir depends both onΩm(tvir) andΩm(tvir/2). A useful
approximation is given by:

Δvir ≈ (18π2 +60x−32x2)/Ωm(tvir), (5.132)

where x =Ωm(tvir)−1 (Bryan & Norman, 1998).
If Λ �= 0, the cosmological constant also contributes to the gravitational energy (see §5.1.2).

The virial theorem applied to the final halo (assumed to be a uniform sphere of radius rvir) is then

K = −W
2

+WΛ, (5.133)

where W = −3GM2/5rvir, WΛ = −c2ΛMr2
vir/10, and the total energy is E = K + W + WΛ.

Since the total energy is equal to the potential energy at maximum expansion, we have E =
−3GM2/5rmax − c2ΛMr2

max/10. It then follows that

4ζ
(

rvir

rmax

)3

−2(1+ζ )
rvir

rmax
+1 = 0, (5.134)

where ζ = c2Λr3
max/6GM, which can be solved to get rvir/rmax in terms of ζ . For given tmax,

we can obtain ζ from Eq. (5.26), which gives the density of the sphere at tmax: ρ(tmax) =
3M/4πr3

max = Λ/8πGζ . The density of the sphere at virialization, ρ(tvir) = ρ(tmax)(rmax/rvir)3,
can then be computed. If we again assume virialization to occur at tvir = 2tmax, the overdensity
at virialization is just Δvir = ρ(tvir)/ρ(tvir)− 1. For a flat universe with Ωm +ΩΛ = 1, a useful
approximation is

Δvir ≈ (18π2 +82x−39x2)/Ωm(tvir), (5.135)

where as before x =Ωm(tvir)−1 (Bryan & Norman, 1998).
This simple application of the virial theorem yields a rule of thumb for the average densities of

virialized objects formed through gravitational collapse in a cosmological background. Although
the values of Δvir given by Eqs. (5.132) and (5.135) are widely used to define the extent of a
virialized halo (see §7.5), it should be kept in mind that they are based on several oversimplified
assumptions.

5.4.5 Orbit Theory

Since orbits are the building blocks of collisionless systems, we here present a brief, and very
general, description of orbit theory. More elaborate treatments can be found in Goldstein (1980),
Boccaletti & Pucacco (1996) and Binney & Tremaine (2008).

(a) Classical Mechanics In classical mechanics the equations of motion are best expressed
in terms of generalized (i.e. ‘unspecified’) coordinates qi and their conjugate momenta pi ≡
∂L /∂ q̇i. Here i = 1, ...,n, with n the number of degrees of freedom (i.e. the dimensionality
of configuration space), q̇i is the time derivative of qi, and L = L (qi, q̇i, t) = T −V is the
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Lagrangian of the system, with T and V the kinetic and potential energy, respectively. The phase-
space coordinates (q,p) are canonical variables, which are defined to satisfy the fundamental
Poisson bracket relations,

{qi,q j} = 0, {pi, p j} = 0, {qi, p j} = δi j, (5.136)

with δi j the Kronecker delta function. The Poisson bracket is defined such that for two functions
A(q,p) and B(q,p) of the generalized coordinates and their conjugate momenta,

{A,B} ≡
n

∑
i=1

[
∂A
∂qi

∂B
∂ pi

− ∂A
∂ pi

∂B
∂qi

]
. (5.137)

The functions A and B are said to be in involution if their Poisson bracket vanishes, i.e. if
{A,B} = 0.

In the Hamiltonian formalism of classical mechanics, the equations of motion reduce to

∂H

∂ pi
= q̇i,

∂H

∂qi
= −ṗi, (5.138)

where H = H (q,p, t) =∑ piq̇i −L (qi, q̇i, t) is the system’s Hamiltonian, which is equal to the
total energy of the system in the case of a fixed potential. It is clear from Eq. (5.138) that if a gen-
eralized coordinate, say qi, does not explicitly appear in the Hamiltonian, then the corresponding
conjugate momentum, pi, is a conserved quantity.

Since Hamilton’s equations are first-order differential equations, one can determine q(t) and
p(t) at any time t once the initial conditions (q0,p0) are given. Therefore, through each point in
phase-space passes a unique trajectory Γ [q(q0,p0, t),p(q0,p0, t)]: no two trajectories Γ1 and Γ2

can pass through the same (q,p) unless Γ1 = Γ2. Note that an orbit, q(t), is simply the projection
of Γ(q,p, t) onto configuration space.

(b) Integrals of Motion Any function I(q,p) of the phase-space coordinates (q,p) alone
(i.e. without an explicit time dependence) which is constant along an orbit is called an inte-
gral of motion. The class of integrals of motion that are one-valued functions of the phase-space
coordinates are called isolating integrals of motion, and these are of great practical and the-
oretical importance. There also exists a class of non-isolating integrals of motion, which are
multiple-valued functions of (q,p) and have little practical value.

The importance of isolating integrals of motion for orbit theory follows from the fact that an
isolating integral of motion reduces the dimensionality of the trajectory Γ(t) by one. Thus, a
trajectory in a dynamical system with n degrees of freedom and with k independent isolating
integrals of motion is restricted to a 2n− k dimensional manifold in the 2n-dimensional phase-
space. Depending on the Hamiltonian of the dynamical system, k can be anywhere between 1
and 2n−1.

For a stationary, collisionless system, energy is a conserved quantity for each individual orbit,
and is thus an isolating integral of motion [this integral is obviously isolating, since each point in
the phase-space corresponds to a single value of energy E = H (q,p)]. According to Noether’s
theorem, each conserved quantity corresponds to a symmetry of the Lagrangian. In the case of
energy, this is the invariance of the Lagrangian under time translation. We can also use Noether’s
theorem to identify other isolating integrals of motion. For example, for a spherically symmetric
system, there are three additional isolating integrals of motion associated with the three indepen-
dent spatial rotations. Thus, all trajectories in a three-dimensional stationary spherical system are
confined to two-dimensional manifolds, the orbital projections of which are planar rosettes. In
the case of a stationary axisymmetric system, with the symmetry axis along the z direction, Lz is
an isolating integral of motion (in addition to E). Note that the energy and angular momenta are
special cases, in the sense that their dependence on the phase-space coordinates can be written
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down explicitly. These integrals are sometimes called classical integrals of motion. In general,
however, there is no prescription to allow one to explicitly write down the (q,p) dependence of
an (isolating) integral of motion.

(c) Canonical Transformations and Action-Angle Variables A canonical transformation is a
transformation (q,p) → (Q,P) between two canonical coordinate systems that leaves the equa-
tions of motion invariant. If a canonical transformation exists so that the new Hamiltonian does
not explicitly depend on the new coordinates Qi, i.e. H (q,p) → H ′(P), then the system is said
to be integrable. In such cases, Hamilton’s equations of motion become

∂H ′

∂Qi
= −Ṗi = 0,

∂H ′

∂Pi
= −Q̇i, (5.139)

which can be solved to give

Qi(t) = ωit +Qi(0), Pi = constant. (5.140)

Here ωi = ∂H ′/∂Pi are frequencies, while Qi(0) are integration constants. The fact that the
conjugate momenta Pi are constant implies that they are integrals of motion. Indeed, since the
mapping (q,p) → (Q,P) is one-to-one, they are isolating integrals of motion. This highlights an
important aspect of dynamical systems: if a Hamiltonian system with n degrees of freedom is
integrable, it admits (at least) n independent isolating integrals of motion in involution, and vice
versa.

For a bound system, a particularly useful set of canonical variables are the action-angle vari-
ables (J,Θ). These are characterized by the fact that increasing one of the anglesΘi by 2π , while
keeping all other action-angle variables fixed, brings one back to the same point in phase space.
The momenta conjugate to these angle variables are called the actions and are defined by

Ji =
1

2π

∮
γi

p ·dq, (5.141)

with γi the path along which Θi increases from 0 to 2π . If the system is integrable, then the
actions are isolating integrals of motion in involution, H = H (J), and Θi(t) = ωit +Θi(0),
where ωi(J) are called the fundamental frequencies.

(d) Orbit Classification If in a system with n degrees of freedom a particular orbit admits n
independent isolating integrals of motion, the orbit is said to be regular, and its corresponding
trajectory Γ(t) is confined to a 2n− n = n-dimensional manifold in phase-space. Topologically
this manifold is called an invariant torus (or torus for short), and is uniquely specified by the
n isolating integrals. The best set of isolating integrals are the actions Ji defined above, which
specify the radii of the various cross-sections of the torus. In addition, the angles Θi uniquely
label a phase-space point on the torus, and the orbit (i.e. the mapping of the trajectory Γ(t) –
which is confined to the surface of the torus – onto the configuration space) is said to be quasi-
periodic with (fundamental) frequencies ωi(J).

In general, the fundamental frequencies are incommensurable, i.e. their ratios cannot be
expressed as ratios of integers. In this case, the trajectories will, given sufficiently long time,
densely fill the entire surface of the torus. However, since ωi = ωi(J), one can always find suit-
able values for Ji such that two or more of the n frequencies ωi are commensurable, i.e. for which
lωi = mω j, with l and m both integers. An orbit with commensurable frequencies is called a res-
onant orbit, and has a dimensionality that is one lower than that of the non-resonant regular
orbits. This implies that there is an extra isolating integral of motion, namely In+1 = lωi −mω j,
which is in involution with all Ji. If all n frequencies are commensurable (i.e. if n ·ω = 0, with
n an n-dimensional non-zero integer vector), the orbit returns to exactly the same phase-space
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point after a period T = 2π/ωk, where k is the index of the smallest integer value of n. In this
case the orbit is said to be closed.

In an integrable system, all orbits are regular, and phase-space is completely filled (one says
‘foliated’) with non-intersecting invariant tori. However, integrable Hamiltonians are extremely
rare; mathematically speaking they form a set of measure zero in the space of all Hamilto-
nians. Thus, in all likelihood, galaxies and dark matter halos are non-integrable systems. In
order to understand the orbital structure of non-integrable Hamiltonians, consider a small per-
turbation away from an integrable Hamiltonian. According to the Kolmogorov–Arnold–Moser
(KAM) theorem, the tori corresponding to regular orbits with fundamental frequencies suffi-
ciently incommensurable will survive a small perturbation; they retain their topology so that the
motion in their vicinity remains quasi-periodic (i.e. regular) and confined to (slightly deformed)
invariant tori (Lichtenberg & Lieberman, 1992). Resonant tori, and those with fundamental fre-
quencies close to being commensurable, on the other hand, can be strongly affected by even
a very small perturbation. A certain fraction of the resonant orbits are unstable, so that the
perturbation causes them to be no longer confined to tori. They no longer admit n isolating
integrals of motion in involution, and their trajectories move more-or-less randomly through
a phase-space of dimensionality 2n− 1, called the Arnold web (only bounded by the equipo-
tential surface, since their energy is still an isolating integral of motion). Such orbits are
called irregular or stochastic. They behave chaotically, in that trajectories initially very close
to each other diverge exponentially. Because the majority of tori are very non-resonant, as
rational numbers are rare compared to irrational ones, the KAM theorem implies that a small
perturbation of an integrable system will leave most orbits regular. Hence, in non-integrable
Hamiltonians, phase-space has a complicated structure of interleaved regular and stochastic
regions.

Although most of phase-space is covered by the trajectories of non-resonant orbits, reso-
nant tori still form a dense set in phase space, just like the rational numbers are dense on the
real axis. Since one can always find a rational number in between two real numbers, there
will always be a resonant torus in between any two tori. Since many of these will be unsta-
ble, they create many stochastic regions when the system is perturbed. However, as long as
the resonance is of higher order (for example l : m = 16 : 23 rather than 1 : 2) the corre-
sponding stochastic regions are extremely small, and tightly bound by their surrounding tori.
Since two trajectories cannot cross, an irregular orbit is bounded by its neighboring regular
orbits, causing it to be almost confined to a n-dimensional manifold, i.e. it still behaves as if
it has n isolating integrals of motion. However, if n > 2 a stochastic orbit may slip through
a ‘crack’ between two confining tori, a process known as Arnold diffusion, causing the orbit
to reveal its true stochastic nature. The stochastic regions also grow when the perturbations
becomes larger. Eventually, stochastic regions associated with different unstable resonances will
start to overlap, producing large interconnected regions of phase-space in which the motion is
stochastic

In galactic dynamics, the KAM theorem of near-integrability is often used to the extreme, by
assuming that irregular orbits can be ignored, and that the Hamiltonians associated with ‘galaxy-
like’ potentials are integrable. Clearly the validity of this approximation depends on the fraction
of phase-space that admits three isolating integrals of motion. For most potentials used in galactic
dynamics this fraction is still very uncertain. Over the years, though, it has become clear that
stochasticity may play an important role in governing the structure and evolution of galaxies. For
example, Valluri & Merritt (1998) have shown that the growth of a supermassive black hole or a
central density cusp in a triaxial system often destroys all existing isolating integrals of motion
aside from the energy. Consequently, the central regions become highly stochastic, and evolve
from being triaxial to being axisymmetric, which may play an important role in controlling the
rate at which the central black hole can accrete mass.
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5.4.6 The Jeans Theorem

The distribution function (DF) of a steady-state system with n spatial dimensions is a function of
2n phase-space coordinates (x,v). Obviously these are extremely complicated functions, whose
interpretation is far from intuitive. However, one can simplify the interpretation and handling of
the DF by making use of the concept of integrals of motion (see §5.4.5 above). Because of its
definition, an integral of motion, I, obeys

dI
dt

=∑
i

∂ I
∂xi

dxi

dt
+∑

i

∂ I
∂vi

dvi

dt
= v ·∇I −∇Φ · ∂ I

∂v
= 0, (5.142)

and so any integral of motion is a solution of the steady-state collisionless Boltzmann equation
(CBE). Since any solution f (x,v) of the steady-state CBE is itself an integral of motion (because
d f /dt = 0), all solutions to the steady-state CBE must depend on (x,v) through the integrals of
motion. These two statements are called the Jeans theorem, and they allow us to write f (x,v) as
f (I1, I2, ..., Ik).

As discussed in §5.4.5, the Hamiltonian of a dynamical system with n spatial dimensions is
said to be integrable if it has m independent isolating integrals of motion, with m ≥ n. The strong
Jeans theorem states that the DF of a steady-state system in which (almost) all orbits are regu-
lar can be written as a function of the independent isolating integrals of motion. An equivalent
statement is that the DF is constant on every invariant torus. Since the orbits in an integrable sys-
tem are uniquely and completely specified by the values of the m independent isolating integrals
of motion, such a DF basically describes the system in terms of its orbit building blocks, i.e. f
indicates the distribution of particles or stars over all possible orbits.

In static spherical systems there are always four independent isolating integrals of motion,
namely energy E, and the three components of the angular momentum vector L, and each orbit
is confined to a plane. There are two special cases, namely the point mass (Kepler potential) and
the homogeneous sphere (harmonic potential), for which all orbits are closed ellipses. These two
systems therefore have five independent isolating integrals of motion, the fifth being simply the
angular phase of the line connecting the orbit’s apo- and pericenter. Axisymmetric and triaxial
systems with an integrable Hamiltonian always have three independent isolating integrals of
motion: (E,Lz, I3) in the case of axisymmetry and (E, I2, I3) in the case of triaxiality, where Ii

indicates isolating integrals of motion that are non-classical. Based on the KAM theorem, these
properties are, to good approximation, also valid for near-integrable systems.

5.4.7 Spherical Equilibrium Models

As we have seen above, spherical potentials in general have f = f (E,L). The orbits are planar
rosettes, which fill an annulus with pericenter radius r− and apocenter radius r+. From the sym-
metries of the individual orbits it is easy to see that any spherical, steady-state dynamical model
must obey

〈vr〉 = 〈vϑ 〉 = 0, and 〈vrvϑ 〉 = 〈vrvϕ〉 = 〈vϑvϕ〉 = 0, (5.143)

which leaves four unknowns: 〈vϕ〉, 〈v2
r 〉, 〈v2

ϑ 〉 and 〈v2
ϕ〉 (up to second order of the velocity

moments). If one makes the assumption that the system is spherically symmetric in all its prop-
erties, then by symmetry the DF is independent of the direction of L, i.e. f (E,L) → f (E,L2).
Consequently, 〈vϕ〉 = 0 and 〈v2

ϑ 〉 = 〈v2
ϕ〉.

To obtain the corresponding steady-state Jeans equation, we use Eq. (5.112) in its vector form
without the ∂/∂ t term:

∇ · (ρ〈vv〉)+n∇Φ= 0. (5.144)
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In spherical coordinates, this equation becomes

1
r2

∂
∂ r

(
r2〈vrv〉ρ

)
+

1
r sinϑ

∂
∂ϑ

(sinϑ〈vϑv〉ρ)+
1

r sinϑ
∂
∂ϕ
(〈vϕv〉ρ)= −ρ∇Φ. (5.145)

Using the properties of unit vectors in spherical coordinates, and adopting the symmetries that
hold for a system with f = f (E,L2), the only non-trivial equation is the radial part of Eq. (5.145),

1
ρ

d(ρ〈v2
r 〉)

dr
+2β

〈v2
r 〉
r

= −dΦ
dr

, (5.146)

where β (r) is the anisotropy parameter, defined by

β (r) ≡ 1−〈v2
ϑ 〉/〈v2

r 〉. (5.147)

With two unknowns, 〈v2
r 〉 and β , this Jeans equation cannot be solved without making additional

assumptions. The special case β = 0 corresponds to an isotropic sphere for which f = f (E).
Models with 0 < β ≤ 1 are radially anisotropic. In the extreme case of β = 1 all orbits are
radial and f = g(E)δ (L), with g(E) some function of energy. Tangentially anisotropic models
have β < 0, with β = −∞ corresponding to a model in which all orbits are circular. In that
case f = g(E)δ [L−Lmax(E)], where Lmax(E) is the maximum angular momentum for energy
E. Another special case is the one in which β (r) = β is constant. As shown by Kent & Gunn
(1982), such models have f = g(E)L−2β .

For isotropic spheres (β = 0) it is possible to find the unique f = f (E) corresponding to a
given density distribution ρ(r). For this it is convenient to define a new gravitational potential
and a new energy:

Ψ≡−Φ+Φ0 and E ≡−E +Φ0 =Ψ− v2/2, (5.148)

where Φ0 is some constant. In practice, Φ0 is chosen so that f > 0 for E > 0 and f = 0 for
E ≤ 0. Thus Φ0 can be considered as the gravitational potential at the system’s boundary (e.g. at
infinity). The mass density at radius r can then be written as

ρ(r) = 4π
∫ Ψ

0
f (E )

√
2(Ψ−E )dE . (5.149)

Since both ρ(r) and Ψ(r) are in general monotonic functions of r, we may consider ρ as a
function of Ψ. Differentiating this function once with respect to Ψ, we obtain

1

π
√

8

dρ
dΨ

=
∫ Ψ

0

f (E )√
Ψ−E

dE . (5.150)

This is an Abel integral equation for f (E ), which can be inverted to give

f (E ) =
1

π2
√

8

d
dE

∫ E

0

dρ
dΨ

dΨ√
E −Ψ

=
1

π2
√

8

[∫ E

0

d2ρ
dΨ2

dΨ√
E −Ψ +

1√
E

(
dρ
dΨ

)
Ψ=0

]
. (5.151)

Thus, for any given spherically symmetric density distribution, one can always use Eq. (5.151)
to find a DF, f (E ). However, in order for the solution to be physically meaningful, the DF
must be nowhere negative. If this requirement is not satisfied, then the density profile cannot
be represented by an equilibrium state with isotropic velocity dispersion. It can be shown that
a spherically symmetric density profile can be represented by a DF f (E ) if, and only if, the
integration in the first line of Eq. (5.151) is an increasing function of E . In practice this requires
ρ(r) to drop off with radius sufficiently rapidly.

To end our discussion on spherical equilibrium models, we discuss three specific models that
are often used to describe dark matter halos, galaxies, or globular clusters.
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(a) The Isothermal Sphere One of the simplest models that is often used to model spherical
mass distributions is the isothermal sphere, whose DF is

f (E ) =
(ρ0/m)

(2πσ2)3/2
exp

(
E

σ2

)
, (5.152)

where σ2 = 〈v2〉/3 is a constant. The corresponding density is ρ(r) = ρ0 exp(Ψ/σ2), which can
be solved together with the Poisson equation,

1
r2

d
dr

(
r2 dΨ

dr

)
= −4πGρ0 exp

(
Ψ
σ2

)
, (5.153)

and the boundary condition ρ(0) = ρ0 and dΨ/dr(0) = 0. The resulting density profile is
characterized by a King radius,

r0 =
3σ√

4πGρ0
. (5.154)

For r ∼< 2r0, the density profile can be approximated by

ρ(r) ≈ ρ0

[1+(r/r0)2]3/2
, (5.155)

while at large radii (r > 10r0) the density profile approaches that of a singular isothermal sphere,

ρ(r) = σ2/(2πGr2). (5.156)

Unless the density profile is truncated at an outer radius, the total mass of the isothermal sphere
is therefore infinite. In order for this model to be applicable to systems with finite masses, some
modifications have to be made.

(b) The King Model One such modification is the King model, which is based on the DF

f (E ) =

{
(ρ0/m)(2πσ2)−3/2

(
eE /σ2 −1

)
(E > 0)

0 (E ≤ 0).
(5.157)

This distribution is similar to Eq. (5.152) except that no particles are allowed to have E ≤ 0. The
density distribution corresponding to this DF is

ρ(r) = 4π
∫

f (E )v2 dv

= ρ0

[
eΨ/σ2

erf

(√
Ψ
σ

)
−
√

4Ψ
πσ2

(
1+

2Ψ
3σ2

)]
, (5.158)

which, upon inserting into the Poisson equation, gives an equation for Ψ. This equation for Ψ
can be integrated numerically with the boundary conditionsΨ=Ψ0 and dΨ/dr = 0 at r = 0. For
a given Ψ0/σ2, the predicted density becomes zero at some radius rt, which is referred to as the
tidal radius. The ratio between the tidal radius and the core radius given by Eq. (5.154) defines
the concentration of a King profile, c ≡ log(rt/r0).

(c) Double Power-Law Density Distributions Dark matter halos and elliptical galaxies are
often described as spheres with a double (broken) power-law density distribution given by

ρ(r) = ρ0

(
r
r0

)−γ [
1+
(

r
r0

)α](γ−β )/α

. (5.159)
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Table 5.1. Double power-law density profiles.

(α ,β ,γ) Name Reference

(1,3,1) NFW profile Navarro et al. (1997)
(1,4,γ) Dehnen profile Dehnen (1993)
(1,4,1) Hernquist profile Hernquist (1990)
(1,4,2) Jaffe profile Jaffe (1983)
(2,2,0) Modified isothermal sphere Sackett & Sparke (1990)
(2,3,0) Modified Hubble profile Binney & Tremaine (1987)
(2,4,0) Perfect sphere de Zeeuw (1985)
(2,5,0) Plummer sphere Plummer (1911)

At small radii ρ ∝ r−γ , while at large radii ρ ∝ r−β , and α determines the sharpness of the break.
Table 5.1 lists a number of special cases that have often been used in the literature. The total
mass corresponding to a density distribution of the form of Eq. (5.159) is given by

M =
4π
α
ρ0r3

0B

(
3− γ
α

,
β −3
α

,1

)
, (5.160)

with

B(a,b,x) =
∫ x

0
dt ta−1 (1− t)b−1 (5.161)

the incomplete Beta function. The corresponding gravitational potential follows from Eq. (5.105)
and is given by

Φ(r) = −4πG
α
ρ0r2

0

[
r0

r
B

(
3− γ
α

,
β −3
α

,χ
)

+B

(
β −2
α

,
2− γ
α

,χ
)]

, (5.162)

with

χ =
(r/r0)α

1+(r/r0)α
. (5.163)

In several cases, Eq. (5.162) reduces to an analytical function. For example, the potential of
the Dehnen profile, which includes the Hernquist profile and Jaffe profile as special cases,
reduces to

Φ(r) =
GM
r0

×

⎧⎪⎨⎪⎩ − 1
2−γ

[
1−
(

r
r+r0

)2−γ]
γ �= 2

ln
(

r
r+r0

)
γ = 2,

(5.164)

while that of the Plummer sphere can be written as

Φ(r) = − GM√
r2 + r2

0

. (5.165)

The Dehnen models are particularly useful, since many of their properties can be calculated
analytically, including the intrinsic velocity dispersion for all real values of γ between 0 and 3,
and, for γ = 0,1,2, the projected mass density and velocity dispersion as well (Dehnen, 1993;
Tremaine et al., 1994). Furthermore, the Dehnen model with γ = 3/2 closely resembles the de
Vaucouleurs r1/4 profile often used to fit the surface brightness profiles of elliptical galaxies (see
§2.3.2).
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For an isotropic sphere the DF depends only on energy, f = f (E), and can be uniquely deter-
mined from the density distribution using Eq. (5.151). For the Dehnen models it is convenient,
for this purpose, to work in terms of the following dimensionless quantities:

ρ̃ ≡ 4πr3
0

(3− γ)Mρ, Ψ̃≡− r0

GM
Φ, Ẽ ≡− r0

GM
E. (5.166)

The density profile (5.159) for (α,β ) = (1,4) can then be expressed in terms of the potential as

ρ̃(Φ̃) = (1− y)4y−γ , (5.167)

where

y(Ψ̃) =
{

[1− (2− γ)Ψ̃]1/(2−γ) (γ �= 2)
exp(−Ψ̃) (γ = 2).

(5.168)

If the system has isotropic velocity dispersion, we can obtain its DF from Eq. (5.151):

f (Ẽ ) =
(3− γ)

2
f0

∫ Ẽ

0

(1− y)2[γ+2y+(4− γ)y2]

y4−γ
√

Ẽ − Ψ̃
dΨ̃, (5.169)

where

f0 ≡ M

(2π2GMr0)3/2
. (5.170)

For γ = 1 (the Hernquist model), the integration in Eq. (5.169) can be carried out explicitly,
resulting in

f (Ẽ ) = 4 f0(1− Ẽ )−5/2
[

3sin−1
√

Ẽ +
√

Ẽ (1− Ẽ )(1−2Ẽ )(8Ẽ 2 −8Ẽ −3)
]
. (5.171)

For γ = 2 (the Jaffe model), the DF is

f (Ẽ ) =
√

2 f0

[
F−
(√

2Ẽ
)
−
√

2F−
(√

Ẽ
)
−
√

2F+

(√
Ẽ
)

+F+

(√
2Ẽ
)]

, (5.172)

where

F±(x) = e∓x2
∫ x

0
e±y2

dy. (5.173)

Fig. 5.3 shows some examples of DFs given by Eq. (5.169), together with the DF for a sphere
that projects to a r1/4 profile. Note that, as already alluded to above, the latter closely matches
that of a Dehnen model with γ ∼ 3/2. In particular, the asymptotic profile, ρ(r)∝ r−4 for r →∞,
gives a very close approximation to the r1/4 profile at large radii (corresponding to Ẽ → 0).

5.4.8 Axisymmetric Equilibrium Models

In general, axisymmetric models in which most orbits are regular have a three-integral DF
f (E,Lz, I3). It is customary to describe the orbits in cylindrical coordinates (R,φ ,z), where the
z-axis is the axis of symmetry. The three-dimensional motion can be considered as motion in the
meridional plane (R,z), in an effective potential Φeff(R,z) =Φ(R,z)+L2

z /(2R2), combined with
a motion in the φ -direction given by the conservation of angular momentum Lz = Rvφ . Thus,
these orbits have a net sense of rotation around the z-axis, and they lack a turning point in the φ
direction. Such orbits are called short-axis tubes. From the symmetries of the individual orbits,
it is evident that in this case

〈vR〉 = 〈vz〉 = 0, and 〈vRvφ 〉 = 〈vzvφ 〉 = 0. (5.174)
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Fig. 5.3. Distribution function of the r1/4 model (solid curve), compared with those corresponding to
Dehnen models with γ = 1, 1.5 and 1.75, all plotted against ε = −Ẽ . Units are chosen so that M = G =
r0 = 1. [After Hernquist (1990)]

Thus, general axisymmetric models have stress tensors with four non-zero components, and
the velocity ellipsoid is not aligned with (R,φ ,z). There are two non-trivial Jeans equations,
given by

∂ (ρ〈v2
R〉)

∂R
+
∂ (ρ〈vRvz〉)

∂ z
+ρ

[ 〈v2
R〉−〈v2

φ 〉
R

+
∂Φ
∂R

]
= 0; (5.175)

∂ (ρ〈vRvz〉)
∂R

+
∂ (ρ〈v2

z 〉)
∂ z

+ρ
[ 〈vRvz〉

R
+
∂Φ
∂ z

]
= 0, (5.176)

which clearly does not suffice to solve for the four unknowns.
For this reason, one often considers two-integral models with f = f (E,Lz). In this case one

has, in addition to Eq. (5.174), that

〈v2
R〉 = 〈v2

z 〉, and 〈vRvz〉 = 0, (5.177)

(e.g. Binney & Tremaine, 2008), so that the Jeans equations reduce to

∂ (ρ〈v2
R〉)

∂R
+ρ

[ 〈v2
R〉−〈v2

φ 〉
R

+
∂Φ
∂R

]
= 0; (5.178)

∂ (ρ〈v2
z 〉)

∂ z
+ρ

∂Φ
∂ z

= 0, (5.179)

which is now a closed set for the two unknowns. Note, however, that the Jeans equations provide
no information about how 〈v2

φ 〉 splits in streaming and random motions. In practice one often
follows Satoh (1980), and writes that

〈vφ 〉 = k
√
〈v2
φ 〉−〈v2

R〉, (5.180)

with k a free parameter. When k = 1 the azimuthal dispersion is σ2
φ = 〈v2

φ 〉− 〈vφ 〉2 = σ2
R = σ2

z
everywhere. Models of this kind are referred to as oblate isotropic rotators.
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For axisymmetric two-integral models, it is useful to split the DF into parts that are even and
odd in Lz:

f (E,Lz) = f+(E,Lz)+ f−(E,Lz), (5.181)

with

f±(E,Lz) ≡ 1
2

[ f (E,Lz)± f (E,−Lz)] . (5.182)

The density corresponding to the effective potential Ψ(R,z) = −Φ(R,z) depends only on the
even part of the DF:

ρ =
4π
R

∫ Ψ

0
dE
∫ R

√
2(Ψ−E)

0
f+(E,Lz)dLz. (5.183)

For Lz = 0 the inverse of this equation is given analytically by Eq. (5.151), but the evaluation
of f+(E,Lz) for other values of Lz from a given ρ(R,z) is difficult. Lynden-Bell (1962), Hunter
(1977a), and Dejonghe (1986) used different transformation methods to evaluate f+(E,Lz) for
a number of models. However, since all these methods require the analytical knowledge of
ρ(R,Ψ), they are not widely applicable. A more general scheme has been provided by Hunter &
Qian (1993) using a contour integral expression, which is the generalization of Eq. (5.151). This
method has the advantage that it does not require explicit knowledge of ρ(R,Ψ). Furthermore,
the same method can also be used to obtain the odd part of the DF, f−(E,Lz), from the mean
stellar streaming motion 〈vφ (R,z)〉 in the meridional plane.

Axisymmetric Power-Law Models A specific example of axisymmetric two-integral models
is the set of power-law models introduced by Evans (1994). This is the largest known set of
axisymmetric systems with simple and explicit two-integral DFs. Another attractive property
of these models is that all the line-of-sight velocity moments are simple elementary functions
of the coordinates on the sky, making them extremely useful for comparison with kinematic and
photometric observations of elliptical galaxies.

The gravitational potential of the power-law models is given by

Φ(R,z) =

⎧⎨⎩
v2

0
γ Rγc(R2

c +R2 + z2/q2)−γ/2 (γ �= 0)
v2

0
2 ln(R2

c +R2 + z2/q2) (γ = 0),
(5.184)

where Rc is a core radius and q is the axis ratio of the spheroidal equipotentials. Oblate and
prolate models have q < 1 and q > 1, respectively, while models with γ > 0 and γ < 0 correspond
to falling and rising rotation curves, respectively. The density distribution that self-consistently
generates the potential of Eq. (5.184) is

ρ(R,z) =
v2

0 Rγc
4πGq2

R2
c(1+2q2)+R2(1− γq2)+ z2[2− (1+ γ)q−2]

(R2
c +R2 + z2/q2)γ/2+2

. (5.185)

In order for this density distribution to be everywhere positive requires that q2 ≥ (1+ γ)/2. The
even part of the DF that corresponds to this self-consistent model is given by

f+(E,Lz) =

{
A+L2

z |E|4/γ−3/2 +B+|E|4/γ−1/2 +C+|E|2/γ−1/2 (γ �= 0)

A+L2
z e−4E/v2

0 +B+e−4E/v2
0 +C+e−2E/v2

0 (γ = 0),
(5.186)

where the coefficients A+, B+, and C+ depend on γ , q and Rc, and are given by Evans (1994).
Evans & de Zeeuw (1994) have shown that the following simple choice for the mean streaming
law leads to an odd part of the two-integral DF that is equally simple:
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〈vφ 〉 = k|1−q2|1/2v0
RRγ/2

c

(R2
c +R2 + z2/q2)γ/4+1/2

, (5.187)

where k is defined by Satoh’s streaming law (5.180). Note that the use of the absolute value of
1− q2 ensures the streaming law to be applicable also to prolate models (q > 1), in which the
streaming is along the major axis. The associated odd part of the DF is

f−(E,Lz) = k|1−q2|1/2

{
A−L3

z |E|5/γ−2 +B−Lz|E|5/γ−1 +C−Lz|E|3/γ−1 (γ �= 0)

A−L3
z e−5E/v2

0 +B−Lze−5E/v2
0 +C−Lze−3E/v2

0 (γ = 0),
(5.188)

where the coefficients A−, B−, and C− depend on γ , q and Rc, and are given in Evans & de
Zeeuw (1994). The model is physical if, and only if, f = f+ + f− ≥ 0, which limits k to the range
0 ≤ k ≤ kmax(q,γ), where kmax is given explicitly in Evans & de Zeeuw (1994).

5.4.9 Triaxial Equilibrium Models

For triaxial systems, one generally has only one classical integral of motion, namely the energy.
The other two isolating integrals of motion present in an integrable triaxial system are gener-
ally not known explicitly. An exception is the perfect spheroid, whose density distribution is
given by

ρ(m) =
ρ0

(1+m2)2 , (5.189)

with

m2 =
x2

a2 +
y2

b2 +
z2

c2 (a ≥ b ≥ c). (5.190)

This density distribution is stratified on similar concentric ellipsoids with semi-axes ma, mb and
mc, and we have aligned the long and short axes with the x-axis and z-axis, respectively. Note
that ρ has a constant density core, and falls off as m−4 at large distances. The total mass of the
perfect spheroid is M = π2abcρ0.

The perfect spheroid is best studied in the ellipsoidal coordinate system (λ ,μ ,ν), which are
the three roots for τ of

x2

τ+α
+

y2

τ+β
+

z2

τ+ γ
= 1, (5.191)

where (x,y,z) are Cartesian coordinates, α < β < γ are three arbitrary constants, and we take
λ > μ > ν. The three roots (which depend on the three constants, α , β , γ) then satisfy −γ ≤ ν ≤
−β ≤ μ ≤−α ≤ λ . Surfaces of constant λ are ellipsoids, of constant μ are hyperboloids of one
sheet around the x-axis, and of constant ν are hyperboloids of two sheets (see de Zeeuw, 1985,
for more detail).

In ellipsoidal coordinates, the potential of the perfect spheroid is given by

Φ(λ ,μ ,ν) =
F(λ )

(λ −μ)(λ −ν) +
F(μ)

(μ−ν)(μ−λ )
+

F(ν)
(ν−λ )(ν−μ)

, (5.192)

where

F(τ) = −πGρ0abc(τ+α)(τ+ γ)
∫ ∞

0

√
s−β

(s−α)(s− γ)
ds

s+ τ
(5.193)

(de Zeeuw, 1985). A potential of the form (5.192) is called a Stäckel potential, which has
the desirable property that the equations of motion are separable in the ellipsoidal coordinates
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(λ ,μ ,ν) so that each individual orbit can be considered as the sum of three motions, one in each
coordinate (e.g. Weinacht, 1924).

A particular property of the perfect spheroid is that it admits three isolating integrals of
motion (i.e. the Hamiltonian is integrable, and all orbits are regular) which can all be written
down explicitly in terms of τ = (λ ,μ ,ν) and its conjugate momentum pτ . This makes the per-
fect spheroid ideally suited to examine the characteristic orbital structure of triaxial systems
with (near)-integrable Hamiltonians. In particular, the perfect spheroid admits four major orbit
families:

• Box orbits: These orbits have turning points where the velocity v = 0, and a particle on a box
orbit oscillates (one says ‘librates’) back and forth in each coordinate, so that it does not have
a fixed sense of rotation.

• Inner and outer long-axis tubes: These orbits have no turning point in ν, so that particles on
these orbits have a fixed sense of rotation around the x-axis. The distinction between ‘inner’
and ‘outer’ depends on whether the orbit crosses the (y,z)-plane inside or outside the focal
ellipse y2/(β −α)+ z2/(γ−α) = 1, respectively.

• Short-axis tubes: These orbits have no turning point in μ , so that particles on these orbits
have a fixed sense of rotation around the z-axis.

This orbital structure is generic for all triaxial mass models that are centrally concentrated, have
a finite central density and a Stäckel potential.

Tube orbits are ‘centrophobic’, in that they avoid the center, while box orbits can pass arbi-
trarily close to the center of the potential. Since long-axis and short-axis tubes contribute angular
momentum to the x- and z-axes, respectively, the total angular momentum vector of a triax-
ial system may point anywhere in the (x,z)-plane. Such a misalignment between the angular
momentum vector and the eigenvectors of the moment of inertia is a characteristic property of a
triaxial system.

Although the perfect spheroid is useful in that it gives valuable insight into the orbital struc-
ture of triaxial systems, it has a large constant density core. In general, however, galaxies and
dark matter halos have cusps (i.e. inner density profiles with dlnρ/dlnr < 0), which cannot be
described by a Stäckel potential. As mentioned in §5.4.5, these cusps have a tendency to destroy
the box orbits, giving rise to significant amounts of stochasticity in the central regions. Triaxial
systems with realistic density distributions are therefore difficult to treat analytically, and one
in general relies on numerical techniques to study their dynamical structure (see discussion in
§13.1.4).

5.5 Collisionless Relaxation

In dynamics, relaxation is the process by which a system approaches equilibrium or by which it
returns to equilibrium after a disturbance. So far in this chapter we have discussed the gravita-
tional collapse of collisionless systems and the properties of virialized equilibrium systems. We
now turn our attention to the relaxation mechanisms that operate during the collapse process and
lead to these equilibrium configurations.

The range of equilibrium configurations accessible to a collisionless system is extremely large.
Yet galaxies only seem to occupy a relatively small volume of this configuration space, as is evi-
dent from the fact that galaxies obey a number of relatively tight scaling relations, and have a
fairly restricted variety of density profiles (see Chapter 2). Similarly as we will see in Chapter 7,
dark matter halos as a class of objects are also remarkably homologous in terms of their struc-
tural and dynamical properties (at least in numerical simulations). This raises the question as to
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why collisionless systems settle in their particular equilibrium configuration. Is it because of the
relaxation mechanism, or because of some aspects of the initial conditions?

For an isolated gas, it is well known that the collisions and interactions among the gas parti-
cles cause the system to relax to a Maxwellian distribution characterized by a single temperature.
During this relaxation process most information regarding the initial conditions is erased. In the
case of a collisionless system, however, the two-body relaxation time is much longer than the
Hubble time (see §5.4.1), so that two-body interactions cannot be the main relaxation mecha-
nism. In fact, a collisionless system obeys the collisionless Boltzmann equation (CBE) given by
Eq. (5.103), which also remains valid during the gravitational collapse. So how, then, can we
talk about relaxation, if the distribution function (DF) itself, which fully describes the system,
remains constant (d f /dt = 0)

In order to address this question, we need to take a closer look at the physical interpretation of
the DF. In §5.4.2 we defined f (x,v) as the number density of particles. However, on infinitesi-
mally small scales the distribution of particles becomes a sum of Dirac delta functions, so that the
DF can no longer be considered as a smooth density field in phase space, and the CBE becomes
ill-defined. This problem can be circumvented by interpreting f as a probability function, with
f (x,v)dxdv the probability of finding a particle in the phase-space volume (x±dx/2,v±dv/2).
Although this probability function is well-defined, with its evolution governed by the CBE, it
is not directly measurable. Rather, an observer can only measure the numbers of stars in finite
phase-space volume elements. The corresponding DF, fc(x,v), is called the coarse-grained distri-
bution function,2 and corresponds to the average of f (x,v) in some phase-space volume element
centered on (x,v). Note that, contrary to f , the coarse-grained DF does not obey the CBE. How-
ever, if ∂ fc/∂ t = 0, then the system will appear relaxed to an observer, as it does not reveal any
observable evolution. Thus, as a working definition we may refer to relaxation as the process that
drives the system towards a state with ∂ fc/∂ t � 0.

There are four different relaxation mechanisms at work in gravitational N-body systems: phase
mixing, chaotic mixing, violent relaxation and Landau damping. We now discuss each of these
mechanisms in turn.

5.5.1 Phase Mixing

Consider two regular orbits with similar values for the actions Ji, i.e. whose tori are similar and
close to each other in phase space (see §5.4.5). Since the fundamental frequencies are functions
of the actions, they will also be similar for the two orbits. Now consider two trajectories on
these two tori that initially have similar phases (i.e. the two trajectories are initially close to each
other in phase space). Since the fundamental frequencies of the two trajectories are similar but
not identical, the trajectories will separate. In particular, the phase difference in direction i will
increase with time according to Δφi(t) = 2π(Δωi)t. Thus, points that are initially close to each
other in phase space will separate linearly with time, a process called phase mixing. A simple
example for a system with n = 1 degree of freedom is shown in Fig. 5.4. The points that initially
occupy the same small region in phase space are sheared out, and eventually become tightly
wound. Note that during this process the fine-grained DF remains constant. However, the coarse-
grained DF, measured at the location of the initial phase-space region initially decreases with
time, as more and more ‘vacuum’ (i.e. unoccupied phase-space volume) is mixed in. At some
point, however, depending on the coarseness used to measure fc, the coarse-grained DF will stop
evolving. Hence, phase mixing is a relaxation process. Note, though, information is lost only
through the coarse-graining. At the fine-grained level phase mixing (and indeed all relaxation

2 To avoid confusion, f is sometimes called the fine-grained distribution function.
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Fig. 5.4. An illustration of phase mixing. Here particles are assumed to orbit in a simple one-dimensional
potential. Each dashed circle in phase space represents an orbit of given energy (θ2 + θ̇2 = const.). The
shaded circle in the phase-space diagram on the left represents a group of particles that initially occupy
a small region in phase space. Since ‘orbits’ with a larger amplitude are assumed to have longer periods,
this particle cloud shears as it evolves (as in a), and eventually becomes tightly wound (as in b). [After
Binney & Tremaine (1987)]

described purely by the coupled CBE and Poisson equations) is reversible and preserves all
knowledge of the initial conditions.

An important corollary of phase mixing is that, for a system of fixed mass, the maximum of the
coarse-grained DF, fc,max, cannot increase with time. This simply follows from the fact that, prior
to reaching a relaxed state, phase mixing always continues to mix in more and more ‘vacuum’.
This consequence of phase mixing can be used to constrain the nature of the dark matter (e.g.
Tremaine & Gunn, 1979) and the formation process of galaxies (see e.g. §13.3.3).

The time scale for phase mixing is not well defined. It basically depends on the range of
(fundamental) frequencies covered by the group of particles under consideration. Note, however,
that the time scale is never less than a dynamical time and can be much longer. In fact, for
trajectories confined to the same torus the time scale is infinite, and no phase mixing occurs.

5.5.2 Chaotic Mixing

While regular orbits experience phase mixing, stochastic orbits experience chaotic mixing. As
described in §5.4.5, a characteristic property of stochastic orbits is that two stochastic trajectories
that are initially close to each other diverge exponentially. A group of stars that are initially close
to each other in a stochastic region of phase space will mix by spreading through the ‘Arnold
web’, the phase-space region accessible to every stochastic trajectory of given energy in a system
with three degrees of freedom (see §5.4.5). After a sufficiently long time they will uniformly
cover the Arnold web which implies that ∂ fc/∂ t = 0. As phase mixing, chaotic mixing thus
smooths out (i.e. relaxes) the coarse-grained DF, but leaves the fine-grained DF invariant.

Consider two trajectories Γ1 and Γ2 that at some time t0 pass close to some point (x,v) in phase
space, and let ΔLi(t) (with i = 1, ...,2n) indicate the distance between Γ1 and Γ2 in phase-space
coordinate i at time t. The Lyapunov exponents for (x,v) are defined as

λi = lim
t→∞

1
t

ln

(
dLi(t)
dLi(t0)

)
. (5.194)
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In a collisionless system
2n

∑
i=1
λi = 0, (5.195)

which expresses the incompressibility of the flow (i.e. the fact that d f /dt = 0). If the trajec-
tory through (x,v) is regular then Li(t) ∝ t, so that λi = 0 for all i. However, if the trajectory
is stochastic then λ ≡ max{λi} > 0, which implies that two trajectories near (x,v) will diverge
exponentially as δΓ(t) ∝ eλ t . The inverse of the largest Lyapunov exponent is called the Lya-
punov time, and defines the characteristic e-folding time for chaotic mixing, which is typically
much shorter than the time scale for phase mixing. Note, though, that the actual mixing rate
of stochastic ensembles typically falls below the Lyapunov rate once the trajectories sepa-
rate. This reflects the fact that stochastic regions are often bounded by regular tori, which can
confine stochastic orbits for long periods of time to restricted parts of phase space. The time
scale on which an orbit uniformly spreads over its accessible phase-space volume then becomes
dependent on the efficiency of Arnold diffusion, which can be very low.

Note that, just like phase mixing, chaotic mixing is reversible at the fine-grained level, but
that the exponentional divergence of neighboring trajectories means that almost infinitely precise
knowledge of the phase-space structure is required to undo its effects. Hence, chaotic mixing
effectively erases knowledge of the initial conditions much more rapidly than phase mixing. On
the other hand, while phase mixing operates in almost all collisionless systems, chaotic mixing
is only important if a significant fraction of phase space is occupied by chaotic orbits.

5.5.3 Violent Relaxation

Phase mixing and chaotic mixing are two relaxation processes that occur even when the grav-
itational potential associated with the dynamical system is constant. During these relaxation
processes the energies of the individual particles are conserved. However, the collapse or dis-
turbance of a collisionless system is generally accompanied with changes of the gravitational
potential, Φ(x, t), giving rise to an additional relaxation process.

Let ε = 1
2v

2 +Φ be the specific energy for a given particle. Then

dε
dt

=
∂ε
∂v

· dv
dt

+
∂ε
∂Φ

dΦ
dt

= −v ·∇Φ+
dΦ
dt

= −v ·∇Φ+
∂Φ
∂ t

+v ·∇Φ=
∂Φ
∂ t

, (5.196)

where we have used that (dv/dt) = −∇Φ. Thus, a time-dependent potential of a collisionless
system can induce a change in the energies of the particles involved (i.e. in a time-varying poten-
tial, energy is no longer an integral of motion). Exactly how the energy of a particle changes
depends in a complex way on the initial position and energy of the particle: in fact, particles can
both gain or lose energy, and some particles can even become unbound. Overall, the effect is to
broaden the range of energies (see Fig. 5.5). In this respect, a time-varying potential provides an
additional relaxation mechanism, which is called violent relaxation. Note that violent relaxation
still obeys the CBE, d f /dt = 0; however, unlike for a steady state system, the Eulerian time
derivative ∂ f /∂ t �= 0. Furthermore, unlike phase mixing and chaotic mixing in a static potential,
violent relaxation causes ‘mixing’ of particles also in binding energy.

As is evident from Eq. (5.196), dε/dt is independent of particle mass, so violent relaxation
has no tendency to segregate particles of differing mass during the relaxation process. This is
different from collisional relaxation, where the momentum exchange associated with the two-
body gravitational enounters drives the system towards equipartition of kinetic energy. More
massive particles tend to transfer energy to their lighter neighbors and so become more tightly
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Fig. 5.5. The differential energy distributions of particles in a numerical simulation of the collapse of an
N-body system that initially has a virial ratio |2K/W | = 0.1. Energies are measured in units of the final
potential energy. Results are shown at three representative times, as indicated. Initially (at t = 0) the particle
energies lie in a narrow range, which is rapidly broadened due to violent relaxation. After one free-fall time,
tff, particles have mainly gained (potential) energy; after 50 free-fall times, however, when the system has
relaxed, there are both particles that have made a net gain in energy and particles that have made a net loss,
and dM/dε peaks near the escape energy ε = 0. [Adapted from van Albada (1982)]

bound, sinking towards the center of the gravitational potential. This effect is known as mass
segregation and is particularly important in the evolution of globular star clusters.

It is important to realize that a time-varying potential does not guarantee violent relaxation.
Indeed, one can construct oscillating models exhibiting no tendency to relax by making sure
that no mixing occurs. In this case, the energies of the individual particles change with time,
but the relative distribution of energies is invariant (e.g. Sridhar, 1989). Although unrealistically
artificial, this demonstrates that violent relaxation requires both a time-varying potential and
mixing to occur simultaneously.

The time scale for violent relaxation can be defined as

tvr =

〈
1
ε2

(
∂Φ
∂ t

)2
〉−1/2

, (5.197)

where the average 〈· · ·〉 is over all particles that make up the collective potential. As shown
by Lynden-Bell (1967), this is approximately equal to the free-fall time3 of the system, tff =
(3π/32Gρ̄)1/2, with ρ̄ the average density. This indicates that the relaxation process is very fast
(hence ‘violent’).

Like phase mixing and chaotic mixing, violent relaxation tends to erase a system’s mem-
ory of its initial conditions. However, the mixing associated with violent relaxation is self-
limiting, because as soon as a system approaches any equilibrium state, the large-scale potential
fluctuations which drive the evolution vanish. Mixing destroys the coherent motions required

3 The free-fall time is the characteristic time that it would take for a body to collapse under its own gravitational
attraction, if no other forces existed to oppose the collapse.
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Fig. 5.6. Scatter plot of final against initial specific energies for particles in a cold, collisionless collapse.
Note that the correlation is significant, indicating that violent relaxation has not completely erased the
memory of the system’s initial conditions. [Adapted from van Albada (1982)]

to maintain these variations, for example, in the later phases of the collapse of a system or the
merger of two systems. As a result it is difficult to predict the extent to which the properties
of the initial conditions are reflected in the final equilibrium state. Numerical simulations have
shown that violent relaxation is, in general, never ‘complete’, in the sense that the final energies
of particles are correlated with their initial values (White, 1978; van Albada, 1982; May & van
Albada, 1984; see also Fig. 5.6) and the shape of the final system clearly remembers that of the
initial conditions (Aarseth & Binney, 1978).

5.5.4 Landau Damping

The final relaxation process that plays an important role in collisionless dynamics is Landau
damping, which is the damping of perturbations (waves) due to the (gravitational) interaction
between the wave and the (background) particles.

To gain insight, it is useful to start by considering a fluid. A perturbation analysis of the fluid
shows that if the perturbation has a wavelength λ < λJ, with λJ the Jeans length, then the pertur-
bation is stable, and the wave propagates with a phase velocity vp = cs(1−λ 2/λ 2

J )1/2, where cs

is the sound speed. Note that larger waves move more slowly because self-gravity becomes more
important. When λ ≥ λJ the wave no longer propagates, but becomes a standing wave whose
amplitude grows with time due to gravitational instability (see §4.1.3).

One can apply a similar perturbation analysis to self-gravitating collisionless systems (see
§11.5.2). This yields a similar Jeans criterion, but with the ‘sound speed’ equal to the velocity
dispersion of the particles, i.e. cs = σ . As for a fluid, perturbations with λ ≥ λJ are unstable and
grow, while those with λ < λJ result in waves propagating with a group velocity vp ≤ cs = σ .
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However, while the fluid supports gravity-modified sound waves that are stable, the equivalent
waves in gravitational collisionless systems experience Landau damping.

Consider a particle with v 	 vp. At some point this particle will overtake the wave. As it
‘falls’ into the potential perturbation, it gains energy. But the energy gain is subsequently lost
as the particle climbs out of the potential perturbation. Consequently, the particle experiences no
net change in energy. The same holds for particles with v � vp, which are overtaken by the wave.
However, particles with v � vp (i.e. that are near resonance with the wave) may experience a net
gain or loss in energy.

To see this, consider a particle with a velocity that is slightly larger than vp. Depending on the
phase of the wave at its initial position, the particle will either be accelerated or decelerated by
the gravitational potential perturbation associated with the wave. Those that are accelerated will
move away from the resonance, while those that are decelerated approach the resonant veloc-
ity. The latter interact more effectively with the wave (will be decelerated for a longer time),
and on average there will thus be a net transfer of energy from particles with v ∼> vp to the
wave. Conversely, particles with v ∼< vp, on average gain net energy from the wave. In the
case of a Maxwellian distribution, f (v) ∝ exp(− 1

2v
2/σ2), there are more particles in the lat-

ter class than in the former, causing a net transfer of energy from the wave to the particles so
that the wave is damped.4 Although collisionless systems in general do not have a Maxwellian
velocity distribution, in almost all cases ∂ f /∂v < 0, so that there will still be damping, with a
rate determined by the gradient of the velocity distribution function at the group velocity of the
wave.

The main effect of Landau damping is to convert the energy in a wave, which is created due to
a disturbance of the system (e.g. a close encounter with another system), into random motion of
the particles in the system. Together with phase mixing, Landau damping is also responsible for
limiting the effectiveness of violent relaxation, by damping the potential fluctuations that cause
a mixing in particle binding energy.

5.5.5 The End State of Relaxation

A number of authors have tried to use the principles of statistical mechanics to predict the
end state of a relaxed, collisionless system. Unfortunately, this approach has encountered a
large number of formal difficulties, and little progress has been made. There is currently no
clear understanding of how to proceed, and attention has mainly shifted to using numerical
N-body simulations to study the end state of the various relaxation processes discussed above.
Here we briefly mention the ideas behind the statistical mechanics approach, and we high-
light its shortcomings. We then give a brief description of the results obtained using numerical
simulations.

(a) Statistical Mechanics As discussed above, violent relaxation causes the energies of parti-
cles in a collisionless system to change. Therefore, if the mixing is very efficient or prolonged,
one might expect the distribution of energies to approach a ‘most probable’ state, from a sta-
tistical mechanics point of view. After all, that is what happens to a collisional gas in which
the collisions among molecules result in an efficient exchange of kinetic energies, and the
most probable distribution is obtained by maximizing the entropy, leading to the well-known
Maxwell–Boltzmann velocity distribution. One can carry out a similar calculation for colli-
sionless systems, with the not very surprising result that the velocity distribution should be
Maxwellian in this case as well (e.g. Ogorodnikov, 1965; Lynden-Bell, 1967). However, as
shown in §5.4.7, the self-consistent model corresponding to such a DF is the isothermal sphere,

4 For a mathematical treatment of Landau damping in collisionless systems, see Binney & Tremaine (2008).
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which has infinite mass and energy. Clearly, this solution is therefore unphysical. In fact, if one
defines the entropy of a collisionless system in analogy to a collisional gas as

S = −
∫ ∫

f ln f d3xd3v, (5.198)

it can be shown that, for a system of finite mass and energy, no f (x,v) maximizes the entropy.
One can always make S larger by making the system more centrally concentrated (see e.g.
Tremaine et al., 1986). Physically this is due to the long-range nature of gravity, which allows
bound particles to fill an infinitely large volume in phase space. In fact, the interpretation of S
given by Eq. (5.198) as an entropy is also controversial. Clearly, if f is the fine-grained DF, the
CBE guarantees that dS/dt = 0. This would imply that collisionless relaxation is adiabatic, in
which case there is no evolution to a ‘most probable’ state. If, on the other hand, one uses the
coarse-grained DF, fc(x,v, t) instead, then it has been argued that S = S(t) is a non-decreasing
function of time. Following Tolman (1938) and Tremaine et al. (1986) this argument goes as
follows:

S(tf) ≡
[
−
∫ ∫

fcln( fc)d3xd3v
]

tf

≥
[
−
∫ ∫

f ln( f )d3xd3v
]

tf

=
[
−
∫ ∫

f ln( f )d3xd3v
]

ti

=
[
−
∫ ∫

fcln( fc)d3xd3v
]

ti

≡ S(ti), (5.199)

where ti and tf denote the initial and final times, respectively. The inequality in the second
line is a result of the averaging implicit in the definition of fc together with the fact that, for
C( f ) =− f ln( f ), C( f ) >C( f ) for any set of unequal values of f . The equality in the third line of
Eq. (5.199) holds because, as we have already seen, an entropy defined using Eq. (5.198) with the
fine-grained DF is conserved. The equation in the final line of Eq. (5.199) reflects the assumption
that, in the initial conditions, the fine-grained phase space density is a slowly varying function of
phase-space coordinates so that fc = f . Eq. (5.199) is often interpreted as implying that S(t) is a
non-decreasing function of time, in agreement with its interpretation as an entropy. However, all
that Eq. (5.199) really says is that there is in general less information in the coarse-grained DF
than in the fine-grained DF. It does not imply S(t2) ≥ S(t1) for t2 > t1 > ti. In fact, we cannot say
anything about the relative values of S(t1) and S(t2). Thus, even if Eq. (5.198) is used with the
coarse-grained DF, it is not clear whether S can really be interpreted as an entropy. Furthermore,
as noted by Tremaine et al. (1986), the relations in Eq. (5.199) still hold if one replaces f ln f
by any convex function,5 C( f ). The situation once again differs from that for gaseous systems,
where the standard proof of Boltzmann’s H theorem shows that Eq. (5.198) is the only possi-
ble definition for which entropy always increases. In the case of collisionless systems, there are
infinitely many possible choices of C( f ). If the end state of relaxation is associated with the fc

that maximizes

Sc = −
∫ ∫

C( fc)d3xd3v, (5.200)

the solution is different for different choices of C( f ). Unless it is clear which convex function to
use, this introduces a large amount of ambiguity.

5 A twice differentiable function f (x) is convex if and only if its second derivative is non-negative, i.e. d2 f /dx2 ≥ 0, for
all x.



256 Gravitational Collapse and Collisionless Dynamics

Yet another difficulty with using entropy-based arguments to describe the equilibrium end state
of violent relaxation is the lack of reasons to believe that the system is maximally mixed, i.e. that
the system has relaxed to the ‘most probable’ state. As we have shown above, violent relaxation is
self-limiting: the relaxation process itself ‘damps’ the potential fluctuations that drive the mixing.
Additional relaxation processes, such as phase mixing and chaotic mixing, are also unlikely to
have proceeded to a maximally mixed state, simply because the outskirts of galaxies and dark
matter halos are only a few dynamical times old.

(b) Numerical Simulations It is clear from the discussion above that statistical mechanics
alone does not determine the relaxed equilibrium state of a collisionless system. This state must
depend on the details of the collapse process and on the initial conditions that determine how
efficient violent relaxation will be (i.e. how much mixing will occur). This has been confirmed
with N-body simulations of the collapse and merger of collisionless systems (e.g. White, 1978;
Aarseth & Binney, 1978; van Albada, 1982; May & van Albada, 1984), which show that violent
relaxation does not continue to completion (i.e. mixing is not maximal), resulting in final particle
energies and final shapes that correlate with the initial values (see Fig. 5.6).

Most importantly, the simulations show that the final density profile depends strongly on the
initial conditions, in particular on the initial virial ratio |2T/W |. As shown in §5.4.4, ignoring the
surface pressure a virialized system has a virial ratio of unity, so that |2T/W | basically expresses
how far away the initial system is from virial equilibrium. Since T ∝Mσ2 and W ∝−GM2/r =
−MV 2

c , with Vc the circular velocity at r, smaller values for the initial virial ratio |2T/W | ∝
(σ/Vc)2 indicate that the initial conditions are ‘colder’. There are two ways of making the initial
conditions colder: lowering the initial velocity dispersion of the particles, and making the initial
conditions more clumpy.

The simulations show that, during the early stages of the collapse, the system rapidly contracts
to a compact configuration (on a time scale comparable to the free-fall time tff), with the collapse
factor inversely proportional to |2T/W |. The initial collapse is followed by a series of expansion
and contraction phases, during which the particles either gain or lose energy resulting in a final
distribution of particle energies that is much broader than the initial distribution (Fig. 5.5). The
time it takes for the system to settle in equilibrium depends on the initial virial ratio: colder
initial conditions induce larger potential fluctuations, which take a longer time to be washed
out. In addition, the larger potential fluctuations also cause a larger fraction of particles to be
flung out to large radii, giving rise to a more extended halo which takes longer time to settle in
equilibrium. The final equilibrium distribution extends well beyond the outer boundary of the
initial configuration, with the central density comparable to the density of the system at the time
when it first collapses (and thus higher for smaller values of the initial |2T/W |). The velocity
field of the equilibrated structure is nearly isotropic in the inner regions, but dominated by radial
orbits in the outer part. This is a natural consequence of the fact that the particles in the outskirts
were launched there due to potential fluctuations that occurred in the central region, putting them
on highly elongated orbits. Similar processes occur during mergers of collisionless systems and
result in similar final structures.

As shown by van Albada (1982), collapse from initial conditions with |2T/W | ∼ 0.2 produces
a final, relaxed system whose density distribution, ρf(r), is well fit by the r1/4-law profile [except,
perhaps, near the center where ρf(r) falls below the r1/4-law profile]. The fact that the surface
brightness profiles of elliptical galaxies are well fitted by the r1/4-law profile has therefore been
interpreted as suggesting that elliptical galaxies may form through dissipationless collapse of
a stellar system from cold initial conditions. However, as we will see in §13.2, this monolithic
collapse model faces a number of problems, and it is currently believed that dissipation must
play an important role during the formation of elliptical galaxies. A route where final assembly
is via mergers appears more promising.
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Another case in which cold initial conditions are believed to play an important role is the
formation of cold dark matter (CDM) halos. As discussed in §3.3, the initial velocity dispersion
of CDM particles is negligibly small. In addition, since there is power on all scales, the initial
conditions for the gravitational collapse are also very clumpy. Hence, all CDM halos are expected
to form out of initial conditions that are extremely cold, with an initial virial ratio close to zero.
As discussed in §7.5, these initial conditions result in the collapse and formation of relaxed dark
matter halos with a universal density profile that is similar to a Sérsic profile. Although it is
tempting to link this universality to the similarity in the initial conditions, we are still lacking a
clear understanding of why the relaxed state of a virialized dark matter halo takes on exactly this
particular form (see discussion in §7.5.1).

5.6 Gravitational Collapse of the Cosmic Density Field

Now that we have described various models for the evolution of cosmic density perturbations, we
can use these results to examine how gravitational collapse proceeds in the cosmic density field
and what kind of structures are to be expected from such collapse. In this section we first use
simple considerations to gain qualitative understanding of the problem, and then turn to N-body
simulations to show how the various aspects of gravitational collapse are realized in detail.

5.6.1 Hierarchical Clustering

As we have seen in Chapter 4, in the linear regime the density perturbations δ (x, t) grow with
time as δ (x, t)∝D(t), and so the variance [defined in Eq. (4.271)] σ2(r; t)∝D2(t). For a power-
law spectrum P(k) ∝ kn, σ2(r) ∝ r−(n+3) so that we can write

σ2(r; t) =
[

r
r∗(t)

]−(n+3)

=
[

M
M∗(t)

]−(n+3)/3

, (5.201)

where

M∗(t) ∝ [D(t)]6/(n+3) , and r∗(t) ∝ [D(t)]2/(n+3) , (5.202)

are the fiducial mass and length scales on which σ = 1 at time t. Since the critical linear over-
density of gravitational collapse is ∼ 1.68 according to the spherical collapse model, we can
imagine that nonlinear structures with mass ∼ M begin to form in significant numbers when the
linear value of σ(M; t) reaches ∼ 1.68. Therefore, the time dependence of M∗ can be used to
understand how nonlinear structures develop with time for a given linear power spectrum. Since
D(t) increases with t, the mass scale of nonlinearity, M∗(t), increases with t for n > −3. In this
case, structure formation proceeds in a ‘bottom-up’ fashion, in the sense that smaller structures
form prior to larger ones. For cold dark mater (CDM) models, the effective spectral index is
larger than −3 over all length scales,6 and so these models belong to the ‘bottom-up’ category.
On the other hand, for hot dark matter (HDM) models where the effective spectral index n < −3
on scales smaller than the free-streaming length, the first structures to collapse are pancakes with
sizes comparable to the free-streaming length. Smaller structures will then have to form via the
fragmentation of larger ones, giving rise to a ‘top-down’ scenario of structure formation. For
n ∼−3, we expect a lot of ‘cross-talk’ between large and small scales, as structures on all scales
form roughly coevally.

In a ‘bottom-up’ scenario, the characteristic time, tM , for the collapse of objects of mass M is
given by

D(tM) ∝M(n+3)/6 [tM ∝M(n+3)/4 for EdS]. (5.203)
6 This is true for the baryonic component only on scales larger than the Jeans length.
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As shown in §5.4.4, the mean density of a spherical object that collapsed at time t is roughly
proportional to the mean density of the universe at that time. Thus, the density, radius and velocity
dispersion of a collapsed object scale with its mass as

ρM ∝ ρ(tM) ∝ [1+ z(tM)]3 [∝M−(n+3)/2 for EdS]; (5.204)

rM ∝ (M/ρM)1/3 [∝M(n+5)/6 for EdS]; (5.205)

v2
M ∝ GM/rM [∝M(1−n)/6 for EdS]. (5.206)

It then follows that, for an EdS universe,

ρM ∝ r−γM , γ =
3n+9
n+5

. (5.207)

If n > −3, as required for hierarchical clustering, smaller objects formed earlier and have higher
densities. At any given time t, the Universe contains collapsed objects of various masses up to
some characteristic maximum scale M∗(t). As time goes on, M∗ increases, and larger and larger
objects form by accretion and by the merger of smaller objects. For n < 1, v2

M increases with
M, and so the typical specific binding energy increases as larger objects form. For n > 1, on the
other hand, the binding energy of an object is dominated by that of its progenitors.

Based on these simple considerations, we can divide the evolution of the cosmic density field
in three different regimes. First, on mass scales M 	 M∗, the density fluctuations are still in
the linear regime, and their growth is governed by the linear perturbation theory described in
Chapter 4. Second, on mass scales M � M∗, the density fluctuations have collapsed to form
virialized objects with density profiles that are determined by their initial conditions and by the
various relaxation processes described in §5.5. Finally, on intermediate mass scales (M ∼ M∗),
density fluctuations are in the quasi-linear regime, and, according to the theory described in
§4.1.8 and §5.3, the structure is dominated by large-scale pancakes and filaments. At any given
time, the evolved cosmic density field is therefore a complicated web (called the ‘cosmic web’)
consisting of virialized halos arranged in a network of large-scale filaments and pancakes that
surround large low-density regions (voids). As we will see below, these expected properties
of gravitational collapse in the cosmic density field are well reflected in detailed numerical
simulations.

5.6.2 Results from Numerical Simulations

Although the physics behind gravitational collapse is simple, in the sense that only gravitational
interactions are involved, the evolution of the cosmic density field is in general complicated.
This complexity arises because the initial density field contains perturbations over a wide range
of scales, and nonlinear evolution couples structures of different scale (see §4.1.7). Thus, to fol-
low the evolution of the cosmic density field in detail, one must use N-body simulations. The
first step is to generate an initial density field with precisely the desired statistical properties.
For a Gaussian field, which is what we are mostly interested in, this is relatively simple. One
can start with an array of Fourier modes, each characterized by its wavevector k, and assign
each a random amplitude |δk| and a random phase ϕk according to the distribution function
described in §4.4.2. The linear overdensity field, δ (x), can then be obtained using fast Fourier
transforms (FFTs), and set up in a simulation box using the techniques described in §C1.1.3
and §C1.1.4. Because both |δk| and ϕk are random variables, the field δ (x) from a particu-
lar set of (|δk|,ϕk) represents only one specific realization of the model in consideration. The
perturbation fields will differ from one realization to another, but should all be equivalent in a
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Fig. 5.7. Images of the dark matter distribution at four different redshifts (z = 7,3,1 and 0, as indicated) in a
thin slice 140 Mpc on a side and 14 Mpc thick through a high resolution N-body simulation of structure for-
mation in the ΛCDM cosmology. Note how a network of dense clumps (quasi-equilibrium halos), filaments
and voids develops with time. [Kindly provided to us by M. Boylan-Kolchin, based on the Millenium-II
simulation presented in Boylan-Kolchin et al. (2009)]

statistical sense. Because the density field must be sampled in a finite simulation box, there are
also artificial effects due to the finite number of Fourier modes that is sampled. The realization to
realization variance caused by these effects of finite volume is similar to the uncertainty in infer-
ences from observational surveys due to their finite volume and is usually referred to as cosmic
variance.

Once the initial conditions are set up, one of the algorithms described in §C1.1.1 can be cho-
sen to evolve the density field forward in time. As an example, Fig. 5.7 shows the result of such
a simulation for a ΛCDM model. As one can see, the structures indeed evolve in a hierarchi-
cal fashion, with smaller structures developing earlier and subsequently merging into larger and
larger structures. The most prominent large-scale structures are highly flattened pancakes and
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Fig. 5.8. Evolution of the two-point correlation function of dark matter in the ΛCDM simulation of Fig. 5.7
from redshift z = 7 to the present time (z = 0). The two-point correlation function corresponding to the
linear power spectrum at z = 0 is also shown.

highly elongated filaments, which are produced by the gravitational collapse of density pertur-
bations in the quasi-linear regime. Relatively round clumps (dark matter halos) are found in
high-density locations. Massive halos with masses ∼ M∗ are preferentially found at the inter-
sections of large-scale filaments, while halos with masses � M∗ are preferentially embedded in
filaments. Since matter flows towards high-density regions, low-density regions expand, giving
rise to a population of large voids.

Because of nonlinear evolution, the evolved density field has properties that are very different
from those of the initial density field. In particular, the shape of the power spectrum has changed,
as can be seen from Fig. 5.8, where the evolution of the two-point correlation function is shown.
This behavior can be understood qualitatively as follows. On large scales where the structures
are still in the linear regime, ξ (x, t) ∝ [D(t)]2, where D(t) is the linear growth factor. On small
scales, the clustering amplitude increases rapidly at the early stage of nonlinear evolution, and
then evolves as a3 due to the formation of virialized clumps whose characteristic densities change
little while the background density decreases as 1/a3. Because of the rapid growth of ξ on small
scales relative to its linear growth on large scales, ξ (r) is steeper than its linear counterpart at the
translinear scale (corresponding to ξ ∼ 1), which itself increases with time due to hierarchical
clustering.

Nonlinear gravitational collapse also changes other statistical properties of the density field.
At late times the field is highly non-Gaussian, as can be seen from the large disparity between
overdense and underdense regions. Because of this, the evolved density field is much more
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complicated than the initial linear density field, and can no longer be described completely by
its power spectrum or two-point correlation function. We therefore need to develop further sta-
tistical tools to describe the properties of the evolved cosmic density field, which is the topic of
the next chapter. Subsequently, in Chapter 7, we will focus on the properties of the high-density
clumps, i.e. the virialized dark matter halos.



6

Probing the Cosmic Density Field

In the last two chapters we have described various models for the formation of structures in the
cosmic density field. In this chapter we focus on how to test these models with observations.
Since the cosmic density field is believed to be a random field generated by some random pro-
cesses, model tests should be based on statistical properties of the cosmic density field, rather
than on matching the predicted and observed fields point by point. Our task is therefore twofold.
First, we need to develop statistical measures to characterize the cosmic density field. At any
given time, the dynamical state of the cosmic density field is given by the mass distribution
in space and the velocities of all mass elements. Thus, statistical characterizations of the cos-
mic density field are mostly based on the density and velocity fields of matter in the Universe.
Such statistical characterizations are described in §§6.1–6.3, and models for the time evolution
of some of these statistics are presented in §6.4. The second task is to find suitable observational
probes of the cosmic density field. For many years, the distribution of galaxies has been used to
infer the mass distribution in the Universe, based on the assumption that there is a simple and
well-defined relation between the two. We describe various statistical measures of the galaxy
distribution in §6.5. However, the assumption that galaxies trace mass cannot be true in detail,
given that the total mass associated with galaxies is only a small fraction of the total mass in
the Universe (see §2.10.2) and that galaxies of different properties have different spatial distribu-
tions (see §2.4.5). Because of this, other probes have been used. One such probe is the peculiar
velocity distribution for galaxies. Since the large-scale structure of the Universe is believed to be
produced by gravitational instability, the peculiar velocities produced by the gravitational field
should be directly related to the underlying mass distribution. We describe statistical measures of
the cosmic velocity field and their relations to the mass distribution in §§6.2–6.3. Gravitational
lensing provides another very promising way to probe the cosmic mass distribution. The images
of distant background sources (usually galaxies) are distorted by the foreground mass distribu-
tion near the line-of-sight, and we can reconstruct this foreground mass distribution by observing
and modeling the distortion pattern. The principle behind such reconstructions is described in
§6.6 along with some important applications. Finally, temperature fluctuations in the cosmic
microwave background (CMB) provide another important avenue to probe the cosmic density
field. As described in §3.5.2, the CMB photons were tightly coupled with the mass density field
before decoupling, and so the temperature fluctuations in the CMB are expected to be closely
related to the cosmic density field at the time of decoupling. In §6.7 we describe how to use the
observed CMB anisotropy to probe the cosmic density field.

6.1 Large-Scale Mass Distribution

6.1.1 Correlation Functions

The properties of the cosmic density field can be described statistically by considering the
moments of the distribution function Px defined in Eq. (4.250). The two-point correlation
function of the density perturbation field is defined as

262
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ξ (x) = 〈δ1δ2〉, (6.1)

where x = |x1 − x2| is the separation in comoving units. Note that ξ depends only on the
amplitude x of x, which follows from the fact that the density perturbation field, δ (x), is, by
assumption, a homogeneous and isotropic random field. Writing both δ1 and δ2 in terms of their
Fourier transforms, we have

ξ (x) =
1

Vu
∑
k

P(k)eik·x =
1

(2π)3

∫
P(k)eik·x d3k, (6.2)

where

P(k) = Vu〈|δk|2〉 (6.3)

is the power spectrum, and the second expression in the above equation follows from having
Vu →∞ in our convention of Fourier transformations. The two-point correlation function and the
power spectrum therefore form a Fourier transform pair. Carrying out the integration over the
angle between k and x we have

ξ (x) =
1

2π2

∫ ∞

0
k3P(k)

sinkx
kx

dk
k

=
∫ ∞

0
Δ2(k)

sinkx
kx

dk
k

, (6.4)

where

Δ2(k) ≡ k3

2π2 P(k). (6.5)

Similarly, the definition of the power spectrum gives

P(k) = 4π
∫ ∞

0
ξ (x)

sinkx
kx

x2 dx. (6.6)

The volume average of ξ (x) is defined as

ξ (x) =
3
x3

∫ x

0
ξ (x′)x′2 dx′, (6.7)

which is related to the power spectrum by

ξ (x) =
∫ ∞

0
Δ2(k)

[
3(sinkx− kxcoskx)

(kx)3

]
dk
k

. (6.8)

The window function (the term in brackets) involved here dies off faster with increasing k than
the term (sinkx/kx) in the expression of ξ (x), so ξ (x) gives a cleaner measure of the power
spectrum at k ∼ 1/x than does ξ (x). A related quantity is the J3 integral, defined as

J3(x) =
∫ x

0
ξ (x′)x′2 dx′ =

1
3

x3ξ (x). (6.9)

If P(k) ∝ kn as k → 0, then for n > −3 the main contribution to the integral of ξ (x) is from
k ∼< 1/x. Since the window function in ξ (x) is about unity for k ∼< 1/x, we have

ξ (x) �
∫ 1/x

0
Δ2(k)

dk
k
∝ x−(n+3), (6.10)

and J3(x) ∝ x−n. Thus, for n > 0 we have the following integral constraint on ξ (x):∫ ∞

0
ξ (x)x2 dx = 0. (6.11)

Because ξ (0) = 〈δ 2(x)〉 > 0, this constraint means that ξ (x) must pass through zero at some
large x.
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The �-point correlation function is defined as

ξ (�)(x1,x2, . . . ,x�) ≡ 〈δ1δ2 . . .δ�〉. (6.12)

In practice we are more interested in the connected �-point function, which is obtained by sub-
tracting from ξ (�) all the disconnected terms arising from lower-order correlations. For example,
the connected three- and four-point correlation functions are

ζ (x1,x2,x3) ≡ 〈δ1δ2δ3〉−〈δ1〉〈δ2δ3〉 (three terms)−〈δ1〉〈δ2〉〈δ3〉
= 〈δ1δ2δ3〉; (6.13)

η(x1,x2,x3,x4) ≡ 〈δ1δ2δ3δ4〉−〈δ1〉〈δ2δ3δ4〉 (four terms)

−〈δ1δ2〉〈δ3δ4〉 (three terms)−〈δ1〉〈δ2〉〈δ3〉〈δ4〉
= 〈δ1δ2δ3δ4〉−ξ (x12)ξ (x34) (three terms). (6.14)

For a Gaussian random field, ζ = η = 0, and so are all connected higher-order correlation
functions. This highlights the advantage of working with the connected correlation functions:
connected high-order correlation functions can be used to test whether a density perturbation
field is Gaussian.

6.1.2 Particle Sampling and Bias

In many applications it is necessary to represent the cosmic density field by a set of mass par-
ticles. For example, if galaxies trace the mass distribution to some degree, the distribution of
galaxies in space should be considered as a point set that represents the underlying mass distribu-
tion. In this subsection we first describe simple models to sample a continuous mass distribution
with particles. We then define statistical measures based on such sampling, and discuss how the
distribution of particles (tracers) may be biased relative to the original mass distribution.

(a) Poisson Sampling The simplest way to represent a continuous density field with particles
is to divide the space into infinitesimal cells, and sample the density field in such a way that the
number of particles in a particular cell has a Poisson distribution with a mean proportional to
the mean density of the cell. Suppose that the volume of each cell, ΔV , is chosen so small that
the probability for a cell to contain more than one particle is zero. Then the occupancy of an
arbitrary cell (Ni) has the following properties:

Ni = N 2
i = N 3

i = · · ·. (6.15)

Thus, to sample a given density field ρ(x) by a Poisson process, we just need to specify p(1)(x),
the probability for a cell located at x to contain one particle. Clearly this probability is equal to
the average of N at x:

p(1)(x) = 〈N (x)〉P = [1+δ (x)]nΔV, (6.16)

where n = ρ/m (m being the mass of a particle) is the mean number density of particles, and
〈· · ·〉P is the average over the Poisson distribution.

Now suppose we have an ensemble of realizations of a random density field. Since each of the
realizations is represented by an independent set of particles according to the Poisson sampling,
the ensemble average can be considered to be over both the realizations of the random field and
the Poisson distribution. This can be understood by grouping the realizations into subgroups in
such a way that the difference among the realizations within each subgroup is small. Averaging
within a subgroup is therefore equivalent to that over the Poisson distribution, while averaging
among the subgroups is equivalent to that over different realizations of the random field. This
separation of an ensemble average into two steps is useful, because the Poisson sampling of the
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density at a point is independent of that at another and so the average over the Poisson distribution
can be carried out first. For example, the ensemble average of the number of particles in a cell
must be nΔV , which follows from

〈N 〉 = 〈〈N 〉P〉 = 〈p(1)〉 = nΔV. (6.17)

Similarly,

〈NiN j〉 = 〈〈NiN j〉P〉 = 〈p(1)(xi)p(1)(x j)〉 = (nΔV )2 [1+ξ (xi j)] , (6.18)

where xi j ≡ |xi − x j| �= 0, and the second equation follows from the fact the Poisson samplings
at different locations are independent of each other.

Using the assumption of ergodicity, the ensemble average, 〈p(1)(xi)p(1)(x j)〉, can be written
in terms of a spatial average,〈

p(1)(xi)p(1)(xi +x)
〉

xi
= (nΔV )2 [1+ξ (x)] . (6.19)

The left-hand side is just the probability of finding a pair of particles from a randomly chosen
pair of cells with comoving separation x, which is equal to (nΔV )2 for a random distribution.
Hence, the two-point correlation function ξ (x) is a measure of the excess in the number of pairs
of particles with comoving separation x over a random sample with the same n. The conditional
probability for finding a pair of particles from a pair of cells that is separated by x, given that one
cell contains a particle, is

〈p(1)(xi)p(1)(xi +x)〉xi

〈p(1)(xi)〉xi

= (nΔV ) [1+ξ (x)] . (6.20)

This is just the mean number of neighbors each particle has in a volume element ΔV at a comov-
ing distance x. The mean number of particles within a spherical shell that is centered on a particle
and has a proper radius r (related to the comoving radius x by r = ax) and thickness dr is

dN(r) = 4πr2n [1+ξ (r)]dr, (6.21)

and the mean number of neighbors within a proper distance r from a given particle is

N(r) =
4π
3

nr3
[
1+ξ (r)

]
. (6.22)

According to these arguments, [1+ξ (r)] as a function of r can be interpreted as the mean density
profile around each particle, and (4π/3)ρr3[1 + ξ (r)] can be interpreted as the mean of the
masses enclosed in spheres of radius r centered on particles. The distribution of galaxies can be
viewed as a point process which samples the underlying mass distribution in some specified way.
The two-point correlation function of galaxies, which can be estimated by counting the number
of galaxy pairs as a function of their separation and comparing this with that given by a random
sample, can therefore be used to infer the power spectrum of the mass distribution (see §6.5).

Similar to the two-point correlation function, higher-order correlation functions of a density
field can also be interpreted in terms of the relationships among the particles that sample the den-
sity field. For example, the average number of triplets (with a given configuration) each particle
can form is given by

〈p(1)(x1)p(1)(x1 +x12)p(1)(x1 +x13)〉x1

〈p(1)(x)〉x
= (nΔV )2h3, (6.23)

h3 = 1+ξ (x12)+ξ (x13)+ξ (x23)+ζ (x12,x13,x23), (6.24)



266 Probing the Cosmic Density Field

where x23 = |x12 − x13|. Thus, h3 is a measure of the excess in the number of particle triplets
with a given configuration (specified by the lengths of the three sides, x12, x13 and x23) relative
to a random sample with the same n. Similarly,

h4 = 1+ξ (x12) (6 terms)+ξ (x12)ξ (x34) (3 terms)

+ζ (x12,x23,x31) (4 terms)+η (6.25)

is a measure of the excess in the number of particle quartets with a given configuration (specified
by six variables that are needed to fix the relative positions of the four points) relative to a random
sample with the same n. These interpretations allow us to estimate the higher-order correlation
functions of a point set in a straightforward way (see §6.5).

(b) Sampling Bias In the simple model discussed above, the sampling of the (smoothed) den-
sity field with particles (e.g. galaxies) is assumed to be a Poisson process with the mean number
of particles at each point being proportional to the local mass density. This sampling is local,
because the process at one point is independent of that at another, and is unbiased, because the
density of particles at one point is proportional to the mass density. We have seen that in such
a sampling the correlation functions of the point process are the same as those of the underly-
ing density field. However, this sampling is only one among many possibilities. In general, the
sampling may be non-local, in that the probability of having a sampling particle at one location
may depend on the values of the density field at other locations. The sampling may even be non-
Poissonian, in the sense that the probability of having a sampling particle at one location may
depend on the presence of other sampling particles at or near this location. If we allow such free-
dom, many different models can be constructed to sample a mass density field with a point set,
and it is not guaranteed that the correlation functions of the point set are the same as those of the
underlying mass density field. As a simple example, if the sampling is still a Poisson process but
with the mean proportional to 1+bδ (b > 0 is a constant, and the probability for δ to be ≤−1/b
is assumed to be small so that the mean is always positive) instead of to 1+δ , then the two-point
correlation function of the particles will be b2 times that of the underlying density field. In this
case, the particles are biased tracers of the underlying density field. This simple example demon-
strates an important point. If we want to use the spatial distribution of a population of objects
(e.g. galaxies) to study the properties of the cosmic density field, we must understand how these
objects trace the cosmic density field.

6.1.3 Mass Moments

Given a density perturbation field δ (x), we can filter it with some window function to get a
smoothed field:

δ (x;R) =
∫
δ (x′)W (x+x′;R)d3x′,

∫
W (x;R)d3x = 1, (6.26)

where W is the window function, assumed to be spherically symmetric with characteristic radius
R. The Fourier transform of δ (x;R) can be obtained from the convolution theorem:

δk(R) = δkW̃ (kR), (6.27)

where W̃ (kR) is the Fourier transform of the window function, and δk is given by Eq. (4.25).
For a Gaussian random field, δ (x;R) as a linear combination of δ (x) must obey the following
Gaussian distribution:

P(δ ;R)dδ =
1√
2π

exp

[
− δ 2

2σ2(R)

]
dδ
σ(R)

, (6.28)
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where the variance σ2(R) is related to the power spectrum by

σ2(R) ≡ 〈δ 2(x;R)〉 =
∫
Δ2(k)W̃ 2(kR)

dk
k

. (6.29)

More generally we can define a set of spectral moments weighted by powers of k2:

σ2
� (R) =

∫
k2�Δ2(k)W̃ 2(kR)

dk
k

. (6.30)

The variance σ2 is just the zeroth moment: σ2(R) = σ2
0 (R).

The two most commonly used window functions are the top-hat window function:

Wth(x;R) =
(

4π
3

R3
)−1{ 1 (for |x| ≤ R)

0 (for |x| > R),
(6.31)

W̃th(kR) =
3(sinkR− kRcoskR)

(kR)3 ; (6.32)

and the Gaussian window function:

WG(x;R) =
1

(2π)3/2R3
exp

(
−|x|2

2R2

)
, (6.33)

W̃G(kR) = exp

[
− (kR)2

2

]
. (6.34)

The volumes of these two types of windows are related to the smoothing radius R as

V (R) =
{

4πR3/3 (for a top-hat)
(2π)3/2R3 (for a Gaussian).

(6.35)

Thus, for a given type of window, we can label its size by the mean mass contained in it: M(R)≡
ρV (R), where ρ is the mean density of the Universe at some given time. A particularly convenient
convention is to refer to R as the comoving radius measured in present-day units. In this case

M(R) ≡ ρ(t0)V (R), (6.36)

where ρ(t0) is the mean mass density at the present time. In what follows, we will always use
this convention.

Another useful window function is the k-space top-hat window, also called the sharp k-space
window, which has the form:

W̃k(kR) =
{

1 (for kR ≤ 1)
0 (for kR > 1).

(6.37)

This corresponds to a window in real space with the form:

Wk(x;R) =
1

2π2R3 y−3(siny− ycosy), (y ≡ |x|/R). (6.38)

This window function is particularly convenient in the analysis of Gaussian density fields, since
the change in the field strength, Δδ , due to a change in the window radius from R → R +ΔR, is
independent of the original field, δ (x,R). However, the disadvantage here is that the integration
of Wk(x;R) over all space diverges, and so it is not straightforward to associate a well-defined
volume (or mass) with the window. Formally, we may assign a volume to the window so that
Wk(0;R)V (R) = 1, as is the case for both Wth and WG. This gives V (R) = 6π2R3 for Wk.
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Fig. 6.1. The variance of the linear density field, σ , as a function of the radius, R, of top-hat windows in
different cosmogonic models. The variance is normalized so that σ8 ≡ σ(8h−1Mpc) = 1.

For a power-law power spectrum, P(k) = VuAkn, Eq. (6.29) can easily be evaluated for a
Gaussian window:

σ2(R) =
A

4π2Γ
(

n+3
2

)
R−(n+3) ∝ R−(n+3) ∝M−(n+3)/3. (6.39)

For a top-hat window, the above proportionality relations hold only for −3 < n < 1. The inte-
gration in Eq. (6.29) diverges in the limits k → 0 and k → ∞ for n ≤−3 and n ≥ 1, respectively,
because W̃ 2(kR) � 1 for k � R−1, and W̃ 2(kR) ∝ k−4 for k 	 R−1. The constraint that n > −3
for small k (large length scale) is required because otherwise the perturbation amplitude would
become larger and larger as the wavelength of the perturbation mode increases. The divergence
at large k (short length scale) for n ≥ 1 is due to the sharp edge of the top-hat window, which
causes the Fourier transform of the window function to die off too slowly as k → ∞ to suppress
the small-scale power implied by n ≥ 1. Since the mass variance in a top-hat window is a well-
defined quantity and should be finite for any realistic density field, the above argument implies
that the effective spectral index at k →∞must be smaller than 1 for any realistic power spectrum.
Fig. 6.1 shows σ(R) versus R assuming top-hat windows for several power spectra described in
§4.4.4. The meaning of σ2(R) can be understood in terms of variation in mass in randomly placed
windows. If we denote the mass in a window centered at x as M(x;R), then the mass variance is

σ2
M(R) ≡

〈(
M(x;R)−M(R)

M(R)

)2
〉

x

= σ2(R), (6.40)

where the last equality follows from ergodicity.
One can also define the �th order moment of the smoothed field:

μ�(R) ≡ 〈δ �(x;R)〉 =
∫
δ �P(δ ;R)dδ . (6.41)
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For a Gaussian field, this can be worked out explicitly:

μ� =
{

0 (� =odd)
σ �(R)(�−1)!! (� =even).

(6.42)

The connected part of the �th order moment, κ�, is defined by subtracting from μ� all dis-
connected terms arising from lower-order moments. For example, the third- and fourth-order
moments, usually referred to as the skewness and kurtosis, are

κ3 = μ3 −3κ1κ2 −κ3
1 = μ3; (6.43)

κ4 = μ4 −3κ2
2 −4κ1κ3 −κ4

1 = μ4 −3κ2
2 , (6.44)

where we have used that κ1 ≡ 〈δ 〉 = 0. For Gaussian random fields it is easy to prove that

κ� = 0 for all � > 2. (6.45)

Non-zero high-order connected moments therefore signify a non-Gaussian field. Similar to the
variance, the high-order moments can also be interpreted in terms of the mass moments in
randomly placed windows.

The mass moments are related to the correlation functions defined in §6.1.1. To find these
relations, consider top-hat windows of volume V . Divide such a window into small subcells of
volume ΔV . The mass in a subcell at a point xi is therefore Mi = ρ(xi)ΔV , and the mass in V is
M = ∑i Mi. It is then easy to show that

〈M〉 = ρV ; 〈M2〉 = M
2 +

M
2

V 2

∫
V
ξ (|x1 −x2|)d3x1 d3x2, (6.46)

and

σ2 = κ2 =
1

V 2

∫
V
ξ (x12)dV1 dV2. (6.47)

Similarly, one can also prove that

κ3 =
1

V 3

∫
V
ζ dV1 dV2 dV3; κ4 =

1
V 4

∫
V
η dV1 dV2 dV3 dV4. (6.48)

If the density is sampled by particles so that the distribution of particle number in a window
depends only on the mass within the window, the distribution function of the counts-in-cells of
the particles is related to the distribution function of the density field P(δ ;R) by

f (N;V ) =
∫ ∞

−∞
P(N|δ )P(δ ;R)dδ , (6.49)

where P(N|δ ) is the probability of finding N particles in a window of radius R (correspond-
ing to the volume V ) and mean overdensity δ . In the special case where P(N|δ ) is a Poisson
distribution,

f (N;V ) =
∫ ∞

−∞
e−λλN

N!
P(δ ;R)dδ , (6.50)

where λ is related to δ . If we assume λ = 〈N〉(1 + δ ), where 〈N〉 = nV is the mean number
density of particles in a window, then it is easy to relate the central moments of f (N;V ) to the
moments of the mass density field. For example,〈

(N −〈N〉)2
〉

〈N〉2 =
1

〈N〉 +σ2; (6.51)
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(N −〈N〉)3

〉
〈N〉3 =

1
〈N〉2 +

3σ2

〈N〉 +κ3; (6.52)

〈
(N −〈N〉)4

〉
〈N〉4 =

1
〈N〉3 +

3+7σ2

〈N〉2 +
6(σ2 +κ3)

〈N〉 +(3σ2 +κ4). (6.53)

We see that these central moments are the same as those defined in Eq. (6.41) for the smoothed
field, except for the terms containing 〈N〉, which are due to the discrete sampling (shot noise)
and go to zero as the sampling density approaches infinity (i.e. 〈N〉 → ∞).

It is instructive to derive the above expressions from the Poisson sampling discussed in §6.1.2.
Divide a cell V into subcells with volume ΔV small enough so that the occupancy in each subcell
satisfies 〈Ni〉 = 〈N 2

i 〉 = · · ·. The count in the volume V is therefore

N =∑
i

Ni, (6.54)

and the mean is

〈N〉 = nV. (6.55)

Using the properties of Ni, it is easy to show that

〈N2〉 =∑
i
〈N 2

i 〉+∑
i�= j

〈NiN j〉

=
∫

ndV +
∫

n2 [1+ξ (x12)] dV1 dV2. (6.56)

We leave it as an exercise for the reader to work out 〈N3〉 and 〈N4〉.

6.2 Large-Scale Velocity Field

In the linear regime, the peculiar velocities induced by density perturbations are proportional
to the amplitude of the density fluctuations (see §4.1.6). At late times, when the growing mode
dominates, we have

v(x, t) =∑
k

vk(t)eik·x, where vk(t) = Ha f (Ω)
ik
k2 δk(t) (6.57)

[see Eq. (4.77)]. Therefore, measurements of the linear velocity field provide direct constraints
on the mass density field, δk(t).

6.2.1 Bulk Motions and Velocity Correlation Functions

As with the density field, we can smooth the velocity field v(x) in spherical windows with a
characteristic radius R:

v(x;R) =
∫

v(x′)W (x+x′;R)d3x′. (6.58)

The variance of the bulk-motion velocity is

〈v2(R)〉 =
Vu

2π2

∫
(v∗k ·vk)W̃ 2(kR)k2dk, (6.59)

where v∗k is the complex conjugate to vk. Inserting Eq. (6.57) into this expression gives

〈v2(R)〉 =
∫ ∞

0
Δ2

v(k)W̃
2(kR)

dk
k

, Δ2
v(k) = f 2(Ω)(Ha)2k−2Δ2(k). (6.60)
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Note that Δ2
v(k) is proportional to Δ2(k) weighted by k−2, and so the velocity variance is sen-

sitive to the mass density fluctuations on large scales. If P(k) ∝ kn, then for n > −1 the main
contribution to the integral comes from k ∼< 1/R. Since W̃ (kR) ∼ 1 for kR ∼< 1, we have〈

v2(R)
〉
∝ R−(n+1). (6.61)

For n ≤ −1 the peculiar velocity is dominated by large-scale fluctuations. Therefore realistic
power spectra should have an effective spectral index n > −1 at k → 0. For a spectrum similar
to that predicted in a CDM universe, where the effective power index increases with scale from
n < −1 to n > −1, the bulk motions are dominated by density fluctuations on scales where
n �−1.

We can also define the two-point correlation function of the velocity field as

ξ (v)
i j (x1 −x2) ≡

〈
vi(x1)v j(x2)

〉
, (6.62)

where vi (i = 1, 2, 3) are the components of the velocity. Inserting Eq. (6.57) into the above
expression we have

ξ (v)
i j (x) = (Hax)2 f 2(Ωm)

∫ ∞

0
Δ2(k, t)

[
δi j

j1(kx)
(kx)3 − xix j

x2

j2(kx)
(kx)2

]
dk
k

, (6.63)

where x = x2 − x1 and j� are spherical Bessel functions (Gorski, 1988). In terms of the mass
correlation function,

ξ (v)
i j (x) =

(Hax)2 f 2(Ωm)
2

[(
J3

x3 − J5

3x5 +
2K2

3x2

)
δi j +

(
J5

x5 − J3

x3

)
xix j

x2

]
, (6.64)

where

J� =
∫ x

0
ξ (y)y�−1 dy; K� =

∫ ∞

x
ξ (y)y�−1 dy. (6.65)

The correlation function ξ (v)
i j has been estimated by Groth et al. (1989) and Gorski et al. (1989)

for galaxies with peculiar velocities estimated in a way described below.

6.2.2 Mass Density Reconstruction from the Velocity Field

In the gravitational instability scenario, the velocity of a test particle is induced directly by the
underlying mass density field. Thus, if the peculiar velocities of galaxies are not severely affected
by non-gravitational processes, the velocity field traced by galaxies can be used to infer the mass
density fluctuations in the Universe.

By observing the spectra of galaxies one can determine their redshifts (i.e. their radial veloci-
ties). The radial velocity of a galaxy is partly due to the Hubble expansion and partly due to its
peculiar motion. In order to separate these two components, one needs to know the distance (r,
assumed to be in proper units) to the galaxy, so that the velocity due to the Hubble expansion, Hr,
can be estimated. Two distance indicators have been used extensively to estimate the distances to
galaxies. The first is based on the Tully–Fisher relation for spiral galaxies, which is an observa-
tional relation, L ∝Vα

max (with α ∼ 3), between the absolute luminosity, L, of a spiral galaxy and
its maximum rotation velocity, Vmax (see §2.3.3). The second is based on the diameter–velocity
dispersion (Dn–σ ) relation for elliptical galaxies, Dn ∝σ

β
0 (with β ∼ 1.2), where Dn is the diam-

eter of a galaxy at which its mean surface brightness drops to some fiducial value, and σ0 is the
central velocity dispersion of the galaxy (see §2.3.2). Since both Vmax and σ0 can be determined
through spectroscopic observations, these relations allow us to estimate L (for spirals) and Dn
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(for ellipticals). By comparing L so estimated with the apparent luminosity (or Dn with the angu-
lar diameter) of a galaxy, we can obtain the luminosity distance (or angular-diameter distance)
of the galaxy from the formulae given in §3.2.6.

Given a sample of galaxies with redshifts (assumed to be small) and distances, we can estimate
their peculiar velocities from

vr(ri) = czi −H0ri, (6.66)

and so the radial-velocity field is sampled at a set of points ri = {ri,ϑi,ϕi} in space. From these
sampled radial velocities, one can compute a smoothed radial-velocity field, vr(r), by smoothing
the observed velocities in some pre-selected windows. The other two components of the velocity
field can be recovered if we assume the velocity field to be curl-free so that it can be written as
the gradient of a potential field,

v(r) = −∇rΦv (r). (6.67)

As shown in §4.1.1, the curl of the peculiar velocity field dies off quickly with time in the linear
regime. Vorticity is therefore negligible at late times even if it is present in the initial conditions.
Thus, Eq. (6.67) is a good approximation as long as we are working in the linear and quasi-linear
regimes. With this assumption, we have

Φv (r) = −
∫ r

0
vr(r′,ϑ ,ϕ)dr′. (6.68)

The total velocity field can then be obtained from Eq. (6.67). With this technique, the mean
(bulk-motion) velocities have been estimated for galaxies within spherical regions around the
Local Group (e.g. Bertschinger et al., 1990). The mean bulk motion velocity is about 300–400
kms−1 within a spherical region of radius ∼ 50h−1Mpc.

In the linear and mildly nonlinear regimes, we can derive the underlying mass-density
fluctuation field, δ (x), from the velocity field v(x) using the Zel’dovich approximation (§4.1.8):

δ (x) = det

[
I− D

aḊ

∂v(x)
∂x

]
−1, (6.69)

where I is the unit matrix. In the linear regime, the above equation reduces to

δ (x) = − ∇ ·v(x)
Ha f (Ωm)

. (6.70)

Fig. 6.2 shows an example of the mass density field derived from the peculiar velocities of galax-
ies in the local Universe. This density field is compared with the galaxy density field derived from

Fig. 6.2. The mass density field derived from galaxy peculiar velocities (left panel) in the local Universe is
compared with the galaxy density field inferred from the IRAS galaxy survey in a similar region. [Adapted
from Sigad et al. (1998) by permission of AAS]



6.3 Clustering in Real Space and Redshift Space 273

the IRAS galaxy survey. As one can see, the reconstructed mass density field looks similar to the
galaxy density field, suggesting that galaxies trace the mass distribution to some extent. If we
assume the fluctuations in the galaxy distribution to be proportional to those in the mass distribu-
tion, i.e. δgal = bδ with b being a constant, then δgal(x) =−∇ ·v(x)b/Ha f (Ωm). Thus, matching
the reconstructed mass density field with the galaxy density field can be used to determine

β ≡ f (Ωm)/b ≈Ω0.6
m /b. (6.71)

Note that the Hubble constant H does not come in because physical distances inferred from the
Hubble expansion are proportional to H−1. The value of β estimated using this technique from
data is about 0.5, but with large statistical uncertainties (see Dekel, 1994).

6.3 Clustering in Real Space and Redshift Space

Accurate distances to galaxies are difficult to obtain, because distances based on the Tully–
Fisher or Dn–σ relations require careful observations of the kinematics and photometry of a
large number of galaxies. More importantly, the uncertainties in such distance determinations
are proportional to the distance itself, and rapidly become too large for the resulting peculiar
velocity estimates to be useful as one moves away from the relatively local Universe. On the
other hand, redshifts of galaxies are relatively easy to obtain, and currently almost a million
galaxy redshifts are available from surveys such as the Sloan Digital Sky Survey (SDSS) and
the 2-degree Galaxy Redshift Survey (2dFGRS). Since galaxy redshifts are not exact measures
of distances, the galaxy distribution in redshift space is distorted with respect to the true distri-
bution. In this section we show how to extract information regarding real space clustering and
peculiar velocities from such redshift surveys.

6.3.1 Redshift Distortions

If we use redshift as distance, the inferred distance to a galaxy is related to its redshift, z, by

s ≡ cz. (6.72)

This distance is usually referred to as the redshift distance of the galaxy. For convenience we
will write distances in velocity units in this subsection. The true distance expressed in velocity
units is

r ≡ H0d, (6.73)

which we will refer to as the real distance of the galaxy. (For the moment we assume that all
galaxies are local enough that a linear mean Hubble relation is appropriate.) s and r are related by

s = r + vr, (6.74)

where vr = v · r̂ is the peculiar velocity along the line-of-sight. Peculiar velocities thus lead to
redshift space distortions. Such distortions complicate the interpretation of galaxy clustering, but
they also contain important additional information about the cosmic mass distribution, since the
peculiar velocities are induced by this distribution which is itself correlated with galaxy positions.

To see how the pattern of galaxy clustering is distorted in redshift space, consider a simple
spherical perturbation in an Einstein–de Sitter universe with initial overdensity profile δi(r)∝ r−γ
where γ > 0, and δi(r) is the mean overdensity within r. The evolution of each mass shell follows
the spherical collapse model described in §5.1. For a large radius within which the overdensity is
small, the expansion of the mass shell is decelerated but its peculiar velocity is still too small to
compensate for the Hubble expansion. In redshift space the mass shell will then appear squashed
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Fig. 6.3. An illustration of how peculiar velocities distort the galaxy distribution in redshift space in
different regimes.

along the line-of-sight when observed from a distance much larger than its size. This effect
is illustrated at the top of Fig. 6.3. A mass shell with linear overdensity δ0 ∼ 1 is just turning
around at the time it is observed, so its peculiar infall velocity is exactly equal to the Hubble
expansion velocity across its radius. In redshift space this shell appears completely ‘collapsed’ to
an observer at large distance, as shown in the middle panel of Fig. 6.3. Finally, a mass shell which
has already turned around has a peculiar infall velocity which exceeds the Hubble expansion
across its radius. If this infall velocity is less than twice the Hubble expansion velocity, the shell
appears flattened along the line-of-sight, but with the nearer side having larger redshift distance
than the farther side. At smaller radii the peculiar infall velocities of collapsing shells are much
larger than the relevant Hubble velocites and are randomised by scattering effects. The structure
then appears to be elongated along the line-of-sight in redshift space (a ‘finger-of-God’ pointing
back to the observer). This is depicted in the bottom of Fig. 6.3. Clearly, redshift distortions have
different observational consequences on different scales.

To examine such effects quantitatively, we sample the underlying density field by particles
(galaxies) and denote the number density in real space by n(r) and that in redshift space by
n(s)(s). The conservation of particle number then implies that

n(s)(s)d3s = n(r)d3r, (6.75)

or, in terms of density contrast,[
1+δ (s)(s)

]
d3s = [1+δ (r)] d3r, (6.76)
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where we have used the fact that the mean number density is the same in both spaces. Since s
and r are related by

s = r+ vrr̂, (6.77)

we have

1+δ (s)(s) =
r2

(r + vr)2

(
1+

∂vr

∂ r

)−1

[1+δ (r)] . (6.78)

Note that this equation is just a consequence of number conservation and applies in both linear
and nonlinear regimes. Now let us apply this equation in the linear regime where δ (r) � 1. In
this case the peculiar velocity field is related to the density field by

δ (r) = −∇r ·v
β

, where ∇r ≡ ∂
∂r

. (6.79)

This is the same as Eq. (6.70), except that H is now absorbed into r = Hd and that f (Ωm) is
replaced by β ≡ f (Ωm)/b to take into account a possible bias of n(r) relative to the underlying
mass density field [i.e. we assume δ ≡ (n−n)/n to be b times the mass density contrast]. Hence
|∂vr/∂ r| � 1 in the linear regime. Assuming |vr| � r and keeping terms up to linear order, we
can write Eq. (6.78) as

δ (s)(r) = δ (r)−
(
∂
∂ r

+
2
r

)
vr. (6.80)

In the linear regime, we may assume the curl of v to be zero, so that v = ∇rΦv . We can then use
Eq. (6.79) to formally write

vr = −β ∂
∂ r
∇−2

r δ , (6.81)

where ∇−2
r is the inverse Laplacian. It then follows that

δ (s)(r) =
[

1+β
(
∂ 2

∂ r2 +
2
r
∂
∂ r

)
∇−2

r

]
δ (r). (6.82)

Under the assumption that the scale sizes of perturbations in consideration are much smaller
than their distances to us [the plane-parallel approximation originally proposed by Kaiser
(1987)], we can expand the perturbations in a local Cartesian coordinate system. Choosing the
z-axis along the radial direction and using the fact that the term containing (2/r) in Eq. (6.82)
can be neglected in the plane-parallel approximation, we can write Eq. (6.82) in Fourier space as

δ (s)
k =

(
1+βμ2

k
)
δk, where μk ≡ kz/k. (6.83)

The power spectrum in redshift space is then related to that in real space by

P(s)(k) =
(
1+βμ2

k
)2

P(k). (6.84)

In general we can expand P(s)(k) in harmonics of μk:

P(s)(k) =∑
�

P�(μk)P
(s)
� (k), P(s)

� (k) =
2�+1

2

∫ 1

−1
P(s)(k)P�(μk)dμk, (6.85)

where P� is the �th Legendre polynomial. In the linear regime and under the plane-parallel
approximation, P(s)(k) is given by Eq. (6.84) and the non-zero harmonics are

P(s)
0 (k) ≡

(
1+

2
3
β +

1
5
β 2
)

P(k), (6.86)
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P(s)
2 (k) =

(
4
3
β +

4
7
β 2
)

P(k), P(s)
4 (k) =

8
35
β 2P(k). (6.87)

Note that P(s)
0 (k) is just P(s)(k) averaged over the position angle of k:

P(s)(k) ≡ 1
2

∫ 1

−1
P(s)(k)dμk = P(s)

0 (k). (6.88)

Thus, the power spectrum is enhanced in redshift space by a factor which depends only on β . The
reason is simple: the infall peculiar velocity towards high density regions, which is proportional
to β in the linear regime, makes the density contrast appear larger in redshift space.

The relations in Eqs. (6.86) and (6.87) can be used to estimate the value of β . From a red-

shift sample of galaxies we can estimate P(s)(k) as a function of (k,μk). The harmonics P(s)
0 (k),

P(s)
2 (k) and P(s)

4 (k) can then be estimated from Eq. (6.85), which allows the value of β to be
obtained from the ratios between these harmonics. Applying this procedure to real galaxy sam-
ples gives β ∼ 0.5 for optical galaxies and β ∼ 0.8 for IRAS galaxies, indicating that optical and
IRAS galaxies are differently biased. In practical applications the scheme described above can be
improved. For example, one can relax the plane-parallel assumption by expanding perturbation
quantities in spherical harmonics (e.g. Fisher et al., 1994b). One can also go beyond the linear
regime by using either the Zel’dovich approximation or high-order perturbation theory to relate
peculiar velocities with density fluctuations (e.g. Fisher & Nusser, 1996; Hatton & Cole, 1998).

6.3.2 Real-Space Correlation Functions

Redshift distortions can also be formulated in terms of the two-point correlation function. In
redshift space the two-point correlation function is defined by

ξ (s)(s1,s2) =
〈
δ (s)(s1)δ (s)(s2)

〉
. (6.89)

Because of peculiar velocities, this two-point correlation function is anisotropic and in general
depends on both s1 and s2. However, under the plane-parallel assumption, the dependence is only
through the value of s = s1 − s2, and the orientation of s relative to the line-of-sight. In this case,
we may write ξ (s)(s1,s2) as ξ (s)(rπ ,rp), where rπ and rp are the (redshift-space) separations
parallel and perpendicular to the line-of-sight, defined as

rπ =
s · l
|l| , rp =

√
s2 − r2

π , (6.90)

with l = (s1 + s2)/2. Equivalently, we can also write ξ (s)(s1,s2) as ξ (s)(s,μ), where μ = rπ/s.
We can then expand ξ (s)(s,μ) in harmonics of μ for given s. In the linear regime,

ξ (s)(s,μ) = ξ (s)
0 (s)P0(μ)+ξ (s)

2 (s)P2(μ)+ξ (s)
4 (s)P4(μ), (6.91)

where

ξ (s)
0 (s) =

(
1+

2
3
β +

1
5
β 2
)
ξ (s), (6.92)

ξ (s)
2 (s) =

(
4
3
β +

4
7
β 2
)[
ξ (s)− 3J3(s)

s3

]
, (6.93)

ξ (s)
4 (s) =

8
35
β 2
[
ξ (s)+

15
2

J3(s)
s3 − 35

2
J5(s)

s5

]
, (6.94)
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with ξ (s) the real-space two-point correlation function evaluated at separation s, and J� defined
in Eq. (6.65) (see Hamilton, 1992). These relations can also be used to infer the value of β . For
example, from ξ (s)(rπ ,rp) one can determine the quadrupole-to-monopole ratio

q(s) =
ξ (s)

2 (s)
3
s3

∫ s
0 ξ

(s)
0 (s′)s′2 ds′ −ξ (s)

0 (s)
, (6.95)

where

ξ (s)
l (s) =

2l +1
2

∫ 1

−1
ξ (s)(rπ ,rp)Pl(μ)dμ . (6.96)

In the linear regime (i.e. at large s), we can use Eqs. (6.92)–(6.94) to write

q(s) =
− 4

3β − 4
7β

2

1+ 2
3β + 1

5β 2
. (6.97)

Thus, the value of the quadrupole-to-monopole ratio at large s can be used to infer β . An
application of this method to the 2dFGRS yields β ∼ 0.5 (Hawkins et al., 2003).

In order to get the real-space function ξ from ξ (s)(rp,rπ), we define the projected correlation
function

w(rp) ≡
∫ Δs

−Δs
ξ (s)(rp,rπ)drπ . (6.98)

Note that w(rp) has the same units as rπ . If Δs is sufficiently large so as to include almost all
correlated pairs, and if the density field is statistically isotropic in real space, we expect w(rp) to
be related to the real-space correlation function ξ (r) by

w(rp) = 2
∫ ∞

0
ξ
[
(r2

p + y2)1/2
]

dy = 2
∫ ∞

rp

ξ (r)
r dr

(r2 − r2
p)1/2

(6.99)

in the plane-parallel approximation. Note that this relation does not require ξ to be small. The
Abel integral in Eq. (6.99) can be inverted to give

ξ (r) = − 1
π

∫ ∞

r

dw(y)
dy

dy√
y2 − r2

. (6.100)

If w(rp) can be modeled as a power law,

w(rp) = Ar1−γ
p , (6.101)

then the real-space correlation function is also a power law,

ξ (r) =
( r0

r

)γ
, with rγ0 =

AΓ(γ/2)
Γ(1/2)Γ[(γ−1)/2]

, (6.102)

where Γ(x) is the gamma function.
To (partly) recover the peculiar velocity field on nonlinear scales, one can model ξ (s)(rp,rπ)

as a convolution of the real-space correlation function, ξ (r), with the distribution function of the
relative velocity between a pair of particles at the separation in question:

ξ (s)(rp,rπ) =
∫ ∞

−∞
ξ (r) f (u)du, r ≡

√
r2

p +(rπ −u/H0)2, (6.103)

where u is the projection of the relative (pairwise) peculiar velocity v12 along the line-of-sight,
and f (u) is its distribution function [normalized so that

∫
f (u)du = 1]. The form of f (u) is

not known a priori. Based on observations and theoretical considerations (e.g. Davis & Peebles,
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1983; Fisher et al., 1994a; Diaferio & Geller, 1996; Sheth, 1996), an exponential form is usually
adopted:

f (u) =
1√

2σu(r)
exp

[
−

√
2

σu(r)
|u−〈u〉(r)|

]
, (6.104)

where 〈u〉(r) is the mean and σu(r) the dispersion of u at the separation r. For small separa-
tions where the velocity dispersion σu is much larger than the systematic infall velocity 〈u〉,
the redshift-space correlation function is smeared on velocity scale σu. In this case the Fourier
transform of Eq. (6.103) gives

P(s)(k) = f̃ (kμk)P(k), (6.105)

where f̃ (kμk) is the Fourier transform of f (u). Assuming σu to be a constant, f̃ (kμk) has the
form

f̃ (kμk) =
1

1+(σukμk)2/2
, (6.106)

for f (u) given by Eq. (6.104).
If the data are sufficiently good, we can hope to recover both σu(r) and 〈u〉(r) from Eq. (6.103)

together with the real-space correlation function ξ (r) estimated from the projected correlation
function. In practice, it is usually necessary to adopt a model for 〈u〉(r). One such model often
adopted has the form

〈u〉(r) = − r|| H0

1+(r/r0)γ
, (6.107)

where r|| = |rπ−u/H0| is the separation in real space along the line-of-sight. This model is based
on the self-similarity solution to be discussed in §6.4.2, and is a good approximation to the real
infall pattern in CDM models (Jing et al., 1998).

6.4 Clustering Evolution

The observed structure in the present-day Universe is already nonlinear on scales smaller than
∼ 8h−1Mpc (§2.7). A theory of nonlinear gravitational clustering is thus required to study the
properties of the cosmological density field on smaller scales. Nonlinear evolution substantially
modifies the properties of the original linear density field. In particular, the evolved field will
no longer be Gaussian even if the initial field was. In this section we study these modifications.
Since our observations are primarily of the evolved field, it is necessary to understand these
modifications in order to compare theory with observation.

6.4.1 Dynamics of Statistics

So far the evolution of the cosmic density field has been described in terms of the density contrast
δ (x) (or its Fourier transform), and we have derived statistical measures based on the evolved
density and velocity fields. Alternatively, one can also study the evolution of the cosmic density
field by solving the dynamical equations for the statistical measures themselves. This approach
is described extensively by Peebles (1980). In what follows we give a brief overview without
going into detailed derivations.
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(a) Pair Conservation Equation Consider an evolving point distribution (e.g. the galaxy
distribution). At time t (when the scale factor is a), the average number of neighbors within
comoving distance x of a particle is

N(x, t) = 4πn(t)a3
∫ x

0
[1+ξ (y,a)]y2 dy, (6.108)

where n(t) is the mean particle number density at time t. This follows directly from the interpre-
tation of ξ given in §6.1.1. Now suppose that the mean relative peculiar velocity of particle pairs
with (comoving) separation x is 〈v12(x,a)〉, where v12 is defined as v12(x)≡ [v(y)−v(x+y)] · x̂.
The average particle flux through a spherical shell of radius x centered on a given particle is
4πna2x2[1+ξ (x,a)]〈v12(x,a)〉. It then follows from mass conservation that

∂N(x, t)
∂ t

+4πna2x2 [1+ξ (x,a)]〈v12(x,a)〉 = 0. (6.109)

Since na3 = constant, we have,

〈v12(x,a)〉
H(a)ax

= − 1
[1+ξ (x,a)]

a
x3

∂
∂a

∫ x

0
ξ (y,a)y2 dy. (6.110)

This equation is based on pair conservation and applies both in linear and nonlinear regimes.
If ξ (x,a) is known, the above equation can be used to predict the time evolution of the mean
relative peculiar velocity for particle pairs at any given separation.

(b) Cosmic Energy Equation Since peculiar velocities are induced by the forces due to density
fluctuations, the mean specific kinetic energy of particles must be related to their mean specific
gravitational potential energy. The relation between the two is the Layzer–Irvine equation:

d
dt

(K +W )+
ȧ
a

(2K +W ) = 0, (6.111)

where

K =
1
2

〈
v2

1

〉
, W = −1

2
Gρa2

∫ ξ (x)
x

d3x, (6.112)

with 〈v2
1 〉 the mean square of the peculiar velocities of particles. This equation can be derived

as follows. Consider a set of mass particles, m j ( j = 1,2, . . .), with their phase-space coordi-
nates labeled by (x j,p j), where x denotes the comoving spatial coordinate, and p = a2ẋ denotes
the canonical momentum conjugate to x (see §4.1.4). The Hamiltonian of the system is then
H = M(K +W ), where M = ∑mj is the total mass of the system. For fixed x j and p j, we have
W ∝ a−1 and K = M−1∑ p2

j/(2m ja2) ∝ a−2. It is then easy to see that the energy equation,
dH/dt = ∂H/∂ t (where the partial derivative is for fixed x j and p j), leads to Eq. (6.111). Writing
Eq. (6.111) in the form

d
da

a2〈v2
1 〉 =

∂
∂ lna

Gρa3
∫ ∞

0

ξ (x,a)
x

d3x, (6.113)

and integrating once, we get

〈v2
1 〉 =

3
2
Ωm(a)H2(a)a2I2(a)

[
1− 1

aI2(a)

∫ a

0
I2(a′)da′

]
, (6.114)

where

I2(a) ≡
∫ ∞

0
ξ (x,a)xdx. (6.115)

Note that 〈v2
1 〉 is mass-weighted, because the number density of particles is proportional to the

underlying mass density. This is different from the bulk-motion velocity described in §6.2.1,
which is volume-weighted.
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(c) Pairwise Peculiar Velocity Dispersions In Chapter IV of Peebles (1980) it is shown that
the pairwise peculiar velocity v12 ≡ v(x1)−v(x2) obeys

∂
∂ t

(1+ξ )〈v12
i〉+ ȧ

a
(1+ξ )〈v12

i〉+ 1
a∑j

∂
∂x j (1+ξ )〈v12

iv12
j〉

+
2Gm

a2

xi

x3 (1+ξ )+2Gρa
xi

x3

∫ x

0
ξ d3x

+2Gρa
∫
ζ (1,2,3)

x13
i

x3
13

d3x3 = 0, (6.116)

where x = |x2 − x1|, ζ (1,2,3) is the three-point correlation function, and m is the mass of a
particle. The fourth term describes the mutual attraction of a particle pair and can be neglected
when we consider dark matter particles (for which m is small). It is convenient to write the
velocity-dispersion tensor as

〈v12
iv12

j〉 =
[

2
3
〈v2

1 〉+Σ
]
δi j +[Π−Σ] xix j

x2 , (6.117)

where Π and Σ represent the effects of correlated motion on the components of v12 that are par-
allel and perpendicular to x = x2−x1, respectively. Thus, the relative pairwise velocity projected
along the line defined by the pair has a dispersion σ2

12 = 2
3 〈v2

1 〉+Π− 〈v12〉2. Assuming that
ξ (r → ∞) = 0 and Π(r → ∞) = 0 and setting the i-axis to be along x2 − x1, one can solve for
σ2

12 by inserting Eq. (6.117) into Eq. (6.116) and integrating the latter over xi from x to ∞ (Mo
et al., 1997a). At small separations, where 〈v12〉 = 0 and the contribution from the three-point
correlation (term containing ζ ) dominates, one obtains

σ2
12(r) =

3ΩmH2

4π[1+ξ (r)]

∫ ∞

r

dr
r

∫
d3q

r ·q
q3 ζ (r,q, |r−q|). (6.118)

This is the cosmic virial theorem, and it applies on small scales where the structure is in a
statistically static state. Note that Ωm, H, ξ and ζ , and thus also σ12, all depend on the scale
factor a.

6.4.2 Self-Similar Gravitational Clustering

To see how gravitational clustering proceeds in the nonlinear regime, let us consider a simple
example where the structure in the Universe grows in a self-similar way, namely the density field
looks similar at different times once scaled by a time-dependent characteristic length scale. To
achieve self-similar evolution, two conditions must be satisfied: (i) the background cosmology
should not contain any characteristic scales, and (ii) the linear perturbation spectrum should
be scale-free. These conditions are satisfied for a density field with power-law linear spec-
trum [P(k) ∝ kn] in an Einstein–de Sitter universe. Since the nonlinear scale, r∗(t), defined in
Eq. (5.202) is the only characteristic scale involved in the problem, we expect that all statistical
measures of the density field are independent of time when length scales are expressed in units
of r∗(t). For example, the two-point correlation function should scale as

ξ (x, t) = ξ (y) with y ≡ x/r∗(t), (6.119)

where x is the comoving separation, and

r∗(t) ∝ aα ∝ t2α/3, α = 2/(n+3). (6.120)

Thus, under the assumption of self-similarity, the time evolution of ξ is completely determined
once the functional form of ξ is obtained at an arbitrary time. It is easy to see that Eq. (6.119)
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applies in the linear regime; that it also applies in the nonlinear regime is a result of the self-
similar assumption.

The conditions for self-similar clustering are not expected to hold rigorously in reality. As
described in §4.4.4, all realistic models have perturbation spectra that contain characteristic scales
at late times, even though the primordial spectrum is scale-free. Nevertheless, the idea of self-
similar clustering provides a useful way to understand how nonlinear gravitational clustering
proceeds. The growth of the nonlinear scale r∗(t) with time and the structure of the self-similar
solutions are exactly what is expected for idealized hierarchical clustering. Furthermore, in many
models self-similar solutions are expected to hold approximately over limited ranges of length
and time.

As an application, we can use the self-similar solution to construct a simple model for the slope
of the two-point correlation function in the nonlinear regime. In terms of the scaled variable y,
the pair conservation equation Eq. (6.110) can be written as

〈v12(x,a)〉
H(a)ax

=
α

[1+ξ (y)]

[
ξ (y)− 3

y3

∫ y

0
ξ (y′)y′2 dy′

]
, (6.121)

where x and y are related according to Eq. (6.119). If we approximate ξ as a power law, ξ (y) ∝
(y/y0)−γ , then the above equation gives

〈v12〉(y) = − αγ
(3− γ)

Har∗y
1+(y/y0)γ

. (6.122)

For small separations where ξ 	 1, it is reasonable to assume that the clumps of mass particles
are bound and stable (stable clustering), i.e. there is no net streaming motion between particles
in physical coordinates. In this case, 〈u12〉 = ȧx12 + 〈v12〉 = 0, or

〈v12(x,a)〉 = −H(a)ax. (6.123)

It then follows from Eq. (6.122) that γ = 3/(1+α), so that

ξ (y) ∝ y−γ ∝ a(3−γ)x−γ with γ =
3n+9
n+5

. (6.124)

This result should be compared to that given by linear theory:

ξ (y) ∝ y−γ ∝ a2x−γ with γ = 3+n. (6.125)

We see that the nonlinear power spectrum resulting from an initial power-law spectrum with
index n evolves self-similarly with an effective power index

neff ≡ γ−3 = − 6
n+5

. (6.126)

Note that for −2 ≤ n ≤ +1, the corresponding effective index only covers the relatively narrow
range −2 ≤ neff ≤−1.

It is sometimes useful to define the time evolution of the two-point correlation function
in terms of the correlation amplitude at fixed proper separation r = ax. Such evolution is
conventionally parameterized in the form

ξ (r,z) = ξ (r,0)(1+ z)−(3+ε), (6.127)

where z is the redshift at which the correlation function is measured, and ε parameterizes the
rate of evolution. From Eqs. (6.124) and (6.125) we see that in an Einstein–de Sitter universe
ε = 0 for stable clustering, and ε = γ − 1 for linear evolution. Another interesting case is when
all particles are pasted on the expanding background (i.e. all peculiar velocities are zero). In this
case ξ (x,a) is independent of a for fixed x, so that ξ (r,a) ∝ aγr−γ and ε = γ−3.
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6.4.3 Development of Non-Gaussian Features

As shown in §6.1.3, the high-order connected moments, κ� (� > 2), and the high-order connected
correlation functions, ζ , η , etc., are all zero for a Gaussian density field. We saw in §4.4.2 that a
Gaussian density field should remain Gaussian during linear evolution. However, non-Gaussian
features can develop from an initially Gaussian density field due to nonlinear evolution, as can be
understood from the high-order perturbation theory described in §4.1.7. For a density field which
is initially Gaussian, 〈[δ (1)]3〉= 0 (see §4.1.7 for definitions). Thus, the lowest order contribution
to the third moment, κ3 = 〈δ 3〉, must have the form

κ3 = 3
〈
[δ (1)]2δ (2)

〉
∝
〈
[δ (1)]4

〉
, (6.128)

where we have used that δ (2) ∝ [δ (1)]2. Since δ (1) has a Gaussian distribution, we have from
Eq. (6.42) that 〈[δ (1)]4〉 = 3〈[δ (1)]2〉2. We can therefore write κ3 = S3κ2

2 , where S3 is some con-
stant. Similar arguments can also be made for the higher-order moments. In general, we can
write

κ� = S�κ�−1
2 (� = 3,4,5, . . .), (6.129)

where the amplitudes S� are constant in time, and the values of S� can be calculated using the
high-order perturbation theory outlined in §4.1.7.

For instance, in an Einstein–de Sitter universe where

δ (1)
k (t) ∝ a(t) ∝ t2/3 and v(1)

k = (iak/k2)δ̇ (1)
k ∝ t−1/3,

Eq. (4.91) can be solved to second order to give

δ (2)(x) = ∑
k,k′

[
5
7
− k ·k′

k2 +
2
7

(
k ·k′

kk′

)2
]
δ (1)

k δ (1)
k′ ei(k+k′)·x. (6.130)

With this expression, one finds that the skewness of the density fluctuation

〈δ 3〉 = 3
〈
[δ (1)]2δ (2)

〉
=

34
7
〈δ 2〉2, so that S3 =

34
7

. (6.131)

This result applies to the original field, δ (x), that is not smoothed. If, for example, δ (x) is
smoothed with a top-hat window of radius R, then

〈δ 3(R)〉 = ∑
k,k′

[
5
7
− k ·k′

k2 +
2
7

(
k ·k′

kk′

)2
]

P(k)P(k′)

×W̃th(kR)W̃th(k′R)W̃th
(|k+k′|R) , (6.132)

which can be evaluated to give

〈δ 3(R)〉 =
(

34
7

+ γ1

)
〈δ 2(R)〉2, where γ1 ≡ dlnσ2(R)

dlnR
(6.133)

(Bernardeau, 1994). The extra term, γ1, arises because the contribution to the mass moment at
a given smoothing radius R comes from various mass scales. For instance, if σ(R0) (where R0

corresponds to a mass M = 4πρR3
0/3) decreases with increasing M in the linear density field

for R0 around R (so that γ1 < 0), then the contribution to the mass moments at R in the evolved
density field from high-density regions should be smaller than that in the case where σ(R0) is
independent of R0. Consequently, the skewness of the smoothed field is reduced relative to the
original field.
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Similar calculations can be carried out for the higher-order moments of the smoothed field
(Bernardeau, 1994). The values for the first few S� parameters are

S3 =
34
7

+ γ1, (6.134)

S4 =
60712
1323

+
62γ1

3
+

7γ2
1

3
+

2γ2

3
, (6.135)

S5 =
200575880

305613
+

1847200γ1

3969
+

6940γ2
1

63
+

235γ3
1

27

+
1490γ2

63
+

50γ1γ2

9
+

10γ3

27
, (6.136)

where

γn =
dnlnσ2(R)

d(lnR)n . (6.137)

The results for the corresponding unsmoothed field can be obtained by setting γn = 0. The above
results are derived assuming an Einstein–de Sitter universe, but the dependence on cosmology is
found to be weak.

6.5 Galaxy Clustering

Since galaxies are the only population of cosmic objects that are abundant and are sufficiently
bright to be observable at cosmological distances, they have long been used as tracers of the
large-scale structure of the Universe. As discussed in §6.1.2, it is not guaranteed that galaxies
are faithful tracers of the mass distribution. Nevertheless, it is generally believed that the rela-
tion between the mass and galaxy distributions is sufficiently simple that the study of galaxy
clustering can provide useful information about the cosmic mass distribution. Furthermore, the
study of galaxy clustering is also important for understanding galaxy formation, as it may pro-
vide clues about how galaxies influence each other as they form and at later times. In this section
we describe how to characterize galaxy clustering statistically, and we present some results based
on current observations.

To study the spatial clustering of galaxies, one usually starts with a galaxy sample for which
sky positions and redshifts are listed for all members. Such a sample typically provides a non-
uniform sampling of the true galaxy distribution in redshift space (and thus a distorted image
of their distribution in real space) throughout a finite volume defined by the survey boundaries.
Galaxies are much smaller than the scales normally of interest when studying galaxy clustering,
and so can be considered as points in redshift space. The observational criteria which define real
samples typically induce strong selection effects. For example, only the intrinsically brightest
galaxies may be included at large distances whereas relatively faint systems may be included in
the foreground. Such effects must be carefully taken into account when using real samples to
study galaxy clustering.

Modeling of observational samples usually starts by defining a selection function which
describes which galaxies are included in the sample. Mathematically, the selection function,
which we denote by S(x), is defined as the probability that a ‘random’ galaxy located near x
(relative to us) is included in the sample. Clearly S(x) = 0 if the direction of x lies outside the
observed region of the sky. In general, S(x) also varies strongly with |x| because of survey appar-
ent magnitude limits. Thus the distribution of galaxies in real surveys has strong inhomogeneities
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resulting from survey construction which must be removed if the underlying physical clustering
is to be measured properly. As a simple example, consider a magnitude-limited sample which
selects all galaxies (within the observed sky area) with apparent magnitudes brighter than some
limit mlim. A galaxy with apparent magnitude m, located at redshift z, has absolute magnitude
M = m− 5log[dL(z)/Mpc]− 25, where dL(z) is the luminosity distance corresponding to red-
shift z, and M is a logarithmic measure of luminosity L (see §2.1.1). The magnitude limit, mlim,
therefore corresponds at redshift z to a luminosity limit,

log(Llim/L�) = 2log [dL(z)/Mpc]−0.4(mlim −M�)+10. (6.138)

Only galaxies at z brighter than this luminosity limit are included in the sample. In this case the
selection function can be written as

S(z) =
n̄(z)
n̄0

=

∫ ∞
Llim(z) φ(L)dL∫ ∞

0 φ(L)dL
, (6.139)

where φ(L) is the galaxy luminosity function, here assumed to be independent of spatial location.
Once S(z) is known, we can calculate the fraction of galaxies that is missed as a function of
redshift. This can then be used to correct the clustering measurements for selection effects.

From a magnitude-limited sample, one can also construct a volume-limited subsample which
is complete out to redshift z by taking all galaxies with luminosities brighter than Llim(z). This
is obtained simply by discarding all galaxies fainter than Llim(z) or more distant than z. This
results in a sample for which no further corrections for selection effects in the redshift direction
are required. The shortcoming of this scheme is that it generally requires a large fraction of the
entire survey to be discarded.

6.5.1 Correlation Analyses

(a) Two-Point Function The two-point correlation function of galaxies can be estimated from
a redshift survey as

ξ (r) =
DD(r)
RR(r)

−1, (6.140)

where DD(r)Δr is the observed number of galaxy–galaxy pairs with separations in the range
r±Δr/2, and RR(r)Δr is the expected number of such pairs in a ‘random’ (i.e. uniform, Poisson
distributed) sample with the same number of objects filling the same volume and with the same
selection function as the real sample. So defined, ξ (r) is zero if galaxies are distributed as a
uniform Poisson process; any deviation from zero indicates spatial clustering. This definition is
motivated by the idea that galaxies can be treated as a Poisson sampling of a smooth underlying
density field, as described in §6.1.1. Indeed, if the number density of galaxies at each spatial
location is proportional to the underlying density field, then ξ (r) as defined above will be the
same as the two-point correlation function of the density field. Other estimators of ξ (r) are
possible. Three that are frequently used can be written symbolically as

ξ (r) =
DD
DR

−1; ξ (r) =
DD ·RR

DR2 −1; ξ (r) =
DD−2DR+RR

RR
, (6.141)

where DR(r) is the number of cross-pairs between the real and random samples. For real appli-
cations, the last two estimators are usually preferred because they are less affected by sample
boundaries (e.g. Hamilton, 1993). In general, it is often advantageous to construct random sam-
ples that contain many more particles than there are galaxies in the real sample. In this case, RR
has to be multiplied by (Ng/Nr)2 and DR by Ng/Nr, where Ng and Nr are the number of galaxies
in the real and the random samples, respectively.
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Note that ξ so defined does not depend on the mean number density of galaxies in the sample,
as long as the sample is a fair representation of the galaxy distribution in the Universe. Thus,
if we have two (fair) samples with different mean densities, we can count the total number of
pairs in the two samples separately, and estimate ξ (r) from the total pair counts. Because of
this, one can estimate ξ (r) by counting pairs directly from a sample regardless of any selection
effects, provided that these selection effects are taken into account when constructing random
samples. This property of ξ also gives us the freedom to assign different weights to galaxies
in different regions, as long as the clustering properties of galaxies are statistically the same in
different regions. For instance, in a magnitude-limited sample, the number density of galaxies is
higher in the nearby region than farther away, and the pair counts may be dominated by nearby
galaxies. This is not desirable, because most of the weight is given to a relatively small volume
which may not turn out to be typical. To overcome this problem, we may assign each galaxy a
weight proportional to 1/S(z), where z is the redshift of the galaxy, so that all volume elements
within the surveyed region have the same weight. The drawback of this weighting scheme is that
it increases sampling noise, because the volume elements at larger redshifts are more sparsely
populated. In practice, some compromise may be adopted. One possibility is to weight each
galaxy pair of separation r at a mean redshift z by W 2, with

W (r;z) =
1

1+4π n̄(z)J3(r)
, (6.142)

where J3 is defined in Eq. (6.9). The motivation for this weighting scheme is that on average
each galaxy at a redshift z has Nc = 4π n̄(z)J3(r) correlated neighbors within a radius r (i.e. each
correlated ‘cluster’ contains Nc galaxies). This formula has the desired property that it weights
nearby regions (where Nc is large and so individual ‘clusters’ are oversampled) by volume and
regions at large distances (where Nc is small) by number. The drawback is that the weights
assigned to pairs depend on the correlation function to be estimated, and so an iterative procedure
has to be used.

The weighting scheme described above has another serious problem. Because in reality galax-
ies with higher luminosity are more strongly correlated (see the left panel of Fig. 6.4), the

Fig. 6.4. The projected correlation function of galaxies in the SDSS. The left-hand panel shows the results
for three separate luminosity bins. The corresponding ranges in Mr −5logh (here Mr is the SDSS r-band
K-corrected to a redshift z = 0.1) are indicated in brackets. Note that brighter galaxies are more strongly
clustered. The right-hand panel shows the results for red and blue galaxies with −20 ≥Mr −5logh >−21;
clearly red galaxies are more strongly clustered than blue galaxies. [Kindly provided by Y. Wang, based on
data published in Wang et al. (2007c)]
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correlation function estimate obtained from a galaxy sample can be affected by the weighting
scheme adopted. For example, in an apparent-magnitude-limited sample, galaxies at higher red-
shift are on average brighter, and so a weighting scheme that gives more weight to galaxies at
higher redshift would result in a correlation function with higher amplitude. Furthermore, since
galaxy pairs with larger separations are more dominated by galaxies at larger distances (hence
with larger luminosities), such a weighting scheme can also lead to an overestimate of the cor-
relation amplitude on large scales relative to that on small scales, changing its slope. In order
to avoid this problem, the simplest way is to use volume-limited samples, so that no weighting
scheme is required. Alternatively, one may assume that the cross-correlation function between
galaxies with luminosity L1 and L2, ξ (r;L1,L2), is related to the correlation function of a refer-
ence population (e.g. L∗ galaxies), ξ (r;L∗), by ξ (r;L1,L2) = b(L1)b(L2)ξ (r;L∗). One can then
properly weight each galaxy according to the value of b(L) appropriate for its luminosity so that
all galaxies can be considered to sample the same correlation function (e.g. that of L∗ galaxies)
(e.g. Percival et al., 2004; Tegmark et al., 2004).

The error in the estimate of ξ is in general difficult to model. Ideally, we would like to esti-
mate this error from the variance of an ensemble of independent realizations, each of which is
statistically equivalent to the galaxy sample in question. Unfortunately, this is impractical, as we
have only one realization, our Universe. In practice, one may use mock samples constructed from
independent realizations of a realistic model of structure formation. The shortcoming here is that
the result is model dependent. Because of this, ‘internal’ errors estimated directly from the data
sample itself are still widely used.

One simple estimate is based on the assumption that the fluctuation in the number of indepen-

dent pairs in a given bin of r has a Poisson distribution: δNpair = N1/2
pair . In this case, it is evident

that the error in ξ is

δξ (r) =
1+ξ (r)√

Npair(r)
. (6.143)

However, this method, which was adopted in many early studies, is found to significantly under-
estimate the true uncertainty in the data (e.g. Mo et al., 1992). Another class of ‘internal’ error
estimators is based on dividing the data sample into a set of N similar subsamples in space. The
simplest one, often referred to as the subsample method, is to use the variance among all the sub-
samples, under the assumption that each of them is an independent realization of the underlying
distribution. The covariance matrix is then estimated from

C(ξi,ξ j) =
1
N

N

∑
k=1

(
ξ k

i −ξ i

)(
ξ k

j −ξ j

)
, (6.144)

where ξ k
i denotes the measurement of ξ at separation ri from the kth subsample, and ξ is the

expectation value estimated independently from the N subsamples. The problem with this method
is that in real applications the subsamples, each with a volume much smaller than the total sam-
ple, may not be mutually independent because of the existence of long-range modes in the density
fluctuations. Two other commonly used estimators in this class are the bootstrap method and jack-
knife method. In the bootstrap method, one forms a set of Nrs resamplings of the original sample,
each containing N galaxies (including duplicates) randomly picked from the original N galaxies
with replacement (i.e. a galaxy is retained in the stack even if it has already been picked). Thus,
although each resample consists of the same number of galaxies as the original sample, it will
include some of the galaxies more than once, while others may not be included at all. In this
case, the covariance matrix is estimated from

C(ξi,ξ j) =
1

Nrs

Nrs

∑
k=1

(
ξ k

i −ξ i

)(
ξ k

j −ξ j

)
, (6.145)
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where ξ is the mean obtained from the Nrs resamplings. In practice for large samples, one chooses
Nrs � N but still large enough to provide a good measurement of the covariance matrix. In the
jackknife method, one forms a set of N ‘copies’ of the original sample, each time leaving out one
of the N galaxies. The covariance matrix is then estimated from

C(ξi,ξ j) =
N −1

N

N

∑
k=1

(
ξ k

i −ξ i

)(
ξ k

j −ξ j

)
, (6.146)

where ξ k
i is the measurement of ξ at separation ri in the kth ‘copy’ and ξ is the mean of the N

copies. However, for large samples the jackknife approach as outlined above is impractical, since
excluding a single galaxy has almost no effect. An alternative is to divide the full sample into Nrs

disjoint subsamples, each containing N/Nrs galaxies. One can then proceed as before, estimating
a correlation function for Nrs jackknife ‘copies’ of the original sample obtained by leaving out
one subsample at a time. A test of the performance of error estimators of this kind is given in
Norberg et al. (2009).

The two-point correlation function of galaxies has been estimated from a variety of redshift
surveys. In order to take care of redshift distortions, a common practice is to first estimate the two-
dimensional function ξ (rπ ,rp) (see §6.3.2), and then obtain the real-space correlation function
from the projected function w(rp). For optically selected galaxies with L ∼ L∗, the observed
correlation function at r ∼< 20h−1Mpc can be approximated by a power law,

ξ (r) =
(

r
r0

)−γ
, with r0 ≈ 5h−1Mpc and γ ≈ 1.7, (6.147)

as illustrated in Fig. 2.37 (see also Davis & Peebles, 1983; Jing et al., 1998; Norberg et al.,
2002a; Zehavi et al., 2002). This indicates that the galaxy distribution becomes highly nonlinear
on scales ∼< 5h−1Mpc. As shown in Fig. 6.4, bright, red galaxies are more strongly clustered than
faint, blue ones (see the discussion in §15.6).

(b) Three-Point Function The particle sampling of the density field described in §6.1.1
motivates the following definition of the three-point correlation function:

ζ (r12,r23,r31) =
DDD
RRR

−ξ (r12)−ξ (r23)−ξ (r31)−1, (6.148)

where DDD(r12,r23,r31) is the number of triplets with their three sides covering the ranges
(r12,r23,r31)± (dr12,dr23,dr31)/2, and RRR is the corresponding number in the random sample.
Largely for historical reasons (e.g. Groth & Peebles, 1977), the observed three-point correlation
function of galaxies is usually written in the following ‘hierarchical’ form:

ζ (r1,r2,r3) = Q(r1,r2,r3) [ξ (r1)ξ (r2)+ξ (r2)ξ (r3)+ξ (r3)ξ (r1)] . (6.149)

In general, the value of Q for galaxies depends on the shape of the triplets in question but only
weakly on their size (e.g. Jing & Börner, 1998). For r1, r2 and r3 near ∼ 1Mpc, Q is roughly a
constant, Q ∼ 1.

(c) Pairwise Peculiar Velocity Dispersion As discussed in §6.3.2, modeling the redshift-
space distortions in the two-point correlation function allows one to obtain the pairwise peculiar
velocity dispersion of galaxies σu. Recent estimates based on large redshift surveys give σu ∼
500kms−1 at rp ∼ 1h−1Mpc (Jing et al., 1998; Hawkins et al., 2003; Zehavi et al., 2002). An
accurate estimate of σu can provide important constraints on structure formation. Assuming the
hierarchical form given by Eq. (6.149), the cosmic virial theorem (6.118) can be written as

〈
σ2

12(r)
〉1/2 ≈ 850Q1/2

Ω1/2
m,0

b

(
r0

5h−1Mpc

)γ/2( r
1h−1Mpc

)1−γ/2

kms−1. (6.150)
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If we take Q = 1, the observed value of σ12 ≈ σu for galaxies at 1h−1Mpc would require
Ω0.5

m,0/b ∼ 0.5. This result, obtained from galaxy clustering on small scales, is consistent with

the result, β ≡Ω0.6
m,0/b, obtained from the large-scale velocity field (§6.2).

(d) Counts-in-Cells and Moments As shown in §6.1.3, the moments of the counts-in-cells for
a point process are directly related to the correlation functions after correction for shot noise.
Galaxy counts-in-cells can therefore be used to probe galaxy clustering. For a volume-limited
sample, cell counts can be obtained by directly counting the number of galaxies in random cells
of a given volume, and the moments of the counts can easily be calculated. Suppose that we have
M random cells of volume V , and the number count in the ith cell is Ni. The distribution function
of the counts-in-cells can be estimated through

f (N;V ) =
1
M

M

∑
i=1
δNNi , (6.151)

where δNNi equals 1 if Ni = N and 0 otherwise. The �th moment can then be obtained:

〈N�(V )〉 =
∞

∑
N=0

N� f (N;V ) =
1
M

M

∑
i=1

N�
i . (6.152)

Using the definitions given in §6.1.3, we can then estimate the variance, skewness and other
quantities.

Since the discreteness noise depends on the mean number density, n, one has to be careful to
take account of the change of n with redshift when using a magnitude-limited sample. One way
to deal with this is to divide the sample into thick shells in such a way that the variation of the
mean density due to the magnitude limit within each shell is negligible. Counts-in-cells can be
carried out within each shell, and the moments of counts can then be corrected for shot noise
using the mean density of the shell in consideration. Thus, each shell provides an estimate of the
variance σ2 (or the skewness κ3, kurtosis κ4, etc.), and the results from all independent shells can
be combined to give an estimate through a likelihood analysis. Such an analysis for σ2 has been
performed by Efstathiou (1995) for a number of galaxy samples. Results for high-order moments
can be found in Croton et al. (2004), for example.

6.5.2 Power Spectrum Analysis

Although the power spectrum is just the Fourier transform of the two-point correlation function
(see §6.1), it is more advantageous to work with the power spectrum than with the two-point cor-
relation function when studying galaxy clustering on large scales. The reason for this is that
on large scales, where the density field is still in the linear regime, different Fourier modes
evolve independently while the amplitude of the two-point correlation function is affected by
many different modes. Consequently, power-spectrum amplitudes on large scales are less affected
by small-scale structure than correlation function estimates, making observational results much
easier to interpret.

Given a galaxy sample, it is straightforward to measure the power spectrum. Suppose that the
volume of the sample is Vs, which is described by a window function W (x) such that W (x) is
equal to 1 if x ∈ Vs and to 0 otherwise. Suppose that this volume is contained in a large box Vu

on which the Universe is assumed to be periodic. We divide Vu into small cells of volume ΔV so
that the galaxy occupation number in each cell, Ni, is either 1 or 0. The observed galaxy density
field can then be written as

no(x) =∑
j

N jδD(x−x j)Wj, (6.153)
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where Wj = W (x j) and δD(x) is the Dirac delta function. For a magnitude-limited sample, this
density must be multiplied by the reciprocal of the selection function to correct for selection
effects. The corrected density field is

nc(x) = A∑
j

N jS
−1
j δ

D(x−x j)Wj, (6.154)

where S j = S(x j), and the prefactor A = nVs/∑ j N jS
−1
j Wj is included so that

∫
nc(x)d3x = nVs,

with n the mean number density of galaxies. Note that A is equal to 1 for the top-hat window
considered here and is included in the equation to encompass other possible choices. Fourier
transforming Eq. (6.154) with respect to x, we have

ñc(k) =
A
Vu
∑

j
N jS

−1
j Wje

−ik·x j . (6.155)

The average of this is

〈ñc(k)〉 = nW̃ (k), where W̃ (k) =
A
Vu

∫
W (x)e−ik·x d3x (6.156)

is the Fourier transform of the window function. In obtaining the above relation, we have used
that 〈N j〉/S j = nΔV . Similarly, using N 2

i = Ni and 〈NiN j〉 = n2SiS j[1+ξ (xi −x j)], we get

〈ñc(k)ñ∗c(k)〉 =
A2

V 2
u
∑
i, j
〈NiN j〉S−1

i S−1
j WiWje

ik·(xi−x j)

=
A2

V 2
u
∑

j
N j(Wj/S j)2 +n2|W̃ (k)|2 +

n2

Vu
∑
k′
|W̃ (k′)|2P(k−k′), (6.157)

where P(k) =
∫
ξ (x)e−ik·x d3x is the power spectrum of the galaxy density field. If the survey

volume is large in comparison to the wavelengths in consideration, W̃ (k′) is sharply peaked
at k′ = 0, and we can replace P(k− k′) by P(k) in the above equation and pull it out of the
summation. Rearranging, we get

P(k) ≈ V 2
u

〈|ñc(k)−〈ñc(k)〉|2〉−Neff

n2Vu∑k′ |W̃ (k′)|2 , Neff ≡
(nVs)2∑ j N j(WjS

−1
j )2

(∑ j N jWjS
−1
j )2

. (6.158)

Note that the summations over j in Neff can be replaced by those over all the galaxies in the
sample with N j set to 1. In a volume-limited sample, Si = 1 and so Neff = nVs. Eq. (6.158) shows
that the true power spectrum is equal to the power spectrum of the corrected number density field,
nc(x), with a subtraction of the shot noise, Neff, and a deconvolution with the window function.
The final power spectrum is usually binned in shells in k-space:

P(k) =
1

Vk

∫
Vk

P(k′)d3k′, (6.159)

where Vk is the volume of the shell in k-space.
Since the derivation of Eq. (6.158) is independent of the assumption that W (x) is a top-hat, it

is valid for any form of W (x). As for the correlation functions, we may want to assign different
weights to different regions to reduce the variance in the estimate. This can be done by using a
window function that is inhomogeneous in space.

The power spectrum of galaxy clustering has been estimated for various redshift surveys (see
Tegmark et al., 2004, for an example). Fig. 6.5 shows power spectrum estimates for optically
selected galaxies compiled by Peacock (1997). The comparison with model predictions shows
that a CDM model with Ωm,0 ∼ 0.3 matches the observed large-scale power spectrum, but an
anti-bias on small scales is required to match the observed data.



290 Probing the Cosmic Density Field

Fig. 6.5. Power spectrum estimates Δ2(k) ≡ k3P(k)/(2π2) for optically selected galaxies are compared to
model predictions for the dark matter power spectrum in three cosmologies, all with Γ= 0.25: (1)Ωm,0 = 1,
ΩΛ,0 = 0, σ8 = 0.6 (the lowest solid curve); (2) Ωm,0 = 0.3, ΩΛ,0 = 0, σ8 = 1 (the highest solid curve); (3)
Ωm,0 = 0.3, ΩΛ,0 = 0.7, σ8 = 1 (the middle solid curve). These curves all include a model for nonlinear
evolution. The corresponding linear power spectrum for model (1) is the lower dotted curve, while the
higher dotted curve shows that for models (2) and (3). [Adapted from Peacock (1997)]

6.5.3 Angular Correlation Function and Power Spectrum

Galaxy redshift samples are usually constructed from deep sky surveys that cover much larger
volumes than the redshift samples themselves. Although only two-dimensional information about
the galaxy distribution is available in such surveys, one may take advantage of their large
volumes. For a two-dimensional sample, we can estimate the angular correlation function of
galaxies, w(ϑ), from the definition:

〈ν(r̂1)ν(r̂2)〉dω1 dω2 = ν2 [1+w(ϑ)] dω1 dω2, (6.160)

where ν(r̂)dω is the number of galaxies within a solid angle dω in the direction r̂, and ν is the
mean surface density. Suppose that the volume density of galaxies (assumed to be in comoving
units) at redshift z and in the direction r̂ is n(r̂,z). The surface density, which is the projection of
the three-dimensional distribution on the sky, can be written as

ν(r̂) =
∫ ∞

0
n(r̂,z)S(z)

d2V
dzdω

dz, (6.161)

where S(z) is the selection function of the survey, and d2V is the comoving volume element
corresponding to dz and dω at redshift z (see §3.2.6). Thus,

ν =
∫ ∞

0
n(z)S(z)

d2V
dzdω

dz, (6.162)

w(ϑ) =
n2

ν2

∫ ∞

0
n(z1)S(z1)n(z2)S(z2)ξ (r12,z)

d2V1

dz1 dω1

d2V2

dz2 dω2
dz1 dz2, (6.163)
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where ξ (r12,z) is the spatial correlation function at redshift z ≡ (z1 + z2)/2, r12 is the separation
between (r̂1,z1) and (r̂2,z2), and cosϑ = r̂1 · r̂2. This is a general relation between the angular
and spatial correlation functions, taking into account possible evolutions in n and ξ with redshift,
as well as cosmological effects. If the survey is not very deep, so that the evolutionary and
cosmological effects are all negligible, we can write

ν = n
∫ ∞

0
S(r)r2 dr, (6.164)

w(ϑ) =
1

ν2

∫ ∞

0
S(r1)S(r2)ξ (r12)r2

1r2
2 dr1 dr2, (6.165)

where r2
12 = r2

1 +r2
2−2r1r2 cosϑ . In the small-angle limit where ϑ is small and the mean distance

of the pair, x ≡ (r1 + r2)/2, is much larger than the value of y ≡ r1 − r2, we can write r2
12 ≈

y2 + x2ϑ 2 and

w(ϑ) =
∫ ∞

0
x4S2(x)dx

∫ ∞

−∞
dyξ [(y2 + x2ϑ 2)1/2]

/[∫ ∞

0
S(x)x2 dx

]2

. (6.166)

If ξ (r) is a power law,

ξ (r) = A/rγ , (6.167)

the angular correlation function is also a power law,

w(ϑ) = B/ϑγ−1, (6.168)

with the amplitude B related to A by

B = A
√
π
Γ [(γ−1)/2]
Γ(γ/2)

∫ ∞

0
x5−γS2(x)dx

/[∫ ∞

0
x2S(x)dx

]2

. (6.169)

For given γ and A, the amplitude of the angular correlation function depends only on the shape of
the selection function. For a magnitude-limited sample, the selection function can be written as
S(x) = f (x/d∗), where d∗ ∝ 100.2mlim (with mlim the magnitude limit) is the characteristic depth
of the sample, and f is a universal function (under the assumption that cosmological effects and
K corrections are small). This form of S(x) in Eq. (6.166) implies that for a given ξ (r) the angular
correlation function scales with the sample depth as

w(ϑ ;d∗) = W (ϑd∗)/d∗, (6.170)

where W is a scaling function.
The power spectrum can also be estimated for a two-dimensional sky survey of galaxies.

Dividing the sky into small cells, j = 1,2, . . ., so that the galaxy occupation number N j is either
1 or 0, we can write the observed surface density field as

νo(r̂) =∑
j

N jδ (2)(r̂− r̂ j)Wj, (6.171)

where Wj ≡ W (r̂ j) and W (r̂) is a window function specifying the sky coverage of the survey.
Expanding νo(r̂) in spherical harmonics,

νo(r̂) =∑
�,m

a�mY�m(r̂), (6.172)

where Y�m(r̂) is the spherical harmonic function calculated at the direction r̂ = (ϑ ,ϕ), we have

a�m =∑
j

N jWjY
∗
�m(r̂ j). (6.173)
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Following the same procedure as described in §6.5.2 and using the properties of the spherical
harmonics, one obtains an expression similar to Eq. (6.158) for the angular power spectrum:

C� ≈
〈|a�m −〈a�m〉|2

〉
ν2〈J�m〉

− 1
ν

, (6.174)

where

〈a�m〉 =
∫

W (ϑ ,ϕ)Y�m(ϑ ,ϕ)dω, 〈J�m〉 =
∫

W (ϑ ,ϕ)|Y�m(ϑ ,ϕ)|2 dω, (6.175)

and the approximation assumes that the size of the window is much larger than the angular scale
corresponding to mode �. The angular power spectrum C� is related to the angular correlation
function by

w(ϑ) =
1

4π ∑�
(2�+1)C�P�(cosϑ), (6.176)

where P� is the Legendre function. Finally, using the relation between the angular and spatial
correlation functions, one can relate C� to the spatial power spectrum P(k):

C� =
2

π(2�+1)

∫
dkk2P(k)

[∫
S(r) j�(kr)r2dr

]2
/[∫

S(r)r2 dr

]2

, (6.177)

where j� is the spherical Bessel function.

6.6 Gravitational Lensing

In Fourier space the Poisson equation (4.11) for the potential perturbations can be written in
terms of the mass density fluctuations as

Φk = −3
2

H2Ωma2 δk

k2 . (6.178)

The variance of potential fluctuations in windows of radius R can therefore be written as

〈Φ2(R)〉 =
∫ ∞

0
Δ2
Φ(k)W̃ 2(kR)

dk
k

; Δ2
Φ(k) =

(
3
2

H2a2Ωm

)2

k−4Δ2(k). (6.179)

Note that Eq. (6.178) does not require δk to be small, so that the above relations apply in both
linear and nonlinear regimes.

The potential fluctuations have direct observational consequences, because they affect the
geodesics along which photons propagate, thereby distorting our images of distant objects. This
effect is called gravitational lensing, because the situation is analogous to that of light deflected
by an optical lens. Fig. 2.30 shows the gravitational lensing effects of a cluster. The arcs and
arclets around the center of the cluster are strongly distorted images of background galaxies. The
galaxy images in the outer region are also distorted, although less strongly. In this section, we
examine how such gravitational lensing effects can be used to probe potential fluctuations, and
hence the cosmic matter distribution.

6.6.1 Basic Equations

In the matter dominated epoch, a perturbed Robertson–Walker metric can be written as

ds2 = a2(τ)
[
(1+2Φ/c2)dτ2 − (1−2Φ/c2)dl2] , (6.180)

dl2 ≡ dχ2 + f 2
K(χ)dω2; dω2 = dϑ 2 + sin2ϑ dϕ2, (6.181)
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where Φ is just the Newtonian potential (see Appendix A1.5), and fK(χ) is given by Eq. (3.13).
In an unperturbed universe whereΦ= 0, a photon travels along a null geodesic in the radial direc-
tion towards an observer at the origin, with the radial position of the photon given by the comov-
ing distance χ(t) = τ(t0)− τ(t). Potential fluctuations will change the photon trajectory, but as
long as the perturbations are small, i.e. Φ� c2, the deviation of the photon trajectory from the
unperturbed geodesic is small. In this limit, we can still use χ to label the perturbed photon path.

Without losing generality, let us consider the propagation of light rays confined to a narrow
cone around the polar axis, ω � 1. Close to the photon path at a comoving distance χ , we can
construct a local Cartesian coordinate system so that dl2 = δi j dxi dx j in the metric (6.180). In this
frame, the photon geodesic equation (see Appendix A1.3) can be written to first order inΦ/c2 as

d2x
dτ2 = − 2

c2∇Φ. (6.182)

This gives the motion of a light ray in the Newtonian potential Φ; the right-hand side is twice
the Newtonian acceleration, because of relativistic effects. It is interesting to note that the above
equation is the same as that for a light ray propagating in a medium with a refractive index,
n = 1−2Φ/c2 > 1. This can be understood, since the ‘effective speed of light’ in the frame (x,τ)
is dl/dτ = c(1 + 2Φ/c2). Note also that the curvature term, fK , does not show up explicitly in
Eq. (6.182), because we are working in the local frame; it will come in when we relate the total
deflection angle to distance (see below).

If we define u ≡ dx/dτ , then |u| ≈ c(1 + 2Φ/c2), and û ≡ u/|u| represents the direction of
light propagation. Using χ to replace τ as a label along the photon path, and to first order in
Φ/c2, we have from Eq. (6.182) that

d û
dχ

= − 2
c2∇⊥Φ, (6.183)

where ∇⊥ denotes the gradient perpendicular to û. This equation gives the rate of change of the
propagation direction at χ . Thus, the deflection as the light ray propagates from χ → χ + δχ
is δ�αd = − 2

c2∇⊥Φδχ . Now suppose we have a light source located at a position specified by
χS and x⊥,S, with the latter being the distance of the source from the unperturbed geodesic.
As the light ray propagates from the source to the observer, it is deflected. Since the deflection
δαd(χ) at χ leads to a change in the image position at χS by δx⊥(χ) = fK(χS − χ)δ�αd(χ),
where fK(χS − χ) is the angular-diameter distance from χS to χ (in comoving units), the image
position seen by the observer at the origin is

x⊥,0 = x⊥,S − 2
c2

∫ 0

χS

fK(χS −χ)∇⊥Φ(χ)dχ. (6.184)

Using the relations x⊥,0 = �θ0 fK(χS), and x⊥,S = �θS fK(χS), where �θS and �θ0 are the angular
positions of the source and image relative to that of the lens, respectively, we obtain

�θS = �θ0 − 2
c2

∫ χS

0

fK(χS −χ)
fK(χS)

∇⊥Φ(χ)dχ. (6.185)

The above equation describes the mapping between the angular position �θS of a point in a
source at χ = χS and the angular position�θ0 of the corresponding point in its image (see Fig. 6.6).
The local properties of this mapping are characterized by the Jacobian matrix:

Ai j(�θ0,χS) ≡ ∂θSi

∂θ0 j
=

1
fK(χS)

∂xS i

∂θ0 j

= δi j − 2
c2∑

k

∫ χh

0
g(χ)∂i∂kΦ(x⊥,χ)Ak j(�θ0,χ)dχ, (6.186)
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Fig. 6.6. This figure shows a common lensing configuration. The lens is at L, the source at S and the
observer at O. Because of gravitational lensing, the image of the source will appear at I. The distances DL,
DS and DLS are the comoving angular-diameter distances from the observer to the lens, from the observer
to the source, and from the lens to the source, respectively. In gravitational lensing studies, it is convenient
to use comoving angular-diameter distances because they simplify most of the equations.

where χh is the horizon radius, and

g(χ) ≡ fK(χS −χ) fK(χ)
fK(χS)

H (χS −χ), (6.187)

with H (x) the Heaviside step function. Because Φ� c2, we can replace Ak j in the integration
term of Eq. (6.186) by δk j and write

Ai j(�θ0,χS) = δi j −Ψ,i j

[
fK(χ)�θ0,χS

]
, (6.188)

Ψ(x⊥,χS) =
2
c2

∫ χh

0
dχ g(χ)Φ(x⊥,χ), (6.189)

where Ψ,i j ≡ ∂i∂ jΨ is the shear tensor. The convergence κ and shear γ = γ1 + iγ2 at �θ0 are
defined as

κ(�θ0) =
1
2

(Ψ,11 +Ψ,22) , (6.190)

γ(�θ0) =
1
2

(Ψ,11 −Ψ,22)+ iΨ,12. (6.191)

In terms of κ and γ , we can write the Jacobian matrix Ai j as

A(�θ0) = (1−κ)
(

1 0
0 1

)
− γ
(

cosϕγ sinϕγ
sinϕγ −cosϕγ

)
, (6.192)

where cosϕγ ≡ γ1/γ , sinϕγ ≡ γ2/γ . From this expression, we see that convergence causes
an isotropic magnification of angular size in the neighborhood of �θ0, while shear produces
anisotropy in the mapping. For a small circular source, its lensed image is an ellipse, with major
and minor axes

a = (1−κ− γ)−1 and b = (1−κ+ γ)−1, (6.193)
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and the magnification in area is

μ ≡ image area
source area

=
1

det(A)
=

1
[(1−κ)2 − γ2]

. (6.194)

As shown in §3.1.6, the apparent surface brightness of a source at a given redshift is independent
of the properties of space-time. Gravitational light deflection therefore preserves surface bright-
ness, and so μ defined above is also the magnification of the total flux from a lensed image. Since
the Jacobian A is a function of �θ0, the equation det(A) = 0 defines curves in the image plane.
Such curves are called critical lines. On such lines the image is infinitely magnified (μ → ∞)
and infinitely stretched (a/b →∞). The lines in the source plane which correspond to the critical
lines are known as caustics.

In addition to image distortion and amplification, gravitational lensing also causes time delays.
This comes from the fact that, in the presence of lensing, space is curved and the path length from
source to observer is increased. The amount of the time delay can be obtained from Eq. (6.180):

Δt =
2
c3

∫ χS

0
|Φ(χ)|dχ. (6.195)

6.6.2 Lensing by a Point Mass

To better understand the effects of gravitational lensing, we first consider a simple case where
the lens is a point mass. In the neighborhood of the lens we can assume space-time to be
Minkowskian with a (small) perturbation caused by the point mass, and so the gravitational
potential is

Φ(x⊥,z) = − GM

(x2
⊥ + z2)1/2

, (6.196)

where M is the mass of the lens and z is the distance to the lens projected along the light ray. It
then follows that

∇⊥Φ(x⊥,z) =
GMx⊥

(x2
⊥ + z2)3/2

≈ GMb
(b2 + z2)3/2

, (6.197)

where b is the impact parameter of the unperturbed light ray (see Fig. 6.6), and the approxima-
tion is valid because the deflection angle is small (since Φ� c2). The deflection occurs within
Δz ∼ ±b which, in virtually all applications of astrophysical interest, is much smaller than both
the lens-to-source distance and the observer-to-lens distance. In this case, Eq. (6.185) can be
written as

�θS ≡ �θ(χS) = �θ0 − 2
c2

fK(χS −χL)
fK(χS)

∫ χS

0
dχ ′∇⊥Φ(χ ′), (6.198)

where �θS is the position of the source, and �θ0 the position of the image, on the sky (see Fig. 6.6).
Since fK(χ) is just the angular-diameter distance in comoving units (see §3.2.6), we can write

�θS = �θ0 −�α, (6.199)

where

�α =
DLS

DS
�αd, (6.200)

and

�αd ≡ 2
c2

∫
∇⊥Φ(b,z)dz (6.201)
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is the deflection angle (see Fig. 6.6). The distances DLS, DS and DL are defined as

DLS ≡ fK(χS −χL), DS ≡ fK(χS), DL ≡ fK(χL). (6.202)

These are comoving angular-diameter distances and can be calculated using the formulae given
in §3.2.6. They are related to the angular diameter distances dLS, dL and dS according to DLS =
dLS(1 + zS), DL = dL(1 + zL), and DS = dS(1 + zS) with zL and zS the redshifts of the lens and
source, respectively [see Eqs. (3.101) and (3.117)].

It is useful to define an effective lensing potential

ψ(�θ0) =
DLS

DLDS

2
c2

∫
Φ(DL�θ0,z)dz, (6.203)

which is related to Ψ defined in Eq. (6.189) by

ψ =Ψ/D2
L. (6.204)

It then follows that

�α = ∇�θ0
ψ. (6.205)

Eq. (6.199) is called the lens equation, and it is easy to see that it applies not only to point-
mass lenses, but also to any other system in which the radial extent of the lens is much smaller
than both DLS and DL. Such systems are called thin-lens systems. The thin-lens approximation is
always valid in our discussion except when we consider the lensing effect of large-scale structure
(see §6.6.4 below).

Under the same assumption, the time delay for an image at �θ0 can be written as

Δt(�θ0) =
(1+ zL)

c
DLDS

DLS

[
1
2
|�θ0 −�θS|2 −ψ(�θ0)

]
. (6.206)

(a) Multiple Images and Einstein Rings For a point lens, the deflection angle given by
Eq. (6.201) is

αd =
4GM
c2b

. (6.207)

This in the lens equation (6.199) gives

θS = θ0 − θ 2
E

θ0
, (6.208)

where

θE =
[

4GM
c2

DLS

DLDS

]1/2

(6.209)

is the Einstein radius and we have set b = DLθ0. If the source is exactly behind the lens, i.e.
θS = 0, the image is an Einstein ring with radius θ0 = θE. In the more general case, there are two
point images, each on one side of the source, with angular positions

θ0± =
1
2

(
θS ±

√
θ 2

S +4θ 2
E

)
. (6.210)

The magnifications of the two images are

μ± =

[
1−
(
θE

θ0±

)4
]−1

=
u2 +2

2u
√

u2 +4
± 1

2
, with u ≡ θS

θE
. (6.211)
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Fig. 6.7. This figure shows the images of extended sources (represented by the three small circles labeled
1, 2 and 3) lensed by a point lens. The images are labeled by the same number as their source. The small
horizontal ticks on the sources and the images help to define the parities of the images relative to the sources:
while all images to the right of the sources have the same parity as their source, those on the left have the
opposite parity.

Note that μ− is negative, which corresponds to an image with opposite parity to the source. Using
Eq. (6.206), the time delay between the two images can also be calculated.

Clearly, the critical line for a point lens is the Einstein ring θ0 = θE, and the caustic is a single
point θS = 0. When a source is on the caustic, its image is an Einstein ring. When the source
moves away from the caustic, the ring breaks into two images (I+ and I−), each on one side of
the lens. As the value of θS increases, image I− moves towards the lens and becomes fainter and
fainter, while image I+ moves towards the source and tends towards a magnification of unity.

(b) Arcs If the source is extended and close in direction to the (point-mass) lens, its two images
are two arcs with curvature radii approximately equal to the Einstein radius. This is demonstrated
in Fig. 6.7 and can be easily understood by using the results for point sources described above.

6.6.3 Lensing by an Extended Object

For an extended lens, the lens equation (6.199) still applies as long as its radial thickness is much
smaller than DLS and DL. In this case, the gravitational potential

Φ(x⊥,z) = −
∫

Gρ(x′)d3x′[
(x⊥−x′⊥)2 +(z− z′)2

]1/2
. (6.212)

Under the thin-lens approximation, we can define a lens plane which is perpendicular to the line-
of-sight at the lens position DL. It then follows from Eq. (6.201) that the deflection angle at a
point ξ on the lens plane is

αd(ξ ) =
4G
c2

∫ (ξ −ξ ′)Σ(ξ ′)
|ξ −ξ ′|2 d2ξ ′, (6.213)
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where

Σ(ξ ) =
∫
ρ(ξ ,z)dz (6.214)

is the projected density of the lensing object onto the lens plane. In general, the deflection angle
is a two-component vector. In the special case where Σ(ξ ) is circularly symmetric, we can choose
the symmetric point to be the origin of the coordinate system (ξ1,ξ2) and write

αd =
4GM(ξ )

c2ξ
, (6.215)

where

M(ξ ) = 2π
∫ ξ

0
Σ(ξ ′)ξ ′ dξ ′ and ξ =

√
ξ 2

1 +ξ 2
2 . (6.216)

This is the same as for the point-mass lens given by Eq. (6.207), except that the mass of the point
is now replaced by the mass projected within a circle of radius ξ . If we define the mean surface
density within ξ as Σ(ξ ) ≡ M(ξ )/(πξ 2), and a critical surface density

Σcrit =
c2

4πG
DS

DLDLS
, (6.217)

then the radius of the Einstein ring (the value of �θ0 corresponding to �θS = 0) is given by

Σ(θE) = Σcrit. (6.218)

Clearly, an Einstein ring only exists if the average surface density exceeds the critical density.

(a) Isothermal Spheres For a singular isothermal sphere the density profile is

ρ(r) =
σ2

v

2πGr2 , (6.219)

where σv = constant is the velocity dispersion of particles in the objects, and the surface
density is

Σ(ξ ) =
σ2

v

2Gξ
. (6.220)

It is then easy to see that the deflection angle is αd = 4πσ2
v/c2, independent of the impact param-

eter. For such a lens, the Einstein ring always exists [because Σ(ξ ) increases without limit as
ξ → 0], with a radius

θE = 4π
σ2

v

c2

DLS

DS
= α. (6.221)

Thus, for θS < θE, i.e. for a point source within the Einstein ring, its two images are at the
positions

θ0± = θS ±θE (6.222)

on the two sides of the lens. The magnifications of the two images are

μ± = 1± θE

θS
. (6.223)

For a point source outside the Einstein ring, i.e. θS > θE, there is only one image at θ0+ = θS +θE.
As for a point-mass lens, a singular isothermal sphere has the Einstein ring as its critical line and
�θS = 0 as its only caustic.
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If the central cusp of a singular isothermal sphere is softened so that the surface density is

Σ(ξ ) =
σ2

v

2G[ξ 2 +ξ 2
c ]1/2

, (6.224)

where ξc is a core radius of the lens, then the effective lensing potential is

ψ(θ0) =
DLS

DS
4π
σ2

v

c2

(
θ 2

c +θ 2
0

)1/2
, (6.225)

where θc = ξc/DL, and the angle α can be written as

α = 4π
σ2

v

c2

DLS

DS

θ0√
θ 2

c +θ 2
0

. (6.226)

Assuming that ξc is small enough for the Einstein ring to exist, then its radius is

θE =

[(
4πσ2

v

c2

DLS

DS

)2

−θ 2
c

]1/2

. (6.227)

In this case, there are two critical lines, one being the Einstein ring given by θS = 0, and the other
being a circle given by dθS/dθ0 = 0. The caustic corresponding to the second critical line is a
circle, on which a source is also infinitely magnified.

(b) Mass inside a Giant Arc For a circularly symmetric lens, giant arcs are expected from
sources close to the inner point-like caustic behind the center. In this case the radius of the arc is
approximately the Einstein radius, and the mean surface density enclosed is approximately the
critical surface density. Thus, the total mass enclosed by the arc can be estimated as

M(θ0) = πΣcrit(DLθ0)2 ≈ 1.1×1014 M�
(
θ0

30′′

)2(DL

DS

)(
DLS

103 Mpc

)
, (6.228)

where θ0 is the angular radius of the arc. This technique has been applied to a number of clusters
of galaxies. Mass-to-light ratios inferred are generally high, ∼ 200(M/L)�, implying that the
masses of clusters are dominated by dark matter.

(c) Elliptical Objects If a lens is not circular, the mapping between the source plane and the
image plane is more complicated and a wide variety of image configurations can occur. A simple
non-circular lens is that given by an elliptical object (e.g. an elliptical galaxy). The effective
lensing potential of elliptical galaxies with (close to) singular isothermal density distribution can
be approximated by

ψ(�θ0) =
DLS

DS
4π
σ2

v

c2

[
θ 2

c +(1− ε)θ 2
01 +(1+ ε)θ 2

02

]1/2
, (6.229)

where θc is an angular core radius and ε is the ellipticity (Blandford & Kochanek, 1987). Note
that this potential reduces to that of a softened isothermal sphere [Eq. (6.225)] if we set ε = 0.
Fig. 6.8 shows the critical lines (left) and caustics (right) of such an elliptical lens. The most
prominent difference from that of a circular lens is that the point-like caustic at θS = 0 now
becomes diamond shaped. Fig. 6.8 also shows images of compact sources located at different
positions relative to the caustics. Sources located close to the inner caustics can produce arc-like
images while sources located elsewhere produce multiple images. If a source is extended, we can
easily imagine that large arc-like or ring-like patterns can form as its lensed images merge.
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Fig. 6.8. The critical lines (left) and caustics (right) of an elliptical lens. The positions of five sources
relative to the caustics and their images are also plotted. The source at the center of the caustic has four
images symmetrically positioned relative to the critical lines. [Courtesy of M. Bartelmann]

6.6.4 Cosmic Shear

The principle of lensing by large-scale structures is the same as that described in §6.6.1. Suppose
that there is a population of extended sources (galaxies) distributed over the sky. Because of the
potential fluctuations caused by the large-scale structures in the Universe, the images of these
galaxies are magnified and sheared. Thus, if one could somehow measure the change in the
angular sizes and the shapes of these galaxies (relative to their unlensed images), one can obtain
the convergence and shear at different positions in the (θ0,1,θ0,2) image plane. Clearly, the
statistical properties of such shear (or convergence) fields are related to the underlying mass
density field. The purpose of this subsection is to explore such relations.

Since different galaxies are located at different distances, a distribution function, Pχ(χ)dχ ,
has to be used to describe the distribution of galaxies in radial distance. For a given image, the
probability for its source to be at χ is given by Pχ dχ . The ensemble average (over Pχ ) of the
shear (or convergence) is then obtained by redefining g(χ) [Eq. (6.187)] as

g(χ) = fK(χ)
∫ χh

χ

fK(χ ′ −χ)
fK(χ ′)

Pχ(χ ′)dχ ′. (6.230)

In practice, shear and convergence at a given point are obtained by averaging over the images
of many galaxies in the vicinity of the point, so the quantities given by the redefined g(χ) are
closely related to observations.

Take the shear field as an example. From Eqs. (6.191) and (6.189) we have

γ(�θ0) =
1
c2

∫ χh

0
dχ g(χ)

[
∂
∂x1

+ i
∂
∂x2

]2

Φ(x⊥,χ). (6.231)

Since the potential fluctuations we are interested in have length scales much smaller than the
curvature radius of the Universe, we can expand the potential field Φ in plane waves:

Φ(x⊥,χ) =∑
k
Φk exp

(
ik⊥ ·x⊥ + ikχχ

)
. (6.232)

This in Eq. (6.231) gives

γ(�θ0) = − 1
c2

∫ χh

0
dχg(χ)∑

k
k2
⊥Φkeikχ χeik⊥·x⊥βk, (6.233)

where βk = exp(2iϕk), with ϕk the azimuthal angle of k⊥, i.e. tan(ϕk) = k2/k1. To first order, x⊥
in Eq. (6.233) can be replaced by fK(χ)�θ0.
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One simple measure of the shear field is the variance of the average shear within some window.
For a circular window of radius Θ, this average is

γ(Θ) = − 1
πΘ2

∫ Θ

0
d2�θ0

∫ χh

0
dχ g(χ)∑

k
k2
⊥Φkeikχ χ exp

[
i fK(χ)k⊥ ·�θ0

]
βk

=
∫ χh

0
dχ g(χ)∑

k
k2
⊥Φkeikχ χβkW2 [k⊥ fK(χ)Θ] , (6.234)

where W2(x) = 2J1(x)/x with J1 the Bessel function. Under the small angle approximation, which
is valid in the limit where the source distance, χS, is larger than the largest-scale fluctuation we
are concerned with, only the modes in the transverse direction contribute to the integral; the
contribution from other modes are suppressed by the factor exp(ikχχ) owing to the cancellation
of positive and negative fluctuations along the line-of-sight. This allows us to put k⊥ ≈ k. With
this approximation, the variance of γ(Θ0) can be written as

〈γ2(Θ0)〉 =∑
k
∑
k′

∫ χh

0
dχ
∫ χh

0
dχ ′g(χ)g(χ ′)ei(kχ χ+kχ ′χ ′)βkβk′

×W2 [k fK(χ)Θ0] W2
[
k fK(χ ′)Θ0

]
k2k′2〈ΦkΦk′ 〉. (6.235)

Using Eq. (6.178) and the definition of the power spectrum, we have

〈γ2(Θ0)〉 =
∫ ∞

0
Δ2
γ(k)W

2
2 [k fK(χ)Θ0]

dk
k

; (6.236)

Δ2
γ(k) =

9π
4

(
H0

c

)4

Ω2
m,0

∫ χh

0

g2(χ)
a2(χ)

Δ2(k;χ)
dχ
k

, (6.237)

where a(χ) is the expansion factor. Similarly the two-point correlation function of the shear
field is

ξ (γ)(θ0) ≡ 〈γ(0)γ∗(�θ0)〉
=
∫ ∞

0
Δ2
γ(k)J0 [k fK(χ)θ0]

dk
k

. (6.238)

Similar statistics can be constructed for the convergence field. From Eq. (6.190) we have

κ(�θ0) =
1
c2

∫ χh

0
dχ g(χ)

[
∂ 2

∂x2
1

+
∂ 2

∂x2
2

]
Φ(x⊥,χ). (6.239)

Adding in the bracket a term ∂ 2/∂x2
3 (which cancels out upon the χ integration) and using the

Poisson equation for Φ, we obtain

κ(�θ0) =
3
2

(
H0

c

)2

Ωm,0

∫ χh

0

g(χ)
a(χ)

δ
[

fK(χ)�θ0,χ
]

dχ. (6.240)

So the convergence is just the density perturbation field δ (x) [in a radial window g(χ)/a(χ)]
projected along the line-of-sight. Under the same assumptions as made for the shear field, the
variance and the two-point correlation function (or power spectrum) of the convergence field can
all be readily written in terms of the density perturbation spectrum.

In the weak-lensing regime, distortions of individual images are weak, typically a few per-
cent, and the study of the lensing effects has to be based on the coherent patterns in the images
of a large number of sources (usually galaxies). In order to obtain significant results, deep



302 Probing the Cosmic Density Field

and relatively large imaging surveys are required. With such a survey, one can measure the
quadrupole moment of individual galaxies:

Qi j =
∫

xix jw(x)I(x1,x2)dx1 dx2, (6.241)

where I(x1,x2) is the surface brightness distribution of the image and w(x) is a weighting func-
tion. The components of this moment can then be combined to form the ellipticities of the
image:

ε1 ≡ Q11 −Q22

Q11 +Q22
; ε2 ≡ 2Q12

Q11 +Q22
. (6.242)

So defined, ε1 describes compressions along the x1 and x2 axes, while ε2 describes that along
the two axes at 45◦ from the x1 and x2 axes. For a source with circular symmetry, (ε1,ε2) is a
direct measure of the local shear (γ1,γ2). Since galaxies in general are not intrinsically spherical,
so that their images are elongated even in the absence of lensing, (ε1,ε2) for a galaxy image is
insufficient to estimate the local shear directly. However, under the assumption that the intrinsic
ellipticities of the source galaxies are uncorrelated, the local shear can be estimated by averaging
the ellipticities of many images in a small patch of the sky. The shear field over the survey area
is then represented by many such patches.

To relate the observed shear field to the mass distribution, one also needs to know the source
distribution, Pχ(χ). Since the sources are in general faint, spectroscopic redshifts are usually
not available. A promising way to overcome this limitation is to use photometric redshifts, as
described in §2.6.2.

Shear fields have now been observed around many clusters of galaxies, for example, Abell
2218 shown in Fig. 2.30. These shear fields can be used to estimate cluster masses. The mass-to-
light ratios inferred from weak lensing are generally quite high, ∼ 400(M/L)�, and in agreement
with other mass determinations (see Schneider, 2006, for a review). Weak lensing effects on large
scales have also been successfully observed in a number of cosmic-shear surveys (see Fig. 2.38).
These results can be used to infer the power spectrum of the mass density distribution, and the
value of σ8 (defined in §4.4.4) obtained from such analysis ranges from 0.7 to 1.0, assuming a
ΛCDM model withΩm,0 = 0.3 andΩΛ,0 = 0.7 (e.g. Refregier, 2003). The existing measurements
are limited primarily by statistics. These are expected to improve greatly in the near future by a
number of planned surveys dedicated to cosmic shear measurements (see Refregier, 2003, for an
overview).

6.7 Fluctuations in the Cosmic Microwave Background

The cosmic microwave background (CMB) is the radiation we receive from the early epoch
(t ∼ 380,000 years) when photons decoupled from baryons (see §3.5.2). Density fluctuations
present at that time cause fluctuations in the CMB both through their coupling to the radiation
field and through their perturbation of the space time metric. In this section, we describe how the
observed properties of the CMB can be used to infer the properties of the cosmological density
field.

6.7.1 Observational Quantities

As shown in §2.9, observations of the CMB provide us with microwave temperature maps of the
sky. We can convert these into maps of the temperature fluctuations,

ΔT
T

(n̂) ≡ T (n̂)−T

T
, (6.243)
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where n̂ = (ϑ ,ϕ) is a direction on the sky and T is the mean temperature. Given an all-sky map,
we can expand the temperature fluctuations in spherical harmonics,

ΔT
T

(n̂) =∑
�,m

a�mY�m(ϑ ,ϕ). (6.244)

Similar to the cosmological density field, the observed CMB sky should be considered as one
realization of a cosmic random process. The expectation value of the square of the harmonic
coefficients a�m,

C� = 〈|a�m|2〉, (6.245)

gives the power spectrum of the temperature fluctuations. Equivalently, we can define the
autocorrelation function of the temperature fluctuations as

C(ϑ) =
〈
ΔT
T

(n̂1)
ΔT
T

(n̂2)
〉

, (6.246)

which is related to the power spectrum C� by

C(ϑ) =
1

4π ∑�
(2�+1)C�P�(cosϑ) (cosϑ = n̂1 · n̂2), (6.247)

with P� the Legendre function. As we will see below, in the linear regime the CMB fluctuations
are proportional to the density perturbations. Thus, if the linear cosmological density field is
Gaussian, so also is the temperature fluctuation field. In this case, the power spectrum (or the
autocorrelation function) provides a full statistical description of the temperature fluctuations.
To test for departures from Gaussianity, one can use higher-order statistics, as in tests for non-
Gaussianity of the density field (see §6.4.3).

The CMB radiation comes to us from the last scattering surface at redshift z = zdec ≈ 1,100
(see §3.5.2). A physical event at z = zdec, characterized by a length scale l (in comoving units),
therefore subtends an angle

ϑ(l) = l/[dA(zdec)(1+ zdec)], (6.248)

where dA(z) = a0r(z)/(1 + z) is the angular-diameter distance to redshift z. For z 	 1, r(z) ≈
2(H0a0Ωm,0)−1 in a universe with ΩΛ = 0, and r(z) ≈ 2(H2

0 a2
0Ωm,0)−1/2 in a flat universe with

Ωm,0 +ΩΛ,0 = 1, so

ϑ(l) ≈ 0.6′
(

l
h−1Mpc

)
K (Ωm,0), K (Ωm,0) ≡

{
Ω1/2

m,0 (Ωm,0 +ΩΛ,0 = 1)
Ωm,0 (ΩΛ,0 = 0).

(6.249)

Thus, for a given length scale, the corresponding angular scale depends on h,Ωm,0 andΩΛ,0. The
Hubble radius (in proper units) at z 	 1, dH(z) = cH−1(z) ≈ H−1

0 (Ωm,0z)−1/2z−1, subtends an
angle

ϑH(z) ≈ 30◦
Ω−1/2

m,0 K (Ωm,0)

z1/2
. (6.250)

At decoupling, this defines an angular scale,

ϑd ≡ ϑH(zdec) ≈ 0.87◦Ω−1/2
m,0 K (Ωm,0)

(
zdec

1,100

)−1/2

, (6.251)

which depends on the curvature of the Universe, but not on the cosmological constant in a flat
universe. On scales larger than ϑd, the observed temperature fluctuations are entirely due to
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super-horizon perturbations in space-time, while on scales smaller than ϑd evolutionary effects
may be relevant. Since the angular scale corresponding to harmonic � is roughly given by

ϑ� ≈ π
�
, (6.252)

the Hubble radius at decoupling corresponds to � ∼ 200Ω1/2
m,0/K (Ωm,0).

6.7.2 Theoretical Expectations of Temperature Anisotropy

Given a cosmogonic model, it is straightforward to calculate the expected temperature fluctua-
tions in the CMB. In fact, the temperature perturbation, at a space-time point (x, t), for photons
propagating in a direction q̂ is related to the radiation brightness Δ as

Θ(q̂,x, t) ≡ ΔT
T

(q̂,x, t) =
1
4
Δ(q̂,x, t). (6.253)

In §§4.2.4–4.2.6 we have described how Δ(q̂,x, t) evolves in various models of structure forma-
tion. For example, we can use the linearized Boltzmann equation (4.170), which assumes a flat
background, to write, for a perturbation mode k,

(Θ+Ψ)′ + ikμ(Θ+Ψ) = (Φ+Ψ)′ +(∂Θ/∂τ)C (μ ≡ q̂ · k̂), (6.254)

where Φ and Ψ are the metric perturbations in the conformal Newtonian gauge (see §4.2.3),
a prime denotes a derivative with respect to conformal time τ =

∫
dt/a(t), and the collisional

term is

(∂Θ/∂τ)C = σTnea
(
δγ/4+ve · q̂−Θ+polarization term

)
. (6.255)

The temperature fluctuations we observe today (at τ0) are therefore related to those on the last-
scattering surface (at τ∗) by

[Θ+Ψ](k,μ ,τ0) = [Θ+Ψ](k,μ ,τ∗)eikμ(τ∗−τ0)

+
∫ τ0

τ∗

[
(Φ+Ψ)′ +

(
∂Θ
∂τ

)
C

]
τ

eikμ(τ−τ0)dτ, (6.256)

where the exponential factors describe the phase shifts of the perturbation mode in question. The
first term on the right-hand side is due to intrinsic fluctuations in the last-scattering surface, the
term containing (Φ+Ψ)′ is the contribution from the change of gravitational potential along
the photon path, and the collisional term accounts for possible (non-gravitational) interactions of
the CMB photons with baryons after decoupling. This equation can be integrated once the time
dependence of the perturbation quantities is solved. The μ dependence can then be expanded in
harmonics to obtain the angular power spectrum. Fig. 6.9 shows the predicted power spectrum
C� from several models. In the following, we discuss how the patterns seen in C� depend on
model parameters. For simplicity, we will adopt cold dark matter dominated models to illustrate
the main physical effects. The details that are not covered here can be found in Hu & Dodelson
(2002), for example. As we will see below, almost all cosmological parameters, such as Ωm,0,
ΩΛ,0, Ωb,0, h, and P(k), can affect the pattern of the predicted CMB anisotropies in one way
or another (see Fig. 6.10 on page 309). It is therefore possible to determine all these parameters
through accurate observations of this pattern.

(a) Large-Scale Fluctuations: Sachs–Wolfe Effect For angular scales ϑ 	 ϑd, the density
perturbations responsible to the temperature fluctuations have k � 2πa/ctdec, i.e. their scale sizes
are much larger than the Hubble radius at zdec. In this case, the collisional term can be neglected
and, if we expand the μ dependence of Θ(k,μ ,τ∗) in Legendre polynomials, only the lowest
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b
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Fig. 6.9. The CMB power spectrum, C�, predicted by different CDM models. The result marked by xe = 0.5
is for a model where the universe is re-ionized at z ∼ 100, while the other models assume no re-ionization.

order components have non-negligible amplitudes [see Eqs. (4.178)–(4.182)]. Keeping only the
first two components, we have

[Θ+Ψ](k,μ ,τ0) =
[
Ψ+

δγ
4

+Θv

]
(k,τ∗)eikμ(τ∗−τ0) +

∫ τ0

τ∗
(Φ′ +Ψ′)eikμ(τ−τ0)dτ, (6.257)

where we have used that Θ0 = δγ/4 and Θv ≡−3iΘ1μ = −iθγμ/k = v · q̂.
If Φ and Ψ do not depend on time explicitly (as is the case for linear perturbations in an

Einstein–de Sitter universe) so that the second term on the right-hand side of Eq. (6.257) is zero,
then the observed temperature fluctuations are caused by the intrinsic fluctuations of the photon
density, δγ(τ∗), at the last-scattering surface, the Doppler shift, (v · q̂)(τ∗), due to the motion of
the last-scattering surface, and the potential difference between the observer and the last scat-
tering surface, Ψ(τ∗). The temperature fluctuations due to intrinsic and potential fluctuations
together (which are sometimes referred to as the effective temperature) are called the Sachs–
Wolfe effect. Notice that this decomposition of the Sachs–Wolfe effect into the intrinsic and
potential parts is defined in the Newtonian gauge. If another gauge is used, the Sachs–Wolfe
effect may correspond to a different combination of perturbation quantities.

Using the results given in §4.2, it is straightforward to relate the Sachs–Wolfe effect with
initial perturbations. For simplicity, we assume the last-scattering surface to be a time when
the Universe is already matter dominated. In this case, and for isentropic perturbations in the
long wavelength limit, we have Ψ(k,τ∗) = Φ(k,τ∗) = 9A(k)/10, where A(k) = Ψ(k,τ → 0),
δγ(k,τ∗) = −(8/3)Ψ(k,τ∗) and so

ΘSW(k,μ ,τ0) =
1
3
Ψ(k,τ∗)eikμ(τ∗−τ0). (6.258)

This is the most familiar form of the Sachs–Wolfe effect. Expanding ΘSW(k,μ ,τ0) as

ΘSW(k,μ ,τ0) =∑
�

(−i)� (2�+1)ΘSW
� (k,τ0)P�(μ), (6.259)

we have

ΘSW
� (k,τ0) =

1
3
Ψ(k,τ∗) j�[k(τ0 − τ∗)], (6.260)
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where j� are spherical Bessel functions. In order to link this to the CMB power spectrum, C�, we
use Eq. (6.253) to write

Θ(n̂,x0) =∑
k
∑
�

(−i)�(2�+1)ΘSW
� (k,τ0)P�(μ)eik·x0 . (6.261)

Expanding the n̂ dependence on the left-hand side in harmonics [Eq. (6.244)] and using the fact
that k̂ · n̂ = −μ , we obtain

C� =
〈|a�m|2

〉
=

2Vu

π

∫ ∞

0
〈|ΘSW

� (k,τ0)|2〉k2 dk. (6.262)

Inserting Eq. (6.260) into this equation and using τ∗ � τ0 we obtain

C� =
2Vu

9π

∫ ∞

0
〈Ψ2(k,τ∗)〉 j2

� (kτ0)k2 dk ∝
∫ ∞

0

Pi(k)
k2 j2

� (kτ0)dk, (6.263)

where Pi(k) = k4〈|A(k)|2〉 is the initial power spectrum. Once Pi(k) is known, it is straightforward
to calculate C�. For a power-law spectrum Pi(k) ∝ kn, the above equation gives

C� = C2
Γ
[
�+
(

n−1
2

)]
Γ
[
�+
(

5−n
2

)] Γ[ 9−n
2

]
Γ
[

3+n
2

] . (6.264)

In the special case of a scale-invariant power spectrum, Pi(k) ∝ k, we have

C� ∝
1

�(�+1)
, (6.265)

and so �(�+ 1)C� is independent of �. This explains the behavior of C� at low � for an Ωm,0 = 1
universe shown in Fig. 6.9.

(b) The Large-Scale Doppler Effect As mentioned above, the Θv term on the right-hand side
of Eq. (6.257) arises from the motion of the last-scattering surface due to density perturbations.
On large scale where the collisional term is negligible, we can obtain from Eq. (4.186) that

θb =
k2

a

∫
aΨdτ. (6.266)

Assuming that the Universe is matter dominated at decoupling, and since the Universe is well
approximated by an Einstein–de Sitter model at early epochs, we have Φ ∼ constant, and
vb · q̂ ∼ i(kτ∗)μΨ(k,τ∗). Thus temperature fluctuations due to motions in the last-scattering
surface obey

ΘDoppler ∼ kτ∗ΘSW. (6.267)

Thus, for a scale-invariant power spectrum where ΘSW ∝ Ψ is independent of scale, we have
that ΘDoppler scales with the angular size as ∝ ϑ−1. In comparison to the Sachs–Wolfe effect,
the Doppler effect therefore becomes significant only on scales smaller than the horizon size at
decoupling.

Since the temperature fluctuations given by Eq. (6.257) are in the Newtonian gauge, in which
the Universe is globally isotropic, they do not include any anisotropy due to the motion of the
observer with respect to the CMB. As described in §2.9, such motion produces a strong dipole
signal in the CMB map.
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(c) The Integrated Sachs–Wolfe Effect If Φ+Ψ is time-dependent, there is an extra contri-
bution to the temperature fluctuations due to the integral term in Eq. (6.257), which is called the
integrated Sachs–Wolfe (ISW) effect. There are two possibilities to generate such an ISW effect
in the linear regime. First, in an open universe, or in a flat universe with a cosmological constant,
the linear gravitational potential decays with time (see §4.1.6). Because this kind of potential
decay occurs only at later times when the curvature and/or the cosmological constant become
dynamically important, the effect on the CMB is usually referred to as the late ISW effect. Sec-
ond, since the Universe is not completely matter dominated at the epoch of decoupling, the
density perturbations grow with time more slowly than the scale factor [see Eq. (4.88)], which
causes the potential to decay until the Universe becomes fully matter dominated. The tempera-
ture fluctuations caused by this potential decay are referred to as the early ISW effect because
they are produced close to decoupling.

From Eq. (6.257), the contribution of the ISW effect can be written as

ΘISW
� (k,τ0) =

∫ τ0

τ∗
(Φ′ +Ψ′) j�[k(τ0 − τ)]dτ. (6.268)

Since the Bessel function j� peaks at k(τ0 − τ) ∼ �, and since potential evolution is important
only for modes within the horizon, the largest effect is typically for modes with � ∼ �c ∼ (τ0 −
τc)/τc (where τc is the time when the potential starts to evolve significantly), although all modes
with � > �c can be affected. Thus, the early ISW effect is expected to peak roughly at the scale
corresponding to the horizon size at decoupling, i.e. at � ∼ 200 in a flat universe.

For a flat ΛCDM universe, the cosmological constant starts to dominate the energy content at
a redshift z ∼ (ΩΛ,0/Ωm,0)1/3−1, which is about 0.3 forΩm,0 = 0.3. Thus, the late ISW effect is
expected to peak roughly at the present horizon scale in this case, i.e. at very low �. For an open
universe, the curvature starts to be important at z ∼ Ω−1

m,0 −1. If Ωm,0 ∼ 0.3, the late ISW effect
is expected to be important again at relatively low �.

(d) Acoustic Peaks On angular scales ϑ ∼< ϑd, the CMB can be affected by a number of non-
gravitational effects. One important example is the acoustic oscillations of the baryon–radiation
fluid in the pre-recombination era. At decoupling, the sound speed of the baryonic component is
about

cs =
c√

3(1+R)
, R ≡ 3ρb

4ργ
≈ 27Ωb,0h2

(
1+ zdec

1100

)−1

. (6.269)

The Jeans length (see §4.1.3) thus corresponds to a comoving length scale

lJ = λJ(1+ zdec) ≈ 268(Ωb,0h2)−1/2(1+R)−1/2 Mpc. (6.270)

With Ωb,0h2 ∼ 0.02, this scale is larger than the horizon size (in comoving units) at decoupling,
lH(zdec) ≈ 200(Ωm,0h2)−1/2 Mpc. As a result, all baryonic perturbations that have come through
the horizon before decoupling oscillate as acoustic waves in the tightly coupled photon–baryon
fluid. Commensurabilities between the periods of these waves and the age of the universe at
decoupling give rise to an oscillatory pattern in the CMB power spectrum at angular scales ϑ <
ϑc ∼ 1◦ (see Fig. 6.9).

The acoustic wave solution given in §4.1.6 can be used to understand the qualitative behavior
of the acoustic pattern in the CMB. In the limit of tight coupling between photons and baryons,
Θ0 ≡ δγ/4 = δb/3, and we have from Eq. (4.82) that

Θ0(τ)+Ψ= [Θ0(0)+(1+R)Ψ]cos(kcsτ)+
1

kcs
Θ′

0(0)sin(kcsτ)−RΨ, (6.271)

where Θ0(0) and Θ′
0(0) are constants to be determined by initial conditions, and the perturbation

quantities are in Fourier space. The above solution assumes the gravitational potential Ψ to be
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constant, which is true only in the matter dominated era in an Einstein–de Sitter universe. Note
that Θ0 is the temperature fluctuation due to the isotropic part of the perturbation in photon
number density. The observed temperature fluctuation is, however, produced by the sum of the
effective temperature Θ0 +Ψ and the Doppler term due to the acoustic velocity,

Θv (τ) = −3μ
k
Θ′

0 =
√

3cs[Θ0(0)+(1+R)Ψ]sin(kcsτ)−
√

3
k
Θ′

0(0)cos(kcsτ), (6.272)

where we have used the continuity equation kv = −(3/4)δ ′γ and neglected the time depen-

dence of R. The factor
√

3 is a result of averaging the radial components of randomly oriented
velocities, which gives a factor of 1/

√
3.

The form of the acoustic oscillation is governed by the two initial conditions,Θ0(0) andΘ′
0(0).

The cosine part in Eq. (6.271) represents the isentropic mode, since it is driven by initial metric
perturbations; the sine part in Eq. (6.271) represents the isocurvature mode because it corre-
sponds to zero initial metric perturbations. Since the acoustic solution is valid only after the
perturbation has come through the horizon, Θ0(0) and Θ′

0(0) should be the values appropriate to
the epoch of horizon crossing, i.e. when τ ∼ τh(k) ≡ 1/(ck). Note that the phase of an acoustic
wave at horizon crossing, kcsτh(k) ∼ 1, is independent of k, and so the zero-point of the phase
can be set consistently at horizon crossing.

Consider first the isentropic mode for which δS = 3
4δγ −δdm = 0. As we have seen above, the

fluctuations in the effective temperature on super-horizon scales (kτ → 0) are due to the Sachs–
Wolfe effect. Using the fact that Ψ = Φ are constant for super-horizon perturbations, and using
Eq. (4.201) to relate δdm (in matter dominated case) or δγ = 4Θ0 (in radiation dominated case)
to Φ, we may write the initial condition as (Θ0 +Ψ)(0) = Ψ/3 for perturbations which come
through the horizon in the matter dominated era, or (Θ0 +Ψ)(0) =Ψ/2 for perturbations which
come through the horizon in the radiation dominated era. The acoustic waves at the decoupling
epoch (assumed to be matter dominated) can therefore be written as

Θ0(τ∗)+Ψ=
Ψ
3

(1+3R)cos(kls)−RΨ, (6.273)

where ls is the size of the sound horizon at decoupling:

ls ≡ cs(τ∗)τ∗ ≈ 100(Ωm,0h2)−1/2(1+R)−1/2 Mpc. (6.274)

Note that there is a zero-point shift, −RΨ, in Θ0(τ∗)+Ψ. The corresponding Doppler effect is

Θv (τ∗) =
cs√

3
Ψ(1+3R)sin(kls). (6.275)

Therefore, the amplitude of the temperature fluctuation given by a Fourier mode with wavenum-
ber k is determined byΨ, R, and the phase kls of the acoustic wave at the last-scattering surface.
If the initial perturbation spectrum does not oscillate significantly for k ∼> 1/ls, then the modes of
the effective temperature fluctuations with k = mπ/ls (m = 1,2, . . .) have extremal amplitudes:

|Θ0(τ∗)+Ψ| =
{ |Ψ|(1+6R)/3 (m = odd)

|Ψ|/3 (m = even).
(6.276)

Hence the amplitude of an m = odd mode is enhanced by a factor of 1 + 6R relative to that of
an m = even mode. Since each k is associated with a characteristic scale on the last-scattering
surface, these extrema correspond to peaks in the CMB power spectrum C�. The Doppler term
Θv (τ∗) due to acoustic velocity also produces peaks in the CMB, but with a phase shift of π/2
relative to Θ0(τ∗)+Ψ. However, since R at decoupling is not much smaller than 1, the peaks
given by Θv are lower than those given by Θ0(τ∗)+Ψ and so, in C�, they fill the valleys between
the peaks ofΘ0(τ∗)+Ψ rather than appearing as peaks. UnlikeΘ0(τ∗)+Ψ, the Doppler term has
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Fig. 6.10. An illustration of the various contributions of isentropic perturbations to the final CMB power
spectrum and their dependences on model parameters (Ωm, Ωb and ΩΛ are the density parameters in total
matter, baryons, and the cosmological constant, respectively, all at z = 0). The arrows indicate the directions
of changes led by the increase of a model parameter. For example, an increase inΩbh2 increases the heights
of the first and third acoustic peaks, shifts the peaks to higher �, and increases the peaks of acoustic velocity.
[Courtesy of W. Hu; see Hu (1995)]

neither a zero-point shift nor disparity between odd and even modes. These features are depicted
in Fig. 6.10.

The positions of the acoustic peaks in C� are determined by the physical size of the sound
horizon at decoupling, ls, and the angular-diameter distance of the last-scattering surface:

�m ≈ mπ(1+ zdec)dA(zdec)
ls

≈ 200m(1+R)1/2
Ω1/2

m,0

K (Ωm,0)
. (6.277)

Thus, the positions of the peaks depend significantly on Ωm,0 in models with ΩΛ = 0 but only
weakly on Ωm,0 in a flat universe with Ωm,0 +ΩΛ = 1. If Ωb,0 is large, �m may also increase
significantly with Ωb,0 through the R dependence.

As shown by Eq. (6.276), the heights of odd peaks increase with Ωb,0 but even peaks are
not affected by Ωb,0. Since the contributions from acoustic velocities increase with R as
(1 + 3R)/(1 + R)1/2, the depths of the valleys depend also on Ωb,0. In addition, the heights
of acoustic peaks can also be affected by the strength of initial perturbations on the relevant
scales, and by Ωm,0. The dependence on the initial power spectrum is obvious, but that on Ωm,0

needs some explanation. In short, the Ωm,0 dependence comes from the fact that potentials are
time dependent in realistic models. In fact, for perturbations inside the horizon (which is the
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case for acoustic waves), the time evolution in the mass component can induce potential evolu-
tion through the Poisson equation, and so potentials must respond to the acoustic oscillation in
the radiation/baryon fluid. The strength of the response is expected to be larger if the acoustic per-
turbations contribute a larger part of the gravitational potential through their self-gravity. Since
the change in potential is in resonance with the acoustic oscillation, this leads to a boost in the
amplitude of the acoustic oscillation. In the isentropic case, the importance of the self-gravity of
acoustic perturbations at a time t is proportional to ργ/ρm = aeq/a(t) ∝ (Ωm,0h2)−1(1+ z). The
boost is therefore larger for smaller Ωm,0h2, and for acoustic perturbations which come through
the horizon at higher z (i.e. for peaks with larger �).

(e) Damping on Small Scales In §4.2.5 we have shown that the imperfect coupling between
baryons and photons during decoupling causes damping in δγ on scales smaller than the damping
scale

ld ≈ 2π(1+ zdec)√
6

c
√

tctdec ≈ 4(Ωm,0h2)−3/4 Mpc. (6.278)

This damping suppresses the temperature fluctuations on scales smaller than a few arcminutes,
corresponding to � ∼> 2,000 (see Fig. 6.9).

Another important damping of the temperature fluctuations on small scales comes from the fact
that the last-scattering surface has a finite thickness. In §3.5.2 we have shown that the probability
for the last scattering to happen at a particular redshift z, P(z)dz, is approximately a Gaus-
sian peaked at zdec with a width Δz ≈ 80. This width corresponds to a comoving length scale

of ∼ 10(Ωm,0h2)−1/2 Mpc and an angular scale of θls ∼ 0.1Ω−1/2
m,0 degree. Thus, the observed

temperature fluctuation is a superposition of the temperature fluctuations distributed within this
finite width:

Θobs =
∫
Θ(z)P(z)dz. (6.279)

Clearly this leads to a smearing of the temperature fluctuations, Θ, on angular scales ∼< θls,
corresponding to � ∼> 1,000.

(f) Isocurvature Models Before leaving this subsection, let us very briefly describe the
CMB anisotropy expected from isocurvature models. For isocurvature perturbations in the long
wavelength limit, Ψ(k,τ∗) = I(k)/5, δγ = 4Ψ [see Eqs. (4.229) and (4.230)], and so

ΘSW(k,μ ,τ0) = 2Ψ(k,τ∗)eikμ(τ∗−τ0). (6.280)

Thus, the spectrum C� of the Sachs–Wolfe effect is related to the initial power spectrum,
Pi(k) = k4〈|I(k)|2〉, in the same way as in the isentropic case. However, for the same potential
perturbations, the temperature fluctuations in an isocurvature model are about six times higher
than in an isentropic model.

The acoustic peaks in the isocurvature case can be discussed in a way similar to the isentropic
case, but there are several differences. First of all, potential perturbations in the isocurvature case
are suppressed outside the horizon, because the density perturbations are set up initially to elim-
inate the curvature perturbations. Only near horizon crossing, when matter can be redistributed
by causal processes, can the potential perturbations start to grow. However, because perturba-
tions in the radiation are anticorrelated with the potential perturbations in dark matter before
horizon crossing (see §4.2.6), the potential well initially corresponds to photon rarefaction rather
than photon compression. As a perturbation approaches horizon crossing, photon pressure starts
to resist the rarefaction, which causes the photon–baryon fluid to fall into the potential well of
the dark matter, thereby increasing the depth of the potential well due to the self-gravity of the
photon–baryon fluid. As the photon-baryon fluid reaches maximal compression, the pressure
starts to push it back again, causing the potential well to decay. If the mass of the photon–baryon
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fluid is significant, the potential change (now in resonance with the acoustic oscillation) boosts
the amplitude of the acoustic oscillation. Since the oscillation starts from a state of weak com-
pression (rather than maximal compression as in the isentropic case), the isocurvature initial
condition drives the sine part of the acoustic solution (6.271), and the acoustic peaks are about
π/2 out of phase with those in the isentropic case. As shown in Fig. 2.42, the acoustic wave pat-
tern in the CMB power spectrum is now well constrained observationally, and it is very difficult
to construct pure isocurvature models that match the observed CMB power spectrum. However,
a mixed model, with dominant isentropic together with weak isocurvature perturbations, is still
possible.

6.7.3 Thomson Scattering and Polarization of the Microwave Background

CMB photons are polarized by Thomson scattering of electrons as they decouple from the
baryons and as they propagate from the last-scattering surface through the intergalactic medium
to us. The differential cross-section per solid angle for Thomson scattering is

dσ
dω

=
3

8π
σT|Ê · Ê′|, (6.281)

where Ê′ and Ê are the incoming and outgoing directions of the electric field (the polarization
vector). Since the polarization vector must be orthogonal to the propagation direction, incoming
radiation that is polarized parallel to the outgoing direction cannot be scattered. For instance,
consider incoming radiation in the −x direction, so that the polarization vector is (0,Ey,Ez),
which is scattered at a right angle into the z direction (see Fig. 6.11). The outgoing radiation
must have a polarization vector (0,Ey,0). Thus, even if the incoming radiation is unpolarized,
i.e. |Ey| = |Ez|, the outgoing radiation is linearly polarized in the y direction. Of course, the radi-
ation observed along the z direction may be scattered from various directions. For example, the
incoming radiation may be from the −y direction, (E ′

x,0,E ′
z), producing a polarization (E ′

x,0,0).
If the radiation were completely isotropic, so that |E ′

x|= |Ey|, the outgoing radiation would again
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Fig. 6.11. An illustration of how Thomson scattering of a radiation field with quadruple anisotropy
produces linear polarization. [After Hu & White (1997)]
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be unpolarized. As we shall see, only a quadrupole anisotropy in the incoming radiation can
generate a net linear polarization from Thomson scattering.

The polarization in a radiation field is usually described by the Stokes parameters, Q, U and
V . In a coordinate system with the z axis chosen to be along the direction of propagation, Q > 0
(Q < 0) represents linear polarization along the x axis (y axis) and U > 0 (U < 0) represents the
linear polarization along the axis which is at 45◦ (−45◦) from the x axis. The parameter V is
non-zero only if the radiation is circularly polarized, a phenomenon not expected in the CMB.
With V neglected, the polarization dependent intensity can be written as

Ii j =
(

T +Q U
U T −Q

)
, (6.282)

where T represents the unpolarized part. It is clear from this that Q measures the difference
between the intensity along the x axis (1 axis) and that along the y axis (2 axis). Thus, according
to Eq. (6.281), we can write the value of Q for light scattered in the z direction as

Q(ẑ) = A
∫

dωn̂′ I(n̂
′)

2

∑
j=1

(|x̂ · Ê′
j|2 −|ŷ · Ê′

j|2
)
, (6.283)

where I(n̂′) is the intensity of the incoming radiation (assumed to be unpolarized here) from
direction n̂′ [corresponding to (ϑ ′,ϕ ′) in spherical coordinates], the term containing the summa-
tion is the polarization produced by the radiation from this direction, and the integration is over
all incoming directions. In the above equation, we have included a constant factor, A, to take into
account the fact that only a fraction of the incoming photons are scattered because of the finite
optical depth of Thomson scattering (see below). Writing the Cartesian components of Ê′

1 and
Ê′

2 in terms of (ϑ ′,ϕ ′), we obtain

Q(ẑ) = −A
∫

dωn̂′ I(n̂
′)sin2ϑ ′ cos(2ϕ ′). (6.284)

Using the fact that U(ẑ) is related to Q(ẑ) via a coordinate transformation, ϕ ′ → ϕ ′ − 45◦, we
have

U(ẑ) = −A
∫

dωn̂′ I(n̂
′)sin2ϑ ′ sin(2ϕ ′). (6.285)

Note that

sin2ϑ ′ cos(2ϕ ′) ∝ Y2,2(ϑ ′,ϕ ′)+Y2,−2(ϑ ′,ϕ ′);

sin2ϑ ′ sin(2ϕ ′) ∝ Y2,2(ϑ ′,ϕ ′)−Y2,−2(ϑ ′,ϕ ′),

where Y�,m are the spherical harmonics. Since spherical harmonics are orthogonal, we see that
Q and U pick out the � = 2, m = ±2 harmonics in the incoming radiation I. Thus, Q and U are
non-zero only if I(n̂′) contains a quadrupole component, as mentioned above and evident from
Fig. 6.11.

In the case of the CMB, the fluctuations in the intensity of the incoming radiation are propor-
tional to the temperature fluctuations. If we expand the temperature anisotropy Θ(n̂) in terms of
spherical harmonics as in Eq. (6.261), Q and U will pick out the Θ2 component. We can then use
the Boltzmann equations (4.178)–(4.182) to obtainΘ2, and hence Q and U . In order to be consis-
tent, we need to include in these equations the collisional term due to the Thomson scattering. In
general, these equations have to be solved numerically (e.g. Bond & Efstathiou, 1984; Dodelson,
2003). However, qualitative understanding can be obtained with simplified assumptions. Since
polarization is a secondary effect, we can neglect it in the incoming radiation so that the colli-
sional term is given by Eq. (4.184). In this case, Θ2 is the same as in the absence of Thomson
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scattering, and 4πA should be replaced by (3/8π)τT (with τT the optical depth of Thomson scat-
tering) to account for the fact that only a fraction of the incoming photons are scattered. With
these simplifications, the polarization parameters corresponding to the temperature fluctuations
generated by a single perturbation mode k can be written as

Q(ẑ,k) =
3τT

8π
sin2ϑk cos(2ϕk)Θ2(k); U(ẑ,k) =

3τT

8π
sin2ϑk sin(2ϕk)Θ2(k), (6.286)

where (ϑk,ϕk) specifies the direction of the wavevector k, and Θ2(k) is the quadrupole com-
ponent produced by the perturbation mode k. Note that Eqs. (6.284) and (6.285) correspond to
the special case where the outgoing radiation is in the ẑ direction. They can be generalized to an
arbitrary outgoing direction n̂ by replacing sin2ϑk in the expressions of Q and U by 1− (n̂ · k̂)2.
Thus,

Q(n̂,k) =
3τT

8π
[1− (n̂ · k̂)2]Θ2(k)cos(2ϕk); U(n̂,k) =

3τT

8π
[1− (n̂ · k̂)2]Θ2(k)sin(2ϕk).

(6.287)

Finally, the polarization produced by all perturbation modes is given by

Q(n̂) =∑
k

Q(n̂,k); U(n̂) =∑
k

U(n̂,k). (6.288)

These can be expanded in spherical harmonics to obtain the polarization power spectra. For small
sections of the sky, for which the sky’s curvature can be neglected, the harmonic decompositions
become two-dimensional Fourier transforms, Q̃(l) and Ũ(l), where l is the two-dimensional
wavevector, conjugate to the Cartesian coordinates (ξ1,ξ2). We can then define the E and B
harmonics as

E(l) = Q̃(l)cos(2ϕl)+Ũ(l)sin(2ϕl); (6.289)

B(l) = −Q̃(l)sin(2ϕl)+Ũ(l)cos(2ϕl), (6.290)

where ϕl is the angle between l and the ξ1 axis. Since Q̃(l) ∝ cos(2ϕl) and Ũ(l) ∝ sin(2ϕl) for
the scalar perturbations considered here, the B mode power spectrum must be zero in this case.

To gain some insight into the polarization spectrum expected from decoupling, let us examine
the properties of Θ2 using the corresponding Boltzmann equation. Since the incoming radi-
ation is produced when photons are tightly coupled with baryons, we have kτc � 1, where
τc = 1/(aσTne). Including the collisional term and neglecting the high-order moment Δ3 in
Eq. (4.181), we obtain Θ′

2 − (2/5)kΘ1 = (9/10)Θ2/τc. Since |Θ′
2| � |Θ2|/τc in the tight cou-

pling limit, we have Θ2 ≈ −(4/9)kτcΘ1 � Θ1. In the same limit, one can also show that
Θ� ∝ kτcΘ�−1 � Θ�−1 for � > 2, so that our neglect of Δ3 in Eq. (4.181) is justified. The fact
that Θ2 ∝Θ1 shows that the polarization power spectrum produced at decoupling should contain
acoustic peaks similar to those produced by the acoustic velocity. There is, therefore, a phase
shift of π/2 in the polarization peaks relative to temperature peaks. Since the amplitudes of the
velocity peaks are comparable to those of the temperature peaks, the overall amplitude of the
polarization power spectrum is expected to be smaller than the temperature power spectrum by a
factor of ∼ kτc. Polarization power spectra with such characteristics have indeed been observed
both through the Θ-E cross-spectrum and through the E-E power spectrum (e.g. Nolta et al.,
2009; Pryke et al., 2009).

In the presence of gravitational waves, a tensor mode temperature quadrupole can be pro-
duced, which can also produce polarization through Thomson scattering. Since the temperature
fluctuations produced by a given Fourier mode, k, of tensor perturbations have an angular depen-
dence relative to k that is different from that produced by scalar perturbations, the polarization
generated by gravitational waves have a non-zero B mode. Since inflation generically predicts
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the production of gravitational waves in the early Universe, a detection of the B mode power
spectrum would confirm the inflationary paradigm and provide important constraints on the
potential of the inflaton (see Dodelson, 2003, for details).

6.7.4 Interaction between CMB Photons and Matter

CMB photons can interact with an ionized intergalactic medium (IGM) through free–free pro-
cesses (free–free absorption and bremsstrahlung) and Compton scattering (see §B1.3). Both the
free–free and the double-photon (radiative) Compton processes involve the creation of photons,
while normal Compton scattering conserves the number of photons. This difference has impor-
tant observable effects on the CMB. If the temperature of the IGM is higher than that of the
radiation field, photons can gain energy from electrons through inverse Compton scattering.
Since the number of photons is conserved in this process, the energy gain must result in a change
in the spectral energy distribution of the photons. On the other hand, the free–free and double-
photon Compton processes may thermalize the radiation field by creating more photons, leading
to a blackbody distribution with a higher temperature. Whether the radiation field is thermalized
with the IGM or a spectrum distortion is produced depends on how effective the thermalization
processes are. In §3.5.4 we have seen that, since the baryon–photon ratio in the Universe is low,
double-photon Compton scattering is the main thermalization process, and the time scale for this
process is shorter than the Hubble time scale at z ∼> 106. Thus, any energy release to the IGM at
z ∼> 106 would be thermalized quickly, but if the IGM was heated at lower redshift, significant
spectral distortions in the CMB may be produced by inverse Compton processes.

(a) Spectral Distortion of the CMB by Hot Gas The starting point for calculating the spectral
distortion due to the inverse Compton effect of a hot IGM is the Kompaneets equation (B1.67)
described in §B1.3.6. In the limit that the electron temperature is much higher than the CMB
temperature (Te 	 Tγ ), the term N (N +1) in Eq. (B1.69) can be neglected, giving

∂N

∂y
≈ 1

x2

∂
∂x

[
x4 ∂N

∂x

]
. (6.291)

This is a linear equation and can be solved by transforming it into a diffusion-type equation in
(y,z) where z ≡ lnx+3y. The solution is

N (x,y) =
1√
4πy

∫ ∞

0

dξ
ξ

N (ξ ,0)exp

[
− 1

4y

(
3y+ ln

x
ξ

)2
]

(6.292)

(e.g. Bernstein & Dodelson, 1990), which can be calculated for a given initial spectrum N (x,0).
From this we can determine the total number and energy of photons:

nγ(y) = nγ(0), uγ(y) = uγ(0)e4y. (6.293)

Thus, while the number of photons is conserved, the photon energy is increased by a factor of e4y.
Now suppose that the initial spectrum is Planckian: N (x,0) = (ex − 1)−1. Since the total

energy of photons is increased (because Te 	 Tγ ) while the total number is conserved, there
must be some redistribution of photon energies. In the Rayleigh–Jeans tail, N (x,0) ≈ x−2. In
Eq. (6.292), this gives

N (x,y) ≈ x−1e−2y (at x � 1). (6.294)

Since N ∝ T , the change in the effective temperature in the Rayleigh–Jeans tail is

T (y) = T (0)e−2y, or
δT
T

= −2y for y � 1, (6.295)
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which corresponds to a decrement in the temperature. Since the total photon number is conserved,
the analogous change in the Wien tail of the spectrum corresponds to an increment in the effective
temperature.

Observations of the CMB radiation spectrum by COBE shows that the CMB has a Planck
spectrum with T = 2.725± 0.002K (see §2.9). This result can be transformed into a limit on
the Compton y parameter: y ∼< 1.5 × 10−5, which, in turn, puts a stringent constraint on the
possible existence of a hot IGM. Suppose that the IGM was heated to a high temperature at
redshift z1 and has evolved adiabatically to the present time t0. If the IGM is highly ionized
since z1, then the number density and temperature of electrons evolve with redshift as ne(z) ∝
(1+ z)3n0 and Te(z) ∝ (1+ z)2T0 (assuming z is low enough so that Compton drag is negligible;
see §3.1.5), where n0 and T0 are the values at the present time. Using the definition of y, we can
write

y =
c

H0

kBT0

mec2σTn0

∫ z1

0

(1+ z)4

E(z)
dz

≈ 1.2×10−3
(

T0

108 K

)
ΩIGMh

∫ z1

0

(1+ z)4

E(z)
dz, (6.296)

where E(z) is given by Eq. (3.75) and the second equation assumes the IGM to be completely
ionized. Thus, only a tiny fraction of the IGM is allowed to be in the X-ray emitting phase.

(b) The Sunyaev–Zelídovich Effect of X-Ray Clusters Clusters of galaxies are known to
contain lots of X-ray emitting gas with temperatures of about 108 K (see §2.5.1). Such gas can
scatter the CMB photons and cause spectral distortions in the CMB radiation in the direction
of the cluster. The net effect is similar to that in Eq. (6.295). In the Rayleigh–Jeans part of the
spectrum, the effective temperature of the CMB is changed by

δT
T

= − 2σT

mec2

∫
Pe(�)d�, (6.297)

where Pe(�) = nekBTe is the electron pressure at a position � along the line-of-sight in the cluster.
This effect, called the Sunyaev–Zel’dovich (SZ) effect (Sunyaev & Zel’dovich, 1972), causes
a ‘dip’ (decrement) in the CMB in the radio band (i.e. in the Rayleigh–Jeans part of the CMB
radiation spectrum) with an angular size of about �/dA (where � is the size, and dA the angular-
diameter distance, of the cluster), and has been observed for several clusters (e.g. Birkinshaw,
1999; Bonamente et al., 2006). The temperature Te can in principle be measured from the X-
ray spectrum of a cluster. Since the X-ray emission is produced by bremsstrahlung, the X-ray

luminosity can be written as LX = An2
e�

3T 1/2
e , where the proportionality A depends on the details

of the density and temperature profiles of the cluster. Thus, with the assumption of spherical
symmetry of the cluster, a measurement of δT/T together with the measurements of the X-ray
temperature and luminosity, can in principle be used to estimate the physical size of the cluster,
�. If the redshift of the cluster is low so that the curvature effect in the dA-z relation can be
neglected, a comparison of � with the angular size of the cluster then determines the Hubble
constant (e.g. Birkinshaw, 1999; Bonamente et al., 2006).

(c) Kinematic SZ Effect Peculiar motions of the hot intracluster gas lead to a Doppler shift
of the scattered photons (see §B1.3.6), which can also change the spectrum of the CMB.
For small optical depths, the change in the intensity of the CMB at frequencies near ν is
given by

δ I
I

=
σT

c

∫
d�vpecne

(
xex

ex −1

)
, x =

hPν

kBT
, (6.298)
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where vpec is the peculiar velocity of the intracluster gas along the line-of-sight, and T is the
temperature of the CMB. This equation is similar to the thermal effect, but with the replacement
of kBTe/mec2 by vpec/c. In the Rayleigh–Jeans part of the spectrum, x � 1 and

δT
T

≈ δ I
I

≈ σT

c

∫
vpecne d�. (6.299)

For a typical cluster, the kinematic SZ effect at the cluster center is of the order

ΔT ∼ 30

(
ne

3×10−3 cm−3

)(
rc

0.4Mpc

)( vpec

500kms−1

)
μK, (6.300)

where ne is the electron density in the core and rc is the core radius. The spectral signature of
this effect (i.e. its strength as a function of frequency) is indistinguishable from that of the CMB
fluctuations induced at decoupling, and as a result it is difficult to separate the two effects.

(d) Thomson Scattering due to Re-ionization Suppose that the Universe is re-ionized at a
redshift zri and that the intergalactic medium (IGM) remained fully ionized at z < zri. The optical
depth to Thomson scattering from us to a redshift z < zri is

τT(z) =
∫ z

0
σTne(z)c

dt
dz

dz =
cσTne(0)

H0

∫ z

0

(1+ z)2

E(z)
dz. (6.301)

For z 	Ω−1
m,0 and z 	 (ΩΛ,0/Ωm,0)1/3, we have

τT(z) ≈ H0cσT

4πGmp

⎛⎝Ωb,0

Ω1/2
m,0

⎞⎠z3/2 ≈ 0.017h

⎛⎝Ωb,0

Ω1/2
m,0

⎞⎠z3/2. (6.302)

Thus, the re-ionization redshift, zri, can be estimated by measuring the optical depth:

zri ≈ 15Ω1/3
m,0 (Ωb,0h)−2/3 τ2/3

T . (6.303)

Because of the scattering, temperature fluctuations in the CMB will be smeared out. This effect
is most significant on scales smaller than the Hubble radius at zri. From Eq. (6.250), the angular
scale corresponding to this Hubble radius is

ϑH(zri) ≈ 30◦

z1/2
ri

≈ 7.5◦ (Ωb,0h)1/3Ω−1/6
m,0 τ−1/3

T (for Ωm,0 +ΩΛ,0 = 1). (6.304)

Thus, if the Universe was re-ionized at an early epoch, so that τT is significant, primordial
anisotropy in the CMB can be significantly suppressed on angular scales smaller than a few
degrees.

In order to obtain an accurate estimate of the primordial power spectrum from the observed
CMB anisotropy, we need to take these re-ionization effects into account. To do this, it is impor-
tant to measure the polarization spectrum of the CMB. Since Thomson scattering is polarization
dependent, as described in §6.7.3, the effects of re-ionization can be probed by the polarization
power spectrum on large scales. This polarization signal has indeed been observed by the Wilkin-
son Microwave Anisotropy Probe (WMAP) (e.g. Nolta et al., 2009), and is used together with
the observed temperature anisotropy to constrain both cosmological parameters and the epoch of
re-ionization (see below).

6.7.5 Constraints on Cosmological Parameters

As described in §2.9, there has been dramatic progress in our observational assessment of the
CMB, starting with the preliminary detection of anisotropy on large angular scales by COBE, up



6.7 Fluctuations in the Cosmic Microwave Background 317

Table 6.1. Summary of the cosmological parameters of the ΛCDM model and the
corresponding 68% intervals.

Parameter WMAP5 WMAP5+BAO+SN

100Ωb,0h2 2.273±0.062 2.265±0.059
ΩCDMh2 0.1099±0.0062 0.1143±0.0034
ΩΛ,0 0.742±0.030 0.721±0.015
ns 0.963+0.014

−0.015 0.960+0.014
−0.013

τT 0.087±0.017 0.084±0.016

109 ×Δ2(k0)
a

2.41±0.11 2.457+0.092
−0.093

σ8 0.796±0.036 0.817±0.026
H0 71.9+2.6

−2.7 kms−1 Mpc−1 70.1±1.3 kms−1 Mpc−1

Ωb,0 0.0441±0.0030 0.0462±0.0015
ΩCDM 0.214±0.027 0.233±0.013
Ωm,0h2 0.1326±0.0063 0.1369±0.0037

zri
b

11.0±1.4 10.8±1.4

t0/Gyr
c

13.69±0.13 13.73±0.12

a k0 = 0.002 Mpc−1. Δ2(k) = k3P(k)/(2π2)
b ‘Redshift of re-ionization’, if the Universe was re-ionized instantaneously from the neutral state to the fully ionized

state at zri
c The present-day age of the Universe

to accurate measurements of the acoustic peaks, damping tail and polarization. Since the physics
behind these observable quantities is well understood, as described earlier in this section, the
observational results can be used to put stringent constraints both on cosmology and on the initial
conditions for structure formation. Table 6.1 is a summary of the model parameters obtained from
the WMAP five-year data (WMAP5), assuming a ΛCDM model, i.e. that the curvature term,
ΩK ≡ 1−Ω0, is zero, and that the dark energy component has an equation of state with w = −1
(see Komatsu et al., 2009). The results shown in the second column are based on WMAP5 alone,
while those in the third column are based on combining WMAP5 with data on the baryon acoustic
oscillation (BAO) feature in the distribution of galaxies and on the redshift–distance relation of
Type Ia supernovae (SN). As is evident, all model parameters of the ΛCDM cosmology have
already been constrained to high accuracy.

CMB data alone cannot provide stringent constraints on the curvature of the Universe, because
the patterns observed in the CMB power spectrum are angular and distances are required in order
to interpret them in terms of physical processes. For a given high redshift, the corresponding
distance depends not only on the curvature, but also on the expansion history of the Universe. The
latter is determined by the energy content of the Universe and the Hubble constant at the present
time. Thus, curvature effects on the CMB power spectrum are degenerate with those produced by
the Hubble constant, and by the density and equation of state of the dark energy component. The
degeneracy can be broken with an independent measure of the expansion history. For instance,
one can achieve this by using one or more of the following distance scales: (i) the present-day
Hubble constant obtained from, for example, the Hubble Key Project (Freedman et al., 2001);
(ii) the luminosity distances provided by Type Ia supernovae (SN); (iii) the angular-diameter
distances obtained from the BAO in the distribution of galaxies. The combination of WMAP5
with the current BAO and SN data gives −0.0175 < ΩK < 0.0085 and −0.11 < 1 + w < 0.14
(both at 95% confidence level), in excellent agreement with the ΛCDM model.

With improved measurements from the next generation of CMB experiments, such as the
Planck satellite, and from ground-based measurements, the determinations of cosmological



318 Probing the Cosmic Density Field

parameters can be pushed to even higher accuracy (see Hu & Dodelson, 2002). These will not
only give more stringent limits on models within the current ΛCDM paradigm, but also provide
the opportunity to detect possible deviations from this paradigm, such as non-Gaussianity, non-
adiabaticity of the primordial perturbations, or time dependence of the equation of state of dark
energy. In addition, these observations may also provide a clear detection of the B mode polar-
ization due to the gravitational waves predicted by the inflationary paradigm, and they may put
stringent constraints on the re-ionization history of the Universe.



7

Formation and Structure of Dark Matter Halos

As we have seen in Chapter 2, there is ample evidence that galaxies reside in extended halos of
dark matter. According to the current paradigm, these dark matter halos form through gravita-
tional instability. As we have seen in Chapters 4 and 5, density perturbations grow linearly until
they reach a critical density, after which they turn around from the expansion of the Universe
and collapse to form virialized dark matter halos. These halos continue to grow in mass (and
size), either by accreting material from their neighborhood or by merging with other halos. Some
of these halos may survive as bound entities after merging into a bigger halo, thus giving rise
to a population of subhalos. This process is illustrated in Fig. 7.1, which shows the formation
of a dark matter halo in a numerical simulation of structure formation in a CDM cosmology. It
shows how a small volume with small perturbations initially expands with the Universe. As time
proceeds, small-scale perturbations grow and collapse to form small halos. At a later stage, these
small halos merge together to form a single virialized dark matter halo with an ellipsoidal shape,
which reveals some substructure in the form of dark matter subhalos.

In Chapter 6 we have described the overall statistical properties of the cosmic density field.
In this chapter we focus on the statistical properties of the discrete halos, and on their internal
structure. In particular, we will discuss the following topics:

• the mass function of dark matter halos (i.e. the number density of halos as a function of halo
mass), its dependence on cosmology, and its evolution with redshift;

• the mass distribution of the progenitors of individual halos;
• the merger rate of dark matter halos;
• intrinsic properties of dark matter halos, such as density profile, shape and angular momentum;
• the mass function of dark matter subhalos, and its dependence on the mass of the host halo;
• the large-scale environment and spatial clustering of dark matter halos.

Clearly, since dark matter halos are the hosts of galaxies, these properties will have a direct link
to the mass function, progenitor mass function, merger rate, clustering properties and internal
properties of galaxies (see Chapter 15). As a result, understanding the structure and formation
of dark matter halos plays a pivotal role in the understanding of the formation and evolution of
galaxies.

In this chapter, we start with a description of peaks in the cosmic density field (§7.1). In the
peak formalism, it is assumed that the material which will collapse to form nonlinear objects (i.e.
dark matter halos) of given mass can be identified in the initial density field by first smoothing
it with a filter of the appropriate scale and then locating all peaks above some threshold. The
properties of peaks in a Gaussian random field can be analyzed in a mathematically rigorous
way, but the formalism nevertheless has significant limitations. Although it predicts the num-
ber density of peaks as a function of peak height, it cannot be used to obtain the mass function
of nonlinear objects (dark halos), nor does it provide a model for how dark matter halos grow
with time. To remedy these limitations, an alternative formalism, built on an idea originally due
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Fig. 7.1. The formation of a single dark matter halo in a numerical simulation of structure formation in a
CDM cosmology. All panels correspond to the same physical size, and show the same 20,000 particles. At
redshift z = 0 (last panel) these end up in a single halo. From left to right, and top to bottom, the panels
correspond to redshifts of 3.5, 2.3, 1.5, 0.82, 0.35, and 0.0. [See White (1996)]
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to Press & Schechter (1974), has been developed. Although mathematically less rigorous, this
formalism, and its extensions, allow one to calculate many properties of the population of dark
matter halos, such as their mass function (§7.2), the mass distribution of their progenitors, their
merger rate (§7.3), and their clustering properties (§7.4). The analytic nature of this extended
Press–Schechter formalism helps us to understand how the properties of the halo population are
related to the cosmological framework. Its non-rigorous nature implies, however, that its predic-
tions should always be checked using other methods, primarily numerical N-body simulations
of cosmic structure formation. In §7.5 we describe the internal structure of dark matter halos,
focusing on their density profiles, their shapes, their angular momenta, and their substructure
(i.e. their subhalo populations). In a hierarchical model like CDM, most of the mass at late times
is contained in dark matter halos. One can therefore describe the mass distribution by specifying
the spatial distribution of dark matter halos and their internal density structure. This ‘halo model’
of dark matter clustering is the topic of §7.6.

7.1 Density Peaks

As we have seen in Chapter 4, in the linear regime the overdensity field grows as δ (x, t) ∝ D(t),
with D(t) the linear growth rate. Thus for a given cosmology [which governs D(t)] we can
determine the properties of the density field at any given time from those at some early time ti.
Can we extend this to the nonlinear regime in order, for example, to predict the distribution and
masses of collapsed objects from δ (x, ti) without following the nonlinear dynamics in detail? An
object of mass M forms from an overdense region with volume V = M/ρ̄ in the initial density
field. It is tempting to assume that such a region will correspond to a peak in the density field
after smoothing with window of characteristic scale R ∝M1/3. This suggests that a study of the
density peaks of the smoothed density field can shed some light on the number density and spatial
distribution of collapsed dark matter halos.

7.1.1 Peak Number Density

Consider an overdensity field δ (x;R) which is a smoothed version of δ (x):

δ (x;R) ≡
∫
δ (x′)W (x+x′;R)d3x′, (7.1)

where W (x;R) is a window function of characteristic radius R. To be concise, we will drop the
argument R and denote the smoothed field simply by δ (x). The field δ (x) generally contains
many peaks (local maxima) and valleys (local minima). The spatial distribution of peaks can
formally be written as

npk(x) =∑
p
δ (D)(x−xp), (7.2)

where the xp are the peak positions. Since, by definition, the gradient of the smoothed field is
zero at a peak, we have that η(xp)≡∇δ (xp) = 0. Expanding η(x) in the vicinity of a peak gives

ηi(x) ≈∑
j
ζi j(xp)× (x−xp) j , (7.3)

where

ζi j(xp) ≡ ∇i∇ jδ (xp)

= −∑
k

kik jδkeik·xp . (7.4)
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Provided ζi j is non-singular at xp, we have that

(x−xp)i ≈∑
j
ζ−1

i j (xp)η j(x); (7.5)

hence

δ (D)(x−xp) = |detζ (xp)|δ (D) [η(x)] . (7.6)

Note that Eq. (7.6) is true not only for peaks but for all (extremal) points where η = 0. In order
for an extremal point to be a peak, the 3× 3 matrix ζi j has to be negative definite. If we denote
the three eigenvalues of −ζi j as Λ1 ≥ Λ2 ≥ Λ3, then the constraint for an extremum to be a peak
is Λ3 > 0. In addition, it is usually more useful to consider density peaks with some specific
heights, and so we also put a constraint, (δ/σ) ≥ ν [where σ = 〈δ 2〉; see Eq. (6.29)], on the
peak height. Inserting Eq. (7.6) into Eq. (7.2) and taking into account the constraints Λ3 > 0, we
can write the density distribution of peaks with (δ/σ) ≥ ν as

npk(≥ ν;x) = H (δ/σ −ν) |Λ1Λ2Λ3|H (Λ3)δ (D)(η), (7.7)

where H (x) is the Heaviside step function, and all field quantities are evaluated at x. The
ensemble average is

npk(≥ ν) =
〈
H (δ/σ −ν) |Λ1Λ2Λ3|H (Λ3)δ (D)(η)

〉
, (7.8)

or, in differential form,

Npk(ν)dν =
〈
δ (D) (δ/σ −ν) |Λ1Λ2Λ3|H (Λ3)δ (D)(η)

〉
dν. (7.9)

The ensemble average in the above equations can be carried out once the distribution function
P(δ ,ζi j,ηi) is known. For a Gaussian random field, this distribution function is a multivariate
Gaussian specified by the covariance matrix of the variates:

〈
δ 2〉= σ2

0 ,
〈
ηiη j

〉
=
σ2

1

3
δi j,

〈
ζi jζkl

〉
=
σ2

2

15

(
δi jδkl +δikδ jl +δilδ jk

)
, (7.10)

〈δηi〉 = 0,
〈
δζi j

〉
= −σ

2
1

3
δi j,

〈
ηiζ jk

〉
= 0, (7.11)

where σ0, σ1, σ2 are defined by Eq. (6.30). With all these, it is straightforward (though tedious)
to perform the ensemble averages in the expressions of npk and Npk (see Bardeen et al., 1986).
The result for the comoving differential peak density is

Npk(ν)dν =
1

(2π)2R3∗
e−ν

2/2G(γ,γν)dν, (7.12)

where

R∗ ≡
√

3
σ1(R)
σ2(R)

, γ ≡ σ2
1 (R)

σ2(R)σ0(R)
, (7.13)

and

G(γ,y) =
1√

2π(1− γ2)

∫ ∞

0
exp

[
− (x− y)2

2(1− γ2)

]
f (x)dx, (7.14)
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with

f (x) =
x3 −3x

2

{
erf

[(
5
2

)1/2

x

]
+ erf

[(
5
2

)1/2 x
2

]}

+
(

2
5π

)1/2 [(31x2

4
+

8
5

)
e−5x2/8 +

(
x2

2
− 8

5

)
e−5x2/2

]
. (7.15)

For high peaks, where ν	 1, this reduces to

Npk(ν)dν =

(
σ2

2 /3σ2
0

)3/2

(2π)2

(
ν3 −3ν

)
e−ν

2/2 dν, (7.16)

and

npk(≥ ν) =

(
σ2

2 /3σ2
0

)3/2

(2π)2

(
ν2 −1

)
e−ν

2/2. (7.17)

Using the same principle, one can also calculate the number densities of minima and saddle
points. The Euler characteristic, χ , of the overdensity field δ (x), defined as

χ ≡ number of maxima+number of mimima−number of saddles, (7.18)

can then be obtained. The genus of the field, which is the negative of the mean of χ per unit
volume, is

genus = −nχ(≥ ν) = 2

(
σ2

2 /3σ2
0

)3/2

(2π)2

(
1−ν2)e−ν

2/2. (7.19)

Since this result does not depend on the assumption that the peaks are high, it applies to all Gaus-
sian fields. Except for its normalization, the genus as a function of peak height ν is independent
of the power spectrum. Thus, the shape of the genus curve (nχ as a function of ν) can be used to
test whether a density field is Gaussian in a way that is independent of the power spectrum (e.g.
Gott et al., 1986).

7.1.2 Spatial Modulation of the Peak Number Density

So far we have described how to calculate the mean number density of peaks in the cosmic
density field. In order to study their spatial distribution, we need to examine how the number
density of peaks is modulated by large-scale density fluctuations.

Denote by δb(x) the background field obtained by smoothing the original field in large spher-
ical windows of radius Rb. To avoid confusion, the smoothed field defining the density peaks
will now be denoted by δs(x), and the corresponding window radius by Rs. Note that the window
functions for δb and δs may have different forms, one being Gaussian and the other being top-hat,
for example. The number density of peaks with height (δs/σs) = νs in the δs field, given that the
background field at the location of the peaks has height (δb/σb) = νb, can be written as

Npk(νs|νb)dνs =
Npk(νs,νb)dνs dνb

P(νb)dνb
. (7.20)

Since peak conditions are not imposed on the δb field, the distribution function of the back-
ground field, P(νb), is simply a Gaussian for an underlying Gaussian density field. The quantity
Npk(νs,νb) is the number density of peaks at locations where the background field has an ampli-
tude νb ± dνb/2, and can be calculated by imposing an extra constraint, δ (D)(δb/σb − νb), on
Eq. (7.9) for the number density of peaks. The remaining task is then to evaluate the multivariate
Gaussian distribution function which now depends not only on νs, (ζi j)s and ηs, but also on νb.
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In the limit Rb 	 Rs, N (νs|νb) can be written in a form similar to that of N (ν) in Eq. (7.12):

Npk(νs|νb)dνs =
1

(2π)2R3∗,s
e−ν

2
p/2G(γp,γpνp)dνp, (7.21)

where

γp =
γs

(1− ε2)1/2
, νp =

νs − ενb

(1− ε2)1/2
, ε ≡ 〈νsνb〉. (7.22)

It can be shown that ε = σb/σs for δb defined by a sharp-k filter (see §6.1.3). For a top-hat filter
this holds only approximately (Bower, 1991). In the limit Rb 	 Rs, we have that ε → 0 for a
power spectrum with an effective power index larger than −3, and

Npk(νs|νb) � Npk(νp), νp = (δs −δb)/σs. (7.23)

Thus, as long as Rb 	 Rs, the effect of the background field is just to shift the peak height from
νs = δs/σs to (δs −δb)/σs. This is called the peak-background split.

The modulation in the peak number density can be described by the overdensity of peaks,

δL
pk(νs|νb) =

N (νs|νb)
N (νs)

−1, (7.24)

where the superscript ‘L’ implies that the quantity is defined in Lagrangian coordinates.
Assuming that δb � δs (so that ενb/νs � 1) and working to first order in ενb/νs, we have

δL
pk(νs|νb) =

(
ν2

s −g1
)

δs
δb, with g1 ≡ ∂ lnG(γs,y)

∂ lny

∣∣∣∣
y=γsνs

. (7.25)

Since the number of peaks is conserved during the linear evolution of the density field, the
enhancement factor taking into account the linear evolution is

δpk(νs|νb) =
N (νs|νb)
N (νs)

VL

VE
−1, (7.26)

where VL ∝ R3
b is the background volume in the unevolved Lagrangian space, while VE is that in

the evolved Eulerian space. Since VL/VE = (1+δb), the peak overdensity to first order becomes

δpk(νs|νb) = bpk(δs;Rs)δb, (7.27)

where

bpk(δs;Rs) = 1+

(
ν2

s −g1
)

δs
(7.28)

(Mo et al., 1997b). Thus, the overdensity of peaks is enhanced with respect to the background
mass overdensity δb by a factor bpk that depends both on the height νs and the size Rs (or mass)
of the peaks. For high peaks, i.e. for νs 	 1, we have bpk(δs;Rs) ≈ νs/σs.

7.1.3 Correlation Function

Given the peak number density field, npk(x), one can also calculate the spatial correlation
function of peaks. For example, the two-point correlation function, defined as

ξL
pk(x1,x2) =

〈npk(x1)npk(x2)〉
〈npk(x)〉2 −1, (7.29)

can be evaluated by working out the covariance matrix of δ , ∇δ and ∇∇δ at the two peak
locations, x1 and x2. In the limit (ν/σ)2ξ (|x1 − x2|) � 1, where ξ is the two-point correlation
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function of the linear density field δ (x), the two-point correlation function of the peaks with
height ν reduces to

ξL
pk(r) =

(
ν2 −g1

)2

δ 2 ξ (r). (7.30)

Taking into account the change in the local peak number density due to the linear evolution of
the background field, we have

ξpk(r) = b2
pk(δ ,R)ξ (r), (7.31)

where bpk is given by Eq. (7.28). Compared to the two-point correlation function of the mass,
ξ (r), the two-point correlation function of the density peaks is enhanced by a bias parameter b2

pk.
Thus, if a population of galaxies is associated with high peaks in the initial density field, they are
expected to be more strongly clustered than the underlying matter.

Similar procedures can be applied to obtain the high-order correlation functions of density
peaks (see Bardeen et al., 1986, for details).

7.1.4 Shapes of Density Peaks

In the neighborhood of a density peak, the density profile can be approximated by

δ (x) ≈ δ (0)− 1
2∑Λix

2
i , (7.32)

where we have chosen a coordinate system in which the origin is at the peak location and the
three coordinate axes coincide with the three principal axes of the isodensity surface. With the
density profile given by Eq. (7.32), an isodensity surface, δ (x) = c, defines a triaxial ellipsoid
with semi-axes

ai =
(

2 [δ (0)− c]
Λi

)1/2

, (7.33)

and whose shape is characterized by the parameters

e =
Λ1 −Λ3

2∑Λi
, p =

Λ1 −2Λ2 +Λ3

2∑Λi
, (7.34)

which are measures of the ellipticity and oblateness/prolateness of the triaxial ellipsoid (see §5.3).
To describe the expected shapes of density peaks, one can start by calculating the conditional
probability for e and p subject to the constraint that the peak has a given height ν ≡ δ (0)/σ and
a given value of x ≡ (∑iΛi)/σ2:

dP = P(e, p|ν,x)dedp. (7.35)

For a Gaussian density field, this probability can be calculated analytically (Bardeen et al., 1986).
It turns out that this probability is independent of ν and has the form

P(e, p|x) =
225

√
5√

2π
x8

f (x)
exp

[
−5

2
x2(3e2 + p2)

]
W (e, p), (7.36)

where f (x) is given by Eq. (7.15), and

W (e, p) = e(e2 − p2)(1−2p)
[
(1+ p)2 −9e2]χ(e, p), (7.37)

χ(e, p) =

⎧⎨⎩
1 (if 0 ≤ e ≤ 1/4 and −e ≤ p ≤ e)
1 (if 1/4 ≤ e ≤ 1/2 and −(1−3e) ≤ p ≤ e)
0 (otherwise).

(7.38)
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The conditional probability for x for given peak height ν is independent of e and p:

P(x|ν)dx =
1√

2π(1− γ2)
exp

[
− (x− x∗)2

2(1− γ2)

]
f (x)

G(γ,γν)
dx, (7.39)

where x∗ ≡ γν. The distribution of e and p can then be obtained for given peak height ν using
P(e, p|ν) =

∫
P(e, p|x)P(x|ν)dx.

In the large x limit (i.e. for high peaks), both e and p are expected to be small, and we can
approximate P(e, p|x) by a Gaussian

P(e, p|x) ≈ P(em, pm)exp

[
− (e− em)2

2σ2
e

− (p− pm)2

2σ2
p

]
, (7.40)

where the most probable values and dispersions are

em =
1

(5x2 +6)1/2
, pm =

30
(5x2 +6)2 , σe =

em√
6
, σp =

em√
3
. (7.41)

Hence, higher peaks tend to be more spherically symmetric. Note that this property applies to
any Gaussian random field, independent of the power spectrum.

7.2 Halo Mass Function

The peak formalism described above allows one to calculate the abundance and clustering prop-
erties of density peaks of the smoothed overdensity field δs(x;R) as a function of their height and
of auxiliary properties such as their shapes. This should be related to the properties of objects of a
given mass (corresponding to the smoothing radius R) forming at different times (corresponding
to different peak heights). It is tempting to interpret the number density of peaks in terms of a
number density of collapsed objects of mass M ∝ ρ̄R3. However, there is a serious problem with
this identification, because a mass element which is associated with a peak of δ1(x) = δs(x;R1)
can also be associated with a peak of δ2(x) = δs(x;R2), where R2 > R1. Should such a mass
element be considered part of an object of mass M1 or of mass M2? If δ2 < δ1 the mass element
can be considered part of both. The overdensity will first reach (at time t1) the critical value for
collapse on scale R1, and then (at time t2 > t1) on scale R2. The situation reflects the fact that M1

is the mass of a collapsed object at t1 which merges to form a bigger object of mass M2 at t2, so
that M1 should no longer be considered as a separate object. In the opposite case, where δ2 > δ1,
the mass element apparently can never be part of a collapsed object of mass M1 but rather must be
incorporated directly into a larger system of mass M2. Such peaks of the field δ1 should therefore
be excluded when calculating the number density of collapsed objects of mass M1 but should be
considered parts of the collapsed objects of mass M2. This difficulty is known as the ‘cloud-in-
cloud’ problem, and it illustrates that deriving a mass function for collapsed objects using the
peak formalism requires treating the statistics of peaks as R is varied. This turns out to be quite
difficult to treat rigorously (see Bond & Myers, 1996, for a numerical approach).

What is required to predict the mass function of collapsed objects is a method to partition
the linear density field δ (x) at some early time into a set of disjoint regions (patches) each
of which will form a single collapsed object at some later time, and to calculate the statistical
properties of this partition. In what follows we describe a simple, but less rigorous, formalism
which can be used to compute the mass function of collapsed objects, as well as their mass
assembly histories.
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7.2.1 Press–Schechter Formalism

Consider the overdensity field δ (x, t), which in the linear regime evolves as δ (x, t) = δ0(x)D(t),
where δ0(x) is the overdensity field linearly extrapolated to the present time and D(t) is the
linear growth rate normalized to unity at the present (see §4.1.6). According to the spherical
collapse model described in §5.1, regions with δ (x, t) > δc � 1.69, or equivalently, with δ0(x) >
δc/D(t)≡ δc(t), will have collapsed to form virialized objects. In order to assign masses to these
collapsed regions, Press & Schechter (1974) considered the smoothed density field

δs(x;R) ≡
∫
δ0(x′)W (x+x′;R)d3x′, (7.42)

where W (x;R) is a window function of characteristic radius R corresponding to a mass M =
γfρR3, with γf a filter-dependent shape parameter (e.g. γf = 4π/3 for a spherical top-hat filter; see
§6.1.3). The ansatz of the Press–Schechter (PS) formalism is that the probability that δs > δc(t)
is the same as the fraction of mass elements that at time t are contained in halos with mass greater
than M. If δ0(x) is a Gaussian random field then so is δs(x), and the probability that δs > δc(t) is
given by

P[> δc(t)] =
1√

2πσ(M)

∫ ∞

δc(t)
exp

[
− δ 2

s

2σ2(M)

]
dδs =

1
2

erfc

[
δc(t)√
2σ(M)

]
. (7.43)

Here

σ2(M) = 〈δ 2
s (x;R)〉 =

1
2π2

∫ ∞

0
P(k)W̃ 2(kR)k2 dk (7.44)

is the mass variance of the smoothed density field with P(k) the power spectrum of the density
perturbations, and W̃ (kR) the Fourier transform of W (x;R) (see §6.1.3).

According to the PS ansatz, the probability (7.43) is equal to F(> M), the mass fraction of
collapsed objects with mass greater than M. There is, however, a problem here. As M → 0, then
σ(R) → ∞ (at least for a power-law spectrum with n > −3) and P[> δc(t)] → 1/2. This would
suggest that only half of the mass in the Universe is part of collapsed objects of any mass. This is
a characteristic of linear theory, according to which only regions that are initially overdense can
form collapsed objects. However, underdense regions can be enclosed within larger overdense
regions, giving them a finite probability of being included in a larger collapsed object. This
is another manifestation of the cloud-in-cloud problem mentioned above. Press & Schechter
(1974) argued, without a proper demonstration, that the material in initially underdense regions
will eventually be accreted by the collapsed objects, doubling their masses without changing the
shape of the mass function. Press & Schechter therefore introduced a ‘fudge factor’ 2 and adopted
F(> M) = 2P[> δc(t)]. This results in a number density of collapsed objects with masses in the
range M → M +dM given by

n(M, t)dM =
ρ
M
∂F(> M)
∂M

dM = 2
ρ
M
∂P[> δc(t)]

∂σ

∣∣∣∣ dσ
dM

∣∣∣∣ dM

=

√
2
π
ρ

M2

δc

σ
exp

(
− δ 2

c

2σ2

) ∣∣∣∣ dlnσ
dlnM

∣∣∣∣ dM. (7.45)

This is known as the Press & Schechter (PS) mass function. Note that time enters Eq. (7.45) only
through δc(t), and that mass enters through σ(M) and its derivative. Upon defining the variable
ν = δc(t)/σ(M) the PS mass function can be written in a more compact form:

n(M, t)dM =
ρ

M2 fPS(ν)
∣∣∣∣ dlnν
dlnM

∣∣∣∣dM, (7.46)
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where

fPS(ν) =

√
2
π
ν exp(−ν2/2), (7.47)

is the multiplicity function which gives the fraction of the mass associated with halos in a unit
range of lnν.

The PS formalism provides a useful way to understand how nonlinear structure develops in
a hierarchical model. As one can see from Eq. (7.45), halos with mass M can only form in
significant number when σ(M) ∼> δc(t). If we define a characteristic mass M∗(t) by

σ(M∗) = δc(t) = δc/D(t), (7.48)

then only halos with M ∼< M∗ can have formed in significant number at time t. Since, in hierarchi-
cal models, D(t) increases with t and σ(M) decreases with M, the characteristic mass increases
with time. Thus, as time passes, more and more massive halos will start to form.

7.2.2 Excursion Set Derivation of the Press–Schechter Formula

(a) The Excursion Set of a Gaussian Density Field An alternative derivation of the halo mass
function was obtained by Bond et al. (1991), using what is called the excursion set formalism,
also known as the extended Press–Schechter (EPS) formalism.

In order to be concise, in what follows we drop the argument t of δc(t), and adopt the shorthand
notation

S ≡ σ2(M) where M = γfρ R3. (7.49)

We will use S = S(M) as our mass variable, and since, in hierarchical models, S is a monotoni-
cally declining function of M, a larger value of S corresponds to a smaller mass. Each location x
in the density field δ0(x) corresponds to a trajectory δs(S), which reflects the value of the density
field at that location when smoothed with a filter of ‘mass’ S. In the limit S → 0, which corre-
sponds to M → ∞, we have that δs = 0 for each x. Increasing S corresponds to decreasing the
filter mass, and δs starts to wander away from zero.

In the excursion set formalism one adopts the sharp k-space filter for which γf = 6π2 (see
§6.1.3). The smoothed field is then

δs(x;R) =
∫

d3kW̃k(kR)δk,0 eik·x =
∫

k<kc

d3kδk,0 eik·x, (7.50)

where kc = 1/R is the size of the top-hat in k-space, and δk,0 are the Fourier modes of δ0(x). The
advantage of using this particular filter is that the change Δδs corresponding to an increase from
kc to kc +Δkc is a Gaussian random variable with variance

〈(Δδs)2〉 = 〈[δs(x;kc +Δkc)−δs(x;kc)]
2〉 =

1
2π2

∫ k=kc+Δkc

k=kc

P(k)k2 dk = σ2(kc +Δkc)−σ2(kc),

(7.51)
where

σ2(kc) =
1

2π2

∫
k<kc

P(k)k2 dk, (7.52)

[see Eq. (6.29)]. Thus the distribution of Δδs is independent of the value of δs(x;kc). When kc [or
the associated S = σ2(kc) = σ2(M) with M = 6π2ρk−3

c ] is increased, the value of δs at a given
point x executes a Markovian random walk. Note that for any other filter, the trajectory δs(S) will
not be Markovian.
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Fig. 7.2. A schematic representation of random walk trajectories in (S,δs) space. Each trajectory corre-
sponds to a mass element in the initial (Gaussian) density field, and δs is the overdensity at the location of
that mass element when the initial density field, linearly extrapolated to the present time, is smoothed with a
sharp k-space filter of mass M given by S = σ2(M). The horizontal dashed line indicates the critical density
for spherical collapse, δs = δc. Trajectory B′ is obtained by mirroring trajectory B in δs = δc for S ≥ S2,
and, since the trajectories are Markovian, is equally likely as trajectory B.

As an illustration, Fig. 7.2 shows examples of two trajectories, A and B. Now consider a given
mass scale M1, corresponding to S1, as indicated by the vertical line. According to the PS ansatz,
the fraction of all trajectories having δs > δc at S1 is equal to the fraction of mass elements in
collapsed objects with mass M > M1. For trajectory B, which has δs < δc at S1, this mass element
would not be part of a collapsed object with M > M1 according to the PS ansatz. However, since
it has δs > δc over the interval S2 < S < S3, it should be part of a halo with M > M3 > M1

according to the same PS ansatz. Clearly the PS ansatz is not self-consistent. The problem is that
it fails to account for the mass elements with trajectories such as B. A correction for this can be
made rather easily by realizing that the trajectory from (S2,δc) to (S1,Q1) is equally as likely as
the trajectory B′ (indicated by the dashed line) obtained by mirroring B for S ≥ S2 in δs = δc.1

This implies that each trajectory such as B that is missed in ‘counting’ based on the PS ansatz
corresponds to an equally likely trajectory, B′, that passes through a point with δs > δc at S1. The
fraction of mass in halos with M > M1 is therefore given by twice the fraction of trajectories that
crosses S1 at δs > δc. This gives a natural explanation for the fudge factor 2 in the original PS
formalism.

In order to derive the halo mass function from the excursion set formalism, we start by deriv-
ing the fraction of trajectories that have their first upcrossing of the barrier δs = δc at S > S1

(an example is trajectory A in Fig. 7.2). In the spirit of the PS formalism, we associate these
trajectories with the mass elements in collapsed objects of masses M < M1. Clearly, such a tra-
jectory must have δs(S1) < δc. However, this includes trajectories such as B, which have their
first upcrossing of the barrier at some S < S1. In order to exclude such trajectories, we once
again use the fact that trajectories B and B′ have equal probabilities. Indeed, all trajectories that
pass through (S,δs) = (S1,Q1) but have δs > δc for some S < S1 have a mirror trajectory that

1 The fact that B and B′ are equally probable is a consequence of the trajectories of Δδs being Markovian random walks
described by a Gaussian distribution with variance given by Eq. (7.51).
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passes through (S,δs) = (S1,Q2), where Q2 = Q1 +2(δc −Q1) = 2δc −Q1. Thus, the fraction of
trajectories with a first upcrossing at S > S1 is simply given by

FFU(> S1) =
∫ δc

−∞
[P(δs,S1)−P(2δc −δs,S1)] dδs

=
∫ ν1

−∞
dx√
2π

e−x2/2 −
∫ ∞

ν1

dx√
2π

e−x2/2, (7.53)

where ν1 ≡ δc/
√

S1, and we have used that, for a Gaussian random field,

P(δs,S)dδs =
1√
2πS

exp

(
−δ

2
s

2S

)
dδs. (7.54)

As discussed above, the fraction given by Eq. (7.53) is considered to be equal to the fraction,
F(< M1), of mass elements contained in halos with M < M1. If S →∞ as M → 0, every trajectory
will cross the barrier δc at some point. Hence, each mass element in the Universe is expected to
be in a collapsed object with some mass M > 0.2 Consequently, F(> M) = 1−F(< M) and we
obtain the halo mass function

n(M, t)dM =
ρ
M
∂F(> M)
∂M

dM =
ρ
M

fFU(S,δc)
∣∣∣∣ dS
dM

∣∣∣∣ dM, (7.55)

where

fFU(S,δc)dS =
∂FFU

∂S
dS =

1√
2π

δc

S3/2
exp

[
−δ

2
c

2S

]
dS, (7.56)

is the fraction of trajectories that have their first upcrossing in the range (S,S + dS). Simply
substituting Eq. (7.56) in Eq. (7.55) yields exactly the PS mass function (7.46), this time without
having to include a fudge factor of 2.

The excursion set formalism described above can be cast into a more elegant form in terms of
a diffusion equation. As described above, for a Gaussian random field, each step (characterized
by a change S → S +ΔS) of the random walk is determined by the mean and variance of the
change in δs, 〈Δδs〉 ≡ 〈Δδs|δs〉 and σ2

Δ ≡ 〈(Δδs −〈Δδs〉)2|δs〉, through the Gaussian distribution
function

P(Δδs|δs) =
1√

2πσΔ
exp

[
− (Δδs −〈Δδs〉)2

2σ2
Δ

]
d(Δδs). (7.57)

In the limit ΔS → 0, the problem is equivalent to the diffusion of a ‘particle’ in δs-space with S
being the ‘time’ variable. The probabilityΠ(δs,S) for the ‘particle’ to lie between δs and δs +Δδs

when the variance of the density field (the ‘time’) is S obeys the diffusion-type equation

∂Π
∂S

= −∂ (μΠ)
∂δ

+
1
2
∂ 2(Σ2Π)
∂δ 2 , (7.58)

where

μ ≡ lim
ΔS→0

〈Δδs|δs〉
ΔS

, and Σ2 ≡ lim
ΔS→0

〈(Δδs)2|δs〉
ΔS

, (7.59)

are the drift and variance parameters, respectively.
For sharp k-space filters, μ = 0 and Σ2 = 1, so that the diffusion equation reduces to

∂Π
∂S

=
1
2
∂ 2Π
∂δ 2 . (7.60)

2 In reality CDM has a small but non-zero Jeans mass and the effective n may be <−3 as k →∞. σ2(M) then approaches
a finite value for M → 0 and not all mass has to be in collapsed objects.
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We wish to calculate the probability for ‘particles’ starting from (δs,S) = (0,0) to reach (δs,S)
without exceeding a critical value δc at smaller S. This is equivalent to the solution of the diffu-
sion equation with an absorbing barrier at δs = δc. For Eq. (7.60) (i.e. for sharp k-space filters)
this has the following analytic solution:

Π(δs,S) =
1√
2πS

{
exp

(
−δ

2
s

2S

)
− exp

[
− (2δc −δs)2

2S

]}
(7.61)

(Chandrasekhar, 1943). We thus have that

FFU(> S1) =
∫ δc

−∞
Π(δs,S1)dδs, (7.62)

which, upon substitution of Eq. (7.61), is identical to Eq. (7.53).
Casting the excursion set approach in terms of a diffusion problem allows one to see more

clearly how to proceed when some of the assumptions in the model are relaxed. For exam-
ple, if we use top-hat or Gaussian filters instead of the sharp k-space filters, Eq. (7.58) is still
valid, except that the drift parameter μ and the variance parameter (the ‘diffusion coefficient’)
Σ2 should be evaluated for the new filter. Furthermore, if the critical density, δc, changes with S
instead of being a constant, the problem is equivalent to diffusion in the presence of a moving
absorbing barrier.

(b) Interpretation of the Excursion Set In deriving the halo mass function using the excursion
set formalism, we have made the ansatz that the fraction of trajectories with a first upcrossing on
a mass scale (M,M +dM) is equal to the mass fraction of the Universe in collapsed objects with
masses in this range. However, the following example shows that this cannot formally be true.
Consider a uniform spherical region of mass M and radius R, with density equal to the critical
density for collapse at some time t, embedded in a larger region with lower density. According to
the spherical collapse model, all mass elements in this spherical region will be part of a collapsed
halo of mass M at time t. Now consider an interior point x which is at a distance r from the
center of the spherical region, and calculate the mean overdensities within spheres centered on
this point. Clearly, the overdensity reaches the critical density only for spheres with radii smaller
than R− r. Thus, the mass element at x has its first upcrossing at a mass scale M(R− r)3/R3,
which is smaller than M unless x is at the center of M. This simple example suggests that the mass
associated with the first upcrossing of a mass element is only a lower limit on the actual mass
of the collapsed object to which the mass element belongs. Thus, the ansatz on which the EPS
formalism is based cannot be correct for individual mass elements. Yet, as we will see in §7.2.4
below, the resulting mass function seems to be in good agreement with numerical simulations.
This paradox is often interpreted as indicating that the excursion set formalism predicts, in a
statistical sense, how much mass ends up in collapsed objects of a certain mass at a given time,
but that it cannot be used to predict the halo mass in which a particular mass element ends up.

7.2.3 Spherical versus Ellipsoidal Dynamics

The Press–Schechter formalism described above is based on the assumption that the collapse of
density perturbations is described by the spherical collapse model. This leads to a critical over-
density for collapse, δc, which is independent of halo mass and time. However, as we show below,
the collapse of overdensities in a Gaussian density field is generically ellipsoidal rather than
spherical. In this subsection we show how to incorporate ellipsoidal dynamics into the excursion
set approach.

As we have seen in §5.3, initial gravitational collapse in a cosmological context is largely
driven by the initial tidal field. For a Gaussian density field smoothed on some scale, δs(x), we
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can calculate at any point the tidal tensor (the second derivatives of the potential field) and its
eigenvalues, λ1, λ2 and λ3. Since the potential field is also Gaussian, the joint distribution of
λ1, λ2 and λ3 is a multivariate Gaussian specified by their covariance matrix. This distribution
function was obtained by Doroshkevich (1970):

P(λ1,λ2,λ3) =
675

√
5

8πσ6 exp

(
−3I2

1

σ2 +
15I2

2σ2

)
(λ1 −λ2)(λ2 −λ3)(λ1 −λ3), (7.63)

where σ2 = 〈δ 2
s 〉, I1 = λ1 +λ2 +λ3 = δs and I2 = λ1λ2 +λ2λ3 +λ3λ1. Define the ellipticity and

prolateness of the tidal field as

e ≡ (λ1 −λ3)/(2δs), p ≡ (λ1 −2λ2 +λ3)/(2δs). (7.64)

(Note that e and p here correspond to the tidal field and should not be confused with the corre-
sponding quantities for the density field defined in §7.1.4.) We can then use Eq. (7.63) to write
the distribution function for e and p given δs:

P(e, p|δs) =
1125√

10π
e(e2 − p2)

(
δs

σ

)5

exp

[
− 5δ 2

s

2σ2

(
3e2 + p2)] . (7.65)

For all e this distribution peaks at p = 0. For p = 0, the maximum occurs at em = (δs/σ)−1/
√

5,
which suggests that regions with a higher δs/σ have a more spherical tidal tensor. Note, though,
that even for δs/σ ∼ 1 the deviation from spherical symmetry can be fairly substantial, indicating
that in general the collapse will be ellipsoidal.

In the ellipsoidal collapse model described in §5.3, the critical overdensity for collapse depends
on e and p. Since both e and p are random fields, their values at a given point change stochas-
tically as the size of the filter increases. Consequently, the critical density for collapse changes
stochastically at each step of the random walk. In this case, the excursion set is given by the statis-
tics of the random walk in (δs,e, p) space, which depends on the distribution of (Δδs,Δe,Δp)
given (δs,e, p). Although this distribution can in principle be obtained for a Gaussian random
field, the corresponding excursion set is rather complicated (e.g. Sandvik et al., 2007). In what
follows, we give an oversimplified prescription, which nevertheless captures the essence of the
ellipsoidal dynamics.

As discussed above, for a Gaussian density field the joint distribution of p and e peaks at
p = pm = 0 and e = em = (δs/σ)−1/

√
5. Thus, in order for regions with the most probable e

and p to collapse and form a bound object at time t, their initial overdensity must be δec(em,0),
where δec(e, p) is the critical overdensity for collapse given by Eq. (5.86) with δsc = δc(t). If we
set δs on the right-hand side of the expression for em to be equal to this critical value, we can
express em in terms of σ2. Inserting this expression of em along with pm = 0 into Eq. (5.86), one
obtains the following relation between δec and σ2:

δec(σ , t) = δc(t)

{
1+β

[
σ2

σ2∗ (t)

]γ}
, (7.66)

where σ∗(t) ≡ δc(t), β ∼ 0.47 and γ ∼ 0.615 (see Sheth et al., 2001). Although this relation
is derived for perturbations with the most probable e and p, it may be used to approximate the
average trend of δec with σ , since P(e, p|δs) is quite strongly peaked around (em, pm) for typ-
ical objects (with σ ∼ 1). Note that the perturbation power spectrum only enters in the relation
between σ and the size of the filter (or the mass of the object), whereas the effects of cosmology
only enter in δc(t) = δc/D(t). Several other features of Eq. (7.66) are also worth noticing. For
massive objects with σ/σ∗ � 1, this equation suggests that δec(σ , t) ≈ δc(t), so that the critical
overdensity required for collapse at time t is approximately the same as that given by the spher-
ical collapse model. The critical overdensity increases with σ , and so is larger for less massive
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objects. Thus, smaller objects are more strongly influenced by tides and therefore must have a
larger internal density in order to be able to collapse.

Eq. (7.66) is useful because it allows one to include the effects of ellipsoidal collapse into the
excursion set model in a straightforward way. All one needs to do is to use Eq. (7.66) to set the
barrier in the (S,δs) plane, and the mass function associated with ellipsoidal collapse can then be
obtained from the mass distribution of the first upcrossings of this barrier by independent random
walks. For example, for a given model of structure formation, one can simulate an ensemble of
independent unconstrained random walks, record the values of S (or mass M) at all first upcross-
ings of the mass-dependent (‘moving’) ellipsoidal collapse barrier, and estimate the halo mass
function based on the distribution of the masses at these first upcrossings. To a good approxi-
mation, the resulting mass function can be written in the form (7.46), but with the multiplicity
function fPS(ν) replaced by

fEC(ν) = A

(
1+

1
ν̃2q

)
fPS(ν̃), (7.67)

where ν̃ = 0.84ν and q = 0.3. The normalization A ≈ 0.322 is set by requiring that the integral
of fEC(ν)/ν over all ν is unity, which means that all matter is in collapsed objects of some mass,
however small (Sheth et al., 2001).

The great virtue of interpreting Eq. (7.66) as the ‘moving’ barrier is that, once the barrier
shape is known, the entire excursion set formalism developed on the basis of spherical collapse
dynamics (constant barrier) can be extended relatively straightforwardly. For simplicity, however,
our descriptions in the following will be based on spherical collapse dynamics.

7.2.4 Tests of the Press–Schechter Formalism

Given the many crude assumptions underlying the Press–Schechter (PS) and extended PS (EPS)
formalisms, it is important to test their predictions for the halo mass function against numerical
simulations, which follow the growth and collapse of structures directly by solving the equations
of motion for dark matter particles (see Appendix C). Until the end of the 1990s, most numerical
simulations yielded halo abundances in reasonable agreement with the PS prediction (7.46) based
on spherical collapse (see Monaco, 1998, for a detailed review). As higher resolution simulations
became available, it became clear that this PS mass function overpredicts the abundance of sub-
M∗ halos, and underpredicts that of halos with M > M∗ (e.g. Governato et al., 1999; Sheth &
Tormen, 1999). The PS mass function for ellipsoidal collapse, on the other hand, seems to fit the
simulation results much better (see Fig. 7.3). In fact, the highest resolution simulations to date
match the halo mass function based on Eq. (7.67) with discrepancies at the ∼ 20% level (e.g.
Jenkins et al., 2001; Warren et al., 2006).

Note, however, that these comparisons depend somewhat on how halos are identified in the
simulations. Different authors often use different halo-finding algorithms, most of which have
one or more free parameters. For example, the frequently used friends-of-friends (FOF) algo-
rithm defines halos as structures whose particles are separated by distances less than a percolation
parameter b, called the linking length, times the mean interparticle distance (Davis et al., 1985).
A heuristic argument, based on spherical collapse, suggests that one should use b � 0.2, for
which the mean overdensity of a halo is ∼ 180. Obviously, using different values for b results
in different halo mass functions, which introduces some arbitrariness in the comparison between
PS predictions and numerical simulations (e.g. White, 2002).

A more stringent test of the PS formalism is to use the excursion set to predict the formation
sites and masses of individual halos, and to compare these predictions with N-body simula-
tions. As already discussed in §7.2.2, the excursion set formalism is not expected to work on
an object-by-object basis, as was confirmed by direct comparison with simulations (e.g. Bond
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Fig. 7.3. The mass function of dark matter halos, here plotted as the logarithm of F ≡
(nM2/ρ)|dlnM/dlnσ | versus the logarithm of (δc/σ)2. The results obtained from N-body simulations
(symbols) are compared to the predictions of the Press–Schechter formalism for both spherical (solid curve)
and ellipsoidal (dashed curve) collapse. Clearly, the latter is in much better agreement with the simulation
results. [Based on data published in Sheth & Tormen (1999)]

et al., 1991). However, according to our earlier discussion, the mass at first upcrossing of a mass
element should give a lower limit to the mass of the collapsed object to which the mass ele-
ment belongs. For an ellipsoidal collapse barrier, this prediction was found to be consistent with
N-body simulations by Sheth et al. (2001).

7.2.5 Number Density of Galaxy Clusters

As an example of one of the many applications of the PS formalism, consider the number density
of clusters of galaxies, the most massive virialized objects in the Universe.

As we have seen in §2.5.1, the masses of rich clusters fall in the range 1014–1015 M�, and
are dominated by dark matter. Usually, this mass is estimated within the Abell radius, rA =
1.5h−1Mpc, and we write it as

MA = 7.8×1014mAh−1 M�, (7.68)

where mA is a mass parameter, defined such that the mean overdensity within rA is

δ (rA) ≡ 3MA

4πρ0r3
A

−1 = 200mA/Ωm,0. (7.69)

To obtain the number density of clusters from the PS formalism, we need to know how rA is
related to the total ‘virial’ mass M. Motivated by the spherical collapse model described in §5.1,
we define M as

M =
4π
3

r3
200ρ0

[
1+δ (r200)

]
, (7.70)
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where

δ (r200) = 200/Ωm,0 (7.71)

is the average overdensity of the halo, and r200 is the corresponding halo radius. Under the
assumption that the density profile of a cluster between rA and r200 can be approximated as
∝ r−2, we have that

r200 = m1/2
A rA, and M ≈ m1/2

A MA. (7.72)

The linear (Lagrangian) radius of the cluster is

R ≡
(

3M
4πρ0

)1/3

≈ 1.1Ω−1/3
m,0 m1/2

A r8, (7.73)

where r8 ≡ 8h−1Mpc. From this we see that the mass range of rich clusters corresponds to a
relatively small range in R around r8. Within this range of R, we can parameterize the mass
variance σ(R) in top-hat windows as

σ(R) = σ8

(
R
r8

)−β
. (7.74)

For CDM-type power spectra with index n = 1, β can be approximated as β ≈ 0.6+0.8Γ, where
Γ is the shape parameter of a CDM power spectrum defined in §4.3. Using Eq. (7.46) we can
then write the mean number of rich clusters in a sphere of radius r8, with mass exceeding MA, as

N(MA) =
4πr3

8

3

∫ ∞

MA

n(M, t0)dM

≈ 2√
π

(
δc√
2σ8

)3/β ∫ ∞

ymin

y−3/β exp(−y2)dy, (7.75)

where

ymin ≡ δc√
2σ8

[
1.2mAΩ

−2/3
m,0

]β/2
. (7.76)

From this we see that the number density of clusters (with mass parameter mA above some value)
can be used to constrain σ8 and Ωm,0. Since N(MA) � 1, Eq. (7.75) determines the combination

(mAΩ
−2/3
m,0 )β/2/σ8 accurately even if the cluster number density is uncertain. White et al. (1993a)

estimated that N(MA) ≈ 8.5× 10−3 for clusters with MA ≈ 5× 1014h−1 M�. This in Eq. (7.75)
gives the following constraint on σ8 and Ωm,0:

σ8 ≈ (0.5−0.6)Ω−0.5
m,0 . (7.77)

Note that this result is very similar to that based on the cosmic virial theorem discussed in §6.5.1.
This is easy to understand, because the main contribution to the small-scale velocity dispersion
in the virial theorem comes from clusters of galaxies (Mo et al., 1997a). A more detailed analysis
by Viana & Liddle (1996) gives the following results:

σ8 = 0.60Ω−C(Ωm,0)
m,0 , (7.78)

where

C(Ωm,0) =
{

0.36+0.31Ωm,0 −0.28Ω2
m,0 (Ωm,0 ≤ 1,ΩΛ = 0)

0.59−0.16Ωm,0 +0.06Ω2
m,0 (Ωm,0 +ΩΛ = 1). (7.79)

This value of σ8 can be used to normalize the power spectrum of the cosmological density
perturbations (see §4.4.4). Such a normalization is usually referred to as cluster-abundance
normalization.



336 Formation and Structure of Dark Matter Halos

7.3 Progenitor Distributions and Merger Trees

7.3.1 Progenitors of Dark Matter Halos

An advantage of the excursion set approach of the extended Press-Schechter (EPS) formalism
is that it provides a neat way to calculate the properties of the progenitors which give rise to a
given class of collapsed objects. For example, one can calculate the mass function at z = 5 of
those halos (progenitors) which by z = 0 end up in a massive cluster-sized halo of mass 1015 M�.
Thus, the EPS formalism allows one to describe how a dark matter halo assembled its mass via
mergers of smaller mass halos.

Consider a spherical region (a patch) of mass M2, corresponding to a mass variance S2 =
σ2(M2), with linear overdensity δ2 ≡ δc(t2) = δc/D(t2) so that it forms a collapsed object at time
t2. We are interested in the fraction of M2 that was in collapsed objects of a certain mass at an
earlier time t1 < t2. To proceed, we adopt the same excursion-set approach as we did in deriving
the Press–Schechter (PS) formula (see §7.2.2), and calculate the probability for a random walk
originating at (S,δs) = (S2,δ2) to execute a first upcrossing of the barrier δs = δ1 ≡ δc(t1) at
S = S1, corresponding to mass scale M1. This is exactly the same problem as before except for
a translation of the origin in the (S,δs) plane (see Fig. 7.2). Hence, the probability we want is
given by

fFU(S1,δ1|S2,δ2)dS1 =
1√
2π

δ1 −δ2

(S1 −S2)
3/2

exp

[
− (δ1 −δ2)

2

2(S1 −S2)

]
dS1, (7.80)

which follows from Eq. (7.56) upon replacing δc by δ1 − δ2 and S by S1 −S2. According to the
interpretation of the excursion set, Eq. (7.80) gives the fraction of mass elements in (M2,δ2)
patches that were in collapsed objects of mass M1 at the earlier time t1. Converting from mass
weighting to number weighting, one obtains the average number of progenitors at t1 in the mass
interval (M1,M1 +dM1) which by time t2 have merged to form a halo of mass M2:

n(M1, t1|M2, t2)dM1 =
M2

M1
fFU(S1,δ1|S2,δ2)

∣∣∣∣ dS1

dM1

∣∣∣∣ dM1

=
M2

M2
1

fPS(ν12)
∣∣∣∣dlnν12

d lnM1

∣∣∣∣ dM1, (7.81)

where ν12 ≡ (δ1 −δ2)/
√

S1 −S2 and fPS(ν) is the PS multiplicity function given by Eq. (7.47).
As with the halo mass function, numerical simulations have been used to test the progenitor

mass functions predicted by the EPS formalism. These show that although Eq. (7.81) is in good
agreement with simulation results when Δt = t2 − t1 is small, it significantly underestimates the
mass fraction in high mass progenitors for relatively large Δt (e.g. Somerville & Kolatt, 1999;
van den Bosch, 2002b; Cole et al., 2008). Despite these shortcomings, the EPS formalism is often
used since it allows for a fast computation of many interesting properties of dark matter halos,
some of which we discuss below.

7.3.2 Halo Merger Trees

The conditional mass function derived above can be used to describe the statistical properties of
the merger histories of dark matter halos. The merger history of a given dark matter halo can
be represented pictorially by a merger tree such as that shown in Fig. 7.4. In this figure, time
increases from top to bottom, and the widths of the branches of the tree represent the masses
of the individual progenitors. If we start from an early time, the mass which ends up in a halo
at the present time t0 (the trunk of the tree) is distributed over many small branches; pairs of
small branches merge into bigger ones as time goes on. Obviously, merger trees play a very
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Fig. 7.4. Illustration of a merger tree, depicting the growth of a dark matter halo as the result of a series
of mergers. Time increases from top to bottom, and the widths of the tree branches represent the masses of
the individual halos. A horizontal slice through the tree, such as that at t = tf gives the distribution of the
masses of the progenitor halos at a given time. [Adapted from Lacey & Cole (1993)]

important role in hierarchical models of galaxy formation. In particular, they are the backbone of
the semi-analytical models of galaxy formation discussed in §15.7.1.

In order to construct a merger tree of a halo, it is most convenient to start from the trunk and
work upwards. Consider a halo with mass M at a time t (which can be the present time, or any
other time). At a slightly earlier time t −Δt, the progenitor distribution, in a statistical sense, is
given by Eq. (7.81). This can be used to draw a set of progenitor halos, after which the procedure
is repeated for each of these progenitors, thus advancing upwards into the merger tree. In general,
the construction of a set of progenitor masses for a given parent halo mass needs to obey two
requirements. First of all, the number distribution of progenitor masses of many independent
realizations needs to follow Eq. (7.81). Secondly, mass needs to be conserved, so that in each
individual realization the sum of the progenitor masses is equal to the mass of the parent halo.
In principle, this requirement for mass conservation implies that the probability for the mass of
the nth progenitor needs to be conditional on the masses of the n− 1 progenitor halos already
drawn. Unfortunately, these conditional probability functions are not derivable from the EPS
formalism, so additional assumptions have to be made. This has resulted in the development of
various different algorithms for constructing halo merger trees, each with its own pros and cons
(Kauffmann & White, 1993; Sheth & Lemson, 1999; Somerville & Kolatt, 1999; Cole et al.,
2000, 2008; Zhang et al., 2008; Neistein & Dekel, 2008).

One of the simplest merger trees is the so-called binary tree, in which the assumption is made
that each merger involves exactly two progenitors (e.g. Lacey & Cole, 1993; Cole et al., 2000).
In order to obtain the masses of the two progenitor halos of a halo of mass M at time t, one can
proceed as follows. First draw a value for ΔS from the mass-weighted probability function

fFU(ΔS,Δδ )dΔS =
1√
2π

Δδ
ΔS3/2

exp

[
−Δδ

2

2ΔS

]
dΔS, (7.82)
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[see Eq. (7.80)]. Here Δδ = δc(t −Δt)−δc(t) reflects the time step used in the merger tree. The
progenitor mass, Mp, corresponding to ΔS follows from S(Mp) = S(M)+ΔS, and the mass of the
second progenitor is simply given by M′

p = M−Mp. Although this method ensures mass conser-
vation, it has two important shortcomings. First, this algorithm makes the implicit assumption
that the probability of having a progenitor of mass Mp is equal to that of having a progenitor of
mass M′

p = M −Mp. However, in general the EPS progenitor mass distribution does not respect
this symmetry, causing a failure to accurately reproduce the progenitor mass functions, especially
at earlier times (e.g. Cole et al., 2008). Second, the assumption that a timestep involves only a
single merger between two progenitor halos is only correct in the limit Δt → 0. In practice,
however, one has to adopt finite time steps, for which the assumption of binarity is not strictly
valid.

The tree-building scheme of Kauffmann & White (1993) avoids the assumption of binary
mergers and ensures, in principle, that the EPS progenitor mass distributions of Eq. (7.80) (or
the equivalent distributions for ellipsoidal collapse) are reproduced for all t1 and t2 and for all
M1 above some resolution limit. For each descendant halo mass M at time tn one makes a library
of Nreal realizations of possible progenitor sets at the earlier time tn−1 by using Eq. (7.80) to
calculate the total number of progenitors (over all realizations) with mass Mp < M in each of a
number of mass bins. Proceeding from most massive to least massive, these progenitors are then
distributed at random among the Nreal descendants with probability proportional to the remaining
unassigned mass of the descendant, if this exceeds the mass of the progenitor, and zero otherwise.
Once all progenitors have been assigned, the remaining descendant mass is assumed to have been
accreted smoothly in objects below the resolution limit. Randomly chosen progenitor sets from
such ‘one-step’ libraries can then be combined into trees giving the complete merger history of
each final halo. As discussed by Zhang et al. (2008), considerable care is needed in programming
this algorithm to avoid discreteness artifacts due to the mass binning.

A third method for constructing halo merger trees is the N-branch scheme with accretion of
Somerville & Kolatt (1999). For each progenitor, a value for ΔS is drawn from Eq. (7.82), and
its corresponding mass, Mp, is determined. For each new progenitor one checks whether the sum
of the progenitor masses drawn thus far exceeds the mass of the parent, M. If this is the case the
progenitor is rejected and a new progenitor mass is drawn. Any progenitor with Mp < Mmin is
added to the mass component Macc that is considered to be accreted onto the parent in a smooth
fashion (i.e. the assembly history of such small progenitors is not followed). Here again Mmin

reflects the mass resolution chosen for the merger tree. This procedure is repeated until the total
mass left, Mleft = M −Macc −∑Mp, is less than Mmin. This remaining mass is then assigned to
Macc and one moves on to the next time step. Although this algorithm, by construction, ensures
exact mass conservation, and yields conditional mass functions that are in fair agreement with
direct predictions from EPS theory (i.e. the method is self-consistent), it is not very rigorous. In
particular, mass conservation is enforced ‘by hand’, by rejecting progenitor masses that overflow
the mass budget. Consequently, the mass distribution of first-drawn progenitors differs from that
for second-drawn progenitors, and so on. Somewhat fortunately, the sum of these distributions
matches the distribution of Eq. (7.81) for all progenitors, but only if sufficiently small time steps
Δδ are used.

These three tree-building algorithms were compared to each other, to the scheme of Cole
et al. (2000), and to several new schemes by Zhang et al. (2008). Of the older schemes, only
that of Kauffmann & White (1993) was found to reproduce the EPS conditional probability
distributions over wide ranges of mass and time. This is not a sufficient condition for an algorithm
to be realistic, however, since the EPS formalism itself is not rigorous and it does not specify
many merger tree properties of interest. Further evaluation of tree-building schemes thus requires
detailed comparison with simulations of structure formation. Trees extracted directly from such
simulations can provide an alternative to EPS merger trees and have the advantages that they
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Fig. 7.5. Main progenitor histories obtained using EPS merger trees as described in van den Bosch
(2002b). The left-hand panel shows 25 (normalized) main progenitor histories, Mmain(z)/M0, for a halo
with M0 = 5×1011h−1 M� in an EdS Universe. The right-hand panel shows the average main progenitor
histories, averaged over 1,000 realizations, for halos with five different masses: 5×109h−1 M� (solid line),
5× 1010h−1 M� (dotted line), 5× 1011h−1 M� (short-dashed line), 5× 1012h−1 M� (long-dashed line),
5×1013h−1 M� (dot-dashed line). Note that more massive halos assemble later.

do not depend on the EPS assumptions and that they automatically provide spatial and velocity
information, but even here there are major limitations. High-resolution simulations are expensive,
are time-consuming to process, and have limited resolution. In addition, there is no unambiguous
definition in a simulation (or, presumably, in the real Universe) both for the boundary of a halo,
and for the time when two halos should be considered to have merged. Different definitions give
rise to different trees.

7.3.3 Main Progenitor Histories

The full merger history of any individual dark matter halo is a complex structure containing
a lot of information. A useful subset of this information is provided by the main progenitor
history, sometimes called the mass accretion history or mass assembly history, which restricts
attention to the main ‘trunk’ of the merger tree. This main trunk is defined by following the
branching of a merger tree back in time, and selecting at each branching point the most massive
(main) progenitor. Note that with this definition, the main progenitor is not necessarily the most
massive progenitor of its generation at a given time, even though it never accretes other halos
more massive than itself.

The main progenitor history, Mmain(t), can be obtained from merger trees constructed using
either the EPS formalism (van den Bosch, 2002b) or numerical simulations (Wechsler et al.,
2002; Zhao et al., 2008). The left-hand panel of Fig. 7.5 shows 25 examples of main progen-
itor histories as functions of redshift, Mmain(z), normalized by the present-day halo mass, M0.
All histories correspond to a halo of M0 = 5 × 1011h−1 M� in an EdS cosmology, and have
been obtained using EPS merger trees constructed using the N-branching method described
in the previous section. Note that these main progenitor histories reveal a large amount
of scatter. The right-hand panel of Fig. 7.5 shows the average main progenitor histories,
〈Mmain(z)/M0〉, obtained by averaging 1,000 random realizations for a given M0. Results are
shown for five values of M0, as indicated. As is evident, on average halos that are more mas-
sive assemble later. As we demonstrate below, this is a characteristic of hierarchical structure
formation.
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7.3.4 Halo Assembly and Formation Times

The concept of the main progenitor defined above allows one to define a useful characteristic
time for the assembly of a dark matter halo. A convenient operational definition for the assembly
time, ta, of a halo of mass M0 is the time when its main progenitor first reaches a mass M0/2, i.e.
Mmain(ta) = M0/2. The probability distribution of ta can be obtained as follows. From Eq. (7.80)
the probability that a random mass element of a collapsed object of mass M0 at time t0 was part
of a progenitor of mass M1 at an earlier time t1 < t0 is fFU(S1,δ1|S0,δ0)|dS1/dM1|dM1, and the
average number of progenitors that each M0 halo has is given by Eq. (7.81). However, since each
object can have at most one progenitor with mass M0/2 < M1 < M0, the probability that any
particular object has a progenitor in this mass range, and thus an assembly time earlier than ta, is
given by

P(< ta|M0, t0) =
∫ M0

M0/2

M0

M1
fFU(S1,δ1|S0,δ0)

∣∣∣∣ dS1

dM1

∣∣∣∣ dM1

=
∫ S 1

2

S0

M(S0)
M(S1)

fFU(S1,δ1|S0,δ0)dS1, (7.83)

where S 1
2

= S(M0/2) and t1 = ta. Introducing the variables

S̃ ≡ S1 −S0

S 1
2
−S0

, and ω̃(t1) ≡ δ1 −δ0√
S 1

2
−S0

, (7.84)

one can cast Eq. (7.83) in the form

P(< ta|M0, t0) = P(> ω̃a|M0, t0)

=
1√
2π

∫ 1

0

M(S0)
M(S1)

ω̃a

S̃3/2
exp

[
− ω̃

2
a

2S̃

]
dS̃, (7.85)

where ω̃a = ω̃(ta) (Lacey & Cole, 1993). For given M0 and t0, Eq. (7.85) gives the cumulative
distribution of ω̃a (and therefore of ta). The advantage of using the variables S̃ and ω̃ is that
P(> ω̃a) depends only very mildly on halo mass, M0, and cosmology (this dependence is largely
absorbed by the variables themselves). For example, for a power-law fluctuation spectrum with
spectral index n, we can write

S(M) = δ 2
c

[
M
M∗

]−α
, with α =

n+3
3

, (7.86)

(see §6.1.3), so that
M(S0)
M(S1)

=
[
1+(2α −1) S̃

]1/α
. (7.87)

Upon substituting Eq. (7.87) in Eq. (7.85) it is clear that P(> ω̃a) is independent of M0 and t0
and with only weak dependence on the spectral index n.

The shaded histograms in Fig. 7.6 show the differential distributions, dP/dω̃a, for dark matter
halos in the mass range Mmin < M < Mmax (with Mmin and Mmax as indicated in each panel)
in a flat ΛCDM cosmology with Ωm,0 = 0.3, n = 1 and σ8 = 0.9 obtained from an N-body
simulation. For comparison, the solid curves show the corresponding predictions from the EPS
formalism, obtained using Eq. (7.85) for halos with M0 = 8.4× 1011h−1 M� (left-hand panel)
and M0 = 1.1×1013h−1 M� (right-hand panel). As is evident, the EPS formalism predicts values
for ω̃a that are somewhat too low, corresponding to assembly times ta that are too high; halos
in N-body simulations assemble earlier than predicted by the EPS formalism when adopting the
spherical collapse model to compute δc(t) (e.g. van den Bosch, 2002b; Neistein et al., 2006).
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Fig. 7.6. The differential distribution of halo assembly times parameterized by the scaled variable ω̃a.
The shaded histograms show the results for halos in the mass range Mmin < M < Mmax in a flat ΛCDM
cosmology with Ωm,0 = 0.3, n = 1 and σ8 = 0.9 obtained from an N-body simulation, while the solid
curves show the corresponding distributions obtained from Eq. (7.85). Note that the assembly times in the
simulation are offset from those obtained using the EPS formalism, and that the discrepancy is larger for
more massive halos. [After van den Bosch (2002b)]

However, as shown by Giocoli et al. (2007), using the ellipsoidal collapse model instead yields
assembly times in much better agreement with the simulation results.

For an EdS cosmology, δc(t)∝ 1+z, where z is the redshift corresponding to time t. Using the
definition of ω̃a, we obtain a simple approximate expression for the median value of the assembly
redshift:

zf,m = z0 + ω̃a,m (1+ z0)

{√
2(n+3)/3 −1

[
M0

M∗

]−(n+3)/6
}

. (7.88)

Here z0 is the redshift at which the halo of mass M0 is identified, and ω̃a,m ∼ 1 is the median
value of ω̃a. From this we can see that, in a model with n > −3, halos of a higher mass assemble
later, which is an important characteristic of hierarchical structure formation. Note also that, for
a given power spectrum, the distribution of assembly times for halos with the same M/M∗ only
depends on cosmology through the linear growth rate D(t). Since D(t) has a weaker dependence
on t in a cosmology with lowerΩm,0 (see §4.1.6), halos of a given mass typically assemble earlier
in a lower-density universe.

In addition to a halo assembly time based on main progenitor growth, one can also define a
characteristic formation time based on a halo’s entire merger history. For example, following
Navarro et al. (1996), one may define the formation time, tf, of a halo of mass M0 at time t0, as
the time when the sum of all progenitors with mass M > Mmin, hereafter Mall, is equal to M0/2.
The minimum progenitor mass in this definition can be taken to be a fixed fraction of the final
mass, as was done by Navarro et al. (1996), or as a fixed value, independent of the mass of the
descendant, as was done by Neistein et al. (2006).

In principle, obtaining the formation history, Mall(t), of an individual halo requires the con-
struction of an entire merger tree with a mass resolution M ≤ Mmin. However, the average
formation history of a halo of mass M0, averaged over many merger trees, can be derived
straightforwardly from the EPS formalism as

〈Mall〉(t) =
∫ M0

Mmin

n(M, t|M0, t0)M dM, (7.89)
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where n(M, t|M0, t0) is the mass function of progenitors at time t that have merged to form a halo
of mass M0 by time t0 > t. Substituting Eq. (7.81) into the above equation yields

〈Mall〉(t)
M0(t0)

= 1− erf

[
δc(t)−δc(t0)√

2(Smin −S0)

]
, (7.90)

with Smin = S(Mmin). Defining the average formation time, t̄f, according to 〈Mall〉(t̄f) = M0/2, we
obtain that

δf ≡ δc(t̄f) = δc(t0)+β
√

Smin −S0, (7.91)

where β =
√

2/erf(1/2) � 0.6745. In a hierarchical universe, S decreases with increasing halo
mass, and δc(t) decreases with time. We then find that t̄f increases with increasing halo mass
if Mmin is defined as a fixed fraction of M0, but decreases with increasing halo mass if it is
defined to be independent of M0. Thus, although more massive halos, on average, form later,
their progenitors typically cross any given mass threshold earlier.

This is particularly relevant for understanding the star-formation histories of galaxies. Since
star formation is expected to take place in all halos above a given minimum mass (in which
atomic cooling is expected to be efficient; see §8.4), and not only in the main progenitor halo,
one expects that more massive halos host galaxies with older stellar populations (e.g. Li et al.,
2008). As we will see in §13.5, this is consistent with observations.

7.3.5 Halo Merger Rates

From Eq. (7.80) we can obtain the reverse conditional probability

fFU(S2,δ2|S1,δ1)dS2 =
fFU(S1,δ1|S2,δ2) fFU(S2,δ2)

fFU(S1,δ1)
dS2

=
1√
2π
δ2(δ1 −δ2)

δ1

[
S1

S2(S1 −S2)

]3/2

exp

[
− (δ2S1 −δ1S2)

2

2S1S2 (S1 −S2)

]
dS2, (7.92)

where Si =σ2(Mi) and δi = δc(ti) with S1 > S2 and δ1 > δ2, and fFU(S,δc) is given by Eq. (7.56).
According to the interpretation of the excursion set, this is the conditional probability that a
halo of mass M1 at time t1 is incorporated into a halo with a mass between M2 and M2 + dM2

(M2 > M1) at a later time t2 > t1. If we set M2 = M1 +ΔM and t2 = t1 +Δt, then Eq. (7.92) gives
the probability for the halo to gain a mass ΔM by merging or accretion in the time interval Δt.
Thus, the rate at which a halo with mass M transits to a halo with mass between M and M +ΔM
is given by

P(ΔM|M, t)dlnΔM dln t =
1√
2π

[
S1

(S1 −S2)

]3/2

exp

[
−δ

2
c (S1 −S2)

2S1S2

]
×
∣∣∣∣dlnδc

d ln t

∣∣∣∣ δc√
S2

∣∣∣∣ dlnS2

d lnΔM

∣∣∣∣ dln t dlnΔM, (7.93)

where S1 = σ2(M) and S2 = σ2(M+ΔM). In any finite time interval Δt, the change in mass, ΔM,
can be due to the cumulative effects of more than one merger. However, for an infinitesimal time
interval dt, the transition from M1 to M2 is most likely due a single merger event. Thus Eq. (7.93)
gives the merger rate of a halo with mass M at time t with another halo with mass ΔM. Fig. 7.7
shows P(ΔM|M, t) as a function of log(ΔM/M) for power-law spectra with spectral index n =
−2 and 0 in an EdS universe. In such models, d lnδc(t)/dln t = −2/3, and P is independent of
t if all masses are measured in units of M∗(t). There are several interesting properties to notice.
(i) For ΔM � M, P is a power law of ΔM: P ∝ (ΔM)−1/2. This asymptote can be obtained
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Fig. 7.7. The merger rate P(ΔM|M, t) given by Eq. (7.93) as a function of log(ΔM/M) for power-law
spectra with spectral index n = −2 and 0 in an EdS universe. The six curves in each panel correspond to
M/M∗ = 16, 8, 4, 2, 1, and 0.5, where a larger M has a larger value of P at the low mass end of ΔM. [After
Lacey & Cole (1993)]

directly from Eq. (7.93). Thus the number of merger events is dominated by minor mergers
(those with ΔM � M), whereas the mass accretion rate (i.e. the mass-weighted merger rate) is
dominated by major mergers with ΔM � M. (ii) For M 	 M∗, mergers with halos of similar or
larger masses are rare, while such mergers are more frequent for M � M∗. (iii) Since a spectrum
with a more negative n has more power on large scales relative to that on small scales, major
mergers (i.e. those with a large ΔM/M) happen more frequently for a spectrum with a more
negative spectral index.

7.3.6 Halo Survival Times

An interesting quantity that can be calculated from Eq. (7.92) is the survival time of a given dark
matter halo. Let us consider all halos of mass M1 at time t1. The probability for such a halo to
merge, by a time t2 > t1, into a new halo with mass larger than M2 is

P(S < S2,δ2|S1,δ1) =
∫ S2

0
fFU(S′2,δ2|S1,δ1)dS′2. (7.94)

This is equal to the probability that a halo makes a transition from M < M2 to M > M2 at
some t < t2, which we denote by P(S2, t < t2|S1, t1). Inserting Eq. (7.92) into Eq. (7.94) we
obtain

P(S2, t < t2|S1, t1) =
1
2

[1− erf(A)]

+
1
2

(δ1 −2δ2)
δ1

exp

[
2δ2(δ1 −δ2)

S1

]
[1− erf(B)] , (7.95)

where S2 < S1, δ2 < δ1, and

A =
S1δ2 −S2δ1√
2S1S2(S1 −S2)

; B =
S2(δ1 −2δ2)+S1δ2√

2S1S2(S1 −S2)
. (7.96)



344 Formation and Structure of Dark Matter Halos

Fig. 7.8. The differential distribution of halo survival times calculated from Eq. (7.97) with t1 = t, t2 = ts,
M1 = M, and M2 = 2M, for power-law spectra with n = −2 (left panel) and 0 (right panel) in an EdS
universe. The four curves in each panel correspond to [M/M∗(t)]−(n+3)/6 = 3, 1, 0.3, and 0.1 (from the
most peaked curve to the most extended curve). [After Lacey & Cole (1993)]

The differential form of the distribution can be obtained by differentiating Eq. (7.95) with respect
to t2:

ps(S2, t2|S1, t1)dt2 ≡ ∂
∂ t2

P(S2, t < t2|S1, t1)dt2

=
δ2

δ1

[
S1

S2(S1 −S2)

]1/2

exp

[
2δ2(δ1 −δ2)

S1

]
×
{(

2
π

)1/2 −S2(δ1 −2δ2)−S1(δ1 −δ2)
S1

exp
(−B2)

+
[

S2(S1 −S2)
S1

]1/2 [
1− (δ1 −2δ2)2

S1

]
[1+ erf(−B)]

}
dlnδ2. (7.97)

If we define a survival time ts for a halo with mass M at time t as the cosmic time when the mass
of the halo has doubled, the halo survival time distribution can be obtained by setting t2 = ts,
t1 = t, S1 = σ2(M) and S2 = σ2(2M) in Eqs. (7.95) and (7.97).

Fig. 7.8 shows the differential distribution of halo survival times for power-law spectra with
n =−2 and 0 in an EdS universe. For M �M∗(t), the distribution of ts/t is very broad, indicating
that some low-mass halos can survive for many Hubble times. In contrast, halos with M 	 M∗(t)
are unlikely to survive for more than a few Hubble times. For models with n >−3, the asymptotic
behavior of the median survival time, t̂s, can be obtained from Eq. (7.95): t̂s/t → 23/2 for M �
M∗(t) and t̂s/t → 23α/2 for M 	 M∗(t), with α given by Eq. (7.86). Thus, for n < 0, the median
survival time decreases with increasing halo mass. For a given M/M∗, the median survival time
also decreases with decreasing n, reflecting the fact that a smaller value of n corresponds to
stronger clustering power on large scales relative to small scales. Thus the survival time scales
very similarly to the time since assembly, as given by Eq. (7.88).

It is interesting to compare the survival time interval Δts ≡ ts − t or the time since assembly
Δtf ≡ t−tf to the intrinsic dynamical time of a halo, tdyn. Only if the dynamical time is sufficiently
short compared to these times will the halo spend much of its life in dynamical equilibrium. In
the spherical collapse model discussed in §5.1, a mass shell reaches its maximum expansion at
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tmax and collapses at tcol = 2tmax. This suggests that we take tmax as a rough estimate of the time
a halo needs to reach equilibrium. Hence, we define tdyn = tmax, and a halo that collapses at
time t has tdyn ∼ t/2. The power-law models discussed above yield Δt̂s and Δt̂f both ∼ 2tdyn for
M � M∗(t), and both ∼ [2(n+5)/2 − 2]tdyn for M 	 M∗(t). Hence, for n ∼< −2, most halos with
M 	 M∗ spend little time in dynamical equilibrium. Although the exact fraction depends on the
definition of tdyn, it is clear that for the CDM-like power spectra discussed in §4.4.4, which all
have an effective spectral index close to −2 on galactic scales, a large fraction of the galaxy-
mass dark matter halos are expected to be dynamically young, especially at earlier times when
the characteristic mass, M∗(t), is smaller.

7.4 Spatial Clustering and Bias

7.4.1 Linear Bias and Correlation Function

The progenitor distribution of dark matter halos described in §7.3.1 can be extended to construct
a model for their spatial clustering (Mo & White, 1996). To start with, recall that the average
number of halos with mass M1 identified at redshift z1 that will merge into a larger halo with
mass M0 at redshift z0 < z1 is given by

N(1|0)dM1 =
M0

M1
f (1|0)

∣∣∣∣ dS1

dM1

∣∣∣∣ dM1, (7.98)

where

f (1|0)dS1 ≡ 1√
2π

δ1 −δ0

(S1 −S0)
3/2

exp

[
− (δ1 −δ0)

2

2(S1 −S0)

]
dS1. (7.99)

Eq. (7.98) is the same as Eq. (7.81) except for the change of notation. In deriving this equation
it is not necessary that M0 itself is a halo; this equation holds equally well even if M0 is an
uncollapsed spherical region. In this case, Eq. (7.98) can be interpreted as the average number of
M1 halos identified at redshift z1 in a spherical region with comoving radius R0 ≡ (3M0/4πρ0)

1/3

and with linear density contrast δ0. Clearly this number has significant dependence on δ0, and
we quantify this by calculating the average overabundance of halos in such regions relative to the
global mean halo abundance:

δL
h (1|0) =

N(1|0)
n(M1,z1)VL

−1, where VL ≡ 4π
3

R3
0. (7.100)

This expression becomes particularly simple when M0 	 M1 (so that S0 � S1) and |δ0| � δ1:

δL
h (1|0) =

ν2
1 −1
δ1

δ0, where ν1 =
δ1√
S1

. (7.101)

Note that δ1 = δc/D(t1), and δ0 is the linear density contrast linearly extrapolated to the present
time. This expression gives the overabundance of halos without taking into account the dynamical
contraction (or expansion) of the region (R0,δ0). Hence, it is the overabundance in Lagrangian
space. Since by definition N(1|0) is the number of halos associated with the mass of the spherical
region (R0,δ0), the enhancement factor at time t > t1 taking into account the overdensity of the
region is

δh(1|0) =
N(1|0)

n(M1,z1)VL

VL

VE
−1, (7.102)
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where VE is the volume in the evolved Eulerian space. Using that VL/VE = 1 +δ (t), where δ is
the average mass overdensity within the region in Eulerian space, we have

δh(1|0) = δ (t)+
ν2

1 −1
δ1

δ0 +
ν2

1 −1
δ1

δ0δ (t). (7.103)

In the linear regime where δ (t) ≈ δ0D(t) � 1, we have

δh(1|0) = bh(M1,δ1; t)δ (t), (7.104)

where

bh(M1,δ1; t) = 1+
1

D(t)

(
ν2

1 −1
δ1

)
(7.105)

is the bias factor at time t for halos identified at time t1. Thus, the overabundance of halos is
enhanced with respect to the underlying mass overdensity δ by a factor bh, which depends on
both their mass, M1, and the time, t1 (through δ1), at which they are identified. If we define a
characteristic mass at t1 by σ(M∗) = δ1 [see Eq. (7.48)], we see that halos with masses M1 > M∗
are biased (bh > 1), while halos with M1 < M∗ are anti-biased (bh < 1), relative to the mass
density field. Since bh defined above is independent of δ and R, Eq. (7.104) is called the linear
bias relation for halos. In general, as we will see in the next subsection, the halo bias may depend
on both δ and R. In such cases we speak of nonlinear and scale-dependent bias, respectively.

As first shown by Jing (1998), the bias model described above, which is based on the spherical
collapse model, suffers from similar inaccuracies as the original Press–Schechter mass function,
and indeed the two discrepancies are closely related (see Sheth & Tormen, 1999). A more precise
model for halo bias can be obtained from the ellipsoidal collapse model described in §7.2.3:

bh(M1,δ1, t) = 1+
1

D(t)δ1

[
ν ′1

2 +bν ′1
2(1−c)− ν ′1

2c/
√

a
ν ′2c +b(1− c)(1− c/2)

]
, (7.106)

where ν ′1 =
√

aν1, a = 0.707, b = 0.5 and c = 0.6 (Sheth et al., 2001). Numerical simulations
show that this revision is substantially more accurate than its spherical counterpart, Eq. (7.105),
especially for halos with M < M∗.

The bias relation (7.104) gives the average overabundance of halos in regions of radius R with
mean mass density contrast δ . For a particular region, however, the overabundance depends not
only on δ but also on other properties of the region. As a result, the relation between δh and δ
is expected to be stochastic instead of deterministic. Taking this into account, we can write the
linear bias relation between δh and δ at a point r as

δh(1|0;r, t) = bh(M1,δ1; t)δ (r, t)+ ε(r), (7.107)

where ε is a stochastic term having zero mean: 〈ε|δ 〉 = 0. This can be considered to be the
overdensity field of halos of mass M1 identified at time t1. The two-point correlation function of
halos can then be written as

ξh(M1,δ1;r, t) = 〈δh(1|0;r1, t)δh(1|0;r1 + r, t)〉r1
. (7.108)

If the stochastic term is ‘short-ranged’ so that 〈ε(r1)ε(r1 + r)〉 = 0 and 〈δ (r1, t)ε(r1 + r)〉 = 0,
then

ξh(M1,δ1;r, t) = b2
h(M1,δ1, t)ξ (r, t), (7.109)

where ξ (r) = 〈δ (r1)δ (r1 + r)〉 is the autocorrelation function of mass.
We can rewrite Eq. (7.109) as

ξh(r, t) =
[√

ξL
h (r)+

√
ξ (r, t)

]2

, (7.110)
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where

ξL
h (r) ≡ 〈δL

h (1|0;r1)δL
h (1|0;r1 + r)〉 = D2(t) [bh(M1,δ1, t)−1]2 ξ (r, t0) (7.111)

is the autocorrelation function of halos in Lagrangian space, and ξ (r, t0) = ξ (r, t)/D2(t) is the
mass correlation function linearly extrapolated to the present time t0. Note that the Lagrangian
correlation function ξL

h (r) is independent of t. Thus, for halos with M1 	 M∗(t1), ξL
h dominates

over ξ , and the correlation function is determined by the ‘pattern’ in the initial density field rather
than by gravitational clustering of the underlying mass distribution. For low-mass halos that
formed at some epoch t1, however, the correlation function becomes more and more comparable
to that of the underlying mass distribution as time proceeds, which follows from the fact that D(t)
increases monotonically with t. Note, though, that Eqs. (7.105) and (7.106) have to be interpreted
with care when t > t1, since it is only strictly valid when the halos of mass M1 at time t1 survive
to time t. Clearly, this is not valid in a hierarchical Universe, in which halos of a given mass will
merge to give rise to a population of more massive halos. In this sense, the bias relation (7.104)
and the correlation function (7.109) are only valid in the case where t = t1. However, galaxies
which formed at the halo centers at t1 may still remain distinct at t (i.e. they may survive as
distinct objects even when their parent halos merge). The results for t > t1 may then be relevant
for galaxies, and suggest that galaxies formed at high redshifts tend to become more and more
faithful tracers of the underlying mass distribution as gravitational clustering proceeds (provided
that they survive as individual systems).

The bias model described above can be used to predict the two-point correlation function of
galaxy clusters (Mo et al., 1996). According to the bias model described above, clusters, which
are the most massive virialized objects in the Universe, are expected to be strongly biased with
respect to the mass distribution. Because clusters of galaxies are separated by large distances,
their two-point correlation function can only be measured reliably on scales larger than about
5h−1Mpc, where the mass distribution is only mildly nonlinear. Hence, the linear bias model is
expected to be a good approximation. Using Eqs. (7.74), (7.105) and (7.109), we can write the
two-point correlation function of clusters, ξcc, as[

ξcc(r)
ξN(r)

]1/2

= σ8

(
1− 1

δc

)
+
δc

σ8

(
R0

r8

)2β
, (7.112)

where ξN is the two-point correlation function of the underlying mass distribution for a linear
power spectrum with σ8 = 1. Using Eq. (7.73) we find that[

ξcc

ξN

]1/2

= σ8

(
1− 1

δc

)
+1.12β δcmβA

(
σ8Ω

2β/3
m,0

)−1
. (7.113)

Taking δc ≈ 1.69, mA = 1, Γ = 0.2 (so that β ≈ 0.75), and neglecting the first term on the
right-hand side (which is small compared to the second term), we obtain

ξcc

ξN
≈ 3.8

(
σ8Ω0.5

m,0

)−2
. (7.114)

Thus ξcc ∼ 10ξN for σ8Ω0.5
m,0 ∼ 0.6 [see Eq. (7.77)]. Since ξN is approximately the two-point

correlation function of normal galaxies, we see that CDM spectra with a shape parameter Γ� 0.2,
which is consistent with the observed large-scale clustering of galaxies (see §6.5), predict that
the amplitude of the two-point correlation function of rich clusters is higher than that of normal
galaxies by a factor of about 10, consistent with observational results (e.g. Bahcall & Soneira,
1983; Peacock & West, 1992; Yang et al., 2005c).
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7.4.2 Assembly Bias

In the formalism described above, one-dimensional Markovian random walks are used to derive
fomulae for halo bias in the spherical and ellipsoidal collapse models. In such EPS models, the
trajectories corresponding to all mass elements in halos of mass M′ at time t ′ pass through the
same point in (S,δ ) space, say (S′,δ ′). The large-scale environment of these halos depends on
the trajectories at S < S′ (i.e. M > M′) where they must satisfy δ < δ ′. Halo assembly histories,
on the other hand, depend on the trajectories for S > S′. The Markov assumption then implies
that the environments of halos of given mass should be independent of their assembly history
(White, 1996).

Early numerical work suggested that this property does, in fact, hold for structure formation in
CDM-like universes (Lemson & Kauffmann, 1999), but a more refined statistical analysis of the
same data unambiguously demonstrated that halos in close pairs have slightly earlier assembly
times than typical objects of the same mass (Sheth & Tormen, 2004). With the advent of much
larger and higher resolution simulations, it became clear that low-mass halos (M � M∗) in the
high-redshift tail of the formation-time distribution are much more strongly clustered than halos
of similar mass in the low-redshift tail (Gao et al., 2005). This dependence of halo clustering
on halo assembly history at fixed halo mass is known as assembly bias. Subsequent numerical
work confirmed the original detection and showed that halo clustering at fixed mass depends not
only on formation time, but independently on other halo properties such as concentration, spin
and substructure content (Wechsler et al., 2006; Jing et al., 2007; Gao & White, 2007). The mass
dependence of assembly bias turns out to be different when different halo properties are used to
split the population. Thus the clustering of simulated halos depends not only on their mass but
also, in a complex way, on their assembly history. This is inconsistent with the one-dimensional
Markovian random walks of EPS theory.

There have been several theoretical studies of the origin of assembly bias. Wang et al. (2007a)
found that low-mass halos with early assembly times tend to reside near massive halos, and
suggested that truncation of accretion by tidal forces might induce the assembly bias effect.
Maulbetsch et al. (2007) and Hahn et al. (2008) showed that many low-mass halos in high-density
regions have indeed ceased accretion at recent times, while Ludlow et al. (2009) showed that in
many cases this can be traced to the fact that the small halos have actually passed right through
their larger neighbors, and were ejected again by three-body interactions with other substructures.
Nevertheless, strong assembly bias is present even if all ejected halos are excluded (Wang et al.,
2009), so additional effects must play an important role. Indeed, the dependence of clustering
on other halo properties such as concentration, spin and substructure content seems inconsistent
with production by this dynamical mechanism alone, and it is likely that a number of different
mechanisms are at work. Halo formation models which extend the standard EPS models, either
by increasing the dimensionality of the random walks or by relaxing their Markovian properties,
have been considered by a number of authors but a clear understanding of assembly bias is still
missing (Sandvik et al., 2007; Desjacques, 2008; Dalal et al., 2008).

7.4.3 Nonlinear and Stochastic Bias

From Eq. (7.103) we see that the bias relation between δh and δ is in general not linear: the last
term on the right-hand side causes the bias relation to bend down for halos with M1 < M∗(t1) and
to bend up for halos with M1 > M∗(t1). More accurately, we can use the spherical collapse model
to relate δ0 to δ . As shown in §5.1, the evolution of the radius R of a mass shell is completely
determined by R0 and δ0, and so for a given R, δ ≡ (R0/R)3 − 1 is completely determined by
δ0 (at least in the spherical collapse model). Fig. 7.9 shows the bias relation given by this model
along with that obtained from N-body simulations. The mean bias relation is well described by
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Fig. 7.9. The bias relation of dark matter halos. Both panels show the overdensity of dark matter halos, δh,
versus the overdensity of mass, δ , in spherical windows with fixed radius R = 0.08L (where L is the size
of the simulation box). These results have been obtained from an N-body simulation of structure formation
in a cosmology with a scale-free power spectrum with index n = −1.5. The two panels correspond to two
different lower limits in halo mass, as indicated. The solid curves show the model predictions for the mean
bias relation. [After Mo & White (1996)]

the model (see Mo & White, 1996). Clearly, the average bias deviates from linearity in the sense
discussed above, and depends on the radius R. There is also scatter around the mean bias relation.
Thus, the bias relation is nonlinear, scale-dependent and stochastic. In general we can write this
relation as

δh(x) = δ̂h + ε(x), where δ̂h ≡ bh(M1,δ1;δ )δ (x). (7.115)

This is the same as Eq. (7.107), except that we have allowed for the dependence of bh on δ ; the
R dependence is always implicitly implied. Note that Eq. (7.115) is still not the most general
form, because the bias relation may not be local, in the sense that δh(x) may depend not only on
δ (x) but also on the properties of the density field at other points. For simplicity, though, we will
restrict our discussion to local bias.

(a) Nonlinear Bias Let us first neglect the stochastic part and focus on the effect of nonlinearity
in the bias relation on the statistics of the halo distribution relative to that of the mass. In this
case δh is a deterministic function of δ : δh = δ̂h(δ ). Expanding this function in a Taylor series
gives

δh = δ̂h(δ ) =
∞

∑
0

bk

k!
δ k. (7.116)

By definition, 〈δh〉 = 0, and so b0 = −∑∞k=2 bk〈δ k〉/k! in general is non-zero. Thus, even the
second-order moment of δh depends on the moments of δ to all orders. However, in the quasi-
linear regime, where δ ∼< 1, the connected moments (defined in §6.1.3) of δh can be expressed
explicitly in terms of those of δ . Keeping the lowest non-zero orders, we have for the first few
moments that

κ2,h = b2
1κ2, (7.117)

κ3,h = b3
1κ

2
2 (S3 +3c2), (7.118)

κ4,h = b4
1κ2

2 (S4 +12c2S3 +4c3 +12c2
2), (7.119)
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where ck ≡ bk/b1, and S j are the coefficients defined in §6.4.3 for the matter density field. If we
define the same set of coefficients for halos,

κ�,h = S�,hκ�−1
2,h , (7.120)

then it is easy to show that

S2,h = b2
1, (7.121)

S3,h = b−1
1 (S3 +3c2) , (7.122)

S4,h = b−2
1

(
S4 +12c2S3 +4c3 +12c2

2

)
. (7.123)

These relations are general and apply to all objects whose overdensity is a deterministic function
of δ (Fry & Gaztanaga, 1993).

For the bias relation given by Eq. (7.103), and using spherical models to relate δ0 and δ , we
can work out explicitly the coefficients bk in Eq. (7.116) (see Mo et al., 1997b). For example, in
an EdS universe,

b1 = 1+
ν2

1 −1
δ1

, (7.124)

b2 =
8
21
ν2

1 −1
δ1

+
(
ν1

δ1

)2 (
ν2

1 −3
)
. (7.125)

These results apply to halos identified at t1, but whose clustering properties are analyzed at the
present time. The extension to cases where halos are identified at t1 while clustering properties are
analyzed at t ≥ t1 is to replace δ1 by δcD(t)/D(t1) in the above equations (but without replacing
δ1 in ν1).

For δ1 	 1 and ν1 ∼ 1, i.e. for halos with M1 ∼M∗ identified at an early epoch, we have b1 = 1
and b2 = 0, so that κ2,h = κ2 and S3,h = S3. Indeed, it can be shown that in this limit κ�,h = κ� for
all �≥ 2, implying that halos have the same clustering properties as the mass. The reason for this
is that the distribution of halos that are not strongly biased relative to the mass catches up quickly
with the mass distribution due to the motions in the gravitational field of the underlying matter.
In contrast, if ν1 	 δ1 (i.e. for halos that are strongly biased), then bk = bk

1 for k > 1 and all S�,h

are determined completely by the statistical properties of the initial density field, independent of
S� and the dynamical evolution. In this case, we have

S3,h = 3, S4,h = 16, S5,h = 125. (7.126)

Finally, for halos with ν1 = 1, S3,h = S3 −6/δ 2
1 , which is significantly smaller than S3, unless δ1

is large.

(b) Stochastic Bias In general the stochasticity of the bias relation is described by the
conditional distribution, P(ε|δ )dε . With this, the distribution function of δh can be written
as

P(δh) =
∫

P(ε|δ )P(δ )dδ , ε = δh − δ̂h, (7.127)

where P(δ ) is the distribution function of the mass overdensity δ . The moments of δh can then
be written as

〈δ �
h〉 =

∫
δ �

hP(δh)dδh =
∫

dδP(δ )
∫

(δ̂h + ε)�P(ε|δ )dε. (7.128)
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Evidently, the halo density field is completely specified by the mass density field once the mean
bias relation δ̂h(δ ) and the distribution function P(ε|δ ) are known. For example, the second
and third moments of δh are 〈

δ 2
h

〉
=
〈
δ̂ 2

h

〉
+
〈
ε2〉 (7.129)

and 〈
δ 3

h

〉
=
〈
δ̂ 3

h

〉
+
〈
δ̂h〈ε2|δ 〉

〉
+
〈
ε3〉 , (7.130)

respectively. Here 〈
ε�
〉
≡
∫

dδP(δ )
〈
ε�|δ

〉
, (7.131)

and we have used the fact that 〈ε|δ 〉 = 0. In the quasi-linear regime, we have

S2,h = b2
1(1+α), α ≡ 〈ε2〉

b2
1κ2

, (7.132)

S3,h =
(S3 +3c2)/b1 +3

〈
δ̂h〈ε2|δ 〉

〉
/b4

1 +α2S3,ε

(1+α)2 , (7.133)

where S3,ε = 〈ε3〉/〈ε2〉2 (e.g. Dekel & Lahav, 1999).

7.5 Internal Structure of Dark Matter Halos

The theory developed in the previous sections describes the abundance, formation history and
clustering of dark matter halos as a function of their mass. To complete our description of the
halo population, we now focus on their internal structure. In particular, we discuss their density
profiles (§7.5.1), shapes (§7.5.2), substructure (§7.5.3), and angular momentum (§7.5.4).

7.5.1 Halo Density Profiles

To a first approximation, we can model a dark matter halo as a spherical object (deviations from
sphericity will be discussed in the next subsection). In this case, the internal mass distribution
is fully described by a density profile, ρ(r). As discussed above, different halos have different
formation histories, so we may expect a significant halo-to-halo variation in density profile. On
the other hand, dark matter halos are highly nonlinear objects, and it may be that information
regarding their formation histories has largely been erased by their nonlinear collapse. In the
latter case, density profiles may be more closely related to the violent relaxation process than to
initial conditions. Here we focus on theoretical predictions for the density profiles of dark matter
halos; some observational constraints are discussed in §11.1.2.

In the similarity model of spherical collapse described in §5.2, if we start with an initial per-
turbation δi(r) ∝ r−3ε , then the final profile will be ρ(r) ∝ rγ−3, where γ = 1 for ε ≤ 2/3, and
γ = 3/(1+3ε) for ε > 2/3. According to the linear scaling relation in §5.6.1, the typical density
profile around each particle in a linear density field with scale-free power spectrum, P(k) ∝ kn,
is δi(r) ∼ ξ (r) ∝ r−(n+3) [see the interpretation of ξ (r) in §6.1.2]. The typical halo profile will
then be

ρ(r) ∝
{

r−2 (for n ≤−1)
r−(3n+9)/(n+4) (for n > −1).

(7.134)
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Over the range of interest, −3 < n < 0, this model thus predicts that virialized halos resemble
isothermal spheres. The simplest plausible model is therefore to assume that dark matter halos
are truncated singular isothermal spheres:

ρ(r) ∝ r−2 for r ≤ rh. (7.135)

We define the limiting radius of a dark matter halo, rh, to be the radius within which the mean
matter density is

ρh = Δhρ = ΔhρcritΩm, (7.136)

where ρ is the mean matter density of the Universe at the time in question, and ρcrit is the
corresponding critical density for closure. Under this assumption, we have

ρ(r) =
V 2

h

4πGr2 , rh =
√

200
ΔhΩm

Vh

10H(t)
, Vh =

√
GMh

rh
, (7.137)

where Mh is the mass of the halo (i.e. the mass within rh), Vh is its circular velocity at rh, and
H(t) is the Hubble constant at time t. It is common practice to refer to rh and Vh as the virial
radius and virial velocity.

Based on the results presented in §5.4.4, a physically motivated choice would be to take Δh =
Δvir. However, since the criterion for virialization is not strict, other definitions are also in use in
the literature. For example, some studies adopt ρh = 200×ρ , so that Δh = 200, while others use
ρh = 200×ρcrit, so that Δh = 200/Ωm. Note that different definitions imply different relations
among Mh, rh and Vh. However, for a given density profile, it is straightforward to convert these
quantities from one definition to another.

The isothermal model is, at best, an approximation. Many effects may cause deviations from
the profile predicted by the simple similarity model. For example, (i) collapse may never reach
an equilibrium state in the outer region of a dark matter halo, (ii) non-radial motion may be
important, and (iii) mergers associated with the (hierarchical) formation of a halo may render
the spherical-collapse model invalid. Unfortunately, the importance of such effects on the final
density profile is difficult to model analytically, and we have to rely on numerical simulations to
make progress.

Using high-resolution N-body simulations of structure formation in a CDM cosmogony,
Navarro et al. (1996) showed that the density profiles of the simulated dark matter halos are
shallower than r−2 at small radii and steeper at large radii. In fact, they found the density profiles
to be well described by what has become known as the Navarro, Frenk & White (NFW) profile:

ρ(r) = ρcrit
δchar

(r/rs)(1+ r/rs)2 (NFW profile). (7.138)

Here rs is a scale radius, and δchar is a characteristic overdensity. The logarithmic slope of the
NFW profile changes gradually from −1 near the center to −3 at large radii, and only resembles
that of an isothermal sphere at radii r ∼ rs. In a follow-up paper, Navarro et al. (1997) found
Eq. (7.138) to be a good representation of the equilibrium density profiles of dark matter halos of
all masses and in all CDM-like cosmogonies. Thus, halos formed by dissipationless hierarchical
clustering seem to have a universal density profile. The enclosed mass of the NFW profile is
given by

M(r) = 4πρδcharr
3
s

[
ln(1+ cx)− cx

1+ cx

]
, (7.139)

where x ≡ r/rh, and

c ≡ rh

rs
(7.140)
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is the halo concentration parameter. Note that the total mass, Mh, of the halo is given by
Eq. (7.139) with x = 1, and that this mass depends on the definition chosen for rh. It is important
to pay attention to this last point because several different definitions for the bounding radius of
a halo are in common use, so that an object with given density profile will be assigned a different
mass and concentration by different authors. Using Eqs. (7.138)–(7.140), we obtain a relation
between characteristic overdensity and concentration parameter,

δchar =
Δh

3
c3

ln(1+ c)− c/(1+ c)
. (7.141)

Thus, for a given cosmology, the NFW profile is completely characterized by its mass, M, and its
concentration parameter, c, or equivalently (and without any ambiguity about boundary defini-
tion) by rs and δchar. Navarro et al. (1997) showed that characteristic overdensity is closely related
to formation time. Halos which form earlier are more concentrated. For a definition of forma-
tion time similar to that of Eq.(7.91), they found that the ‘natural’ relation δchar ∝ Ωm,0(1+ zf)3

describes how the overdensity of halos varies with their formation redshift both in the mean,
as halo mass, linear power spectrum and cosmological density parameters are changed, and for
individual halos of given mass in a given cosmology.

Subsequent N-body simulations explored in more detail this relation between concentration
and formation history (Wechsler et al., 2002; Zhao et al., 2003b). Halos that have experienced
a recent major merger typically have low concentrations, c ∼ 4, while halos which have expe-
rienced a longer phase of relatively quiescent growth have larger concentrations (Zhao et al.,
2003a, 2008). Physically, the central structure of a dark matter halo seems to be established
through violent relaxation during a phase of rapid mergers, which leads to a ‘universal’ NFW
profile with c ∼ 4. Later accretion increases the mass and size of the halo without adding much
material to its inner regions, thus increasing rh while leaving rs almost unchanged. Once the ini-
tial power spectrum and cosmology are chosen, the accretion history of a halo depends mainly
on its mass relative to the characteristic mass M∗ (see §7.3). In particular, more massive halos
assemble later, and thus had their last major merger more recently. Consequently, concentration
should be a decreasing function of halo mass, as found by the simulations (e.g. Navarro et al.,
1997; Bullock et al., 2001b; Zhao et al., 2003a; Neto et al., 2007; Macciò et al., 2007). This has
motivated a number of authors to develop simple models to estimate mean concentration as a
function of halo mass for a given cosmology (Navarro et al., 1997; Bullock et al., 2001b; Eke
et al., 2001; Macciò et al., 2008; Zhao et al., 2008). Although different in detail, these models all
follow Navarro et al. (1997) in assuming that the characteristic density of a dark matter halo is
related to the mean cosmic density at some characteristic epoch in the halo’s history. For exam-
ple, in the model of Zhao et al. (2008), dark matter halos are defined using Δh = Δvir, and the
average concentration parameter of a halo of mass M at time t is given by a simple empirical
formula:

c(M, t) = 4×
{

1+
[

t
3.75t0.04(M, t)

]8.4
}1/8

, (7.142)

where t0.04(M, t) is the time at which the main progenitor of the halo had gained 4% of its final
mass M. For a given cosmological model, the value of t0.04(M, t) can be obtained by following
the halo assembly history (§7.3.4). As shown in Zhao et al. (2008), this simple model accu-
rately describes the mean concentrations of simulated halos as function of mass and redshift in
a variety of cosmological models. At a given halo mass, there is significant scatter in concen-
tration, reflecting the scatter in formation history. This scatter is reasonably well modeled by
a log-normal distribution, with a variance σlogc � 0.12± 0.02 (e.g. Jing, 2000; Bullock et al.,
2001b; Wechsler et al., 2002; Neto et al., 2007).
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Although the NFW profile is widely used, numerical simulations of high resolution (Navarro
et al., 2004; Hayashi & White, 2008; Gao et al., 2008; Springel et al., 2008) have shown that the
spherically averaged density profiles of dark matter halos show small but systematic deviations
from NFW form and, in the mean, are more accurately described by an Einasto (1965) profile,

ρ(r) = ρ−2 exp

[−2
α

{(
r

r−2

)α
−1

}]
(7.143)

[compare with Eq. (2.22) which gives a very similar formula for the projected density profile]
with r−2 the radius at which the logarithmic slope of the density distribution is equal to −2 and
ρ−2 = ρ(r−2). The best-fit values for the index α typically span the range 0.12 ∼< α ∼< 0.25
and increase systematically with increasing mass (Hayashi & White, 2008; Gao et al., 2008).
The Einasto profile has three free parameters, compared to only two for the NFW profile, so the
fact that it fits simulation results better may seem unsurprising. However, fixing α = 0.17 gives
a two-parameter function which still fits mean halo profiles significantly better than the NFW
form. Note that the systematic variation of α with halo mass demonstrates a small but significant
deviation of mean density profiles from any ‘universal’ shape. A characteristic property of the
Einasto profile is that its logarithmic slope is a power-law in radius:

d lnρ
dlnr

= −2

(
r

r−2

)α
. (7.144)

Thus, contrary to an NFW profile, which has a central r−1 cusp, the logarithmic slope of
the Einasto profile continues to become shallower as r → 0. Note, though, that the radius at
which dlnρ/dlnr = −0.5 is typically less than 10−3r−2, which implies that in practice the pro-
file (7.143) may still be considered ‘cuspy’ for most astrophysical applications. Note also that,
depending on formation history details, individual dark halo profiles often differ much more from
either NFW or Einasto form than the two fitting formulae differ from each other.

It is still unclear why halos formed through dissipationless hierarchical clustering have near-
universal profiles. Quite different initial conditions give similar results, so the universality must
result from relaxation processes in very general circumstances. As discussed earlier in this chap-
ter, the essence of hierarchical clustering is that larger systems form through the mergers of
smaller systems. Thus, the collapse leading to the formation of a dark matter halo is in general
clumpy and chaotic, particularly during the early phases. This means that violent relaxation (dis-
cussed in §5.5) must play an important role. The ongoing accretion and stripping of small mass
halos may also be important. On the other hand, even in the absence of mergers or pre-existing
structure, cold collapse from asymmetric initial conditions produces objects with near-NFW den-
sity profiles, so hierarchical growth of structure is apparently not required (see van Albada, 1982;
Huss et al., 1999; Wang & White, 2008). Although different explanations for the origin of the
NFW profile have been proposed (see Syer & White, 1998; Dekel et al., 2003; Lu et al., 2006),
none currently seems convincing.

7.5.2 Halo Shapes

(a) Theoretical Predictions As we have seen in §7.2.3, the collapse of overdensities in the
cosmic density field is generically aspherical. Thus there is no reason to expect the resulting
halos to be spherical. Even the earliest simulations of structure formation in a CDM universe
emphasized that halos are substantially flattened (Davis et al., 1985). Subsequent work has shown
that, to a good approximation, halo equidensity surfaces can be described by ellipsoids, each of
which is characterized by the lengths of its axes (a1 ≥ a2 ≥ a3). These axes can be used to specify
the dimensionless shape parameters,
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s =
a3

a1
, q =

a2

a1
, p =

a3

a2
, (7.145)

and/or the triaxiality parameter

T =
a2

1 −a2
2

a2
1 −a2

3

=
1−q2

1− s2 (7.146)

(Franx et al., 1991). Note that oblate and prolate shapes correspond to T = 0 and T = 1, respec-
tively. The majority of CDM halos in numerical simulations have 0.5 ∼< T ∼< 0.85, and 0.5 ∼< s ∼<
0.75 (e.g. Jing & Suto, 2002; Bailin & Steinmetz, 2005; Kasun & Evrard, 2005; Allgood et al.,
2006). In particular, less massive halos are more spherical, and halos of a given mass become
flatter with increasing redshift. Using numerical simulations, Allgood et al. (2006) found that
this mass and redshift dependence is well characterized by

〈s〉(M,z) = (0.54±0.03)
[

M
M∗(z)

]−0.050±0.003

, (7.147)

where M∗(z) is the characteristic halo mass at redshift z [see Eq. (7.48)], and the scatter in s is
σs ∼ 0.1. The probability for p given s is found to be well fit by

P(p|s) =
3

2(1− s̃)

[
1−
(

2p−1− s̃
1− s̃

)2
]

, (7.148)

with s̃ = max[s,0.55] (Jing & Suto, 2002; Allgood et al., 2006). Simulations suggest that the
shape of a halo is tightly correlated with its merger history, with halos that assembled earlier
being more spherical. In particular, halos that experienced a recent major merger have a tendency
to be close to prolate, with the major axis reflecting the direction along which the last merger
event occurred. In addition, as shown by Bailin & Steinmetz (2005), there is a strong tendency
for the minor axes of halos to lie perpendicular to large-scale filaments, and a much weaker
tendency for the major axes to lie along the filaments. This alignment is found to be stronger for
more massive halos, and shows that the shapes of dark matter halos reflect the large-scale tidal
field in which they are embedded.

(b) Observational Constraints A large number of different observational techniques have
been used to determine the shapes of dark matter halos associated with galaxies and clusters.
These include using the orbits of satellite galaxies as traced by their tidal streams (e.g. Helmi,
2004), the shapes of X-ray halos around galaxies and clusters (e.g. Buote & Canizares, 1992),
gravitational lensing (Hoekstra et al., 2004), and the angular distribution of satellite galaxies (e.g.
Wang et al., 2008a). Each of these methods has its own pros and cons, and often different studies
obtain different results, even when the same method has been used. In addition, it is important
to take into account that the halo shapes obtained from numerical simulations have typically
ignored the presence of baryons. However, when baryons cool and accumulate at the centers
of their dark matter halos, they tend to make the central regions of their halos more spherical
(e.g. Kazantzidis et al., 2004). Unfortunately, the magnitude of this effect depends on how much
gas cools out at the center of a halo, and on other details related to the formation of the central
galaxy. Because of these uncertainties in both the data and the model predictions, it is still unclear
whether the halo shapes inferred from observations are consistent with the predictions of CDM
cosmology.

7.5.3 Halo Substructure

When a small halo merges with a significantly larger halo it becomes a subhalo orbiting within
the potential well of its host. As it orbits, it is subjected to strong tidal forces from the host, which
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Fig. 7.10. The density distribution of dark matter in a high-resolution N-body simulation. The image shows
a pair of dark matter halos (each with a mass of ∼ 2×1012M�) at redshift z = 0, separated by about 1 Mpc.
These two halos contain over 2,000 dark matter subhalos with a circular velocity larger than 10kms−1.
[Courtesy of B. Moore; see Moore (2001)]

cause it to lose mass (see §12.2). In addition, the orbit itself evolves, as the subhalo is subjected
to dynamical friction (see §12.3) which causes it to lose energy and angular momentum to the
dark matter particles of its host. Whether a subhalo survives as a self-bound entity depends on
its mass (relative to that of its host), its density profile (which is related to its formation redshift)
and its orbit.

Up until the end of the 1990s, numerical simulations of halo formation revealed little sub-
structure. This was a result of the relatively small number of particles which could be used to
represent them. With increasing computing power and better algorithms, ever greater numbers
of particles and ever better resolution have become possible. It is now obvious that substantial
amounts of substructure are expected (e.g. Moore et al., 1999a; Klypin et al., 1999; Diemand
et al., 2007; Springel et al., 2008). An example is given in Fig. 7.10, which shows the dis-
tribution of dark matter in a pair of dark matter halos. Each clearly has a large number of
subhalos.

Let m and M be the masses of the subhalo and host halo, respectively. At any given time, the
subhalo mass function is well fitted by

dn
dln(m/M)

=
f0

βΓ(1− γ)
(

m
βM

)−γ
exp

[
−
(

m
βM

)]
. (7.149)
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Here βM (with β < 1) indicates a characteristic mass such that for m 	 βM the subhalo mass
function declines exponentially, and f0 is the mean subhalo mass fraction, i.e.

f0 =
1
M

∫ ∞

0
m

dn
dm

dm =
∫ ∞

0

dn
dln(m/M)

d
(m

M

)
. (7.150)

Numerical simulations have shown that γ ∼ 0.9± 0.1 (De Lucia et al., 2004; Gao et al., 2004;
Springel et al., 2008) while 0.1 ∼< β ∼< 0.5 (van den Bosch et al., 2005; Shaw et al., 2006). These
relatively large uncertainties are due in part to ambiguities in identifying and assigning masses to
subhalos. To a given mass limit, subhalos are found to have a radial number density profile that is
substantially less centrally concentrated than the dark matter density profile (e.g Springel et al.,
2008). This arises because subhalos at smaller radii are subjected to stronger tidal forces, and are
therefore more strongly truncated or disrupted. As a result, the subhalo mass fraction parameter
f0 is a strong function of the outer radius within which it is measured.

Consider a halo of mass M0 at redshift z0. Its population of subhalos corresponds to the halos
that have been accreted by the halo’s main progenitor (see §7.3.3) and that have survived tidal
disruption. It is thus interesting to link the subhalo mass function to the mass function of halos
accreted onto the main progenitor over its entire history, termed the unevolved subhalo mass
function. Numerical simulations by Giocoli et al. (2008) show that the unevolved subhalo mass
function is well fit by

dn
dln(m/M0)

= A

(
m

f M0

)−p

exp

[
−
(

m
f M0

)q]
, (7.151)

with A � 0.345, f � 0.43, p � 0.8 and q � 3, with little dependence on halo mass or redshift.
Note that in this formula m corresponds to the mass of the subhalo at the time it was accreted
by the main progenitor. During its subsequent evolution it loses mass at a rate which can be
written as

dm
dt

=
dm
drtid

drtid

dt
(7.152)

where rtid is its instantaneous tidal radius. We assume the latter to be the radius where the original
(unstripped) density of the subhalo equals the density of its host’s halo at its current orbital radius,
rorb, i.e. ρsub(rtid) = ρhost(rorb). If we assume that both ρsub(r) and ρhost(r) are singular isothermal
spheres, then

1
rtid

drtid

dt
=

1
rorb

drorb

dt
, (7.153)

so that both m and rtid decrease in direct proportion to rorb. The evolution of rorb is governed by
dynamical friction, and, assuming a circular orbit, is given by

drorb

dt
= −0.428

Gm
Vc rorb

lnΛ, (7.154)

with Vc the circular velocity of the host halo (see §12.3). To leading order, the Coulomb logarithm
lnΛ is just a function of the mass ratio m/M, which is a constant (equal to v3

c /V 3
c where vc is

the circular velocity of the subhalo) under the physically reasonable assumption that M should
be taken as the mass interior to the satellite’s orbit. In this very simple model the satellite’s mass
and the radius of its (circular) orbit thus decrease linearly with time:

m
mi

=
rorb

rorb,i
= 1−0.428lnΛ

v3
c t

V 2
c rorb,i

, (7.155)

where mi and rorb,i are the initial values of m and rorb respectively. Since we expect lnΛ to be
of the order of a few and rorb,i ∼ rvir, the virial radius of the host halo, this predicts that newly
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accreted subhalos should merge completely with their host after of order 0.1(Vc/vc)3 ∼ 0.1M/mi

times the initial orbital periods, where M is the total mass of the host. Thus infalling subalos with
mass greater than a few percent of that of the main object are predicted to merge rapidly, whereas
substantially lower mass objects will survive for long times with little stripping.

High-resolution numerical simulations show that while this conclusion is qualitatively correct,
Eq. (7.155) is a poor description of the typical mass loss behavior (Diemand et al., 2007). Most
accreted halos fall in on highly elongated orbits and lose a large fraction of their mass at first
pericenter. The most massive and lowest concentration objects continue to lose mass thereafter
and are often completely disrupted, but less massive and more concentrated objects often stabilize
on their new orbit at their reduced mass. Thereafter they evolve rather little either in mass or in
orbit. The detailed behavior depends significantly on the structure of both the host halo and the
infalling satellite, as well as on the eccentricity of their relative orbit. Regardless of this, it is
clear that, given the universality of the unevolved subhalo mass function, host halos assembling
earlier (i.e. accreting their subhalos at higher redshifts) will end up with less mass in subhalos,
simply because there has been more time for mass loss to operate. As we have seen in §7.3.3,
in a CDM cosmogony, halos that are more massive assemble later, and are thus expected to
have a larger subhalo mass fraction, f0, than lower mass objects. This is indeed confirmed by
simulations, which show that, to a good approximation, the (evolved) subhalo mass function is
given by Eq. (7.149) with f0 an increasing function of halo mass, and with γ and β roughly
constant (Giocoli et al., 2008).

7.5.4 Angular Momentum

(a) Halo Spin Parameters Another important property of a dark matter halo is its angu-
lar momentum. As originally pointed by Hoyle (1949) and first demonstrated explicitly using
numerical simulation by Efstathiou & Jones (1979), asymmetric collapse in an expanding uni-
verse produces objects with significant angular momentum. This is traditionally parameterized
through a dimensionless spin parameter,

λ =
J |E|1/2

GM5/2
, (7.156)

where J, E and M are the total angular momentum, energy and mass of the halo, respec-
tively. For an isolated system, all these quantities are conserved during dissipationless
gravitational evolution, and so, therefore, is λ itself. The spin parameter thus defined is
roughly the square root of the ratio between the rotational and the total energy of the sys-
tem, and so characterizes the overall importance of angular momentum relative to random
motion.

The energy of a spherical dark matter halo is easily obtained from the virial theorem, E =−K,
assuming all particles to be on circular orbits:

E = −4π
∫ rh

0

ρ(r)V 2
c (r)

2
r2dr ≡−MhV 2

h

2
FE, (7.157)

where Vh = Vc(rh) is the circular velocity at rh and FE is a parameter that depends on the halo’s
density distribution; FE = 1 for a singular isothermal sphere, while for a NFW halo with a
concentration parameter c,

FE =
c
2

[
1−1/(1+ c)2 −2ln(1+ c)/(1+ c)

]
[c/(1+ c)− ln(1+ c)]2

. (7.158)
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In the literature one often finds an alternative definition of the spin parameter which avoids the
need to calculate the halo energy explicitly:

λ ′ =
J√

2MVhrh
. (7.159)

This spin parameter is related to that defined by Eq. (7.156) through λ ′ = λF−1/2
E .

Numerical simulations have shown that the spin parameter distribution for halos formed by
dissipationless hierarchical clustering is well fit by a log-normal distribution,

p(λ )dλ =
1√

2πσlnλ
exp

[
− ln2(λ/λ )

2σ2
lnλ

]
dλ
λ

, (7.160)

with λ ≈ 0.035 and σlnλ ≈ 0.5. Detailed simulations show that the median and width of this
log-normal distribution depend only weakly on halo mass, redshift and cosmology (e.g. Barnes
& Efstathiou, 1987; Warren et al., 1992; Lemson & Kauffmann, 1999; Bullock et al., 2001a;
Macciò et al., 2007). At all halo masses there is a marked tendency for halos with higher spin to
be in denser regions and thus to be more strongly clustered (Gao & White, 2007). Note that the
distribution (7.160) is fairly broad, spanning roughly a factor of 5 between the 10th and 90th per-
centiles. The fact that the median spin parameter is so small indicates that dark matter halos are
mainly supported by random motions of their particles rather than by rotation. For comparison,
as we will see in §11.1.4, the spin parameter of a self-gravitating, rotationally supported disk is
∼ 0.4, roughly an order of magnitude larger than that of a dark matter halo.

(b) Tidal Torque Theory As first suggested by Hoyle (1949), the spin of a protogalaxy may
arise from the tidal field of its neighboring structure. This has prompted detailed studies into
angular momentum growth within the framework of the gravitational instability picture (Pee-
bles, 1969; Doroshkevich, 1970). Here we follow the analysis of White (1984), which gives a
consistent description of the growth of the angular momentum in the quasi-linear regime.

Consider the material that ends up as part of a virialized dark matter halo. Let the Lagrangian
region it occupies in the early universe be VL. The angular momentum of this material at early
times (well before collapse) can then be written as

J =
∫

VL

d3xiρma3(ax−ax)×v = ρma5
∫

VL

d3xi (x−x)× ẋ, (7.161)

where x is the barycenter of the volume, a is the scale factor of the universe, and an overdot
denotes derivative with respect to t. Using the Zel’dovich approximation described in §4.1.8, this
can be written to lowest order in the perturbation amplitude as

J = −ρma5ḃ
∫

VL

d3xi (xi −xi)×∇Φi, (7.162)

where b(t) = D(t)/4πGρma3 with D(t) the linear growth rate. Using the divergence (Gauss’)
theorem, this expression can be converted into an integral over the surface, ΣL, of VL:

J = −ρma5ḃ
∫
ΣL

Φi(xi)(xi −xi)×dS. (7.163)

Thus J vanishes to first order if VL is spherical or if ΣL is an equipotential surface of Φi. If we
assume that ∇Φi is smooth enough so that it can be expanded in a Taylor series around xi,

∇Φi|xi = ∇Φi|xi +(xi −xi) · (∇∇Φi)|xi , (7.164)

then the volume integral form of J gives

Ji(t) = −a2ḃ∑
j,k,l

εi jkTjl Ilk, (7.165)
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where εi jk is the completely antisymmetric tensor with ε123 = 1,

Tjl = ∇ j∇lΦi|xi (7.166)

is the tidal tensor at xi, and

Ilk =
∫

VL

(
xi,l − xi,l

)(
xi,k − xi,k

)
ρma3 d3xi (7.167)

is the inertia tensor of the matter in VL. Both Tjl and Ilk are evaluated at the fiducial time ti. As
one can see, if the principal axes of Ti j and Ii j are different, J is non-zero because the tidal field
couples to the quadrupole generated by the boundary of VL.

To gain more insight into the problem, let us approximate the boundary of VL by an ellipsoid
with principal axes R1 ≥R2 ≥R3. In the principal axis system of the ellipsoid, the inertia tensor is

Ii j = δi jμ j; μ1 =
M
5

R2
1, μ2 = μ1

(
R2

R1

)2

, μ3 = μ1

(
R3

R1

)2

, (7.168)

where M is the mass of the ellipsoid. In this same coordinate system, Ti j can be written as

Ti j = −4πGρma3
3

∑
α=1

λαAα,iAα, j, (7.169)

where λα(α = 1,2,3) are the eigenvalues of ∇∇Φi/4πGρma3, and Aα,i is the cosine of the angle
between the αth principal axis of ∇∇Φi and the ith coordinate axis. Thus the value of J can be
written as

J(t) =
1
5

[
2G

H2(t)Ωm(t)

]2/3

Ḋ(t)δ iM
5/3G , (7.170)

where

G =
(

R2
1

R2R3

)2/3 λ1

λ1 +λ2 +λ3

[
3

∑
α=1

λ 2
α
λ 2

1
∑
j>k

A2
α, jA

2
α,k

(
μ j −μk

μ1

)2
]1/2

, (7.171)

with δ i the initial density contrast of the ellipsoid. We can now see clearly how J depends on
various parameters. The ‘geometrical’ factor G is determined by the shape of the ellipsoid (given
by R2/R1 and R3/R2), the shape of the tidal field (given by λ2/λ1 and λ3/λ1), and the position
angles between them. For given G , the angular momentum J increases with the mass of the
ellipsoid as M5/3 and with the initial density contrast δ i linearly. The time dependence of J is
given by the time dependence of H2(t)Ωm(t) and Ḋ(t). For an EdS universe Ωm(t) = 1, H(t) ∝
t−1 and D(t) ∝ t2/3, so that J ∝ t, in good agreement with numerical simulations (White, 1984).

The angular momentum growth stops once a protogalaxy separates from the overall expansion
and starts to collapse. As an approximation, the final angular momentum of the protogalaxy may
therefore be estimated as the value of J predicted by Eq. (7.170) at the time tf when D(tf)δ i =
1. According to the Zel’dovich approximation, this is approximately the time when the object
collapses to form a pancake. The final angular momentum can then be written as

Jf =
(2G)2/3

5
[Ωm(tf)]−0.07[H(tf)]−1/3M5/3G , (7.172)

where we have used the approximation aḊ/ȧD =Ω0.6
m (see §4.1.6). Since H(tf)∼ t−1

f , this equa-
tion shows that the angular momentum of a protogalaxy depends strongly on its mass, weakly on
its time of collapse, and almost not at all on Ωm at that time.

The linear theory described above gives us some idea about the acquisition of angular momen-
tum during the early stages of collapse of dark matter halos in the cosmological density field. It
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should be realized, however, that this angular momentum may not correspond to the final angular
momentum of a dark matter halo, because a dark matter halo may acquire significant amounts
of angular momentum during the late stages of nonlinear collapse and due to mergers with other
halos (e.g. Maller et al., 2002; Vitvitska et al., 2002). In fact, numerical simulations show that
the linear angular momentum is a relatively poor predictor of the final angular momentum (e.g.
White, 1984; Sugerman et al., 2000; Porciani et al., 2002a,b).

Numerical simulations show that the direction of the angular momentum vector is strongly
aligned with the minor axis of the halo, with a median misalignment angle of ∼ 25◦ (Bailin &
Steinmetz, 2005). On larger scales, the angular momentum vectors of dark matter halos embed-
ded in mildly nonlinear, two-dimensional sheets have a strong tendency to be parallel to the sheet
(Hahn et al., 2007). Another form of alignment is that between the angular momentum vectors
of neighboring dark matter halos. This can be expressed via the spin–spin correlation function

ξspin(r) ≡ 〈J1(x) ·J2(x+ r)〉, (7.173)

where J1 and J2 are the angular momentum vectors of two halos separated by a distance r = |r|.
Using numerical simulations, Hahn et al. (2007) find that there is a weak tendency for mas-
sive halos (M ∼> 5× 1012h−1 M�) to have their angular momentum vectors antiparallel to those
of halos within a distance of a few Mpc. On larger scales, and for less massive halos, how-
ever, ξspin(r) is consistent with being zero. These various alignments are not only important for
understanding the angular momentum acquisition of galaxies, but may also cause a systematic
contamination in weak lensing maps of cosmic shear (e.g. Hirata & Seljak, 2004). Unfortunately,
the origin of all these alignment effects is still poorly understood, and much work is needed in
this direction.

(c) Internal Angular Momentum Distribution The spin parameter defined in Eq. (7.156)
describes the total angular momentum of a dark matter halo, but contains no information regard-
ing the distribution of angular momentum within the halo. As we will see in §11.4.1 this specific
angular momentum distribution is an important ingredient for modeling the mass distribution of
disk galaxies.

Using numerical simulations of structure formation, Bullock et al. (2001a) measured the spe-
cific angular momentum distributions of dark matter halos, and found that they can be adequately
fit by

P(J ) =

{
μJ0

(J0+J )2 if J ≥ 0

0 if J < 0.
(7.174)

Here J is the specific angular momentum in the direction of the total angular momentum vector
of the halo (and can thus be negative), J0 is a characteristic value of J , and μ is a shape
parameter. This distribution is normalized, so that

M(< J ) =

{
Mvir

μJ
J0+J if J ≥ 0

0 if J < 0,
(7.175)

with M(< J ) the halo mass with specific angular momentum less than J . The distribution
has a maximum specific angular momentum, Jmax, specified by M(< J ) = Mvir, which gives
Jmax = J0/(μ − 1). The total specific angular momentum of a halo with this distribution is
given by

Jtot =
∫ Jmax

0
J P(J )dJ = ζJmax, (7.176)
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with

ζ = 1−μ
[

1− (μ−1)ln
(

μ
μ−1

)]
. (7.177)

This Jtot can be related to the halo spin parameter using Eq. (7.156), according to which Jtot =√
2λ rvirVvirF

−1/2
E . Thus the pair (λ ,μ) completely specifies the angular momentum distribution

of a dark matter halo. As shown by Bullock et al. (2001a), μ has a log-normal distribution with
mean μ � 1.25 and scatter σlnμ � 0.4.

Bullock et al. (2001a) also measured the angular momentum distribution in spherical shells,
and found that the specific angular momentum in a shell at radius r is roughly given by

J (r) ∝ rα with α � 1.1±0.3 (7.178)

(see also Barnes & Efstathiou, 1987; Frenk et al., 1988). Alternatively, one can also express this
radial distribution as a function of the mass enclosed by the shell, M, which yields

J (M) ∝Mβ with β � 1.3±0.3. (7.179)

7.6 The Halo Model of Dark Matter Clustering

In a hierarchical cosmogony with a density perturbation power spectrum that increases mono-
tonically and without bound as the mass scale decreases, all dark matter particles are expected
to reside in dark matter halos. This suggests that one can describe the dark matter distribution in
terms of its halo building blocks: on small scales the density field is related to the density dis-
tribution of individual halos, which, as we have seen in §7.5.1, have roughly a universal density
profile. On large scales it reflects the spatial distribution of halos of different masses. To some
extent, this is an old idea. One of the earliest models for galaxy clustering considered a density
field composed of randomly distributed independent clumps with some universal density profile
(Neyman et al., 1953). Now that we have accurate models for the mass function, density pro-
file and spatial correlation of dark matter halos, it is possible to use this halo model to give an
accurate description of the dark matter distribution. Here we present the main framework; a more
thorough description can be found in Cooray & Sheth (2002).

For simplicity, we assume that the density profile of a halo depends only on its mass, so that
we can write the density profile of a halo with mass M as

ρ(x) = Mu(x|M), (7.180)

where x is the position relative to the halo center, and the profile function u(x|M) is normalized,
i.e.

∫
u(x|M)d3x = 1. Now, imagine that space is divided into many small volumes, ΔVi (i =

1,2, . . .), which are so small that none of them contains more than one halo center. The occupation
number in the ith volume Ni is therefore either 1 or 0, and so Ni = N 2

i = N 3
i = · · ·.

In terms of the occupation number Ni, the density field of dark matter can formally be
written as

ρ(x) =∑
i

NiMiu(x−xi|Mi), (7.181)

where Mi is the mass of the halo whose center is in ΔVi. Note that the ensemble average
〈NiMiu(x − xi|Mi)〉 is equal to

∫
dM n(M)MΔVi u(x − xi|M), where n(M) is the halo mass

function. Thus
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〈ρ(x)〉 =
∫

dM M n(M)∑
i
ΔVi u(x−xi|M)

=
∫

dM M n(M)
∫

d3x′u(x−x′|M)

=
∫

dM M n(M) = ρ, (7.182)

where ρ is the mean mass density of the Universe. Similarly, the two-point correlation function
of the density field is

〈ρ(x1)ρ(x2)〉 =∑
i, j
〈NiMiN jMju(x1 −xi|Mi)u(x2 −x j|Mj)〉. (7.183)

We can divide the summation ∑i, j into two parts, one with i = j and the other with i �= j. The first
part describes the case where the two contributions to the correlation are from the same halo, and
is called the ‘1-halo term’. The second part represents the case where the two contributions are
from different halos, and is called the ‘2-halo term’. For i = j the ensemble average in the above
equation can be simplified by using NiN j = N 2

i = Ni. For i �= j, the ensemble average can be
written as∫

dM1M1n(M1)
∫

dM2M2n(M2)[1+ξhh(xi −x j|M1,M2)]u(x1 −xi|M1)u(x2 −x j|M2),

(7.184)

where ξhh(xi − x j|M1,M2) is the two-point cross-correlation function between halos of masses
M1 and M2. It is then easy to show that the two-point correlation function for the density
fluctuation field, δ (x) ≡ ρ(x)/ρ−1, is

ξ (r) ≡ 〈δ (x1)δ (x2)〉 = ξ 1h(r)+ξ 2h(r) (r ≡ |x1 −x2|) , (7.185)

where

ξ 1h(r) =
1

ρ2

∫
dM M2n(M)

∫
d3yu(y−x1|M)u(y−x2|M), (7.186)

ξ 2h(r) =
1

ρ2

∫
dM1 M1n(M1)

∫
dM2 M2n(M2)

∫
d3x

∫
d3x′

× u(x1 −x|M1)u(x2 −x′|M2)ξhh(x−x′|M1,M2). (7.187)

Because the model correlation function involves convolution, it is more convenient to work in
Fourier space. The Fourier transform of the density field defined in Eq. (7.181) is

ρ(k) =∑
i

NiMiũ(k|Mi)e−ik·xi . (7.188)

Here ũ(k|Mi) is the Fourier transform of the density profile, which for a spherically symmetric
profile truncated at the virial radius rh is given by

ũ(k|M) =
4π
M

∫ rh

0
ρ(r|M)

sinkr
kr

r2 dr. (7.189)

Using the properties of Ni, it is straightforward to show that the power spectrum of the density
field is

P(k) ≡Vu〈|δk|2〉 = P1h(k)+P2h(k), (7.190)

where

P1h(k) =
1

ρ2

∫
dM M2n(M) |ũ(k|M)|2 , (7.191)
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P2h(k) =
1

ρ2

∫
dM1 M1n(M1)ũ(k|M1)

∫
dM2 M2n(M2)ũ(k|M2)Phh(k|M1,M2), (7.192)

with Phh(k|M1,M2) the cross-power spectrum of halos of masses M1 and M2. As expected, the
one-halo terms of ξ (r) and P(k) are completely determined by the density profiles of individual
halos and the halo mass function. The dependence on the halo profile in the two-halo terms is due
to the finite sizes of individual halos. If the scale in consideration is much larger than the sizes
of individual halos, only the two-halo term is important. In this case, we can replace u(y|M) in
Eq. (7.187) by a delta function and ũ(k|M) in Eq. (7.192) by 1, and so the two-halo terms become
independent of the density profiles of individual halos.

As we have seen in §7.4.1, dark matter halos are biased with respect to the mass distribution.
On large scales, this can be expressed via the linear halo bias parameter bh(M), which allows us
to write

Phh(k|M1,M2) = bh(M1)bh(M2)Plin(k), (7.193)

with Plin(k) the linear power spectrum.3 Substituting Eq. (7.193) into Eq. (7.192) yields

P2h(k) = Plin(k)
[

1
ρ

∫
dM M n(M)bh(M) ũ(k|M)

]2

. (7.194)

Fig. 7.11. The decomposition of the mass power spectrum [here plotted as Δ2(k)≡ k3P(k)/2π2] according
to the halo model, for a flat cosmology with Ωm,0 = 0.3, ΩΛ,0 = 0.7, h = 0.7, and σ8 = 0.8. The dashed
line shows the linear power spectrum and the open circles show the predicted one-halo contribution. Sum-
ming up the two yields the total power spectrum represented by the solid points. The solid lines show the
contribution of different mass ranges to the one-halo term: each line covers one dex in halo mass, start-
ing at 1010–1011h−1 M� and ending at 1015–1016h−1 M�. The more massive halos have larger radii and
hence contribute to the power spectrum on progressively larger scales. Most of the quasi-linear power is
contributed by halos with masses close to M∗ ∼ 1013h−1 M�. [Courtesy of J. Peacock; see Peacock (2003)]

3 The discussion for the two-point correlation function is the same and is omitted here.
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Since the distribution of matter is by definition unbiased with respect to itself, we have that

1
ρ

∫
dM M n(M)bh(M) = 1. (7.195)

Thus, on large scales (small k), where ũ(k|M) = 1, we have that P2h(k) = Plin(k). On small scales,
Eq. (7.194) is no longer an accurate approximation of the true two-halo term, due to the facts that
(i) Eq. (7.193) only applies to large scales that are still in the linear regime, and (ii) it does not
account for halo exclusion (halos are spatially exclusive). Fortunately, high accuracy for P2h(k)
on small scales is not really needed, since the one-halo term, associated with the internal structure
of the dark matter halos, clearly dominates for large k. Although this halo model is obviously an
approximation, in practice it works extremely well (Ma & Fry, 2000a,b; Smith et al., 2003). In
addition, it provides a novel way to understand the features in the nonlinear power spectrum (see
Fig. 7.11). According to the ideas presented here, the flat small-scale spectrum arises because
halos have central density cusps proportional to r−1, but not much steeper. The sharp fall in
power at smaller k reflects the cutoff at the virial radii of the halos that dominate the correlation
signal.

Similar derivations can also be carried out for higher-order correlation functions, or for the
correlation function and power spectrum in redshift space (Cooray & Sheth, 2002).
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Formation and Evolution of Gaseous Halos

So far we have concentrated on the formation of structure under the influence of gravity alone.
However, since the astronomical objects we are able to observe directly are made of baryons and
electrons, the role of gas-dynamical and radiative processes must also be taken into account in
order to understand how the structures we observe form and evolve. As demonstrated in §4.1.3,
since baryons and dark matter are expected to be well mixed initially, the density perturbation
fields of the baryons, δb, and dark matter, δdm, are expected to be equal in the linear regime,
except for perturbations on scales smaller than or comparable to the Jeans length of the gas. In
this chapter, we examine the role of gas-dynamical and radiative processes for the evolution of
structures in the highly nonlinear regime. We start in §8.1 with a brief description of the basic
dissipational processes. §8.2 describes the structure of gas in hydrostatic equilibrium within dark
matter halos. The formation of gaseous halos in the absence of cooling and heating is discussed
in §8.3, while §8.4 focuses on the impact of cooling. §8.5 describes several thermal and hydro-
dynamical instabilities of cooling gas, and §8.6 discusses the evolution of gaseous halos in the
presence of energy sources. §8.7 gives a summary of the current status of numerical studies of
the formation and structure of gaseous halos, while §8.8 discusses observations of gaseous halos
associated with clusters and galaxies.

8.1 Basic Fluid Dynamics and Radiative Processes

8.1.1 Basic Equations

In many problems to be discussed below, the gas component can be approximated as an
ideal fluid, which means that we can neglect heat conduction and viscous stress in the fluid
equations (see §B1.2). Written in physical coordinates, r, the continuity, Euler, and energy
equations are:

∂ρ
∂ t

+∇ · (ρv) = 0, (8.1)

∂v
∂ t

+(v ·∇)v = −
(
∇Φ+

∇P
ρ

)
, (8.2)

∂
∂ t

[
ρ
(

v2

2
+E

)]
+∇ ·

[
ρ
(

v2

2
+

P
ρ

+E

)
v
]
−ρv ·∇Φ= H −C . (8.3)

Here ρ , v, P, E are the density, velocity, pressure and specific internal energy of the fluid, respec-
tively, and H and C are the heating and cooling rates per unit volume. For an ideal gas with an
adiabatic index γ (also called the ratio of specific heats), we have P = ρ(γ− 1)E . Eq. (8.3) can
then be replaced by the following entropy equation:

366
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P
γ−1

(
∂
∂ t

+v ·∇
)

ln

(
P
ργ

)
= H −C , (8.4)

(see §B1.2). The gravitational potential Φ satisfies the Poisson equation

∇2Φ= 4πGρtot, (8.5)

where ρtot is the total mass density of the universe. If the Universe contains a collisionless dark
matter component in addition to the baryonic fluid, ρtot should also include ρdm, the evolution of
which is governed by the collisionless Boltzmann equation (5.103).

As one can see, in order to study the evolution of the baryonic component using the ideal-
fluid approximation, one has to deal with processes that can heat or cool the baryonic gas. In
what follows, we describe briefly some of these processes; a more detailed description is given
in Appendix B.

8.1.2 Compton Cooling

When photons of low energy hPν pass through a thermal gas of non-relativistic electrons with
temperature Te (hPν � mec2; kBTe � mec2), photons and electrons exchange energy due to
Compton scattering (see §B1.3). If the radiation field is a thermal background with tempera-
ture Tγ � Te, the net effect is for electrons to lose energy to the radiation field, causing the gas
to cool. The cooling rate per unit volume is equal to the rate of increase in the energy density of
the radiation field, allowing us to write

CComp =
duγ
dt

=
4kBTe

mec2 cσTnearT
4
γ , (8.6)

where the second equality follows from Eq. (B1.77). For a fully ionized gas of primordial com-
position (Yp � 1/4 so that nHe � nH/12; see §3.4.3), the energy content is (3/2)kTe × (27/14)
per electron, where the factor 27/14 is the number of particles per electron. Thus, the gas can
cool against the radiation field on a time scale

tComp ≈ 3kBTene

CComp
=

3mec
4σTarT 4

γ
, (8.7)

provided Te 	 Tγ . Note that this time scale is independent of the density and temperature of
the gas.

An important application is the cooling against the cosmic microwave background (CMB), for
which the temperature changes with redshift as Tγ ≈ 2.73(1+ z)K. We can approximate the age

of the Universe at redshift z ≥ Ω−1
m,0 −1 by t ≈ 6.7×109Ω−1/2

m,0 h−1(1 + z)−3/2 yr (see §3.2.5). It
is then easy to show that

tComp

t
≈ 350Ω1/2

m,0h(1+ z)−5/2. (8.8)

For Ωm,0 = 0.3 and h = 0.7, this gives tComp/t = 1 at z ∼ 6. Hence, Compton cooling against the
CMB is only important for gas at high redshifts.

8.1.3 Radiative Cooling

The primary cooling processes relevant for structure formation are two-body radiative processes,
in which gas loses energy through radiation as a result of two-body interactions. For our purposes,
processes involving three bodies or more can be ignored, since the gas densities involved are
too low. At temperatures above 106 K, primordial gas (composed of hydrogen and helium) is
almost entirely ionized, and above a few ×107 K, enriched gas (which contains also heavier
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elements) is fully ionized as well. The only significant radiative cooling at such high temperatures
is bremsstrahlung due to the acceleration of electrons as they encounter atomic nuclei. For an
optically thin gas, the volume cooling rate is related to the bremsstrahlung (free–free) emissivity
εff [see Eq. (B1.63)] through

Cff =
∫
εff(ν)dν

≈ 1.4×10−23T 1/2
8

( ne

cm−3

)2
ergs−1 cm−3, (8.9)

where T8 ≡ T/(108 K), and the second expression assumes a charge number of unity and ni ∼ ne,
valid for a completely ionized hydrogen gas. When species other than hydrogen are present, the
total cooling rate is the sum over all species of ions. For example, for a primordial gas, with
nHe � nH/12 the above cooling rate needs to be multiplied by a factor 16/14.

At lower temperatures, several other processes are important. The first is collisional ioniza-
tion, in which atoms (including partially ionized ones) are ionized by collisions with electrons,
removing from the gas an amount of kinetic energy equal to the ionization threshold. The
second is recombination, in which an electron recombines with an ion, emitting a photon.
The third is collisional excitation, in which atoms are first excited by collisions with elec-
trons and then decay radiatively to the ground state. All these processes depend strongly on
T , in the first and second cases because the recombination and (collisional) ionization rates
are temperature sensitive, and in the third case because the ion abundance depends strongly on
temperature.

With the assumption that the gas is optically thin to the emitted photons, the cooling
rates due to these various processes can be calculated for a gas at a given temperature,
and the details of such calculation are described in §B1.4. In practice, the cooling rate of
the cosmic gas (which is rich in hydrogen) is usually represented by a cooling function
defined as

Λ(T ) ≡ C

n2
H

, (8.10)

where C is the total cooling rate per unit volume and nH is the number density of hydrogen
atoms (both neutral and ionized). Thus defined, Λ is independent of gas density for an optically
thin gas. Note that other normalizations, such as C /n2

e , are also in use in the literature, which
may lead to slightly different values of the cooling function. Fig. 8.1 shows the cooling function
as a function of T for gases with three different metallicities. In all cases, the cooling rate is
dominated by bremsstrahlung at the high-temperature end, where Λ∝ T 1/2. For a primordial gas
with T < 105.5 K, a large fraction of the electrons are bound to their atoms, and the dominant
cooling process is collisional excitation followed by radiative de-excitation; the peaks in the
cooling function at ∼ 15,000K and ∼ 105 K are due to collisionally excited electronic levels of
H0 and He+, respectively. For an enriched gas, there is an even stronger peak at T = 105 K due
to the collisionally excited levels of ions of oxygen, carbon, nitrogen, etc. In an enriched gas, the
cooling function is also enhanced at ∼ 106 K by other common elements, noticeably neon, iron
and silicon.

At temperatures below 104 K, most of the electrons have recombined and cooling due to col-
lisional excitation drops precipitously. In this case, radiative cooling is still possible, albeit at
a much reduced rate, if the gas is enriched. Here collisions with neutral hydrogen atoms and
with the few free electrons left can excite the fine structure levels of low ions, such as OI,
OII, OIII and CII. If molecules (H2, CO, etc.) are present in the gas, collisional excitation of
their rotational/vibrational levels can also contribute to gas cooling at low temperature. Detailed
descriptions about these cooling processes can be found in Dalgarno & McCray (1972) and
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Fig. 8.1. Cooling functions for primordial (Z = 0) gas (assuming nHe/nH = 1/12), and for gases with
metallicities Z/Z� = 0.01, 0.1 and 1.0, as indicated. [Based on data published in Sutherland & Dopita
(1993)]

Spitzer (1978), for example. In the case of primordial gas, cooling at temperatures below 104 K
is only possible if significant amounts of molecular hydrogen can form in the gas. In the absence
of dust grains, as is the case for a primordial gas, the formation of H2 has to proceed via
gas-phase reactions such as H0 + e → H− + γ followed first by H− + H0 → H2 + e and/or
H+ + H0 → H2

+ + γ and then by H2
+ + H0 → H2 + H+. The cross-sections of all these reac-

tions are reasonably well known, allowing the corresponding cooling function to be calculated
(e.g. Abel et al., 1997; Galli & Palla, 1998).

It should be emphasized that the cooling functions shown in Fig. 8.1 assume ionization equilib-
rium, i.e. that the densities of all ions are equal to their equilibrium values. This is only expected
to be applicable if the time scales for the radiative processes in question are much shorter than
the hydrodynamical time scales of the gas. This may not be the case in very dilute gas (where
the reaction rates are very low) or in shocks (where the hydrodynamical times are short). For gas
that is not in ionization equilibrium, the cooling rates have to be calculated using non-equilibrium
densities obtained by solving the time-dependent ionization equation (see §B1.3).

8.1.4 Photoionization Heating

In addition to collisional ionization, an atom can also be ionized by absorbing a photon, a process
called photoionization (see §B1.3). Thus, the presence of an ionizing radiation field can change
the population densities of ions, thereby changing the cooling rate of the gas. In addition, pho-
toionization can also heat the gas, through a process called photoionization heating. When an
ionizing photon with energy hPν ionizes an electron from an atom with threshold frequency νi

(i.e. whose ionization threshold is hPνi), the surplus energy, hP(ν− νi), is transformed into the
kinetic energy of the electron. In a static state, photoionization is balanced by recombination.
However, the loss of energy due to recombination is smaller than the gain from photoionization,
because the recombination rate is in general higher for lower-energy electrons, causing a net
heating. The photoionization heating rate per unit volume is expected to be proportional to the
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Fig. 8.2. Net cooling rates as a function of temperature for a gas of primordial composition in ioniza-
tion equilibrium with a UV radiation background of intensity J(ν) = 10−22(νH/ν)ergs−1 cm−2sr−1Hz−1.
Results are shown for four different hydrogen number densities nH = 10−6, 10−4, 10−3, and 10−2 cm−3,
as indicated. In each panel, the dotted line shows the cooling rate and the dashed line shows the rate of heat-
ing by photoionization. The solid curve shows the absolute value of the net cooling rate (in erg cm3s−1);
heating dominates at low temperatures and cooling at high temperatures. [Adapted from Weinberg et al.
(1997a) by permission of AAS]

intensity of the ionizing radiation field, J(ν), the density of the ions that can be ionized by the
radiation field, n, and the photoionization cross-section, σphot, and can be written as

H =∑
i

niεi, (8.11)

where

εi =
∫ ∞

νi

4πJ(ν)
hPν

σphot,i(ν)(hPν−hPνi) dν (8.12)

is the mean kinetic energy involved in photoionizing species ‘i’. Note that Eq. (8.11) does not
include the energy loss due to recombinations, which is included in the recombination cooling.

As an illustration, Fig. 8.2 shows the net cooling functions for primordial gas in ionization
equilibrium at various densities and exposed to a UV radiation background with intensity J(ν) =
10−22(νH/ν)ergs−1 cm−2sr−1Hz−1. The intensity adopted here is roughly that expected from
the emission of quasars and young galaxies at z ∼ 3. As one can see, heating dominates over
cooling at T < 104 K to 105 K, depending on the density of the gas. Note also that, for very dilute
gas, there is very little cooling due to radiative de-excitation (i.e. the peaks in the cooling function
due to H0 and He+ disappear).
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8.2 Hydrostatic Equilibrium

For gas in hydrostatic equilibrium, the gravitational forces are balanced by pressure gradients,
so that

∇P(r) = −ρ(r)∇Φ(r), (8.13)

where Φ is the gravitational potential which satisfies the Poisson equation

∇2Φ= 4πG(ρdm +ρ) . (8.14)

Here we have explicitly included a possible contribution to the gravitational potential due to
dark matter. As is clear from the above equations, the isopotential surfaces are the same as the
isobaric surfaces. Under the assumption of spherical symmetry and for an ideal gas, the pressure
and potential gradients are

dP
dr

=
d(kBTρ/μmp)

dr
,

dΦ
dr

=
GM(r)

r2 , (8.15)

where M(r) is the total mass (gas plus dark matter) within radius r, μ = ρ/(nmp) is the mean
molecular weight of the gas, mp is the proton mass, ρ is the mass density, and n is the number
density of particles. The hydrostatic equation can then be written as

M(r) = −kBT (r)r
μmpG

[
dlnρ
dlnr

+
dlnT
dlnr

]
. (8.16)

Thus, the hydrostatic equation provides an estimate of the total mass of a halo within some radius
r from measurements of the density and temperature profiles, ρ(r) and T (r), of the gas. This is
in fact the standard method for estimating the mass of X-ray clusters, for which both ρ(r) and
T (r) can be obtained from their X-ray emissions (see §8.8). Note, however, that the total pressure
may have a substantial contribution, Pnt, due to non-thermal turbulence, magnetic fields and/or
cosmic rays. In that case Eq. (8.16) needs to be replaced by

M(r) = −kBT (r)r
μmpG

[
dlnρ
dlnr

+
dlnT
dlnr

+
Pnt

Pth

d lnPnt

d lnr

]
, (8.17)

where Pth is the thermal pressure. Since Pnt is in general difficult to measure, and since real
clusters are not exactly spherical, the masses inferred with this method can still have significant
uncertainties (e.g. Evrard et al., 1996; Rasia et al., 2006).

8.2.1 Gas Density Profile

In general, the assumption of hydrostatic equilibrium alone is not sufficient to determine the
density distribution of the gas, because the dependence of the temperature on radius remains
unspecified. In order to make progress, one typically either assumes that the gas has a polytropic
equation of state, or that it has a constant temperature T (r) = T . We now discuss these two cases
in turn.

In the case of a polytropic gas, the equation of state is given by P = AρΓ, where A is a constant,
and Γ= const. is the polytropic index (see §B1.1). If Γ> 1, the hydrostatic equation implies that

kBT (r) =
(1−Γ)
Γ

μmpΦ(r), (8.18)

where we have assumed that both ρ and Φ vanish at large distances. In this case, the gas tem-
perature exactly follows the gravitational potential field. Note that, since P ∝ Tρ ∝ ρΓ, the
gravitational potential field also completely specifies the density and pressure profiles of the gas.
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Another example for which the hydrostatic equation can be solved is an isothermal1 sphere,
for which T is independent of r. In this case the hydrostatic equation can be written as

ρ(r) = ρ0 exp

(
− Φ

c2
T

)
, c2

T ≡ kBT
μmp

, (8.19)

and the Poisson equation gives

1
r2

d
dr

(
r2 dΦ

dr

)
= 4πG

[
ρdm(r)+ρ0 exp

(
− Φ

c2
T

)]
. (8.20)

This equation can be solved for given ρdm(r). In particular, if ρdm = 0, the above equation reduces
to the Lane–Emden equation. If we assume that ρ(r) is a power law, there is a simple solution:

Φ(r) =
2kBT
μmp

ln
r
r0

, ρ(r) =
2kBT
μmp

1
4πGr2 , M(r) =

2kBT
μmp

r
G

, (8.21)

with r0 defined by Φ(r0) = 0. Defining the circular velocity of the gaseous sphere as Vc ≡
[GM(r)/r]1/2, we have

V 2
c =

2kBT
μmp

, ρ(r) =
V 2

c

4πGr2 , M(r) =
V 2

c r
G

. (8.22)

These are the properties of a singular isothermal sphere. It is clear from Eq. (8.20) that if ρdm has
a 1/r2 profile, the above solution still holds, except that ρ and M are now the total density and
total mass, respectively.

The singular isothermal sphere solution, although simple, is unphysical, because the density
diverges at r = 0. To obtain a physical solution, we need to impose physical boundary conditions
on the problem. There are two such conditions: ρ(r = 0) = ρ0 = constant and (dΦ/dr)(r = 0) =
0. The second condition follows from the fact that the force at the center is zero. The solution
of the Lane–Emden equation with these boundary conditions can be obtained numerically. The
resulting density profile can be well approximated by the King profile,

ρ(r) =
ρ0

[1+(r/r0)2]3/2
, r0 =

3cT√
4πGρ0

, (8.23)

for r ∼< 2r0. For r ∼> 10r0, ρ(r) approaches that of a singular isothermal sphere (see §5.4.7).
In general, if both gas and dark matter are in static equilibrium within the same potential well

Φ(r), then

1
ρgas

∇iP =
1
ρdm
∑

j
∇ j
[
ρdm

〈
v jvi
〉]

. (8.24)

This relation follows from substituting the gravitational term ∇Φ in Eq. (8.13) with that
appearing in

∑
j
∇ j
[
ρdm

〈
v jvi
〉]

= −ρdm∇iΦ, (8.25)

which are the momentum equations in static form [see Eq. (5.112)]. If the velocity distribution
of dark matter particles is isotropic, i.e.

〈
viv j
〉

= σ2δi j, and if the halo is isothermal so that σ2

and T are independent of r, we obtain

ρgas(r) ∝ [ρdm(r)]β , (8.26)

1 Here ‘isothermal’ refers to the fact that T is constant in space. This should not be confused with an isothermal equation
of state, for which T is constant in time during a thermodynamic process.
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where

β ≡ μmpσ2

kBT
. (8.27)

Since the specific kinetic energy of the dark matter is equal to 〈v2〉/2 = 3σ2/2, and the specific
internal energy of the gas is equal to E = (γ−1)−1(kBT/μmp), for a monatomic gas with γ = 5/3
the value of β is equal to the ratio of specific energies of the dark matter and gas.

As a final example, consider the NFW dark halo profile discussed in §7.5.1,

ρdm(r) = ρcrit
δchar

(r/rs)(1+ r/rs)2 . (8.28)

If we again make the assumption that the gas temperature profile is constant, T (r) = T , and we
assume in addition that the self-gravity of the gas is negligible (i.e. ρ � ρdm), then hydrostatic
equilibrium implies a gas density profile

ρ(r) = ρ0 e−b
(

1+
r
rs

)brs/r

, (8.29)

where ρ0 = ρ(0), and

b = 4πGρcritδcharr
2
s
μmp

kBT
. (8.30)

Thus, unlike the dark matter profile, the gas profile ρ(r) is finite at r = 0 with a core radius that
depends on b and rs. In reality, though, neither is the gas temperature profile isothermal, nor can
the self-gravity of the gas be completely neglected, and one has to solve Eqs. (8.13) and (8.14)
numerically. More detailed discussion of the density and temperature profiles of gas in NFW
halos can be found in Suto et al. (1998) and Komatsu & Seljak (2001).

8.2.2 Convective Instability

The hydrostatic equation (8.13) specifies the condition of mechanical equilibrium for gas in a
gravitational potential. However, the equilibrium state can be convectively unstable, depending
on the distribution and thermal state of the gas. To obtain the criterion for convective instability,
consider a small blob of gas initially in thermal and mechanical equilibrium with an ambient
medium. For simplicity, consider a one-dimensional case and assume that the gravitational force
points in the −z direction. Suppose that the blob is displaced adiabatically along the −z direction
by an infinitesimal amount. To maintain pressure equilibrium with the ambient gas, the change
in the density of the blob must be

(dρ)blob =
(
∂ρ
∂P

)
S

dP. (8.31)

In the new place, the density of the ambient gas is different from that in the old place by an
amount that can be written as(

dρ
dz

)
ambient

dz =
(
∂ρ
∂P

)
S

dP+
(
∂ρ
∂S

)
P

dS, (8.32)

where dP and dS are the differences of the pressure and specific entropy of the ambient medium
between the two places. If the increase in ρblob is faster than the increase in ρambient, the blob will
sink further along the −z axis and the perturbation is amplified. Thus, convective instability will
occur if the ambient medium satisfies (

∂ρ
∂S

)
P

dS
dz

> 0. (8.33)
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Using Maxwell’s relation, (∂V/∂S)P = (∂T/∂ p)S, we see that

(∂ρ/∂S)P ∝−ρ2 (∂V/∂S)P = −ρ2(∂T/∂P)S < 0, (8.34)

where we have used the fact that the gas temperature increases if it is adiabatically compressed.
We then obtain Schwarzschild’s criterion for convective instability:

dS/dz < 0, (8.35)

i.e. the specific entropy of the ambient medium increases in the direction of gravity.
For an ideal gas, dS = cPdT/T − dP/(ρT ), where cP is the specific heat at constant pres-

sure. The mechanical equilibrium condition gives dP/dz = −gρ , where g is the gravitational
acceleration. The condition (8.35) can therefore be written as

dT
dz

<
T
P

(
1− cV

cP

)
dP
dz

=
(

dT
dz

)
S
= − g

cP
, (8.36)

implying that convective instability occurs whenever the temperature gradient along the gravita-
tional field is sufficiently high.

8.2.3 Virial Theorem Applied to a Gaseous Halo

As shown in §5.4.4, the virial theorem provides a constraint on the global properties of any
dynamical system:

1
2

d2I
dt2 = 2K +W +Σ, (8.37)

where I is the momentum of inertia, K is the kinetic energy, W is the gravitational energy, and Σ
is the work done by the surface pressure. For a static system, d2I/dt2 = 0 and the (scalar) virial
theorem reduces to

2K +W +Σ= 0. (8.38)

As an application of the virial theorem, consider a uniform cloud of monatomic gas (γ = 5/3)
with constant temperature T . The static virial theorem applied to such a system gives

2× 3MgaskBT

2μmp
− 3GMgasM

5rcl
−4πr3

clPext = 0, (8.39)

where rcl is the radius of the cloud, Mgas and M are, respectively, the gas and total masses within
rcl, and Pext is the external pressure. If Pext = 0, the virial theorem defines a virial temperature,

Tvir =
μmpGM

5kBrcl
=
μmp

5kB
V 2

c , (8.40)

with Vc the virial velocity, defined as the circular velocity at rcl. This virial temperature is the
equilibrium temperature for an isothermal cloud with uniform density.

If the external pressure is zero, Eq. (8.39) also defines a mass for the gas,

MJ =
(

3
4πρgas

)1/2(5 fgaskBT

μmpG

)3/2

, where fgas ≡ Mgas

M
, (8.41)

which is similar to the Jeans mass for gravitational instability. If Mgas > MJ, then d2I/dt2 < 0
and the system contracts. On the other hand, if Mgas < MJ, then d2I/dt2 > 0 and the system
expands with time. As is evident from Eq. (8.39), for a self-gravitating gas cloud with constant T ,
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the contraction is catastrophic, because d2I/dt2 becomes more negative as r decreases. This is

also true for any gas cloud with polytropic index Γ< 4/3, because T ∝ ρΓ−1 ∝ r−3(Γ−1)
cl .

In the presence of external pressure, the gas cloud is compressed and instability can occur if
the external pressure is too large. Consider an isothermal, self-gravitating gas cloud ( fgas = 1).
From Eq. (8.39) we see that compression will occur whenever

Pext > Pcrit(r) =
3Mgas

4πr3

(
kBT
μmp

− GMgas

5r

)
. (8.42)

This critical, external pressure is a function of the radius of the gas cloud, r, and has a maximum

Pmax ≈ 3.15

(
kBT
μmp

)4 1
G3M2

gas
at r = rmax ≡ 4GμmpMgas

15kBT
. (8.43)

If Pext exceeds Pmax, no equilibrium is possible as the contraction can never bring the cloud onto
the Pcrit(r) curve. Hence, the cloud will collapse. If Pcrit < Pext < Pmax, the outcome depends on
whether the radius of the cloud is smaller or larger than rmax. If r > rmax, then the cloud will
contract until it reaches a radius at which Pcrit(r) = Pext and it stops contracting. If r ≤ rmax,
however, contraction can never re-establish equilibrium, and the system will collapse.

A gas cloud can be stabilized against gravitational collapse in several ways. If there is turbulent
motion of the gas in the cloud, a kinetic energy term should be added to K, and the cloud becomes
more stable. Similarly, the existence of a magnetic field, which adds a positive pressure term
3
∫

PB d3x (with PB the pressure of the magnetic field) to the right-hand side of Eq. (8.37), also
acts to stabilize the cloud. Furthermore, if the gas cloud is in the potential well of a static dark
matter halo, it may also be stabilized if the halo density profile is sufficiently shallow. Suppose the
halo density profile is ρdm ∝ r−α . The gravitational interaction between the gas cloud (assumed
to be uniform) and the halo adds a term proportional to −Mgasr2−α to the virial, d2I/dt2. If α < 2,
the virial increases as the cloud contracts (r decreases), and the collapse of the gas is stabilized.
On the other hand, if α > 2 so that the added term decreases with decreasing r, the gas cloud is
actually destabilized by the presence of the dark matter halo.

We have to be cautious when applying the virial theorem to a singular isothermal sphere,
because the system is not finite (M goes to infinity as r → ∞). However, we can truncate such a
halo at some radius rv and apply the virial theorem to the truncated halo. In order for the truncated
halo to be in its original equilibrium state, we can imagine that there is an external pressure,

Pext = ρgas(rv)
kBT
μmp

, (8.44)

acting on the outer surface. Since the gravitational energy of the truncated halo is W = −V 2
c Mgas

(where Vc =
√

GM/rv is the halo circular velocity), the virial theorem gives

Tvir =
μmp

2kB
V 2

c � 3.6×105 K

(
Vc

100kms−1

)2

, (8.45)

which is similar to the virial temperature defined in Eq. (8.40) except for a factor 5/2. Although
the virial temperature is a useful, and often used, concept in galaxy formation, realistic dark
matter halos are not isothermal spheres (see §7.5.1), so that in general the gas inside the virial
radius will have a radial temperature profile. In addition, we have so far ignored radiative cooling,
which can have an important impact on the temperature and radial distribution of the gas inside
a dark matter halo (see §8.4).
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8.3 The Formation of Hot Gaseous Halos

The properties of gaseous halos that can form in the cosmic density field are determined by
cosmological initial and boundary conditions, together with gravitational, gas-dynamical and
radiative processes. As discussed in §4.1.3, the Jeans mass in the baryonic component after
recombination is about 106 M�, much smaller than the typical mass of galaxies. Thus, the bary-
onic component is expected to cluster in the same way as collisionless dark matter particles
during the early evolutionary stages, when the perturbations on galaxy scales are still in the linear
regime. However, once overdense regions become nonlinear and start to collapse, the baryonic
gas associated with the overdensity can be shocked and heated, while collisionless dark mater
particles cannot. Consequently, in a collapsed object the distribution of the gas component may
deviate from that of the dark matter. In this section we describe how gravitational collapse leads
to the formation of gaseous halos.

8.3.1 Accretion Shocks

According to Eq. (8.4), the specific entropy of a fluid element is conserved in the absence of net
heating and net cooling. However, this is only true when the fluid remains smooth during the
evolution so that the process is reversible. Entropy can be generated whenever there is an abrupt
change in the fluid properties so that the flow process becomes irreversible, as is the case across
a shock front. Shock waves can be produced when an obstructive body moves through a gaseous
medium with supersonic speed. This is what happens, for example, when supernova explosions
drive gas clouds (shells) into the interstellar medium. More relevant to our discussion in the fol-
lowing are the accretion shocks produced when cold gas is accreted into a gravitational potential
well, such as a dark matter halo. In this subsection, we first consider the general properties of
gas near a shock front, which we then use to understand how accretion shocks produced by dark
matter halos result in the formation of gaseous halos.

(a) Shock Front To exemplify the essence of how the state of gas is affected by a shock,
let us idealize the problem by a planar shock propagating at a constant speed vsh through a
uniform medium (see Fig. 8.3). The motion is one-dimensional, and we assume vsh to be along
the −x axis. For an observer moving with the shock wave, the fluid is steady. The properties in
the upstream (pre-shock fluid) and downstream (post-shock fluid) are therefore related by the
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Fig. 8.3. An illustration of different regions of a planar shock. The supersonic flow in the region x < x1 is
shocked between x1 and x2 (i.e. the shock has a finite, though small, width), after which it becomes a hot
subsonic flow. In between x2 and x3 the gas is out of thermal equilibrium resulting in net cooling (L > 0).
At x > x3 the gas has cooled, reached a new thermal equilibrium, and continues to flow subsonically. The
arrows indicate the direction (but not the speed) of the flow.



8.3 The Formation of Hot Gaseous Halos 377

steady-state fluid equations. For an ideal gas with small mean free path (so that a fluid treatment
is valid, and viscosity and heat conduction can be neglected) and for which radiative cooling is
unimportant, the continuity, Euler, and energy equations give the following jump conditions for
the density ρ , pressure P and velocity v :

ρ2v2 = ρ1v1, (8.46)

ρ2v2
2 +P2 = ρ1v2

1 +P1, (8.47)

1
2
v2

2 +
P2

ρ2
+E2 =

1
2
v2

1 +
P1

ρ1
+E1, (8.48)

where subscripts ‘1’ and ‘2’ denote quantities for the upstream and downstream gas, respectively.
Note that v1 = −vsh. These jump conditions, usually referred to as the Rankine–Hugoniot jump
conditions, can be written in more useful forms in terms of the Mach number of the upstream gas
M̂1 ≡ v1/cs,1 (where c2

s = γP/ρ is the sound speed, and we use the symbol M̂ in order to avoid
confusion with mass):

ρ2

ρ1
=

v1

v2
=

[
1

M̂2
1

+
γ−1
γ+1

(
1− 1

M̂2
1

)]−1

, (8.49)

P2

P1
=

2γ
γ+1

M̂2
1 −

γ−1
γ+1

, (8.50)

T2

T1
=

P2

P1

ρ1

ρ2
=
γ−1
γ+1

[
2

γ+1

(
γM̂2

1 −
1

M̂2
1

)
+

4γ
γ−1

− γ−1
γ+1

]
, (8.51)

where we have used that, for an ideal gas,

P = ρ(γ−1)E =
kBT
μmp

ρ. (8.52)

Thus if M̂1 > 1, gas is compressed (ρ2 > ρ1 and P2 > P1), decelerated (v2 < v1) and heated
(T2 > T1) by the shock. In the case of a strong shock, M̂1 	 1 and the density ratio ρ2/ρ1 tends
to a finite value (γ + 1)/(γ − 1) (= 4 for γ = 5/3), while the temperature and pressure of the
downstream gas diverge as M̂2

1 . In fact, for the downstream temperature we can write T2 = [2(γ−
1)/(γ+1)2] (μmp/kB)v2

1 (= 3μmpv2
1 /16kB for γ = 5/3).

The compression and heating will generally push the post-shock gas out of thermal equilibrium
and the gas has to cool in order to reach a new equilibrium. Consider the layout of Fig. 8.3, in
which the gas is shocked between x1 and x2 (i.e. realistic shocks have a finite width, typically
comparable to the mean free path of the gas particles). The pre-shocked gas is supposed to be in
thermal equilibrium so that there are no radiative losses [L = 0, with L (ρ,T ) = (C −H )/ρ the
net specific cooling function]. If we continue to ignore radiative losses in the shock (x1 < x < x2),
then the conditions of the post-shocked gas at x = x2 are given by the adiabatic jump conditions
discussed above. Behind the shock, however, the gas, which is now moving subsonically (v2 <
cs,2), has been heated and compressed [with ρ2/ρ1 ≤ (γ+1)/(γ−1)] and is therefore no longer
in thermal equilibrium. For a steady flow we now have the conditions:

ρv = ρ2v2, (8.53)

ρv2 +P = ρ2v2
2 +P2. (8.54)
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These two equations, together with the time-independent form of the energy equation (8.3), give

ρv
d
dx

[
1

γ−1
P
ρ

]
= −P

dv
dx

−ρL . (8.55)

Using that dP = −ρvdv , which follows from Eqs. (8.53)–(8.54), the above equation can be
written as

1
γ−1

[
c2

s − v2] dv
dx

= −L (ρ,T ). (8.56)

Supplemented with an equation of state, these equations can be solved for x > x2, subject to the
boundary conditions at x = x2 given by the adiabatic jump conditions (8.49)–(8.51). Qualitative
results can be obtained even without solving the equations. For post-shock gas, v < cs, and since
L > 0 (cooling), we see that v decreases with x. Since the mass flux ρv has to remain constant,
the decrease in velocity implies that the gas is compressed (i.e. dρ/dx > 0). Similarly, we see
from Eq. (8.54) that the pressure will also increase with x. The temperature at x is T ∝ P/ρ =
(A−v)v , where A = (ρv2 +P)/(ρv) is a constant. Thus, as v decreases with x, the temperature
will also decrease along the flow. This continues until the gas comes back to thermal equilibrium
(L = 0) at some location x = x3.

In some special cases, one can obtain the properties of the gas in the new equilibrium state
(i.e. at x > x3) by directly matching the conditions at x1 and x3, without having to be concerned
with the evolution in the intermediate region. An example is the case with T3 = T1 (this is known

as the isothermal shock). In this case, the equation of state implies that P3/ρ3 = P1/ρ1 = c1/2
s ,

which together with

ρ3v3 = ρ1v1, and ρ3v2
3 +P3 = ρ1v2

1 +P1, (8.57)

can be used to obtain that v3 = v1/M̂2
1 and ρ3 = ρ1M̂2

1 . Note that, contrary to the non-radiative
shock, the downstream density is now no longer limited as M̂2

1 →∞. Hence, an isothermal shock
can create an unlimited amount of compression and deceleration for M̂2

1 → ∞.

(b) Heating by Accretion Shocks During the formation of a dark matter halo from a density
perturbation, the gas initially associated with the perturbation also collapses in the gravitational
potential well of the halo. However, unlike dark matter particles, shell crossing is not allowed for
the gas component, and so the gas associated with a mass shell will eventually be stopped and
shocked by the gaseous structure that has already collapsed. If radiative cooling is negligible,
the shocked gas will remain hot, forming a hot gaseous halo in hydrostatic equilibrium in the
potential well of the dark matter halo.

We can use the Rankine–Hugoniot jump conditions described above to relate the properties
of the shocked gas to those of the pre-shock gas. If the infall velocity of the accreted gas is vin

and the shocked gas has zero velocity (i.e. the kinetic energy of the infalling gas is completely
thermalized), then the upstream velocity v1 = vin + vsh and the downstream velocity v2 = vsh,
with vsh the velocity of the shock front. In this case, the post-shock gas temperature, T2, can be
written as

kBT2

μmp
=

v2
in

16γ

[
2γ
(

1+
√

1+ ε
)2 − (γ−1)ε

][
2ε

(1+
√

1+ ε)2
+(γ−1)

]
, (8.58)

where

ε ≡ γ
v2

in

(
4

γ+1

)2 kBT1

μmp
, (8.59)
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while the pre- and post-shock densities are related by

ρ2

ρ1
=

γ+1
2(γ−1)

(
1− T1

T2

)
+

[
1
4

(
γ+1
γ−1

)2(
1− T1

T2

)2

+
T1

T2

]1/2

. (8.60)

Once vin is given, the above equations can be used to determine ρ2 and T2 in terms of ρ1 and T1.
Note that if v2

1 	 kBT1/(μmp) (i.e. ε → 0 and T1/T2 → 0), these relations reduce to those for
strong shocks, with

T2 = (γ−1)Tvir

(
vin

Vc

)2

and
ρ2

ρ1
=
γ+1
γ−1

, (8.61)

where we have used Eq. (8.45). Thus, if vin is comparable to the circular velocity at the radius of
the shock, Vc, the temperature of the shocked gas will be comparable to the virial temperature of
a truncated isothermal sphere.

In general, one can write the velocity of a mass shell of gas as

1
2
v2

in =
1
2
v2

ff +ΔW − cs
2
1

γ−1

[
1−
(
ρta

ρsh

)γ−1
]

, (8.62)

where cs1 is the sound speed of the pre-shock gas, ρta and ρsh are the gas densities at the turn-
around radius, rta, and the shock radius, rsh, respectively, and

1
2
v2

ff ≡
GM
rsh

− GM
rta

(8.63)

is the free-fall energy of the gas shell within which the mass is M. The term ΔW in Eq. (8.62)
together with v2

ff/2 gives the total work done by the gravitational potential on the gas shell
from rta to rsh. In the absence of shell crossing ΔW = 0; however, this is not a realistic
assumption in the presence of dark matter (see §8.3.3), so that ΔW �= 0 in general. The last
term on the right-hand side of Eq. (8.62) reflects the change in the internal energy of the gas
between the time of turnaround and the time just before it is shocked, which arises from
the fact that the gas shell is compressed when moving to a smaller radius. If rta = 2rsh,
which is the case if the shock is located at the virial radius (see §5.4.4), then we have that
v2

ff = GM/rsh = V 2
c . Thus, if we could ignore shell crossing and the change in the internal energy

of the gas when it moves from rta to rsh, then the temperature of the post-shocked gas would be
T2 = (γ−1)Tvir. In the more realistic case, including shell crossing for the dark matter, vin ∼< Vc

(see Tozzi & Norman, 2001) and the temperature of the post-shocked gas will be somewhat
lower.

8.3.2 Self-Similar Collapse of Collisional Gas

To gain insight into the formation of gaseous halos in the cosmic density field, we first consider
a simple self-similar model with spherical symmetry. In order for the problem to admit a self-
similar solution, we must assume that (i) the background is an EdS universe, so that the expansion
of the universe is scale-free (a∝ t2/3); (ii) the initial perturbation is a power law of the mass scale;
(iii) the gas is initially cold and radiative cooling is negligible, so that no characteristic scale is
introduced through the gas component.

Let us first consider the case in which the Universe contains only collisional gas. This assump-
tion simplifies the discussion, and will be relaxed later by including a collisionless dark matter
component. Under the assumptions made above, the only characteristic length scale at any given
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time t is the turnaround radius rta(t). The problem then admits the following set of self-similar
solutions:

ρ(r, t) = ρ(t)D(λ ), P(r, t) = ρ(t)
( rta

t

)2
P(λ ), (8.64)

v(r, t) =
rta

t
V (λ ), T (r, t) =

μmp

kB

P(r, t)
ρ(r, t)

=
μmp

kB

( rta

t

)2
T (λ ), (8.65)

M(r, t) =
4π
3
ρ(t)r3

taM (λ ). (8.66)

Here λ ≡ r/rta is a dimensionless radius, ρ , P, v and T are the density, pressure, velocity and
temperature of the (ideal) fluid, M(r, t) is the mass within radius r, and ρ(t) is the mean density
of the universe at time t.

For a power-law initial perturbation, δi ∝M−ε ∝ r−3ε
i (with ri the initial radius enclosing mass

M), the turnaround radius is a power law of t:

rta ∝ tη , with η =
2(1+3ε)

9ε
, (8.67)

which follows from Eq. (5.8): rta = rmax ∝ ri/δi ∝ δ
−1−1/3ε
i , tta = tmax ∝ δ

−3/2
i . Inserting the

similarity solutions into the fluid equations,

∂ρ
∂ t

+
1
r2

∂
∂ r

(
r2ρv

)
= 0, (8.68)

∂v
∂ t

+ v
∂v
∂ r

= − 1
ρ
∂P
∂ r

− GM(r, t)
r2 , (8.69)

(
∂
∂ t

+ v
∂
∂ r

)
ln

(
P
ργ

)
= 0, (8.70)

∂M
∂ r

= 4πr2ρ, (8.71)

we obtain

(V −ηλ )D ′ +DV ′ +
2
λ

DV −2D = 0, (8.72)

(V −ηλ )V ′ +(η−1)V = −P ′

D
− 2

9
M

λ 2 , (8.73)

(V −ηλ )
(

P ′

P
− γD ′

D

)
= 2(2−η)−2γ, (8.74)

M ′ = 3λ 2D , (8.75)

where a prime denotes a derivative with respect to λ . The fluid equations are thus reduced to a
set of ordinary differential equations under the assumption of self-similarity.

Before being shocked, the gas is assumed to be cold and its mass shells follow the spherical
collapse model (see §5.1), so that

λ = sin2
(
θ
2

)
π

θ − sinθ
, V =

π
2

cot

(
θ
2

)
, (8.76)

D =
1
3

(
3π
4

)2 1

λ (λ −V )sin2(θ/2)
, M =

(
3π
4

)2 π
θ − sinθ

, (8.77)
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where θ ∈ [0,2π]. Since rta is the only length scale, the shock radius at time t must have the
form

rsh(t) = λshrta(t), (8.78)

where λsh is a constant. This shock radius separates the cold gas in spherical infall from the gas
that has been shocked. The above equation therefore implies that the shocked region becomes
larger with the passage of time. Applying the Rankine–Hugoniot jump conditions (see §8.3.1)
for strong shocks across rsh, we obtain

D2 =
γ+1
γ−1

D1, V2 = ηλsh +
γ−1
γ+1

(V1 −ηλsh), (8.79)

P2 =
2

γ+1
D1(V1 −ηλsh)2, M2 = M1, (8.80)

where subscripts ‘1’ and ‘2’ denote quantities of the pre-shock (r ∼> rsh) and post-shock (r ∼< rsh)
gas, respectively. Note that P1 = 0 because the gas is cold before being shocked. The values of
D1, V1 and M1 are given by Eqs. (8.76)–(8.77) with θ = θsh, where θsh corresponds to λ = λsh.
With these boundary conditions, Eqs. (8.72)–(8.75) can be integrated from λ = λsh inwards to
λ = 0. To completely specify the solution, we need to know the value of λsh. This is given by the
inner boundary condition: M = V = 0 at λ = 0.

Fig. 8.4 shows the solutions for initial perturbations with ε = 2/3 (η = 1) and γ = 5/3. In this
case λsh ≈ 0.29. As one can see, the velocity decrement across the shock is quite large, indicating
that the deceleration due to the large post-shock pressure is very effective. The post-shock kinetic
energy is much smaller than the thermal and gravitational energies, implying that the pre-shock
kinetic energy associated with gas infall is effectively transformed into thermal energy by the
accretion shock. The mean density contrast within the shock radius is D(λsh) ∼ 100. For small

Fig. 8.4. Self-similar collapse of a γ = 5/3 collisional gas. The initial perturbation is assumed to have a
profile with ε = 2/3. The accretion shock is located at λ = λsh = 0.29. [After Bertschinger (1985)]
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λ , the solutions are power laws, which can be understood as follows. Deep in the shocked region,
gas is in a hydrostatic state and V = 0. This in Eqs. (8.72)–(8.75) gives

D(λ ) ∝ λ−2/η , P(λ ) ∝ λ 2(η−2)/η , (8.81)

T (λ ) =
P(λ )
D(λ )

∝ λ 2−2/η , M (λ ) ∝ λ 3−2/η . (8.82)

For η = 1, we have D(λ ) ∝ P(λ ) ∝ λ−2, M (λ ) ∝ λ , T (λ ) = constant, and an isothermal
sphere is produced. For secondary infall onto a seed perturbation, ε = 1 (η = 8/9) and λsh =
0.339 for gas with γ = 5/3.

It is interesting to see how a mass shell collapses and settles into the final static state by
following the trajectory of a mass shell. In terms of ξ ≡ ln(t/tta) (where tta is the time when the
mass shell in question turns around) and the dimensionless radius λ ≡ r/[rta(t)], the equation of
motion can be written as

d2λ
dξ 2 +(2η−1)

dλ
dξ

+η(η−1)λ = −2
9

M

λ 2 − 1
D

dP

dλ
, (8.83)

where D(λ ), P(λ ) and M (λ ) are the similarity solutions discussed above. The boundary con-
ditions are λ (ξ = 0) = 1 and (dλ/dξ )(ξ = 0) =−η . For given η and γ , Eq. (8.83) can be solved.
The left-hand panel of Fig. 8.5 shows r/[rta(tta)] = λ exp(ηξ ) as a function of t/tta for models
with η = 1 and for various values of the adiabatic index γ in the range [4/3,5/3]. The mass
shell first expands from its initial radius at t = 0 to a maximum expansion radius at t = tta, then
contracts by some factor before it is shocked at a time t ∼ 2tta, and eventually settles into a radius
which is about a constant fraction of its maximum expansion radius. This behavior of a gas shell
is different from that of a collisionless mass shell which oscillates at t > 2tta (see Fig. 5.1), and
the difference is obviously due to the fact that shell crossing occurs for collisionless particles
but is not allowed for a collisional gas. The final radius into which a gas shell settles depends
on the value of γ , because P ∝ ργ so that gas with a larger value of γ is ‘stiffer’ and more
difficult to compress. For γ ≤ 4/3, the final radius approaches zero at t 	 tta, i.e. the gas col-
lapses catastrophically, because it is too ‘soft’ to balance its self-gravity. Thus, in the presence of
effective cooling, so that the effective γ is low, a self-gravitating gas cloud is violently unstable
(see §8.4.4).

Fig. 8.5. The trajectories of gas shells (with given γ) in the similarity solution. The initial perturbation is
assumed to have a profile with η = 1. Panel (a) shows results for a pure collisional gas, while panel (b) shows
results for collisional gas in the potential of a dominating collisionless component. [After Bertschinger
(1985)]
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8.3.3 The Impact of a Collisionless Component

Since similarity solutions exist for both collisional and collisionless collapse (see §5.2), such
solutions should also exist for any combination of the two, provided that the total density adds
up to Ω= 1 (recall that similarity solutions only exist for an Einstein–de Sitter universe). In this
subsection, we consider a model in which the cosmic density in collisional particles (baryons)
is much smaller than unity, i.e. the Universe is dominated by CDM. We also assume that the
collisional and collisionless components are well mixed initially, so that the initial perturbations
in the two components are the same.

Since Ωb �ΩCDM, we can neglect the gravitational force of the collisional gas, which simpli-
fies the problem. In this case, the fluid equations for the collisional gas have the same forms as in
Eqs. (8.68)–(8.71) and (8.72)–(8.75), except that M in Eq. (8.71) and M in Eq. (8.75) have to be
replaced by MCDM and MCDM. Under this assumption, the motions of the collisionless particles
are not affected by the collisional gas, so that MCDM(λ ) is the same as that given by the similar-
ity solutions in §5.2. Eqs. (8.72)–(8.75) can then be integrated from λ = λsh to λ = 0 using the
post-shock boundary conditions given by the jump conditions (8.79) and (8.79). To specify the
jump conditions, we need to obtain the pre-shock quantities D1, P1, V1 and M1 near the shock
front. The situation here is different from that of a purely collisional collapse in which there is
no shell crossing so that all mass shells outside the shock radius are in spherical infall and their
motion follows exactly the spherical infall model. In the present case, however, some collision-
less particles outside the shock radius are not in their initial infall phase but instead have already
passed through the center once or several times. In this case, the total mass of collisionless par-
ticles inside the shock radius is not equal to the mass initially enclosed by this mass shell, and
consequently, the pre-shock boundary conditions are not the same as those given by the spherical
infall model.

Since the pre-shock collisional gas is pressureless, its motion is the same as that of the colli-
sionless mass shells that turn around the first time. We can then use the similarity solutions of
collisionless particles discussed in §5.2 to fix the pre-shock boundary conditions. The dimension-
less trajectory λ (ξ ) for the collisionless mass shells (see Fig. 5.1) can be inverted to obtain ξsh,
the value of ξ at which λ = λsh, for a mass shell that turns around the first time. The pre-shock
velocity is therefore

V1 =
dλ
dξ

(λsh)+ηλsh. (8.84)

Since the total mass of collisional gas within the shock radius is equal to the initial gas mass
enclosed when the mass shell turned around, we have

M =
4π
3

Mtaρ(tta)r3
ta(tta), (8.85)

where Mta = (3π/4)2 is the density contrast at turnaround [see Eq. (5.17)], and

M1 = Mta exp [−(3η−2)ξsh] . (8.86)

The pre-shock density and pressure are

D1 =
1

λ 2
sh

dM

dλ
(λsh) = −2

9
M1

λ 2
sh

[
dλ
dξ

(λsh)
]−1

, and P1 = 0. (8.87)

These boundary conditions, together with the inner boundary conditions, M = V = 0 at λ = 0,
can be used to integrate the fluid equations to obtain D(λ ), P(λ ), V (λ ) and M (λ ) for the
post-shock gas.

The effect of including the collisionless component is most clearly seen in the trajectories of
the collisional gas shown in the right-hand panel of Fig. 8.5. These trajectories are obtained for
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the same models as in the left-hand panel but now with the inclusion of dark matter [i.e. with the
replacement M → MCDM in Eq. (8.83)]. For γ = 5/3 the result with Ωb → 0 is almost identical
to that of the pure collisional model (with Ωb = 1), indicating that the results obtained in §8.3.2
are applicable to any combination of Ωb and ΩCDM provided that Ωb +ΩCDM = 1. For γ = 4/3,
however, there is a marked difference: instead of going to zero, as is the case without dark matter,
the mass shells now settle towards a finite radius. The reason for this is that the gravitational force
is now dominated by dark matter, and the gas can reach hydrostatic equilibrium by adjusting its
pressure gradient.

8.3.4 More General Models of Spherical Collapse

If the assumption of self-similarity is not imposed, spherical collapse models can be constructed
to incorporate general accretion histories of dark matter halos, the possibility that the gas to be
accreted is not cold, and the effect of clumpiness in the accreted gas. In general, the solutions to
such problems can only be obtained through solving the full time-dependent fluid equations (e.g.
Lu & Mo, 2007). Here we use simple considerations to demonstrate these effects on the structure
of gaseous halos.

The gas accretion history in a halo may be specified by the gas mass within a mass shell, Mgas,
as a function of its turnaround time, tta. Since the shock radius, rsh, is roughly a constant fraction
(e.g. a half) of the turnaround radius, rta, we can use Eqs. (8.58), (8.60) and (8.62) to calculate
the post-shock specific entropy of the gas shell:

S(Mgas) =
P(Mgas)
ργ(Mgas)

=
kB

μmp

T (Mgas)
ργ−1(Mgas)

. (8.88)

If radiative cooling is negligible in the shocked gas, the value of S is conserved for each mass
shell. The entropy profile, S(Mgas), can then be used to determine the density and pressure profiles
of the gas in the dark matter halo. For example, if the gravitational field is dominated by dark
matter, the structure of the shocked gas can be obtained by solving the two equations,

dP
dMgas

=
GMCDM

4πr4 and
dr

dMgas
=

1
4πρgasr2 , (8.89)

together with Eq. (8.88).
We can use the equations derived above to gain some insight into the formation of gaseous

halos in the cosmic density field. If the pre-shock gas is cold, the characteristic gas density
within a mass shell is roughly proportional to the mean density of the universe at the time when
the mass shell turns around. If the gravitational potential is dominated by a dark matter halo, the
temperature of the post-shock gas is typically the virial temperature of the halo and therefore
increases as the dark matter potential well deepens. Thus, the gas that is accreted earlier has
lower temperature but higher density, and hence lower specific entropy. Since the low-entropy
gas must settle into the inner part of the halo (otherwise the gaseous halo would be convectively
unstable, see §8.2.2), the gas density has to increase rapidly towards the halo center in order for
the low-entropy gas to have a sufficiently high pressure gradient to counterbalance gravitational
compression. On the other hand, if the gas has a significant amount of initial entropy and radiative
cooling is negligible, there must be an entropy floor below which no gas can exist. In this case,
the gas in the inner part of the halo, for which the entropy generated by the accretion shock is
small compared to the initial entropy, should have roughly constant specific entropy. This makes
the gas more difficult to compress, and consequently, the gas distribution develops a core within
which the gas density changes only slowly with radius. The size of the core is roughly the radius
at which the entropy generated by the accretion shock is comparable to the initial entropy. Outside
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the core, where the entropy generated by accretion shocks is larger than the initial entropy, the
gas distribution is expected to be similar to that in a cold collapse.

If the pre-shock gas is clumpy so that part of the gas has a density higher than the average, the
post-shock density will be higher for the denser component, although the post-shock temperature
is density-independent. Consequently, the specific entropy generated by the shock will be lower
for the denser component. Convection will cause the lower-entropy gas to sink deeper in the halo
before it reaches hydrostatic equilibrium.

8.4 Radiative Cooling in Gaseous Halos

In this section we investigate how cooling impacts on the formation and evolution of gaseous
halos. We start in §8.4.1 by computing the radiative cooling times for uniform clouds, which
gives some idea about the importance of radiative cooling as a function of halo mass. In §8.4.2
we consider the more realistic case of gas halos with radial density distributions, and we will
see that such halos tend to cool from the inside out, giving rise to a cooling wave propagating
outward with time. In §8.4.3 we discuss self-similar solutions for such cooling waves, and we
end in §8.4.4 with a discussion of the impact of cooling on the formation of gaseous halos during
the spherical collapse of the associated dark matter halo.

8.4.1 Radiative Cooling Time Scales for Uniform Clouds

Gas in a halo can lose energy through radiative cooling, thereby changing its thermodynamic
properties and structure. In this subsection, we examine when radiative cooling is expected to
be important. Hydrostatic equilibrium can be established and maintained only in systems where
radiative cooling is negligible or balanced by heating. For systems where radiative cooling is
important, it must be included as part of the dynamical evolution.

As a simple example, consider the cooling time for a uniform spherical cloud in virial equilib-
rium. Let the total mass of the cloud be M, and assume that a fraction fgas of this mass is gas and
the rest is dark matter. In the absence of external pressure, we obtain from Eq. (8.39) that

3kBT
μmp

=
3
5

GM
r

=
3
5

GMgas

fgasr
. (8.90)

Solving for Mgas gives

Mgas ≈ 8.4×1012 T 3/2
6 f 3/2

gas n−1/2
−3 M�, (8.91)

where we have used that μ � 0.59 for a fully ionized gas of primordial composition (Yp � 1/4).
The temperature is written as T = 106T6 K and the mean particle density n = ρgas/(μmp) =
10−3n−3 cm−3. It is useful to express this formula in terms of the overdensity δ ≡ ρ/ρ−1 and
the cosmological parameters H0 and Ωm,0. Then, for a fully ionized gas,

n−3 ≈ 1.9×10−2 fgas (1+δ )(Ωm,0h2)(1+ z)3, (8.92)

and thus

Mgas ≈ 6.1×1013 T 3/2
6 fgas (1+δ )−1/2(Ωm,0h2)−1/2(1+ z)−3/2 M�. (8.93)

Since a newly collapsed object has an overdensity δ ∼ 200, we see, for example, that a proto-
galaxy with a gas mass of 1011 M� at redshift 3 in a universe withΩm,0h2 = 0.15 and fgas = 0.15
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will have a virial temperature of 0.6× 106 K. The cooling time for gas at temperature T and
density n as a result of radiative cooling can be written as

tcool ≡ ρE

C
=

3nkBT

2n2
HΛ(T )

≈ 3.3×109 T6

n−3Λ−23(T )
yr, (8.94)

where E is the internal energy per unit mass, nH is the number density of hydrogen atoms [nH =
(12/27)n for a fully ionized primordial gas], and we have assumed an ideal gas with adiabatic
index γ = 5/3. Note that we have written the cooling function as Λ = 10−23Λ−23 ergcm3 s−1.
The 1011 M� protogalaxy forming at z = 3 has n−3 ≈ 5.5 and Λ−23 ≈ 0.5 assuming primordial
gas (see Fig. 8.1), which implies a cooling time of tcool ∼ 7.4× 108 yr. This is roughly twice as
long as its free-fall time,

tff =

√
3π

32Gρ
=

√
3π fgas

32Gnμmp
≈ 2.1×109 f 1/2

gas n−1/2
−3 yr, (8.95)

or tff ≈ 3.5× 108 yr for the case we are considering. Note that for a given temperature tcool ∝
(1 + z)−3 and tff ∝ (1 + z)−3/2 so that cooling is more effective at higher redshifts. Note also
that, in the absence of a strong UV background, protogalaxies with 104 K < Tvir < 105 K (where
Λ−23 ∼ 10) have tcool much smaller than tff. Thus, the gas in small halos at high redshifts is
expected to cool effectively and on short time scales.

Fig. 8.6 shows the locus of tcool = tff in the n–T plane, which separates clouds that can cool
effectively (tcool � tff) from those that cannot. Superposed on the diagram are the loci of constant
Mgas and the densities n that correspond to overdensities of δ = 200 at redshifts z = 0,1, ...,5.
As one can see, over this entire redshift range halos with (primordial) gas masses larger than
about 1011 M� cannot cool effectively. This mass increases to ∼ 1012 M� if the gas has solar

Fig. 8.6. Cooling diagram showing the locus of tcool = tff in the n–T plane. The upper and lower curves
correspond to gas with zero and solar metallicity, respectively. The tilted dashed lines are lines of constant
gas mass (in M�), while the horizontal dotted lines show the gas densities expected for virialized halos
(δ = 200) at different redshifts. All calculations assume fgas = 0.15 Ωm,0 = 0.3, and h = 0.7. Cooling is
effective for clouds with n and T above the locus.
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metallicity. This is why clusters and groups of galaxies at the present time usually contain
large amounts of hot gas. The critical mass for effective cooling is similar to that of the most
massive galaxies, suggesting that the physics of cooling plays an important role in limiting the
mass of galaxies (e.g. Rees & Ostriker, 1977; White & Rees, 1978; Blumenthal et al., 1984).
Note, though, that this argument applies only to galaxies that form directly from gas cooling in
dark matter halos. If galaxies form via mergers of smaller galaxies, which may be an important
formation channel, especially for giant ellipticals (see Chapter 13), this cooling argument may
not be directly relevant. Since major mergers between dark matter halos are believed to reheat the
gas to the virial temperature of the merged halo, a more meaningful comparison is that between
the cooling time and the time since the last major merger, tlmm. The loci of tcool = tlmm may be
significantly different from the tcool = tff shown in Fig. 8.6, especially for low mass (low virial
temperature) halos, which may not have experienced a major merger in the last couple of Gyr.
We also caution that the results presented here are based on the oversimplified assumption that
the gas has a uniform and spherical distribution.

In a hierarchical model of structure formation, smaller halos are expected to form earlier.
The fraction of mass in halos with masses exceeding M [corresponding to linear mass variance
σ(M)], F(> M), can be estimated from the Press–Schechter formalism (see §7.2.1),

F(> M) = erfc

[
δc(t)√
2σ(M)

]
, (8.96)

which, for a given redshift z, goes to unity if M is sufficiently small. Thus, a large fraction of
the mass in the universe is expected to have collapsed into small halos at high redshift. Since
gas cooling is effective in small halos at high redshifts, this suggests that a (very) large fraction
of the gas in the universe can cool at high redshifts. If nothing prevents the cooled gas from
forming stars, then we run into an overcooling problem, because it would mean that the stellar
mass density Ω�,0 �Ωb,0, which, as we have seen in §2.10.2, is in violent disagreement with the
data (White & Rees, 1978). As discussed in §8.1.4, a strong UV background may significantly
suppress gas cooling in halos with Tvir ∼< 105 K, and thus help to alleviate the overcooling prob-
lem. Furthermore, energy feedback from supernovae (see §8.6.1) and active galactic nuclei (see
§14.4) may also prevent gas from cooling too fast in dark matter halos.

8.4.2 Evolution of the Cooling Radius

The cooling times derived above are based on the assumption that the gaseous halos have a
uniform density. In reality, the gaseous halos have a density distribution ρ(x), and the cooling
time will be a local quantity. In a spherically symmetric gaseous system, the cooling time at
radius r can be defined as

tcool(r) =
3n(r)kBT (r)
2n2

H(r)Λ(T )
, (8.97)

which is the same as Eq. (8.94) except that the temperature, T , and the densities, n and nH, now
all refer to their local values at radius r. Radiative cooling at r is important if tcool(r) is shorter
than the age t of the system.

To understand how radiative cooling proceeds in a gaseous halo, let us model the adiabatic
density and pressure profiles by power-law forms:

ρad(r) = ρ0

(
r
r0

)−α
, Pad(r) = P0

(
r
r0

)−β
. (8.98)
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For an ideal gas, the temperature profile is then

Tad(r) = T0

(
r
r0

)α−β
, with T0 =

μmp

kB

P0

ρ0
. (8.99)

Piecewisely, the cooling function may be written as a power law of T ,

Λ(T ) = Λ0

(
T
T0

)ν
, (8.100)

and for a gas with cosmic composition, ν ∈ (−1,0) in the temperature range 105 K < T < 107 K
(see §8.1.3). The cooling time can then be written as

tcool = t0

(
r
r0

)1/τ
, (8.101)

where

t0 ≡ 3
2

kBT0

Λ0

(
μmp

ρ0

)(
n

nH

)2

, τ ≡ [α+(α−β )(1−ν)]−1. (8.102)

If we define the cooling radius, rcool, as the radius at which the cooling time is equal to the age,
t, we have

rcool(t) = r0

(
t
t0

)τ
. (8.103)

An estimate of the rate at which gas cools out in the halo then follows from

Ṁcool(t) = 4πρ(rcool)r2
cool

drcool

dt

=
4πρ0r3

0

t0
τ
(

t
t0

)τ(3−α)−1

, (8.104)

which implies that

Mcool(t) =

⎧⎨⎩
4πρ0r3

0
3−α

(
t
t0

)τ(3−α)
if α �= 3

4πρ0r3
0

3+(3−β )(1−ν) ln
(

t
t0

)
if α = 3.

(8.105)

For an isothermal sphere, α = β = 2, so that rcool ∝Mcool ∝ t1/2. Thus, in this case, the cooling
region expands with the passage of time. Since no mass transport is involved with this expansion,
the propagation of the cooling radius with time may be considered as a cooling wave in the
gaseous halo.

Note, however, that this description of the cooling rate is quite crude at best (see also the
discussion in §8.7.2). Because of cooling, the properties of the gas in the cooling region will
differ from those given by the adiabatic model. In particular, once gas starts to cool out, the
remaining hot gas tends to re-establish a new hydrostatic equilibrium, which in turn will have an
impact on the subsequent cooling rates. In the remainder of this section we examine these issues
in more detail, starting with a self-similar solution.

8.4.3 Self-Similar Cooling Waves

Consider the case in which a halo of gas and dark matter has already formed. We assume
that the initial density and pressure profiles have the power law forms of Eq. (8.98), and that
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the gas is initially in hydrostatic equilibrium, so that the gravitational mass follows from
Eq. (8.16):

M(r) = M0

(
r
r0

)α−β+1

, M0 ≡ β r0P0

Gρ0
. (8.106)

For simplicity, we also assume the gravitational mass distribution to be static, a reasonable
approximation for gas in a virialized dark matter halo that dominates gravitationally. The fluid
equations for the gas are the same as those given by Eqs. (8.68)–(8.71), except that M(r, t) in
Eq. (8.69) should now be replaced by M(r) given in Eq. (8.106) and that an energy loss term
should be included in the entropy equation:(

∂
∂ t

+ v
∂
∂ r

)
ln

(
P
ργ

)
= − (γ−1)

P
C , (8.107)

where C = n2
HΛ(T ) is the energy loss rate per unit volume due to radiative cooling.

The evolution of the cooling gas is expected to be self-similar if the gas flow is characterized by
a single length scale. In the presence of radiative cooling, the cooling radius given by Eq. (8.103)
is such a length scale, and we denote the characteristic density, pressure and velocity that can
be derived from the cooling radius as ρa(rcool), Pad(rcool) and vcool ≡ drcool/dt, respectively.
However, rcool is not the only length scale in the problem, as the sound speed at rcool times the
age, cs t, is another length scale which in general is independent of the cooling radius (physically
this represents the scale over which hydrodynamical perturbations produced by the cooling can
have propagated through the system). Thus, the problem only admits a similarity solution under
some special conditions.

In order to obtain a similarity solution, we define dimensionless fluid variables in terms of
their characteristic values:

r = rcool(t)λ , ρ = ρad(rcool)D(λ ), (8.108)

P = Pad(rcool)P(λ ), v = vcoolV (λ ). (8.109)

In terms of these variables, the fluid equations can be written as(
V −λ

V

)
dlnD

dlnλ
+

dlnV

dlnλ
+2− αλ

V
= 0, (8.110)

d lnP

dlnλ
+β

D

P
λα−β = −ςγ D

P
V 2
[(

V −λ
V

)
dlnV

dlnλ
+

(τ−1)
τ

λ
V

]
, (8.111)

(
1− V

λ

)
d

dlnλ
ln
(
PD−γ)= γα−β +

1
τ
D2−νPν−1, (8.112)

where

ς =
[

vcool

cs(rcool)

]2

. (8.113)

In general ς is a function of time, so that the dimensionless fluid variables depend on both λ
and t. Only when ςV 2 � |dlnP/dlnλ | ∼ 1, so that the right-hand side of Eq. (8.111) can be
neglected, does the problem admit a similarity solution. For α = β = 2 and γ = 5/3, ς can be
written as

ς =
3
20
μmp

kBT0

( rcool

t

)2

≈ 1.7×10−3h(1+ z)3/2
(

fgas

0.1

)(
T0

106 K

)−1( Λ0

10−23 ergcm3 s−1

)
, (8.114)
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where rcool is given by Eq. (8.103), and we have used Eqs. (8.99) and (3.96) plus the fact that
c2

s = γP/ρ . This shows that ς � 1 at redshifts z � 20. As we will see below, the similarity
solution gives that V ∼ λ−1/2. We can therefore define a limiting value for λ from ς V 2 = 1,

λ� ∼ ς , (8.115)

so that the similarity model is valid for λ > λ�.
The outer boundary conditions are given by the requirement that, as λ →∞, the gas state must

approach the static solution without cooling,

Dλα → 1, Pλβ → 1, V → 0 for λ 	 1. (8.116)

Because the assumption of self-similarity breaks down at λ < λ�, one has to solve the time-
dependent fluid equations for the fluid at λ < λ� in order to set the inner boundary conditions for
the similarity solutions. Bertschinger (1989) discussed in detail how to achieve this, and found
that the only physically interesting self-similarity solution is the one with tcool ≈ tflow ≡−r/v at
λ � 1. In terms of the dimensionless fluid variables, the cooling time can be written as tcool =
tDν−2P1−ν , and so the condition tcool = tflow leads to

V = −λτ−1D2−νPν−1. (8.117)

For λ � 1, we have tflow ∼ tcool � t, and −V = r/(vcoolt) = λ rcool/(vcoolt) � λ . Eq. (8.117)
can be combined with Eqs. (8.110)–(8.112) to give the similarity solution. If β = 0 or α −β >
3/(3−ν), the density, temperature and inflow velocity are all power laws of λ , with slopes

dlnD

dlnλ
= − 3

3−ν ,
dln(P/D)

dlnλ
=

3
3−ν ,

dlnV

dlnλ
=

2ν−3
3−ν . (8.118)

If β �= 0 and α−β < 3/(3−λ ), then

dlnD

dlnλ
=

−3+(α−β )(1−ν)
2

,
dln(P/D)

dlnλ
= α−β , (8.119)

d lnV

dlnλ
=

−1− (α−β )(1−ν)
2

. (8.120)

In the special case of an isothermal halo, α = β = 2 and this model yields

D ∝ λ−3/2,
P

D
=

4
3
, V ∝ λ−1/2, (8.121)

and

T (r) = T (rcool)
P

D
=

4
3

T (rcool). (8.122)

In this case, the temperature within the cooling region is actually higher than that at the cooling
radius, because the gas is compressed as it cools and flows inwards. The central mass inflow rate
is somewhat lower than in the simple model of Eq. (8.104).

8.4.4 Spherical Collapse with Cooling

The self-similar cooling wave solution discussed in the previous section is only valid for a static
halo where the gas is initially (i.e. prior to the onset of cooling) in hydrostatic equilibrium. In
reality, however, dark matter halos continue to accrete new material (both dark matter and gas),
which introduces another scale length to the problem, namely the shock radius rsh(t). Conse-
quently the problem no longer admits a self-similar solution. In order to investigate what happens
to a system in which both the cooling radius and shock radius evolve with time, one generally
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needs to resort to numerical simulations. However, some useful results can still be obtained from
simple considerations.

An important time scale in the problem is the time when the cooling radius rcool is equal to the
shock radius rsh (White & Frenk, 1991). For a singular isothermal sphere with circular velocity
Vc, the cooling radius rcool ∝Λ1/2(T )t1/2 [which follows from Eq. (8.97) and the fact that n∝ r−2

for an isothermal sphere], and the shock radius rsh ∝ rta ∝ Vct (which follows from the fact that
rta is proportional to the virial radius). The time at which rcool = rsh therefore scales as

tcrit ∝ Λ(T )/V 2
c . (8.123)

Since rsh increases with time faster than rcool, we expect the adiabatic collapse model described
in §8.3 to be valid only at t 	 tcrit, i.e. when rcool is much smaller than rsh. In this case, the gas
between rcool and rsh is approximately in hydrostatic equilibrium with the dark matter halo, and
the cooling wave propagates in a manner similar to that described in the previous subsection.
At earlier times, however, when t � tcrit, gas can cool as soon as it is shocked. In this regime,
neither the adiabatic collapse model nor the self-similar cooling wave model applies. In fact, if
cooling is effective, the equation of state of the accreted gas may become so soft that pressure
support of the gas is negligible. In this case, the accreted gas will be in free-fall and no accretion
shock is produced: the gas reaches the center via a cold flow.2 This is sometimes referred to as
the cold mode of gas accretion, to discriminate it from the hot mode, in which the gas is heated
to the virial temperature due to an accretion shock at the outskirts of the halo. Since tcrit ∝V−2

c ,
less massive halos have larger tcrit, and one thus expects that halos with M smaller than a certain
critical mass, Mcrit, accrete their gas via the cold mode, while more massive halos experience hot
mode accretion. We now proceed with a crude derivation of this critical mass scale.

As shown by Birnboim & Dekel (2003), in the presence of cooling the post-shock gas is
gravitationally stable as long as

γeff ≡ dlnP
dlnρ

=
Ṗ
P
ρ
ρ̇

>
2γ
γ+ 2

3

, (8.124)

where an upper dot denotes a time derivative following a comoving volume element. Note that
in the adiabatic case γeff = γ , so that the stability criterion reduces to γ > 4/3, in agreement with
the criterion we derived in §8.2.3 using the virial theorem. Using that

Ṗ = (γ−1)
[
ρĖ + ρ̇E

]
, (8.125)

and that

Ė = −PV̇ −L =
Pρ̇
ρ2 −L (8.126)

(with V the specific volume), the effective adiabatic index can be written as

γeff = γ− ρ
ρ̇

L

E
. (8.127)

We now apply the stability criterion (8.124) to the post-shock gas, whose density, velocity and
pressure are related to those of the pre-shock gas by the Rankine–Hugoniot jump conditions for
a strong shock:

ρ2 =
γ+1
γ−1

ρ1, v2 =
γ−1
γ+1

v1, P2 =
2ρ1v2

1

γ+1
, (8.128)

where subscripts ‘1’ and ‘2’ refer to the pre- and post-shock conditions, respectively, and we have
assumed that the velocity of the shock vsh = 0, adequate for an accretion shock whose post-shock

2 Note, though, that at the center of the potential well, the gas may experience a shock due to the convergence of the
flow.
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conditions are marginally stable. In order to proceed, we make the assumption that the (radial)
velocities are proportional to the radius (as in the Hubble flow): v(r) = v2(r/rsh). As shown by
Birnboim & Dekel (2003) this assumption is valid close to the accretion shock, and allows us to
write

ρ̇
ρ

= −∇ ·v = − 1
r2

∂
∂ r

(
r2 v
)

= −3v2

rsh
. (8.129)

Combining Eqs. (8.127)–(8.129), and using that

L =
ρ2Λ(T )
μ2m2

p

(nH

n

)2
, (8.130)

the stability criterion (8.124) for a monatomic gas with γ = 5/3 reduces to

Λ(T2) < Λcrit = 0.022
m2

p |v1|3
ρ1 rsh

, (8.131)

where we have adopted nH/n = 12/27 as appropriate for a fully ionized gas of primordial
composition.

In order to translate this into constraints on the properties of dark matter halos, we define
virialized dark matter halos as having an average density equal to δvir times the critical
density, i.e.

3Mvir

4πr3
vir

= δvirρcrit(z). (8.132)

In addition, we make the assumptions that the density of the pre-shock gas is equal to the aver-
age baryonic density of the universe, ρ1 = ρb =Ωb,0(3H2

0 /8πG)(1+ z)3, and that the accretion
velocity is equal to the virial velocity of the halo, v1 = Vvir =

√
GMvir/rvir . Assuming an Eds

universe, it then follows that

Λcrit ∼ 61.8×10−23 ergcm3 s−1
(

Tvir

106 K

) (
δvir

100

)1/2 (Ωb,0h2

0.024

)−1 (
h

0.7

)
(1+ z)−3/2,

(8.133)
where we have used that rsh = rvir, and

Tvir =
μmp

2kB
V 2

vir ∼ 7.5×105 K

(
Mvir

1012h−1 M�

)2/3( δvir

100

)1/3

(1+ z) (8.134)

[see Eq. (8.45)].
The shaded area in Fig. 8.7 showsΛcrit(T ) for halos in the redshift range 0≤ z≤ 3. Overplotted

are the same cooling curves as in Fig. 8.1. On the upper axis we have translated the (virial) tem-
perature into a virial mass, using Eq. (8.134). As can be seen, halos with Mvir ∼< 1010h−1 M� will
always accrete their gas in the cold mode, while those with Mvir ∼> 1012h−1 M� will have a stable
accretion shock close to the virial radius, causing hot mode accretion. Whether halos in the inter-
mediate mass range accrete gas in the cold mode or in the hot mode depends on the redshift and
the metallicity of the accreted gas. Note that we have made a number of crude assumptions. In
particular, in reality the infall velocity is likely to be somewhat lower than the virial velocity of the
halo (see discussion in §8.3.1), and the density of the pre-shock gas may be significantly higher
than that of the universal baryon density. Both these trends will lower Λcrit, and thus increase the
corresponding Mcrit. Nevertheless, detailed hydrodynamical simulations by Birnboim & Dekel
(2003) and Kereš et al. (2005) have shown that 1011h−1 M� ∼< Mcrit ∼< 1012h−1 M�, with a
remarkably weak dependence on redshift, in rough agreement with our simple predictions. As we
will see in Chapter 15, this critical mass is tantalizingly close to the scale at which the mass-to-
light ratios of dark matter halos reveal a pronounced minimum, suggesting that the cold-mode to
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Fig. 8.7. Same as Fig. 8.1, except that now we also indicate Λcrit for halos in the redshift range 0 ≤ z ≤ 3
(shaded area). Halos with Λ>Λcrit accrete their gas in the cold mode, while those with Λ<Λcrit experience
hot mode accretion.

hot-mode transition may have an important impact on galaxy formation (see e.g. White & Frenk,
1991; Cattaneo et al., 2006; Birnboim et al., 2007)

8.5 Thermal and Hydrodynamical Instabilities of Cooling Gas

The preceding section shows that gas can cool through radiative processes, but the models con-
sidered do not tell us anything about the state of the cooling gas. Is the cooling gas in a single
phase, or in a multi-phase with gas clouds of different temperatures coexisting? In this section we
show that, because of thermal instability, a multi-phase medium is likely to develop in a cooling
gas. We also describe other processes that can affect the properties of a multi-phase medium.

8.5.1 Thermal Instability

Consider a gas in thermal equilibrium. Since cooling balances heating, the net cooling–heating
rate (per unit mass) must be zero, i.e. L ≡ (C −H )/ρ = 0. As we have seen earlier in this
chapter, for a given chemical composition, the rate L is typically a function of both the tempera-
ture, T , and density, ρ , of the gas. The condition for cooling–heating balance therefore defines a
locus in the ρ–T plane, as shown schematically in Fig. 8.8. Gas above this locus has L > 0 (net
cooling) because the temperature of the gas is higher than the equilibrium temperature, while gas
below this locus has L < 0 (net heating).

The locus is expected to have the basic shape shown in Fig. 8.8, which can be understood as
follows. As the temperature of the gas approaches ∼ 104 K from a lower value, the ground and
low-excitation states of common elements, such as hydrogen and helium, begin to be collisionally
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Fig. 8.8. The locus of L = 0 in the n–T plane, illustrating the principle of thermal instability.

excited, and the subsequent radiative de-excitations of the excited states represent net cooling of
the gas. For a Maxwell–Boltzmann distribution, the fraction of particles with energy exceed-
ing the threshold energy, ΔE, required for collisional excitations increases with temperature
as exp(−ΔE/kBT ), and so the cooling rate per unit mass changes rapidly as the temperature
changes. Thus, in order to keep a balance between cooling and heating, a large change in ρ is
required to counterbalance a small change in T , which explains the almost flat locus at T ∼ 104 K.
As the temperature exceeds 104 K, the fraction of particles with energy exceeding the threshold
energy approaches unity and cannot be increased any further by increasing T . In this case, a
small change in ρ requires a large change in T in order to keep a cooling–heating balance, which
gives rise to the almost vertical locus for T above 104 K. When T approaches ∼ 106 K, the inner
shells of heavy elements, such as oxygen and iron, can be collisionally excited, and the cooling
becomes dominated by the radiative de-excitations of these excited states. The situation is then
similar to that for T ∼ 104 K. Similarly, at temperatures below 102 K, gas cooling is dominated
by the radiative de-excitation of the excited rotational levels of molecules, and the locus once
again depends strongly on T with only a weak dependence on ρ .

Now suppose that we have a static, homogeneous gas in thermal equilibrium, and that a blob
of gas is perturbed away from the equilibrium state in such a way that its pressure is kept equal to
that of the surrounding medium. The assumption of pressure equilibrium is valid if the thermal
time scale is much longer than the time required for acoustic waves to travel across the blob. If
we neglect any change of molecular weight in the perturbation, the locus of constant pressure
is given by ρT = constant, which is indicated by the dashed line in Fig. 8.8. The intersections
of this line with the locus L (ρ,T ) = 0 represent the possible equilibrium states corresponding
to the given pressure. As one can see from Fig. 8.8, these equilibrium states can be divided into
two classes, those with (∂ lnT/∂ lnρ)L > −1, and those with (∂ lnT/∂ lnρ)L < −1. Let us first
consider an isobaric perturbation from an equilibrium state in the former class (e.g. point P2 in
Fig. 8.8). When the gas blob is perturbed along the isobaric line from this equilibrium state to a
higher temperature, it enters a region where L > 0, i.e. with net cooling, and the blob will cool
back to its unperturbed temperature. Similarly, if the blob is perturbed to a lower temperature, it
enters a region with L < 0, and the blob will heat up and expand back towards P2. Clearly, state
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P2 is stable against thermal instability. As the reader can easily verify, the situation is exactly the
opposite for an equilibrium state in the latter class (e.g. point P1 in Fig. 8.8), indicating that such
an equilibrium state is unstable against isobaric perturbations.

From the above argument, it is easy to see that, for an isobaric medium, the criterion for
thermal instability can be written as (

∂L

∂T

)
P

< 0. (8.135)

To derive a more general instability criterion, we start with the specific entropy of the gas:

dS =
dQ
T

= −L dt
T

. (8.136)

Now suppose that the entropy of a gas blob is perturbed from the mean value by an amount δS
in such a way that some thermodynamic quantity A is kept fixed (δA = 0). The rate of change in
δS can be written as

dδS
dt

= δ
(

dS
dt

)
= −δ

(
L

T

)
. (8.137)

Clearly, if δS and δ (L /T ) have the same sign, the entropy will return to the background value
(stability). On the other hand, if δS and δ (L /T ) have opposite signs, the entropy perturbation
will grow with time (instability). Thus, the instability criterion can be written as[

∂
∂S

(
L

T

)]
A

< 0. (8.138)

This relation was derived by Balbus (1986) and, for a gas in which heating balances cooling (i.e.
L = 0), reduces to (

∂L

∂S

)
A

< 0, (8.139)

which is known as the Field criterion (Field, 1965).
Because of thermal instability, we expect that gas cooling generally leads to a multi-phase

medium, with most gas in the thermally stable phases. From Fig. 8.8, we see that these phases
have temperatures at T ∼ 106 K, ∼ 104 K, and ∼ 10–100K. Indeed, the thermal instability is the
basic idea behind the multi-phase models for the interstellar medium (e.g. Field et al., 1969;
McKee & Ostriker, 1977).

In addition, the thermal instability may also cause cloud fragmentation in the cooling flows
associated with hot gaseous halos, which may have potentially important implications for galaxy
formation (e.g. Mo & Miralda-Escudé, 1996; Maller & Bullock, 2004). There is, however, a
complication when the thermal instability criterion is applied to gas that is vertically stratified in
a gravitational field. In this case, the specific entropy of the gas must decrease in the direction of
the gravitational field to prevent convective instability (see §8.2.2). A slightly overdense, cold gas
blob that has a specific entropy slightly lower than its surrounding medium will then fall in the
gravitational field until it encounters material of the same specific entropy and buoyancy starts
to push it back. Consequently the gas blob will oscillate vertically around the location where
the material in the unperturbed ambient medium has the same specific entropy. This causes a
drastic reduction of the growth rate of thermal instabilities in the linear regime (Balbus & Soker,
1989). However, if the initial perturbations in the gas density are sufficiently large, a multi-
phase medium may still develop, simply because the cooling rates at T ∼ 106 K, ∼ 104 K, and
∼ 10–100K are relatively low compared to those at other temperatures.
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8.5.2 Hydrodynamical Instabilities

(a) Kelvin–Helmholtz Instability For a multi-phase medium in a gravitational field, the cold
phase may be subject to several dynamical instabilities that can destroy cold clouds. If the mass
of a cold cloud, Mcl, exceeds the Jeans mass, MJ, it is subject to collapse under its own gravity. If
Mcl < MJ, the cloud can remain in pressure equilibrium with the hot phase, but will be accelerated
with respect to the surrounding medium by buoyancy (due to the stratification by gravity).

As a cold, dense cloud moves through a hot, tenuous medium, the interface between the two
phases is subject to the growth of Kelvin–Helmholtz instabilities. In the ideal case where two
incompressible fluids slide past one another at a flat interface and there is no gravity perpendicu-
lar to the interface, the growth rate in the linear regime, obtained from the dispersion relation of
the fluid equations, is

ω =
(ρhρc)1/2v
ρc +ρh

k (8.140)

(e.g. Drazin & Reid, 1981), where ρh and ρc are the densities of the hot and cold media, respec-
tively, k is the wavenumber of the perturbation and v is the relative velocity. If we set k = 2π/Rc,
where Rc is the cloud radius, the characteristic time scale for instability growth is

τKH ≡ 2π
ω

=
Rc

v
(2+δ )√

1+δ
, (8.141)

with δ = (ρc/ρh)− 1 the overdensity of the cold cloud with respect to the hot medium. Note
that this equation is only valid in the linear regime (δ � 1), where we thus have that τKH �
2Rc/v to good approximation. If the hot phase is in hydrostatic equilibrium with a gravitational
potential, then the final speed of the cold clouds is expected to be roughly the sound speed
of the hot medium. In this case, if the cold cloud is in pressure equilibrium with the medium,
then τKH � (Rc/cs,c) [(2 + δ )/(1 + δ )], with cs,c the sound speed in the cloud. Thus, pressure
confined cold clouds moving at the sound speed of a hot medium are disrupted by the Kelvin–
Helmholtz instability on a time scale comparable to their internal dynamical time, τdyn ≡ Rc/cs,c.
In principle the clouds may be stabilized by their self-gravity (δ 	 1), but this basically implies
that the cloud mass exceeds the critical mass for the onset of gravitational instability (Murray
et al., 1993). Alternatively, the cold clouds may be stabilized by magnetic fields (e.g. Malagoli
et al., 1996), or by radiative cooling at the cloud–medium interface (Vietri et al., 1997).

(b) Rayleigh–Taylor Instability Another hydrodynamic instability in a multi-phase medium
is the Rayleigh–Taylor instability, which occurs when a heavy fluid rests on top of a light fluid
in an effective gravitational field. Such a situation can arise when a cold cloud moves through a
tenuous medium and is decelerated by the wind (ram pressure). The linear growth rate for this
instability is given by

ω2 =
(
ρc −ρh

ρc +ρh

)
gk = gk

δ
(2+δ )

, (8.142)

where g is the gravitational acceleration of the cloud due to the wind (e.g. Drazin & Reid, 1981).
If we assume that the gas in the wind transfers all its momentum to the cloud upon impact, then

g ∼ ρhπR2
cv

2/Mc, (8.143)

and the characteristic time scale for instability growth is

τRT ≡ 2π
ω

∼ Rc

v

[
(2+δ )(1+δ )

δ

]1/2

, (8.144)
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which, for δ ∼ 1, is similar to the characteristic time scale for the Kelvin–Helmholtz instability
[see Eq. (8.141)]. However, if δ � 1 then τKH � τRT and the Rayleigh–Taylor instability is of
little importance.

8.5.3 Heat Conduction

In a multi-phase medium, cold clouds also suffer evaporation because of conductive heat input
from the hot medium. The energy flux due to heat conduction is proportional to the temperature
gradient and is given by:

Fcond = −K ∇T, (8.145)

where K is the coefficient of thermal conductivity (see §B1.2). To derive an expression for K ,
let us consider an idealized case with a temperature gradient only in the z–direction. In this case
the energy flux through a unit area perpendicular to the z–axis is

Fcond ∝ nv�
∂ε
∂ z

= nv�cV
∂T
∂ z

, (8.146)

where n is the number density of the gas, v and ε are the average velocity and average energy
per particle, respectively, � = 1/nσ is the mean free path, and cV is the heat capacity per particle.
Thus, the conductivity can be written as

K ∝ nv�cV ∝ T 1/2cV /σ . (8.147)

In a neutral gas, σ is independent of T and so K ∝ T 1/2; for a fully ionized gas σ ∝ T−2 and so
K ∝ T 5/2 (Spitzer, 1962). Numerically,

K =

{
2.5×105T 1/2

4 (10−2 < T4 < 1)
6.0×103T 5/2

4 (T4 > 1),
(8.148)

where T4 = T/104 K and [K ] = ergcm−1 s−1 K−1.
Heat conduction adds a term ∇ ·Fcond to the left-hand side of the energy equation (8.3). In a

steady state including radiative cooling, we therefore have

∇ ·
[
ρv
(

v2

2
+

P
ρ

+E

)]
+∇ ·Fcond = H −C . (8.149)

This equation can be solved to obtain the structure of a conduction front under various assump-
tions. For a spherical cloud with radius rc embedded in a hot gas that has density nh and
temperature Th far from the cloud, under the assumption that radiative cooling and magnetic
fields can be neglected, the classical mass-loss (evaporation) rate of the cloud is

Ṁ = 16πμmprc K (Th)/(25kB) (8.150)

(Cowie & McKee, 1977). The time scale for evaporation is then

tev =
Mc

Ṁ
≈ 1.5×108

(
n̄c

10−3 cm−3

)(
rc

1kpc

)2( Th

106 K

)−5/2

yr, (8.151)

where n̄c is the average number density of the cloud.
If radiative cooling is important, one can define a critical radius at which radiative losses

balance conductive heating. For Th ∼> 105 K, an approximation to this critical radius is

rcrit ≈ 0.16

(
n̄c

10−3 cm−3

)−1( Th

106 K

)2

kpc (8.152)
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(McKee & Cowie, 1977). Clouds smaller than this critical radius evaporate, while those larger
than this condense.

The classical thermal conduction is based on the assumption that the mean free path is much
shorter than the temperature scale height, l � T/|∇T |. When the mean free path becomes com-
parable to or larger than the temperature scale height, the heat flux is no longer equal to that
given by Eq. (8.145). In this case, the heat flux is said to be saturated. The degree of saturation is
described by a saturation parameter which, for a spherical cloud embedded in a hot gas, can be
written as

σev = 4.2×10−3
(

n̄c

10−3 cm−3

)−1( rc

1kpc

)−1 ( Th

106 K

)2

, (8.153)

and evaporation is saturated when σev > 1.
From Eqs. (8.152) and (8.153), we see that clouds are stabilized by radiative cooling against

evaporation if

σev ∼< 0.026. (8.154)

Saturated evaporation of spherical clouds in a hot gas is discussed in detail by Cowie & McKee
(1977).

8.6 Evolution of Gaseous Halos with Energy Sources

So far we have focused on the formation of gaseous halos in which gas is only heated by grav-
itational accretion shocks. However, in the presence of energy sources, gas can also be heated
through non-gravitational processes, such as radiation from stars and AGN, stellar explosions and
stellar winds. If such heating is important, the properties of the gaseous halos can be significantly
affected.

In the presence of source terms, gas dynamics is described by the following set of mass,
momentum and energy conservation equations:

∂ρ
∂ t

+∇ · (ρv) = Sm, (8.155)

∂ (ρv)
∂ t

+∑
i
∇i (ρviv)+∇P+ρ∇Φ= Smom, (8.156)

∂
∂ t

[
ρ
(

v2

2
+E

)]
+∇ ·

[
ρ
(

v2

2
+

P
ρ

+E

)
v
]
−ρv ·∇Φ= Se, (8.157)

where Sm, Smom and Se are the changes per unit time in mass density, momentum density, and
energy density due to the sources. Note that Smom = Smvinj, with vinj the local mean velocity of
the injected material, and that

Se = H −C +Sm

(
Φ+

3
2
θinj +

1
2
v2

inj

)
, (8.158)

where C = n2
HΛ is the cooling rate per unit volume, H is the (radiative) heating rate per unit

volume, and θinj ≡ kBTinj/μmp is the local mean thermal velocity of injected material. If all
three source terms are known, the above set of equations can be solved together with the Poisson
equation for the gravitational potential Φ. In §10.5.2 we show how the source terms can be
computed in the case of stellar feedback.
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8.6.1 Blast Waves

In some applications, the energy source may be approximated by a blast wave, in which a large
amount of energy is released locally during a short period of time, and the disturbance produced
in the medium propagates as a shock wave. Here we describe a simple model for such blast
waves, and consider its application to supernova explosions in the interstellar medium.

(a) Self-Similar Model Consider an instantaneous release of energy ε0 from a source of negli-
gible size in a uniform medium with density ρ0. We assume that the medium can be described as
an ideal fluid, and idealize the problem by assuming that the mass ejected from the explosion is
negligible. This assumption is valid when the mass swept by the expanding shock wave is much
larger than the initial mass of the ejecta. In the energy-conserving phase of the evolution, i.e.
when the shock wave is at a stage where the total radiated energy is much smaller than ε0, the
only time scale involved is t, the age of the explosion, and the only length scale is rsh(t), the
radius of the shock wave at time t. In this case, we expect the problem to admit ‘self-similar’
solutions, meaning that any dimensional quantity Q(r, t) at radius r (from the center of the explo-
sion) and time t can be written as Q(r, t) = QchQ(r/R), where Qch is the characteristic value
of Q, obtained by combining rsh, t and ρ0 (or ε0). For instance, the gas density, velocity and
pressure at (r, t) can be written, respectively, in the following forms:

ρ(r, t) = ρ0D(λ ), v(r, t) =
rsh

t
V (λ ), P(r, t) = ρ0

( rsh

t

)2
P(λ ), (8.159)

where

λ ≡ r/rsh. (8.160)

An important property of such solutions is that, once rsh(t) is known, the evolution is completely
determined by the forms of the single-variable functions D(λ ), V (λ ) and P(λ ). Since the
evolution of rsh(t) should be completely determined by ε0 and ρ0, and since no combination of t,
ε0 and ρ0 can give a dimensionless quantity, the most general form of rsh(t) is

rsh(t) = Atηεα0 ρ
β
0 , (8.161)

where A is a dimensionless constant. As the dimensions on both sides of the above equation must
be equal, we have η = 2α = −2β = 2/5, and so

rsh(t) = A

(
ε0

ρ0

)1/5

t2/5. (8.162)

Thus, under the assumption of self-similarity, the time dependence of rsh is completely
determined by dimensionality considerations. The expansion speed of the shock front is therefore

vsh ≡ drsh

dt
=

2
5

A

(
ε0

ρ0

)1/5

t−3/5, (8.163)

which shows that the shock becomes weaker as it expands. Once vsh is reduced to a level
comparable to the sound speed of the ambient medium, the shock disappears.

The above dimensionality analysis can be extended to cases where ρ0 is a power law of r, and
ε0 is a power law of t:

ρ0 ∝ (r/r0)a, ε0 ∝ (t/t0)b. (8.164)

In this case,

rsh(t) ∝ t(b+2)/(5+a). (8.165)
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The value of A in Eq. (8.162) and the forms of D , V and P can all be obtained by solving the
fluid equations. In spherical symmetry, the mass, momentum and energy equations are

∂ρ
∂ t

+
1
r2

∂
∂ r

(
r2ρv

)
= 0, (8.166)

∂v
∂ t

+ v
∂v
∂ r

= − 1
ρ
∂P
∂ r

, (8.167)

∂
∂ t

[
ρ
(

1
2
v2 +E

)]
+

1
r2

∂
∂ r

[
r2ρv

(
1
2
v2 +

P
ρ

+E

)]
= 0, (8.168)

where we have ignored any heating or cooling. As we have seen in §8.1.1, the last equation can
be replaced by the following entropy equation,(

∂
∂ t

+ v
∂
∂ r

)
ln
(
Pρ−γ

)
= 0. (8.169)

Under the assumption of similarity, all quantities depend on r and t only through the com-
bination λ = r/rsh(t), and Eqs. (8.166), (8.167) and (8.169) are reduced to the following set of
ordinary differential equations:

(V −ηλ )D′ +DV ′ +
2
λ

DV = 0, (8.170)

(V −ηλ )V ′ +(β −1)V = −P ′

D
, (8.171)

(V −ηλ )
(

P ′

P
− γD ′

D

)
= 2(2−η)−2γ, (8.172)

where a prime denotes a derivative with respect to λ , and η = 2/5 is the power of the time
dependence of rsh(t). These equations can be integrated from λ = 1 to λ = 0 subject to the
jump conditions (8.49) and (8.50) at λ = 1. Note that these jump conditions are obtained by
an observer moving with the shock wave. For an observer at rest with the ambient medium,
v1 = −vsh, v2 = vb − vsh, where vb is the rest-frame velocity of the flow just behind the shock
front. For strong shocks, the jump conditions are

D(1) =
γ+1
γ−1

, V (1) =
2η

(γ+1)
, P(1) =

2η2

(γ+1)
. (8.173)

An extra condition is required in order to specify the constant A in Eq. (8.162). This condition
can be obtained by integrating the energy equation (8.168) over the entire space. Since rv = 0 at
both r = 0 and r = ∞, only the first term in Eq. (8.168) contributes to the integration:

d
dt

∫ ∞

0

(
P

γ−1
+

1
2
ρv2

)
4πr2 dr = 0. (8.174)

Outside the shock radius, rsh, the velocity v = 0 and the pressure is a constant P0. The integration
from rsh to infinity is then equal to

− P0

γ−1
4πr2

sh
drsh

dt
, (8.175)

which can be ignored if the ambient medium is cold so that P0/ρ0 = kBT0/μ0mp � v2. Thus,∫ rsh

0

(
P

γ−1
+

1
2
ρv2

)
4πr2 dr = ε0, (8.176)
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Fig. 8.9. The density, pressure and velocity profiles of a self-similar blast wave. All quantities are
normalized to unity directly behind the shock.

or, in terms of our dimensionless variables,∫ A

0

[
P(λ )+D(λ )V 2(λ )

]
λ 4 dλ =

25
(
γ2 −1

)
32π

. (8.177)

For γ = 5/3, this gives A ≈ 1.15. The corresponding density, pressure and velocity profiles are
shown in Fig. 8.9.

(b) Applications to Supernova Remnants With the above results, we can now discuss in
more detail the different evolutionary stages of a blast wave. As a concrete example, we consider
supernova remnants, which are produced by supernova explosions at the late evolutionary stages
of relatively massive stars (see §10.2.3 for details). The typical energy output of such an explosion
is about 1051 erg, which is released within a matter of seconds. Almost all this energy is initially
in the form of kinetic energy of the ejecta; the integrated photon luminosity of a supernova is
a factor ∼ 100 smaller. However, as we will see below, the supernova ejecta creates a shock
that becomes radiative, and by the time the supernova blast wave fades away, almost 95% of its
energy has been radiated away.

The evolution of a supernova blast wave consists of four well-defined stages. In the first stage
the ejected mass exceeds the swept-up ambient mass, and to lowest order the ejecta undergo free
expansion. Once the mass of the swept-up material becomes comparable to the mass of the ejecta,
the blast wave enters the adiabatic (or Sedov) phase, in which the evolution is self-similar as long
as the ambient medium is homogeneous. Eventually the radiative losses from the interior of the
blast wave become significant, and the supernova remnant enters the third, radiative stage of its
evolution. Finally, once the interior pressure becomes comparable to that of the ambient medium,
the supernova remnant merges with the ISM. We now describe this evolution in more detail.

At the beginning of a supernova explosion, when the gas swept up by the shock is still smaller
than the mass of the ejecta, Mejecta, the remnant is in free expansion, with a constant velocity vsh,
and its radius increases as rsh = vsht. The free expansion continues until the mass swept by the
shock is comparable to Mejecta:
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Msh =
4π
3

r3
shρ1 = Mejecta. (8.178)

Since the total explosion energy is ε0 = (1/2)Mejectav2
sh, the free-expansion phase terminates at

a time

tf ≈ 189

(
Mejecta

M�

)5/6( nH

cm−3

)−1/3
ε−1/2

51 yr, (8.179)

where ε51 ≡ ε0/1051 erg, and nH is the number density of hydrogen nuclei in the medium. At this
time the size and velocity of the remnant are

rsh ≈ 1.9
( nH

cm−3

)−1/3
(

Mejecta

M�

)1/3

pc, (8.180)

vsh ≈ 104
(

Mejecta

M�

)−1/2

ε1/2
51 kms−1. (8.181)

At t > tf, the mass swept by the shell is larger than Mejecta and so the expansion of the shell is
decelerated. As long as radiative energy loss is negligible, i.e. in the adiabatic (or Sedov) phase,
the evolution of the remnant is given by the similarity solution discussed above [Eqs. (8.162)
and (8.163)], with

rsh ≈ 32
( nH

cm−3

)−1/5
ε1/5

51

(
t

105 yr

)2/5

pc, (8.182)

vsh ≈ 124
( nH

cm−3

)−1/5
ε1/5

51

(
t

105 yr

)−3/5

kms−1. (8.183)

As a crude approximation, this phase ends when the radiative energy loss is about half of the
thermal energy, or a quarter of the total energy:

floss(t) ≡ εloss

ε0
=

1
ε0

∫ t

0
dt ′
∫ rsh

0
4πr2 n2

H(r)Λ(r)dr ≈ 1
4
. (8.184)

To gain some insight into the problem, let us approximate the cooling function by a power-law
function of temperature:

Λ(T ) = Λ0 (T/T0)
ν . (8.185)

For gas with solar metallicity, ν ≈ −2/3 in the temperature range 105 K < T < 107 K (see
Fig. 8.1), and Λ0 ≈ 2× 10−23 ergcm3 s−1 for T0 = 107 K. Since post-shock gas is the densest
and coolest just behind the shock, we expect that most of the energy loss occurs there. The
post-shock temperature near rsh is

T2 =
μmp

kB

P2

ρ2
=
(

2
5

)2 2(γ−1)
(γ+1)2

μmp

kB

( rsh

t

)2
, (8.186)

where we have used the self-similar solutions (8.159) and (8.173). Inserting this and Eq. (8.185)
into Eq. (8.184), and using γ = 5/3, we have

floss(t) =
1
ε0

∫ t

0
dt ′
[

3
100

μmp

kB

( rsh

t ′
)2
]ν ∫ rsh

0
4πr2Λ0n2

H(r)dr. (8.187)
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Replacing n2
H(r) by its rms value within rsh, n2

H ≈ 〈n2
H〉= ζn2

H,1, where nH,1 is the number density
of hydrogen in the pre-shock gas, and ζ ≈ 2.29 for the adiabatic (Sedov) solution, we finally
obtain

floss(t) =
4π
3

Λ0ζ
(1−2ν)

n2
H,1

ε0

(
3μmp

100kBT0

)ν(ε0A5

ρ1

)(3+2ν)/5

t(11−6ν)/5. (8.188)

If we define trad by floss(trad) = 1/4, then for fully ionized gas with nHe = nH/12,

trad ≈ 4.3×104
( nH

cm−3

)−5/9
ε2/9

51 yrs, (8.189)

rsh(trad) ≈ 23
( nH

cm−3

)−19/45
ε13/45

51 pc, (8.190)

vsh(trad) ≈ 200
( nH

cm−3

)2/15
ε1/15

51 kms−1, (8.191)

where we have used the values of A, ν, T0 and Λ0 given above. Note that vsh(trad) is almost
independent of ε51 and nH.

For t > trad, the adiabatic model is no longer valid. The problem should then be solved by
adding the cooling term, −(γ − 1)C /P, to the right-hand side of the energy equation (8.169).
This in general introduces extra scales and so the problem no longer admits self-similar solutions.

At t = tsp 	 trad, however, simple arguments can again be used to give some useful results.
During this late stage, the pressure inside the shock is negligible, and the remnant resembles a
‘snowplow’, in which ambient gas is swept up by the inertia of the moving shell. In this case,
the evolution of the remnant is governed by momentum conservation: Mshvsh = constant. Since
Msh ∝ r3

sh (most gas is swept up), we have rsh/t ∝ vsh ∝ r−3
sh , and thus rsh ∝ t1/4. Numerical

calculations give a somewhat different result, rsh ∝ t0.31. This is due to the fact that the internal
pressure is not entirely negligible, which slightly increases the momentum (Chevalier, 1974).

We have seen that a supernova explosion can accelerate the gas in its surrounding. An inter-
esting question is: what fraction of the total explosion energy is transformed into kinetic energy
of the gas (the rest is radiated away). The final kinetic energy in the remnant is given by the mass
and velocity at the time when it fades into the interstellar medium: Ekin = (1/2)Mfadev2

fade. If we
denote the mass and velocity at the onset of the ‘snowplow’ phase by Msp and Msp, then

fkin ≡ Ekin

E
=

(
Mspv2

sp

2E

)(
Mfadev2

fade

Mspv2
sp

)
≈ 1

2
vfade

vsp
, (8.192)

where we have used that momentum is conserved during the ‘snowplow’ phase, and assumed
that another quarter of the total energy is radiated away between trad and tsp. If we take vfade =
10kms−1 (the typical velocity dispersion of the ISM) and vsp = 100kms−1 (half the value at
trad), then fkin ∼ 0.05. Although this number is fairly uncertain, it is clear that only a relatively
small fraction of the total explosion energy is ultimately transferred to kinetic energy.

(c) Supernova Heating So far we have only considered the effect of a single blast wave on the
surrounding gas. In reality, there may be several or many explosions confined to a small region. In
this case, individual shocks can overlap and be thermalized, thereby heating the gas. How much
of the initial explosive energy can be thermalized depends on the time scale of thermalization
relative to the cooling time scale. Suppose that the thermalized energy is a fraction fth of the
explosive energy ε0. In this case the volume heating rate due to explosions can formally be
written as

H =
ρ̇inj

μmp
× 3

2
kBTinj, (8.193)
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where

ρ̇inj = Mejectaṅblast (8.194)

is the mass injection rate per unit volume (with ṅblast the rate of explosions per unit volume), and

Tinj =
2
3

( fthε0/kB)
(Mejecta/μmp)

(8.195)

is the effective temperature of the ejected material.
The value of fth may be estimated by assuming that thermalization occurs at a time when the

volume filling factor of the supernova remnants approaches unity. The volume filling factor of
supernova remnants can be defined as

PSNR(t) =
∫ t

0
νSN(t ′)VSNR(t − t ′)dt ′, (8.196)

where νSN(t ′) is the supernova rate per unit volume at time t ′ and VSNR(t − t ′) is the volume of a
supernova remnant at the age t − t ′. With the model described above, one can estimate PSNR as
a function of t for given νSN(t), and thus identify the time tov at which PSNR = 1. The value of
fth then follows from

fth =
∫ t1

0 νSN(t ′)εSNR(tov − t ′)dt ′

1051 erg× ∫ t1
0 νSN(t ′)dt ′

. (8.197)

Here εSNR(tov− t ′) is the sum of the kinetic and thermal energy of a supernova remnant at an age
of tov−t ′, and we have assumed that each supernova releases a total of 1051 ergs. If νSN(t) is very
high, such as in starbursts, the individual bubbles can start to overlap before the supernova rem-
nants have reached their radiative stages, and fth can be close to unity. If, on the other hand, νSN(t)
is low, then bubbles only overlap when the supernova remnants are already in the snowplow stage
and have already radiated away most of their energy. In this case fth ∼ fkin ∼ 0.05.

8.6.2 Winds and Wind-Driven Bubbles

In some cases, the energy injection from a source occurs over an extended period of time,
rather than instantaneously. Examples in this category include stellar winds driven by the radi-
ation pressure of stars, and galactic winds driven by multiple supernova explosions associated
with extended periods of star formation. In these cases, the blast wave model, in which energy
injection is assumed to be an explosion, is no longer valid.

In order to understand how a long-lasting wind propagates and interacts with its surrounding
medium, let us consider the following idealized case. Suppose that at time t = 0 a point source
begins to blow a spherically symmetric wind with some terminal velocity vw and mass-loss rate
dMw/dt. The power of the wind is given by the mechanical luminosity,

Lw =
1
2

dMw

dt
v2

w. (8.198)

For a steady wind, both vw and dMw/dt are constant, but in general they may depend on time. We
assume the wind to be cold, so that the sound speed in the wind is much smaller than the terminal
velocity, and that the source is embedded in an ambient cold medium of constant density, ρ0.
Throughout we also adopt γ = 5/3. Our task is to obtain the structure of the interaction between
the wind and the ambient medium.

Without going into great detail, we may use our knowledge about shock waves to infer that the
dynamical system in consideration should consist of four distinct zones (Weaver et al., 1977):
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• Region I (r < r1): the hypersonic wind. In this region the wind is propagating with the terminal
velocity vw.

• Region II (r1 < r < rc): hot, shocked wind. This is material that is part of the wind, but that
has been shocked.

• Region III (rc < r < r2): a shell of shocked interstellar gas. This is material from the ambient
medium that has been shocked by the wind.

• Region IV (r > r2): the ambient medium which has not yet been affected by the wind.

Thus, in this case there are two shocks, one at r1 and the other at r2.
During the early stages of the evolution, radiative losses are everywhere negligible. In this

case, if the wind is assumed to be steady, so that Lw is a constant, the only dimensionless variable
composed of Lw, ρ0, the radial coordinate r and time t is

λ = r/r2(t), (8.199)

where

r2(t) = A

(
Lwind

ρ0

)1/5

t3/5, (8.200)

with A a constant of order unity whose exact value remains to be determined. With the same
argument as made in §8.6.1, we expect that the problem admits self-similar solutions, and so
all quantities should depend on r and t only through λ . In this case, the fluid equations to be
solved reduce to the set of ordinary differential equations (8.170)–(8.172) with η = 3/5. With
the jump conditions given in Eq. (8.173), this set of equations can be integrated numerically (see
Weaver et al., 1977) to obtain the structure of the gas distribution inside r2. Unlike the blast wave
solution, the gas density drops rapidly to zero at a radius rc = 0.86r2, where there is a contact
discontinuity separating the swept-up gas from the shocked wind. At this radius the velocity is
v(rc) = 0.86v2, where v2 = dr2/dt, and the pressure is P(rc) = 0.59ρ0v2

2 . Note that v(rc) is the
velocity of the gas at r = rc, which should not be confused with ṙc, the velocity with which the
contact discontinuity propagates. Since region III admits a self-similar solution with rc = 0.86r2,
we have that ṙc = v2.

In region II, the gas is approximately isobaric, because the temperature of the shocked wind
is so high that the time for a sound wave to cross the region is much smaller than the age of the
system. The density in this region is roughly uniform. Both the gas density and pressure can be
estimated from the jump conditions at r1:

ρ(r+
1 ) ∼ 4ρ(r−1 ), P ∼ (3/4)ρ(r−1 )v2

w, (8.201)

where ρ(r−1 ) = (dMw/dt)/(4πr2
1vw) is the density of the freely propagating wind just interior to

the shock radius r1. Note that r1 may depend on time, and so both the density and pressure are
time dependent. In order to determine r1, we use the adiabatic condition d(P/ργ)/dt = 0. Since
P ∼ P(rc) ∝ t−4/5, we have

1
r2

∂ (r2v)
∂ r

= − 1
ρ

dρ
dt

=
12
25t

. (8.202)

With the boundary condition that v(rc) = 3rc/5t, the solution of the above equation is

v(r, t) =
11
25

r3
c

r2t
+

4
25

r
t
. (8.203)

On the other hand, in the region r1 ≤ r � rc, the flow is nearly steady, and so v ∼ (vw/4)(r1/r)2,
where we have used the jump condition v(R+

1 ) = vw/4. Matching this velocity with the above

solution and using the fact that r1 � rc, we get r1 ∼ (44/25)1/2r3/2
c /(vwt)1/2. Inserting this into
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the expression of P in Eq. (8.201) and matching the pressure thus obtained with P(rc), we obtain
A ≈ 0.87. Note that r2/r1 ∝ t1/5, so that the shock at r2 propagates faster than that at r1.

At some later stage, the cooling in the swept-up gas becomes important so that it collapses
into a thin shell, while the cooling of the shocked wind is still negligible. Thus, the system then
consists of a thin expanding shell enclosing and driven by a hot bubble, whose internal energy
is much larger than its kinetic energy. At this stage, the time for sound waves to cross the hot
bubble is still small compared to the age, so that the entire region is approximately isobaric. Since
the volume of region I is much smaller than that inside r2, the pressure is related to the internal
energy simply by

ε =
2
3
× 4π

3
r3

2P. (8.204)

Assuming the shell to be infinitesimally thin and the mass in the bubble negligible, the
momentum equation for the shell can be written as

d
dt

(
4π
3

r3
2ρ0

dr2

dt

)
= 4πr2

2P, (8.205)

and the energy balance for the hot region is

dε
dt

= Lw −PdV = Lw −4πr2
2P

dr2

dt
. (8.206)

These equations have the following solution:

ε =
5
11

Lwt; r2 =
(

125
154π

)1/5(Lw

ρ0

)1/5

t3/5. (8.207)

More complicated models for wind-driven bubbles can be constructed by including radiative
cooling in the bubble (which becomes important at late stages of the wind), the evaporation of
gas from the swept-up shell to the bubble, and the impact of the gravitational potential in which
the wind is embedded (e.g. Weaver et al., 1977; Ostriker & McKee, 1988).

8.6.3 Supernova Feedback and Galaxy Formation

In general, the full set of fluid equations (8.155)–(8.157) has to be solved, in order to study how
a wind is generated by energy and mass sources, and how it evolves with time. Here we con-
sider a simple model to demonstrate qualitatively how supernova explosions may drive galactic
winds and affect star formation in galaxies. The wind is assumed to be spherical and steady,
propagating in a static, spherically symmetric potential, Φ. Under these assumptions, the fluid
equations (8.155)–(8.157) can be combined to give two first-order differential equations for the
fluid velocity, v , and the adiabatic sound speed of the gas, w:

r
v2

dv2

dr
=

−w2

2π(v2 −w2)

[
4π
(

2− V 2
c

w2

)
+

2
3

A−
(

4
3

+
w2

i

v2

)
B

]
, (8.208)

r
w2

dw2

dr
=

−v2

6π(v2 −w2)

[
4π
(

2− V 2
c

v2

)
+
(

5
3
− w2

v2

)
A

+
(

w2

v2 − 5w2
i

2v2 − 3w4

2v4 +
3w2

i w2

2v4 − 5
6

)
B

]
, (8.209)

where V 2
c ≡ r(dΦ/dr) specifies the shape of the gravitational potential well, and the injected gas

is assumed to have an initial isothermal sound speed, wi ≡ (kBTi/μmp)1/2, with Ti the initial
temperature of the injected gas. The quantities A and B are given by
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A =
ṀΛ(T )n2

H

r(ρwv)2 , B =
ρ̇injṀ

r(ρw)2 , Ṁ = 4π
∫ r

0
ρ̇inj(r′)r′2 dr′, (8.210)

where ρ̇inj is the mass injection rate per unit volume. As one can see, the sonic point, where
v = w, is a critical point at which v2(r) and w2(r) are not smooth functions of r. Note also that
Eqs. (8.208) and (8.209) are invariant under the transformation v → −v , so that they describe
both outflow and inflow (depending on the boundary conditions).

In some applications, the source term, ρ̇inj, is non-zero only within a confined region near the
center of the potential well (i.e. that of a dark matter halo), where stars form. In such cases, one
can separate a halo into an inner heating base and an outer region. The equations describing the
flow in the outer region are Eqs. (8.208) and (8.209) with B = 0. For supersonic flows, which are
most relevant to the large-scale outflows from galactic systems, the boundary conditions can be
set at the radius r1 where v2 is slightly above w2. If radiative cooling is negligible in the flow, so
that A = 0, the properties of the flow are determined by the gas temperature relative to the halo
gravitational potential at the heating base. Depending on whether the sound speed near r1, w1, is
bigger or smaller than Vc(r1)/

√
2, the outflow results in either a galactic wind or a hot corona.

Numerical integrations of Eqs. (8.208) and (8.209) show that the wind can reach a bulk velocity
of about

√
2.5w1 (Efstathiou, 2000). Thus, if w1 ∼> Vesc/

√
2.5, where Vesc is the escape velocity

from the central part of the halo, the wind may escape; otherwise a hot corona is produced. The
importance of radiative cooling is specified by A(r1), which is roughly the ratio between the flow
time (r/v ) and the cooling time (ρw2/Λn2

H) near r1. If A(r1) 	 1 so that cooling is effective, the
outgoing gas can cool and, via thermal and hydrodynamical instabilities (see §8.5), may form
cold clouds that either leave the galaxy (if w1 ∼> Vesc/

√
2.5), or fall back (if w1 < Vesc/

√
2.5) (see

Wang, 1995).
The gas temperature at the heating base is determined primarily by the intensity of the super-

nova heating, which depends on the supernova rate per unit volume, and the cooling rate of the
shocked gas. If these rates were independent of halo mass so that the temperature at the heating
base does not depend strongly on Vc, then the ratio w1/Vesc would be larger for less massive
halos, making outflows easier to generate in halos of lower mass. In order to quantify the condi-
tions for gas removal from dark matter halos, Dekel & Silk (1986) considered a simple model in
which the star-formation rate (the mass that turns into stars per unit time) in a galaxy is assumed
to be Ṁ� = Mg/(εSF tff), where Mg = fgM is the mass of cold gas in the galaxy, εSF is a constant
specifying the star formation efficiency, and tff ≡ [3π/(32Gρ)]−1/2 is the free-fall time, with
ρ the mass density. With the assumption that the star-formation rate is a constant, the number
of supernova remnants at time t can be written as NSN(t) = μSNṀ∗t, where μSN is the number
of supernovae corresponding to a unit mass of stars that have formed. The total energy in the
supernova remnants can then be written as

E(t) = μSNṀ�ε0tradF (t), (8.211)

where

F (t) ≡ 1
trad

∫ t

0

εSNR(τ)
ε0

dτ, (8.212)

with εSNR(τ) the total energy of a supernova remnant at the age τ . In the adiabatic phase,
εSNR(τ) = (1 − floss)ε0 with floss defined in Eq. (8.184). At later times, the energy content
of a supernova remnant is roughly εSNR(τ) ∼ 0.22ε0[rsh(τ)/rsh(trad)]−2 (Cox, 1972). Dekel &
Silk (1986) argued that gas can be removed from a dark matter halo if the total energy of the
supernova remnants at time tov, when PSNR ∼ 1, is larger than the binding energy of the gas:
E(tov) > 1

2 MgV 2
c . This defines a critical value for Vc:



408 Formation and Evolution of Gaseous Halos

Vcrit = [2ε0F (tov)(trad/tff)(μSN/εSF)]1/2 , (8.213)

so that gas removal occurs in halos with Vc <Vcrit. Using the results for the evolution of supernova
remnants described above, Dekel & Silk (1986) found Vcrit ∼ 100kms−1.

If the energy input from star formation is equal to the binding energy of the cold gas, the star-
formation rate, Ṁ�, is given by E0Ṁ� = (Ṁg−Ṁ�)V 2

c /2, where E0 measures the energy feedback
per unit mass of formed stars, and the right-hand side is a crude estimate of the binding energy
of the cold gas. Solving for Ṁ� we obtain

Ṁ� =
Ṁg

1+(V0/Vc)2 , (8.214)

where V 2
0 = 2E0. Based on the discussion presented above, we have V0 ∼ Vcrit. In this simple

model, the star-formation efficiency in halos with Vc � Vcrit is reduced by a factor proportional
to V 2

c . As we will see in Chapter 15, it is necessary to suppress the efficiency of star formation
in low-mass halos in order to explain the observed galaxy luminosity function at the faint end in
the CDM scenario of galaxy formation. Star formation feedback through supernova explosions
provides an appealing mechanism. Unfortunately, the details regarding this feedback mechanism
have yet to be quantified. It is still unclear how effective the energy feedback from star formation
is coupled to the gas. Some numerical simulations show that the coupling is rather poor so that
much of the feedback energy can escape from a galaxy without affecting the bulk of the gas
(e.g. Mac Low & Ferrara, 1999a). Furthermore, the evolution of supernova remnants in real star
forming regions is expected to be much more complicated than that given by the simple model
described above, so that the fraction of supernova energy available to drive a potential galactic
wind is also uncertain.

8.7 Results from Numerical Simulations

In the preceding sections we have discussed various processes that can affect the formation
of gaseous halos. Our discussion so far has been largely based on idealized models with vari-
ous simplifications, and so the results obtained can only serve as approximations. As we have
seen in Chapter 7, dark matter halos do not grow by smooth, spherical accretion in a homoge-
neous background. Rather, the formation is hierarchical, involving numerous mergers, making
the formation of gaseous halos a complex, clumpy, non-spherical process. In addition, because
halos are highly nonlinear systems, the effects of different processes may be coupled, implying
that the reliability of model predictions depends on modeling all relevant processes accurately.
This typically requires sophisticated numerical simulations. In this section we give a brief
summary of the current status of numerical investigations regarding the formation and evolu-
tion of gaseous halos. A brief description of hydrodynamic simulation techniques is given in
Appendix C.

8.7.1 Three-Dimensional Collapse without Radiative Cooling

The simplest case is that of a non-radiative gas without heating (other than shock heating), cool-
ing, or star formation. Such gas is often (incorrectly) referred to as ‘adiabatic’. These assumption
may be valid for clusters of galaxies, because cooling is expected to be unimportant over the bulk
of such massive objects (see §8.4.1) and the energy output from star formation contributes only
a small fraction of the total potential energy of the intracluster gas. Numerical simulations with
a small fraction (∼ 10%) of gas that is initially cold and has the same initial distribution as the
dominant dark matter show that by and large the gas follows the dark matter during the early
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(linear) stages of gravitational clustering. As soon as the structures become nonlinear, and start
to merge, a complex network of shocks develop. These shocks heat the gas by thermalizing the
kinetic energy of the gas as it falls into the gravitational potential wells provided by the under-
lying dark matter. Since the collisionless dark matter does not experience these shocks, the gas
and dark matter become somewhat segregated on small scales, with the gas distribution being
less centrally concentrated. In addition, the gas pressure is isotropic, while the equivalent for the
dark matter, the velocity dispersion of the dark matter particles, can be significantly anisotropic.
Consequently, the gas distribution ends up being somewhat rounder than that of the dark matter.
In simulations, the temperature distribution in the inner parts typically has an approximately flat
profile, which begins to decline beyond roughly half the virial radius, reaching ∼ 30% of its
central value at the virial radius (e.g. Evrard, 1990; Navarro & White, 1993; Bryan et al., 1994;
Frenk et al., 1999).

As shown in §8.2, for an isothermal gas in hydrostatic equilibrium in the potential well of a
dark matter halo, the gas density, ρgas, is related to the dark matter density, ρdm, via ρgas ∝ ρ

β
dm,

where β = μmpσ2/kBT is the ratio of specific energies of the dark matter and the gas. The
value of β is a measure of the degree of thermalization of the gas. If the gas and the dark matter
particles have the same specific energy, then β = 1. The values of β estimated from simulations
of CDM models are typically 1.1–1.2, suggesting that gravitational infall onto collapsed objects
is thermalized effectively. In addition to this thermal energy, the mergers associated with the
formation of the halo disturb the dynamical state of the gas, resulting in bulk motions whose
kinetic energy is ∼ 15% of the thermal energy of the gas (e.g. Bartelmann & Steinmetz, 1996;
Frenk et al., 1999).

8.7.2 Three-Dimensional Collapse with Radiative Cooling

In semi-analytical models for galaxy formation, the rate at which gas cools is often estimated
using the method described in §8.4.2. In this model, originally proposed by White & Frenk
(1991), the cooling radius is defined as the radius at which the cooling time equals the age of the
universe, and the cooling rate then follows from the assumed gas density profile, ρgas(r, t), and
the rate at which the cooling radius moves outward, as given by Eq. (8.104).

Using hydrodynamical simulations of hot gas with radiative cooling in static dark matter halos,
Viola et al. (2008) have shown that the simple cooling rates obtained from Eq. (8.104) in gen-
eral underpredict the actual cooling rates, especially during the early stages. This is because
Eq. (8.104) does not account for the fact that the gas distribution can readjust itself once gas
starts to cool out. In particular, once gas starts to cool in the center, the outer gas starts to flow
inwards. This increases the density of the gas, which subsequently decreases its cooling time.

In hydrodynamical cosmological simulations with radiative cooling, the total amount of gas
that cools depends strongly on the resolution of the simulation. This is because radiative cool-
ing in dark matter halos is dominated by two-body processes whose rates depend crucially on
the gas density. In general, simulations of higher resolution predict larger mass fractions of cold
gas, which is a consequence of the overcooling problem eluded to in §8.4.1. High-resolution
simulations in general overpredict the stellar mass function, especially at the high-mass end (e.g
Davé et al., 2001). In addition, as discussed in §11.2.6, overcooling also causes (disk) galaxies
to be much too compact, a problem known as the angular momentum catastrophe. It is gener-
ally believed that both these problems reflect the need to include heating mechanisms into the
simulations.

As discussed in §8.6, gas in small halos may be heated by energy feedback from supernova
explosions. Since the cosmological simulations cannot resolve the physical scales of individual
supernova explosions, this feedback mechanism can only be implemented by modeling its impact
on the resolution scale of the simulations. Unfortunately, the details of supernova feedback are



410 Formation and Evolution of Gaseous Halos

still poorly understood. In particular, it is still unclear what fraction of the supernova energy
goes into generating bulk motions, what fraction goes into heating the diffuse high-pressure gas
component, and what fraction is radiated away by dense clouds in the immediate surroundings
of the supernova event. Various methods have been developed to implement supernova feedback
into the simulations, often with significantly different outcomes (e.g. Thacker & Couchman,
2000; Springel & Hernquist, 2003; Oppenheimer & Davé, 2006).

8.8 Observational Tests

The gaseous halos discussed in the previous sections can be probed observationally by their
emission and absorption properties. If the temperature of the gas exceeds ∼ 106 K it can be
detected via X-ray emission due to thermal bremsstrahlung. At lower temperatures, diffuse halo
gas can be probed either by line emission or via its absorption of background sources.

In this section we discuss some observational aspects of gaseous halos. After a detailed discus-
sion of the X-ray emission from clusters and groups, we briefly discuss the gaseous halos around
isolated elliptical and spiral galaxies.

8.8.1 X-ray Clusters and Groups

Rich clusters of galaxies are observed to be strong X-ray sources, with X-ray luminosities LX =
1043–1045 ergs−1. The X-ray spectra show that this emission originates mainly from the thermal
bremsstrahlung of hot, diffuse plasma characterized by a temperature of 107–108 K and a gas
density of 10−4–10−2 cm−3. The implied mass of this intracluster medium (ICM) is typically
an order of magnitude larger than the total stellar mass in the member galaxies, making it the
dominant baryonic component in clusters.

(a) Hydrostatics and the β -model If the ICM is in hydrostatic equilibrium, its density and
temperature profiles can be used to infer the total dynamical mass. The sound speed of the ICM
is cs �

√
kBT/μmp � 1,000kms−1, which implies a sound crossing time of τs = 2RA/cs �

4×109 yr. Here RA = 1.5h−1 Mpc is the Abell radius and we have adopted h = 0.7. Thus, unless
clusters formed a long time ago, they are not necessarily expected to be in perfect hydrostatic
equilibrium. Indeed, many clusters show strong asymmetries and substructure in their X-ray
emission, indicating that they are still in the process of formation. Such clusters are generally
discarded when using X-ray data to infer dynamical masses. In the following discussion we
therefore focus only on clusters that appear smooth and symmetrical, and hence relaxed, in their
X-ray emission.

For given density and temperature distributions, ρgas(x) and T (x), the bremsstrahlung emis-
sivity can be calculated at each position x ≡ (r,R) in the cluster, where r is the radial coordinate
along the line-of-sight, and R labels the position in the perpendicular plane. The X-ray surface
brightness at a position R on the sky can then be obtained by integrating the emissivity along the
line-of-sight:

SX(R) =
1

4π

∫
dνw(ν)

∫
dr
εff[r,R;ν(1+ z)]

(1+ z)3 , (8.215)

where w(ν) is a response function of the passband, z is the redshift of the source, and εff ∝
ρ2

gasT
−0.5 is the (free–free) bremsstrahlung emissivity (see §B1.3). The surface brightness is usu-

ally averaged in circular annuli centered on the cluster center. The resulting distribution is then
fit to some theoretical profile. If the cluster is spherically symmetric, the observed surface bright-
ness profile provides a constraint on the combination of ρgas(r) and T (r). If X-ray spectroscopy
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is available, one can determine the temperature profile T (r), and thus also the gas density pro-
file ρgas(r). This can then be used to infer the total mass of the cluster from the hydrostatic
equation (8.16).

A simple model commonly used to fit cluster X-ray data assumes that the inner cluster
approximates an isothermal sphere with total mass distribution given roughly by Eq. (8.23):

ρm(r) = ρm(0)
[
1+(r/r0)2]−3/2

, (8.216)

where r0 is a core radius. As we have seen in §8.2, this profile is valid only for the inner region
(r ∼< 2r0) of a true isothermal sphere. From Eq. (8.26) we see that the inner profile of an isothermal
gas in hydrostatic equilibrium in such a cluster is approximately

ρgas(r) = ρgas(0)
[
1+(r/r0)2]−3β/2

, (8.217)

where β is the ratio of the specific energies of the dark matter and the gas [see Eq. (8.27)]. The
corresponding X-ray surface-brightness profile is then

SX(R) = S0

[
1+
(

R
r0

)2
]−3β+1/2

, (8.218)

where S0 ∝ ρ2
gas(0) is the central surface brightness. Since S0, r0 and β can all be determined

from the X-ray data (see Fig. 8.10), one can obtain the gas mass and the total mass by integrating
ρgas(r) and ρm(r) over r. This kind of analysis shows that clusters have gas mass fractions of

fgas =
Mgas

Mtotal
� (0.06±0.01)h−3/2 (8.219)

(e.g. White et al., 1993b; Evrard, 1997; Ettori & Fabian, 1999; Allen et al., 2002). The depen-
dence on h can be understood as follows. The total X-ray luminosity LX ∝ ρ2

gas(0)r3
0 while the

observed values of LX and r0 scale with h as h−2 and h−1, and so Mgas ∝ ρgas(0)r3
0 ∝ h−5/2. The

Fig. 8.10. The observed X-ray surface brightness for the cluster A 2256 and the fit by the model (8.218).
[Based on data published in Henry et al. (1993)].
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observed total cluster mass Mtotal scales as h−1. The mass fraction of stars in rich clusters (esti-
mated from the optical luminosities of the cluster galaxies) is about 1%, which is significantly
smaller than that of the X-ray gas. Since the matter content of rich clusters is thought to provide
a fair sample of the matter content of the Universe as a whole, the observed ratio of the baryonic
to total mass in clusters should closely match the universal baryon fraction Ωb,0/Ωm,0. Adopt-
ing the cosmic nucleosynthesis value Ωb,0h2 = 0.0205±0.0018 (O’Meara et al., 2001, see also
§3.4.4), the inferred gas mass fraction of Eq. (8.219) implies that Ωm,0 ∼ (0.25±0.05)h−1/2, in
good agreement with other determinations of the universal matter density (see §2.10).

The value of β obtained by fitting SX(R) is typically βfit ∼ 0.7. This would imply that the
gas is hotter than the dark matter. However, direct spectroscopic measurements from the optical
velocity dispersion of galaxies and the temperature of the ICM give βspec = 0.9–1.2. This dis-
crepancy in the value of β obtained by the two methods is known as the β -discrepancy. In order
to understand its origin, recall that the model considered above is based on the assumption that
both the gas and the galaxies are in equilibrium with the cluster potential. Under the assump-
tion of spherical symmetry, hydrostatic equilibrium implies that the enclosed mass of the cluster
obeys Eq. (8.16), while virial equilibrium implies that

M(r) = − rσ2
r

G

[
dlnρgal

d lnr
+

dlnσ2
r

dlnr

]
, (8.220)

(see §13.1.4). Here σr is the radial velocity dispersion of the galaxies and we have assumed
that the galaxies have an isotropic velocity distribution. Combining Eqs. (8.16) and (8.220) we
obtain that

β ≡ μmpσ2
r

kBT
=

dlnρgas/dlnr +dlnT/dlnr

dlnρgal/dlnr +dlnσ2
r /dlnr

. (8.221)

Adopting isothermal dark matter and gas distributions, a standard assumption which is incorrect
in detail is most real clusters, one has that d lnT/dlnr = dlnσ2

r /dlnr = 0, and the line-of-sight
velocity dispersion of the galaxies, σgal = σr. This implies that

βspec ≡
μmpσ2

gal

kBT
=

dlnρgas/dlnr

dlnρgal/dlnr
. (8.222)

Comparing Eqs. (8.216) and (8.217), we see that

βfit =
dlnρgas/dlnr

dlnρdm/dlnr
. (8.223)

Assuming isothermality, βspec = βfit if only the dark matter and galaxy distributions follow the
King profile (8.23). Bahcall & Lubin (1994) show that this is not the case in detail, and argue that
this is the main reason for the β -discrepancy. Other possible explanations include that clusters
are not perfectly isothermal and/or isotropic, that they are not in perfect hydrostatic equilibrium,
that there is additional pressure support from non-thermal turbulence, magnetic fields and/or
cosmic-rays (see §8.2), and that the thermalization of the cluster gas is incomplete (e.g. Evrard,
1990).

(b) Scaling Relations Observationally, it has been found that the X-ray luminosity of clus-
ters, LX, is correlated with the inferred temperature of the ICM. This LX–T relation is typically
parameterized as

LX ∝ T ξ (1+ z)ζ . (8.224)

Observations indicate that ξ ∼ 3 and ζ ∼ 0 with scatter in LX at fixed T of approximately 0.1
dex (White et al., 1997; Markevitch, 1998).
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If clusters are formed from dark matter and cold intergalactic gas in a self-similar fashion
(Kaiser, 1986), so that the gas and dark matter distributions are similar for different clusters,
then, for a cluster with radius R,

LX ∝ C R3 ∝MρT 1/2, (8.225)

where we have used that C = n2
HΛ(T ) ∝ ρ2T 1/2 for thermal bremsstrahlung. Assuming that the

X-ray gas is isothermal and in hydrostatic equilibrium, and using the fact that the average density
of dark matter halos is independent of halo mass (see §5.4.4), we have

M ∝
V 3

c

GH(z)
� 1

GH(z)

(
kBT
μmp

)3/2

∝ (1+ z)−3/2T 3/2 (for EdS), (8.226)

where we have used Eq. (8.45). Substitution in Eq. (8.225) yields

LX ∝ T 2(1+ z)3/2. (8.227)

This T dependence is shallower than observed, suggesting that non-gravitational heating may be
important. For example, if the gas in a cluster had been pre-heated to a high entropy level before
the cluster was assembled, the gas density in the central region of the cluster can be reduced,
which has the effect of decreasing the X-ray luminosity of the cluster. Since for a given initial
entropy the effect is larger in lower-mass clusters, preheating can steepen the LX–T relation. An
alternative explanation for the discrepancy is that cooling causes a deviation from self-similarity.
Cooling preferentially removes the low entropy gas from the hot phase, causing a net increase in
the entropy (and temperature) of the remaining hot gas. Since the cooling efficiency depends on
halo mass, cooling may also modify the LX–T relation (e.g. Nagai et al., 2007).

(c) Cooling Flows The X-ray emission from clusters indicates that the ICM continues to lose
energy via thermal bremsstrahlung. As we have seen in §8.4.1, the rate at which the ICM cools is
in general low, with the average cooling time longer than the Hubble time, tH ∝ H−1

0 . However,
since the hot gas is roughly in hydrostatic equilibrium within the gravitational potential of the
cluster, its density in general increases towards the center. As the cooling time tcool ∝ T 1/2ρ−1

gas ,

which follows from Eq. (8.94) together with the fact that for bremsstrahlung Λ ∝ T 1/2, the cool-
ing time typically becomes shorter at smaller cluster-centric radii. The densities and temperatures
of the ICM inferred from X-ray data indicate that the cooling times in the central ∼ 100kpc of
most clusters are shorter than 1010 yr (e.g. Mushotzky, 1993; Fabian, 1994). Consequently, in
the absence of a balancing heat source, a slow, subsonic inflow of gas is expected to develop
in the central regions. This flow takes place because the cooling reduces the temperature and
thus the pressure of the gas. In order to support the weight of the overlying gas, the central gas
has to increase its density, which it does by flowing inward. This, essentially cooling-driven flow,
is called a cooling flow.

The mass deposition rate, Ṁ (i.e. the rate at which gas cools in the cooling flow), can be
estimated from the X-ray image of a cluster. Consider a small blob of gas (with temperature T1

and volume V1) which has cooled down and moved inwards by a distance Δr from its original
radius, where it had a temperature T 	 T1 and occupied a volume V . Since the pressure in
the inner region is higher than that in the outer region, V 	 V1. Now imagine that this blob is
brought back to its original place and state. The energy required is the sum of the thermal energy
originally in the gas, the PdV work required to inflate the blob and the gravitational energy. In
the reverse process, this same amount of energy is radiated away. If the gravitational potential is
flat in the central region, or if a gas blob can only cover a short distance before it cools down,
only the thermal energy and PdV work are important. In this case, the radiated luminosity within
a radius r should be equal to the rate of change of enthalpy within r, implying that
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Ṁ(< r) =
2μmp

5kBT
L(< r), (8.228)

with L(< r) the luminosity of the cooling gas inside radius r. The inferred mass deposition rates
are typically of the order of 50–100M� yr−1, while some clusters even have Ṁ ∼> 1000M� yr−1.

If all the gas were to flow to the center, so that Ṁ(< r) is a delta function, the X-ray surface-
brightness profile would also be a delta-function. This is inconsistent with the data, which
indicates that although the X-ray surface brightness profiles of cooling-flow clusters are sharply
peaked, they are well resolved. The inference is that, to good approximation, Ṁ(< r) ∝ r, and
thus that, in the absence of other effects, cold gas should be deposited over relatively large vol-
umes in the central regions of clusters, while the rest of the gas remains hot and continues to flow
inwards. Such a multi-phase cooling flow could form naturally out of density inhomogeneities
due to the thermal instability discussed in §8.5.1 (e.g. Nulsen, 1986), although it is not entirely
clear how effective the thermal instability is in the presence of gravitationally induced convective
motion (e.g. Hattori & Habe, 1990).

Key evidence that the gas in the central regions of cooling flow clusters is indeed cooling
to lower temperatures comes from X-ray spectroscopy, which shows that temperature drops of
up to a factor of three are common in the central ∼ 100kpc of cooling flow clusters. However,
the actual mass deposition rates have been, and still are, heavily debated. The inferred mass
deposition rates would imply that more than 1011 M� of cold gas is being deposited within less
than a Gyr beyond 100kpc but no further. Although some evidence for warm and cold molecular
gas has been found in the central regions of cooling flow clusters (e.g. Jaffe & Bremer, 1997;
Edge et al., 2002), it remains unclear whether this is actually associated with the cooling flow.
What is clear, though, is that the majority of the gas that is cooling out cannot be forming stars,
as this would make the central cluster galaxies much bluer than observed. Although many central
galaxies in cooling flow clusters have excess blue light indicative of recent star formation (e.g.
Crawford et al., 1999), the inferred star-formation rates are one to two orders of magnitude
lower than the mass deposition rates inferred from the X-ray data. Furthermore, high-resolution
spectroscopy with the XMM-Newton satellite has revealed a surprising absence of X-ray spectral
signatures of gas with temperatures below 1–2keV (e.g. David et al., 2001; Peterson et al., 2003).
Hence, it seems that the gas is cooling at a high rate to about one third of the mean temperature
beyond 100kpc but then vanishes.

The mass deposition rates are based on the assumption that there is no heating in addi-
tion to the gravitational heating associated with the flow. However, this appears to be an
oversimplification. In many some clusters observations have revealed the presence of X-ray cav-
ities with diffuse radio emission (e.g. Böhringer et al., 1993; McNamara et al., 2000; Fabian
et al., 2002). These cavities are inflated by jets launched from AGN associated with one
or more radio galaxies located near the center of the cluster’s potential well (see §14.4.2),
and may well be a significant source of heating that can offset the radiative losses (e.g.
Birzan et al., 2004). An additional heating source may be thermal conduction (e.g. Narayan
& Medvedev, 2001). The central temperature gradients observed in the ICM may induce heat
transport from the outside in via conduction. The level of conductivity may be sufficient for
this process to play an important role, provided that it is not strongly suppressed by magnetic
fields.

8.8.2 Gaseous Halos around Elliptical Galaxies

Many elliptical galaxies are observed to be X-ray sources, with X-ray luminosities LX ∼ 1039–
1042 ergs−1. This X-ray emission usually has a diffuse component due to hot gas and a discrete
component due to stellar X-ray binaries. The X-ray luminosities of elliptical galaxies are cor-
related with their optical luminosities, although with a huge amount of scatter (close to two
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orders of magnitude). For low luminosity (LB ∼< 3 × 109 L�) ellipticals, LX ∝ LB, consistent
with the X-ray emission being dominated by X-ray binaries. For more luminous ellipticals,
however, LX ∝ L2

B, indicating that the hot diffuse gas is dominating the X-ray emissivity (e.g.
Eskridge et al., 1995; O’Sullivan et al., 2001). The diffuse gas is characterized by temperatures
kBT ∼ 0.5–1keV, lower than that from X-ray binaries (kBT > 3keV), and in general has a smooth
distribution, indicating rough hydrostatic equilibrium with the gravitational potential. Conse-
quently, X-ray measurements can be used to probe the dark matter halos of elliptical galaxies
(see §13.1.5).

Originally it was believed that the hot gaseous atmospheres around ellipticals have formed
due to the accumulation of normal mass loss from a dominant population of old stars, which is
supported by the LX ∝ L2

B scaling (e.g. Tsai & Mathews, 1995; Brighenti & Mathews, 1996). The
mass ejection rate for a typical old stellar population is

Ṁinj ∼ 1.6

(
M�

1012 M�

)(
t
t0

)−1.3

M� yr−1, (8.229)

with M� the stellar mass and t0 the age of the galaxy, which is sufficient to account for the
amounts of hot gas observed. In this picture, the gaseous envelopes expelled from normally
evolving stars collide with the ambient gas, shock and dissipate the orbital energy of the parent
stars. This would imply that the temperature of the gas is similar to the virial temperature of
the stars, i.e. T = μmpσ2/kB ∼ 3×106 K, with σ the velocity dispersion of the stars. However,
with more detailed X-ray data becoming available, it was found that the gas has significantly
higher temperatures, with β = μmpσ2/kBT = 0.6±0.1 (e.g. Davis & White, 1996). This cannot
be explained by assuming that there is significant additional heating due to supernovae of type
Ia,3 since this would dramatically overpredict the iron abundances of the gas. Rather, it is now
generally accepted that a significant fraction of the hot gas must have an external origin: either it
is gas left over from the formation process, or it is gas recently accreted from the ambient cosmic
flow. In this case the temperature of the gas reflects the virial temperature of the dark matter halo,
which is higher than that of the stellar component.

Similar to the case for clusters discussed above, the X-ray emission from the hot gas around
elliptical galaxies has been interpreted in terms of a cooling flow. The inferred mass deposition
rates [Eq. (8.228)] are of the order of Ṁ ∼ 1.5M� yr−1 for a typical X-ray luminosity of LX =
5× 1041 erg s−1. This is comparable to the mass ejection rate expected from stellar mass loss
[Eq. (8.229)], indicating that the amount of hot gas can remain more or less constant. However,
as with clusters, there is a serious problem with this simple cooling flow model. There is no
observational evidence for the amounts of mass expected to have cooled at the centers of these
ellipticals. In particular, the amounts are an order of magnitude larger than the masses of their
central black holes (see §13.1.6). Multi-phase cooling models, in which the cold gas is assumed
to deposit over a large range of radii, also do not seem to work. In particular, as for clusters,
intermediate (multi-phase) temperatures, which are an essential outcome of radiative cooling
and mass deposition, are not observed in the X-ray spectra of galactic scale flows (e.g. Xu et al.,
2002). As mentioned above, the most popular explanation for this cooling flow puzzle is that the
hot gas is being heated by conduction and/or by a central AGN. This is supported by the fact that
many bright ellipticals have extended non-thermal radio emission, and by high resolution images
of the Chandra satellite, which show that the central regions of the hot atmospheres are highly
disturbed. Unfortunately, we still lack a detailed understanding of how exactly these heating
mechanisms operate (see Mathews & Brighenti, 2003, for a review).

3 As discussed in §10.2.3, the rate of these supernovae is still very uncertain, allowing for significant amounts of freedom
in the models.
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8.8.3 Gaseous Halos around Spiral Galaxies

Diffuse X-ray emission is also detected in some spiral galaxies. Such X-ray emission is generally
soft, reflecting the low temperature (a few ×106 K) of the gas, and has relatively low luminosity,
LX < 1040 ergs−1. In almost all cases this X-ray emission is concentrated close to the galactic
disks, suggesting that the emission is mainly due to star-formation activity in the disk or due to
an active galactic nucleus. There is currently no convincing evidence for the general existence of
large X-ray halos around normal spiral galaxies. This is in sharp contrast to simple theoretical
expectations. As discussed in Chapter 11, disk galaxies are believed to form out of gas that cools
inside extended dark matter halos. During this formation process, the material that ends up in the
disk has to get rid of its binding energy. At the virial temperature of galaxy halos, the dominant
cooling mechanism is thermal bremsstrahlung, and it thus seems likely that a large fraction of
this binding energy is radiated away as X-ray emission. Under the assumption that the mass of
the present disk, Mdisk, has been built up via a constant rate of accretion over the age of the
Universe, t0 � 13Gyr, a simple (but crude) estimate for the X-ray luminosity is given by

LX �
1
2 MdiskV 2

esc

t0
. (8.230)

Here Vesc = Vc
√

2ln(rvir/rdisk)+2 is the velocity required for the material at the characteristic
disk radius, rdisk, to escape the halo, which is assumed to have a constant circular velocity, Vc(r)=
Vc, and a virial radius, rvir. Substituting in values characteristic for the Milky Way, we obtain
LX ∼ 5× 1041 erg s−1. Using more realistic models that follow the actual formation of a disk
galaxy predicts present-day X-ray luminosities for massive disk galaxies that are roughly a factor
two higher (White & Frenk, 1991). This is approximately an order of magnitude higher than the
typical upper limit for the diffuse X-ray emission around present-day disk galaxies (Benson et al.,
2000).

There are numerous possible solutions for this discrepancy. One possibility is that the gas is
simply too diffuse to emit X-rays efficiently. However, this is difficult to reconcile with our pic-
ture of hierarchical formation, since it basically implies that no gas is cooling at the present time.
Hence disk galaxies must have assembled their mass at high redshifts and evolved essentially as
closed systems thereafter, which seems inconsistent with the fact that disk galaxies have young
stellar populations. Alternatively, the disk may have formed via cold mode accretion (see §8.4.4),
in which the gas radiates at least part of its binding energy at much lower temperatures. Hydro-
dynamical simulations by Fardal et al. (2001) indeed suggest that most of the cooling radiation
is actually emitted by gas at T < 20,000K in the Lyα line. Finally, it is important to realize that
not all binding energy has to be radiated away. Part of it may actually be transferred to the dark
matter. This could happen, for instance, if part of the disk material assembles out of massive
clouds that lose energy to the dark matter via dynamical friction.
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Star Formation in Galaxies

By and large, a galaxy is observed through, and defined by, its stellar content. Hence, any theory
of galaxy formation has to address the question of how stars form. As we have seen in the
previous chapter, the baryonic gas in galaxy-sized halos can cool within a time that is shorter
than the age of the halo. Consequently the gas is expected to lose pressure support and to flow
towards the center of the halo potential well, causing its density to increase. Once its density
exceeds that of the dark matter in the central part of the halo, the cooling gas becomes self-
gravitating and collapses under its own gravity. As we have seen in the previous chapter, in the
presence of efficient cooling, self-gravitating gas is unstable and can collapse catastrophically.
Ultimately, this cooling process may lead to the formation of dense, cold gas clouds within
which star formation can occur. In this chapter we take a closer look at the actual process of star
formation. The main questions to be addressed are:

(i) When does large-scale star formation occur in a galaxy?
(ii) What are the main processes that drive star formation?

(iii) What is the rate at which stars form in a gas cloud?
(iv) What mass fraction of a gas cloud can be converted into stars?
(v) What is the initial mass function (IMF), which describes the mass distribution of stars at

birth?

The answers to these questions play an important role in our treatment of galaxy formation and
evolution. In fact, if we know the star-formation history of a galaxy, which describes the total
mass in stars formed per unit time, and if we know the IMF, then we can use stellar evolution
models, which describe how stars of different masses evolve with time (see Chapter 10), to
predict the luminosity and color of the galaxy as a function of time.

In the Milky Way, and other nearby galaxies that can be observed with high spatial resolu-
tion, it is found that all star formation takes place in dense molecular clouds (e.g. Blitz, 1993;
Williams et al., 2000). In addition, observations of CO emission from starburst galaxies show that
they are associated with large amounts of molecular gas (108–1010 M�) confined to small vol-
umes with sizes ∼< 2 kpc. Although the corresponding molecular gas densities are about 10–100
times higher than in the inner 1 kpc region of the Milky Way, and starbursts have very different
star-formation properties from normal spirals, it is clear that their star-formation rates are also
driven by the availability of dense molecular gas. Based on these observations, it is now gener-
ally accepted that the overall star-formation rate (SFR) of a galaxy is determined by its ability to
form dense molecular clouds. Therefore, the topic of star formation in galaxies can be divided
into two broad parts: ‘microphysics’ and ‘macrophysics’. The former deals with the formation of
individual stars in dense molecular clouds (often called ‘cores’), while the latter deals with the
formation and structure of molecular clouds in galaxies. The presentation in this chapter is based
on these considerations. In §9.1 we start with a description of the properties of molecular clouds,
while their formation is discussed in §9.2. In §9.3 we start looking into the microphysics and
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discuss mechanisms that are believed to control the star-formation efficiency (SFE) of individual
molecular clouds. In §9.4 we give a brief description of the formation of individual stars.

A complete understanding of star formation in a cosmological framework is extremely
challenging. The typical mass and density of gas in a galaxy-sized halo are ∼ 1011 M� and
∼ 10−24 gcm−3, respectively, while those for a typical star are ∼ 1M� and ∼ 1gcm−3. Thus,
a complete description of the formation of individual stars spans some 11 orders of magnitude
in mass and 24 orders of magnitude in density. Extremely diverse physical processes can be
involved in the problem, many of which are still poorly understood at the present time. How-
ever, for our purpose of studying galaxy formation and evolution, it is sufficient to understand
the properties of the stellar population in a volume that is comparable to that of a galaxy, and so
progress may still be made without going into the details of each individual process. The ques-
tion we want to address is how the global properties of star formation, averaged over a large
volume of gas, depend on the global properties of the gas, such as mass, density, temperature
and chemical composition. Since the time and spatial scales relevant for the formation of indi-
vidual stars are much smaller than the scales involved in the formation and evolution of galaxies,
it is possible to describe star formation in galaxies with some statistical relations between the
SFR and the global properties of the star-forming gas. These star-formation ‘laws’, which are the
topic of §9.5, can be calibrated empirically and may even give us some insight into the physical
processes underlying star formation.

In §9.6 we give a detailed description of the observational constraints on and physical origin
of the IMF, and we end this chapter in §9.7 with a discussion of the formation of population
III stars. The reader interested in more in-depth discussions on star formation is referred to the
excellent reviews by Shu et al. (1987), Mac Low & Klessen (2004), Elmegreen & Scalo (2004),
and McKee & Ostriker (2007).

9.1 Giant Molecular Clouds: The Sites of Star Formation

Detailed information regarding the fine structure of the interstellar medium (ISM) is available
only for our own Galaxy. However, since the spatial and time scales for star formation are typi-
cally much smaller than those of a galaxy, it is likely that the relationship between star formation
and the fine structure of the ISM does not vary too much from galaxy to galaxy, so that the results
obtained for the Milky Way may also help us to understand star formation in other galaxies.

The ISM of the Milky Way is contained in a highly flattened disk-like structure of predom-
inantly cold gas (see §2.3.4). This cold gas is dominated by neutral hydrogen, but a significant
fraction, ∼ 20%, is in molecular form, mainly in molecular hydrogen (H2). In addition, a small
fraction (about 1%) of the ISM is in dust grains. The molecular fraction is found to increase with
gas density: it increases from almost zero in the diffuse ISM to almost 100% in the dense regions
near the Galactic center.

Detailed observations of the molecular gas in the Milky Way show that it is highly clumpy;
virtually all molecular gas is distributed over giant molecular clouds, which themselves reveal
large amounts of substructure. This section gives an overview of the observed properties and
dynamical state of these molecular clouds.

9.1.1 Observed Properties

The largest molecular structures considered to be single objects are giant molecular clouds
(GMCs), which have masses of 105–106 M� and extend over a few tens of parsecs. The cor-
responding densities are of the order of nH2 � 100–500cm−3 (ρ ∼ 10−21 gcm−3). Emission
line observations of GMCs reveal clumps and filaments on all scales accessible by present-day
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telescopes, ranging from molecular ‘clumps’ with masses in the range ∼ 102–104 M�, sizes ∼ 1–
10pc, and densities of nH2 ∼ 102–104 cm−3, to ‘cores’ with masses ∼ 0.1–10M� and densities
nH2 > 105 cm−3. In what follows, we use the term ‘molecular clouds’ to refer to this ensem-
ble of GMCs, clumps and cores. Note that all this terminology is somewhat arbitrary, and not
fixed; different authors may use different terms to refer to the hierarchy of substructures within
GMCs.

Star formation is found to occur only in the most massive clumps (forming star clusters) and
cores (forming single stars, which is why they are also often called ‘protostellar cores’). This
suggests that only a small fraction of the total GMC mass ends up forming stars (see Hunter,
1992, for a review). As we will see below, understanding why the overall star-formation effi-
ciency of GMCs is so low is one of the most important questions for our understanding of star
formation.

The observed mass distribution of GMCs and their subclumps is found to be a power law over
a wide range in masses, with a relatively sharp cutoff:

dN
dlnM

= Nu

(
M
Mu

)−ζ
(M ∼< Mu), (9.1)

where 0.3 < ζ < 0.9 and Mu ∼ 5× 106 M� (e.g. Williams & McKee, 1997; Heithausen et al.,
1998; Rosolowsky, 2005). The observed mass distribution of cores is significantly steeper, with
a power law index 0.9 < ζ < 1.5 at M ∼> 1M� (e.g. Testi & Sargent, 1998; Motte et al., 1998).
In addition, there are indications that the core mass function starts to decline below a mass M ∼<
1M� (Motte et al., 1998; Reid & Wilson, 2006). This core mass distribution is similar to the IMF
of young stars (see §9.6), supporting the notion that dense molecular cores are directly linked to
the formation of individual stars.

The temperature of GMCs, inferred from molecular line ratios, is typically about 10K. In fact,
except for regions heated by UV radiation from massive stars, GMCs and their subclumps and
cores, which span about three orders of magnitude in gas densities, are remarkably homogeneous
in temperature. As shown by Goldsmith & Langer (1978), this is consistent with cosmic rays
being the main source of heating.

Although GMCs in general have very complex structures, they obey a number of relatively
well-defined scaling relations. In the mass range 102 M� ∼< M ∼< 106 M�, the masses and velocity
widths of individual molecular clouds and clumps are observed to be tightly correlated with their
radii:

M ∝ R2, Δv ∝ R1/2 ∝ ρ−1/2 (9.2)

(Larson, 1981; Myers & Fuller, 1992; Heyer & Brunt, 2004). Except for the protostellar cores,
the observed linewidths (about 10kms−1 on the scale of a GMC) are much larger than what is
expected from simple thermal broadening (∼ 0.2kms−1 for a temperature of 10K). This indicates
that GMCs and molecular clumps have high levels of supersonic turbulence. As discussed below,
this may have important ramifications for the process of star formation.

Finally, GMCs show a strong spatial correlation with young star clusters with ages ∼< 107 yr,
but little correlation with older star clusters. This indicates that the typical lifetime of a GMC is
∼ 107 yr, much shorter than the typical age of a galaxy (e.g. Leisawitz et al., 1989; Ballesteros-
Paredes et al., 1999; Fukui et al., 1999).

9.1.2 Dynamical State

Given their relatively short lifetimes, and given that stars form within them, it is important to
investigate the dynamical state of GMCs: are they collapsing, expanding, or in some form of
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equilibrium? To start with, let us assume that GMCs are self-gravitating, homogeneous, isother-
mal spheres of gas, and ignore, for the moment, any potential turbulence and/or magnetic fields.
In this highly idealized case, a GMC will collapse under its own gravity if its mass exceeds the
thermal Jeans mass,

MJ =
π5/2

6
c3

s

(G3ρ)1/2
� 40M�

( cs

0.2kms−1

)3( nH2

100cm−3

)−1/2
(9.3)

(see §4.1.3), where we have adopted a mean molecular mass of 3.4× 10−24 g, appropriate for
molecular hydrogen. For an isothermal sphere in pressure equilibrium with its surrounding,
which may be a more appropriate description for molecular clumps and cores, the equivalent
to the Jeans mass is called the Bonnor–Ebert mass,

MBE = 1.182
c3

s

(G3ρ)1/2
= 1.182

c4
s

(G3Pth)1/2
, (9.4)

where Pth = ρc2
s is the surface pressure (Bonnor, 1956; Ebert, 1957). Clouds with M > MBE

cannot be prevented from collapsing by thermal pressure alone. Note that the Bonnor–Ebert mass
is very similar to the thermal Jeans mass. Whereas protostellar cores have masses comparable to
the Bonnor–Ebert mass, suggesting that they are roughly supported against gravitational collapse
by thermal pressure (in the absence of cooling), GMCs and molecular clumps both have masses
that exceed the thermal Jeans mass (or the Bonnor–Ebert mass) by orders of magnitude. Hence, in
the absence of any additional pressure forces, they should collapse (and form stars) on a free-fall
time

τff =
(

3π
32Gρ

)1/2

� 3.6×106 yr
( nH2

100cm−3

)−1/2
. (9.5)

This is significantly shorter than their inferred lifetimes, which indicates that GMCs and their
subclumps must be supported against gravitational collapse by some non-thermal pressure.

As mentioned above, observations suggest that GMCs and molecular clumps are character-
ized by substantial amounts of turbulent motion. If the turbulence is isotropic, one can replace
the sound speed in Eqs. (9.3) and (9.4) by an effective sound speed, c2

s,eff = c2
s + σ2, where

σ is the one-dimensional mean square velocity due to turbulent motion (e.g. Chandrasekhar,
1951). Thus, a GMC with a mass of 106 M� requires σ ∼ 6kms−1 in order to be stable
against gravitational collapse, in rough agreement with the values inferred from the observed
molecular line widths. This suggests that GMCs, and their subclumps, may be supported by
turbulence.

There is another source of non-thermal pressure that is potentially important: magnetic fields.
Equating the potential energy of a cloud with the magnetic energy yields a characteristic mass

MΦ ≡ 53/2

48π2

B3

G3/2ρ2
� 1.6×105 M�

( nH2

100cm−3

)−2
(

B
30μG

)3

, (9.6)

where the magnetic field, B, is assumed to be uniform across the cloud (Spitzer, 1968); for differ-
ent field configurations MΦ may be somewhat different (e.g. McKee et al., 1993). Magnetic fields
alone cannot prevent gravitational collapse in clouds with M > MΦ, which are said to be mag-
netically supercritical. In order for GMCs to be magnetically subcritical (i.e. M < MΦ), magnetic
fields of the order of 10–100μG are required. Unfortunately, accurate measurements of mag-
netic field strengths in molecular clouds are extremely difficult to obtain. In the few cases where
measurements have been obtained, they seem to suggest that molecular clouds are magnetically
supercritical, but only marginally so (Crutcher, 1999; Bourke et al., 2001).

Thus, both turbulence and magnetic fields may play an important role in governing the
structure and evolution of molecular clouds, and hence in regulating the overall star-formation
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efficiency. This has given rise to two competing theories of star formation, which we discuss in
more detail in §9.3.

9.2 The Formation of Giant Molecular Clouds

As indicated in §9.1.1, the typical lifetime of a GMC is estimated to be of the order of only
∼ 107 yr, based on the fact that GMCs show little correlation with stars older than this. At
the same time, observations show that it is rare to find any GMC that is not forming stars.
This suggests that star formation in a GMC starts as soon as the cloud has formed. Alto-
gether, this indicates that, at least in a normal spiral galaxy like the Milky Way, the rate of
large-scale star formation is essentially proportional to the formation rate of GMCs. Hence,
understanding the formation of GMCs is an essential ingredient of our understanding of star
formation.

9.2.1 The Formation of Molecular Hydrogen

We start our investigation by examining the conditions under which molecular gas can form
abundantly. By far the most abundant molecule in interstellar space is molecular hydrogen (H2),
whose abundance is set by its formation and destruction processes. The main formation mech-
anism of H2 in the ISM is recombination of pairs of adsorbed hydrogen atoms on the surfaces
of dust grains (e.g. Gould & Salpeter, 1963; Hollenbach & Salpeter, 1971). For a mass ratio of
atomic hydrogen gas to dust of ∼ 100, typical of what is observed in low-density clouds in the
Milky Way, the time scale for H2 formation on dust grains is

tform = 1.5×107 yr
( n

100cm−3

)−1
, (9.7)

(e.g. Hollenbach et al., 1971). This process is more efficient than H2-formation via gas phase
reactions (see §B1.3) by many orders of magnitude.

The main destruction process is photodissociation. Without going into details (see e.g. Kouchi
et al., 1997), the photodissociation rate of H2 is kpd � 5×10−11s−1 (corresponding to a typical
lifetime of a H2 molecule of ∼ 600yr) in the unattenuated interstellar radiation field (Stecher
& Williams, 1967). However, inside an interstellar cloud the intensity of the ambient radiation
field will be diminished due to continuum attenuation by dust grains and line attenuation of
H2 itself (self-shielding): H2 molecules at the edge of the cloud absorb all photons at certain
wavelengths, so that molecules deeper in the cloud ‘see’ virtually no photons at all, and are not
dissociated. This self-shielding is very efficient, resulting in a fairly sudden HI-to-H2 transition
(e.g. Hollenbach et al., 1971; Federman et al., 1979).

Elmegreen (1993) has shown that the mass ratio of molecular to atomic hydrogen, Rmol ≡
nH2/nHI, is expected to depend sensitively on the local pressure and radiation field. Using
detailed calculations of the formation and destruction rates of molecular hydrogen, including
self-shielding and dust extinction, Elmegreen finds that

Rmol ∝ P2.2
ext j−1, (9.8)

with Pext the external pressure and j the radiation intensity. If we make the simple assumption
that in a disk consisting of gas and stars j is proportional to the star-formation rate per unit
surface density, Σ̇�, and we use that Σ̇� ∝ ΣH2 � RmolΣgas (see §9.5.2 below),1 we thus expect

1 Here we have assumed that Rmol ∼< 0.1, so that fmol ≡ ρ(H2)/ρgas � Rmol.
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that Rmol ∝ P1.1
ext Σ−0.5

gas . A numerical solution to the equation of hydrostatic equilibrium for a
disk consisting of gas and stars suggests that the total mid-plane pressure is given, to within
10%, by

Pext ≈ π
2

GΣgas

[
Σgas +

σgas

σ�,z
Σ�

]
(9.9)

(Elmegreen, 1989). Here Σgas and Σ� are the surface densities of gas and stars, respectively, σgas is
the velocity dispersion of the gas, and σ�,z is the velocity dispersion of stars in the vertical direc-
tion. Thus, in the outer regions of disk galaxies, where Σ� � Σgas, we expect that Rmol ∝ P0.85

ext .
This is in excellent agreement with observations, which show that the mass ratio of molecular to
atomic hydrogen in disk galaxies is tightly correlated with the ambient pressure [estimated using
Eq. (9.9)], following a power law behavior Rmol ∝ Pαext, with α in the range 0.8–0.92 (Wong
& Blitz, 2002; Blitz & Rosolowsky, 2006; Leroy et al., 2008). Further support comes from the
simulations of Robertson & Kravtsov (2008), which suggest α ∼ 0.9.

9.2.2 Cloud Formation

In this subsection we describe a number of processes that have been linked to GMC formation.
These can be roughly divided in two different ‘classes’. In one scenario it is the actual cooling,
and the corresponding molecule formation, that triggers gravitational collapse, and hence the
formation of GMCs. In the other scenario, cooling and molecule formation is a consequence
of compression or collapse in turbulent or gravitationally unstable gas. Both seem plausible, and
currently it is still unclear which of the following processes represents the main channel for GMC
formation. Most likely, they all play some role, and it may even be that different mechanisms give
rise to different modes of star formation.

(a) Thermal Instability The thermal instability, which has been discussed in §8.5.1, is one of
the basic elements in some of the most influential models of the ISM (Field et al., 1969; McKee &
Ostriker, 1977). Its application to the ISM naturally leads to the standard picture of a three-phase
medium, in which a hot phase with temperature T ∼ 106 K, a warm phase with T ∼ 104 K, and
a cold phase with T ∼ 102 K, coexist in rough pressure equilibrium (McKee & Ostriker, 1977;
see also §8.5.1). Because of the large range in temperatures, the gas density in such a medium
can cover a large range, consistent with observations of the ISM. In order to maintain pressure
equilibrium, the transition to the cold phase coincides with a large increase in density, and hence a
large increase in the molecular fraction. This raises the possibility that GMCs are simply the cold
gas parcels in the ISM, with their formation being a direct consequence of thermal instability.
However, this does not seem to be the case: although the thermal instability may result in the
formation of molecular gas, it does not by itself result in the formation of GMCs, which seem
to have an internal pressure that is roughly an order of magnitude higher than that of the warm
ISM. An additional mechanism seems to be required to compress the molecular gas to GMC
densities.

(b) Disk Gravitational Instability The fact that GMCs seem to be out of pressure equilib-
rium with their surroundings suggests that they are gravitationally bound objects (or, as we will
see below, that they are transient structures). Consequently, a logical formation mechanism for
GMCs is gravitational instability. We have already encountered the Jeans criterion, according to
which a perturbations will grow if its self-gravity overpowers the internal pressure. However,
in a disk galaxy, pressure is not the only restoring force. Unless the galaxy’s circular velocity
scales as Vc ∝ R−1, conservation of angular momentum forces a perturbation to rotate around its
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own center. The resulting Coriolis force provides support against collapse. In §11.5.2 we use per-
turbation theory to show that perturbations in a rotationally supported disk are unstable against
gravitational collapse if the Toomre parameter

Q ≡ csκ
πGΣ

< 1, (9.10)

where

κ =
√

2

(
V 2

c

R2 +
Vc

R
dVc

dR

)1/2

(9.11)

is the epicycle frequency (see §11.1.5) and Σ is the surface density of the disk. This criterion is
known as the Toomre stability criterion (Toomre, 1964). If locally Q dips slightly below unity,
only perturbations with a critical wavelength,

λcrit =
2π2GΣ
κ2 , (9.12)

become unstable against gravitational collapse. In a typical disk galaxy, λcrit is of the order of
1kpc, which corresponds to a mass

Mcrit = π
(
λcrit

2

)2

Σ� 2.4×107 M�
(

Σ
30M� pc−2

)
, (9.13)

much larger than that of a GMC. For perturbations on the scale of GMCs and smaller (i.e. M <
106 M�) to be unstable requires values for Q as low as 0.1. In the warm ISM (T ∼ 104 K, cs ∼
10kms−1) such low values of Q are rarely encountered. However, gas in the cold phase has
a sound speed cs ∼ 0.2kms−1; hence, wherever the ISM conditions favor the formation of a
cold phase, the ISM is likely to become gravitationally unstable on a wide range of scales. This
suggests that the thermal instability discussed above may trigger gravitational instability, and
hence the formation of GMCs (Schaye, 2004).

Alternatively, GMCs can also form if some mechanism can cause perturbations on the scale
of Mcrit to fragment.

(c) Turbulence In the picture discussed above, GMCs are assumed to be self-gravitating
objects in quasi-equilibrium that form due to the combination of thermal and gravitational insta-
bility. This ignores, however, the presence of magnetic fields and turbulence, which, as discussed
in §9.1.2, are believed to play an important role in governing the dynamical state of a GMC.

In fact, turbulence is present not only on the scale of GMCs. As discussed in more detail
in §9.3.2, there are numerous processes that appear to be driving turbulence on larger scales
as well. Indeed, many of the processes of GMC formation discussed in this section may them-
selve induce strong motions in the ISM, and hence be a source of turbulence. Consequently, it
has been suggested that GMCs may actually be transient objects forming (and dissolving) at
converging points in the larger-scale turbulent flow (Heitsch et al., 2005; Vázquez-Semadeni
et al., 2006; Ballesteros-Paredes et al., 2007). In this scenario, the post-shock gas in the stag-
nation region represents the nascent GMC, which never reaches a state of virial equilibrium,
and will be dispersed again on a time scale over which the turbulent flows change direction.
Numerical simulations show that shock compression in a self-gravitating, turbulent gas can pro-
duce gas densities sufficiently high to form H2 on a time scale of about 106 years (Koyama &
Inutsuka, 2000; Glover & Mac Low, 2007). In particular, Hennebelle & Pérault (1999) have
shown that shock compressions associated with converging turbulent flows can trigger ther-
mal instability, resulting in further compression of the gas and a rapid formation of molecular
hydrogen.
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(d) Parker Instability Another process that can trigger the growth and formation of mas-
sive clouds from the diffuse ISM is the Parker instability (Parker, 1966). Briefly, this instability,
also known as the magnetic buoyancy instability, works as follows. Consider a uniform disk
of gas which is coupled to a magnetic field that is parallel to the disk. Suppose that the disk
is gravitationally stratified in the vertical direction, and is in dynamical equilibrium under the
balance of gravity and pressure (thermal and magnetic). Now consider a small perturbation
which causes the field lines to rise in certain parts of the disk and to sink in others. Because
of gravity, the gas loaded onto the field lines tends to slide off the peaks and sink into the
valleys. The increase of mass load in the valleys makes them sink further, while the magnetic
pressure causes the peaks to rise as their mass load decreases. Consequently, the initial pertur-
bation is amplified, causing the production of density fluctuations in an initially uniform disk.
The characteristic scale for the Parker instability is ∼ 4πH, where H is the scale height of
the diffuse component of the disk (Shu, 1974). For the Milky Way, where H ∼ 150 pc, this
scale is about 1–2 kpc. Numerical simulations show that the density contrast generated by the
Parker instability is generally of order unity before the instability saturates (e.g. Kim et al.,
2002). This implies that the Parker instability on its own may not be able to drive collapse on
large scales. Nevertheless, it may trigger gravitational instability in a marginally unstable disk
and/or induce strong motions in the medium, thereby acting as a source of turbulence on large
scales.

(e) Spiral Arms Observations show that most of the molecular gas in spiral galaxies is con-
centrated in the spiral arms, suggesting that these structures promote the formation of GMCs. As
we shall see in §11.6, grand-design spiral arms are believed to be spiral density waves. Without
depending on the details of the formation mechanism, interstellar gas swept by such a spiral den-
sity wave is compressed, which promotes both thermal and gravitational instability, and hence
GMC formation. In addition, spiral shocks are potentially a major source of turbulence in the
interstellar medium (e.g. Kim et al., 2006), which may further promote the formation of GMCs,
both within the spiral arms themselves as well as downstream from the arms in trailing gaseous
spurs (e.g. Kim & Ostriker, 2002).

Many disk galaxies reveal small, flocculent arm fragments that have a limited radial and
angular extent, unlike the grand-design spirals. These arm fragments also seem to reveal an
enhancement in the local SFR, but its origin is believed to be different from that in the case of the
grand-design spirals. Arm fragments are simply local density enhancements (probably created
due to gravitational instability of the disk) that have been sheared into spiral structures due to
the differential rotation of the disk. Thus, whereas the star formation in a grand-design spiral is
triggered by the spiral density wave, in the case of arm fragments the star formation is triggered
by a local density enhancement and subsequently sheared into a spiral pattern (see §11.6 for more
details).

(f) Galaxy Interactions and Mergers Gas in galaxies can also be disturbed by interactions
with nearby galaxies or by merging with another galaxy. For instance, gas can be compressed
by shocks as two galaxies merge, and be energized as the energy in the merger is converted
into turbulent motion. However, as shown by numerical simulations, the most dramatic effect
of galaxy interactions is to cause the gas in a galaxy to rapidly lose angular momentum and
to flow towards the center of the galaxy. In simulations of mergers of gaseous disk galaxies of
comparable masses, an exceedingly high gas surface density, ∼ 104 M� pc−2, can be produced
in the central region with a size of only about ∼ 100pc, making the gas capable of forming
large quantities of molecular gas to support a high SFR. Indeed, starburst galaxies with star-
formation rates as high as 10–100M� yr−1 are commonly observed to be associated with gas
concentrations in the central regions of interacting or merging systems (see §12.4.3 for a more
detailed discussion).
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9.3 What Controls the Star-Formation Efficiency

Galaxies can be seen as gravitational potential wells containing gas that has been able to radia-
tively cool within a Hubble time. In the absence of any hindrance, this gas should collapse
gravitationally to form stars on a free-fall time. Clearly this is not what has happened: disk
galaxies are many free-fall times old, yet contain a large reservoir of gas and are still forming
stars at the present day. The time scale for star formation, also called the gas consumption time,
is defined as the ratio between the total gas mass available for star formation and the rate at
which gas turns into stars, τSF ≡ Mgas/Ṁgas. For spiral galaxies of different morphological types
τSF � (1−5)×109 yr (e.g. Kennicutt, 1998a), an order of magnitude larger than any other rele-
vant dynamical time scale of the gas. Note, though, that in starburst galaxies the star-formation
time scales are in the range ∼ 107–108 yr, comparable to the dynamical times of the cold gas in
these galaxies, and much shorter than those in normal disk galaxies.

The most important question for our understanding of star formation is what causes the over-
all star-formation efficiency (SFE) in normal disk galaxies to be so low. Part of the answer
is that angular momentum prevents the gas from collapsing all the way to the center of the
potential well and acquire very high densities. In fact, this probably underlies, at least in part,
the difference between disk galaxies and starbursts; in the latter some process – for exam-
ple tides associated with a merger or close encounter – has removed the angular momentum
of the gas, allowing it to accumulate at the center and to form stars with high efficiency.
However, angular momentum is not the entire story. The ISM densities in present-day disk galax-
ies still imply local free-fall times of ∼ 108 yr, much shorter than the gas consumption time
scale.

Since star formation in the Milky Way is observed to exclusively occur in GMCs, the overall
SFE is a product of the efficiency with which individual GMCs form stars and the efficiency
with which a galaxy can form GMCs. The latter efficiency has already been addressed in the
previous section. Here we focus on what determines the SFE within individual GMCs. A useful
way to parameterize the efficiency with which a GMC is forming stars, is to compare its gas
consumption time scale, τSF,GMC, to its free-fall time, τff,GMC. Observations show that εSF,GMC ≡
τff,GMC/τSF,GMC ∼ 0.002 (see §9.5.2 below). In what follows we discuss three processes that
have been invoked to explain why the SFE of GMCs is so low.

9.3.1 Magnetic Fields

As discussed in §9.1.2, magnetic fields may be an important source of pressure support against
the gravitational collapse of molecular clouds. Therefore, one possibility is that the SFE of GMCs
is regulated by magnetic fields.

As long as the ionization level is sufficiently high for the field to be frozen to the matter, the
magnetic flux, Φ = πR2B, through a cloud of size R, as well as the critical magnetic mass, MΦ,
remains constant. This implies that if a cloud is subcritical to start with, it remains subcritical
even if the cloud is compressed. In other words, in order for a subcritical cloud to be able to
collapse and form stars, it needs to be able to reduce its magnetic flux. As first pointed out by
Mestel & Spitzer (1956), the magnetic support can diminish through a process called ambipolar
diffusion. For a cloud containing both ionized and neutral particles, the neutral population is only
indirectly coupled to the B field through collisions with the ionized population. Once the ionized
fraction is sufficiently low, the collisions between neutral particles and ions become insufficient
to couple the neutral gas to the magnetic field, and the neutral particles can diffuse through the
magnetic field, reducing the magnetic flux in the gas.

The ambipolar diffusion time scale, τad, can be derived by considering the relative drift velocity
of neutrals and ions (Spitzer, 1968). As shown by Elmegreen (1979), on the scale of a GMC,



426 Star Formation in Galaxies

τad � 1.1×108 yr
( n

100cm−3

)1/2
(

R
10pc

)3/2( B
30μG

)−1

, (9.14)

where we have used an ionization fraction of

x = 2.75×10−8
( n

105 cm−3

)−1/2
, (9.15)

which is valid for reasonable ionization rates of neutral molecules due to cosmic rays. Thus,
if GMCs are magnetically subcritical, their star-formation time scale will be comparable to the
ambipolar diffusion time scale, which implies a star-formation efficiency per free-fall time of

εSF,GMC ≡ τff,GMC/τad ∼ 0.004, (9.16)

similar to the observed value.
This picture of star formation being regulated by magnetic support was generally considered

as the standard theory of (low-mass) star formation during the 1980s (see Shu et al., 1987, for a
detailed review). However, in the 1990s it became clear that it suffers from a number of severe
observational and theoretical shortcomings. Most importantly, observations of magnetic field
strengths suggest that virtually all clouds are consistent with being magnetically supercritical, or
at most marginally critical (Crutcher, 1999; Bourke et al., 2001), and therefore unable to regulate
star formation. In addition, star-formation time scales of the order of τad ∼ 108 yr are inconsistent
with the inferred lifetime of GMCs of ∼ 107 yr; in particular, the observed age spread in star
clusters is comparable to the dynamical time, more than an order of magnitude lower than τad

(e.g. Hodapp & Deane, 1993; Hillenbrand & Hartmann, 1998). Several additional problems for
this picture of star formation are discussed in Mac Low & Klessen (2004).

9.3.2 Supersonic Turbulence

Turbulence is ubiquitous in the ISM over a large range of scales, from that comparable to the
host galaxy all the way down to that of the massive clumps in molecular clouds. Based on
these observations, and on the results from numerical simulations and theoretical modeling,
a new paradigm has emerged, in which star formation is regulated by supersonic turbulence,
rather than by magnetic fields (e.g. Vázquez-Semadeni et al., 2003; Krumholz & McKee, 2005;
Li et al., 2006b; Vázquez-Semadeni et al., 2007; Padoan et al., 2007; Glover & Mac Low,
2007).

Although a turbulent medium in general has a very complicated and irregular structure, a
key property of turbulence is that it possesses orders in the correlation of fluid variables, which
are insensitive to the details of the driving mechanism. For instance, between the driving and
dissipation scales, the power spectrum of the velocity field can typically be approximated by
a power law, Pv (k) ∝ k−n, so that the velocity dispersion on a scale l is σv (l) ∝ lq, with q =
(n−3)/2. In the limit of negligible compression, i.e. the turbulence has Mach number M � 1,
the classical Kolmogorov theory gives n = 11/3, corresponding to q = 1/3. In the opposite limit,
i.e. for highly compressible (supersonic) turbulence, which is more relevant to interstellar media,
one has n = 4 and q = 1/2. This scaling is very similar to the velocity structure observed for
molecular clouds [see Eq. (9.2)].

In a self-gravitating turbulent medium, the collapse of gas clouds can be affected by tur-
bulence in two different ways. First, because turbulent motion increases the effective velocity
dispersion of the gas, turbulence can delay or suppress gravitational collapse. Second, since
gas can be swept and compressed by shocks produced by the supersonic flow in a turbu-
lent medium, turbulence can promote gravitational collapse by increasing the gas density.
For an isothermal gas with density ρ , the post-shock density is ρ ′ = M 2ρ (assuming strong
shocks), where M 	 1 is the Mach number of the shock (see §8.3.1). In this case, the



9.3 What Controls the Star-Formation Efficiency 427

effective Jeans mass, MJ, defined in Eq. (9.3), decreases by a factor of M . The combined
effect of turbulent motion and shock compression is therefore to change the effective Jeans
mass to MJ ∝ (σ2

th + σ2
nt)

3/2/(Mρ1/2), where σth and σnt are the thermal velocity disper-
sion and the nonthermal (turbulent) velocity dispersion, respectively. On scales comparable
to the driving scale, the typical shock velocity is of the same order as σnt and is much
larger than σth, and so MJ ∝ σ2

nt. In this case, the net effect of turbulence is to increase MJ,
i.e. to suppress gravitational collapse. On the other hand, since σnt is expected to decrease
with scale [see Eq. (9.2)], small, dense clouds may have σnt much smaller than the shock
velocity. In this case, the net effect of turbulence is to promote gravitational collapse. Thus,
turbulence may suppress gravitational collapse globally, but can promote gravitational collapse
locally.

Numerical models of highly compressible, self-gravitating turbulence show that clumps can
form over large ranges in both mass and density. For an isothermal gas, appropriate for a GMC,
the volume-weighted probability distribution function (i.e. the fraction of volume as a function
of gas density) is roughly log-normal,

p(lnx)dlnx =
1√

2πσ2
lnx

exp

[
− (lnx−〈lnx〉)2

2σ2
lnx

]
dlnx, (9.17)

where x ≡ n/n0 (with n0 the average density), and 〈lnx〉 = −σ2
lnx/2 (e.g. Li et al., 2004).

Most of these structures will be redispersed by turbulence. However, the densest regions may
become self-gravitating cores and collapse further to form stars. In this picture, at any given
time, efficient star formation is expected to occur only in the small fraction of the gas clouds
that get compressed sufficiently to collapse, while the overall SFE remains low because of
the support by turbulence. As we will see in §9.6.2, the collapse of the densest regions given
by the above distribution function also leads to a core-mass function that has the same char-
acteristics as the observed IMF of stars. All in all, the scenario of star formation based on
supersonic turbulence is quite successful in explaining many of the observed properties of the
ISM (see reviews by Mac Low & Klessen, 2004; Elmegreen & Scalo, 2004; McKee & Ostriker,
2007).

The important question for this scenario is what drives the turbulence. An obvious candi-
date is the actual formation mechanism of galaxies. According to our current understanding of
galaxy formation, the cold gas in a star-forming galaxy is assembled hierarchically through the
cooling and accretion of gas in merging dark matter halos. This process is expected to gener-
ate high levels of turbulence in the gas. Indeed, cosmological numerical simulations of galaxy
disk formation show that gravitational instabilities combined with shear flows and tidal interac-
tions can generate high levels of turbulence in the ISM on large scales (e.g. Kravtsov, 2003).
The large-scale turbulence may then cascade down in scales, producing a supersonic turbulent
medium similar to the observed ISM. However, using numerical simulations, it has become
clear that supersonic turbulence in molecular clouds typically decays in less than a free-fall
time, regardless of whether they are magnetized or not (Stone et al., 1998; Mac Low et al.,
1998; Padoan & Nordlund, 1999). Hence, some driving mechanism must operate to maintain
the observed levels of turbulence. Broadly speaking, one can distinguish two different modes
of energy injection: external and internal. In the external mode, the GMC taps energy from
the turbulence in the diffuse ISM, which is believed to be driven by gravitational, thermal and
magnetodynamical instabilities, spiral density waves, as well as supernova explosions associ-
ated with massive young star clusters. As discussed in §9.2.2, this large-scale turbulence may
play an important role in forming GMCs. In addition, it may also supply GMCs with high
levels of turbulence at formation. However, it may be difficult for these processes to con-
tinue to pump energy into GMCs during their lifetime: the density contrast between molecular
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clouds and the ambient medium may simply cause energy to be reflected from the clouds,
rather than being transmitted into them. Internal energy injection, from protostellar outflows,
stellar winds and ionizing radiation from newly formed stars therefore seems a more likely
candidate for maintaining high levels of turbulence within GMCs, although a detailed under-
standing is still lacking (see the reviews by Mac Low & Klessen, 2004; McKee & Ostriker,
2007).

9.3.3 Self-Regulation

A third mechanism that may be important for regulating the overall SFE in GMCs is self-
regulation. Here it is the actual process of star formation (and evolution) itself which destroys the
molecular clouds, and hence regulates the SFE. In particular, feedback from protostellar winds
is believed to play an important role in regulating the overall SFE of protostellar cores (e.g.
Matzner & McKee, 2000). In addition, stellar feedback may even cause the disruption of an
entire GMC. As mentioned earlier, the typical lifetime of a GMC is ∼ 107 yr, much shorter than
the typical age of a galaxy. It is believed that GMCs are destroyed by the energy feedback from
massive (OB) stars that form in them. Possible mechanisms include the formation and expansion
of HII regions (due to the ionization and heating by UV photons from massive stars), stellar
winds and supernova explosions. The energy outputs of these modes are comparable over the
lifetime of a young star cluster, but detailed evaluations of the overall efficiency suggest that the
dominant destruction mechanism is probably photoevaporation by HII regions (e.g. Williams &
McKee, 1997; Krumholz et al., 2006). Note, though, that if GMCs are transient objects formed
by converging flows in a turbulent medium, they may also be dispersed by the same turbulence,
without having to invoke stellar feedback (e.g. Ballesteros-Paredes et al., 1999; Hartmann et al.,
2001).

In addition to controlling or terminating the star formation in individual GMCs and protostellar
cores, self-regulation may also operate on larger scales. In particular, star formation may heat the
ISM, increasing the velocity dispersion of the gas, which in turn may make the disk stable against
gravitational collapse. This type of self-regulation has been invoked by Silk (1997) in order to
explain why disk galaxies seem to have a Toomre parameter Q ∼ 1 over the extent of the disk in
which star formation is prevalent. The argument goes as follows. If Q � 1 (i.e. the disk is very
unstable), star formation in the disk would proceed rapidly, which enhances the heating of the
gas by the energy feedback from stars, thereby increasing the value of Q; if Q 	 1, on the other
hand, the SFR would be insufficient to prevent the gas from cooling, and the value of Q must
decrease.

Finally, stellar feedback may not only be important for terminating or preventing star for-
mation; it may also promote it under certain circumstances. For instance, star formation might
spread through an individual molecular cloud or even through an entire galaxy as a wave
of gravitational collapse propagating through the ISM, produced by the compression of gas
associated with supernova shocks, stellar winds or ionization fronts. Such scenarios are usu-
ally called ‘induced’ star formation, because star formation in one place is induced by the
feedback of star-formation activity in other places. In this case, the environments for star
formation, i.e. the density and velocity structure of the ISM, are actually produced by stars them-
selves. Even if the large-scale star formation environments are produced by the other processes
described above, compression by energy feedback from nearby stars may play an impor-
tant role in triggering star formation in pre-existing clouds (e.g. Elmegreen, 2002). Currently,
it is still unclear how important this ‘induced’ process is in comparison with the ‘sponta-
neous’ process, in which star formation is triggered by a process other than star formation
itself.
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9.4 The Formation of Individual Stars

Individual stars are believed to form in the high-density cores of GMCs. Based on our current
understanding, the process that leads to the formation of stars in the dense cores contains the
following basic elements:

(i) The collapse of dense cores, which leads to the development of highly stratified density
profiles within which protostars form.

(ii) The growth of protostars by the accretion of infalling material from the original cloud
core. The material with high specific angular momentum is expected to be accreted first
into a disk and then transported inwards by viscous processes.

(iii) The development of protostellar feedback (such as outflow and radiation) that tends to
disperse the gas around a protostar, reducing or even terminating further accretion.

(iv) The contraction of protostars to form pre-main-sequence stars.

The details about this formation process are still poorly understood. Here we give a very brief
account of the basic ideas that have been proposed.

The formation of individual stars is usually divided into two parts according to whether the
formation time scale is longer or shorter than the Kelvin–Helmholtz time, tKH = GM2

�/(RL),
where M�, R, and L are the mass, radius and luminosity of the star, respectively. This is the time
needed to radiate away the gravitational potential energy. The dividing line is roughly at a mass
of ∼ 8M�. Protostars with masses below this value form in a time shorter than tKH and have
luminosities dominated by accretion; protostars with masses above this value form on a time
scale longer than tKH and their luminosities are dominated by nuclear burning while accreting
gas. Consequently, powerful feedback effects due to the radiation pressure and photoionization
generated by the nuclear reactions can play an important role in the evolution of massive pro-
tostars, but not so much in the evolution of low-mass protostars. Furthermore, while low-mass
stars are expected to form in relatively isolated environments, high-mass protostars tend to form
in clusters so that interactions with other stars and protostars may play an important role.

9.4.1 The Formation of Low-Mass Stars

(a) The Collapse of Molecular Cores Early models of the collapse of low-mass molecu-
lar cores are based on the assumption that molecular cores are isolated, spherical objects that
evolve under the interplay between self-gravity and pressure gradients. Based on observations
(see §9.1.1), such a core has a typical density ρ ∼ 10−19 gcm−3, a typical effective temperature
T ≈ 10K, and is composed of H2, neutral He, heavy elements and dust grains. Magnetic fields
and rotation are usually neglected in these models, but the effects of small-scale turbulence can
be included as an effective pressure. In the beginning of the collapse, the density is still low
so that the gas is optically thin to the infrared photons emitted by the dust grains. In this case,
the cooling by the dust grains can effectively dissipate the gravitational energy associated with
the collapse, so that the temperature of the gas remains at about 10K. Thus, the collapse of a
molecular core in the early stage is roughly isothermal.

The collapse of a self-gravitating isothermal sphere is well studied (see §8.3). Without depend-
ing on the details of the initial density profile, the collapse of an isothermal sphere in general
leads to a final profile with ρ(r) ∝ r−2. Thus, if we start with an uniform sphere, the density in
the inner region increases with time until the 1/r2 profile is established at smaller and smaller
radius (see Fig. 9.1). The time scale for the collapse is roughly the free-fall time corresponding
to the initial density, which is about 4×105 yr for a core with ρ = 10−19 gcm−3.

Once the density in the central region reaches a level of ∼ 10−13 gcm−3, the gas there is
no longer transparent to the infrared radiation from the dust grains. The photons produced are
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Fig. 9.1. The collapse of a protostellar cloud. The left-hand panel shows the density profile at various times
during the collapse of an isothermal sphere that has an uniform density distribution at the initial time t = 0.
Each curve is labeled with the evolutionary time in units of 1013 s. The right-hand panel shows the density
and velocity distributions just after the formation of an initial stellar core. The positions of the first and
second shock fronts are marked by the two vertical lines. Within these two radii one finds the first and
second (stellar) cores. [After Larson (1969)]

then trapped by the gas, and the collapse becomes adiabatic. In this case, the optically thick
gas is heated effectively by the gravitational energy associated with the contraction, and the
rapid increase of the pressure in the gas slows down the gravitational contraction near the center,
producing an adiabatic core and an accretion shock exterior to it. This shock front is referred to
as the ‘first shock front’ and is shown schematically in Fig. 9.1 as ‘1st shock’. The corresponding
adiabatic core is called the ‘first core’. As the adiabatic core gains mass and is compressed by
gravity, its temperature increases. Once the temperature in the inner region of the core reaches
∼ 2,000K, dissociation of H2 begins. Since such dissociation consumes heat, which reduces the
thermal pressure, a second phase of collapse ensues in the core center, which erodes the ‘first
core’ and causes the ‘first shock front’ to disappear. This second phase of collapse continues
until the dissociation of H2 is completed at ρ ∼ 10−3 gcm−3 and T ∼ 2× 104 K. Thereafter, a
‘second hydrostatic core’ (called stellar core) develops near the center of the first core because of
the resumed adiabatic collapse and the associated accretion shock. The place where the ‘second
core’ develops is marked in Fig. 9.1 as the ‘2nd shock’.

Since much material is still in the isothermal phase at the early stage of the formation of the
second (stellar) core, the accretion of material will continue. Detailed modeling shows that the
protostellar mass accretion rates are Ṁ ∼ 30c3

s /G (Hunter, 1977b). Since the temperature of the
gas is set by H2 dissociation and changes little, the mass accretion rate is roughly constant. The
accretion phase will eventually be terminated by stellar winds once nuclear reactions set off in
the stellar core.

(b) The Effects of Rotation and Magnetic Fields The model of protostellar collapse described
above is obviously an idealization of what happens in reality. Since protostellar clouds in gen-
eral have angular momentum, rotation may play an important role in protostellar collapse (e.g.
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Bodenheimer, 1995). Detailed calculations show that the collapse of a rotating protostar gener-
ally leads to the formation of a central object surrounded by a rotationally supported gaseous
disk. Therefore, high angular-momentum material is expected to be accreted first into the disk
and then transported inwards as the disk material loses angular momentum due to gravitational
and magnetic stresses, and the viscosity of the gas. Because of the rotational support, the accre-
tion rate into the central object is in general lower than that given by the non-rotating model. If
the disk is sufficiently massive, it may become gravitationally unstable and fragment to form a
planetary system or a binary stellar system.

In the presence of magnetic fields, the magnetic pressure and tension act to dilute the gravita-
tional force, thereby inhibiting the contraction of the core. Since the contraction is less inhibited
along the magnetic field lines, the collapse in general leads to the formation of a disk-like struc-
ture (which is not supported by rotation). The accretion into the central part of the core is then
determined by the interplay between gravity, gas pressure, magnetic force, and ambipolar dif-
fusion. If the magnetic field is sufficiently strong (i.e. for magnetically subcritical clouds), the
evolution may reach a quasi-static state in which the accretion is regulated by ambipolar diffusion
at a roughly constant rate. On the other hand, for supercritical cores the evolution is expected to
be dynamical.

Magnetic fields can effectively remove angular momentum from the infalling gas as long as
the neutral and ionized components of the gas are well coupled and the collapse time scale is
longer than the magneto-dynamical time scale. The interaction between the magnetic fields and
the rotation of the gas can also generate winds and outflows from a protostar. The magnetic
fields that are anchored on the disk and extend to large distance may be twisted by the dif-
ferential rotation of the gas, forming a toroidal magnetic field with a significant component in
the azimuthal direction of the disk and with a large magnetic pressure gradient along the rota-
tion axis. This magnetic pressure gradient together with the compression by gravity, rotation
and magnetic tension, can drive winds from the disk. In the inner part of the wind, where the
magnetic pinch (Lorentz force due to the toroidal field) is important, a jet-like structure may
be produced (e.g. Pudritz et al., 2007). Once formed, the strong protostellar outflows may clear
up the surrounding gas, eventually terminating the gas accretion onto the protostar (Matzner &
McKee, 2000).

(c) The Birth of a Young Star With the above discussion, we are now in a position to discuss
how a young, low-mass star forms in the dense core of a molecular cloud. The structure of such
a protostar in the accretion phase is depicted in Fig. 9.2. The innermost part is the stellar core,
which continues to grow by accretion. As the accreted material is shocked near the surface of the
core, almost all of its kinetic energy is dissipated into heat, producing a luminosity

L =
GMc

Rc
Ṁ, (9.18)

where Mc and Rc are the instantaneous mass and radius of the stellar core, respectively. Since
the gas close to the shock front has a temperature T 	 2000K (for the H2 dissociation to be
completed), there is an ‘opacity gap’ exterior to the shock front, where the temperature is above
1500K and dust grains are evaporated. Surrounding this ‘opacity gap’ is a dust envelope which is
optically thick to UV photons. The UV photons radiated near the shock front travel freely through
the ‘opacity gap’ into the dust envelope, where they are processed by the dust into infrared
photons. For an observer located outside of the system, there is a dust photosphere from which the
infrared photons can be observed without being further processed. At this stage, the system will
therefore be observed as an infrared source, with a luminosity approximately given by Eq. (9.18).
The embedded infrared sources observed in molecular clouds, such as Taurus, are believed to be
protostars in this phase.
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Fig. 9.2. The structure of a theoretical protostar in the phase of accreting material from the collapsing
envelope. [After Stahler et al. (1980)]

Once the gas accretion is terminated, the optical depth of the dust envelope becomes negligible.
At this stage, an observer outside the system can observe photons propagating directly from the
gas photosphere just behind the shock front. For the model considered by Stahler et al. (1980),
where the accretion with a rate of Ṁ = 10−5 M� yr−1 is assumed to be terminated at Mc = 1M�,
the photosphere at the time of accretion termination is found to have a radius of ∼ 4.7R�, an
effective temperature of ∼ 7300K, and a (shock plus interior) luminosity of ∼ 66L�. However,
prior to this, when the mass of the stellar core reached ∼ 0.3M�, the ignition of deuterium has
already begun to occur. Thus, immediately after the accretion is terminated, the shock layer in
the outer part of the stellar core rapidly readjusts itself to the conditions appropriate for a stellar
photosphere. A young star is then born. For the case considered by Stahler et al., the young star
has an effective temperature of 4250K and a luminosity of 6.39L�. The location of a young star
in the luminosity–effective-temperature plane at the time of birth defines a ‘birth point’, and the
locus of the birth points for young stars of different masses defines the birthline of new born
stars. Such birthlines have been calculated by Palla & Stahler (1992). After birth, a young star
evolves along a pre-main-sequence track until hydrogen is ignited in its center (Iben, 1965a). The
star then enters the main sequence and evolves further according to the stellar evolution model
discussed in the next chapter.

9.4.2 The Formation of Massive Stars

Our understanding about how massive stars form is still poor at the present time. The standard
assumption is that massive stars form from the collapse of massive self-gravitating molecular
cores. The early stage of the core collapse is expected to be similar to that of low-mass cores,
except that the internal turbulence may play a more important role. As in the low-mass case, the
core collapse is likely to form a rotationally supported disk because of angular momentum, and
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the disk gas is transported inwards to feed the protostar by gravitational/magnetic stresses and
gas viscosity.

An additional complication in the case of high-mass protostars is that nuclear burning can set
in long before it acquires its final mass. Consequently, the radiation pressure and photoionization
generated by the nuclear burning can play an important role in the formation of massive stars.
The radiation pressure is due to the absorption of UV photons by the dust grains, and the balance
between the star’s gravity and radiation pressure defines an Eddington luminosity,

LE,d =
4πcGM�

κd
, (9.19)

where M� is the stellar mass, κd the dust opacity per unit mass, and c is the speed of light. Assum-
ing κd = 8cm2 g−1, a value suitable for the gas around a protostar, the Eddington luminosity
LE,d ∼ 1600(M�/M�)L�, which is lower than the luminosity of a massive star with M� ∼> 13M�.
Thus, for a star more massive than ∼ 13M�, the radiation pressure can in principle prevent the
growth of the star before it reaches its final mass. This indicates that there must be some pro-
cesses through which radiation pressure can be overcome so that massive stars can grow to their
final masses. A number of mechanisms have been proposed. As already mentioned, it is likely
that the accretion is through a disk, and the strong ram pressure associated with the disk accretion
can overcome the radiation pressure. It is also possible that the beaming effect by the accretion
disk can redirect the radiation to the polar regions, so that the radiation pressure on the infalling
gas from other regions is reduced. Finally, the gas being accreted may be subjected to radiation-
driven Rayleigh–Taylor instability and form a highly inhomogeneous flow, so that the radiation
can escape through the low-density regions without affecting much the accretion of high-density
clumps.

The UV photons generated by the protostellar nuclear burning can also ionize the surrounding
gas through photoionization. The associated HII regions can provide strong feedback on the gas
infall and accretion, and may play an important role in defining the final mass of a massive star.
Unfortunately, the details of this process are yet to be worked out.

Finally, most stars, particularly the massive ones, are born in clusters, and so the evolution of a
protostar may be influenced by the interaction with other protostars residing in the same cluster.
The tidal force from other objects may truncate the disk of a protostar, thereby terminating the
accretion onto the protostar. In a dense environment, close encounters and collisions between
different protostars can occur, changing the orbits of the protostars, and even ejecting some of
the low-mass members from the system. The interaction among protostars in a cluster may also
cause segregation according to stellar mass, with more massive stars sinking deeper into the
central part of the cluster.

9.5 Empirical Star-Formation Laws

It is common to characterize the star-formation rate (SFR) in a galaxy, either globally or locally,
in terms of the mass in stars formed per unit time per unit area; Σ̇� = Ṁ�/area. A related quantity
is the gas consumption time τSF = Σgas/Σ̇�. Ideally, we would like to have a star-formation law
derived from first principles that describes Σ̇� as a function of the relevant physical conditions
of the ISM (e.g. density, temperature, and metallicity of the gas, radiation field, magnetic field
strength, etc.). Unfortunately, our understanding of the physical processes involved is still very
limited. In order to make progress, numerous investigators have therefore used observations to
determine empirical star-formation laws, i.e. empirical scaling relations between Σ̇� and certain
ISM properties. Such scaling relations are not only useful in that they can be used to include star
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formation in analytical models or numerical simulations of galaxy formation; they may also give
us useful insight into the physics underlying star formation.

Before discussing the results, it is important to stress that all empirical star-formation laws
suffer from systematic uncertainties. For example, as discussed in detail in §10.3.8, inferring a
star-formation rate from observations is far from trivial, and is often hampered by dust extinction
and uncertainties regarding the initial mass function (see also §9.6). Another important uncer-
tainty concerns the molecular gas densities. The surface density of molecular hydrogen, ΣH2 , is
typically determined from the integrated CO intensity, ICO, using a constant CO-to-H2 conver-
sion factor, XCO ≡ N(H2)/ICO. Although it is common practice to assume that XCO is constant –
typically at XCO ∼ 2× 1020 cm−2/(K kms−1) – there are strong indications that it may actually
be a function of metallicity and radiation field (e.g. Israel, 1997). This may have a strong impact
on the inferred ΣH2 , especially in dwarf and low surface brightness galaxies, where XCO may be
substantially higher, causing ΣH2 to be severely underestimated (e.g. Leroy et al., 2008). Another
potential concern is that CO may be a more direct tracer of star formation than of H2. This could
come about if the energy input from young stars is responsible for exciting the CO emission (e.g.
Dopita & Ryder, 1994).

9.5.1 The Kennicutt–Schmidt Law

Since the most obvious requirement for star formation is the presence of gas, it is only logical
to investigate the relation between Σ̇� and the surface density of gas, Σgas (be it in atomic form,
molecular form, or the sum of both). A power-law relation of the form

Σ̇� ∝ ΣN
gas, (9.20)

is known as the Schmidt law of star formation, after Schmidt (1959) who found that such a
relation with N ∼ 2 could adequately account for the observed distributions of HI and stars
perpendicular to the Galactic plane.2

Numerous observational studies of star formation in normal spiral galaxies have shown that the
Schmidt law is a surprisingly good description of the global star-formation rates (averaged over
the entire star-forming disk) in these galaxies, with the best-fit values of N typically in the range
from 1 to 2. Kennicutt (1998b) extended such an analysis by also including starburst galaxies,
and found that these systems follow the same power-law relation between Σ̇� and the total surface
densities of gas (atomic plus molecular) as normal spiral galaxies (see left-hand panel of Fig. 9.3).
As is evident, the simple Schmidt law gives a surprisingly good parameterization of the global
star-formation rate over a large range of surface densities, from the most gas-poor spiral disks to
the cores of the most luminous starburst galaxies. The best fit to the observational data gives

Σ̇� = (2.5±0.7)×10−4
(

Σgas

M� pc−2

)1.4±0.15

M� yr−1 kpc−2 (9.21)

(Kennicutt, 1998b).3

This Kennicutt–Schmidt law for star formation is often interpreted as indicating that the star-
formation rate is controlled by the self-gravity of the gas. In that case, the rate of star formation
will be proportional to the gas mass divided by the time scale for gravitational collapse. For a gas
cloud with mean density ρ , the free-fall time τff ∝ 1/

√
ρ so that

ρ̇� = εSF
ρgas

τff
∝ ρ1.5

gas , (9.22)

2 To be precise, Schmidt (1959) used volume densities, rather than surface densities, but as long as the scale height of
the disk is roughly constant, the two laws are equivalent.

3 Note that Kennicutt (1998b) defined Σgas = ΣHI +ΣH2 , which does not account for helium.
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Fig. 9.3. Global star-formation rate per unit area as function of the surface density of the total (atomic plus
molecular) gas, Σgas (left-hand panel) and as function of Σgas divided by the dynamical time, τdyn (right-
hand panel). Results are shown for normal disk galaxies (filled circles), starbursts (squares), and for the
centers of the normal disk galaxies (open circles). The solid line in the left-hand panel corresponds to the
Kennicutt–Schmidt law of Eq. (9.21), while that in the right-hand panel corresponds to the star-formation
law of Eq. (9.23). [Based on data published in Kennicutt (1998b)]

where εSF is the ratio of the free-fall time of the gas divided by the gas consumption time, which is
a measure for the efficiency of star formation. If all galaxies have approximately the same scale
height, this implies that Σ̇� ∝ Σ1.5

gas, in good agreement with the empirical Kennicutt–Schmidt
law. The problem with this interpretation, however, is that the efficiency parameter εSF � 1,
which suggests that self-gravity of the gas cannot be the entire story. Either the star-formation
time scale really is τff, but only a small fraction εSF of the gas participates in star formation,
or the actual star-formation time scale is τff/εSF. In either case, some additional physics is
required to explain the origin of the empirical Kennicutt–Schmidt law (see discussion in §§9.2
and 9.3).

In addition to the Schmidt law, Kennicutt (1998b) has shown that the data reveals an equally
tight correlation between Σ̇� and Σgas/τdyn (shown in the right-hand panel of Fig. 9.3). Here
τdyn is defined somewhat arbitrarily as 2πR/Vrot(R), the orbital time at the outer radius R of the
relevant star-forming region. The best fit obtained by Kennicutt (1998b) is

Σ̇� ≈ 0.017ΣgasΩ, (9.23)

with Ω the circular frequency [see Eq. (11.47)]. This implies that about 10% of the available gas
is consumed by star formation per orbital time (i.e. τSF ∝ τdyn). As demonstrated by Silk (1997),
a star-formation law of this form follows naturally from models in which star formation is self-
regulated such that disks maintain Q ∼ 1. However, this is not the only possible explanation.
For example, a law of the form Σ̇� ∝ ΣgasΩ can also be reproduced in models in which the SFR
is governed by the rate of collisions between gravitationally bound clouds (Tan, 2000), or in
models in which spiral arms play an important role in triggering star formation (e.g. Wyse &
Silk, 1989).
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9.5.2 Local Star-Formation Laws

Clearly, with two empirical star-formation laws that fit the data equally well, and with multiple
models that seem able to reproduce these laws, there is little hope that we can gain true insight
into the underlying physics of star formation. The main culprit is the fact that these global star-
formation laws are based on quantities averaged over the entire star-forming disk. Although
useful for modeling galaxy evolution, furthering our physical understanding of star formation
requires local star-formation laws, which correlate star-formation rates, gas densities and orbital
time scales that are measured on much smaller scales. This has only recently become feasible
with the advent of better telescopes and detectors.

Using high-resolution data to measure Σ̇�, Σgas and Ω as function of galactocentric radius, it
has become clear that although there is a roughly linear trend between star-formation efficiency
and orbital frequency among galaxies, in agreement with Eq. (9.23), no strong relation exists
within galaxies (Wong & Blitz, 2002; Leroy et al., 2008). Hence, the orbital time seems to have
little direct impact on the local star-formation efficiency.

Fitting individual Schmidt laws to individual galaxies, for which Σ̇� and Σgas are determined
either in azimuthally averaged rings or on a pixel-by-pixel basis, yields best-fit values for N =
dlog Σ̇�/dlogΣgas that cover the entire range from 1 < N < 3 (e.g. Bigiel et al., 2008). The main
reason for this large amount of scatter is the fact that a single power-law is actually a poor fit
to the local relation between Σ̇� and Σgas. As first noted by Kennicutt (1998b) and Martin &
Kennicutt (2001), based on azimuthally averaged radial profiles, the Σ̇�–Σgas relation reveals a
pronounced break at low surface densities of the gas.4 This is also evident in the right-hand panel
of Fig. 9.4, where the grayscale is proportional to the number of individual resolution elements
(which have a typical scale of ∼ 750pc) with the corresponding values of Σ̇� and Σgas in a sample
of 18 nearby galaxies studied by Bigiel et al. (2008).

The origin of this relatively abrupt truncation in star formation is discussed in §9.5.3 below.
Here we focus on what regulates Σ̇� in regions where star formation is prevalent. Important
insight comes from examining how Σ̇� correlates with atomic and molecular gas separately. The
left-hand panel of Fig. 9.4 shows that Σ̇� is only poorly correlated with ΣHI: Σ̇� covers three orders
of magnitude over less than one order of magnitude in ΣHI. Hence, ΣHI cannot be used to predict
the local star-formation rate surface density. Interestingly, as first noticed by Martin & Kennicutt
(2001) and Wong & Blitz (2002), the surface density of atomic hydrogen seems to saturate at
ΣHI ∼ 10M� pc−2 (corresponding to a column density of NHI ∼ 1021 atoms cm−2). This could
result from a tendency for HI to convert to H2 at higher column densities due to self-shielding.

The middle panel of Fig. 9.4 shows that there is a relatively well-defined Schmidt law for the
molecular gas, which is well fit by

Σ̇� = (7±3)×10−4
(

ΣH2

M� pc−2

)1.0±0.2

M� yr−1 kpc−2, (9.24)

where the relatively large uncertainty on the normalization reflects the pixel-to-pixel variation
(Bigiel et al., 2008). The fact that the power-law index of the Schmidt law is close to unity implies
a roughly constant star-formation efficiency of Σ̇�/ΣH2 = (7± 3)× 10−10 yr−1, equivalent to a
molecular gas consumption time of ∼ 1.5× 109 yr (see also Wong & Blitz, 2002; Leroy et al.,
2008). This suggests that the Schmidt law between Σ̇� and the total gas surface density is actually
an admixture of two ‘laws’, the first governing the transformation of atomic to molecular gas,
and the second describing the formation of stars from molecular gas. This implies that we can
write

4 This surface density threshold did not introduce any scatter in the Kennicutt–Schmidt law of Eq. (9.21), since Σ̇� and
Σgas were only averaged over the extent of the disk that is forming stars.



9.5 Empirical Star-Formation Laws 437

Fig. 9.4. Local star-formation rate per unit area (measured on a scale of ∼ 750pc) as a function of the
local atomic gas density (left-hand panel), molecular gas density (middle panel), and total gas density
(right-hand panel). The grayscale is proportional to the number of independent data points (resolution ele-
ments) obtained from a sample of 18 nearby galaxies. The diagonal dotted lines show lines of constant
star-formation efficiency, indicating the level of Σ̇� needed to consume 1%, 10% and 100% of the gas reser-
voir (including helium) in 108 yr. Dashed vertical lines in the panels on the left and right show the surface
density at which HI saturates. The dotted vertical line in the middle panel indicates the typical sensitivity of
the CO data used to infer the molecular gas densities. [Kindly provided by F. Bigiel, based on data published
in Bigiel et al. (2008)]

N ≡ dlog Σ̇�

dlogΣgas
= 1+

dlog fmol

d logΣgas
, (9.25)

where fmol = ΣH2/Σgas and we have used that d log Σ̇�/dlogΣH2 � 1. Using that Rmol ≡
ΣH2/ΣHI = fmol/(1 − fmol) ∝ Pαext, with α � 0.85 ± 0.05 (see §9.2.1), and defining ν ≡
dlogPext/dlogΣgas we can write this as

N = 1+
α ν

1+Rmol
. (9.26)

This allows us to understand the local Schmidt law in the right-hand panel of Fig. 9.4: in the
central regions of disk galaxies, where the gas is largely molecular, Rmol is large resulting in
N ∼ 1. In the outer regions, the molecular fraction decreases (due to a decline in Pext, see §9.2.1),
causing N to increase towards 1 +αν. Using that 1 ≤ ν ≤ 2, which follows from Eq. (9.9), we
thus find that N can become as large as 2.7 in the outskirts where Σgas 	 Σ�. This is in good
agreement with the main trend in the observed relation between Σ̇� and Σgas.

Given that observations in the Milky Way and other nearby galaxies show that star formation
is exclusively restricted to GMCs, the fact that the SFE of molecular gas appears to be constant
suggests that individual GMCs have a roughly constant SFE, with no significant dependence on
their formation mechanism or environment. Furthermore, since Rosolowsky (2005) has shown
that the mass function of GMCs depends on environment, the SFE of GMCs cannot be a strong
function of cloud mass either. The typical mean densities within GMCs imply a typical free-fall
time of τff,GMC ∼ 4× 106 yr. Compared to the empirical molecular gas consumption time, we
infer that

εSF,GMC ≡ τff,GMC

τSF,GMC
∼ 0.002. (9.27)
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In fact, using different tracers of the molecular gas, which probe different densities, the star-
formation efficiency per free fall time is found to vary only weakly with density, except for
the highest density, protostellar cores, for which εSF is found to be of the order of 0.1−0.3. As
discussed in §9.3 it is currently believed that the low value of εSF,GMC is an outcome of supersonic
turbulence. The reason why εSF is still less than unity in protostellar cores, in which turbulence
can no longer prevent gravitational collapse, is believed to be due to feedback from protostellar
winds (see §9.4.1).

9.5.3 Star-Formation Thresholds

The observation that HI in disk galaxies typically extends well beyond the optical disk suggests
that star formation is somehow suppressed in the outer disks. Indeed, as already mentioned above,
observations have shown that the local star-formation rates in disk galaxies are truncated rather
abruptly beyond a few disk scale lengths. In particular, Σ̇� is found to drop sharply whenever the
surface densities of the cold gas drop below ∼ 10M� pc−2 (see right-hand panel of Fig. 9.4).
The physical origin of these star-formation thresholds is still heavily debated. In what follows
we discuss three of the most popular explanations.

(a) Gravitational Instability As originally suggested by Quirk (1972), if the origin of the
empirical Schmidt law is indeed related to gravitational instability, it is expected to break down
when the surface density of the gas falls below the critical surface density

Σcrit =
csκ
πG

, (9.28)

which is the surface density for which the Toomre parameter Q (see Eq. [9.10]) equals unity.
After all, in this picture stars only form where the disk is unstable to gravitational collapse, and
gas with Σgas < Σcrit is locally stable (i.e. Q > 1). Kennicutt (1998b) tested this hypothesis using
the radial distribution of HII regions to trace the star-formation rate. He adopted a constant veloc-
ity dispersion for the gas of σgas = 6kms−1, and found that the truncation occurs at a threshold
density Σth = αQΣcrit, with αQ � 0.5.5 A similar result was obtained by Martin & Kennicutt
(2001) who found αQ = 0.53 from a sample of 26 disk galaxies with well-defined thresholds.
These results have been used to argue that star formation, and in particular the threshold, is
governed by gravitational instability.

However, this interpretation faces a number of problems. First of all, it remains to be under-
stood why the average value of αQ is not equal to unity, as one would naively expect. Secondly,
the scatter in αQ is found to be relatively large: Martin & Kennicutt (2001) and Boissier et al.
(2003) quote a galaxy-to-galaxy scatter of 0.2 and 0.33, respectively. Hunter et al. (1998), using
a sample of low surface brightness irregular galaxies, obtained αQ � 0.25, and suggest that αQ

may actually vary systematically along the Hubble sequence (see also Leroy et al., 2008). And
finally, a number of disk galaxies have disks that are subcritical throughout (i.e. have Σ < Σcrit

over their entire extent), yet reveal widespread star formation (e.g. Martin & Kennicutt, 2001;
Wong & Blitz, 2002; Boissier et al., 2003; Leroy et al., 2008).

Part of the scatter may simply be due to uncertainties regarding the actual sound speed of
the gas (which is often assumed to be constant), and regarding the CO-to-H2 conversion factor,
XCO. As argued by Martin & Kennicutt (2001), the fact that αQ is not exactly equal to unity, is
expected from the fact that Toomre’s stability criterion only applies to infinitesimally thin gas
disks. Real galaxies, however, contain both gas and stars, and the system can be unstable, even
when both the stellar and gaseous components individually meet their requirements for stability

5 Actually, Kennicutt (1989) quoted a value αQ = 0.67, but used a constant of 3.36 rather than π in the definition of Σcrit,
and did not correct for the fact that σgas = cs/γ1/2, with γ = 5/3 the adiabatic index (Schaye, 2004).
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(e.g. Jog & Solomon, 1984). Wang & Silk (1994) have shown that one can roughly account for
the stellar disk by multiplying the critical surface density of Eq. (9.28) with a factor

F =
[

1+
Σ�σgas

Σgasσ�

]−1

(9.29)

where Σ� and σ� are the surface density and velocity dispersion of the stars, respectively. This
implies that the values of αQ have to be multiplied by a factor 1/F . Using a sample of 16
disk galaxies, Boissier et al. (2003) obtained an average value for F of ∼ 0.7. Hence, taking
account of the contribution of stars alleviates (but does not completely remove) the disagreement
between the observed values of αQ and the theoretical expectation. In addition, it also alleviates
the problem with some galaxies appearing to be subcritical throughout. On the other hand, as
shown by Boissier et al. (2003), correcting αQ for the stellar contribution also increases its scatter
and still leaves low surface brightness galaxies having a smaller mean value of αQ than high
surface brightness disks.

(b) Shear Instability In light of such difficulties, Hunter et al. (1998) suggested that rather
than the Coriolis force, it is the shear due to differential rotation that prevents perturbations
from growing. Following Elmegreen (1993), they argued that in the presence of magnetic fields,
angular momentum can easily be transferred from the clouds, rendering the Toomre stability
criterion, which effectively assumes angular momentum conservation, inappropriate. In that case,
what is more important is whether the perturbation can grow in the presence of shear, and the
critical surface density for perturbation growth becomes

Σcrit,A =
2.5csA
πG

. (9.30)

Here

A = −R
2

dΩ
dR

=
Ω
2

(1−β ), (9.31)

is Oort’s constant, which describes the local shear rate, and the second equality follows from
Ω = Vc/R with β = dlogVc/dlogR. Note that this critical surface density is similar to that of
Eq. (9.28), but with the epicycle frequency κ replaced by 2.5A.6 In fact,

Σcrit,A

Σcrit
=

2.5

2
√

2

(1−β )
(1+β )1/2

. (9.32)

Thus, for flat rotation curves (β = 0), both critical surface densities are the same to within 12%.
However, in the inner regions of low surface brightness galaxies, which reveal close to solid-
body rotation, β ∼ 1 and Σcrit,A � Σcrit. Thus, although these regions are prevented from forming
stars according to Toomre’s stability criterion, they are still able to form stars according to the
shear criterion (shear vanishes for solid-body rotation). As shown by Hunter et al. (1998), the
parameter αA ≡ Σth/Σcrit,A is much closer to unity than αQ, suggesting that cloud formation
in (irregular) galaxies may involve more of a competition between self-gravity and shear than
between self-gravity and coriolis force (see also Leroy et al., 2008).

(c) Ability to Form Molecular Hydrogen Another alternative explanation for the star-
formation thresholds is that they reflect the ability to form a cold neutral medium, rather than
large-scale gravitational instability or cloud destruction by shear. Skillman (1996) suggested that
the threshold for star formation occurs at a constant column density of NHI � 1021 cm−2, and
reflects the ability of atomic hydrogen to convert to molecular hydrogen due to self-shielding.

6 The factor 2.5 originates from the requirement that perturbations must grow by at least a factor of 100 during the time
allowed by shear, and is somewhat arbitrary.



440 Star Formation in Galaxies

This has support from the fact that the surface density of atomic hydrogen is seen to saturate at
this level (see left-hand panel of Fig. 9.4). Along similar lines, Elmegreen & Parravano (1994)
suggested that the SFE in the outer parts of disk galaxies drops because the pressure becomes
too low to allow a cold phase to form. Schaye (2004) combined this concept with gravitational
instability, and argued that the formation of a cold phase lowers the velocity dispersion of the
gas, which in turn triggers gravitational instability.

9.6 The Initial Mass Function

The properties of stellar populations in stellar systems depend not only on the rate and efficiency
of star formation, but also on what kind of stars are being formed. Since the properties and
evolution of individual stars are primarily determined by their masses (as we will see in the next
chapter), the initial mass function (IMF), i.e. the mass spectrum with which stars form, is another
important property of star formation.

The IMF, φ(m), is defined so that φ(m)dm is the relative number of stars born with masses
in the range m ± dm/2. The IMF is assumed to be a continuous function, and we adopt the
normalization ∫ mu

m�

mφ(m)dm = 1M�, (9.33)

where m� and mu are the lower and upper mass limits for stars.7 So normalized, φ(m)dm is the
number of stars born with masses in the range m± dm/2 for every M� of newly formed stars.
Thus, for a total mass, M�, of newly formed stars, the total number and total mass of stars with
masses in the range m±dm/2 are given by

dN(m) =
M�

M�
φ(m)dm and dM(m) =

M�

M�
mφ(m)dm, (9.34)

respectively. Since the central temperatures of stellar objects with masses 0.08M� are too low
for hydrogen fusion to take place, and stars with masses greater than about 100M� are unstable
against radiation pressure (see §10.2), one normally adopts m� � 0.08M� and mu � 100M�. The
logarithmic IMF is defined as ξ (m)dlogm = φ(m)dm, and is related to φ(m) through

ξ (m) = ln(10)mφ(m). (9.35)

It is sometimes convenient to use the logarithmic slopes of φ(m) and ξ (m),

b(m) ≡− dlogφ
dlogm

and β (m) ≡− dlogξ
dlogm

= b−1, (9.36)

to characterize the shape of the IMF.
In general, the form of the IMF may vary within a galaxy, and from galaxy to galaxy. Any such

variation will undoubtedly complicate the description of the IMF. However, as we will see below,
observational results for the Milky Way seem to suggest that the IMF has roughly the same basic
form independent of the location in the Galaxy. Consequently, it is often assumed that the IMF
is universal, not only within the Milky Way, but also from galaxy to galaxy and for galaxies at
different redshifts. We caution, though, that current observational constraints on the IMF still
carry large uncertainties (see below) and cannot rule out the possibility of a systematic change
of the IMF with the physical conditions (i.e. temperature, density, metallicity) of the ISM out of
which the stars form. Furthermore, as we will see in §9.6.2, the idea of the IMF being universal
is also a challenge from a theoretical point of view.
7 Note that different normalizations are in use in the literature. For instance, some authors use

∫
φ(m)dm = 1 so that∫

mφ(m)dm is equal to the average mass of the stars being formed.
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9.6.1 Observational Constraints

For most stars, the mass is not a direct observable, but has to be estimated from its (apparent)
luminosity. Consequently, an observational derivation of the IMF consists of the following steps.
First, one measures the apparent magnitudes and distances of all stars in a particular volume
down to some magnitude limit. Since this requires individual stars to be resolved, this is only
possible for volumes in the Milky Way or in some nearby galaxies. Second, the observed apparent
magnitudes are converted into absolute magnitudes, M , using their distances, and one derives the
luminosity function,Φ(M ), defined as the number density of stars as a function of their absolute
magnitude. Third, the luminosity function of stars is transformed into a mass function, using
the mass–luminosity relation of stars, m(M ), which can be obtained from the stellar evolution
models to be discussed in Chapter 10. Finally, the IMF is obtained from the mass function, once
a correction is made for the fact that some stars born earlier may have already died. This final
step depends on the star-formation history, ψ(t), in the volume in consideration. If the IMF is
independent of time, the luminosity function, Φ0, corrected for the fact that some stars may have
already died is given by

Φ0(M ) =Φ(M )×
∫ t0

0 ψ(t)dt∫ t0
t0−τMS(M )ψ(t)dt

(9.37)

for τMS(M ) < t0, and as Φ0(M ) = Φ(M ) for τMS(M ) ≥ t0. Here t0 is the present age of the
Universe, and τMS(M ) is the main-sequence lifetime for a star of magnitude M . This expression
follows from the fact that for stars with τMS < t0, only the fraction with ages younger than τMS

can be observed. The IMF then follows from

φ(m) ∝
dM

dm
Φ0[M (m)]. (9.38)

Although this procedure may appear straightforward, considerable uncertainties are involved
in each of the steps. To convert the observed apparent magnitude of a star to its intrinsic luminos-
ity, one needs to know the distance of the star and the amount of extinction by intervening dust.
The distances of stars can be determined from trigonometric, spectroscopic and photometric par-
allaxes (see §2.1.3), but reliable measurements are only possible for stars in a relatively small
volume around the solar neighborhood. Additional uncertainties arise from the conversion from
absolute magnitude to stellar mass, because the relation between the two is not always one-to-
one, especially for massive stars. Finally, the determination of the star-formation history, ψ(t),
from observables carries a large uncertainty (see §10.3.9), which impacts on the accuracy of the
correction for the stars that have already died. Consequently, there are still large uncertainties in
the IMF inferred from observations, as we will see below.

The IMF in our Galaxy has been estimated by a number of investigators. In the solar neigh-
borhood (which is dominated by disk stars), the first determination by Salpeter (1955) gave

φ(m)dm ∝ m−bdm with b = 2.35 [Salpeter IMF] (9.39)

for stars in the mass range 0.4M� ≤ m ≤ 10M�. More recent determinations suggest that the
IMF deviates from a pure power law, becoming flatter at the lowest mass end and steeper at the
highest mass end. Miller & Scalo (1979) approximated the observed IMF by a log-normal form,

ξ (x) = a0 −a1x−a2x2 with x ≡ log(m/M�) [Miller–Scalo IMF], (9.40)

where (a0,a1,a2) = (1.53,0.96,0.47). Scalo (1986) compiled the Milky Way field star IMF
based on a large number of references, and the result is shown in Fig. 9.5. The Scalo IMF can be
represented by the following broken power law for m > 0.2M�:
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Fig. 9.5. The IMF from Scalo (1986) for field stars in the solar neighborhood. For m > 1M� the three sets
of points represent results assuming different ratios of the current star-formation rate to the average over the
lifetime of the solar neighborhood. The solid lines show the broken power law (9.41), while the dashed line
shows the shape of the Salpeter IMF. [Based on data published in Scalo (1986)]

φ(m) ∝

⎧⎨⎩
m−2.45 (m > 10M�)
m−3.25 (1M� < m < 10M�)
m−1.80 (0.2M� < m < 1M�).

[Scalo IMF] (9.41)

At m > 1M� the Scalo IMF is similar to the Salpeter IMF, but it contains some features at
lower masses, most noticeably the shoulder at m ∼ 1M� and the turnover at m ∼< 0.2M�. A
determination based on field stars in the solar neighborhood by Kroupa (2002) gives an IMF

φ(m) ∝

⎧⎪⎪⎨⎪⎪⎩
m−2.7 (1.0M� < m < 100M�)
m−2.3 (0.5M� < m < 1.0M�)
m−1.3 (0.08M� < m < 0.5M�)
m−0.3 (0.01M� < m < 0.08M�).

[Kroupa IMF] (9.42)

This IMF has a similar shape as the Salpeter IMF for m > 0.5M� but flattens successively at
lower masses. Chabrier (2003) presented estimates of the IMFs for different stellar components
of the Galaxy, such as disk stars, bulge stars and stars in young and globular clusters, and found
that these IMFs have similar forms. For disk stars, the result is

ξ (m) ∝
{

m−1.35 (m > 1.0M�)
exp{−[log(m/0.2M�)]2/0.6} (m < 1.0M�)

[Chabrier IMF] (9.43)

(see Chabrier, 2005).
For m ∼> 1M�, all these IMFs roughly follow a power law, similar to the original Salpeter IMF.

However, at smaller masses there are significant differences among different estimates (see e.g.
Fardal et al., 2007, for a more complete list of IMFs).
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Beyond the Milky Way, only the brightest stars in relatively nearby galaxies can be resolved.
Consequently, for galaxies other than the Milky Way, only the massive end of the IMF can be
determined. The current status is that, within the large uncertainties involved, the inferred IMF
appears to be similar for galaxies with different properties, supporting the possibility that the
IMF may be universal (see Hunter, 1992, Elmegreen, 2008, for details).

9.6.2 Theoretical Models

Theoretical models that describe the origin of the IMF from first principles require detailed
understanding of the formation of individual stars within GMCs. Since our understanding of
star formation is still rather limited, we currently lack a detailed understanding of the origin of
the IMF. Nevertheless, numerous models have been proposed in the literature. Below we briefly
describe some of the ideas that have been proposed. Other examples can be found in the review
by Zinnecker et al. (1993) and Elmegreen (2008).

(a) Self-Regulated Accretion In this class of models, the masses of stars are assumed to be
limited by how much matter they can accrete during their formation. In the models considered
by Silk (1995) and Adams & Fatuzzo (1996) it is assumed that each gas clump produces only a
single star. Since the mass and density of a clump are both correlated with the velocity dispersion
within the clump (see §9.1), the mass of the star is assumed to be determined primarily by the
velocity dispersion, Δv . The stellar mass spectrum can then be written as

dN
dm

=
dN

dMcl

dMcl

d(Δv)
d(Δv)

dm
. (9.44)

Using the observed scalings for molecular clouds, dN/dMcl ∝M−p
cl (p ≈ 1.5), and Mcl ∝ (Δv)q

(q ≈ 4), we can formally write the IMF as

φ(m) ∝ m−b, with b = q(p−1)/η+1, (9.45)

where the mass of a star formed in a cloud is assumed to be related to the cloud velocity
dispersion as

m ∝ (Δv)η . (9.46)

The task is then to work out the relation between m and Δv to obtain η . Assuming that the final
mass of a star is determined by the condition that the wind from the star is strong enough to
reverse the infall onto the star, Adams & Fatuzzo (1996) obtained η = 11/6, which, according
to Eq. (9.45), yields an IMF slope b ≈ 2.1, not too different from what is observed. Note that
this result is based on the assumption that the wind is spherically symmetric, while observations
show that stellar winds are typically collimated. Hence, it is unclear to what extent the results
based on a spherical model are applicable.

(b) Hierarchical Accretion Observations indicate that star-forming clouds consist of self-
similar networks of filaments over a wide range of scales (e.g. Scalo, 1990). If stars form by
accretion in such a self-similar structure, and if their masses are related to the masses of the
fractal where they form, a power-law IMF can be produced. This idea of star formation has been
considered by Larson (1992), Elmegreen (1997) and others. In a self-similar fractal structure, the
number density of subclusters with a typical size l can be written as

dN
dln l

∝ l−D, (9.47)
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where D is the fractal dimension of the cloud boundary. If the mass of a subcluster is related to
its size as M ∝ lγ , the mass function of the subclusters is

dN
dlnM

∝M−D/γ . (9.48)

Assuming that the mass of a star is proportional to that of the subcluster in which it forms,
the IMF has a logarithmic slope b = 1+D/γ . Observations show that the boundary of molecular
clouds can be described as fractals with a dimension of about 1.3, which suggests that the surfaces
of molecular clouds have a fractal dimension ∼ 2.3. If the three-dimensional structure of a cloud
is very open and is represented by the structure near the cloud surface, then the fractal dimension
of a cloud is D ∼ 2.3, which gives an IMF slope b = 1+2.3/γ . Thus, b = 3.3 for γ ∼ 1 (i.e. for
filament-like subclusters), and b = 1.8 for γ ∼ 3 (i.e. for three-dimensional subclusters). These
slopes bracket that of the Salpeter IMF, suggesting that the origin of the IMF may indeed be
related to the geometry of the molecular ISM.

(c) IMF Based on the Core Mass Function Padoan & Nordlund (2002) proposed an IMF
model based on the mass distribution of molecular cloud cores expected in a turbulent medium.
They argued that, since the strength of compression in a shock must be related to the pre-shock
spatial scale, the mass function of dense cores in the GMCs generated by supersonic turbulence
with a power-law spectrum, |Δv |(l) ∝ lq (which is the rms velocity on scale l), should have a
mass function

dN
dlnm

∝ m−3/(3−2q). (9.49)

For q = 0.5 (as expected for supersonic turbulence), this mass function is a power law with index
−1.5. Since only cores with sufficiently high density are able to collapse to form stars, the IMF
of stars should be related to the gravitationally bound fraction of the mass function. For a given
gas density n, the thermal Jeans mass (which is similar to the Bonnor–Ebert mass) is

mJ = mJ,0

(
n
n0

)−1/2

, where mJ,0 ≈ 1.2×
(

T
10K

)3/2( n0

1000cm−3

)1/2
M� (9.50)

is the Jean mass corresponding to a fiducial density n0. If the volume-weighted density proba-
bility distribution function (PDF) is p(x)dlnx (where x ≡ n/n0), then the mass-weighted PDF is
xp(x)dlnx. Thus, for gas with a constant temperature, and assuming that the distribution function
of the average density of cores of a given mass is the same as the overall density distribu-
tion function, the distribution function of local Jeans mass is P(y)dy = 2y−2 p[x(y)]dy, where
y ≡ mJ/mJ,0 = x−1/2. For cores with a given mass m, only the fraction with local Jeans mass

mJ < m, f (m) =
∫ m/mJ,0

0 P(y)dy, can collapse. Hence, the mass function of the cores that can
collapse is

dN
dlnm

∝ f (m)m−3/(3−2q). (9.51)

If p(x) is log-normal (see §9.3.2), then f (m) ∼ 1 for m 	 mJ,0, and f (m) ∼ 0 for m � mJ,0.
Therefore, the resulting core mass function is a power law, dN/dm ∝ m−3/(3−2q)−1 (∝ m−2.5

assuming q = 0.5), at m 	 mJ,0, peaks at m ∼ mJ,0, and decreases to 0 as m → 0. Such a core
mass function has the same characteristics as the observed IMF of stars. Thus, as long as the
mass of the star that forms in a core is proportional to the core mass, the observed IMF can be
reproduced.

(d) (Non)-Universality of the IMF Before leaving this section, let us go back to the ques-
tion whether or not the IMF is universal. As pointed out at the beginning of this section,
current observations based on local star-forming galaxies are consistent with the notion that
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the IMF is universal on scales much larger than individual star-forming regions. However, the
uncertainties in the data are still large. In addition, there is evidence for local variations of
the IMF in different star-forming regions. For instance, Herbig (1962) noted that star-forming
regions such as Taurus contain no stars more massive than ∼ 2M�, whereas the more mas-
sive Orion cloud contains both high- and low-mass stars. Subsequently, Solomon et al. (1985)
found that, when molecular clouds are divided into cold (< 10K) and warm (> 20K) popula-
tions, small and cold clouds in general do not contain massive stars with spectral type earlier
than late B stars, while warm clouds, which tend to be the largest and the most massive, are
found to be associated with HII regions produced by massive stars. These observational results
may have important implications. For instance, starburst galaxies are observed to be associ-
ated with large amounts of concentrated gas, which is likely to enhance the formation of large
molecular clouds relative to that in normal spirals. The ‘bimodal’ star formation suggested by
local star-forming molecular clouds would then mean that a larger fraction of massive stars
might form in starburst galaxies than in normal galaxies. If this is the case, the IMF appro-
priate for starburst galaxies should be ‘top heavy’. Unfortunately, it is unclear to what extent
the results based on the small number of local star-forming clouds can be generalized, and
our knowledge about the ISM in starburst galaxies is still limited. Hence, it remains to be
seen whether the IMF in starburst galaxies is significantly different from that in normal spiral
galaxies.

The ability of a gas cloud to collapse and fragment is determined by the local thermal Jeans
mass; fragmentation can occur only when the cloud mass is larger than the Jeans mass (e.g.
Larson, 2005). Since the local Jeans mass is determined by the density and temperature of the
gas, the ability to fragment depends on how efficiently the gas can cool. If the cooling time
is shorter than the dynamical time, the cloud can cool and fragment as it collapses, otherwise
the collapse will come to a halt as the gas is heated up by the compression accompanying
the collapse. The radiative cooling rate of a cloud depends on the chemical composition of
the gas, and so the balance between radiative cooling and heating by adiabatic compression
defines a critical metallicity, Zcrit. Only gas clouds with metallicity Z > Zcrit can fragment to
form low-mass systems. This suggests that the IMF may depend on the metallicity of the gas
out of which the stars form: while star formation in gas with Z > Zcrit may yield a normal
IMF, the stars that form in gas with Z < Zcrit may have an IMF that is more top-heavy. The-
oretical modeling and numerical simulations including atomic and molecular cooling processes
show that 10−4 ∼< Zcrit ∼< 10−3 (e.g. Santoro & Shull, 2006; Smith & Sigurdsson, 2007).8 Since
most of the stars observed in galaxies have metallicities much higher than Zcrit, this metallic-
ity effect may not be important. However, these results are still premature, and it may well be
that the mass function of star-forming clouds changes systematically with metallicity even at
Z > Zcrit. In addition, since high-redshift galaxies are expected to have lower metallicities than
present-day galaxies, this may also imply an evolution in the IMF with redshift, as discussed
below.

In addition to metallicity, the ambient radiation field may also play an important role in shap-
ing the IMF. For example, far-infrared radiation produced by heated dust grains in starburst
regions, and the cosmic microwave background, whose temperature increases with redshift as
2.73(1 + z)K, may substantially raise the minimum temperature and increase the Jeans mass in
star-forming clouds. This may then shift the mass scale of the IMF upwards at high z and in
starburst regions, thereby producing a top-heavy IMF (e.g. Larson, 2005).

8 If dust grains manage to form in the gas, this critical metallicity can be much lower, Zcrit ∼ 10−6Z� (Schneider et al.,
2006).
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9.7 The Formation of Population III Stars

Theoretically, if we believe that the structures in the Universe grew through hierarchical cluster-
ing, the first objects that went nonlinear and collapsed are expected to have masses much smaller
than that of a typical galaxy. Since the gas in these systems has primordial composition, the first
generation of stars that managed to form in them are expected to be extremely metal poor. These
stars are referred to as Population III stars, to distinguish them from disk (Population I) and halo
(Population II) stars.

How could Population III stars have formed? In a hierarchical scenario, such as the CDM
model, low-mass dark matter halos already start to collapse at high redshift. The virial
temperature of a CDM halo (see §8.2.3) is related to its mass, M, and assembly redshift,
zvir, by

Tvir ≈ 442Ω1/3
m,0

(
M

104h−1 M�

)2/3(1+ zvir

100

)
K, (9.52)

where we assumed that the average density of dark matter halos is 200 times the critical density,

and that H(z) = H0Ω
1/2
m,0(1 + z)3/2 for z 	 1. The virial temperature of a dark matter halo is a

measure of the specific binding energy of the halo material, and so the halo can only trap baryonic
gas with temperatures Tgas ∼< Tvir. At redshifts z ∼> 200, when the effect of Compton scattering is
important (see §3.5.3), the temperature of the intergalactic medium (IGM) is

Tgas = Tγ = 273

(
1+ z
100

)
K. (9.53)

In this case, only halos with M ∼> 104 M� can trap significant amounts of baryonic gas. At
lower redshifts, when the temperature of the IGM decreases with time faster than Tγ , halos
with lower masses can start to trap baryonic gas. The trapped gas might initially be heated
to the virial temperature of the halo by shocks accompanying the gravitational collapse. In
the absence of radiative cooling, the gas would stay in hydrostatic equilibrium with the dark
matter halo and nothing interesting would happen. However, if the gas can cool, it con-
tracts within the halo, becomes gravitationally unstable, and eventually fragments to form
stars.

Hence, whether or not stars can form in these early small halos depends on whether or
not gas can cool in them. As shown in §8.1.3, for a H–He plasma the only significant radia-
tive cooling at temperatures < 104 K is due to molecular hydrogen. In order for the cooling
to be effective, the cooling time scale must be shorter than the Hubble time. This gives a
lower limit on the fraction of H2 molecules in the gas.9 With the H2 cooling rate given in
§B1.3, it is straightforward to calculate this limit for given gas density and temperature. This
required fraction of H2 should be compared to the fraction expected from the formation of H2

molecules in the gas cloud. Given the rates of the reactions leading to the formation or destruc-
tion of H2, the expected fraction can also be calculated. Since the formation of H2 proceeds
through reactions that involve both electrons and ionized hydrogen atoms, the expected fraction
of H2 depends not only on the density and temperature of the gas, but also on its ionization
fraction.

The requirement that the H2 fraction should be sufficiently high puts a constraint on the gas
temperature and density, or, equivalently, on the virial temperature Tvir (or the mass) and assem-
bly redshift zvir of the dark halo containing the gas – note that dark matter halos that assembled

9 Note that primordial gas is free of dust, which implies that the formation of H2 must proceed via the slow gas-phase
reactions given in §B1.3.
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Fig. 9.6. The minimum halo mass (thin solid curve) within which H2 cooling can lead to gas collapse, as a
function of the redshift at which the halo is assembled (note that the halo density increases with zvir). The
plot shown is for a CDM model with Ωm,0 = 1, Ωb,0 = 0.06, and h = 0.5. The dashed lines correspond to
Tvir = 104 K (upper) and Tvir = 103 K (lower). The dark shaded region is that in which no radiative cooling
can be effective, because Tvir would be lower than the CMB temperature. The solid line corresponds to
3σ peaks, i.e. ν(M) ≡ δc/σ(M;z) = 3, assuming σ8 = 0.7, where δc ≈ 1.69 is the critical overdensity for
spherical collapse, σ(M) and σ8 are defined in §4.4.4. [Adapted from Tegmark et al. (1997) by permission
of AAS]

earlier had higher characteristic density. Fig. 9.6 shows the minimum mass of halos within which
H2 cooling is sufficiently effective to lead to gas collapse. The minimum halo mass is between
∼ 104 M� (for zvir ∼> 100) and ∼ 108 M� (for zvir ∼< 10), and the corresponding virial temperature
is in the range 103–104 K. For a CDM-type spectrum, such halos begin to form in large number
at z ∼< 30.

There are still a large number of uncertainties in the scenario discussed above. For instance,
in the presence of UV photons, H2 could be photodissociated, so that H2 cooling could be
quenched. In particular, H2 can be dissociated by photons with an energy below the Lyman
limit (Stecher & Williams, 1967). Such photons can penetrate a cloud with high HI column den-
sity (because of their low interaction cross-sections with atomic H and He), and can effectively
destroy H2 in a virialized halo or in a collapsing cloud, even if the UV flux is low. Thus, only a
small fraction of the gas in small halos is expected to be able to form stars before the H2 cool-
ing is quenched by the UV flux from the stars. Further star formation may then have to wait
until the system (halo plus gas) has grown sufficiently massive that atomic cooling becomes effi-
cient, resulting in a sufficiently large gas contraction that the gas clouds become self-shielding
for H2 molecules (e.g. Haiman et al., 1996). However, even if the gas in a halo is able to cool,
it is unclear what fraction of the cooled gas can actually form stars before the rest of the gas is
ejected by the feedback effects of the stars already formed.
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As discussed in §9.6.2, because of the low metallicities, the radiative cooling time scale of
the gas from which the first stars form may be longer than the time scale of the gravitational
collapse, and so the gas clouds may not be able to fragment to form low-mass systems (e.g.
Santoro & Shull, 2006; Smith & Sigurdsson, 2007). Consequently, the collapse of the gas clouds
may lead to the formation of massive stars, resulting in an initial mass function (IMF) that is
more top-heavy than for stars of Populations I and II (e.g. Abel et al., 1998; Bromm & Larson,
2004).
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Stellar Populations and Chemical Evolution

Following up on the previous chapter, in which we discussed star formation, we now address
how individual stars evolve with time. As we will see below, most stars, during most of their
evolutionary histories, can be considered as spherically symmetric objects with a constant mass
that are in hydrostatic equilibrium. Under these conditions, the evolution of a star is almost com-
pletely determined by its mass and chemical composition through a set of ordinary differential
equations that describe the structure of the star. In this chapter, we start with a brief descrip-
tion of the basic concepts of the theory of stellar evolution. A detailed description is beyond the
scope of this book, but can be found in many monographs and textbooks on this subject (e.g.
Schwarzschild, 1965; Clayton, 1983; Kippenhahn & Weigert, 1990). We then use the theory of
stellar evolution to predict the properties of individual stars (e.g. spectrum, luminosity, metal pro-
duction, etc.) at different evolutionary stages, and discuss how these results can be synthesized
to make predictions regarding the evolution of populations of stars (e.g. galaxies). Finally, we
discuss how the evolution of stars affects the chemical evolution of galaxies.

10.1 The Basic Concepts of Stellar Evolution

A stellar evolution model generally starts with two basic assumptions: (i) stars are in hydrostatic
equilibrium, and (ii) stars are spherically symmetric. Under these two assumptions, the structure
of a star can be described by a set of equations in which all physical quantities depend only on the
distance to the center of the star. Of course stars are not completely spherical; as a gaseous body a
star can be flattened by rotation. The importance of rotation can be estimated as follows. Consider
an element of mass m near the equator of a star. The centrifugal force on the mass element due
to rotation is mω2R, where ω is the angular velocity of the rotation and R is the equatorial
radius of the star. This force will not cause significant departure from spherical symmetry if
it is much smaller than the gravitational force, GMm/R2, i.e. if ω2R3/GM � 1. For the Sun,
ω ≈ 2.5 × 10−6 s−1, ω2R3/GM ≈ 2 × 10−16, and so flattening due to rotation is completely
negligible. In general, normal stars can be considered to be spherical to very high accuracy. To
see whether the assumption of hydrostatic equilibrium is valid, consider the acceleration of a
mass element at a radius r in a spherical star:

r̈ = −GM
r2 − 1

ρ(r)
∂P
∂ r

. (10.1)

Here the partial derivative of P is used because the pressure is a function of both radius r and
time t. We can define two time scales based on the ratio between the radius of the star, R, and
the acceleration |r̈|. The first is a gravitational dynamical time scale, tdyn = (Gρ)−1/2, which cor-
responds to setting the pressure gradient in Eq. (10.1) to zero. The second is a hydrodynamical
time scale, thydro = R/cs (with cs the sound speed of the stellar gas), which corresponds to setting

449
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the gravitational term in Eq. (10.1) to zero. For the Sun with ρ ∼ 1gcm−3, R ∼ 7×1010 cm and
mean temperature T ∼ 7000K, these time scales are both ∼1 hour. Since they characterize how
rapidly gravity and sound waves allow a perturbed star to adjust to a new equilibrium configura-
tion, they should be compared to the time scales for processes that can cause the star to deviate
from its equilibrium state.

Let us first consider the thermal time scale of a star, which can be defined as the ratio between
the total thermal energy of a star, Eth, and the energy loss rate at its surface, L: tth = Eth/L. This
time scale characterizes the rate at which a star changes its structure by radiating its thermal
energy. For the Sun, tth ∼ 107 yr. Since this is much longer than both tdyn and thydro, the structure
of a normal star can adjust quickly to a new configuration as it radiates. As we will see below, the
main energy source in a normal star is nuclear reactions and, for a star in equilibrium, the energy
generation rate is equal to its luminosity. We can therefore define the time scale for nuclear energy
generation as the ratio between the total energy resource in a star and its current luminosity, L:
tnuc ∼ ηMc2/L, where η ∼ 10−3 is the efficiency at which nuclear reactions convert the rest mass
of a star into radiation (see §10.1.3). For the Sun, this time scale is about 1010 yr, much longer
than any of the other time scales described above. Thus, for a normal star like the Sun, tnuc 	
tth 	 tdyn. This implies that the evolution of a star is largely determined by nuclear reactions, and
that thermal and mechanical equilibrium can be achieved to high accuracy during the evolution.
This conclusion is valid for almost all stars; the only exceptions are variable stars and stars in
their late evolutionary stages, where the luminosity of a star can change significantly over a time
scale comparable to the dynamical time scale.

10.1.1 Basic Equations of Stellar Structure

Under the assumption of spherical symmetry and hydrostatic equilibrium, the equation governing
the structure of a star is the hydrostatic equation,

dP(r)
dr

= −GM(r)ρ(r)
r2 , (10.2)

where P(r), ρ(r) are the pressure and density at the radius r, and M(r) is the total mass within r,

dM(r)
dr

= 4πr2ρ(r). (10.3)

These are two differential equations for three quantities, P, M and ρ . In order to complete the
description, another independent relation among these quantities is needed. The equation of state
of the stellar material can provide such a relation. In general, the equation of state relates the
local pressure P to the local density ρ , temperature T , and mass fractions {Xi} of elements
i = 1,2, · · ·,n,1 and can formally be written as

P = P(ρ,T,{Xi}), (10.4)

where the exact form of P(ρ,T,{Xi}) has yet to be specified. Now that we have introduced two
new quantities, T and {Xi}, we need at least two new equations to complete the description. To
get an equation for the temperature, we use the fact that a temperature gradient in a star causes
energy transport. In general, there are three different modes of the energy transport: (i) heat
conduction, which transfers energy as electrons from hotter regions collide and exchange energy
with electrons from cooler regions; (ii) radiation, which transfers energy as photons propagate
from hotter regions to cooler regions; and (iii) convection, which transfers energy as material is
convected between hot and cold regions. For the moment, let us consider radiative stars in which

1 Note that the mass fractions of hydrogen and helium are usually denoted by X and Y , respectively.
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energy is transported mainly by photon diffusion. In this case, we can write the energy flux F
([F ] = ergs−1 cm−2) in terms of the temperature gradient and an energy transport coefficient λ as

F(r) = −λ dT
dr

. (10.5)

In practice, we work in terms of a quantity called opacity, which is related to λ by

κ ≡ 4arcT 3

3ρλ
, (10.6)

where ar is the radiation constant, c is the speed of light, and [κ] = cm2 g−1. In terms of κ , the
temperature gradient can be written as

dT
dr

= − 3κLρ
16πarcr2T 3 , (10.7)

where L ≡ 4πr2F is the luminosity ([L] = ergs−1) at radius r. To complete this equation, the
form of κ has to be specified. In general κ is a function of ρ , T and {Xi}, and at the moment we
denote this function as

κ = κ(ρ,T,{Xi}). (10.8)

Now that a new quantity, L, is introduced, we need an equation for L as well. Suppose that the
energy release rate at r is ε ([ε] = ergg−1), then

dL
dr

= 4πr2ρε. (10.9)

To complete this equation we need to know ε as a function of ρ , T and {Xi}. At the moment we
assume that this function can be obtained and write it as

ε = ε(ρ,T,{Xi}). (10.10)

Eqs. (10.2), (10.3), (10.7), and (10.9) are the four structure equations for the five quantities ρ , M,
P, T , L. Together with the equation of state, they provide a complete description of a radiative
star with given composition {Xi}, provided that P, κ and ε are known functions of (ρ,T,{Xi}).

The boundary conditions for the structure of a star can be set as follows:

(M,L) = (0,0) at r = 0, and (P,T ) = (Ps,Ts) at r = rs, (10.11)

where rs is the radius of the star. Since by definition the luminosity of a star is related to its radius
and effective temperature by

L = 4πr2
sσSBT 4

eff, (10.12)

where σSB = arc/4 is the Stefan–Boltzmann constant, we can choose Ts = Teff so that L(r) = L
at r = rs. The value of Ps can be set by the condition of hydrostatic equilibrium for the stellar
atmosphere:

dP
dr

= −ρg, (10.13)

where g is the gravitational acceleration. Since the mass in the atmosphere is in general much
smaller than the mass within it, the pressure on the stellar surface (i.e. at the bottom of the
atmosphere) can be written as

P(rs) = GMs

∫ ∞

rs

ρ(r)
dr
r2 . (10.14)
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We relate this pressure to the optical depth of the atmosphere,

τ(rs) =
∫ ∞

rs

κ(r)ρ(r)dr. (10.15)

In general, ρ(r) falls rapidly as r increases and the main contribution to P(rs) and τ(rs) comes
from layers near rs. We can therefore write P(rs) and τ(rs) in the following approximate forms:

P(rs) ≈ GMs

r2
s

∫ ∞

rs

ρ(r)dr, τ(rs) ≈ κ(rs)
∫ ∞

rs

ρ(r)dr. (10.16)

It then follows that

P(rs)κ(rs) ≈ GMs

r2
s
τ(rs). (10.17)

Under the ‘gray-atmosphere’ approximation, i.e. the opacity is independent of photon frequency
(see Shu, 1991b), the temperature is related to the optical depth as

T 4(r) =
1
2

T 4
eff

[
1+

3
2
τ(r)

]
, (10.18)

and so τ(rs) = 2/3 [because T (rs) = Teff]. With all these relations, we can finally write the
boundary conditions on the surface of a star as

Ts = Teff, Ps =
2
3

GMs

r2
s

1
κ(rs)

. (10.19)

Since the temperature and pressure on the surface of a star are generally much smaller than
those in the stellar interior, the outer boundary conditions may be replaced by the so-called ‘zero
boundary conditions’:

Ts = 0, Ps = 0. (10.20)

For stars whose outermost layers are in radiative equilibrium, these zero boundary conditions
provide a good approximation to the actual boundary conditions.

Theoretically, the mass of a star is chosen to be a constant, while the radius is determined only
after the model calculation. It is therefore more convenient to write the structure equations using
M(r) (instead of r) as the independent variable, and set the boundary conditions at Ms. In real
applications, there is no problem with this change of variable, because the relation between r and
M(r) is almost always monotonic. In terms of M(r), the four stellar structure equations, for a star
of mass Ms, can be written as

dr
dM

=
1

4πr2ρ(r)
, (10.21)

dP
dM

= − GM
4πr4 , (10.22)

dL
dM

= ε, (10.23)

dT
dM

= − 3κL
64π2arcr4T 3 , (10.24)

and the boundary conditions are

(r,L) = (0,0) at M = 0, (P,T ) = (Ps,Ts) at M = Ms. (10.25)
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10.1.2 Stellar Evolution

The stellar structure equations given above are all static equations without any explicit time
dependence. But stars do evolve with time. As nuclear reactions proceed in the central region of
a star and energy is radiated away from its surface, both the structure and chemical composition
of the star can change with time. Do we then need a complete set of dynamical equations in
order to describe such evolution? The answer is no and the reason is the following. As we will
see later in this chapter, nuclear reactions are the ultimate source that drive the evolution of a
star. Since in a normal star tdyn � tth � tnuc as discussed above, any deviation from dynamical
and thermal equilibrium caused by nuclear reactions can be compensated very quickly, so that at
any time the star can be considered to be in an equilibrium state governed by the static structure
equations. The evolution comes in only because at each time step the star must adjust its structure
and thermal state to a new chemical composition determined by the ongoing nuclear reactions. If
there is no bulk motion of material in a star (i.e. convection is negligible), the change of chemical
composition is localized and is given by the chemical evolution equation,

∂Xi

∂ t
= fi(ρ,T,{Xj}), (10.26)

where the time derivative is for a fixed element of mass, and the form on the right-hand side
takes into account the fact that the rates of nuclear reactions in general depend on ρ , T and
chemical composition. It is this change in chemical composition that drives stellar evolution.
The procedure for solving the evolution of a star is then clear. We start with an initial assumption
on the composition as a function of r or M(r) at some time t0, and solve the structure equations
under the boundary conditions. With the newly obtained ρ , T and the old {Xi} we can calculate,
for each radius in the star, the new composition at a slightly later time t = t0 +δ t:

Xi(t) = Xi(t0)+ fi[ρ(t),T (t),{Xj}(t0)]δ t. (10.27)

With this modified chemical composition, the stellar structure equations can be solved once
again. This process can be repeated until a final time is reached.

10.1.3 Equation of State, Opacity, and Energy Production

The above discussion sets up the basic framework for calculating the evolution of a radiative
star. To complete the program, we must specify the equation of state, P(ρ,T,{Xi}), the opacity,
κ(ρ,T,{Xi}), and the energy production rate, ε(ρ,T,{Xi}). In this subsection, we give a very
brief description about how to achieve this goal.

(a) Equation of State The pressure in a star consists of two components, the gas pressure
Pgas and the radiation pressure Prad. For a blackbody, which is a good approximation for stellar
material, the radiation pressure is

Prad =
1
3

arT
4. (10.28)

Since the mean separation of gas particles in a normal star is much larger than the typical size
of atoms, stellar material can be considered as an ideal gas, which allows us to write the gas
pressure as

Pgas = nkBT, (10.29)

where n is the number density of particles (i.e. atoms, ions and electrons). In terms of the mean
molecular weight,

μ ≡ ρ/(nmp), (10.30)
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where mp is the mass of a proton, Eq. (10.29) can be written in the form

Pgas =
kBT
μmp

ρ. (10.31)

To express Pgas in the form of P(ρ,T,{Xi}), we need to express μ in terms of ρ , T and chemical
composition. The particle number density in a gas depends on the ionization states of different
elements at the density and temperature in consideration. For stellar material where the temper-
ature is so high that all elements are highly ionized, simple approximations to μ can be made.
Since a fully ionized atom of charge number Qi consists of (Qi + 1) particles, one nucleus and
Qi electrons, the number density contributed by such an element is Xi(Qi + 1)ρ/(Mimp), where
Xi is the mass abundance of element i and Mi is its mass number in units of mp. The total number
density can therefore be written as

n =
ρ

mp
∑

i

(Qi +1)Xi

Mi
≈ 1

4
(6X +Y +2)

ρ
mp

, (10.32)

where X ≡ XH and Y ≡ XHe. The approximation uses the facts that Mi ≈ 2(Qi +1) for elements
heavier than helium and that, by definition,∑Xi = 1. Since heavier elements are far less abundant
than hydrogen and helium this approximation is very accurate, and allows us to write

μ = 4/(6X +Y +2). (10.33)

If the metallicity Z ≡ 1−X −Y is very small, to good approximation we can write

μ = 4/(5X +3). (10.34)

Under a similar approximation, the number density of free electrons can be written as

ne =
ρ

mp
∑

i

QiXi

Mi
≈ 1

2
(1+X)

ρ
mp

. (10.35)

The ideal gas law will break down when the ionized gas becomes so dense that the pressure
arising from Pauli’s exclusion principle is no longer negligible. This principle states that no more
than one fermion of any given type (e.g. electron) can occupy a given quantum state, and so a gas
of fermions can show strong resistance to compression when the effect of the exclusion becomes
important. For free electrons (or other fermions) in an ionized gas, Pauli’s exclusion principle is
related to Heisenberg’s principle of uncertainty, δxδ p ≥ hP/4π , where δx is the uncertainty in
position and δ p is the uncertainty in the corresponding momentum. Thus, if a gas is highly com-
pressed so that gas particles are closely packed in space, then the electrons will have momentum
higher than that predicted by the classical kinetic theory, and the gas will have pressure higher
than that given by the classical gas law. A gas in which Pauli’s exclusion principle is important
is called a degenerate gas. Since degeneracy pressure is proportional to phase-space density, and
since ions have higher momentum than electrons for a given temperature, the degeneracy pres-
sure from ions is in general much smaller than that from electrons if their number densities are
similar. The equation of state for a degenerate gas can be found in e.g. Kippenhahn & Weigert
(1990).

(b) Opacity Photons emitted in the stellar interior can be absorbed and scattered before they
reach the surface. The opacity of stellar material, κ , in Eq. (10.7) is a measure of the resistance
of the material to the passage of photons. To find an expression for κ , we need to know how
photons interact with stellar material (ionized gas). The main interactions are:

• Compton or Thomson scattering: Photons can be scattered by ions or free electrons, which
changes the directions of photons and slows down the net rate of energy transport.
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• Free–free absorption: A photon can be absorbed by a free electron, giving its total energy hPν
to the electron.

• Bound–bound absorption: A photon can be absorbed by an atom or an ion, moving an electron
from one bound orbit to another bound orbit of higher energy. This process is responsible for
the observed spectral absorption lines of stars, but does not contribute much to the opacity in
the deep interior of stars where the atoms are highly ionized so that the number of bound states
is small.

• Bound–free absorption: A photon can be absorbed by an atom or an ion, removing one electron
from its bound orbit. Again, because of the rarity of bound electrons in a star’s interior, the
contribution of this process to the opacity is small.

The cross-sections of these processes can in principle be calculated from quantum theory or
obtained from physical experiments (see §B1.3). The total opacity can then be obtained by
summing up the contributions from all different processes.

For given density, temperature and chemical composition, the stellar opacity can be different
for photons with different frequencies. The opacity in Eq. (10.7) should therefore be a proper
average of the frequency-dependent opacity, κν , over frequency ν. To find such an average, we
start by writing Eq. (10.7) as L = (4πr2c/3ρκ)(dB/dr), where B = arT 4 is the energy density of
radiation. In general, we can write the luminosity within a unit frequency interval near ν as

Lν =
4πr2c

3ρ
1
κν

dBν
dr

, (10.36)

where Bν is the Planck function. Since L =
∫

Lν dν, B(T ) =
∫

Bν(T )dν and since dBν/dr =
(dBν/dT )(dT/dr) (with dT/dr independent of ν), integrating both sides of Eq. (10.36) over ν
leads to

L =
4πr2c
3ρκ

dB
dr

, (10.37)

where

κ ≡
(∫ ∞

0

dBν
dT

dν

)/(∫ ∞

0

1
κν

dBν
dT

dν

)
(10.38)

is known as the Rosseland mean opacity, which can be calculated for given T , ρ and {Xi}.
In practice, the calculation of stellar opacity is very involved, because we have to take into

account all important atoms and ions. It is beyond the scope of this book to describe such calcu-
lations in detail. There are specialized research groups who make detailed calculations of κ and
publish and update their results in opacity tables (e.g. Seaton et al., 1994). For a given chemical
composition, the effective opacity is a function of temperature and density, and it is found that
κ is in general low for both very high and very low temperatures. When the temperature is very
high, most photons have very high energy and are not absorbed effectively, because the absorp-
tion cross-sections generally decrease with photon energy (see §B1.3). At very low temperatures,
on the other hand, many atoms are neutral and few electrons are available to scatter photons or to
take part in the free–free absorption. The effective opacity can be approximated by power laws
in specific ranges of temperature and density. We may write these power laws as

κ = κ0ρα−1T 3−β , (10.39)

where κ0 is a constant which depends on the chemical composition, and the values of κ0, α and
β depend on the particular ranges of T and ρ in question.
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At high temperatures, where the main contribution to the opacity is the scattering of photons
by free electrons, the opacity is given by

κe =
neσT

ρ
=

4π
3

q4
e

c4m2
emH

(1+X) ≈ 0.2(1+X), (10.40)

where σT is the Thomson cross-section. At somewhat lower temperatures, where light elements
like hydrogen and helium are fully ionized while heavier elements are partially ionized, the main
sources of opacity are free–free (ff) and bound–free (bf) processes. In this case the opacity can
be approximated by:

κff ∝ ρ(X +Y )(1+X)T−7/2, κbf ∝ (1−X −Y )(1+X)ρT−7/2. (10.41)

Here the factor (1+X) comes from the dependence of the opacity on the electron density given
by Eq. (10.35); the factor (X +Y ) comes from the fact that the main contribution to κff ∝ ∑Q2

i ni

is from H and He; and the factor (1−X −Y ) comes from the assumption that H and He are fully
ionized so that only heavier elements have bound electrons to produce bound–free absorption. At
even lower temperature (T ∼< 104 K), hydrogen becomes partially ionized. Because of the nature
of the Saha equation (see §B1.3), the number density of free electrons is a very rapidly increasing
function of T in this case. Since both the free–free and bound–free absorption rates increase with
ne, the opacity in this temperature range increases very rapidly with temperature:

κ ∼ κ0ρ1/2T 10. (10.42)

(c) The Effect of Convection One of the most uncertain aspects in stellar evolution is the treat-
ment of convection. According to Schwarzschild’s criterion (§8.2.2), convection occurs when
the specific entropy of the stellar gas increases in the direction of gravity, i.e. when the tem-
perature gradient required at a radius r for photons to carry the heat flux is larger than the
temperature gradient implied by a constant specific entropy in the neighborhood of r. In this
case, blobs of hot gas in the stellar interior move upwards (i.e. away from the center of the
star) and are replaced by blobs of cooler gas that move downwards. This is a very efficient pro-
cess for transporting energy and material, and so it can greatly affect the evolution of a star in
which convection does take place. Unfortunately, this process is very difficult to describe rig-
orously. A standard phenomenological model commonly used is the so called ‘mixing-length’
theory, which assumes that a convecting blob typically travels one mixing length lmix before dis-
solving into the ambient medium. The mixing length is usually represented by a dimensionless
factor, αmix ≡ lmix/H, where H = [d(lnP)/dr]−1 is the pressure scale height in the stellar inte-
rior. In general, the results of stellar evolution models are quite sensitive to the assumed value
of αmix.

Because of convection, metals that are produced near the bottom of the convective zone can
be effectively transported to the top. In practice a convective zone cannot have a sharp boundary,
and so we expect that some metals can be overshot into the region above the top of the convective
zone. Such convective overshoot can affect stellar evolution. As with convection itself, convective
overshoot is very difficult to quantify. In model calculations, the effect is usually parameter-
ized by a dimensionless parameter, αos = los/H, which describes the size of the overshoot
region.

In the absence of a rigorous theory, the values of αmix and αos have to be calibrated so that
model calculations best match the observed properties of the Sun and other well-observed stars.
Unfortunately, it remains unclear how accurate such calibration is for other stars. Detailed mod-
eling shows that main-sequence stars (which are powered by burning H into He in their cores,
see next section) contain only small convective zones, and so their structures are not affected
significantly by uncertainties related to convection. In contrast, stars in late evolutionary stages
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can develop large convective zones, and model predictions for such stars are still very uncertain
at the present.

(d) Stellar Nucleosynthesis and Energy Production Our Sun is currently emitting with a
luminosity L� ≈ 3.9× 1033 ergs−1. Based on radioactive dating of rocks on Earth, it can be
inferred that the Sun has been shining with such a luminosity for at least about 5× 109 yr. The
total energy that has been released by the Sun is therefore about 6×1050 erg, or about a fraction
of 3×10−4 of its present total mass. An obvious question is, what is the basic energy source for
the Sun? The gravitational energy, GM2�/R�, can sustain the Sun at its present luminosity for a
period of GM2�/R�L� ∼ 3×107 yr, much too short compared to the age of 5×109 yr. The total
thermal energy, which is about half of the gravitational energy, according to the virial theorem, is
also far too small to supply the energy. Chemical reactions associated with the burning of material
can transform a fraction of ∼ 10−10 of the rest mass into heat. This fraction is much smaller than
the required fraction mentioned above, so that chemical energy is also insufficient to power the
Sun. The only energy source that can convert rest mass into energy with an efficiency larger
than 3×10−4 is nuclear reactions. Today we are quite sure that normal stars like the Sun are all
powered by nuclear fusion, a process by which light elements synthesize to form heavier ones.
The simplest example is the fusion of four hydrogen nuclei to form a helium nucleus, 4H → He.
Since the rest mass of He is 3.97mp, the rest mass that is converted into energy in this reaction is
therefore 4mp−3.97mp = 0.03mp, or about 7×10−3 of the original mass, 4mp. This efficiency is
large enough to power the Sun for a period of about 8×1010 yr. In fact, as we will see below, the
structure and luminosity of the Sun will change drastically once it uses up about 13% of its total
hydrogen. Thus the fusion of H to He can sustain the Sun at its present state for about 9×109 yr,
or about twice its present age.

Nuclear fusion not only provides the main energy source in stars, but also is the main process
for synthesizing the heavy elements observed in the Universe. As we have seen in §3.4, cosmo-
logical primordial nucleosynthesis is effective only in producing light elements, in particular He
and Li. All heavier elements are believed to have been synthesized in the interiors of stars.

The binding energy per nucleon in a nucleus of mass m with Q protons and N neutrons is
defined as

ΔE(Q,N) =

[
Qmp +Nmn −m(Q,N)

]
c2

Q+N
. (10.43)

For a helium nucleus, ΔE ≈ 0.007mpc2. Thus, when four hydrogen nuclei fuse into a helium
nucleus, the binding energy per nucleon increases. From the point of view of thermodynamics, it
is therefore more advantageous for hydrogen to fuse into helium than to remain as free protons.
Fig. 10.1 shows the binding energy per nucleon for various atomic nuclei. We see that there is a
general trend for the binding energy per nucleon to become larger as we go to heavier elements,
but the trend reverses for elements heavier than 56Fe. This behavior can be explained as a result
of the balance between the net attraction of the strong nuclear force and the repulsion of the
positively charged protons. As long as the nucleus is not too big, the short-range nuclear force
tends to win over the long-range electric force, causing the binding energy per nucleon to increase
when a nucleon (proton or neutron) is added to the nucleus. However, since the nuclear density
is nearly constant, heavier nuclei are also physically bigger. The increase in the binding energy
per nucleon with the number of nucleons saturates with iron-56; further addition of nucleons
actually reduces the binding energy per nucleon. This is the reason why very heavy nuclei, such
as uranium, are unstable.

If it is more advantageous for nucleons to be synthesized into heavy elements such as iron,
why, then, is most of the cosmic material still in the form of light elements such as H and He? The
answer to this question is that nuclear fusion reactions can occur only under certain conditions.
Since atomic nuclei are positively charged, the two (or more) nuclei in a fusion reaction tend to
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Fig. 10.1. Binding energy per nucleon as a function of atomic weight.

repel each other due to the Coulomb force. In order for the components to come close enough so
that the attractive nuclear force becomes dominant, they have to move rapidly towards each other
to overcome the Coulomb barrier. Thus, nucleosynthesis in the Universe is expected to be effi-
cient only in places where gas density and temperature are both high so that many high-velocity
collisions among nuclei can occur. Stellar interiors are such places. Since the nuclear reactions
involved are driven by thermal motions of nuclei, they belong to the category of thermonuclear
reactions.

To have a closer look at how thermonuclear reactions depend on temperature, let us consider
the collision of two nuclei of charges qi and q j, and masses mi and m j, with a relative speed v at
large separation. Based on classical mechanics, the closest separation the two nuclei can achieve
is r = 2qiq j/mv2, where m = mim j/(mi + m j) is the reduced mass. However, the two particles
can penetrate the Coulomb barrier due to quantum tunneling. The probability of this penetration
is Pr ∝ exp(−2π2r/λ ), where λ = hP/mv is the de Broglie wavelength. For a classical gas with
temperature T , the relative velocity v of particles obeys the Maxwell–Boltzmann distribution,
Pv ∝ exp(−mv2/2kBT ). The probability for a fusion to take place is therefore proportional
to Pr Pv . For a given T , this probability is maximized at v = (4π2qiq jkBT/mhP)1/3, with a
maximum value

Pmax ∼ exp

[
−
(

T0

T

)1/3
]

, (10.44)

where T0 ≡ (3/2)3(4π2qiq j/hP)2(m/kB). Thus, in order for the fusion reaction to proceed at a
significant rate, the temperature T must be ∼> T0. The temperature required is in general higher
for heavier nuclei, because of the larger values of masses and charges. One might therefore
expect that, as a star evolves and its internal temperature rises, light elements will be converted
successively into heavier and heavier elements, until all the material in the star is converted into
elements in the neighborhood of iron in the periodic table. However, this process is slow, because
the temperature in a stellar interior does not change much during most of its lifetime. This is
the reason why most baryonic material in the Universe is still in the form of H and He. In the
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following, we examine in some detail the most important nuclear reactions under the conditions
applicable to stellar interiors.

There are two important channels for converting hydrogen into helium. The first is through the
pp chain and the second is through the CNO cycle. The pp chain starts with two hydrogen nuclei
(i.e. two protons) to form a deuteron (D) which then captures another proton to form a 3He:

p+p → D+ e+νe, D+p → 3He+ γ. (10.45)

The 3He so created is converted into 4He either through the collision of two 3He,

3He+ 3He → 4He+2p, (10.46)

or, in the presence of 4He, through

3He+ 4He → 7Be+ γ, 7Be+ e → 7Li+νe,
7Li+p → 2 4He. (10.47)

The CNO cycle involves the following set of reactions:

12C+p → 13N+ γ, 13N → 13C+ e+νe,
13C+p → 14N+ γ,

14N+p → 15O+ γ, 15O → 15N+ e+νe,
15N+p → 12C+ 4He. (10.48)

The net effect of the CNO cycle is to convert four protons into a helium nucleus, with C, N,
and O nuclei acting only as catalysts. Note that the CNO cycle requires the pre-existence of
carbon.

The rate with which the pp chain and the CNO cycle convert H into He is proportional to
the square of the density (because the reactions involved are two-body in nature) and increases
rapidly with temperature. The CNO cycle is more sensitive to temperature because the elements
involved are heavier. The rate of energy production from each reaction is equal to the reaction
rate times the energy released from each conversion and can be calculated as a function of T .
The resulting specific energy production rate, ε , is in general a smooth function of T , and can be
represented as a piecewise power law of T :

ε = ε0ρTη . (10.49)

In the temperature range where the pp chain is important,

ε ∝ X2
HρT 4 (pp chain), (10.50)

while in the temperature range where the CNO cycle dominates,

ε ∝ XHXCρT 17 (CNO cycle). (10.51)

Since thermonuclear reactions need high temperature to proceed, there must be systems in
which the temperature is never high enough to ignite H-burning. Such stars are called black
dwarfs, because they radiate very little. As we will see in §10.2, this minimum temperature
corresponds to a minimum mass, MH ≈ 0.08M�. Although stars less massive than this cannot
burn hydrogen, they can burn deuterium which has a lower ignition temperature. A star powered
by deuterium burning is called a brown dwarf.

For systems with masses larger than MH, we expect the conversion of H to He to first occur in
the central region of a star where the temperature is the highest. There will then be a time when
most hydrogen in the central region is exhausted. When this happens the star will contract as
the thermal energy keeps on flowing out. According to the virial theorem, such contraction will
lead to an increase in the temperature in the central part of the star. The contraction continues
until the next important nuclear reaction is able to generate sufficient thermal energy to halt the
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contraction. As can be inferred from Eq. (10.44), when the temperature reaches ∼ 108 K, fusion
of helium begins to synthesize the next stable nuclei, 12C, through the following reactions:

4He+ 4He → 8Be+ γ, 8Be+ 4He → 12C+ γ. (10.52)

This process is called the triple-α process because three α particles (4He) are involved. Since 8Be
is unstable and can decay back to two 4He in a short time, only small amounts of 12C would be
produced if the second reaction occurred with a ‘normal’ rate. This is known as the ‘bottleneck’
for the synthesis of heavy elements. A breakthrough in this ‘bottleneck’ problem occurred when
it was realized that the second reaction in (10.52) can proceed through a fast (resonant) channel
with the production of an excited state 12C

∗
, which then de-excites to the ground level 12C (Hoyle,

1954). Once 12C is produced, the synthesis of heavy elements can proceed further.
In our following discussion, two groups of elements are particularly important. One group is

called the α-elements, which includes 16O, 20Ne, 24Mg, 28Si, 32S, 36A, 40Ca, and it is named
after the fact that all the elements in this group can be formed by adding α-particles to 12C. The
synthesis of these elements is either through the capture of α-particles in reactions such as

12C+ 4He → 16O+ γ and 20Ne+ 4He → 24Mg+ γ, (10.53)

or through the burning of C and O in reactions like

12C+ 12C → 20Ne+ 4He and 16O+ 16O → 28Si+ 4He. (10.54)

Since these elements can be synthesized in a star that starts out with pure hydrogen and helium,
their abundances in a star are essentially independent of the initial metallicity. The other group,
called the iron-peak elements, includes all elements with atomic numbers in the range 40 < A <
65, i.e. Sc, Ti, V, Cr, Mn, Fe, Co, Ni and Cu. Because of their high nuclear charges, iron-peak
elements are formed late in a star’s life, when its core becomes extremely hot.

Elements that can be synthesized directly in stars of zero initial metallicity are referred to as
primary elements, while elements that can form only in the presence of primary elements are
called secondary elements. An important secondary element is N, which is produced in the CNO
cycle from pre-existing C and O. Note that the carbon produced later in a star cannot directly
capture a proton to form N, because very few protons are present by the time the carbon nuclei
are synthesized.

10.1.4 Scaling Relations

Once P, κ and ε are known as functions of ρ , T and chemical composition, the stellar evolution
equations can be integrated. In general, these equations have to be solved numerically. With
certain assumptions, however, we can find some simple scaling relations that can help us to
understand how the properties of a star change with its mass and chemical composition.

One example of this kind is the homologous model of stellar structure.2 In this model, stellar
opacity and energy generation rate are assumed to have the power-law forms given in the last
subsection, radiation pressure and convection are assumed to be negligible, and the chemical
composition is assumed to be the same everywhere in the stellar interior (so that μ , κ0 and ε0

are constant throughout the interior of a star). All stars with the same κ0, ε0 and μ , but having
different masses form a homologous sequence. In such a sequence, Ms is the only independent
quantity; characteristic values of all other quantities are determined by Ms. Thus, if we use the
fractional mass m ≡ M/Ms as the independent variable, each of the other dependent quantities in
units of its characteristic value should be the same function of m without an explicit dependence

2 Another example are the so-called polytropic models, which will not be discussed in this book (see e.g. Kippenhahn &
Weigert, 1990).
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on Ms. The solutions to the structure equations for homologous stars can therefore be written in
the following form:

r = r0r̃(m), ρ = ρ0ρ̃(m), L = L0L̃(m), T = T0T̃ (m), P = P0P̃(m), (10.55)

where a subscript ‘0’ denotes the characteristic value of a quantity, and the tilded functions
depend only on m. We can choose r0 = rs, the radius of the star. Using the argument given above,
rs should depend only on Ms. With Ms as the characteristic mass and rs as the characteristic
radius, we can define the following characteristic values for ρ , P and T :

ρ0 =
Ms

r3
s

, P0 =
GM2

s

r4
s

, T0 =
μmp

kB

GMs

rs
. (10.56)

Using Eqs. (10.23) and (10.49) we can also define a characteristic luminosity,

L0 = ε0Msρ0Tη0 = ε0

(
Gμmp

kB

)η M2+η
s

r3+η
s

. (10.57)

Note that all these characteristic quantities are power laws of both Ms and rs. To get an expression
for rs as a function of Ms, we insert the homologous solutions (10.55) into Eq. (10.24). With the
use of Eq. (10.39), we get

dT̃
dm

=
3κ0ε0

64π2ac

(
Gμmp

kB

)η 1

Gβ+1

ρ̃L̃

r̃4T̃ β
M1+η+α−β

s

r3+η+3α−β
s

. (10.58)

Since this equation should have the same form for all Ms, rs(Ms) must have the form

rs(Ms) ∝Mq
s with q =

1+η+α−β
3+η+3α−β . (10.59)

Inserting this into Eqs. (10.56)–(10.57), we find that

ρ0(Ms) ∝M1−3q
s , T0(Ms) ∝M1−q

s , L0(Ms) ∝M2−3q+(1−q)η
s . (10.60)

For main-sequence (MS) stars, which are burning hydrogen into helium in their centers, α ≈ 2
and β ≈ 6.5 for near-solar mass stars in which the main source of opacity is free–free and bound–
free absorptions, while α = 1 and β = 3 for more massive stars in which electron scattering is the
main source of opacity. If we take η = 4 (for the pp chain), or η = 17 (for the CNO chain), then
the homologous model predicts a luminosity–mass relation, Ls ∝ L0 ∝Ma

s , with a ≈ 5 for near-
solar mass stars and a ≈ 3 for more massive ones. These results are qualitatively in agreement
with detailed model calculations, as well as with observational results. For example, detailed
model calculations by Bressan et al. (1993) give

LMS

L�
=

⎧⎨⎩
81(Ms/M�)2.14 (for Ms ∼> 20M�)
1.78(Ms/M�)3.5 (for 2M� < Ms ∼< 20M�)
0.75(Ms/M�)4.8 (for Ms ∼< 2M�).

(10.61)

From the definition of the effective temperature in Eq. (10.12), we can also obtain a luminosity-
effective temperature relation,

Ls ∝ T b
eff, where b =

4[2−3q+(1−q)η ]
2−5q+(1−q)η

. (10.62)

For the values of α , β and η given above, the value of b falls in the range from 4.1 (for low-mass
stars) to 8.6 (for high-mass stars). These results are also qualitatively in agreement with detailed
calculations of main-sequence stars. Stars on a homologous sequence therefore lie approximately
on a straight line in the theoretical H-R diagram [plot of log(Ls) versus log(Teff)]. This is the



462 Stellar Populations and Chemical Evolution

reason why the locus of main-sequence stars in the observed H-R diagram (see Fig. 2.6) is
approximately a straight line.

In reality, stars on the main sequence may have different chemical compositions. The simple
homologous model can also help to understand how the properties of a star of a given mass
change with chemical composition. The dependence on composition is through that of κ0, ε0 and
μ . From Eq. (10.58) we see that, for a given mass, Ms, the radius scales with κ0, ε0 and μ as

rs ∝
(
κ0ε0μη−β−1

)p
where p =

1
3+η+3α−β . (10.63)

Inserting this into Eq. (10.60) and Eq. (10.12), we obtain

Ls = L0L̃(1) ∝ ε0μη
(
κ0ε0μη−β−1

)−p(3+η)
, (10.64)

and

Teff ∝ ε
1/4
0 μη/4

(
κ0ε0μη−β−1

)−p(5+η)/4
. (10.65)

As an example, let us consider a case where

κ ∝ Z(1+X)ρT−7/2 and ε ∝ X2ρT 4, (10.66)

so that

α = 2, β = 13/2, η = 4 and κ0 ∝ Z(1+X), ε0 ∝ X2. (10.67)

These forms of κ and ε are reasonable approximations for the main-sequence stars with masses
∼ 1M�. If Z is small so that μ = 4/(3 + 5X) to good approximation, the scalings of rs, Ls and
Teff with chemical composition become

rs ∝ X4/13 (1+X)2/13 (5X +3)7/13 Z2/13, (10.68)

Ls ∝ X−2/13 (1+X)−14/13 (5X +3)−101/13 Z−14/13, (10.69)

Teff ∝ X−5/26 (1+X)−9/26 (5X +3)−115/52 Z−9/26. (10.70)

Thus, rs increases, while both Ls and Teff decrease, with increasing X and Z.

10.1.5 Main-Sequence Lifetimes

As shown above, the luminosity of a main-sequence (hydrogen-burning) star scales with mass
roughly as Ls ∝M4

s . Since a star converts roughly a fixed fraction of its rest mass into radiation
before it leaves the main sequence, the main-sequence lifetime scales with mass as

tH→He ∝Ms/Ls ∝M−3
s . (10.71)

For a star like the Sun, the main-sequence lifetime is ∼ 1010 yr, comparable to the age of the
Universe. According to the scaling given above, a star with a mass of about 10M� is expected to
have a main-sequence lifetime of only ∼ 107 yr, much shorter than the age of the Universe. For a
given mass, the main-sequence lifetime is expected to be shorter for stars with lower metallicity,
because Ls increases with decreasing Z. Detailed stellar evolution models can be used to calculate
the main-sequence lifetimes as a function of initial mass and initial metallicity. In the mass range
between 0.08M� to 100M�, and for a metallicity not very different from Z�, the main-sequence
lifetime can conveniently be approximated by the following formula:

tMS =
2.5×103 +6.7×102m2.5 +m4.5

3.3×10−2m1.5 +3.5×10−1m4.5 Myr, (10.72)

where m is the mass of the star in units of M� (e.g. Schaller et al., 1992).
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The fact that stars of different masses have different main-sequence lifetimes and that mas-
sive stars have main-sequence lifetimes much shorter than the age of the Universe has important
implications for galaxy evolution. For example, when we observe a galaxy today (i.e. at redshift
z = 0), we are observing the light from the stars that have evolved to the present time. Hence,
the main-sequence stars with Ms ∼ M� observed today include all stars of such masses that have
formed during the past 9× 109 yr, while the main-sequence stars with Ms ∼ 10M� observed
today are only those that have formed during the past 107 yr. Consequently, the stellar popu-
lation observed from a galaxy depends strongly on its star-formation history. Put differently, it
is possible to learn about the star-formation history of a galaxy by studying its stellar popula-
tion. Furthermore, as we will see later in this chapter, massive stars in their post-main-sequence
evolution can eject material and energy into the interstellar medium either as stellar winds or
through supernova explosions. The fact that massive stars have relatively short lifetimes implies
that the chemical composition and thermal state of the gas in a galaxy can be affected almost
simultaneously as star formation proceeds.

10.2 Stellar Evolutionary Tracks

As shown above, the evolution of a star is almost completely determined by its initial mass and
chemical composition. Thus, for given initial mass and metallicity, a stellar evolution model
should, in principle, yield all the properties of a star at any time, t, after its birth. The two most
important properties of a star are its luminosity, L, and its effective temperature, Teff, and so the
evolution of a star can be represented conveniently by its evolutionary track in the Teff–L plane.
Since Teff and L are related to the color and absolute magnitude of a star, such evolutionary
tracks provide the basis for the understanding of observed H-R diagrams, such as the one shown
in Fig. 2.6. Indeed, the prominent branches heavily populated by stars in a H-R diagram can be
considered as stellar ‘traffic jams’ where stars evolve slowly and many tracks run close to each
other.

With the stellar evolution model described above, one can calculate the evolutionary track for
any given initial mass and metallicity, and standard computer programs are available for such
calculations (see Girardi et al., 2000; Yi et al., 2003, and references therein). In what follows, we
present a brief discussion of the most important results obtained from such calculations.

10.2.1 Pre-Main-Sequence Evolution

In §9.4.1 we saw that a young star is born at a late stage of protostellar collapse on the birthline
where the star is in a state of quasi-equilibrium and optically visible due to deuterium burning.
The star then quickly evolves onto the main sequence. The evolution between the birthline and
the zero-age main sequence is usually referred to as pre-main-sequence evolution. The evolu-
tionary tracks can be obtained using the stellar evolution model outlined above (e.g. Iben, 1965b;
D’Antona & Mazzitelli, 1994), and Fig. 10.2 shows some examples of such tracks. For low-mass
stars, the pre-main-sequence evolution is characterized by almost vertical tracks (called Hayashi
tracks), because such stars, with relatively low surface temperatures, become almost entirely
convective when they begin to burn deuterium. Stars with masses 0.08M� ∼< Ms ∼< 0.3M�
remain convective as they contract towards the main sequence, and their pre-main-sequence
tracks remain vertical. More massive stars, however, become radiative before reaching the main
sequence, and the late stage of their pre-main-sequence evolution is characterized by contraction
with nearly constant luminosity (see §10.1.4). Stars with masses smaller than ∼ 0.08M� cannot
ignite hydrogen burning in their centers, and so they shine only during the deuterium-burning
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Fig. 10.2. The pre-main-sequence evolutionary tracks of stars with solar metallicity. The positions reached
by stars after 1, 10 and 100 Myr from birth are marked by dots. Left and right panels show results for stars
with main-sequence masses (in solar units) in the range [0.1,2.5] and [0.02,0.09], respectively. [Based on
data published in D’Antona & Mazzitelli (1994)]

phase as brown dwarfs. As a brown dwarf runs out of deuterium fuel, it shrinks until it is
supported by the degeneracy pressure of electrons, eventually becoming a black dwarf.

The energy released during the pre-main-sequence phase of a star is mainly from gravitational
contraction and deuterium-burning, and is generally much smaller than the energy released dur-
ing the main-sequence and post-main-sequence evolution. Because of this, pre-main-sequence
stars are usually neglected in modeling the spectra of galaxies.

10.2.2 Post-Main-Sequence Evolution

Once a star reaches its zero-age main sequence, it will stay on the main sequence for a time
interval given by the main-sequence lifetime, tMS, (§10.1.5) until the hydrogen in its core is
burned into helium. During its main-sequence lifetime the star moves little in the Teff-L plane,
because the luminosity of a main-sequence star is limited by the photon-diffusion rate, which
depends primarily on the initial mass (see §10.1.4). The amount of H converted into He at the
end of the main-sequence lifetime is LtMS/0.007c2, which is about 13% of the total hydrogen
mass for a star like the Sun. The properties of stars on the main sequence have been discussed in
the last section. Here we examine how stars evolve after their main-sequence lifetimes. As one
can see from Fig. 10.3, where the post-main-sequence evolutionary tracks are shown for various
initial masses, the evolution is qualitatively different for low- and high-mass stars.

(a) Low-Mass Stars Even after hydrogen has been exhausted in the core of a star, energy trans-
port will continue in its interior. Since the core is still too cold to burn He, there is no thermal
energy to counterbalance the energy leak, and so the core contracts. As it contracts, the core is
heated up (according to the virial theorem), and so is the gas layer above the He core. Since
hydrogen has a lower ignition temperature than helium, the hydrogen in the shell just above
the He core will burn first as the temperature increases, while the He core itself still remains
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Fig. 10.3. Post-main-sequence evolutionary tracks of stars with solar metallicity. To avoid confusion, tracks
for stars with masses smaller than 2M� are terminated at their He flash. The six points on each track mark
the positions reached by the star after the times from the zero-age main sequence listed in Table 10.1. The
shaded area is the instability strip within which various variable stars are located. [Based on data published
in Girardi et al. (2000)]

dormant. The H shell burning is quite effective in generating energy. But as long as the star
is not convective, the amount of energy that can leak from the star is limited by photon diffu-
sion and is roughly constant (see §10.1.4), with the extra heat causing the star to expand. Since
the luminosity scales with the radius and the effective temperature as L ∝ r2

s T 4
eff, the star evolves

more-or-less horizontally in the Teff-L plane to the right (Fig. 10.4), turning into a subgiant. How-
ever, as the temperature in the outer envelope drops, the temperature gradient between the outer
and inner regions increases, and the star eventually becomes fully convective. When this hap-
pens the effective temperature cannot decrease any further and the star starts to ascend almost
vertically in the Teff-L plane to the red giant branch (RGB). At this stage, the envelope of the star
has been distended so much that substantial mass-loss (stellar wind driven by the radiation pres-
sure) may occur. Meanwhile, the He core becomes hotter and hotter as it contracts and as more
He ash is added to it from the H-burning shell. When the core temperature reaches ∼ 108 K,
helium begins to burn into carbon through the triple-α process; some oxygen is also synthe-
sized as some of the 12C nuclei capture a 4He. The He-burning heats the core and causes it to
expand, lowering the gravity on the H-burning shell and thereby reducing the strength of shell
H burning. Consequently, the star reaches the tip of the red-giant branch and then settles onto
the horizontal branch (HB) where the star is mainly powered by He burning in its core. If the
envelope were peeled off the star, the He core would behave like a He main-sequence star. Stars
on the horizontal branch are thus expected to have relatively high effective temperatures, but the
exact value of Teff for a star depends on how much mass the star had lost during its red-giant
phase.

The core He burning will come to a halt once most of the helium nuclei in the core are syn-
thesized into carbon and oxygen. At this stage, the star contains a C/O core, an inner He-burning
shell and an outer H-burning shell. As the core temperature is still too low for carbon to burn,
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Table 10.1. Stellar-evolution times (in 10Myr) at the points in Fig. 10.3.

Ms/M� τ1 τ2 τ3 τ4 τ5 τ6

0.6 0 7142 7660 7801 7837 7840
1.0 0 732.5 887.4 1101 1137 1225
1.5 0 251.9 257.5 258.4 262.9 282.5
2.0 0 107.5 109.7 109.9 110.8 113.1
3.0 0 36.25 36.99 37.04 37.20 37.44
4.0 0 17.90 18.22 18.24 18.30 18.37
6.0 0 7.046 7.148 7.156 7.167 7.214
9.0 0 2.945 2.986 2.989 2.991 2.995
15.0 0 1.237 1.250 1.251 1.252 1.253
20.0 0 0.8462 0.8547 0.8552 0.8559 0.8565
40.0 0 0.4430 0.4567 0.4574 0.5115 0.5147
100.0 0 0.1267 0.1975 0.2964 0.3383 0.3402

Fig. 10.4. An illustration of the complete evolutionary track of low-mass stars.

the C core contracts. The He-burning shell outside the C core and the H-burning shell outside
the He-burning shell also contract in this phase because of the loss of pressure support. Such
contraction enhances the double-shell burning, causing the star to ascend the asymptotic giant
branch (AGB) in a way similar to what happened during the RGB phase. During the AGB phase,
the envelope of the star can be greatly distended, and a large amount of mass loss can occur.
When the star reaches the top of the AGB, where it becomes a red supergiant, it can lose all of its
blanketing hydrogen layer. The star then makes a sudden move leftwards in the H-R diagram as
it peels away its relatively cold mantle. At this stage, the intense ionizing radiation from the star
may cause the ejected H envelope to shine as a fluorescent planetary nebula. The He burning will
gradually die off, leaving behind a C/O core with a mass in the range 0.55–0.6M� (independent
of the initial mass). Because of the small mass, further nuclear burning cannot be ignited in the
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core. The star will then contract until it is supported by the degeneracy pressure of electrons,
becoming a white dwarf.

The evolutionary track discussed above is valid for all stars with initial masses Ms ∼< Mup ≈
8M�. However, stars with masses Ms ∼< MHe−f ≈ 2.3M� experience an additional event, called
the helium flash. For stars with masses as low as this, the He core must contract a lot before
it reaches the ignition temperature of He burning. Consequently, the core becomes supported
by the degeneracy pressure of electrons before He is ignited. Since the core continues to grow
in mass, its temperature increases until He is ignited. Because the pressure of degenerate mat-
ter does not depend on its temperature, the corresponding release of nuclear energy does not
result in an expansion of the core. Instead the nuclear reactions cause the temperature of the
core to increase, which leads to an increase in the rate of energy production, thereby giving
rise to a thermal runaway instability called the helium flash. The drastic and rapid increase in
temperature ultimately removes the degeneracy, causing the core to expand and the He burn-
ing to continue in a stable fashion. Therefore, after the helium flash the core contains an ordinary
helium plasma that burns into carbon on the HB in a way similar to the core He burning described
above.

(b) Massive Stars For stars with initial masses Ms ∼> Mup ≈ 8M�, core-H exhaustion, He-core
contraction, shell-H burning, and core-He ignition proceed in much the same way as for low-mass
stars, except that the helium flash is absent. However, because of the high mass, core ignition and
shell burning can proceed successively to heavier elements. During this process, a star in general
moves to a higher Teff after a core ignition, and to a lower Teff during core contraction. Since a
massive star can maintain radiative equilibrium during the evolution, its luminosity changes only
little. As a result, the evolutionary tracks of such stars appear more-or-less horizontal in the H-R
diagram (see Fig. 10.3).

At some stage, all the material in the core may be converted into iron-peak elements that can-
not be ignited any more. The burning in the core will then cease, while Si, O, Ne, C, He, and
H continue to burn in shells at successively larger radii. When this happens, the core contracts
until it becomes supported by the degeneracy pressure of electrons. Since the shell-burning out-
side the core keeps dropping ash onto the core, the degenerate core will grow until it reaches
Chandrasekhar’s mass limit, M ≈ 1.4M�, beyond which the iron-core can no longer be sup-
ported by the degeneracy pressure of electrons and must collapse further. This collapse can heat
the core to such a high temperature (∼> 109 K) that iron nuclei can be photodisintegrated into
α-particles (4He nuclei). Since thermal energy is used in the photodisintegration, the core will
collapse further and be heated to an even higher temperature. The α-particles produced will then
also be photodisintegrated into protons and neutrons, draining more thermal energy from the
core. The core then undergoes a phase of catastrophic contraction, and its density can become so
high that almost all electrons are squeezed into protons to form neutrons. If the mass is smaller
than ∼ 3M�, the core will be a neutron star supported by the degeneracy pressure of neutrons;
otherwise the core will collapse further to form a black hole. The collapse of the iron-core is so
violent that a supernova explosion may take place, as we will discuss in the following.

(c) Radiation in the Giant Phase As a star evolves off the MS, it becomes redder, and if its
mass is ∼< 2M�, it also becomes brighter. With the stellar evolution models described above,
one can in principle estimate the total energy that is radiated in the giant phase as compared to
that in the MS phase. It turns out that, for a star with an initial mass < 1.5M�, the total energy
radiated in the giant phase is actually larger than that in the MS phase. Since the MS lifetime
of a 1.5M� star is about 2.5 Gyr, the luminosity of a starburst with an age longer than this is
therefore expected to be dominated by giant-branch stars rather than by dwarfs on their MS. This
has important implications. For instance, for a stellar population older than a few Gyr, such as
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that in an elliptical galaxy, the spectrum is expected to resemble that of giant-branch stars, as we
shall see in §10.3.

(d) Variable Stars An important feature in the H-R diagram is the instability strip, an almost
vertical strip containing various variable stars (Fig. 10.3). The origin of this variability is a vibra-
tional instability of the outer envelope of the star. As gas clouds, all stars oscillate to some degree.
The oscillations in normal stars are in general quite small, because they are excited by random
fluctuations. In contrast, the oscillations of stars in the instability strip may have much larger
amplitudes, as they are excited by global instabilities. Most of the large-amplitude oscillations of
stars are generated by the so called κ mechanism. The physics underlying this mechanism is that,
in some special states, the stellar material can become more opaque when it is heated, as is the
case for many stars in the instability strip. To see how this property is related to the generation of
oscillations in the stellar structure, let us consider a layer of such material that has lost support
against gravity and is moving inwards. As it shrinks, the layer is compressed and heated up, and
therefore becomes more opaque. Since it is now more difficult for photons to diffuse through
the layer, heat will build up below it. The rising pressure below the layer will eventually halt
the contraction and push it outwards. As the layer expands, its temperature drops and it becomes
more transparent to radiation. This increased transparency allows radiation in the inner region to
diffuse outwards more freely, thereby decreasing the pressure support to the layer. As the layer
loses pressure support, it falls back, and the cycle repeats. During such a cycle, part of the energy
generated below the layer is used to push the layer outwards. An initial small oscillation will then
be amplified after each cycle.

As a star oscillates, its atmosphere moves in and out, leading to pulsations of luminosity with
time. The pulsation period, P , is of the order of the sound-crossing time of the star, and it can
be shown that

P ∼ Q

(
ρ
ρ�

)−1/2

, (10.73)

where ρ is the mean density of the star, and Q ∼ (Gρ�)−1/2 ∼ 1hr is the pulsation constant.
Because the instability strip is roughly vertical in the Teff-L plane, all stars in the strip have
approximately the same effective temperature. Since for a given Teff the mean density of a star
can be related to its luminosity, the above relation between P and ρ implies a period–luminosity
relation. In general, the mean density of a star decreases with increasing luminosity, so that bright
stars have longer pulsation periods. A special class of variable stars are the Cepheids, which have
masses Ms ∼> 5M�, and which reveal a regular period–luminosity relation. This can be used to
determine the Cepheid’s distance by simply measuring its period and apparent magnitude (see
§2.1.3).

10.2.3 Supernova Progenitors and Rates

At the end of their lifetimes some stars will explode as supernovae. These are observed as
objects that radiate very intensely (with a luminosity ∼ 1010 L�) for a period of a few weeks.
The emission and absorption lines observed from a supernova in general show strong Doppler
shifts produced by the explosion-driven motions of the gas associated with the supernova, with
the expanding velocities typically in the range 2,000–10,000kms−1. Supernovae are classified
into Type Ia, Type Ib and Type II by the presence of hydrogen. Type II supernovae are dis-
tinguished from the other two types by the existence of hydrogen lines in their spectra. The
distinction between Type Ia and Type Ib is that the former has significant Si+ absorption in
its spectrum while the latter does not. Type II and Ib are rare in early-type galaxies, while
Type Ia are observed in all types of galaxies (Table 10.2). In spiral galaxies, Type II and Ib
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Table 10.2. Supernova rates in h2SNU, where 1 SNU equals one supernova per century per
1010 L�B. [Data taken from Cappellaro et al. (1997)]

E S0 S0a-Sa Sab-Sb Sbc-Sc Scd-Sd others

Type Ia 0.23 0.32 0.44 0.30 0.41 0.43 0.48
Type Ib ≤ 0.05 ≤ 0.07 0.28 0.16 0.36 0.07 0.39
Type II ≤ 0.07 ≤ 0.07 0.28 0.94 1.33 2.17 0.73
All 0.23 0.32 1.01 1.40 2.11 2.66 1.60

supernovae are preferentially found in spiral arms where young (OB) stars form, whereas Type
Ia do not reveal such a preference. These observational results suggest that the progenitors of
Type II and Ib supernovae are probably short-lived massive stars, while the progenitors of Type
Ia are long-lived low mass stars. As we will see in the following, these expectations are supported
by the theory of stellar evolution.

(a) Type Ia Supernovae As discussed earlier in this section, a star with initial mass Ms ∼<
Mup ≈ 8M� evolves into a C/O white dwarf with a mass ∼ 0.6M�. If such a white dwarf is part
of a close binary system with a red giant or another white dwarf, it can accrete material from
the companion. When the mass of the white dwarf reaches about 1.38M�, carbon is ignited in
the center of the degenerate C/O core (Woosley, 1990). This ignition produces a burning wave
in the star, converting about half of the C and O into iron-peak elements in about one second, giv-
ing rise to a Type Ia supernova. The light curve and spectrum of the supernova depend sensitively
on how fast the burning wave propagates through the star. The best agreement with observations
is achieved in the carbon-deflagration (C-deflagration) model in which the deflagration wave
propagates with a speed slightly smaller than the sound speed (Nomoto et al., 1984; Thielemann
et al., 1993). In this model, about 0.6M� of 56Ni is produced, which powers the light curve of
the supernova by the radioactive decay of 56Ni to 56Co and then to 56Fe. Because of the large
nuclear energy release, the star is completely disrupted, returning all its mass to the interstellar
medium.

Consider a binary of mass MB = M1 +M2, with M2 ≤ M1. In order for the primary, the initially
more massive star, to result in a Type Ia supernova we have that MB,min ≤ MB ≤ MB,max, with
MB,min ∼ 3M� and MB,max ∼ 16M�. The upper limit comes from the requirement that the mass
of each component of the binary cannot exceed 8M�, the maximum mass for producing a C/O
white dwarf. The lower mass limit is more uncertain; it is taken to be 3M� to ensure that the
primary star is massive enough that the C/O white dwarf eventually reaches the Chandrasekhar
limit by accretion from the companion.

The specific rate of Type Ia supernovae (i.e. the number of supernova explosions per unit mass
per unit time) depends on the formation rate of stars in the relevant mass range, as well as on the
fraction of such stars that end up in close binary systems. The specific rate of Type Ia supernovae
in a galaxy at time t can be written as

RIa(t) =
∫ MB,max/2

MB,min/2
dM1

φ(M1)
M�

∫ M1

Mmin,2

dM2 fB(M1,M2)ψ(t − τ2). (10.74)

Here Mmin,2 = max[0,MB,min−M1], φ(M) is the IMF normalized according to Eq. (9.33), ψ(t) is
the specific star-formation rate (i.e. the star-formation rate per unit mass) at t, and τ2 = τ(M2) is
the main-sequence lifetime of the companion star (which signals the time when the companion
starts to overflow its Roche lobe, resulting in a transfer of mass to the primary). The function
fB(M1,M2) indicates the fraction of stars of mass M1 that have a binary companion of mass M2
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at a separation sufficiently close to allow for a Type Ia supernova. Unfortunately, this function is
quite uncertain at the present, and one has to resort to simple empirical models to proceed.

Since the progenitors of Type Ia supernovae (C/O white dwarfs with a narrow mass range)
have quite uniform properties, the luminosities of Type Ia supernovae are found to be within a
narrow range around LB = 9.6×109 L�. Because of this uniformity, Type Ia supernovae can be
used as standard candles to measure cosmic distances (see §2.1.3).

(b) Type II Supernovae Type II supernovae are assumed to originate from stars with an initial
mass Ms ∼> Mup ≈ 8M�. As discussed above, such a massive star can develop an iron core during
its late evolution that collapses catastrophically. Whether the energy released by this implosion
results in a Type II supernova depends critically on the exact fraction of this energy (of the order
of only ∼ 1%) that is transferred to the stellar envelope. If all massive stars can produce Type II
supernovae, the rate is simply given by

RII(t) =
∫ Mu

Mup

φ(M)
M�

ψ(t − τM)dM, (10.75)

where Mu ∼ 100M� is the mass of the most massive stars. Since the lifetimes, τM , for these
massive stars are short, we may neglect them in the expression for RII(t), and write

RII(t)
ψ(t)

�
∫ Mu

Mup

φ(M)
M�

dM. (10.76)

For a Salpeter IMF, RII/ψ ∼ 0.01M�−1, which implies that about one Type II supernova is
produced for every 100M� of new stars formed. This rate is roughly consistent with observations
(see Table 10.2).

10.3 Stellar Population Synthesis

In §10.2 we have shown that the stellar evolution models can be used to predict the evolutionary
tracks of stars in the theoretical H-R (Teff-L) diagram. In this section, we describe how one can
assign a spectrum to a model star of given age and metallicity, and how the spectra of individual
stars can be synthesized to predict the spectrum of an entire stellar population.

10.3.1 Stellar Spectra

(a) Empirical Spectra There are two different approaches to obtain the spectrum of a star
with given L, Teff and metallicity. The first is empirical. Here one uses a sample of nearby
stars with measured (bolometric) absolute magnitudes, Mbol, effective temperatures, Teff, and
metallicities, Z, for which an accurate spectrum is available. The spectrum of a star with given
Mbol, Teff and Z can then be obtained by simple interpolation (or extrapolation) of the avail-
able data. In practice, the observed stars are characterized by their spectral types and luminosity
classes (see §2.2). Since the spectral energy distribution (SED) of a star is roughly Planckian,
there is a tight correlation between Teff and spectral type. The luminosity class is a measure
of the envelope size and atmospheric density of the star, and is therefore correlated with the
surface gravity, g ≡ GMs/r2

s , where Ms and Rs are the mass and radius of the star. Thus, an
interpolation in the Teff-g plane can be used to predict the spectrum for a model star with
given Teff and g. Libraries of observational stellar spectra for such purposes are available in
the literature (e.g. Gunn & Stryker, 1983; Pickles, 1998; Le Borgne et al., 2003). Fig.2.5 in
Chapter 2 shows examples of empirical stellar spectra for a number of typical spectral types.
As one can see, hot O and B stars emit most of their light in the UV, while cold K and M
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stars emit mostly in the optical and near-infrared. Spectral features, such as the Lyman break at
912Å in the spectra of OB stars, and the 4,000Å break in the spectra of redder stars, are clearly
visible.

This empirical method is limited by the fact that accurate spectra are only available for stars
in the solar neighborhood, which only sample a limited range of metallicities and abundance
ratios. Since extrapolation is not very reliable, another approach is required to predict the SEDs
for stars with metallicities and abundance ratios that differ significantly from those in the solar
neighborhood.

(b) Theoretical Spectra An additional approach to modeling stellar spectra, which, in princi-
ple, is unhindered by available data, is to use theoretical models of stellar atmospheres. As one
can see from Eq. (10.19), the temperature at the bottom of a stellar atmosphere is Teff, while the
pressure there can be determined by the surface gravity, g. Assuming the atmosphere to be in
both thermal and hydrostatic equilibrium, its density, temperature and ionization structures can
all be determined once Teff, g and the chemical composition are known. The specific intensity of
the radiation emerging from the surface of the atmosphere can then be obtained by following the
radiative transfer through the atmosphere and using the constraint that the total energy emitted
per unit time must be equal to the luminosity of the star. A detailed discussion of this problem
is beyond the scope of this book, and we refer the reader to Mihalas (1978) for a comprehensive
description. In practice, sophisticated stellar-atmosphere codes have been developed to predict
the spectra of stars covering wide ranges of metallicity, effective temperature and surface gravity
(e.g. Kurucz, 1992; Bessell et al., 1998; Allard & Hauschildt, 1995).

10.3.2 Spectral Synthesis

Consider now an ensemble of stars (e.g. a galaxy). The luminosity (at some given wavelength λ )
of the galaxy at any time t can formally be written as

Lλ (t) =
∫ t

0
L

(cp)
λ (t − t ′)Ψ(t ′)dt ′, (10.77)

where Ψ(t) is the star-formation rate (i.e. the mass that turns into stars per unit time), and

L
(cp)
λ (τ) is the luminosity per unit stellar mass of all stars of a coeval population (cp) of age

τ . It is easy to see that L
(cp)
λ can be written as

L
(cp)
λ (τ) =

∫
Lλ (m,τ)

φ(m)
M�

dm, (10.78)

where m is the mass of a star, φ(m) is the IMF normalized according to Eq. (9.33), and Lλ (m,τ)
is the luminosity of a star with initial mass m at age τ . As discussed above, the quantity Lλ (m,τ)
can be obtained from stellar evolution models. Thus, once the star-formation rate, Ψ(t), and the
IMF, φ(m), are specified, the SED at any given time can be obtained by summing the spectra of

coeval populations with different ages. Therefore, the spectra of coeval populations, i.e. L
(cp)
λ as

a function of τ , play a pivotal role in spectral synthesis modeling.
Fig. 10.5 shows the SEDs for coeval stellar populations at different ages. These distributions

can be understood qualitatively using the results of stellar evolution and stellar spectra. At an
age younger than ∼ 107 yr, the spectrum is almost completely dominated by the blue main-
sequence stars, which have strong emission in the UV due to their high effective temperatures.
At an age of about 107 yr, the most massive stars have already evolved off the main sequence
and become red supergiants, which causes a drop in UV flux and a rise in near-infrared flux
in the synthesized spectrum. From a few times 108 yr to about 1 × 109 yr, the AGB stars
maintain a relatively high flux in the near-infrared, while the UV flux continues to drop as
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Fig. 10.5. The predicted spectra of a coeval stellar population at ages 0.001, 0.01, 0.1, 0.4, 1, 4, and 13 Gyr.
The model assumes solar metallicity and a Salpeter IMF. [Based on data kindly provided by S. Charlot]

stars of lower masses evolve off the main sequence. After a few times 109 yr, stars on the
red giant branch take over as the main contributors of the near-infrared flux. The noticeable
rise in the far-UV flux after about 3–10 Gyr is produced by low-mass stars in their post-AGB
phase.

With the spectral energy distribution, we can obtain the broad-band luminosities and colors
for a galaxy using the photometric systems described in §2.1.1.

10.3.3 Passive Evolution

As a simple application of spectral synthesis modeling, consider a star-formation history that is

given by a simple delta function Ψ(t)∝ δ (t − tform), so that Lλ (t − tform) = L
(cp)
λ (t − tform). The

evolution of such a coeval stellar population is often called passive evolution, and, as we will see
in Chapter 13, is a reasonable approximation for the evolution of elliptical galaxies.

Fig. 10.6 shows how the broad-band luminosities and colors of a coeval stellar popula-
tion evolve with age. As one can see, the broad-band luminosities of such a population all
decrease with age, and the decrease is more rapid for a bluer band. This is mainly due to the
disappearance of bright main-sequence stars and supergiants during the course of evolution.
The galaxy also becomes redder with the passage of time, as more and more stars evolve off
the main sequence. As we have seen in §10.1.5, stars with masses larger than 1.25M� have
lifetimes shorter than 4 Gyr. Thus, any coeval population older than ∼ 4 Gyr contains only
stars with masses ∼< 1M�. Such stars emit most of their light when they are on the giant
branch in the H-R diagram, and so the integrated light from an old coeval population is dom-
inated by giant-branch stars. Furthermore, because the giant branch is located in the red part
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Fig. 10.6. The predicted B−V and V −K colors and mass-to-light ratios in the V and K bands for a coeval
population of stars as functions of age. The model assumes solar metallicity and a Salpeter IMF. [Based on
data kindly provided by S. Charlot]

of the H-R diagram, and since the effective temperature of the giant branch only depends
weakly on the masses of the corresponding stars, old coeval populations have a red color
that changes very slowly with time (see the upper two panels of Fig.10.6). Since the time
that a star with m < 1.25M� spends on the giant branch is much shorter than its main-
sequence lifetime, the integrated luminosity is determined by the number of stars that evolve
off the main sequence onto the giant branch. Suppose that the mass of the stars which evolve
onto the giant branch at time t is mGB(t) and that each star emits a total energy EGB(MGB)
when on the giant branch. Then the luminosity of the stellar population can approximately be
written as

L ∝ EGB(mGB)φ(mGB)
∣∣∣∣dmGB

dt

∣∣∣∣ , (10.79)

with φ(m) the IMF. In the neighborhood of m = 1M�, the main-sequence lifetime of a star is
related to its mass by tMS ≈ 10(m/M�)−3 Gyr (see §10.1.5), and so

mGB(t) ≈
(

t
10Gyr

)−1/3

M�. (10.80)
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Inserting this into Eq. (10.79), and assuming a power-law IMF, φ(m) ∝ m−b, one obtains that

d lnL
dln t

=
b
3
− 1

3

(
4+

dlnEGB

dlnmGB

)
. (10.81)

Stellar evolution models indicate that 0 ∼< dlnEGB/dlnmGB ∼< 1, and we thus see that the lumi-
nosity of an old, passively evolving stellar population will be declining with time as long as
b < 4. For a Salpeter IMF, which has b = 2.35, Eq. (10.81) implies that L ∝ (t − tform)−γ , with
0.55 ∼< γ ∼< 0.88. More detailed calculations show that the value of γ not only depends on the
IMF, but also on the metallicity of the stellar population and on the photometric passband (as is
evident from the lower two panels of Fig. 10.6). In the B-band, the stellar population models of
Worthey (1994), Vazdekis et al. (1996), and Bruzual & Charlot (2003) give 0.86 < γB < 1.0 for
a Salpeter IMF and −0.5 < [Fe/H] < 0.5.

10.3.4 Spectral Features

(a) Spectral Discontinuities As one can see in Fig. 10.5, the synthesized spectra of stellar
populations reveal several pronounced discontinuities, such as the Lyman break at 912Å and the
D(4000) break at 4000Å. The strengths of these breaks can be quantified as follows:

D(912) =
∫ 1100

1000
F(λ )dλ

/∫ 900

800
F(λ )dλ ; (10.82)

D(4000) =
∫ 4250

4050
F(λ )dλ

/∫ 3950

3750
F(λ )dλ , (10.83)

where the integration limits are in units of Å (Bruzual A., 1983). As one can inspect from
Fig. 10.5, the amplitude of the Lyman break for a coeval population of stars increases rapidly
at an age of 107 yrs when the most massive stars start to evolve off the main sequence. At an
age of about 109, substantial numbers of UV photons are generated again, as the main-sequence
turnoff mass drops below 2.5M� and the evolved stars spend more time in the post-AGB phase
(see §10.2.2). For a galaxy in which stars have formed over an extended period of time, rather
than in a single burst, the change in the amplitude of the Lyman break is significantly smaller
because of the dispersion in stellar age. Thus, a large amplitude of the Lyman break indicates that
star formation occurred recently, and on a short time scale. Unfortunately, a sharp break at 912 Å
in the spectrum of a real galaxy can also be produced by absorption due to neutral hydrogen in
the galaxy or the intergalactic medium. This complicates the interpretation of the Lyman break
in terms of the star-formation history of the galaxy in consideration.

The strength of the 4000 Å break for a coeval population is controlled mainly by the most
massive stars on the main sequence, and increases almost monotonically with time from about
107 yr to about 10 Gyr. The amplitude of this break can therefore be used to indicate the mean
stellar age of a galaxy, although it also depends significantly on metallicity.

(b) Spectral Indices Based on the theoretical spectra obtained from the spectral synthesis
model described above, one can define several spectral indices that are sensitive to the abun-
dance of certain elements and to the age of the stellar population. An example is the Lick indices
introduced by Faber et al. (1985). The properties of some of the spectral indices, as given in
Worthey et al. (1994) and Worthey & Ottaviani (1997), are listed in Table 10.3. Each index is
defined by a central band of width Δλ0 and two side bands. The side-band intensity, Is, is defined
to be the mean intensity over the two side bands, while the central-band intensity, Ic, is defined to
be the mean over the central band. Some indices, such as Hβ , HδA, Mgb, Fe1, Fe2, G and Na are
measured in terms of an equivalent width defined as W = (1− Ic/Is)Δλ0. Others, such as Mg1,
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Table 10.3. A subset of the spectral Lick indices.

Index Feature Central band [Å] First side band [Å] Second side band [Å]

G4300 CH 4282.625–4317.625 4267.625–4283.875 4320.125–4336.375
Mgb Mgb 5160.625–5192.625 5142.625–5161.375 5191.375–5206.375
Fe5270 Fe0,Ca0 5245.650–5285.650 5233.150–5248.150 5285.650–5318.150
Fe5335 Fe0,Cr0,Ca0 5312.125–5352.125 5304.625–5315.875 5353.375–5363.375
Na Na D 5878.625–5911.125 5862.375–5877.375 5923.875–5949.875
Hβ Hβ 4847.875–4876.625 4827.825–4847.875 4876.625–4891.625
HγA Hγ 4319.75–4363.50 4283.50–4319.75 4367.25–4419.75
HδA Hδ 4083.50–4122.25 4041.60–4079.75 4128.50–4161.00

Mg1 MgH 5069.125–5134.125 4895.125–4957.625 5301.125–5366.125
Mg2 MgH, Mgb 5154.125–5196.625 4895.125–4957.625 5301.125–5366.125
TiO1 TiO 5938.375–5995.875 5818.375–5850.875 6040.375–6105.375
TiO2 TiO 6191.375–6273.875 6068.375–6143.375 6374.375–6416.875

Mg2, TiO1 and TiO2 are measured in terms of a magnitude defined as −2.5log(1− Ic/Is). The
hope is that a systematic study of such indices and other spectral features can help to understand
the properties of the underlying stellar population, such as age and metallicity.

10.3.5 Age–Metallicity Degeneracy

The main goal of the spectral evolution models described above is to use the observed spectra of
galaxies to constrain their age and metallicity, or, more precisely, their star-formation history and
element abundances. Unfortunately, there is a fundamental limitation to this, which arises from
a degeneracy between stellar age and metallicity. As shown in §10.1.4, the evolution of a star
with a given initial mass in the L-Teff diagram depends on its chemical composition: stars with
higher metallicities evolve faster. As a result, a population of young stars with a relatively high
metallicity has a SED that looks very similar to that of an older population with lower metallicity.
Detailed population synthesis calculations show that two stellar populations with the same τZ3/2

(where τ is the age and Z is the metallicity) have virtually identical colors. In order to break this
age–metallicity degeneracy one has to use additional information that probes the fine structure of
the SED. The spectral indices defined above are ideally suited for this. The strength of the Balmer
lines, such as Hβ and Hγ , are more sensitive to stellar age, while the metal line strengths, such
as Mgb, Fe1 and Fe2, are more sensitive to metallicity. Therefore, measurements of these line
indices can be used to break the age–metallicity degeneracy (see e.g. Worthey, 1994).

10.3.6 K and E Corrections

Because of the expansion of the Universe, the observed SED of a galaxy is redshifted with respect
to the rest-frame SED. Thus, when we use a given waveband to image galaxies at different red-
shifts, we are in fact looking at these galaxies in different rest-frame wavebands. Consequently,
even two identical galaxies will appear to have different absolute luminosities in the same obser-
vational waveband, if they have different redshifts. Therefore, in order to allow for meaningful
comparisons between galaxies at different redshifts, one needs to correct their magnitudes to a
common rest-frame waveband. Such corrections are called K corrections.

Consider a galaxy whose rest-frame SED is given by L(νe), which is defined so that L(νe)dνe

is the energy emitted by the galaxy in the frequency range νe → νe +dνe per unit time, and denote
the observed flux by f (νo)dνo. In the absence of absorption, energy conservation implies that
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f (νo)dνo =
L(νe)dνe

4πd2
L

where νo = νe(1+ z)−1, (10.84)

or

f (νo) =
L(νe)
L(νo)

(1+ z)
L(νo)
4πd2

L

, (10.85)

with dL = dL(z) the luminosity distance out to redshift z (see §3.1.6). Consider a photometric
waveband ‘j’ centered at νo. Then, in terms of magnitudes, we have that the observed appar-
ent magnitude, m j, is related to the absolute magnitude M j that corresponds to the rest-frame
waveband ‘j’, as

m j = M j +5log

[
dL(z)
10pc

]
+Kj(z), (10.86)

where Kj(z) is the corresponding K correction, defined by

Kj(z) = −2.5log(1+ z)−2.5log

[
L(νe)
L(νo)

]
. (10.87)

The first term on the right-hand side of this equation represents the stretch of the waveband due
to redshift, i.e. from (dνe/dνo), while the second term represents the difference between the
intrinsic spectral energies at ν = νe and ν = νo. If we neglect the evolution in galaxy spectra and
if we assume that galaxies of the same class (e.g. Hubble type) all have a similar SED, we can
obtain the form of L(νe) for a class by observing the spectra of local galaxies for which redshift
effects are negligible. Such spectra can then be used as templates to calculate the K corrections
for the galaxies of the same class at higher redshift (e.g. Coleman et al., 1980).

Because stars evolve, the intrinsic SED of a galaxy will change with time (redshift), even if no
new stars form. Such evolution is called passive evolution. Therefore, in order to check whether
or not galaxies evolve with time only passively, one needs to correct the magnitudes of galaxies
observed at different redshifts. Such corrections are called E corrections. Formally we can write
the E correction as

E j(z) = −2.5log

[
L(νe, t)
L(νe, t0)

]
, (10.88)

where L(νe, t) is the SED at time t = t(z), while L(νe, t0) is that at the present time. Such E cor-
rections can be obtained using the spectral synthesis models described above. In addition to
correcting for passive evolution, one can also use this technique to E-correct the magnitudes for
any other star-formation history, if needed.

10.3.7 Emission and Absorption by the Interstellar Medium

Real galaxies are not made solely of stars. Rather, the stars are embedded in an interstellar
medium (ISM) consisting of gas (both hot and cold) and dust. In order to interpret the observed
spectra of galaxies, spectral synthesis models based purely on stellar spectra are insufficient. We
also need to understand how the stellar spectra are attenuated by the ISM. Such attenuations are
expected to be more important in gas-rich galaxies, such as present-day late-type galaxies and
young galaxies at high redshift, but the details depend on the physical state of the ISM. Obser-
vations show that the ISM in local late-type galaxies in general has a very complex structure,
making it extremely difficult to accurately model the ISM and its interactions with the interstel-
lar radiation field. Extensive discussions about the properties of the ISM and related astrophysics
can be found in Kaplan & Pikelner (1970), Spitzer (1978), and Osterbrock (1989). In this sub-
section, we select two topics that are most relevant for the interpretation of galaxy spectra: the
emission of HII regions and the emission and extinction due to dust.
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(a) Emission from HII Regions HII regions in galaxies are usually observed to be associated
with OB stars whose UV radiation is believed to cause the photoionization of the surrounding
ISM. In a static state, the number of ionizing photons emitted per unit time, Ṅion, has to be
balanced by the recombination rate, so that

Ṅion = αBNpNeV, (10.89)

where V is the volume of the HII region, and the medium is assumed to be uniform with proton
density Np and electron density Ne. The recombination coefficient αB in the above equation
refers to that of Case B (see §B1.3) for the reasons to be explained below.

In a HII region, a hydrogen nucleus can recombine with a free electron to form a hydrogen
atom. If the capture is to an excited state, the atom will cascade to the ground state, emitting
line photons. Direct recombination to the ground state produces a Lyman continuum photon. If
the optical depth of the HII region is small for the recombination photons (Case A), they will
escape the HII region without causing further ionizations or excitations. In the opposite case
(Case B), in which the optical depth of the HII region is large, the recombination photons will be
absorbed, causing further ionizations or excitations of the gas. For real HII regions, Case B may
be a better approximation, although the real situations must always be somewhere between the
two. Under Case B, recombination to the ground state must always proceed through the emission
of a Balmer series photon (see Fig. B1.1) and a transition from the n = 2 level to the ground
state, possibly (but not necessarily) accompanied by some lower-series photons (Pα , etc.). The
decay from the n = 2 state to the ground state is either through 2P → 1S with the emission of
a Lyα photon, or through 2S → 1S. The latter process must be accompanied by the emission of
two continuum photons, in order to conserve angular momentum. Since the two-photon process
(which is forbidden to the first order) is not very effective, a Lyα line should still be produced by
recombination, even for HII regions that are optically thick to Lyα photons.

The emissivity of a given recombination line is given by

εnn′ =
hPνnn′

4π

n−1

∑
L=0

∑
L′=L±1

NnLAnL,n′L′ , (10.90)

where NnL is the population density of the state with principal quantum number n and angular
quantum number L, AnL,n′L′ is the spontaneous transition coefficient from level (nL) to level
(n′L′), and the second summation takes account of the selection rule ΔL = ±1 that applies for a
one-electron system. It is convenient to define an effective recombination coefficient for the level
in consideration:

NpNeαeff
nn′ =

n−1

∑
L=0

∑
L′=L±1

NnLAnL,n′L′ =
4πεnn′

hPνnn′
. (10.91)

In order to obtain the emissivity (or equivalently, the effective recombination coefficient), we
need to know the population density of the ionization state in question. In general, we can write

NnL = bnL(2L+1)
(

h2
P

2πmkBT

)3/2

eEn/kBT NpNe, (10.92)

where En is the energy at level n, and bnL = 1 if the system is in thermodynamic equilibrium.
If the gas temperature, T , is different from that required to maintain thermodynamical equilib-
rium among different levels, the value of bnL has to be obtained from the equation of statistical
equilibrium:

NpNeαnL(T )+
∞

∑
n′>n
∑
L′

Nn′L′An′L′,nL = NnL

n−1

∑
n′=n0

∑
L′

AnL,n′L′ , (10.93)
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where αnL is the recombination coefficient to the level nL. The summation on the right-hand side
starts from level 1 (n0 = 1) for Case A, and from level 2 (n0 = 2) for Case B. Inserting Eq. (10.92)
into the above equation we obtain

αnL

(2L+1)

(
2πmkBT

h2
P

)3/2

e
− En

kBT +
∞

∑
n′>n
∑
L′

bn′L′An′L′,nL = bnL

n−1

∑
n′=n0

∑
L′

AnL,n′L′ . (10.94)

This equation expresses bnL in terms of bn′L′ with n′ > n. Since the population density must
change continuously from the discrete states to the continuum state in an ionized gas of temper-
ature T , we expect the population of a very high level (n → ∞, En → 0) to be approximately that
at thermodynamic equilibrium. The above equation can then be solved downward in n for bnL,
starting from some high n where bnL ≈ 1. Inserting these solutions into Eq. (10.92) to get NnL

and using Eq. (10.91) one obtains αeff
nn′ for a given gas temperature T . With this procedure, the

emissivity for any given recombination line can be obtained (see Osterbrock, 1989).
If the HII region is optically thin to the line in question, the line luminosity is simply

Lnn′ ≡ 4πεnn′V = hPνnn′VNpNeαeff
nn′ = hPνnn′

(
αeff

nn′
αB

)
Ṅion, (10.95)

where the last equation follows from Eq. (10.89). For example, for T ∼ 104 K and an electron
density of Ne < 106 cm−3, the luminosities in the Hα and Hβ lines are

LHα = 0.450hPνHα Ṅion, (10.96)

LHβ = 0.117hPνHβ Ṅion. (10.97)

Because recombination to the ground state in Case B must proceed through the n = 2 level, the
Lyα emission is determined by the difference between the Case B recombination coefficient αB

and the effective recombination coefficient to 2S. For T ∼ 104 K and Ne < 104 cm−3, αeff
2S =

0.838×10−13 cm3 s−1, so that

LLyα = 0.676hPνLyα Ṅion. (10.98)

Thus, by measuring the luminosity of a HII region in a recombination line, one can in principle
infer the rate Ṅion which, in turn, can be used to infer the number of OB stars that generate the
ionizing photons. Since OB stars are short lived, their number is directly related to their birth rate.
Eq. (10.95) therefore provides the principle for deriving the star-formation rate in a star-forming
region from its recombination line strengths (see §10.3.8 below).

The above description serves as a simple example for how to calculate the emission line spectra
of gaseous nebulae. A more extensive treatment can be found in Osterbrock (1989).

(b) Dust Extinction Most of the dust in galaxies is believed to be produced in the envelopes of
AGB stars and injected into the ISM through stellar winds, although supernovae may also make a
significant contribution. The presence of dust in the ISM of our own Galaxy can be inferred from
the extinction and polarization of starlight (see e.g. Mathis, 1990). In general, the strength of dust
extinction increases with decreasing wavelength in the range from the infrared to the UV, and so
dust extinction causes the spectrum of a source to become redder. By measuring the reddening
of stars with known (intrinsic) spectra, one can in principle infer the amount of dust in the ISM
of our Galaxy. In practice, this also requires knowledge of the extinction law, which describes
the variation of extinction with wavelength. For galaxies in which the individual stars cannot be
resolved, one may infer the presence of dust either by studying the reddening in the composite
spectrum, or from the infrared emission produced by the dust.

Because of interstellar dust, the spectrum we observe from a galaxy is not the original stellar
spectrum. Such extinction must be taken into account when interpreting an observed spectrum in
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terms of stellar populations. In general, the strength of dust extinction along a given line-of-sight
can be described by the optical depth τλ :

Iλ = Iλ0e−τλ , (10.99)

where Iλ0 is the intensity at the wavelength λ that would be observed in the absence of extinc-
tion, and Iλ is the observed intensity. Conventionally, dust extinction is expressed in terms of an
empirical extinction law,

k(λ ) ≡ Aλ
E(B−V )

≡ RV
Aλ
AV

, (10.100)

where Aλ = (2.5loge)τλ is the change in magnitude at wavelength λ due to extinc-
tion, E(B−V ) ≡ AB −AV is the color excess measured between the B and V bands, and
RV ≡ AV /E(B−V ). Note that sometimes the extinction law is defined as

k′(λ ) ≡ E(λ −V )
E(B−V )

= k(λ )−RV . (10.101)

The advantage of working with RV and k(λ ) or k′(λ ) is that they are insensitive to the total
amount of dust along a line-of-sight, which is often expressed in terms of the dust-to-gas ratio,

ξ ≡ τV /N21 ≈ 0.921RV E(B−V )/N21, (10.102)

where N21 is the column density of neutral gas (HI and H2) along the line-of-sight in units of
1021 cm−2. With the above formulation, the dust extinction, Aλ , along a line-of-sight can be
determined from the observed neutral hydrogen column density, once the dust-to-gas ratio, the
value of RV , and the form of the extinction law k(λ ) are known.

The extinction law depends on the physical properties (i.e. sizes and chemical composition)
of the dust grains, and can be different from galaxy to galaxy, or even, within a given galaxy,
from location to location. Empirical determinations of the wavelength dependence of interstellar
extinction have been carried out for the Milky Way, the LMC and the SMC (see Fig. 10.7). They
are quite similar for λ ∼> 2,600Å, but there is a marked difference at shorter wavelengths. Note
that the curve for the Milky Way has a strong feature at 2,175Å (believed to be produced by
graphite dust grains), which is weak for the LMC and almost absent for the SMC. The corre-
sponding values of RV are ∼ 3.1 for the MW and the LMC, and ∼ 2.7 for the SMC, although
the scatter among different sight-lines is quite large (e.g. Cardelli et al., 1989). These differences
indicate that the dust compositions in these galaxies are different.

In order to accurately model the dust extinction of a galaxy, one needs to know how dust
grains and stars are distributed in the galaxy. Statistically, dust extinction may be described by
the distribution of the optical depths, P(τλ )dτλ , which gives the probability that a sight-line to
a star has an optical depth in the range τλ ±dτλ/2. If the τλ distribution is the same for stars of
different types, the transmission function for the galaxy can be written as

Tλ ≡ Lλ
Lλ0

=
∫ ∞

0
dτλP(τλ )e−τλ , (10.103)

where Lλ is the observed luminosity, and Lλ0 is the luminosity in the absence of dust extinction
(Charlot & Fall, 2000). If we know the extinction curve, we can infer P(τλ ) from the dust
column density distribution P(Nd) which, for a given dust-to-gas ratio, is equivalent to the
column density distribution of neutral gas. The dust column density distribution can be obtained
if the dust distribution is known. For example, if the dust distribution is a uniform screen in front
of all stars, then

P(Nd) = δ (Nd −Nsc
d ), (10.104)
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Fig. 10.7. The extinction laws, defined in terms of the ratio of color excesses, for the Milky Way (MW), the
Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC). These are based on data published
in Seaton (1979) and Howarth (1983) in the case of the MW, in Koornneef & Code (1981) in the case of the
LMC, and in Bouchet et al. (1985) in the case of the SMC.

where δ is the Dirac delta function and Nsc
d is the dust column density of the screen. If dust grains

have the same properties along all lines-of-sight, the transmission function is just

Tλ = exp(−τsc
λ ), (10.105)

where τsc
λ is the optical depth of the screen.

If stars of different types have different distributions relative to the dust, the dust column
density distribution and transmission function should be calculated separately for each type. This
can be understood using the following simple example. Suppose that we have two groups of stars,
each containing the same number of stars that are identical within the group but have different
properties from the other group. Suppose that the dust distribution is an opaque screen and half
of the total stars are in front of the screen and the other half behind it. The dust column density is
therefore either zero or infinity, with equal probability. If stars in the two groups have the same
distribution relative to the screen, then half of the stars in each group will be observed. If, on the
other hand, one group is in front of the screen while the other is behind it, we only observe stars
in one group. The resulting spectra will obviously be different in these two cases, although there
is no change in the overall dust column density distribution. Although this particular example is
obviously unrealistic, it may well be that young stars are located in regions with more dust than
old stars, clearly complicating the treatment of dust extinction.

For a population of galaxies which, in a statistical sense, have identical compositions and
distributions of dust, one may derive an effective extinction law that can be applied without
having to model the detailed dust distribution. Such an analysis has been carried out for local
starburst galaxies by Calzetti et al. (1994). For this particular population of galaxies, the UV
continuum can be approximated by a power law, F(λ ) ∝ λβ , and the power index β is found to
be linearly correlated with
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τB ≡ ln

[
F(Hα)/F(Hβ )

2.86

]
, (10.106)

where F(Hα) and F(Hβ ) are the intensities of the Hα and Hβ emission lines. In the absence of
dust extinction, F(Hα)/F(Hβ ) ≈ 2.86, so that τB is a measure of the amount of dust extinction.
Calzetti et al. divided their galaxies into several groups according to the value of τB. They used
the group with the lowest value of τB as the ‘unreddened’ template, and examined the average
spectrum in each of the other groups relative to the template spectrum. For each group this
resulted in an effective extinction law given by

Qn(λ ) =
τn(λ )

τB,n − τB,1
, τn(λ ) ≡−ln

[
Fn(λ )
F1(λ )

]
, (10.107)

where a subscript ‘n’ refers to a certain group, with n = 1 the template group. Defined in this
way, the effective extinction law is a measure of τ(λ )/τB. Once τB is observed for a given galaxy
(either directly or using the τB-β relation), the effective extinction law can be used to estimate
the amount of dust extinction.

So far we have described dust extinction in terms of empirical models. However, there have
also been numerous efforts to understand dust extinction laws in terms of the physical properties
of the dust. Detailed observations of dust absorption in the Milky Way, from the near-infrared
to the UV, have revealed interesting spectral features in the extinction curve (see Fig. 10.8). For
example, the broad peak around 2,175Å is believed to be caused by graphite dust grains, while
the features at 10μm and 18μm are best explained as due to silicate dust grains. Consequently,
many models of dust absorption in galaxies have focused on these two types of dust grains, and
the corresponding absorption cross-sections have been calculated as a function of grain size under
various approximations (e.g. Mathis et al., 1977; Draine & Lee, 1984). A theoretical extinction
curve can then be derived from these cross-sections together with an assumption regarding the
size distribution of the dust grains and an assumption about the relative abundances of the two
types of dust grains. The size distribution is usually assumed to be a power law, dn/da ∝ a−3.5

with a in the range from 0.005μm to 0.25μm. The relative abundance has to be tuned to match
the observed extinction law. In the case of the Milky Way, this suggests roughly equal abundances
of graphite and silicate grains (Fig. 10.8), while successively lower fractions of graphites are
required for the LMC and the SMC.

(c) Dust Emission Dust grains are heated when absorbing photons. The temperature of the
interstellar dust therefore depends on the local radiation field, and ranges from ∼ 20–40K in the
diffuse ISM to ∼ 100–500K in star-forming regions. Temperatures as high as ∼ 1,000K may also
be possible but only for small grains (a < 100Å) that are transiently heated by the absorption of
single photons. Thus, interstellar dust is expected to radiate in the wavelength range from mid- to
far-infrared. The SED of the dust emission is commonly expressed in terms of the dust emission
curve, which is defined to be the ratio between the emission intensity along a line-of-sight and the
corresponding hydrogen column density. Such an emission curve, obtained from the local ISM,
is shown in the lower panel of Fig. 10.8. The observed dust emission curve can be understood in
terms of three main components. Big grains with a > 100Å, which are large enough to maintain
thermal equilibrium with the local radiation field, have a SED that can be approximated by that
of a gray body at a given temperature. Such grains dominate the emission at the far-infrared
(λ ∼> 50μm). Small grains with a ∼< 100Å, which can transiently be heated by absorption of
single photons to a temperature as high as ∼ 1,000K (Guhathakurta & Draine, 1989), can make
a significant contribution to the emission in the mid-infrared (λ ∼ 20–50μm). In addition to the
normal dust grains, polycyclic aromatic hydrocarbons (PAHs), which are transiently heated by
UV photons, dominate the emission in the wavelength range λ ∼ 3–10μm, producing the strong
bands at 3, 6, 8 and 11μm due to the vibrational modes of C–C and C–H bonds (e.g. Desert et al.,
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Fig. 10.8. The dust extinction curve (upper panel) and dust emission curve (lower panel) obtained from the
local diffuse ISM. The solid curves are theoretical predictions by Silva et al. (1998) assuming three dust
components: large grains in thermal equilibrium with the local radiation field, small grains which can be
transiently heated, and polycyclic aromatic hydrocarbons (PAHs). The dashed curves are the predictions
given by Draine & Lee (1984) assuming only the first component. [Adapted from Silva et al. (1998) by
permission of AAS]

1990). The dust emission is assumed to be the sum of the SEDs of these three components, and
the parameters of the model are usually tuned to fit the extinction and emission properties of the
local diffuse ISM (Fig. 10.8).

10.3.8 Star-Formation Diagnostics

The population synthesis models described above can be used to translate certain properties of a
galaxy’s SED into a star-formation rate (SFR). In this subsection we discuss the most important
diagnostics that are used to probe the star-formation rates of galaxies (see Kennicutt, 1998a, for
more detailed discussion). As we will see, each of these diagnostics has its own pros and cons.
In general, more accurate results are obtained by using a combination of various diagnostics,
although this is observationally expensive, and often difficult for practical reasons.

(a) UV Continuum As we have seen in §10.1.5, massive stars with masses Ms ∼> 5M� have
main-sequence lifetimes ∼< 108 yr, much shorter than the typical age of a galaxy. Therefore, the
number of massive stars in a galaxy is directly proportional to its current star-formation rate
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(SFR). Since massive stars emit most of their energy as UV continuum radiation, the UV lumi-
nosity of a galaxy can in principle be used as a diagnostic of its current SFR, as long as the
radiation manages to reach the observer without being absorbed. The optimal UV wavelengths
to probe a galaxy’s SFR are in the range 1250–2500Å, short enough to minimize the contam-
ination due to older stellar populations, and long enough to prevent significant absorption due
to hydrogen along the line-of-sight. Note, however, that these wavelengths are only accessible
from the ground for galaxies in the redshift range 1 ∼< z ∼< 5, because of the transmission of the
atmosphere and the cosmological redshift. For lower redshift galaxies, space telescopes have to
be used instead.

The conversion from the UV luminosity in the above mentioned wavelength range to a SFR
can be derived from spectral synthesis models. Since the UV light is dominated by stars with
Ms ∼> 5M�, while the total mass of newly born stars is dominated by stars with lower masses,
the conversion from UV luminosity to SFR is sensitive to the assumed form of the IMF. For a
Salpeter IMF, the SFR (for stars in the mass range 0.1–100M�) is related to the UV luminosity as

Ṁ�

M� yr−1 ≈ 1.4×10−28
(

LUV

ergs−1 Hz−1

)
, (10.108)

where LUV is the luminosity within the wavelength range 1500–2800Å. This calibration is valid
for galaxies in which the star-formation time scale is ∼ 108 yr or longer. For a burst with dura-
tion < 108 yr, Eq. (10.108) may underestimate the SFR, because the star-formation time scale is
overestimated. In this case a re-calibration of the Ṁ�-LUV relation is required.

In addition to the dependence on the unknown form of the IMF, the main drawback of the UV
diagnostic is its sensitivity to dust extinction. In particular, the dust distribution in real galax-
ies can be quite clumpy, and it may well be that star formation preferentially occurs in highly
obscured regions. In that case the total UV luminosity may be dominated by the radiation coming
from the older population (mainly blue horizontal branch and post-AGB stars) and thus be a poor
diagnostic of the actual SFR. This potential correlation between the local amount of extinction
and the local star-formation rate makes any correction for extinction extremely problematic.

(b) Nebular Emission Lines The interstellar medium in the neighborhood of young, massive
stars is ionized by the Lyman continuum photons produced by these stars, thereby giving rise
to HII regions. The recombination of this ionized gas produces hydrogen emission lines, which
can be used as a SFR diagnostic because their flux is proportional to the Lyman continuum flux
produced by the young, massive stars.

The nebular line most commonly used is the Hα line of hydrogen, but other lines, such as
Hβ , Pα , Pβ , Brα , and Brγ can also be used. Only stars with masses Ms ∼> 10M� (lifetimes

∼< 2× 107 yr) contribute significantly to the Lyman continuum luminosity, and so the strength
of a nebular emission line is almost an instantaneous measure of the SFR. The conversion from
nebular-line strength to SFR can be obtained from spectral synthesis models. For solar abun-
dances and a Salpeter IMF (for stars in the mass range 0.1–100M�), the conversion between Hα
luminosity and SFR is given by

Ṁ�

M� yr−1 ≈ 7.9×10−42
(

LHα
ergs−1

)
. (10.109)

Because the Hα luminosity is a measure of the formation rate of massive stars with Ms ∼>
10M�, the derived SFR is again sensitive to the assumed IMF. In addition, dust extinction may
also cause systematic errors, because the efficiency of dust absorption at the Hα wavelength may
not be negligible. If the Hβ line is also measured, one may use Eq. (10.106) to correct for dust
extinction. Alternatively, one can also use recombination lines in the infrared, which are less
affected by dust extinction, although these lines are usually much weaker.
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(c) Forbidden Lines For galaxies with redshifts z ∼> 0.5, the Hα emission line is redshifted
out of the optical waveband. Probing their SFR using emission lines therefore requires another
strong emission line blueward of Hα . The strongest emission feature in the blue is the [OII]λ3727
forbidden-line doublet. Unfortunately, the luminosities of forbidden lines depend not only on the
local radiation field, but also on the ionization state and metallicity of the interstellar medium.
Consequently, the flux in forbidden lines is not directly related to the UV luminosity produced
by massive young stars. Despite of this, it is found that the [OII] emission is sufficiently well
behaved that it can be calibrated empirically (through Hα at z∼ 0.5) to trace the SFRs in galaxies
out to z ∼ 1.6 (at higher redshifts even [OII] shifts out of the optical). Such calibrations give

Ṁ�

M� yr−1 ≈ 1.4×10−41
(

LOII

ergs−1

)
. (10.110)

Since this relation is calibrated through Hα , it adds all the uncertainties of the LHα -Ṁ� relation
to its own substantial intrinsic uncertainties.

(d) Far-Infrared Continuum Typically the ISM associated with a star-forming region can be
quite dusty, so that a significant fraction of the UV luminosity produced by massive young stars
can be absorbed. This radiation heats the dust and is subsequently re-emitted in the far-infrared
(FIR). Since the absorption efficiency of dust is strongly peaked in the UV, the FIR luminosity
of a galaxy is often used as an additional SFR diagnostic. Unfortunately, this diagnostic suffers
from various uncertainties as well. First of all, the conversion from an observed FIR luminosity to
a UV luminosity depends on the opacity of the dust. If the dust is not optically thick, one needs
to specify the fraction of UV photons that can escape unextincted. In principle, this problem
can be avoided by combining the FIR flux with a measurement of the UV flux, if available.
Secondly, observations show that the FIR spectra of galaxies contain both a ‘warm’ component
(λ ∼ 60μm) associated with dust around star-forming regions, and a cooler and more extended
‘cirrus’ component (λ ∼> 100μm) in which dust is heated not only by the UV radiation from
massive young stars but also by the visible light from old stars. Thus, the cirrus component
has to be excluded from the FIR luminosity in order to estimate the SFR. In general, these two
uncertainties are difficult to quantify.

However, the FIR emission should be a good measure of the SFR for the population of star-
burst galaxies, which, by definition, have a significant fraction of their total stellar mass generated
within a short period around the time of observation. In these systems, the FIR emission is there-
fore predominantly caused by young stars. Furthermore, starbursts are in general very dusty,
and a very large fraction of the UV photons radiated by massive young stars are absorbed and
re-emitted in the FIR. For starbursts with ages in the range of 10–100Myr, stellar population
synthesis models that assume a standard Salpeter IMF predict the following relation between
SFR and FIR luminosity:

Ṁ�

M� yr−1 ≈ 4.5×10−44
(

LFIR

ergs−1

)
(for starbursts), (10.111)

where LFIR is the luminosity over the wavelength range 8–1000μm.

10.3.9 Estimating Stellar Masses and Star-Formation Histories of Galaxies

The population synthesis model described above can be used to predict the SEDs of galaxies
from their star-formation histories. For the purpose of understanding galaxy formation and evo-
lution, the inverse problem is actually more interesting: how can one infer the physical properties
of galaxies (e.g. stellar masses and star-formation histories) from quantities that are directly
observable? As we have seen above, the observable quantities, such as the luminosity and spec-
trum of a galaxy, are the convolutions of the star-formation history, initial mass function (IMF),
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Fig. 10.9. The left-hand panel shows exponential star-formation histories of the form (10.112) for three
different values of the characteristic time scale for star formation, τ�, as indicated . The middle panel shows
the evolution of the corresponding B−V colors, obtained using the spectral evolution models of Bruzual &
Charlot (2003), assuming a Salpeter IMF. The right-hand panel shows the corresponding evolution of the
I-band mass-to-light ratios, ϒI . [Kindly provided by Y. Lu]

dust extinction, and other quantities that characterize the formation and evolution of the galaxy.
Hence, it should not come as a surprise that the inverse problem is highly degenerate. Conse-
quently, careful analysis is required in order to identify the observables that are best suited for
deriving the quantities of interest. As seen above, some emission line strengths and the luminosity
in the UV and FIR can be used as diagnostics for the current star-formation rate in a galaxy. Here
we describe how the stellar population synthesis models described above can be used to develop
methods to derive the stellar masses and star-formation histories of galaxies from observations.

Using a population synthesis model and assuming various star formation histories, Bell & de
Jong (2001) have shown that the stellar mass-to-light ratio, ϒ, of a galaxy is tightly correlated
with its color in the optical bands, but depends only moderately on the star-formation history.
This is evident from Fig. 10.9, which shows the B−V colors and I band mass-to-light ratios as
function of time for stellar populations that have star-formation histories of the form

Ψ(t) =
1
τ�

exp

(
− t
τ�

)
, (10.112)

for three different values of the characteristic time scale for star formation, τ�, as indicated. The
middle panel of Fig. 10.9 shows that a given B−V color can correspond to stellar populations
with different combinations of t and τ�. For example, for τ� = 1, 3 and 10Gyr, a color B−V = 0.5
corresponds to population ages of t = 2.7, 5.2 and 10.8Gyr, respectively (for the Salpeter IMF
adopted here). However, as is evident from the right-hand panel of Fig. 10.9, the I band mass-to-
light ratios of these three different populations are remarkably similar at ϒI ∼ 1.0±0.3M�/L�.
As shown by Bell & de Jong (2001), the ϒ color relation is well approximated by logϒX =
aX + bX × color, where aX and bX are two constants which depend both on the photometric
band in question, X , and on the adopted color. The slope, bX , is rather insensitive to the assumed
IMF and dust reddening. The normalization, aX , though, depends critically on the shape of the
IMF at the low-mass end. This is due to the fact that low-mass stars contribute significantly to
the mass, but insignificantly to the luminosity and color of a stellar system. These results suggest
that the optical broad-band colors may provide a reliable estimate of the stellar mass-to-light
ratio, and hence the stellar mass of a galaxy, once the normalization of the ϒ color relation is
fixed either by adopting an IMF or by independent measurements of the stellar masses. Indeed,
ignoring the uncertainty on the IMF, the typical error of the stellar mass-to-light ratio predicted
with this method is about 0.1 dex in optical bands, and about 0.1–0.2 dex in the near-infrared.
Values for aX and bX for different photometric bands, different colors, and different IMFs are
presented in Bell et al. (2003b).
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Based on stellar population synthesis models, Kauffmann et al. (2003b) find that the two
stellar absorption-line indices, Dn(4000), which are defined in a way similar to D(4000) [see
Eq. (10.83)] but with narrower bands (3850–3950 Å, 4000–4100 Å), and the Balmer absorption-
line index HδA (defined in Table 10.3) can be used to constrain star-formation histories, dust
attenuation and stellar masses of galaxies. The strength of the 4000 Å break is an indicator of
the mean stellar age of a galaxy, as described in §10.3.4, while strong Hδ absorption lines arise
in galaxies that experienced a burst of star formation that ended about 0.1–1 Gyr ago. Together,
these two indices allow one to constrain the mean stellar ages of galaxies and the fractional stel-
lar mass formed in bursts over the past few Gyr. Since the overall intrinsic SED of a galaxy with
a given total stellar mass is predominantly determined by the mean stellar age and the recent
burst strength, a comparison of the predicted SED with the broad-band photometry then yields
estimates of dust attenuation and stellar mass. For a given IMF, the typical 95% confidence range
for the estimated stellar masses is ±40% (see Kauffmann et al., 2003b).

Finally, there have also been attempts to use the full spectrum to constrain the star-formation
histories and stellar masses of individual galaxies (e.g. Panter et al., 2007). In such analyses, the
star-formation history of a galaxy is either parameterized by some simple functional forms, or
sampled in broad time bins. The observed spectrum is then fitted to the population-synthesized
spectrum to infer the star-formation history and the stellar mass. As for the other two methods
described above, this method is also limited by the uncertainties in the stellar population model,
in the choice of the IMF, and in the treatment of the dust attenuation.

10.4 Chemical Evolution of Galaxies

In §10.2.3 we have seen that stars may return substantial fractions of their initial masses to
the ISM at the end of their lifetimes through stellar winds and supernova explosions. Since the
returned material is enriched in metals, this process can change the metallicity of the interstellar
gas, thereby affecting the properties of the ISM. In this section, we first examine the chemical
production of individual stars, and then use the results to model the chemical enrichment of
galaxies.

10.4.1 Stellar Chemical Production

The mass ejection from a star of initial mass Ms (and some initial chemical composition) can be

described by its lifetime τ(Ms) and by M(ej)
j (Ms), the total mass of element j ejected from the

star, where the dependence of these quantities on the initial chemical composition is implicitly

implied. The values of τ(Ms) and M(ej)
j (Ms) can, in principle, be calculated from stellar evolution

models. However, it should be pointed out that this part of the theory involves modeling stars
during their late evolutionary stages and some of the results are still fairly uncertain.

(a) Metal Production by Low-mass Stars Stars with initial masses Ms ∼< 8M� end up as C/O
white dwarfs after their AGB phases (see §10.2). These white-dwarf remnants have masses in
the range 0.4–1.4M� (with a typical mass ∼ 0.6M�), and so the progenitor stars return most
of their initial mass to the ISM. Observations show that a low-mass star can lose mass rapidly
once it reaches the red-giant tip of the AGB, where mass loss is driven by stellar winds generated
by radiation pressure from the star. Since metals (C, O and α elements) are synthesized by
He-burning in the stellar core, one might think that these metals are locked up in the white
dwarf so that low mass stars can only enrich the ISM with He. However, because of convection,
metals produced below the He-burning shell can be brought up to the envelope by a process
called dredge-up. In fact, the existence of carbon stars (most or them are M giants) suggests
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Table 10.4. The ejected masses (in M�) from winds and Type II SNe for stars with solar
metallicity. [Based on data published in Marigo et al. (1996) and Portinari et al. (1998)]

Ms M(wind)
ej M(total)

ej He C N O Ne Mg Fe

0.99 0.43 0.43 0.13 0.001 0.001 0.004
1.49 0.91 0.91 0.27 0.003 0.002 0.009
2.00 1.40 1.40 0.43 0.011 0.004 0.014
3.00 2.34 2.34 0.73 0.014 0.007 0.022
4.00 3.14 3.14 0.96 0.014 0.010 0.029
6.00 4.70 4.70 1.58 0.017 0.019 0.044
7.00 5.70 5.70 2.15 0.019 0.027 0.050

9.00 0.32 7.69 2.99 0.074 0.040 0.178 0.021 0.007 0.057
12.0 0.53 10.56 3.95 0.170 0.055 0.712 0.125 0.028 0.121
15.0 0.78 13.13 4.70 0.268 0.067 1.27 0.177 0.036 0.098
20.0 1.90 17.89 6.01 0.281 0.089 2.76 0.217 0.069 0.186
30.0 17.11 22.82 8.28 0.310 0.128 3.08 0.504 0.124 0.022
40.0 34.00 37.94 19.05 3.03 0.211 2.06 0.417 0.039 0.133
60.0 52.65 57.91 32.14 4.93 0.343 2.66 0.474 0.056 0.234

100.0 91.89 97.88 55.48 11.40 0.682 4.28 1.07 0.130 0.251

that this dredge-up process can even bring metals all the way to the surface of an AGB star.
Unfortunately, because of the uncertainties in the treatment of convection, theoretical predictions
for the amount of metals pumped into the ISM by these stars remain uncertain. Observationally,
the abundances of He, C, N, O in the ejected material from AGB stars can be estimated from the
spectra of planetary nebulae in the Milky Way and the Magellanic Clouds. In order to determine
the metal production (i.e. the mass in metals that was newly synthesized in the progenitor star)
from such observations, however, one has to estimate the difference between the abundances of
the ejecta and those of the ISM in the direct vicinity of the planetary nebula (whose abundances
are presumably similar to those of the gas out of which the star originally formed). This is no
easy task, because the difference is in general quite small. At the moment, chemical production
by low-mass stars is still treated in a semi-analytical fashion, and calculations for stars with initial
masses ∼< 8M� have been made by Renzini & Voli (1981) and Marigo et al. (1996), among others
(see also Table 10.4).

(b) Metal Production by Massive Stars Massive stars, with masses Ms ∼> 8M�, enrich the
ISM with metals via both stellar winds and their final explosions as core-collapse (Type II) SNe
(e.g. Portinari et al., 1998). The structure of a massive star just prior to core collapse is relatively
straightforward to calculate; it consists of an inert iron core surrounded from inside out by shells
within which Si, O, Ne, C, He, and H are burning. When a Type II SN explodes, these shells of
enriched material may be ejected by shock waves. However, the exact amount of material that
can be blown away is unclear, as it is very hard to determine accurately the small fraction (∼ 1%)
of the explosive energy that is transferred to the stellar envelope. Equally uncertain is the change
of chemical composition during and after the core collapse. When the iron core collapses, the
shocks generated by the explosion may induce a burst of nuclear reactions in the shocked layer;
in particular, a substantial amount of Si (which is burning in a shell just above the core) may
be burnt into iron-peak elements. In the collapsing core itself, the temperature can become so
high (> 109 K) that iron is photodisintegrated into α particles (He nuclei) and neutrons. These
neutrons may collide with the iron-peak elements in the core and convert many of them into
r-process elements (ones that are formed via rapid neutron capture). As a result, only a small
amount of Fe may be ejected into the ISM by a Type II SN. Detailed observations of SN 1987A
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(which is a Type II) support these basic ideas (e.g. McCray, 1993), although many uncertainties
remain at the quantitative level. Despite this, theoretical models have been used to predict the
chemical yields from massive stars (e.g. Maeder, 1992; Woosley & Weaver, 1995; Thielemann
et al., 1996). The lower part of Table 10.4 lists the total mass ejected by both stellar winds
and core-collapse supernovae for stars with initial masses Ms ∼> 8M�. Note that stars in the
mass range 8M� ∼< Ms ∼< 20M� contribute to the chemical enrichment mainly through Type
II SNe, while more massive stars contribute mainly via their stellar winds. It should be kept in
mind, though, that there are still substantial differences among the results obtained from different
models.

(c) Metal Production by Type Ia SNe As discussed in §10.2.3, the progenitor of a Type Ia
SN is a C/O white dwarf, which accretes material from a close companion, reaches the Chan-
drasekhar limiting mass for a C/O dwarf (1.4M�), and explodes. In the carbon-deflagration
model (§10.2.3), calculations by Nomoto et al. (1984) and Thielemann et al. (1993) show that
the deflagration wave can convert C and O very quickly into iron-peak elements in the inner
region of a star. In particular, about 0.6M� of 56Ni is produced, which is sufficient to power the
light curve of a Type I SN by the radioactive decays of 56Ni (and 56Co) into 56Fe. A substantial
amount of α elements is predicted to be synthesized in the outer layers by the decaying defla-
gration wave, which is consistent with the observed spectra of Type Ia SNe near the peaks of
their light curves. In the models considered by Thielemann et al. (1993), a Type Ia SN typically
ejects about 1.38M� of material, of which ∼ 0.75M� is Fe, ∼ 0.05M� is C, ∼ 0.14M� is O,
∼ 0.005M� is Ne, ∼ 0.01M� is Mg, ∼ 0.15M� is Si, and ∼ 0.09M� is S. Typically, a Type Ia
SN produces about 5–10 times as much Fe as does a Type II SN.

10.4.2 The Closed-Box Model

Having discussed the chemical production from individual stars, we now describe how to model
the chemical enrichment in galaxies.

Consider a system consisting of gas and stars (e.g. a galaxy or part of a galaxy). We denote
the masses in gas and stars by Mgas(t) and M�(t), respectively, where we have made it explicit
that both may change with time. In the so-called closed-box model, one assumes that there is no
mass flow into or out of the system, so that the total mass Mtot = Mgas(t)+ M�(t) is a constant.
The evolution of Mgas(t) can be written as

dMgas(t)
dt

= −Ψ(t)+E (t), (10.113)

where Ψ(t) is the star-formation rate of the system, and E (t) is the rate at which the stars return
mass to the gas phase by stellar winds and supernovae (hereafter called the return rate). If we
use m to denote the initial mass of a star, and φ(m) to denote the IMF [normalized according to
Eq. (9.33)], we can write

E (t) =
∫ ∞

mτ
m f (ej)

M (m)Ψ(t − τm)
φ(m)
M�

dm, (10.114)

where mτ is the mass of stars whose lifetime is τ , and f (ej)
M (m) is the fraction of a star’s initial

mass that is ejected:

f (ej)
M (m) =∑

j
f (ej)
M, j(m) = 1− mrem

m
, (10.115)

with the summation over all elements j, and mrem the mass of the stellar remnant. If we fur-
ther assume that the system is a one-zone system, so that the material ejected from the stars is
uniformly mixed with the gas, then the time evolution of metals can be written as
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d(ZMgas)
dt

= −ZΨ(t)+EZ(t), (10.116)

where Z is the metallicity of the gas, defined by Z ≡ MZ/Mgas, and

EZ(t) =
∫ ∞

mτ
m f (ej)

Z (m)Ψ(t − τm)
φ(m)
M�

dm, (10.117)

with

f (ej)
Z (m) = ∑

j∈metals

f (ej)
M, j(m). (10.118)

Eqs. (10.113) and (10.116) can be solved once mτ , f (ej)
M, j , Ψ(t), and φ(m) are known.

Under the instantaneous recycling approximation, all stars with masses above some limit mlim

are assumed to have negligible lifetimes, while those with m < mlim are assumed to live forever.
With this approximation, the lower integration limit mτ in Eqs. (10.114) and (10.117) can be
replaced by mlim, and Ψ(t − τm) by Ψ(t). The return rate can then be written as E (t) =Ψ(t)R,
with

R =
∫ ∞

mlim

m f (ej)
M (m)

φ(m)
M�

dm (10.119)

the return fraction. The metal yield, yZ , is defined as the ratio between the mass of newly produced
metals (i.e. those metals produced in the star via nucleosynthesis) and the total mass which
remains locked up in the remnant:

yZ =
1

1−R

∫ ∞

mlim

m f (p)
Z (m)

φ(m)
M�

dm, (10.120)

where f (p)
Z (m) is the ratio between the mass of newly produced metals that have been ejected and

the star’s initial mass m. Note that

f (ej)
Z (m) = f (p)

Z (m)+ f (ej)
M (m)Z(t − τm), (10.121)

where the second term on the right-hand side describes the mass fraction of metals that were
already present in the star at formation and have been returned to the ISM due to stellar winds
and/or supernovae. Using the instantaneous recycling approximation, EZ(t) can then be written as

EZ(t) =Ψ(t) [R Z(t)+ yZ(1−R)] . (10.122)

Inserting the expressions for E (t) and EZ(t) into Eqs. (10.113) and (10.116) and assuming yZ to
be independent of Z, we obtain the following solution for the evolution of the metallicity:

Z(t) = Z(0)+ yZ ln

[
Mgas(0)
Mgas(t)

]
, (10.123)

where Mgas(0) and Z(0) are, respectively, the gas mass and metallicity at the starting time t = 0.
If Mgas(0) = Mtot, the above solution can be written as

Z(t) = Z(0)− yZ ln [μ(t)] with μ(t) ≡ Mgas(t)/Mtot. (10.124)

In this simple model, the metallicity of the gas is entirely determined by the metal yield and
the instantaneous gas mass fraction. It is easy to see that this solution also applies to individual
elements:

Xi(t) = Xi(0)− yiln [μ(t)] , (10.125)

where Xi is the mass fraction of the gas in element i and yi is the yield of this element.
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Finally, the above equations can also be used to determine the metallicity distribution of the
stars. In particular, the mass of stars with metallicity < Z is

M�(< Z) = Mtot −Mgas(t) = Mtot

{
1− exp

[
−Z−Z(0)

yZ

]}
. (10.126)

10.4.3 Models with Inflow and Outflow

In the presence of gas flow, the total mass of the system changes with time according to

dMtot

dt
= A (t)−W (t), (10.127)

where A (t) and W (t) are the inflow and outflow rates of gas mass, respectively. The equation
for the gas mass now becomes

dMgas

dt
= −Ψ(t)+E (t)+A (t)−W (t). (10.128)

Under the assumption of uniform mixing of the gas in the system, the equation for the
metallicity is

d(ZMgas)
dt

= −ZΨ(t)+EZ(t)+ZAA (t)−Z(t)W (t), (10.129)

where ZA is the metallicity of the inflowing gas. These equations can be solved once A (t) and
W (t) are known.

In the special case where A (t) = 0 and W (t) = α(1−R)Ψ(t) (i.e. gas inflow is negligible
while the gas outflow rate is proportional to the star-formation rate through a constant α > 0),
the instantaneous recycling approximation gives

Z(t) = Z(0)+
yZ

1+α
ln

[
Mgas(0)
Mgas(t)

]
. (10.130)

The quantity yZ/(1 +α) is called the effective yield, and its difference with respect to yZ is a
measure for the impact of the outflow (see also §11.8.2). Note that the effective yield is smaller
than the true, nucleosynthetic yield, simply because some of the newly processed metals are now
ejected from the system by the outflow. Since the total mass of the system decreases with time
as Mtot(t) = Mtot(0)−αM�(t), the mass contained in stars with metallicity < Z is

M�(< Z) = Mtot(t)−Mgas(t)

=
Mtot(0)
1+α

{
1− exp

[
− Z −Z(0)

yZ/(1+α)

]}
. (10.131)

In the case where W (t) = 0, Eq. (10.129) can, with the use of Eqs. (10.127) and (10.128), be
cast into the following form:

dZ
du

+Z = ZA + yZ

(
1− dlnMgas

du

)
, where u ≡

∫
dMtot

Mgas
. (10.132)

The general solution is

Z = ZA + yZ

(
1−Ce−u − e−u

∫ u

0
eu′ dlnMgas

du′
du′
)

, (10.133)

with C a constant. In the special case where the star-formation rate is equal to the infall rate
[Ψ(t) = A (t)], so that Mgas is constant, the solution reduces to

Z = ZA + yZ

{
1− exp

[
1− Mtot(t)

Mgas

]}
, (Mgas = constant). (10.134)
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In this model, Z ≈ ZA + yZ once Mtot becomes much larger than Mgas, and the mass in stars with
metallicity < Z is

M�(< Z) = Mtot(t)−Mgas = −Mgasln

(
1− Z −ZA

yZ

)
. (10.135)

Note that the above solutions are obtained under the assumption that the yield yZ is inde-
pendent of Z. Elements for which this assumption holds are called primary elements, while
those for which the yield depends on the composition of the progenitor star are called sec-
ondary elements. Unfortunately, many elements, including important ones such as nitrogen,
display secondary behavior (Talbot & Arnett, 1974). In general, therefore, the solutions for
Z(t) derived above have to be modified in order to account for secondary behavior of the
elements.

10.4.4 Abundance Ratios

As discussed in §10.4.1, Type Ia SNe are the main producers of iron, while α elements, such
as O, Ne, Mg, Si and S, are produced by both Type Ia and Type II SNe. Since the progenitors
of Type II SNe are massive stars (∼> 8M�) that have lifetimes shorter than ∼ 107 yr, while
the progenitors of Type Ia SNe are mostly stars with masses about 3M� that have lifetimes

∼> 108 yr, there is a time delay of at least ∼ 108 yr between the onset of Type Ia supernova
explosions and that of Type II for a coeval population of stars. Consequently, there is also a delay
of Fe production relative to that of α elements. Here we discuss the observational consequences
of this delay, and how these can be used to constrain the time scale for star formation in a
galaxy.

If we consider a coeval stellar population as a closed box, the metallicity of the ISM (e.g.
[Fe/H]) must increase with time, as more and more metals are injected by supernova explosions.
In the early stage where only Type II supernova explosions can occur, the abundance ratio [α/Fe]
must be high and has roughly a constant value determined by the enrichment pattern of Type II
SNe. After about 108 yr when Type Ia SNe start to make a significant contribution to the chemical
enrichment, the abundance ratio [α/Fe] must decrease with time (or with the total metallicity,
[Fe/H]). As the age reaches about 109 yr when the enrichment of the ISM is dominated by Type
Ia SNe, the abundance ratio [α/Fe] remains at a low constant level determined by the enrichment
pattern of Type Ia supernovae. The chemical enrichment by a coeval stellar population should
therefore have a pattern similar to that shown in Fig. 10.10.

One can also use the time delay between Type Ia and Type II SNe to constrain the star-
formation history by observing the metallicities and abundance ratios of low mass stars (rather
than the ISM). Low-mass stars, such as F and G stars, have lifetimes comparable to the age
of the Universe. These stars, therefore, sample the entire star-formation history of a galaxy. If
all stars formed over a short period of time (∼< 108 yr), then the gas out of which these stars
formed could only have been enriched by Type II SNe. Consequently, all stars are expected
to have an overabundance in α elements relative to Fe. On the other hand, if star formation
lasted for a long period, so that the enrichment by Type Ia SNe is important, then the abundance
of Fe is expected to be more enhanced for stars with younger ages. By studying the metallic-
ity and [α/Fe] ratio of low-mass stars in a galaxy in detail, it is thus possible to constrain the
time scale over which star formation took place. Unfortunately, there is a complication here: the
expected [α/Fe] ratio depends not only on the star-formation history, but also on the form of
the IMF that determines the mass spectrum of stars at formation. For instance, if the IMF in a
galaxy is skewed to massive stars (i.e. the IMF is top-heavy), the fraction of stars that end up
as Type II supernovae is enhanced, leading to a higher [α/Fe] ratio than that predicted by the
standard IMF. For a stellar population with a Salpeter IMF and a star-formation history given
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top−heavy IMF

burst strength

Fig. 10.10. A schematic of the chemical enrichment pattern of the ISM for a single coeval burst of star
formation. Time advances along the thick curve as indicated by the arrows. The thin arrows indicate the
impact of making the IMF more top-heavy and of increasing the strength of the burst.

by a Gaussian with a FWHM Δt, closed-box evolution gives the following relation between Δt
and [α/Fe]:

log

(
Δt

Gyr

)
≈ 1.2−6[α/Fe] (10.136)

(Thomas et al., 2005).

10.5 Stellar Energetic Feedback

In broad terms, stars can output energy in three different channels: radiation, neutrino emission,
and mass flow. The energy output in radiation can be obtained by integrating the luminosity
of a star over its lifetime. Typically, a star of solar mass emits about 1051.5 erg in radiation,
while the corresponding numbers for 10M� and 100M� stars are ∼ 1052.5 erg and ∼ 1053.5 erg,
respectively. Note that the numbers quoted above do not include contributions from supernova
explosions.

Of particular interest is the kinetic energy that is loaded in supernova ejecta and stellar winds,
because such energy may be effectively injected into the ISM, affecting the gas properties and
star formation in galaxies. In this section we examine how much mass-loaded kinetic energy is
expected from individual stars. We also present models to describe the effects of such energy
injections on the properties of the ISM.

10.5.1 Mass-Loaded Kinetic Energy from Stars

(a) Stellar Winds As we have seen in §10.2, some stars can lose substantial amounts of
mass via stellar winds during their late evolutionary stages. Such mass loss can be calculated
from stellar evolution theory, as described in §10.4.1, and some results obtained from such cal-
culations are given in Table 10.4. Conventionally, a stellar wind is specified by its mass-loss
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Table 10.5. Supernova mass ejection (in M�) and kinetic energy (in 1051 erg).

SN 1987A 1969L 1980K 1993J 1991T 1989B 1992A 1991bg
Type SNII-S SNII-P SNII-L SNII/I SNIa SNIa SNIa SNIa

Mej/M� 15 17 2.2 3.26 1.1 0.87 0.8 0.7
E51 1.7 1.7 1.0 1.7 1.48 1.18 1.0 0.69

rate, Ṁ, and its terminal velocity, v∞. The kinetic energy of the wind, sometimes called the wind
‘luminosity’, is

Lwind =
1
2

Ṁv2
∞. (10.137)

There have been many efforts to relate both Ṁ and v∞ to the global properties of stars, such
as luminosity, effective temperature, mass and radius, from both observational and theoretical
considerations (see Chiosi & Maeder, 1986, for a review). For example, based on about 300 stars
of all spectral types and luminosities, Waldron (1984) suggests the following relations:

logṀ = 1.07log(L/L�)+1.77log(R/R�)−14.30, (10.138)

logv∞ = 1.77log(Teff/T�)+1.97, (10.139)

logLwind = 1.96log(L/L�)+25.13, (10.140)

where Ṁ is in M� yr−1, v∞ in kms−1 and Lwind in ergs−1. Unfortunately, the scatter in such
relations is in general quite large. From these relations we see that the typical wind velocity
for supergiant OB stars is about 2000kms−1, and the corresponding kinetic energy is Ekin ∼
4×1050(Mwind/10M�)(v∞/2000kms−1)2 erg. As we will see below, this energy is comparable
to the kinetic energy output from a supernova.

(b) Supernova Explosions For supernova explosions, the typical mass-loaded kinetic energy
can be estimated by modeling in detail supernovae observed in the local Universe. Table 10.5
list some of the results (adapted from Arnett, 1996). As one can see, the mass-loaded kinetic
energies are quite similar for Type Ia and Type II SNe. As an approximation we may write

ESN = E51 ×1051 erg, with E51 ∼ 1.0. (10.141)

For Type Ia SNe, the ejecta masses are in a small range around Mejecta = 1M�, as expected from
the fact that their progenitors are C/O white dwarfs near the Chandrasekhar mass limit (1.4M�)
and that such SNe do not leave any remnants behind. In this case, the initial velocity of the ejecta
is ∼ 104 kms−1. In contrast, the ejecta mass of Type II SNe can change substantially from object
to object, as their progenitors can cover a large mass range and the remnant mass depends on the
details of the properties of the progenitor (see §10.2.3). In this case, the initial velocity is difficult
to predict. Fortunately, in applications to galaxy formation and evolution, only the total kinetic
energy is relevant, because here the energy in the ejecta is transferred into a gas component that
has mass much larger than that of the ejecta themselves.

10.5.2 Gas Dynamics Including Stellar Feedback

In §8.6 we have seen that a general description of the evolution of gaseous halos in terms of the
fluid equations needs to include the source terms that describe the gas consumption due to star
formation, as well as the energy and mass injection due to stellar evolution. Assuming that the
injected material is well mixed with the interstellar gas so that the total gas can be considered
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as a single fluid, the fluid equations are given by Eqs. (8.155)–(8.157). Here we describe the
source terms Sm, Smom, Se, which are the changes per unit time in mass density, momentum
density, and energy density, due to the consumption of gas by star formation and the injection
of gas by stellar winds and supernovae. For simplicity, we consider scales that are much larger
than individual stars, so that the velocities of the injected material average out. In other words,
we assume that the kinetic energy of the injected material has already been thermalized, which
allows us to set Smom = 0.

Let ψ(x, t) describe the local specific star-formation rate (i.e. the star-formation rate per unit
mass), then for a given IMF, φ(m), we can write

Sm(x, t) = ρ(x, t) [−ψ(x, t)+ ε(x, t)] , (10.142)

where

ε(x, t) =
∫ ∞

0

∫ t

0
m f (ej)

M (m, t ′)
φ(m)
M�

ψ(x, t − t ′)dmdt ′ (10.143)

is the local specific rate of mass feedback, with f (ej)
M (m, t)dt the fraction of the star’s initial mass

m that is returned to the ISM in the time interval [t, t + dt]. If we assume that most of the mass

is ejected from a star at the end of its lifetime, then f (ej)
M (m, t) ≈ δ (t − τm) f (ej)

M (m), with τm the
lifetime for a star of mass m, and

ε(x, t) =
∫ ∞

0
m f (ej)

M (m)
φ(m)
M�

ψ(x, t − τm)dm. (10.144)

Similarly, we can write

Se(x, t) = ρ(x, t)
∫ ∞

0
m f (ej)

E (m)
φ(m)
M�

ψ(x, t − τm)dm, (10.145)

where f (ej)
E (m) is the energy per unit mass that is ejected by a star with mass m at the end of its

life. For supernova explosions where f (ej)
E is independent of m, the rate of energy injection per

volume reduces to

Se(x, t) = ρ(x, t) [RIa(x)+RII(x)]ESN, (10.146)

where RIa(x) and RII(x) are the local specific rates for Type Ia and Type II SNe, respectively (see
§10.2.3).

For a given IMF, we can use the mass return discussed in §10.4.1, the supernova rates discussed
in §10.2.3, and the energy feedback discussed in the last subsection, to calculate both Sm and Se.
It can be shown that stellar mass loss provides most of the feedback mass but little energy, while
supernova explosions provide most the kinetic energy but relatively little mass.
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Disk Galaxies

In the previous chapters we have discussed the various physical ingredients that play a role in
galaxy formation, from the growth, collapse and virialization of dark matter halos, to the forma-
tion of stars out of the baryonic material that cools within these halos. In this chapter we combine
all this information to examine the structure and formation of disk galaxies.

As we have seen in Chapter 2, disk galaxies in general consist of a disk component made up
of stars, dust and cold gas (both atomic and molecular), a central bulge component, a stellar halo,
and a dark halo. The disk itself reveals spiral arms and often – in roughly half of all cases – a
central bar component. Any successful theory for the formation of disk galaxies has to be able
to account for all these components. In addition, it should also be able to explain a variety of
observational facts (see §2.3.3), the most important of which are:

• Brighter disks are, on average, larger, redder, rotate faster, and have a smaller gas mass fraction.
• Disk galaxies have flat rotation curves.
• The surface brightness profiles of disks are close to exponential.
• The outer parts of disks are generally bluer, and of lower metallicity than the inner parts.

We start in §11.1 with a description of simple mass models for disks, and discuss how one
can infer the dynamical masses of disk and halo from the observed kinematics. In addition, we
also give a brief description of the angular momentum of disk galaxies and show how this can be
used to infer the presence of an extended dark matter halo. In §11.2 we present various models, of
increasing complexity, for the formation of disk galaxies, and use them to investigate the origin
of the observed distribution of disk sizes. The scaling relations of disk galaxies and their origin
are discussed in §11.3. In §11.4 we examine various possible explanations for the fact that disks
have exponential surface brightness profiles. Disk instabilities and their role in star formation, in
driving secular evolution, and in creating spiral arms are discussed in §§11.5 and 11.6. Finally,
the stellar populations and chemical properties of disk galaxies are described in §§11.7 and 11.8,
respectively.

Throughout this chapter we will use the terms disk galaxy and spiral galaxy without
distinction.

11.1 Mass Components and Angular Momentum

Before addressing the formation of disk galaxies, we take a closer look at their dynamical
properties. After a brief overview of realistic potential-density pairs for disks, we discuss how
the kinematics of disk galaxies can be used to infer their dynamical masses and their angular
momentum distributions, and demonstrate that both of these indicate the presence of an extended
dark halo.

495
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11.1.1 Disk Models

(a) Potential-Density Pairs As we have seen in §2.3.3, the disks of spiral galaxies typically
have exponential surface brightness distributions. It is therefore common to model the disk as an
infinitesimally thin, exponential disk, with surface density distribution

Σ(R) = Σ0 exp(−R/Rd), (11.1)

where Rd is the scale length of the disk. The total mass of the disk is Md = 2πΣ0R2
d. As origi-

nally shown by Toomre (1963), the potential of an infinitesimally thin disk with surface density
distribution Σ(R) can be written as

Φ(R,z) = −2πG
∫ ∞

0
J0(kR)Σ̃(k)e−k|z|dk, (11.2)

with J0(x) the cylindrical Bessel function of order zero, and

f̃ (k) =
∫ ∞

0
J0(kx) f (x)xdx (11.3)

the Hankel transform of f (x), also known as the Fourier–Bessel transform. For the thin
exponential disk given by Eq. (11.1) this reduces to

Φ(R,z) = −2πGΣ0R2
d

∫ ∞

0

J0(kR)e−k|z|

[1+(kRd)2]3/2
dk. (11.4)

Although the infinitesimally thin, exponential disk is used extensively for modeling rotation
curves (see §11.1.2) and disk formation (see §11.2), it is generally inadequate for more detailed
dynamical models. After all, realistic disks have a non-zero thickness. In principle it is straight-
forward to construct thick disk models, as long as the density distribution is separable, i.e. can be
written as the product of a function of R and a function of z. Consider an infinitesimally thin disk,
whose surface density is ρ(R,z) = Σ(R)δ (z), and with corresponding potentialΦ(R,z) = g(R,z).
Here Σ and g are arbitrary functions that are related via the Poisson equation. One can thicken
this disk by replacing the Dirac delta function, δ (z), by any other function h(z) that describes the
vertical density distribution. Since potentials are additive, the potential of the thick disk simply
follows from summing the potentials of an infinite number of infinitesimally thin disks, properly
weighted by h(z):

Φ(R,z) =
∞∫

−∞
g(R,z− z′)h(z′)dz′. (11.5)

For Eq. (11.2) this gives

Φ(R,z) = −2πG
∫ ∞

0
dk J0(kR)

∫ ∞

−∞
dz′ρ̃(k,z′)e−k|z−z′|, (11.6)

with ρ̃(k,z) the Hankel transform of ρ(R,z) in the R variable.
As discussed in §2.3.3, the vertical density distribution of spiral galaxies is often well fit by an

exponential profile, so that

ρ(R,z) = ρ0 exp(−R/Rd)exp(−|z|/zd). (11.7)

The face-on projection of this density distribution is given by Eq. (11.1), with Σ0 = 2ρ0zd. For
this particular case, the potential given by Eq. (11.6) reduces to a single integration:

Φ(R,z) = −2πGΣ0R2
d

∫ ∞

0
dk

J0(kR)

[1+(kRd)2]3/2

e−k|z| − (kzd)e−|z|/zd

1− (kzd)2 (11.8)
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(Kuijken & Gilmore, 1989b). A downside of this double exponential disk is its unphysical charac-
teristic that the derivative ∂ρ/∂ z is discontinuous at z = 0. Furthermore, the oscillatory behavior
of the Bessel function in the integrand makes the numerical evaluation of the potential and its
derivatives tedious.

An alternative, better behaved model for a thick disk is the exponential spheroid. This model,
like the double-exponential disk, has an exponential surface brightness along both the radial and
vertical directions. Consider a sphere with projected surface brightness given by Eq. (11.1). The
corresponding density distribution follows from the Abel integral equations,

Σ(R) = 2

∞∫
R

ρ(r)rdr√
r2 −R2

and ρ(r) = − 1
π

∫ ∞

r

dΣ(R)
dR

dR√
R2 − r2

, (11.9)

which give

ρ(r) = ρ0K0(r/Rd), (11.10)

with ρ0 =Σ0/πRd, and K0 the modified Bessel function. Replacing r by the spheroidal coordinate

m =
√

R2 + z2/q2
d we obtain an axisymmetric model that has exponential surface brightness

when projected along any axis, namely

Σi(x,y) =
qd

q′d
Σ0 exp(−R∗/Rd). (11.11)

Here R∗ =
√

x2 + y2/q′2d , and q′d is the projected axis ratio related to the intrinsic flattening, qd,

and the inclination angle, i, through1

q′2d = cos2 i+q2
d sin2 i. (11.12)

When qd � 1 the model represents exponential disks of non-zero thickness, and with total mass
Md = 2π2qdρ0R3

d. The potential of the exponential spheroid is

Φ(R,z) =
GMd

πR2
d

∫ ∞

0

tK1(t/Rd)dτ

(τ+1)
√
τ+q2

d

, (11.13)

with

t =

√
R2

τ+1
+

z2

τ+q2
d

(11.14)

(van den Bosch & de Zeeuw, 1996). Thus, the potential can also be written as a single inte-
gral, similar to the case of the double exponential model in Eq. (11.7). However, the numerical
evaluation of Φ(R,z) is much simpler here, because the modified Bessel function, K1(x), decays
similar to an exponential and is positive definite. Furthermore, it also has the advantage that the
derivative ∂ρ/∂ z is continuous at z = 0. A downside of the exponential spheroid disk is that its
density distribution is not separable, so that it cannot be written in the form ρ(R,z) = f (R)g(z).
This means that the characteristic scale height of the exponential spheroid is not independent of
R, in contrast to observations (see §2.3.3).

1 Note that there is a degeneracy between inclination angle and intrinsic flattening: any combination (qd, i) that obeys
Eq. (11.12) will project to exactly the same surface brightness distribution.
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(b) The Isothermal Sheet A simple model for the vertical structure of disk galaxies, which
has been used extensively, is the isothermal sheet originally proposed by Spitzer (1942). This
model assumes that the vertical density distribution of a disk is locally isothermal, so that the
distribution function of stars in the z direction is Maxwellian,

f =
1√

2πσz
exp

(
− Ez

σ2
z

)
. (11.15)

Here σz is the velocity dispersion of stars in the vertical direction, and Ez ≡ v2
z /2+Φ(R,z), with

Φ(R,z) the gravitational potential, is the energy associated with the motion in the z direction. For
a very flattened system,Φ(R,z) satisfies the Poisson equation, ∂ 2Φ/∂ z2 = 4πGρ(R,z). Since the
density is equal to the integral of the distribution function over velocity space, we can write the
Poisson equation as

d2φ
dζ 2 =

1
2

e−φ , (11.16)

where

φ ≡ Φ
σ2

z
, ζ ≡ z

zd
, zd ≡ σz√

8πGρ(R,0)
, (11.17)

with zd the vertical scale height of the disk (see §2.3.3). With the boundary conditions that both
φ and its derivative dφ/dζ are zero at z = 0, the density of the disk can be solved for, yielding

ρ(R,z) = ρ(R,0)sech2 (z/2zd) . (11.18)

The mid-plane density is related to the surface density of the disk by

ρ(R,0) =
Σ(R)
4zd

, (11.19)

so that the disk scale height is related to σz(R) and Σ(R) by

zd =
σ2

z (R)
2πGΣ(R)

. (11.20)

The scale height is generally independent of R, and is approximately a constant fraction of the
radial scale length Rd (e.g. van der Kruit & Searle, 1981). If we write zd = ςRd, then for a locally
isothermal disk with exponential R profile,

σ2
z (R) =

ςGMd

Rd
exp

(
− R

Rd

)
. (11.21)

Thus, for an isothermal sheet one can estimate the disk mass from a measurement of the vertical
velocity dispersion, σz, and the radial scale length, Rd, as long as one adopts a value for ς (e.g.
Bottema, 1993). Since σz(R) is best measured in nearly face-on systems, for which the informa-
tion regarding zd is lost, this method clearly suffers from the uncertainty in ς , which is observed
to have a substantial amount of scatter.

11.1.2 Rotation Curves

As we have seen in §2.3.3 the observed rotation curves of disk galaxies, Vrot(R), are flat on
large scales, suggesting that the dominant matter component of a disk galaxy is an extended
dark halo. Here we describe how the rotation curves of disk galaxies can be used to infer the
matter distribution of this dark halo. This is important since, as we have seen in Chapter 7,
if baryon effects are neglected, CDM cosmologies predict that dark matter halos have a near-
universal density distribution accurately described by a NFW profile. In particular, they should



11.1 Mass Components and Angular Momentum 499

have a central cusp with density scaling as ρ ∝ r−1. Disk rotation curves can be used to test these
predictions.

It is generally assumed that the observed rotation velocities of a disk galaxy, after correcting
for inclination effects, reflect the circular velocities (i.e. that deviations from perfectly circular
orbits can be neglected). In what follows we consider a model in which the galaxy consists of
an axisymmetric disk and a spherical dark matter halo. The circular velocity in the disk plane
follows from balancing the centrifugal force with the gravitational force, and is given by

V 2
c (R) = R |FR|, (11.22)

with R the cylindrical radius and FR(R) the radial force per unit mass (acceleration) in the plane
of the disk (z = 0). Since this radial force is the sum of the forces due to the disk and the halo,
we can split the circular velocity into a disk component, Vc,d, and a halo component, Vc,h:

V 2
c (R) = V 2

c,d(R)+V 2
c,h(R). (11.23)

For a spherical system the circular velocity is given by

V 2
c (r) = r

dΦ
dr

=
GM(r)

r
, (11.24)

where M(r) is the total mass within a sphere of radius r. For the special cases where the mass
distribution is a point mass, a singular isothermal sphere (SIS) [with density profile ρ(r) ∝ r−2],
or a uniform sphere with constant density, the circular velocities obey:

Vc(r) ∝

⎧⎨⎩ r−1/2 for point mass
constant for SIS
r for uniform sphere.

(11.25)

For the more realistic case of a dark matter halo with a NFW profile [Eq. (7.138)], the circular
velocity is

Vc,h(r)
Vvir

=
[

1
x

ln(1+ cx)− cx/(1+ cx)
ln(1+ c)− c/(1+ c)

]1/2

, (11.26)

where x = r/rvir, c is the halo concentration parameter, and Vvir =
√

GMvir/rvir is the circular
velocity at the virial radius. This circular velocity curve reaches a maximum

Vmax ≈ 0.465
√

c
ln(1+ c)− c/(1+ c)

Vvir (11.27)

at a radius r � (2.163/c)rvir.
For an axisymmetric disk, the circular velocity in the plane of the disk is given by

V 2
c (R) = R

(
∂Φ
∂R

)
z=0

. (11.28)

Using Eq. (11.2) we obtain, for an infinitesimally thin disk, that

V 2
c,d(R) = 2πGR

∫ ∞

0
J1(kR)Σ̃(k)kdk. (11.29)

For a thin exponential disk given by Eq. (11.1), this reduces to

V 2
c,d(R) = −4πGΣ0Rdy2 [I0(y)K0(y)− I1(y)K1(y)] , (11.30)

where y = R/(2Rd), and In and Kn are modified Bessel functions of the first and second kinds,
respectively. This circular velocity curve reaches a maximum at R ≈ 2.16Rd, while at large radii
(R 	 Rd) it approaches the Keplerian form Vc,d ∝ R−1/2 expected for a point mass.
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For the exponential spheroid given by Eq. (11.10) the circular velocity in the equatorial plane
(z = 0) follows directly from differentiating the potential [Eq. (11.13)], and is given by

V 2
c,d(R) = 2πGρ0qdR2

∫ ∞

0

K0(R/Rτ)dτ

(τ+1)
√
τ+q2

d

, (11.31)

where Rτ = Rd
√
τ+1. More generally, the circular velocity of a disk of non-zero thickness can

be obtained from the radial force in the plane of the disk and Eq. (11.22). Using the Hankel
transform one obtains

FR(R) = 8G
∫ ∞

0
du
∫ ∞

0
dz [K (ρ)−E (ρ)]

(
u
ρR

)1/2 ∂ρ(u,z)
∂u

, (11.32)

where K (x) and E (x) are the complete elliptic integrals of the first and second kind, ρ = t −√
t2 −1 and t = (R2 + u2 + z2)/2Ru (Casertano, 1983). In general, as long as the vertical scale

height of a disk is sufficiently small compared to its radial scale length, the actual vertical density
distribution of the disk has only a small effect on the resulting rotation curve. For most practical
purposes it therefore suffices to assume the disk to be infinitesimally thin.

As is evident from Eq. (11.30), the circular velocity of an infinitesimally thin, exponential
disk is entirely determined by its scale length, Rd, and its central surface density, Σ0. Under the
assumption that the disk is made entirely of stars with a homogeneous stellar population, Rd is
simply identical to the scale length of the stellar light, while Σ0 = ϒI0, with ϒ the stellar mass-
to-light ratio and I0 the central surface brightness. In this case, the observables Vrot(R), I0 and Rd

contain all the information required to compute the enclosed mass of the halo

Mh(R) =
R[V 2

rot(R)−V 2
c,d(R)]

G
, (11.33)

for a given choice of ϒ. In general, disks also contain a bulge component and a significant amount
of cold gas. One must therefore account for contributions from these components also, which is
straightforward once their density distributions are known. For example, the circular velocity
of an (infinitesimally thin) gas disk simply follows from the observed HI surface density and
Eq. (11.29).

Unfortunately, the stellar mass-to-light ratios of disk galaxies are not well constrained, and ϒ
is generally treated as a free parameter. One can obtain a strict upper limit on ϒ from the fact that
Vc,d ∝ϒ1/2 and the constraint that Vc,d(R)≤Vrot(R) at all R. A model in which the disk is assumed
to have this maximal mass-to-light ratio, ϒmax, is called a maximal disk model, and results in a
lower limit on Mh(r). The upper limit on Mh(r) simply follows from ignoring the self-gravity of
the disk (i.e. setting ϒ= 0).2 In most cases, the difference between these upper and lower limits
on the enclosed halo mass are very substantial, at least at small radii. This so-called disk–halo
degeneracy severely impedes our ability to obtain a unique rotation-curve decomposition. This
is illustrated in Fig. 11.1, which shows the observed rotation curve of NGC 2403 together with
two different decompositions that fit the data equally well. In the left-hand panel, a maximal
disk model is used, which gives an R band stellar mass-to-light ratio of ϒR = 3.1(M/LR)�, in
combination with a dark matter halo that has a central core: ρ ∝ r−α with α = 0. In the right-
hand panel the halo is assumed to follow a NFW profile (for which α = 1), which results in a
best-fit ϒR = 1.1(M/LR)�.

The impact of this disk–halo degeneracy can be minimized by focusing on low surface bright-
ness (LSB) galaxies and dwarf galaxies. As it turns out, these systems have extremely high
values of ϒmax, clearly in conflict with any realistic stellar population. For any reasonable value

2 One may further limit the range of ϒ by using constraints from stellar population models, although these are often
model dependent (see §10.3).
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Fig. 11.1. The rotation curve of NGC 2403 (solid dots with error bars) and two decompositions in con-
tributions from the stellar disk (short-dashed lines), the gas disk (dotted lines) and the dark matter halo
(long-dashed lines). In the left panel, a maximal disk with ϒR = 3.1(M/LR)� is used together with a
dark matter halo with a central density core, while the decomposition in the right panel uses a NFW halo
and a submaximal disk with ϒR = 1.1(M/LR)�. Both decompositions fit the observations equally well,
illustrating the disk–halo degeneracy. [After Dutton et al. (2005); courtesy of A. Dutton]

of the stellar mass-to-light ratio, they are dominated by dark matter at all radii, making them
ideally suited for inferring the density distribution of the dark matter halo, and for testing the
prediction that α ≡ dlnρ/dlnr ∼ −1 at small radii. Many dwarf and LSB galaxies are found
to have rotation curves rising like Vrot(R) ∝ R in the inner regions, suggesting that Mh(r) ∝ r3,
hence that the dark matter halo has a constant density core (α = 0) as opposed to a r−1 cusp.
Although this seems inconsistent with the predictions of CDM cosmologies, there are a num-
ber of caveats. First of all, because the rotation curves are measured with finite resolution, the
observed rotation curve may be shallower than the true rotation curve (e.g. Begeman, 1989;
van den Bosch et al., 2000). Secondly, a large fraction of disk galaxies have central bars. In
these systems, as well as in those where the halo is triaxial rather than spherical, the orbits
may deviate significantly from circular, making it difficult to interpret Vrot(R) (e.g. Hayashi &
Navarro, 2006). Thirdly, even for a fixed stellar mass-to-light ratio one can still trade off the
halo concentration against the slope of the central cusp and obtain equally good fits to the data.
This cusp-core degeneracy further hampers an accurate determination of α (van den Bosch &
Swaters, 2001). Finally, when a disk forms in the center of a dark matter halo, its gravity can
modify the dark matter distribution. As a result, the distribution inferred from a rotation-curve
decomposition may differ from that expected from dissipationless gravitational collapse. This
should be taken into account when modeling disk–halo systems (see §11.1.3 below). Because
of all these uncertainties, the question of whether the observed rotation curves of disk galax-
ies are consistent with a CDM cosmology is still hotly debated. It is clear, though, that the
rotation curves of LSB and dwarf galaxies pose a potentially severe challenge to the CDM
paradigm.

11.1.3 Adiabatic Contraction

As already alluded to above, when baryonic gas cools and concentrates in the center of a dark
matter halo, the halo structure may be modified due to the gravitational action of the baryons. In
general, it is difficult to accurately model this action of the disk on the halo, because the details
depend on the exact formation history of the disk–halo system. However, if the growth of the
disk in its halo is so slow that the potential of the system changes only a little during the typical
orbital period of a dark matter particle, the system adjusts itself adiabatically, which means that
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its final state is independent of the path taken. As shown in §5.4.5, under adiabatic evolution, the
action defined through a canonical coordinate, qi, and its conjugate momentum, pi,

Ji =
1

2π

∮
pi dqi, (11.34)

is a conserved quantity, called an adiabatic invariant. For the idealized case of a spherical halo
in which all dark matter particles move on circular orbits, the adiabatic invariant reduces to the
specific angular momentum, rV (r). If, in addition, the distribution of the baryons has spherical
symmetry, this reduces further to r M(r), with M(r) the mass enclosed within radius r. This
means that a particle initially at a mean radius, ri, will end up at a mean radius, rf, given by

rfMf(rf) = riMi(ri), (11.35)

where Mi(ri) is the initial mass profile, and Mf(rf) is the total final mass within rf. Eq. (11.35) is
often used to model the contraction of a dark matter halo in response to the formation of a disk
galaxy at its center. In this case the final mass is the sum of the dark matter mass inside the initial
radius ri plus the mass contributed by the disk. Hence

Mf(rf) = Md(rf)+(1−md)Mi(ri), (11.36)

where md is the fraction of the total mass in the disk, and Md(rf) is the disk mass within radius
rf. For given Md(r) and Mi(r), the above two equations can be used to solve for rf as a func-
tion of ri, thereby giving the final, total mass profile Mf(rf) and the modified halo mass profile
Mf(rf)−Md(rf). For realistic values of md, it turns out that the effect of adiabatic contraction
can be very substantial, causing the circular velocity curve of the halo to change by a large
amount. As we will see in §11.3 this has important implications for interpreting the Tully–Fisher
relation.

Note that r M(r) is only an adiabatic invariant for a spherical system in which all particles
are on circular orbits. This clearly is unrealistic. First of all, in realistic dark matter halos the
particles typically move on highly eccentric orbits (Ghigna et al., 1998). Taking this into account
reduces the effect of adiabatic contraction (Gnedin et al., 2004). Secondly, disks are not spherical.
Therefore, in principle one should use rV (r) as the adiabatic invariant, rather than r M(r). The
use of the latter typically tends to increase the effect of adiabatic contraction (Dutton et al.,
2007). Somewhat fortuitously, the two effects partially cancel, so that the prescription given
above predicts contracted dark matter density profiles that are in fair agreement with, though
somewhat more concentrated than, results from numerical simulations (e.g. Barnes & White,
1984; Abadi et al., 2009).

11.1.4 Disk Angular Momentum

One of the most important properties of spiral galaxies is that their disks are supported by
rotation. The importance of rotation in a system is usually described by the spin parameter,

λ =
J|E|1/2

GM5/2
, (11.37)

where M, J, and E are the mass, angular momentum, and total energy of the system, respectively.
For an isolated exponential disk (i.e. without any dark matter halo), the rotation curve is given
by Eq. (11.30) and the total angular momentum is

Jd = 2π
∫ ∞

0
Vc(R)Σ(R)R2dR ≈ 1.11G1/2M3/2

d R1/2
d . (11.38)
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According to the virial theorem E = −K, where K is the total kinetic energy of the disk, so that

E = −2π
∫ ∞

0

V 2
c (R)
2

Σ(R)RdR ≈−0.147GM2
d R−1

d . (11.39)

Substituting Eqs. (11.38) and (11.39) into Eq. (11.37) then yields a spin parameter

λ ≈ 0.425 for an isolated exponential disk. (11.40)

As we have seen in §7.5.4, tidal torques give protogalaxies an amount of angular momentum
that corresponds to a spin parameter in the range 0.01 ∼< λ ∼< 0.1, with a median near 0.035.
Comparing this to the spin parameter of an isolated exponential disk yields an estimate of the
collapse time of the gas cloud that forms the disk. Consider a self-gravitating gas cloud containing
no dark matter. As the cloud radiates and shrinks, both its mass M and its angular momentum
J are conserved, but its binding energy, −E, increases in inverse proportion to its size R. As a
result, the spin parameter of the cloud scales as

λ = λi (R/Ri)
−1/2 . (11.41)

To increase the spin parameter from an initial value λi ∼ 0.05 to the value λ ∼ 0.425 characteris-
tic of a centrifugally supported exponential disk thus requires a contraction factor of Ri/R ∼ 70.
Consider the disk of a spiral galaxy like the Milky Way, with a mass of M ∼ 5× 1010 M� and
a radius R ∼ 10kpc. The inferred radius of the initial cloud is then Ri ∼ 700kpc, which implies
a free-fall time of tff =

√
3π/32Gρ � 4.3× 1010yr. This is much longer than the age of the

Universe, and thus rules out the possibility that disk galaxies could have formed from pure gas
clouds with spin parameters expected from tidal torque theory.

The situation is quite different if the gas contracts inside a massive dark halo. Consider a
halo with a circular velocity independent of radius (i.e. ρ ∝ r−2), and assume that the gas cools
and flows inward conserving its specific angular momentum. This implies that the gas at radius
R in the disk came from an initial radius in the halo given by Ri = R(Vc/Vrot,i), where Vrot,i

is the typical initial rotation velocity of the gas at radius Ri. As we have seen in §7.5.4, the
specific angular momentum scales roughly with radius as J ∝ r. In our singular isothermal
halo, this implies that the average rotation velocity of the dark matter at radius r is given by
Vrot(r) = ηVc, with η a constant whose value is related to λ . For a singular isothermal sphere,
truncated at large radii so that its mass is finite, one finds that λ = 2−3/2η , so that a spin parameter
of λ = 0.05 corresponds to η � 0.14. If the gas inside a dark matter halo has the same specific
angular momentum distribution as the dark matter, which is a reasonable assumption given that
both components have experienced the same tidal torques, one finds that the gas only needs to
collapse by a factor of 1/η = 1/0.14 ≈ 7 in order to bring its rotation speed up to Vc and make it
reach centrifugal equilibrium in the potential well of the dark matter halo. Thus the presence of
the dark halo has reduced the collapse factor of the gas by a full order of magnitude. Since the

free-fall time in an isothermal potential tff ∝ R3/2
i , the gas can settle in centrifugal equilibrium

in ∼ 1.4× 109yr. Therefore, in the presence of dark halos, there is plenty of time to form large
disks. As first noted by Efstathiou & Silk (1983), this simple argument gives strong support for
the presence of extended dark halos, independent of the usual dynamical arguments.

11.1.5 Orbits in Disk Galaxies

Orbits in an axisymmetric potential conserve both energy and the angular momentum in the
direction of the symmetry axis (hereafter the z direction). Solving Newton’s equation of motion,
d2r/dt2 = −∇Φ, in cylindrical coordinates (R,φ ,z) yields
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R̈−Rφ̇ 2 = −∂Φ
∂R

; (11.42)

d
dt

(
R2φ̇

)
= 0; (11.43)

z̈ = −∂Φ
∂ z

, (11.44)

where a dot denotes a time derivative. The second equation expresses the conservation of the
component of angular momentum about the z axis, Lz = R2φ̇ , while the other two equations
describe the coupled oscillations in the R and z directions. We can reduce these equations of
motion to

R̈ = −∂Φeff

∂R
and z̈ = −∂Φeff

∂ z
, (11.45)

withΦeff(R,z) =Φ(R,z)+(L2
z /2R2) the effective potential. The L2

z /R2 term serves as a centrifu-
gal barrier, only allowing orbits with Lz = 0 to be close to the symmetry axis. This allows us to
reduce the three-dimensional motion to two-dimensional motion in the meridional plane (R,z),
which rotates non-uniformly around the symmetry axis with φ̇ = Lz/R2.

The effective potential has a minimum at (R,z) = (Rg,0), called the guiding center, where

∂Φeff

∂R
=
∂Φ
∂R

− L2
z

R3 = 0. (11.46)

The radius Rg corresponds to the radius of a circular orbit with energy E =Φeff and with circular
frequency

Ω(R) =
Vc(R)

R
=

[
1
R

(
∂Φ
∂R

)
(Rg,0)

]1/2

=
Lz

R2 . (11.47)

Defining x = R−Rg and expanding Φeff in a Taylor series around the point (x,z) = (0,0), and
keeping only terms up to second order, the equations of motion in the meridional plane become

ẍ = −κ2x and z̈ = −ν2z, (11.48)

where κ and ν are the epicyclic frequency and vertical frequency, respectively, defined by

κ2 ≡
(
∂ 2Φeff

∂R2

)
(Rg,0)

and ν2 ≡
(
∂ 2Φeff

∂ z2

)
(Rg,0)

. (11.49)

Thus, when the third and higher-order terms of the Taylor expansion of Φeff can be neglected the
x and z motions reduce to simple harmonic oscillations. This is called the epicyclic approxima-
tion, and allows the motion of stars in disk potentials to be characterized by three frequencies:
Ω, κ and ν. Using the definition of the effective potential, it is straightforward to show that the
epicyclic and circular frequencies are related through

κ =
√

2Ω
[

1+
dlogVc

d logR

]1/2

=
[

R
dΩ2

dR
+4Ω2

]1/2

. (11.50)

For realistic galactic potentials Ω < κ < 2Ω, where the limits correspond to a homogeneous
mass distribution (κ = 2Ω) and the Kepler potential (κ =Ω). Therefore, in general, the period of
the radial oscillation is incommensurable with the orbital period, so that the orbit does not form
a closed figure in an inertial frame. Rather, the motion in (R,φ) can be described as retrograde
motion on an ellipse, whose guiding center is in prograde motion around the center of the system.

When is the epicyclic approximation valid? First consider the z motion: the equation of
motion, z̈ = −ν2z with constant ν, implies a constant density in the z direction. Hence, the
epicyclic approximation is valid only when ρ(z) is roughly constant. This is only approximately
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true very close to the equatorial plane. In the radial direction realize that the Taylor expansion is
only accurate when R is sufficiently close to Rg. Hence, the epicyclic approximation is only valid
for small oscillations around the guiding center; i.e. for orbits with an angular momentum close
to that of the corresponding circular orbit.

11.2 The Formation of Disk Galaxies

We now turn to models for the formation of disk galaxies within the CDM framework outlined
in the previous chapters. This means that we consider disk galaxies to be embedded in extended
dark matter halos. In this section we assume that the formation and growth of the disk is a slow,
adiabatic process. This implies that the end state is independent of the exact formation history,
so that we can focus on static models of the end states. Under the assumption that disks are in
centrifugal equilibrium, we can then link the structural properties of the disks to those of their
dark matter halos.

Obviously, with a static model one cannot model the actual star-formation histories of the
disk galaxies. This requires more ‘dynamic’ models that follow the actual formation of the disk
galaxies starting from high redshifts. In §11.2.5 we will briefly describe such models. Note,
however, that the star-formation history mainly governs the final mass-to-light ratio of the stars,
which we consider a free parameter in the static models discussed below.

11.2.1 General Discussion

Disk galaxies are highly flattened systems supported by rotation. A natural way to form such an
object is through the dissipational collapse of a gas cloud with some initial angular momentum.
Consider a gas cloud for which radiative cooling is very effective (this will generally be the case
provided the cloud is sufficiently dense and has a temperature T > 104 K; see §8.4). Such a cloud
will radiate away its binding energy and contract, causing it to approach a state in which its
energy is as low as possible. In the absence of any interactions with other mass components (e.g.
a dark matter halo), the cloud will conserve its angular momentum, simply because the radiation
field from cooling is roughly isotropic and so should not carry away much angular momentum.
The preferred end state is a rotating disk, since in such a configuration the angular momenta of
all mass elements point in the same direction. In fact, for a given total angular momentum, J,
the state of lowest energy is the one in which all but an infinitesimal fraction (with mass ΔM) of
the gas collapses into a ‘black hole’, while the infinitesimal part is on a Keplerian orbit with a
large radius R given by J = ΔM(GMR)1/2, where M is the mass of the cloud. This structure is, of
course, very different from a real disk. The explanation for this paradoxical discrepancy is that
although the lowest energy state is preferred by energy considerations, its realization requires a
very effective transfer of angular momentum from the inside of the disk to the outside. As we will
see in §11.4.2, the efficiency of this kind of angular-momentum transfer depends on the effective
viscosity of the disk material. In fact, in the absence of viscosity or non-axisymmetric structure,
each mass element of the cloud will conserve its own specific angular momentum, so that the end
state is a disk with surface density directly related to the initial angular momentum distribution
of the cloud. Thus, the fact that disk galaxies contain extended disks suggests that these effects
are not extremely efficient. Nevertheless, as we will see in §11.4.2, viscosity may still play an
important role in determining the density distribution of the final disk.

11.2.2 Non-Self-Gravitating Disks in Isothermal Spheres

As an illustration, let us consider an idealized case in which we (i) ignore the self-gravity of
the disk, and (ii) assume that the dark matter halo has the density distribution of a singular,



506 Disk Galaxies

isothermal sphere: ρ(r) = V 2
vir/(4πGr2). Here Vvir is the circular velocity at the virial radius rvir

defined so that the average density within it is Δvir times the critical density for closure. The value
of Δvir depends on both cosmology and redshift, and follows from the spherical collapse model
described in Chapter 5. For a flat ΛCDM cosmology with Ωm,0 = 0.3 one has that Δvir � 100 at
z = 0.

Since the critical density for closure at redshift z is given by ρcrit = 3H2(z)/(8πG), with H(z)
the Hubble parameter, the virial radius and virial mass are related to the virial velocity as

rvir =

√
2

Δvir(z)
Vvir

H(z)
and Mvir =

√
2

Δvir(z)
V 3

vir

GH(z)
. (11.51)

Note that these relations hold independent of the density profile of the dark matter halo; they fol-
low directly from the definition of the virial radius. The redshift dependence of the halo properties
are determined by both H(z) and Δvir(z).

If we assume that the mass which settles into the disk is a fixed fraction, md, of the halo mass,
then the disk mass is

Md ≈ 1.3×1011h−1 M�
( md

0.05

)( Vvir

200kms−1

)3

Q−1(z), (11.52)

where we have used the shorthand notation

Q(z) ≡
[
Δvir(z)

100

]1/2 [H(z)
H0

]
. (11.53)

For simplicity we assume the disk to be infinitesimally thin and to have an exponential surface
density distribution given by Eq. (11.1). If the gravitational effect of the disk is neglected, its
rotation curve is flat at the level Vvir and its angular momentum is just

Jd = 2π
∫ ∞

0
Vc(R)Σ(R)R2dR = 2MdRdVvir, (11.54)

where Rd is the disk scale length. We assume this angular momentum to be a fraction jd of that
of the halo, i.e.

Jd = jdJvir, (11.55)

and we relate Jvir to the spin parameter λ of the halo through the definition given by Eq. (11.37).
Eqs. (11.54)–(11.55) then imply that

Rd =
λGM3/2

vir

2Vvir|E|1/2

(
jd

md

)
. (11.56)

The total energy of a truncated singular isothermal sphere is easily obtained from the virial
theorem by assuming all particles to be on circular orbits:

E = −MvirV 2
vir

2
. (11.57)

On inserting this into Eq. (11.56), and using Eqs. (11.51) and (11.52), we obtain

Rd =
1√
2

(
jd

md

)
λ rvir

≈ 10h−1 kpc

(
jd

md

)(
λ

0.05

)(
Vvir

200kms−1

)
Q−1(z), (11.58)
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and

Σ0 ≈ 207hM� pc−2
( md

0.05

)( jd
md

)−2( λ
0.05

)−2( Vvir

200kms−1

)
Q(z). (11.59)

Eqs. (11.52), (11.58) and (11.59) relate the disk properties to the properties of the dark matter
halo (Vvir and λ ), and to the quantities md = Md/Mvir and jd = Jd/Jvir. The latter two quantities
depend on the details of the processes by which the disk has formed, such as the efficiencies of
cooling and feedback. It is common practice to assume that jd = md, i.e. that the specific angular
momentum of the material forming the disk is the same as that of the halo. This is motivated by
the fact that the baryons experience the same tidal forces as the dark matter. However, as we will
see below, there are several processes that can make jd significantly different from md, even if
the baryons and dark matter originally started out with the same specific angular momentum.

How do the predictions of this naive model compare to observations? For the Milky Way,
Vrot � 220kms−1, Md � 5×1010 M�, and Rd � 3.5kpc. Using h = 0.7, and assuming that Vrot =
Vvir, this implies that md ∼ 0.01 and λ ∼ 0.011. To put this in perspective we write md as the
product of the universal baryon fraction, fbar ≡ Ωb,0/Ωm,0, and the galaxy formation efficiency
parameter, εgf, which describes what fraction of the baryonic mass inside the halo ultimately
ends up in the disk. For the ΛCDM cosmology considered here, fbar � 0.17 (see §2.10.1) so that
md = 0.01 implies that εgf ∼ 0.06. Since baryons and dark matter are well mixed prior to the onset
of cooling, this means that only ∼ 6% of the baryons originally associated with the Lagrangian
volume out of which the halo formed have ended up in the disk. The remaining 94% either never
cooled down, or have been expelled from the disk by some feedback mechanism. This poses a
serious problem, because feedback is not expected to be very effective in halos with Vvir as large
as ∼ 200kms−1. As for the spin parameter, a value of 0.011 is relatively rare: as we have seen in
§7.5.4, dark matter halos have spin parameters that follow a log-normal distribution [Eq. (7.160)]
with a median λ ≈ 0.035 and a standard deviation σlnλ = 0.5. This implies that < 3% of all halos
have λ < 0.011. Alternatively, one can form a disk with Rd � 3.5kpc in a halo with λ = 0.05 if
jd ∼ 0.2md (i.e. the disk material has a lower specific angular momentum than the dark matter
halo). This may come about if the disk grows preferentially out of the low angular momentum
material, or if the baryons transfer a significant amount of their angular momentum to the dark
matter halo during the cooling process.

There is another problem for this simple model. Using the redshift dependence of the Hubble
constant, we find that, for the ΛCDM cosmology adopted here, a disk galaxy at z = 1 will have a
scale length about 70% smaller than a disk galaxy in a halo of the same λ and Vvir at z = 0. Since
simulations show that the distribution of halo spin parameters does not evolve with redshift, this is
inconsistent with the observation that disks at z ∼ 1 are only marginally smaller than present-day
disk galaxies of the same stellar mass (e.g. Barden et al., 2005).

11.2.3 Self-Gravitating Disks in Halos with Realistic Profiles

The naive, idealized model discussed above has three serious problems: it predicts that the disk
mass fraction is much smaller than the universal baryon fraction, that disks form in halos with
very low spin parameters, and that disk sizes evolve more rapidly with redshift than observed.
We now turn to a more realistic model, in which we account for the self-gravity of the disk, and
use more realistic density profiles for the dark matter halos.

Consider a halo with some unperturbed density profile

ρ(r) =
1

4πr2

dM(r)
dr

, (11.60)

where M(r) is the halo mass within radius r. As before, we define the limiting radius of a viri-
alized halo, rvir, to be the radius within which the mean density is Δvirρcrit. The total energy
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of the halo will be different from that for an isothermal sphere. Without losing generality, we
write

E = −MvirV 2
vir

2
FE, (11.61)

where FE is a factor which depends on the exact form of ρ(r) (see §7.5.4). For a NFW halo it is
given by Eq. (7.158).

As before, we assume that the baryons ending up in the disk initially have the same specific
angular momentum as the dark matter. If we continue to assume that the disk material is moving
on perfectly circular orbits, so that Vrot(R) = Vc(R), the total angular momentum of the disk can
be written as

Jd = 2MdRdVvirFR, (11.62)

where

FR =
1
2

∫ rvir/Rd

0
u2e−u Vc(uRd)

Vvir
du. (11.63)

Note that Vvir = Vc(rvir) is unaffected by disk formation. In practice we can set the upper limit
of integration to infinity because the disk surface density drops exponentially and rvir 	 Rd.
Substituting Eq. (11.61) into Eq. (11.37) and writing Jd = jdJvir, we obtain

Rd =
1√
2

(
jd

md

)
λ rvirF

−1
R F−1/2

E . (11.64)

Since the computation of FR requires knowledge of both Rd and the circular velocity curve Vc(r),
the above set of equations has to be solved iteratively. For example, one can start with FR = 1,
use Eq. (11.64) to obtain Rd, and use Eq. (11.63) to update FR. Due to the self-gravity of the disk,
Vc(r) is the sum in quadrature of the contributions from the disk and from the dark matter halo
modified by adiabatic contraction:

V 2
c (r) = V 2

c,d(r)+
GMh,ac(r)

r
. (11.65)

Here Vc,d(r) is the circular velocity due to the exponential disk alone [see Eq. (11.30)] and
Mh,ac(r) is the mass profile of the contracted dark matter halo, which can be obtained using
the procedure outlined in §11.1.3.

The self-gravity of the disk, and the inclusion of adiabatic contraction, strongly boost the cir-
cular velocity at a few disk scale lengths. This implies that a disk galaxy of a given Vrot resides
in a less massive halo than in the naive model presented in the previous section. This in turn
implies that a given disk mass requires a larger value of md. In addition, since a less massive halo
also has a smaller virial radius, a certain disk scale length corresponds to a larger value of λ .
Detailed calculations, in which halos are modeled as spheres with an NFW density distribution
(before adiabatic contraction), show that one can obtain a disk galaxy like the Milky Way with
md ∼ 0.05 and λ ∼ 0.05 (Mo et al., 1998). This alleviates two of the problems for the ideal-
ized model discussed in the previous section. In fact, the model described here can reproduce
the observed distribution of disk sizes from the distribution of halo spin parameters given by
Eq. (7.160), provided that jd/md ∼ 1. This implies that baryons have to largely conserve their
specific angular momentum when cooling.

As shown by Somerville et al. (2008a), the model presented here also predicts a significantly
weaker redshift evolution of disk sizes, in agreement with observations. This is owing to the fact
that NFW halos are expected to be less concentrated at higher redshifts (see §7.5.1). Everything
else being equal, a less concentrated halo results in a disk with a larger scale length. This trend
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largely counteracts the fact that halos of given mass have smaller virial radii at larger redshifts,
leading to a much weaker redshift evolution of Rd(Md,z).

Thus, all in all, the model outlined here is remarkably successful in explaining the observed
sizes of disk galaxies in a ΛCDM cosmology.

11.2.4 Including a Bulge Component

The majority of disk galaxies also contain a spheroidal bulge component, which has so far not
been taken into account. In §11.5.4 we describe how the formation of bulges may be related to
disk instabilities. Here we ignore the details of the formation process itself, and simply show how
a bulge component can be included in the modeling scheme outlined above.

When the galaxy consists of a bulge and disk its baryonic mass can be written as

Mgal ≡ Md +Mb ≡ mgalMvir, (11.66)

with Md and Mb the masses of the disk and bulge, respectively. We define the bulge-to-disk mass
ratio as Θ≡ Mb/Md so that

Md =
1

1+Θ
mgalMvir, Mb =

Θ
1+Θ

mgalMvir. (11.67)

In addition, we write the total angular momentum of the baryons, out of which the disk and bulge
form, as

Jgal ≡ jgalJvir. (11.68)

To proceed, let Jb = jbJvir indicate the original angular momentum of the baryonic material
out of which the bulge forms. We assume that the bulge formation process transfers this angular
momentum to the disk and the halo, so that the final angular momentum of the bulge is zero. If
we define ft as the fraction of Jb that is transferred to the disk (the rest being transferred to the
dark matter halo), the final angular momentum of the disk is equal to

Jd =
[

jgal − (1− ft) jb
]

Jvir. (11.69)

Using the same procedure as before, one then obtains

Rd =
1√
2

(
jgal

mgal

)[
1+(1− fj)Θ

]
λ rvirF

−1
R F−1/2

E , (11.70)

where

fj = (1− ft)
(

Jb/Mb

Jgal/Mgal

)
(11.71)

expresses the ratio between the specific angular momentum lost to the halo due to bulge forma-
tion and the total specific angular momentum of the material out of which the disk plus bulge
have formed. Note that this is exactly the same as Eq. (11.64) except for the factor 1+(1− fj)Θ,
which describes how bulge formation impacts on the scale length of the disk. A value of fj > 1
causes the disk size to decrease, while fj < 1 causes an increase in Rd. The transition does not
occur exactly at fj = 1, however, because the presence of a bulge component also modifies the
circular velocity curve and thus FR. Numerical simulations indicate that bulge formation causes
an increase in disk scale lengths (Debattista et al., 2006), suggesting that fj < 1.

11.2.5 Disk Assembly

The ‘static’ models discussed above are based on the ansatz that disk formation is a slow, adia-
batic process. Under the assumption that disks are in centrifugal equilibrium, such a static model
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is sufficient to predict the structural properties of disk galaxies. However, it does not suffice to
describe the star-formation history of the disk galaxy, or to make predictions regarding radial
age and/or metallicity gradients. This requires more ‘dynamic’ models that follow the actual
assembly of the disk over time. Here we briefly outline how such models can be constructed.

Consider a disk with surface density Σ(R, t) that at time t is embedded in a halo with a virial
mass Mvir(t). Suppose that the gas accretion rate of the disk is equal to Ṁd(t), and that this newly
accreted material has a specific angular momentum distribution P(J , t)dJ . If the gas settles in
the disk conserving its specific angular momentum we have that

2πΣ̇(R, t)RdR = Ṁd(t)P(J , t)dJ , (11.72)

where J = RVc(R, t) with Vc(R, t) the circular velocity curve of the disk–halo system at time t.
This implies that

Σ̇(R, t) =
Ṁd(t)
2πR2 P(J , t)RVc(R, t)

[
1+

∂ lnVc(R, t)
∂ lnR

]
. (11.73)

For a given density distribution of the dark matter halo, Vc(R, t) can be obtained from Σ(R, t)
(with or without adiabatic contraction), so that the growth of the disk is determined once Ṁd(t)
and P(J , t) are given.

The disk accretion rate, Ṁd(t), is set by the rate at which the dark matter halo accretes mass,
Ṁvir(t), and the rate at which the baryons in the halo can radiate away their binding energy
through radiative cooling. The rate Ṁvir(t) can be obtained from numerical simulations, or from
merger trees constructed using the extended Press–Schechter formalism (see §7.3). Since baryons
and dark matter are well mixed prior to cooling, the baryonic material accreted by the dark matter
halo at time tacc is simply given by Ṁbar(tacc) = fbarṀvir(tacc), with fbar ≡Ωb,0/Ωm,0 the universal
baryon fraction. If the gas is assumed to be heated to the virial temperature upon accretion, and if
some assumptions regarding the density distribution of the gas are made, the cooling time of the
gas, tcool(tacc), can be computed. Here we have made it implicit that material accreted at different
times may have different cooling times. Since the material newly accreted into the halo takes at
least a free-fall time, tff(tacc), to reach the disk, we have that Ṁd(t) = fbarṀvir(t ′), where t ′ is the
root of t ′ +max [tcool(t ′), tff(t ′)] = t.

Modeling the specific angular momentum distribution of the newly accreted material is more
uncertain. Either one makes oversimplified assumptions, for example that the newly accreted
material resides in a thin shell in solid-body rotation (e.g. van den Bosch, 2001), or one measures
P(J , t) from numerical hydrodynamical simulations.

In general the disk is made up of both stars and cold gas: Σ(R, t) = Σ�(R, t)+Σgas(R, t). One
can solve for the evolution of these separate components once Eq. (11.73) is supplemented with
prescriptions for star formation and/or supernova feedback. Let Σ̇�(R, t) denote the star-formation
rate at radius R at time t, and assume that supernova feedback expels cold gas from the disk at
a rate Σ̇fb(R, t) = εfbΣ̇�(R, t), with εfb an efficiency parameter. Then the evolution of Σgas(R, t)
is simply given by Σ̇gas(R, t) = Σ̇(R, t)− (1−R − εfb)Σ̇�(R, t), where R is the instantaneous
recycling fraction, defined as the ratio between the mass instantaneously returned to the ISM
via stellar winds/supernovae and the mass of stars that have formed (see §10.4.2). Within such
a scheme it is straightforward to include chemical evolution, and to compute the metallicities
and ages of the stars as function of radius, R, and time, t. Combined with a stellar population
synthesis model one can then compute the surface brightness distribution of the stellar disk in
any photometric band. Various authors have presented this kind of model, which shows that disk
galaxies are expected to form from the inside-out (e.g. Kauffmann, 1996a; Cole et al., 2000;
Firmani & Avila-Reese, 2000; van den Bosch, 2002a; Stringer & Benson, 2007; Dutton & van
den Bosch, 2009).
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11.2.6 Numerical Simulations of Disk Formation

The first simulations of galaxy formation using SPH techniques (see Appendix C) were pub-
lished in Katz & Gunn (1991) and Katz (1992). This work considered the collapse from a
uniform, uniformly rotating, initially expanding spherical state on which small-scale irregulari-
ties were imposed at about the level predicted in a CDM universe. The simulations considered
a mix of 90% dark matter and 10% gas, and included radiative cooling and, in some cases, star
formation and feedback. It was shown that, in models with only a moderate amount of initial
irregularity, the gas settles to a centrifugally supported disk before making a substantial num-
ber of stars, with the structure of the disks encouragingly similar to that of real disks. On the
other hand, in simulations with a high degree of initial irregularity, the gas cooled off and made
stars in subclumps before the main collapse of the system, and the final stellar configuration was
ellipsoidal in shape.

The first attempt to carry out SPH simulations of galaxy formation in its proper cosmological
context was that of Navarro & Benz (1991). These authors carried out a few simulations in a
universe with Ωm,0 = 1, Ωb,0 = 0.1, and with an initial perturbation power spectrum P(k)∝ k−1.
Their resolution was too poor to study the internal structure of the ‘galaxies’ which formed, but
they did note an important process: as dark halos merge to form larger objects, the gaseous cores
at their centers also merge to make a larger ‘galaxy’. However, during this process the cores
transfer most of their orbital angular momentum to the surrounding dark matter. This means
that the resulting disks are far more compact than they would be if they had the same specific
angular momentum as the halo in which they are embedded. Much higher resolution simulations
of disk formation in a CDM universe were carried out by Navarro & White (1994), and con-
firmed that most angular momentum of the disk material is lost to the dark matter during the
highly inhomogeneous assembly process. The reason for this is that the gas cools quickly and
collapses in dense subunits within the halos. A combination of dynamical friction (see §12.3)
and gravitational torques then transfers most of the orbital angular momentum of the baryons
to the dark matter. This problem has become known as the angular momentum catastrophe.

Three possible solutions to this angular momentum catastrophe have been discussed in the
literature:

(i) The simulations do not have adequate numerical resolution. When disk formation is
simulated with poor mass and spatial resolution, numerical viscosity (present in SPH
to describe shocks; see Appendix C) and numerical two-body relaxation introduced by
noise in the global potential due to small particle numbers reduce the angular momentum
of the disk by artificial dissipation and by transfer to the halo component, respectively
(e.g. Governato et al., 2004).

(ii) The treatment of feedback associated with the formation of stars is inadequate. Strong
feedback can prevent the gas from cooling in small subunits, so that the gas remains hot
and has a spatial distribution similar to that of the dark matter. This will reduce the amount
of angular momentum transfer from gas to dark matter, resulting in more extended disks
(e.g. Navarro & Benz, 1991; Brook et al., 2004a).

(iii) Dark matter is warm rather than cold. In this case, free streaming of dark matter particles
will cause a reduction of the abundance of low mass halos. Having fewer low-mass halos
in which the gas can cool has a similar effect as feedback, in that it keeps the gas more
extended (e.g. Sommer-Larsen & Dolgov, 2001).

In recent years high-resolution numerical simulations with more realistic treatments of feedback,
sometimes even with a multi-phase treatment of the ISM, have been performed (e.g. Okamoto
et al., 2005; Robertson et al., 2006a; Scannapieco et al., 2008). Although such simulations have
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been able to produce more realistic disk galaxies, they also demonstrate that it is extremely
difficult to produce disk galaxies without a substantial bulge component. It remains to be seen
whether the situation will improve with even higher resolution simulations and with more sophis-
ticated feedback prescriptions, or whether this failure signals the need for a more fundamental
modification of the underlying cosmogony.

11.3 The Origin of Disk Galaxy Scaling Relations

As shown in §2.3.3, disk galaxies obey scaling relations between their luminosity, scale length
and rotation velocity. Fig. 11.2 shows these relations for a large sample of disk galaxies compiled
by Courteau et al. (2007). The rotation velocities are measured from Hα and HI rotation curves
and basically reflect the maxima of the rotation curves. The upper-left panel shows the scaling
relation between rotation velocity and luminosity, i.e. the Tully–Fisher (TF) relation. In the I band
used here, the data can be described by

Ld = 2.9×1010h−2 L�
(

Vobs

200kms−1

)3.44

, (11.74)

Fig. 11.2. The scaling relations between rotation velocity V , luminosity L, and scale length R. Different
symbols represent different bins in central surface brightness, as indicated (all photometry is in the I band).
Solid lines show the best-fit linear relations between logV , logL and logR. The 2σ observed scatter is
indicated by the dashed lines, and the slope and scatter are listed in each panel. [Adapted from Courteau
et al. (2007) by permission of AAS]
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with a scatter in ln(Vobs) at fixed L of σlnV = 0.13, uncorrelated with the disk surface brightness.
The lower two panels show that disks are larger for brighter galaxies (Rd ∝ L0.32) and for galaxies
with larger rotation velocities (Rd ∝V 1.1

obs ), although the amounts of scatter in these relations are
significantly larger than in the TF relation.

The slopes of these scaling relations can vary substantially from one photometric band to
another. For example, the slope ∂ lnL/∂ lnV of the TF relation ranges from ∼ 2.5 in the B band
to ∼ 4 in the K band. Such variation reflects the fact that brighter (disk) galaxies are redder (see
§2.4.3). In addition to using luminosity, one can also use stellar mass or total baryonic mass (sum
of stellar mass plus cold gas mass) to obtain a baryonic TF relation. Such a relation is found to
have a slope ∂ lnMbar/∂ lnV � 3.5 (Bell & de Jong, 2001), similar to that for the I band shown in
Fig. 11.2.

Below we investigate the extent to which the disk-formation models described in the previous
section can account for the observed scaling relations of disk galaxies.

(a) Self-Gravitating Disks The tight TF relation implies a close relation between the total
gravitational mass (related to Vobs) and the total amount of stars (related to Ld). One might think
that this can be achieved if the rotation curve of a disk is dominated by the luminous mass.
However, this is true only if all disks with the same mass have the same density distribution. To
see this more clearly, consider self-gravitating disks (i.e. disks without dark matter halos) with
exponential surface density profiles. From Eq. (11.30) we see that the rotation curves of such
disks peak at a radius R ≈ 2.16Rd. It then follows that V 2

max ≈ 2.5GΣ0Rd. Since Vobs �Vmax, and
assuming a disk mass-to-light ratio ϒd ≡ Md/Ld, this relation can be written as

Ld = 8.7×1011 L�
(

Vobs

200kms−1

)4( I0

100L� pc−2

)−1( ϒd

M�/L�

)−2

, (11.75)

where I0 ≡Σ0/ϒd is the disk central luminosity density. This relation looks like a TF relation with
a slope ∂ lnL/∂ lnV = 4. However, there is a problem: the scatter in this TF relation is proportional
to the scatter in I0, in conflict with the data that shows no correlation between the TF scatter and
I0. Thus, unless ϒd ∝ I−1/2

0 with very little scatter, the observed TF relation is inconsistent with
a picture in which the disk rotation is completely dominated by baryonic matter. Given that the
rotation curves of disk galaxies are flat out to large radii, this should not come as a surprise.

(b) Non-Self-Gravitating Disks in Isothermal Spheres As another extreme, let us assume
disk gravity to be negligible, so that disk rotation curves are determined entirely by their dark
matter halos. For simplicity we model these halos as singular isothermal spheres. This is the same
assumption as used in §11.2.2, and so the Tully–Fisher relation follows directly from Eq. (11.52):

Ld = A

(
Vobs

200kms−1

)3

, (11.76)

where Vobs = Vvir, and

A ≈ 1.3×1011h−1 L�
( md

0.05

)( ϒd

M�/L�

)−1

Q−1(z). (11.77)

Contrary to Eq. (11.75), the scatter in this TF relation is expected to be independent of surface
brightness, in agreement with observational data. In addition, this relation matches both the slope
and the zero-point of the observed I band TF relation given by Eq. (11.74), provided that(

md

ϒd

)
� 0.016

(
Vobs

200kms−1

)0.44

, (11.78)

where we have adopted h = 0.7, and ϒd now represents the mass-to-light ratio of the disk in the
I band (in solar units). To put this in perspective, we write ϒd = ϒ�/εsf, where ϒ� is the stellar
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mass-to-light ratio and εsf is the star-formation efficiency describing the fraction of the disk mass
that ends up in the form of stars. For a disk with Vobs ∼ 200kms−1, such as our Milky Way,
εsf ∼ 0.9 and ϒ� ∼ 2(M/L)� in the I band. From Eq. (11.78) we then infer that md ∼ 0.035,
corresponding to a galaxy formation efficiency of εgf = md/(Ωb,0/Ωm,0) � 0.2; i.e. only about
20% of the baryons in the halo of a Milky-Way-like galaxy have ended up in the disk. The
challenge is to find a physical mechanism (e.g. feedback) that can explain such a low efficiency
while keeping the galaxy-to-galaxy scatter in md/ϒd sufficiently small to match the observed TF
scatter. Finally, the (weak) dependence of md/ϒd on Vobs indicates that either md increases with
rotation velocity for fixed ϒd, or ϒd decreases with rotation velocity for fixed md. Both are likely:
the former is qualitatively consistent with supernova feedback, which is expected to be more
effective in less massive halos (see §8.6.3), while the latter is consistent with the fact that εsf is
larger in more massive systems (i.e. more massive disk galaxies have lower gas mass fractions;
see §2.3.3).

(c) Self-Gravitating Disks in Halos with Realistic Profiles The above model, in which the
self-gravity of the disk is negligible, and the halo is a singular isothermal sphere, seems to be able
to explain all aspects of the observed TF relation, as long as the scatter in md/ϒd is sufficiently
small. In particular, it can produce a TF relation whose scatter is uncorrelated with the surface
brightness of the disk, as is observed. However, as seen in §11.2.3, in realistic models dark
matter halos are not well described by singular isothermal spheres, and the self-gravity of disks
is usually not negligible.

The main effect of using realistic dark matter halos and including the self-gravity of the disk
(and the associated adiabatic contraction of the halo) is that Vobs is no longer equal to Vvir. This
means that Eq. (11.78) must be replaced by(

md

ϒd

)
� 0.016

(
Vobs

Vvir

)3( Vobs

200kms−1

)0.44

. (11.79)

For realistic models with a NFW dark matter halo 1.2 ∼< Vobs/Vvir ∼< 1.8, depending on how
concentrated the disk and halo are. This has an important impact. For example, consider an
average value of Vobs/Vvir = 1.5. Adopting εsf ∼ 0.9 and ϒ∗ ∼ 2(M/L)�, as above, we obtain that
εgf � 0.7 for a disk galaxy with Vobs ∼ 200kms−1. This significantly reduces the requirements
for strong feedback compared to the model without self-gravity (which, as shown above, requires
εgf � 0.2 to match the TF zero-point). Another important advantage of taking the disk self-gravity
into account is that it reduces the sensitivity of the TF relation to the scatter in md, simply because
a more massive disk also implies a higher rotation velocity Vobs. In fact, it has been demonstrated
that the scatter in md moves disk galaxies mainly along the TF relation, rather than perpendicular
to it (Mo & Mao, 2000; Steinmetz & Navarro, 2000).

However, there is an important complication. The extra factor of (Vobs/Vvir)3 in Eq. (11.79)
also adds scatter to the TF relation. First of all, halos of a fixed Vvir have a significant amount
of scatter in halo concentrations (see §7.5.1), which translates into scatter in Vobs/Vvir. Secondly,
the scatter in λ also translates into scatter in Vobs/Vvir, simply because a more concentrated disk
(associated with a lower spin parameter) will have a larger Vobs/Vvir. This is a problem, because
the surface density of the disk Σ0 ∝ λ−2 [see Eq. (11.59)], and the TF scatter thus becomes cor-
related with the disk surface brightness whenever the self-gravity of the disk becomes important
(i.e. Vobs/Vvir has a large value), in conflict with the data.

There is yet another complication: an increase in Vobs/Vvir also means that a disk galaxy of a
given Vobs on average lives in a less massive halo. This has two effects: it causes the virial radius
of the halo to be smaller, and it requires a larger value of md to match the TF zero-point. As
can be seen from Eq. (11.64), Rd ∝ rvir/md. Therefore, increasing the value of Vobs/Vvir causes
the scale length of the disks to become smaller. Matching the observed zero-point of the scaling



11.4 The Origin of Exponential Disks 515

relation between Rd and L (or between Rd and Vobs) then requires that disk galaxies form in halos
with larger spin parameters. These together illustrate that the scaling relations shown in Fig. 11.2
are intimately related, and that a successful model must be able to reproduce all three of them
simultaneously.

Detailed models that take all these effects into account have been presented by van den Bosch
(2000) and Dutton et al. (2007). These studies show that it is extremely difficult to construct a
model that can match all scaling relations simultaneously. The main culprit is that the models
predict values for Vobs/Vvir that are too large. This, in turn, is due to the fact that NFW halos are
predicted to be relatively concentrated in the ΛCDM concordance cosmology, and that adiabatic
contraction is very effective. At the present it is unclear whether this implies a problem for the
CDM framework, or rather indicates that one of the assumptions on which these models are
based is incorrect.

11.4 The Origin of Exponential Disks

As we have seen in §2.3.3, the observed surface brightness profiles of galactic disks are well
described by an exponential form, both in the radial and in the vertical direction. An important
challenge for any theory of disk formation is to understand the origin of these exponen-
tial profiles. Broadly speaking two different concepts have been considered to explain why
the radial surface brightness profiles are exponential: (i) the surface density distribution of
the disk galaxy reflects the specific angular momentum distribution of the proto-galaxy, and
(ii) the surface density distribution is a result of disk viscosity. Unfortunately, as we will see
below, both of these models have problems, so that currently we do not have a clearly viable
theory.

The vertical density distribution of disk galaxies turns out to reveal a wealth of structure
that serves as a fossil record of their formation history. After discussing models for the ori-
gin of the radial density distribution of disk galaxies, we therefore also give a brief overview
of the vertical structure of disk galaxies and sketch some of the main ideas regarding its
origin.

11.4.1 Disks from Relic Angular Momentum Distribution

The disk formation models discussed in §11.2 are based on the assumption that the total specific
angular momenta of the disks are the same as those of their halos (at least when md/ jd = 1
is assumed). We refer to this as the weak form of angular momentum conservation. We now
consider a model in which there is no angular momentum redistribution in the gas as it flows to
form a disk (Mestel, 1963; Freeman, 1970; Fall & Efstathiou, 1980). In this case, the angular
momentum of each mass element is conserved and the initial angular momentum distribution of
the gas is the same as that of the resulting disk galaxy. We refer to this as the strong form of
angular momentum conservation.

In §7.5.4 we have seen that the specific angular momentum distribution of dark matter halos is
well fit by

P(J ) =
μJ0

(J0 +J )2 , (11.80)

where μ is a free shape parameter, and J0 a parameter related to the total specific angular
momentum by J0 = Jtot(μ−1)/ζ with ζ = ζ (μ) given by Eq. (7.177).

In what follows we assume that the gas has the same specific angular momentum distribu-
tion P(J ) as the dark matter. Non-radiative hydrodynamical simulations have shown that this
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is a reasonable assumption (e.g. van den Bosch et al., 2002; Chen et al., 2003; Sharma & Stein-
metz, 2005). If all the gas cools to form a disk, and if the strong form of angular momentum
conservation is valid, the mass distribution of the disk obeys

Md(r)
Md

=
Mh(< J )

Mvir
, (11.81)

where J and R are related according to J = RVc(R). Since

Σd(R) =
1

2π
1
R

dMd(R)
dR

, (11.82)

one has that

Σd(R) =
Md

2πR2 P(J )RVc(R)
[

1+
∂ lnVc

∂ lnR

]
(11.83)

[see Eq. (11.73)].
For a non-self-gravitating disk embedded in a singular isothermal sphere, Vc(R) = Vc and

Eq. (11.83) reduces to

Σd(R) = μ
Md

2πR′2
d

(
R
R′

d

)−1(
1+

R
R′

d

)−2

(11.84)

where

R′
d ≡

J0

Vc
=
√

2(μ−1)ζ−1λ rvir. (11.85)

Here we have used a prime to indicate that this disk scale length should not be confused with
that of an exponential disk. In fact, Eq. (11.84) is a double power law rather than an exponential.
It changes from Σd ∝ R−1 at small radii (R � R′

d) to Σd ∝ R−3 at large radii (R 	 R′
d), so that its

decline is faster (slower) than exponential at small (large) radii.
More detailed calculations, including the self-gravity of the disk and using realistic NFW den-

sity distributions for the dark matter, paint a similar picture: P(J ) is not consistent with an
exponential surface density distribution of disk galaxies. This is illustrated in Fig. 11.3, where
a comparison is made between the specific angular momentum distributions of dark matter
halos and those of three observed disk galaxies, obtained from their surface density profiles
and rotation curves. The differences are very pronounced: disk galaxies lack both low and high
specific angular momentum material compared to the distribution given by Eq. (11.80). This rep-
resents another angular momentum problem for disk galaxy formation, in addition to the angular

Fig. 11.3. The shaded areas indicate the normalized angular momentum distributions p(l) (where l =
J /Jtot) of three disk galaxies, obtained from their observed density distributions and rotation curves.
The solid lines show the typical, normalized angular momentum distribution of dark matter halos, given by
Eq. (11.80) with μ = 1.25. [After van den Bosch et al. (2001)]
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momentum catastrophe discussed in §11.2.6: even if disks form conserving their detailed specific
angular momentum distribution, which, as we have seen in §11.2.6, is inconsistent with hydro-
dynamical simulations, the resulting disks do not have realistic surface density profiles (Bullock
et al., 2001a; van den Bosch et al., 2001; Sharma & Steinmetz, 2005).

Within the standard framework for disk formation outlined above, there are three possible
solutions to this problem:

(i) The low specific angular momentum material is somehow transformed into a bulge
component. Although this can result in disks with exponential surface brightness dis-
tributions (van den Bosch, 2001), it still leaves open the question how to form bulge-less,
exponential disks.

(ii) Disks only form out of a special subset of the entire baryonic matter associated with the
dark halo. Indeed, as we have seen in §11.3 the zero-point of the observed Tully–Fisher
relation suggests that only a relatively small fraction of the baryonic material ends up in
the disk. If, for example, feedback preferentially expels low angular momentum material
from the disk, it could solve the problem at hand (e.g. Dutton & van den Bosch, 2009).

(iii) Somehow the specific angular momentum of the disk material is redistributed during the
formation or evolution of the disk, so that its final P(J ) corresponds to an exponential
disk. One mechanism to transfer angular momentum is disk viscosity, which we discuss
next. Another would be gravitational torques during disk assembly.

11.4.2 Viscous Disks

An alternative explanation for the exponential density distribution of disk galaxies is angular
momentum transport. In this case, the gas that forms a galactic disk is assumed to settle in
a centrifugally supported disk with some arbitrary surface-density profile. In general, the disk
material rotates differentially, and transport processes can therefore cause angular momentum
to be exchanged between material at different radii. If gas at radius R loses angular momen-
tum in this manner, it sinks deeper into the gravitational potential well, while the material which
absorbs its angular momentum moves outwards. This redistribution of mass and angular momen-
tum causes Σ(R) to evolve with time, and the final density distribution of the disk will reflect
dissipational processes during its formation and evolution, rather than the initial conditions.

The evolution of viscous, star-forming disks has been discussed in some detail by Lin &
Pringle (1987b). The gas surface density, Σ(R, t), is assumed to evolve into a stellar surface
density, Σ�(R, t), according to the star-formation law

∂Σ�

∂ t
=
Σ(R, t)

t�
, (11.86)

where t� is the star-formation time scale whose form has to be specified. The evolution of the gas
surface density is governed by the standard viscous accretion disk equations of continuity and
conservation of angular momentum supplemented with a sink term due to the conversion of gas
to stars. These equations are

∂Σ
∂ t

+
1
R
∂
∂R

(ΣRvR) = −Σ
t�

, (11.87)

and
∂
∂ t

(ΣR2Ω)+
1
R
∂
∂R

(ΣR3ΩvR) =
1
R
∂
∂R

(
νΣR3 ∂Ω

∂R

)
−R2Ω

Σ
t�

(11.88)

(see Pringle, 1981, for details). Here vR is the radial velocity of the gas, Ω(R) = Vc(R)/R is
the circular frequency, and ν is the kinetic viscosity. Eliminating vR between Eq. (11.87) and
Eq. (11.88) assuming ∂Ω/∂ t = 0 yields



518 Disk Galaxies

∂Σ
∂ t

= − 1
R
∂
∂R

{
(∂/∂R)

[
νΣR3 (∂Ω/∂R)

]
(∂/∂R)(R2Ω)

}
− Σ

t�
. (11.89)

Without the star-formation term, the equation for Σ(R, t) is of diffusion type. In this case, as
the gas diffuses inwards the angular momentum is transported outwards in order to conserve
the total angular momentum of the gas. The time scale of this viscous transport is of the order
tν ≈ R2/ν. In the presence of star formation, the radial diffusion of a gas parcel is halted when it
is turned into stars, giving rise to a final stellar distribution given by

Σ�(R) =
∫ ∞

0

Σ(R, t)
t�

dt. (11.90)

If t� � tν , the redistribution of gas is negligible and Σ�(R)∼Σ(R,0). On the other hand, if t� 	 tν ,
the effect of star formation on the gas redistribution can be neglected, and the disk rapidly evolves
towards its ultimate endpoint in which all the mass is at the origin and all the angular momentum
at infinity (see §11.2.1). However, Lin & Pringle (1987b) found that if t� ≈ tν then the result-
ing stellar disk has an exponential profile quite independent of the initial gas surface density
and of the assumed viscosity prescription. Although the dominant physical process responsible
for the viscosity in disk galaxies is poorly constrained, the condition that t� ≈ tν seems quite
natural. If, for example, viscosity results from interactions between molecular clouds then it
is likely that enhanced viscosity is associated with enhanced star formation through dissipa-
tion and/or aggregation of clouds. Furthermore, since angular momentum may be transferred
by non-axisymmetric self-gravitating modes (Lin & Pringle, 1987a), such as spiral arms, both
star formation and viscous dissipation may be linked to the importance of self-gravity in the
disk.

Viscous evolution therefore seems a promising mechanism to explain the exponential surface
brightness profiles of disk galaxies. However, since viscosity transports mass inwards, a require-
ment is that the initial gas profile, prior to the onset of evolution, is less centrally concentrated
than an exponential. As we have seen above, this is inconsistent with the initial surface density
profile predicted from the halo angular momentum distribution, which is actually more centrally
concentrated than an exponential profile. Thus, although viscosity may play an important role in
redistributing disk material, and in particular in setting the outer profile of the gas distribution
(e.g. Olivier et al., 1991), it only aggravates the problem of the excess of low angular momentum
material outlined above.

11.4.3 The Vertical Structure of Disk Galaxies

As mentioned in §2.3.3, galactic disks typically consist of two separate components: a thin disk
and a thick disk. Here we briefly discuss the origin of this vertical structure.

(a) Thin Disks As discussed in §11.1.1 the vertical structure of thin disks is often mod-
eled as an isothermal sheet. This is motivated by considerations of simplicity. However, since
the stellar components in galaxies are collisionless, there is no reason to expect them to be
isothermal. Indeed, as we have seen in §2.3.3, in many cases an exponential z profile is a bet-
ter description of the vertical density distribution in galaxy disks than is a sech2-distribution.
Kinematic studies of stars in the solar neighborhood have shown that the velocity dispersion
of stars increases systematically with their age. Defining the heating rate αi = dlnσi/dln t,
with σi the velocity dispersion in the i direction and t the age of the stars, observational data
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show that αR � 0.31, αφ � 0.34 and αz � 0.47 (Wielen, 1977; Nordström et al., 2004). It
is generally assumed that this age dependence is due to some heating mechanism: stars are
born close to the disk mid-plane with a small velocity dispersion, but the dispersion is sub-
sequently increased by one or more heating mechanisms. In this case, the density distribution
of the disk in the vertical direction is a result of both the star-formation rate and heating
rate of the disk. For example, as shown by Just et al. (1996), one can obtain an exponen-
tial vertical profile by having a declining star-formation rate combined with a constant heating
rate.

Spitzer & Schwarzschild (1953) suggested that disk stars could be heated by scattering against
massive gas clouds orbiting in the disk. Because of differential rotation, a cloud with orbital
radius Rc overtakes stars with guiding center radii R > Rc and is overtaken by stars with R < Rc.
Typically, stars gain energy from the encounters with the cloud because of their much smaller
masses, and so increase their peculiar motion relative to the rotating disk. Although the dis-
covery of a population of giant molecular clouds (GMCs) with masses in the proposed range
(M > 105 M�) was originally considered a major success for this heating model, more detailed
calculations by Lacey (1984) showed that the heating rate is too low (αz ∼< 0.25), while the
resulting ratio σz/σR is too high. These results have subsequently been confirmed with numeri-
cal simulations (Villumsen, 1985; Hänninen & Flynn, 2002). An alternative heating mechanism,
proposed by Goldreich & Lynden-Bell (1965) and Barbanis & Woltjer (1967), is heating by
transient spiral arms. As discussed in more detail in §11.6, spiral arms are associated with spiral-
shaped potential perturbations. In order for these perturbations to cause a net heating of the disk
stars, it is crucial that the amplitude of the perturbations evolve with time, on a time scale suffi-
ciently small compared to the time it takes for a star to cross the perturbation (see §7.5 in Binney
& Tremaine, 1987). In this case the heating is somewhat similar to violent relaxation. As we
discuss in §11.6, the flocculent spiral arm fragments seen in many disk galaxies are believed
to be transient phenomena that form and dissappear on an orbital time scale. Unlike the grand-
design spirals, which are believed to be quasi-stationary density waves, these structures may thus
be responsible for a significant heating of disk stars. Indeed, numerical simulations by Carlberg
& Sellwood (1985) and De Simone et al. (2004) have shown that heating by transient spirals
is likely to be the dominant in-plane heating mechanism. However, since the spiral arms have
characteristic sizes much larger than the scale height of the young stellar population, they are
unable to cause a significant increase in σz. Jenkins & Binney (1990), therefore, considered a
hybrid model, in which the main source of heating is transient spirals, while the GMCs are
responsible for scattering the stars out of the disk plane. Although they were able to reproduce
the observed ratio σz/σR, the resulting heating rate, αz ∼ 0.3, is still too low compared to the
data.

Two additional heating mechanisms that have been discussed in the literature are minor merg-
ers with small satellite galaxies (Tóth & Ostriker, 1992) and heating by a population of massive
black holes with masses of the order of 106 M� that populate the dark halo surrounding the disk
(Lacey & Ostriker, 1985). The former is likely to play a role in hierarchical structure formation
models, and will be discussed in more detail in §12.4.4. The latter, although potentially capable
of explaining the observed heating rates, lacks a natural explanation for the origin of the black
holes. In addition, it has problems because massive black holes passing through the disk can
accrete gas, giving rise to an unobserved population of high proper motion X-ray sources, and
because microlensing observations of the Galactic bulge and the LMC exclude a dominant halo
population of such objects.

In summary, it is generally accepted that the vertical structure of thin disks is produced by
heating of disk stars that originally formed near the mid-plane with a small velocity dispersion.
Although there is no shortage of possible heating mechanisms, it is still unclear which, if any, of
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these dominates. In addition, the fact that the scale heights of disk galaxies are observed to be
remarkably independent of the galactocentric distance suggests that the heating rate is equally
efficient over the entire disk. A natural explanation for this is still lacking.

(b) Thick Disks Thick disks were first discovered by Burstein (1979) from deep photometry
of five edge-on S0 galaxies. Burstein noted faint envelopes of excess surface brightness at large
distances from the mid-plane, which cannot be described by the regular sech2 law of Eq. (2.31).
Of course, the excess alone may simply reflect that the sech2 form is not an appropriate fitting
function, rather than indicating a separate disk component. The subsequent discovery of a thick
disk in the Milky Way by Gilmore & Reid (1983) quickly settled this issue. With photometric
and spectroscopic observations of individual thick disk stars it soon became clear that the thick
disk, at least in the Milky Way, is a truly distinct component. Its stars are old (∼> 10−12 Gyr),
relatively metal poor (−2.2 ∼< [Fe/H] ∼< −0.3 with a mean of ∼ −0.6) and are more enhanced
in α elements than thin disk stars of the same [Fe/H]. The old stellar age indicates that the thick
disk may serve as a fossil record of physical processes during the early stages of the formation
of the Milky Way.

Nowadays it is clear that thick disks are ubiquitous. They are found in essentially all edge-on
disk galaxies of all Hubble types, indicating that they are a generic by-product of galaxy forma-
tion. As discussed in §2.3.3, extragalactic thick disks are almost always more radially extended,
older and more metal poor than the more massive embedded thin disk, while their vertical scale
heights are ∼ 3 times larger. Of the three cases studied kinematically, two rotate slower than
the thin disk, lagging behind by ∼ 20%−50%, while in the other case there is evidence for
counter-rotation (Yoachim & Dalcanton, 2005).

One can envisage a number of different formation scenarios for thick disks, which we cat-
egorize according to the birth place of the thick disk stars: (i) in the thin disk, (ii) in situ in
the thick disk, or (iii) externally. In case (i) the stars must have been heated vertically by some
mechanism, while either a substantial fraction stays behind or a new thin disk forms by gas
inflow following the heating event. Potential candidates for heating the disk are mergers or close
encounters with relatively massive satellite galaxies or dark matter subhalos (e.g. Quinn et al.,
1993; Velazquez & White, 1999; Kazantzidis et al., 2008). A potential problem for this thicken-
ing scenario is that the event that heated the thin disk must have happened about 10–12 Gyr ago
(i.e. at z ∼ 2). Since the thick disk is at least as large as the present-day thin disk, this requires
the thin disk at z ∼ 2 to have a size comparable to that today, which is difficult to reconcile
with the standard model for disk formation discussed in §11.2. In case (ii) the thick disk stars
may form during a slow, pressure-supported collapse, or during a burst of intense star forma-
tion at the early stages of galaxy formation when clumps of gas coalesce to form the thin disk
(Brook et al., 2004b). The former is unlikely as it fails to explain the lack of a large, interme-
diate age population with a scale height in between that of the thin and thick disks. Finally,
in case (iii), the thick disk stars may have formed in small satellite galaxies, which deposited
their stars into the thick disk when they were disrupted by the tidal field of the thin disk (Abadi
et al., 2003). The main argument against this scenario is that none of the satellite galaxies of
the Milky Way, not even the LMC, has metallicities and abundance patterns comparable to that
of the thick disk. This indicates that if the thick disk is made up primarily of satellite debris,
these satellites must have been very different from those that survived. Note, however, that this
is not a very strong argument, since the satellites that formed the thick disk (and probably also
the stellar halo) are likely to have been accreted a long time ago. It is not at all unlikely that
these early satellites had different metallicities and abundance patterns from the present-day
population of survivors. Currently it is unclear which of these various scenarios is the dominant
mechanism for forming thick disks. It is possible that all the processes occur and contribute to
some extent.
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11.5 Disk Instabilities

Thus far we have considered models for the formation of disk galaxies without examining
whether the resulting disks are stable or not. However, instabilities may play a very important role
in transforming and regulating the properties of (disk) galaxies. In what follows we distinguish
between global stability and local stability. The former can cause a significant transformation of
the overall disk structure, and plays an important role in our understanding of the global proper-
ties of disk galaxies. Whenever a disk galaxy is globally unstable it will evolve towards a new,
stable configuration, erasing information about the initial conditions under which the system
formed. Local stability, on the other hand, controls whether or not perturbations much smaller
than the size of the disk can grow. Since star formation requires the fragmentation and collapse
of gas clouds, local instability is likely to be a necessary condition for star formation in disk
galaxies.

11.5.1 Basic Equations

The analysis of disk instability presented here is based on standard first-order perturbation the-
ory. Starting from the basic dynamical equations, we first write each quantity as a sum of its
unperturbed value and a (small) perturbation. Next we keep only terms that are first order in the
small perturbations to get a set of linear equations. After expanding the perturbations in terms
of the eigenmodes (e.g. Fourier expansion), we determine the dispersion relation and investigate
the unstable modes.

Consider a thin, self-gravitating disk (i.e. for the moment we ignore a possible dark halo). For
simplicity we assume the disk to be gaseous so that fluid dynamics apply. We also assume the
unperturbed disk to be axisymmetric so that it is convenient to work with cylindrical coordinates
(R,φ ,z), where z = 0 corresponds to the disk plane. Neglecting the thickness of the disk, the
continuity equation can be written as

∂Σ
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1
R
∂
∂R

(ΣRvR)+
1
R
∂
∂φ

(Σvφ ) = 0, (11.91)

where Σ is the surface density. The Euler equations in cylindrical coordinates are

∂vR

∂ t
+ vR

∂vR

∂R
+

vφ
R
∂vR

∂φ
− v2

φ

R
= − ∂

∂R
(Φ+h), (11.92)

∂vφ
∂ t

+ vR
∂vφ
∂R

+
vφ
R

∂vφ
∂φ

+
vφvR

R
= − 1

R
∂
∂φ

(Φ+h), (11.93)

where Φ is the gravitational potential at z = 0, related to Σ via the Poisson equation

∇2Φ= 4πGΣδ (z), (11.94)

with δ (z) the Dirac delta function. The quantity h introduced in the Euler equations represents
the pressure force and its expression can be derived as follows. The pressure term should have
appeared on the right-hand side of Eq. (11.92) as −ρ−1(∂P/∂R) and on the right-hand side of
Eq. (11.93) as −(ρR)−1(∂P/∂φ), where ρ is the volume density and P is the pressure. Since
we do not care about the vertical structure of the disk, we may assume the disk to be uniform
in the z direction. In this case, using the definition of the sound speed, c2

s = ∂P/∂ρ (notice that
cs is defined for the unperturbed disk and so it depends only on R), we have ρ−1(∂P/∂R) =
c2

s∂ lnΣ/∂R and ρ−1(∂P/∂φ) = c2
s∂ lnΣ/∂φ . It then follows that h is related to Σ by

dh = c2
s d lnΣ. (11.95)
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Now we write Σ= Σ0 +Σ1, vR = vR0 +vR1 = vR1, vφ = vφ0 +vφ1, Φ=Φ0 +Φ1 and h = h0 +
h1, where the subscripts ‘0’ and ‘1’ refer to unperturbed and perturbed quantities, respectively.
Keeping only terms to the first order in the perturbations, Eqs. (11.91)–(11.94) become

∂Σ1

∂ t
+

1
R
∂
∂R

(Σ0RvR1)+Ω
∂Σ1

∂φ
+
Σ0

R

∂vφ1

∂φ
= 0, (11.96)

∂vR1

∂ t
+Ω

∂vR1

∂φ
−2Ωvφ1 = − ∂

∂R
(Φ1 +h1) , (11.97)

∂vφ1

∂ t
+Ω

∂vφ1

∂φ
+
κ2

2Ω
vR1 = − 1

R
∂
∂φ

(Φ1 +h1) , (11.98)

∇2Φ1 = 4πGΣ1δ (z). (11.99)

In the above equations, h1 = c2
sΣ1/Σ0, which follows from the linearized version of Eq. (11.95),

and Ω(R) and κ(R) are, respectively, the circular frequency and epicyclic frequency of the
unperturbed disk at radius R (see §11.1.5).

In general, we can expand a perturbation in the form

Q1 =∑Qa(R)e−i(ωt−mφ), (11.100)

where Q1 denotes a perturbation quantity (e.g. Σ1), and the summation is over all modes a, each
of which is characterized by an angular frequency, ω , and its azimuthal wavenumber m > 0.
Throughout this section we consider it understood that, since Q1 is a physical quantity, we need
to take the real part of Eq. (11.100). Substituting such solutions into Eqs. (11.96)–(11.98) and
rearranging, we have

i(mΩ−ω)Σa +
1
R

d
dR

(Σ0RvRa)+
imΣ0

R
vφa = 0, (11.101)

vRa = − i
ϖ

[
(mΩ−ω)

d
dR

(Φa +ha)+
2mΩ

R
(Φa +ha)

]
, (11.102)

vφa =
1
ϖ

[
κ2

2Ω
d

dR
(Φa +ha)+

m(mΩ−ω)
R

(Φa +ha)
]
, (11.103)

where ha = c2
sΣa/Σ0, and

ϖ ≡ κ2 − (mΩ−ω)2. (11.104)

This set of equations is complete for Σa, vRa and vφa once Φa is related to Σa via the Poisson
equation.

The Poisson equation for a thin disk can be solved easily for Fourier modes. To proceed, we
write Eq. (11.99) as

∇2
xΦ1 +

∂ 2Φ1

∂ z2 = 4πGΣ1δ (z), (11.105)

where ∇x denotes derivatives in the disk plane. Consider a plane-wave perturbation on the disk:
Σ1 = Σ̃1 exp[i(k ·x−ωt)]. Since ∇2Φ1 = 0 for z �= 0 and since Φ1 must be of the form Φ1(x,z =
0, t) = Φ̃1 exp[i(k · x−ωt)] on the disk plane (z = 0), it can be shown that the only continuous
function that satisfies both conditions has the form Φ1(x,z, t) = Φ̃1 exp[i(k ·x−ωt)]exp(−|kz|).
Inserting this solution into Eq. (11.105) gives

− k2e−|kz|Φ̃1 + Φ̃1
∂ 2e−|kz|

∂ z2 = 4πGΣ̃1δ (z), (11.106)
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which can be solved to give

Φ̃1 = −2πG
|k| Σ̃1. (11.107)

Note, however, that this relation is only valid for Fourier modes which, in general, are not the
eigenmodes for axisymmetric disks.

11.5.2 Local Instability

If the characteristic size of the perturbation is much smaller than the size of the disk, the sta-
bility analysis (one now speaks of local stability) can be simplified. To proceed, let us write a
perturbation mode as

Σ1(R,φ , t) = A(R, t)exp{i [mφ + f (R, t)]} , (11.108)

where f (R, t) is the shape function, and A(R, t) is a slowly varying function of R that sets the
amplitude of the density wave. For a fixed t, mφ+ f (R, t) = constant defines a curve (in the disk)
where the phase of the perturbation mode is the same. The curves defined by mφ+ f (R, t) = 2nπ
(n = 0,±1, . . .) therefore correspond to the peaks of the density waves and delineate the ridges
of spiral density arms. The radial separation between adjacent arms at a given azimuth is ΔR,
where | f (R +ΔR, t)− f (R, t)| = 2π . Under the assumption of tight-winding ΔR � R, and one
has f (R+ΔR, t) ≈ f (R, t)+(∂ f /∂R)ΔR so that ∂ f /∂R = 2π/ΔR. In this case, we can write the
perturbation in the neighborhood of a point (R0,φ0) as

Σ1(R,φ , t) ≈ Σa exp [ik(R0, t)(R−R0)] , (11.109)

where

Σa = A(R0, t)exp{i [mφ0 + f (R0, t)]} , (11.110)

k(R0, t) ≡
[
∂ f (R, t)
∂R

]
R0

=
2π
ΔR

. (11.111)

In the above expression we have neglected the variations with angle φ , because they are much
slower than the radial variations for tightly wound waves. Under this assumption, a spiral density
wave closely resembles a plane wave in the R direction, with wave-vector keR and wavelength
ΔR. In this case, the potential perturbation Φa is related to Σa by Φa = −2πGΣa/|k| [see
Eq. (11.107)]. Inserting such solutions into Eqs. (11.101)–(11.103) and using the fact that kR	 1
to neglect all small terms, we obtain

(mΩ−ω)Σa + kΣ0vRa = 0, (11.112)

vRa =
(mΩ−ω)k(Φa +ha)

ϖ
, vφa =

iκ2k(Φa +ha)
2Ωϖ

. (11.113)

Inserting the expression of vRa into Eq. (11.112) and using ha = c2
sΣa/Σ0, we finally get the

following dispersion relation for a gaseous disk in the tight-winding approximation:

(mΩ−ω)2 = κ2 −2πGΣ0|k|+ k2c2
s . (11.114)

For axisymmetric perturbations (i.e. m = 0), the dispersion relation reduces to

ω2 = κ2 −2πGΣ0|k|+ k2c2
s . (11.115)

Note that without the κ2 term this is simply the Jeans criterion for gravitational instability (see
§4.1.3) in a thin disk. The extra κ term is owing to the Coriolis force associated with the disk’s
rotation, and which provides a centrifugal force that combines with the pressure to resist the
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growth of perturbations. We can use Eq. (11.115) to investigate whether the disk is stable against
perturbations with m = 0: modes with ω2 < 0 grow exponentially with time and so are unstable,
while those with ω2 > 0 are stable. To proceed, we define the following two dimensionless
parameters,

Q ≡ csκ
πGΣ0

and λcrit ≡ 4π2GΣ0

κ2 , (11.116)

which allows us to write the dispersion relation as

ω2 =
4π2GΣ0

λcrit

[
1− λcrit

λ
+

Q2

4

(
λcrit

λ

)2
]

, (11.117)

where λ ≡ 2π/|k|. As is evident from this equation, λcrit is the largest unstable wavelength for a
zero-pressure (cs = 0) disk. The line separating stable and unstable modes is given by

Q(λ ) = 2

√
λ
λcrit

(
1− λ

λcrit

)
; (11.118)

a disk with a Q value larger than Q(λ ) is stable for the perturbation mode with wavelength λ and
vice versa. The function Q(λ ) has a maximum Qmax = 1 at λ = λcrit/2. Thus, a disk is stable
against all local perturbations if Q > 1, and as the Q value decreases, the mode that first becomes
unstable has λ = λcrit/2. In summary, for fluid disks,

Q ≡ csκ
πGΣ0

> 1 (for a stable disk), (11.119)

and

λ = 0.5× 4π2GΣ0

κ2 (most unstable). (11.120)

A similar derivation can be used to derive the dispersion relation for a stellar disk, in which
the effective ‘pressure’ is due to the random motions of the stars. For a stellar disk the equivalent
of Eq. (11.114) is given by

(mΩ−ω)2 = κ2 −2πGΣ0|k|F
(
ω−mΩ
κ

,
k2σ2

R

κ2

)
, (11.121)

where σR is the radial velocity dispersion, and

F (s,χ) =
(1− s2)
sin(sπ)

∫ π

0
e−(1+cosτ)χ sin(sτ)sin(τ)dτ. (11.122)

The derivation of this relation was given independently by Kalnajs (1965) and Lin & Shu (1966),
and can also be found in Binney & Tremaine (1987). In terms of λcrit defined in Eq. (11.116) and
Q ≡ σRκ/(πGΣ0), the line of neutral instability, ω = 0, can be written as

λcrit

λ
F

(
0,Q2 λ 2

crit

λ 2

)
= 1, (11.123)

which defines a curve Q(λ ). As before, a stellar disk is stable (unstable) against a perturbation
mode with wavelength λ if Q is larger (smaller) than Q(λ ). The function Q(λ ) has a maximum
value Qmax ≈ 3.36/π at λ ≈ 0.55λcrit. Thus, for stellar disks,

Q ≡ σRκ
3.36GΣ0

> 1 (for a stable disk), (11.124)
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and

λ = 0.55× 4π2GΣ0

κ2 (most unstable). (11.125)

The inequalities (11.119) and (11.124) are known as Toomre’s stability criterion (Toomre, 1964),
and Q, which is slightly different for gaseous and stellar disks, is sometimes called the Toomre
parameter. Note that the Toomre stability criterion is derived for axisymmetric perturbations with
wavelengths that are much smaller than the size of the disk. It is independent of the form of the
surface density profile, Σ0(R), indicating that it applies locally. Gas disks with Q ∼< 1 can frag-
ment into clumps with typical sizes ∼ λcrit/2, and it is believed that this plays an important role
in modulating star formation in disk galaxies (see §9.2.2). As we will see in §11.6, the Toomre
stability criterion may also play an important role in the formation of spiral arm fragments.

11.5.3 Global Instability

We now turn to global stability, and investigate whether disks are stable against perturbations with
wavelengths that are comparable to the disk size. Obviously, the tight-winding approximation is
not valid for such perturbations. In fact, whether or not a disk is globally stable depends on the
global properties of the disk, such as its density distribution Σ0(R) and circular frequency,Ω0(R),
and it is not possible to write down a universal dispersion relation or stability criterion. However,
in a few simple cases the dispersion relation can be worked out analytically, which may provide
some insight into the problem.

One such case is the Maclaurin disk, which is a fluid disk with an (unperturbed) surface density
of the form

Σ0(R) =

{
Σc
(
1−R2/a2

)1/2 (R ≤ a)
0 (R > a),

(11.126)

with a the radius of the disk. The potential in the plane of the disk is

Φ0(R) =
1
2
Ω2

0R2 + constant, with Ω2
0 =

π2GΣc

2a
, (11.127)

which implies a constant circular frequency of Ω0. In other words, the circular velocity curve is
that of a solid body.

For simplicity we assume that the equation of state is P = KΣ3, with K constant, and that
the pressure only acts in the plane of the disk. The resulting equilibrium angular frequency, Ω,
follows from the Euler equation (11.92) by setting vR = 0 (i.e. in equilibrium there can be no net
radial motion):

Ω2 =Ω2
0 −

3KΣ2
c

a2 . (11.128)

The perturbations on such a disk can be expanded in the following modes:

Pm
� (ξ )eimφ with ξ ≡ (1−R2/a2)1/2, (11.129)

where Pm
� is an associated Legendre function and, by its definition, 0 ≤ m ≤ �. Since physical

quantities correspond to ξ ≥ 0, only modes with �−m = even are required in the expansion. On
inserting such solutions into Eqs. (11.101)–(11.103) one can obtain the dispersion relation for
perturbations on Maclaurin disks (Takahara,1976; see also Binney & Tremaine, 1987):

(ω−mΩ)3 − (ω−mΩ)
{

4Ω2 +
(
�2 + �−m2)[Ω2

0(1−g�m)−Ω2]}
+ 2mΩ

[
Ω2

0(1−g�m)−Ω2]= 0, (11.130)
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where

g�m =
(�+m)!(�−m)!

2(2�−1)
[(

�+m
2

)
!
(

�−m
2

)
!
]2 . (11.131)

The � = m = 0 mode is unphysical, as it does not conserve mass, while the � = m = 1 mode
corresponds to a mere translation of the disk. Therefore, the first modes corresponding to real
perturbations of the disk are the � = 2 modes which have m = 0 or 2. The m = 0 mode corresponds
to an axisymmetric pulsation (expansion and contraction) of the disk, and is sometimes called
the breathing mode. For � = 2 and m = 2 the dispersion relation reduces to

ω =Ω±
√
Ω2

0/2−Ω2, (11.132)

and the mode is dynamically unstable (i.e. ω has an imaginary part) if

Ω2 >Ω2
0/2. (11.133)

The density perturbation represented by this mode has the form

Σ1 =
3R2

a
√

a2 −R2
cos(2φ −ωt) , (11.134)

which corresponds to a rotating, elliptical deformation of the disk. Since this looks similar to the
bars observed in disk galaxies, this mode is called the bar mode, and the corresponding instability
is known as the bar instability.

One can stabilize a disk against the bar instability by increasing its pressure (i.e. the random
motion of the gas particles). To see this, we note that the sound speed, cs, in a Maclaurin disk is
given by

c2
s =

(
dP
dΣ

)
0
= 3KΣ2

cξ 2 =
(
Ω2

0 −Ω2)a2ξ 2, (11.135)

where the later equality follows from Eq. (11.128). Using the definitions of Σ0 and Ω0 we have

csΩ0

GΣ0
=
π2

2

√
1− Ω2

Ω2
0

. (11.136)

Eq. (11.133) then implies that stability requires

csΩ0

GΣ0
≥ π2

23/2
. (11.137)

This suggests a useful criterion for bar instability based on the energies of the disk. Let T be
the rotational kinetic energy, Π the kinetic energy in random motion and W the self-gravitational
energy. These energies are related by the virial theorem: T +Π/2 = −W/2 (see §5.4.4). Thus,
the importance of the random motions, which act to stabilize the disk, can be characterized by
the following ratios:

t ≡ T
|W | or

Π
T

=
1
t
−2. (11.138)

Since Π/T > 0, we have that 0 ≤ t ≤ 1/2. For a Maclaurin disk we have t =Ω2/2Ω2
0 and so

t < 1/4 or
Π
T

> 2 (11.139)

for disk stability.
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This instability criterion also applies for disks with a finite thickness. For example, for Maclau-
rin spheroids, which are uniform spheroids of incompressible fluid (with density ρ) flattened by
uniform rotation, the rotation speed Ω is related to the eccentricity of the surface, e, by

Ω2

2πGρ
=

√
1− e2

e3

[
(3−2e2)sin−1 e−3e

√
1− e2

]
. (11.140)

Such spheroids are unstable to the bar mode if e > 0.9529, corresponding to t > 0.2738
(Chandrasekhar, 1969; Binney & Tremaine, 1987).

A similar analysis can also be carried out for stellar disks. A disk with the same surface density
and potential as the Maclaurin disk, but consisting of stars rather than a fluid, is called a Kalnajs
disk after A. Kalnajs, who analyzed their stability (Kalnajs, 1972b). As for a Maclaurin disk
the mean angular frequency is independent of radius, but the pressure is now provided by the
(isotropic) random motion of the stars in the disk plane with a velocity dispersion

〈v2
x 〉 = 〈v2

y 〉 =
a2

3

(
Ω2

0 −Ω2)(1−R2/a2) . (11.141)

In this case, disks are stable against bar instability if Ω2/Ω2
0 < 125/486, or in terms of energy

t <
125
972

≈ 0.1284 or
Π
T

> 5.776. (11.142)

Comparing this result with Eq. (11.139) we see that fluid disks are substantially more stable than
stellar disks.

Using N-body simulations of differentially rotating stellar disks, Ostriker & Peebles (1973)
found that their model disks are stable against the bar mode if t < 0.14±0.02 orΠ/T ∼> 5. These
conditions are fairly similar to those for the Kalnajs disk. In the solar neighborhood, the random
velocity of stars is about 60kms−1 while the rotation velocity is about 220kms−1. If these values
are typical for the whole disk, then Π/T ∼ 0.15, much smaller than the value required for the
stability of stellar disks. Ostriker and Peebles therefore argued that there must be some unseen
component of matter with Π/T 	 1 to stabilize the disk. Although there are other possibilities,
this stability argument gives additional support for the existence of massive, dark halos around
disk galaxies.

Efstathiou et al. (1982) suggested an alternative criterion for bar stability, which has the advan-
tage of being expressible in terms of quantities that are easier to obtain observationally. Based on
N-body simulations of exponential disks embedded in a variety of halos, they found that stellar
disks are stable against the bar mode as long as

εm ≡ Vmax

(GMd/Rd)1/2 ∼> 1.1, (11.143)

where Vmax is the maximum rotation velocity of the disk. The corresponding stability threshold
for gaseous disks is εm ∼> 0.9 (Christodoulou et al., 1995). The parameter εm measures the impor-
tance of the self-gravity of the disk. An isolated exponential disk has εm ≈ 0.63, and is therefore
unstable. Embedding the disk in an extended halo increases Vmax and can thus stabilize the disk
against the bar mode.

As discussed in §2.3.3, more than half of all disk galaxies in the local Universe possess bars
with no strong dependence on the type (Sa, Sb or Sc). Given that the bar mode instability can
lead to the formation of such structures, it is tempting to associate galactic bars with the global
instability of disk galaxies. However, many barred disk galaxies have a central bulge component,
and their rotation curves indicate that they are embedded in a massive halo. Both the bulge and
the halo tend to stabilize the disk. Indeed, a simple application of the Ostriker–Peebles criterion
or Eq. (11.143) suggests that these barred galaxies should be stable against the bar mode. Either
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the stability criteria presented here are not entirely correct, or the bar mode is induced by some
external processes. For example, numerical simulations show that the encounter of a disk galaxy
with another galaxy can produce bar-like structure in an otherwise stable disk (e.g. Noguchi,
1987). Given that galaxy interactions are quite frequent in hierarchical models, it is likely that
some of the observed bars are produced by this process.

11.5.4 Secular Evolution

The instabilities discussed above may cause a disk galaxy to change its mass and angular momen-
tum distribution. Such a relatively slow evolution, largely decoupled from the cosmological
framework (i.e. also operating on galaxies in isolation), is called secular evolution. The main
driver of secular evolution is the presence of global instabilities, such as the bar mode, spi-
ral arms (to be discussed in §11.6) and the bending mode instability to be discussed below.
It has become clear in recent years that secular evolution may play an important role in the
evolution of disk galaxies. This is important, as it implies that the structural properties of disk
galaxies may be more closely related to internal evolutionary processes than to the properties
of their dark matter halos, as envisioned in the ‘standard picture’ outlined in §11.2. Whereas
the latter allows us to make clear predictions for the sizes and rotation curves of disk galax-
ies, the former involves highly nonlinear processes that are still poorly understood. Below we
describe the main mechanisms that play a role during secular evolution. More details can be
found in Sellwood & Wilkinson (1993), Binney & Tremaine (2008), and the references given
below.

(a) Resonance Coupling Disk galaxies unstable to the bar mode discussed above develop a
bar in their central region. This bar is a highly flattened, triaxial structure whose figure rotates as
a solid body with an angular frequency Ωp, called the pattern speed. If bars are weak they may
be considered as non-axisymmetric perturbations of an otherwise axisymmetric disk potential.
Ignoring the z direction, and defining (R,φ) as the plane corotating with the bar, we have that

Φ(R,φ) =Φ0(R)+Φ1(R,φ) with |Φ1/Φ0| � 1. (11.144)

In the epicyclic approximation (see §11.1.5), the motion of a star in the unperturbed potential,
Φ0(R), is that of an epicycle with frequency κ(R) around a guiding center which rotates around
the center of the galaxy with frequencyΩ(R). In the presence ofΦ1 the movement of the guiding
center with respect to the frame corotating with the perturbation (i.e. the bar) is given by φ(t) =[
Ω(R)−Ωp

]
t. In general Φ1 will have m-fold symmetry (m = 2 in the case of a bar or a two-

armed spiral) so that the guiding center finds itself at effectively the same location in the (R,φ)
plane with frequencyΩd ≡m

[
Ω(R)−Ωp

]
. Therefore, the motion in the R direction becomes that

of a harmonic oscillator with natural frequency κ(R) that is driven by a frequency Ωd. At several
R the natural and driven frequencies are in resonance. These resonances play an important role,
because a star on an orbit at or near a resonance can be strongly perturbed, even if the perturbation
Φ1 is weak. For m = 2 the most important resonances are the corotation resonance (CR) where
Ωd = 0 [corresponding to Ω(R) = Ωp], and the Lindblad resonances, where Ωd = ±κ(R). The
plus sign corresponds to the inner Lindblad resonance (ILR), where Ω(R)−κ(R)/2 = Ωp, and
the minus sign corresponds to the outer Lindblad resonance (OLR), whereΩ(R)+κ(R)/2 =Ωp.
Any perturbation with a non-zero pattern speed will introduce one CR, one OLR and, depending
on the circular velocity curve either zero, one or two ILRs.

Resonances play two important roles. First of all, they delineate the radial regimes in which
orbits have a particular orientation. As is common for driven oscillators, the response changes
sign across a resonance. This means that the phase of the orbital orientation changes in phase by
π/2 across a Lindblad resonance or across CR. In the case of a bar, the orbits are aligned with
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the bar between the ILR and CR, while they are perpendicular to the bar between CR and the
OLR and inside of the ILR. Since the bar has to be built from stellar orbits, its shape reflects
that of its orbital building blocks, and the bar can therefore not extend beyond CR. Secondly,
resonances cause an exchange of angular momentum between the bar and the stars, and thus
drive secular evolution of the disk. In general, the bar will transfer angular momentum to the
outer disk, causing an increase in the disk scale length (Debattista et al., 2006). In fact, as shown
by Hohl (1971), the angular momentum transfer even has the tendency to make non-exponential
disks more exponential. In this respect, secular evolution induced by bars may be another mecha-
nism to explain the exponential profile of disk galaxies, in addition to the mechanisms discussed
in §11.4.

Bars can also exchange angular momentum via resonance coupling with the halo, causing the
bar to slow down. As the decreasing bar pattern speed sweeps across a resonance with some halo
orbits, their angular momenta may be substantially changed. Halo particles may either gain or
lose angular momentum as they cross a resonance, and to first order there is no net loss or gain.
However, to second order in the perturbing potential there is usually a net gain in angular momen-
tum by the halo particles, leading to a friction-like drag on the bar even in a perfectly collisionless
system. The bias arises because the number density of halo particles is usually a decreasing func-
tion of angular momentum, leading to an excess of gainers over losers (Tremaine & Weinberg,
1984; Weinberg, 1985). The slowdown of the bar typically causes CR to move to larger radii,
hence resulting in an increase of the ratio between the corotation radius, RCR, and the radial
extent of the bar, Rbar. Observed bars have RCR/Rbar ∼ 1.2± 0.2 (Aguerri et al., 2003), similar
to the typical ratio with which they form due to the bar instability (at least in numerical simu-
lations). This suggests that bars cannot have lost much angular momentum, and has been used
to argue against a dense dark matter halo in the central regions of at least some disk galaxies
(Debattista & Sellwood, 2000). However, many uncertainties remain, and it is currently unclear
to what extent the properties of observed bars are consistent with the CDM prediction that halos
should have dense, central cusps.

(b) Response of the Gas Bars also interact with gas in the disk. There are two reasons why
gas reacts differently to the presence of a bar than stars. First of all, unlike stellar orbits, gas
streamlines cannot cross, i.e. the gas must have a unique streaming velocity at each point in the
flow. In a steady system, gas must therefore move on non-intersecting closed orbits, which, in
the case of an axisymmetric disk, are circular orbits. However, in the presence of a perturbation,
such as a bar or spiral arms, it may happen that closed orbits can no longer be nested without
intersections. This is particularly true close to resonances, where orbit orientations change dra-
matically. In addition, many of the periodic orbits inside a (strong) bar are self-intersecting (i.e.
they have loops). At any intersection of streamlines, shocks cause the gas to dissipate energy.
Thus, just like a damped oscillator, the gas oscillations will have a phase lag with respect to the
perturbation. This, in turn, causes a net torque between the perturbation and the gas, resulting in
an exchange of energy and angular momentum between them. The net effect is that, in general,
the gas is driven away from the CR resonance towards the OLR and ILR, where it can form
ring-like structures and may even form stars. In nature, rings are observed to be quite ubiquitous
in disk galaxies (e.g. Buta, 1986), and it is generally believed that these are produced by radial
flows induced by bars and spiral arms.

The accumulation of gas in the central region of the galaxy, either in the very center or at the
ILR, may cause a central starburst, may feed an AGN, and may even result in the destruction
of the bar. The latter is due to the fact that a strong central mass concentration can scatter stars
that come close to the center, causing their orbits to become chaotic. Since chaotic orbits tend
to have more nearly round shapes (when averaged over long times), the bar weakens as more
and more bar-supporting regular orbits become chaotic. In addition, the growth of a central mass
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concentration changes the potential, hence the orbital frequencies and the locations of the various
resonances. Meanwhile, the gas loses its angular momentum to the bar when it ‘falls’ in, causing
the bar to speed up (i.e. Ωp increases). Both effects cause the resonances, and in particular the
ILR, to move to different radii. Since the orbits within the ILR do not have the orientation to
support the bar, the motion of the ILR adds to the weakening and possible destruction of the bar.
Although early simulations suggested that a central mass concentration with a mass of only a few
percent of that of the disk could destroy a bar (Friedli, 1994; Norman et al., 1996), more recent
simulations of higher resolution seem to suggest that bars are in general remarkably resilient,
and that the central mass concentration required for bar destruction is of the order of 20% of the
total disk mass (Shen & Sellwood, 2004).

(c) The Bending Instability and Bulge Formation In §11.5.2 and §11.5.3 we focused on
perturbations in the plane of the disk. However, one can also have perturbations out of the
disk plane. Consider a perturbation that bends the disk in the vertical z direction. When a
star follows the bend out of the unperturbed disk plane it experiences a destabilizing cen-
trifugal force that opposes the stabilizing self-gravity of the disk. Toomre (1966) showed
that an infinitesimally thin sheet is unstable to such a bending instability3 if the stars have
large random motions in the plane of the disk. Using a normal-mode analysis of a slab of
finite thickness, Araki (1985) found that bending (at all wavelengths) is stabilized when the
ratio of vertical to horizontal velocity dispersion exceeds ∼ 0.293. As this is significantly
smaller than the value observed in the solar neighborhood, the typical inference is that the
bending mode is not important for disk galaxies. However, when a bar forms in the disk, it
changes the stellar orbits, making them more elongated and aligned with the bar. This effec-
tively increases the radial velocity dispersion, which may make the bar unstable to the bending
mode.

Indeed, numerical simulations have shown that bars typically suffer a bending mode insta-
bility shortly after their formation, which displaces the central part in one vertical (z) direction
and the outer part of the bar to the opposite direction (e.g. Combes et al., 1990a; Raha et al.,
1991). After its maximum distortion the bend settles back to the galactic plane, cascading the
energy in the bending mode to smaller scales. This increases the velocity dispersion in the ver-
tical direction, thickening the bar. The effect is most pronounced towards the ends of the bar
where the displacements from the plane are the largest. Consequently, the resulting bar has a
distinctive peanut shape when viewed edge-on, very similar in appearance to the ‘boxy bulges’
(i.e. bulges with boxy isophotes) seen in many nearly edge-on disk galaxies. Thus secular evolu-
tion may be responsible for the formation of some bulges. Note, however, that these boxy peanut
shaped bulges in reality are still bars (i.e. they are tumbling triaxial systems with a non-zero
pattern speed). Although it was originally speculated that the bending mode could cause the bar
to dissolve, high-resolution simulations have shown that bars virtually always survive the bend-
ing instability (e.g. Debattista et al., 2006). Indeed, kinematic studies of observed boxy peanut
shaped bulges have shown clearly that they are bars (Kuijken & Merrifield, 1995; Bureau &
Freeman, 1999).

Bulge components that are built entirely out of the disk by secular processes are sometimes
called pseudo-bulges to distinguish them from the classical bulges, which are believed to have
an origin similar to elliptical galaxies (see §13.6.1). In addition to having a boxy peanut shape
when seen edge-on, pseudo-bulges have surface brightness profiles that are close to exponen-
tial, are more rotation dominated and more strongly flattened than classical bulges, and often
contain relatively young stars (e.g. Kormendy & Kennicutt, 2004). Pseudo-bulges are found

3 This instability is also sometimes referred to as buckling instability and is similar to the firehose instability in plasma
physics.
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predominantly in late-type spirals (Sc and Sd), while Sa and Sb type spirals mainly have classical
bulges.

11.6 The Formation of Spiral Arms

Many disk galaxies reveal spiral structure, ranging from the ‘grand-design’ spirals that can be
traced over large parts of the disk, to small, flocculent arm fragments that have a limited radial
and angular extent (see §2.3.3). Given their prevalence, understanding the origin and nature of
spiral arms is an integrable part of understanding the structure and formation of disk galaxies.
Unfortunately, many of the details related to spiral structure are still unclear. It is likely that no
unique explanation exists for all spiral arms; their nature and formation may well differ from one
system to another. After a brief description of spiral morphology, we summarize the main ideas
behind some of the more popular models.

(a) Morphology of Spirals Spiral arms are clearly associated with enhanced star formation,
as is evident from the fact that HII regions and molecular gas are often the best tracers of spiral
structure. Because of the young stars, spiral arms are more pronounced in bluer wavebands.
However, they are also evident in near-infrared wavebands, indicating that they are also present
in old stars. Evidently, spiral structure is not a phenomenon restricted to the gas, but involves the
entire matter density of the disk. Hence, spiral structure has to be considered as a true density
perturbation of the underlying disk. For a sinusoidal variation with the azimuthal angle φ , the
surface density of a disk with m arms can be written as

Σ(R,φ) = Σ0(R)+Σ1(R)cos [mφ + f (R)] . (11.145)

Here Σ0(R) is the surface density of the unperturbed, axisymmetric disk, Σ1(R) is the radial
amplitude of the perturbation, and f (R) is the shape function describing the form of the spi-
ral. The azimuthal profile of spiral arms is often much sharper than sinusoidal (especially for
younger stars), in which case a Fourier expansion to higher order harmonics can be used to
describe Σ(R,φ). The mathematical form for f (R) most often used, which has been shown to
give a reasonable, but certainly not perfect, description of the shapes of observed spirals, is the
logarithmic spiral, f (R) = f0ln(R)+φ0, where f0 is a constant describing how tightly the spiral
pattern is wound. This is more conveniently expressed by the pitch angle, i, which at any given
point (R,φ) along the spiral is defined as the angle between the local tangent of the spiral and
the circle of radius R, i.e.

tan i = m

∣∣∣∣R∂ f
∂R

∣∣∣∣−1

. (11.146)

The logarithmic spiral is special in that its pitch angle i = arctan(m/ f0) is constant; in general i is
a function of radius. Observed pitch angles range from ∼ 10◦ for tightly wound early-type spirals
to ∼ 30◦ for late-type spirals (Garcia Gomez & Athanassoula, 1993). Actually, as discussed in
§2.3.1, the openness of spiral arms is one of the basic classification criteria for disk galaxies.

(b) Arm Fragments The most basic reason for the formation of spiral arms is the differential
rotation of disks. As an example, consider a disk with a constant rotational velocity, Vrot(R) =
V = constant (as is the case for a light disk embedded in a singular isothermal sphere). Since
the angular velocity, Ω= V/R, is R-dependent, the material initially (at a time t = 0) distributed
on the line with a constant azimuthal angle φ = φ0 will be sheared into a spiral curve φ(R, t) =
φ0 +Vt/R at time t. Thus, if an extended perturbation develops on the disk, it will be sheared
into a spiral arm (see Fig. 11.4).
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Fig. 11.4. The creation of a spiral arm. A circular patch at t = 0 is sheared into a spiral arm due to the
differential rotation in the direction indicated by the arrow.

The multi-armed patterns seen in galaxies like the one shown in the middle panel of Fig. 2.7
are believed to be produced by patches of new stars formed through local disk instability and
sheared by disk differential rotation. In agreement with this explanation, the characteristic sizes
of the arm fragments observed in many external multi-armed disk galaxies are comparable to
λcrit/2, with λcrit the most unstable wavelength (see §11.5.2). With the passage of time, an arm
fragment is more and more sheared while the brightest young stars (which have short lifetimes)
die, leading to gradual dissolution of the arm fragment. Meanwhile new arm fragments may
form in other places where the disk becomes locally unstable. Thus, flocculent arm fragments
are believed to be short-lived, transient phenomena related to local disk instability. Such arms
are called material arms as they are always made up of the same material from which they formed.

(c) Spiral Density Waves Grand-design spirals are believed to be of a different nature than
the arm fragments discussed above. The reason is that material arms tend to wind up quickly
due to differential rotation, so that long arms, such as those in grand-design spirals, would be
much more strongly wound (i.e. have much smaller pitch angles) than observed. To avoid this
winding problem, Lin & Shu (1964) proposed that grand-design spiral arms are produced by
spiral-shaped density waves propagating through the disk (see also Lin & Shu, 1966). Similar
to a bar, the spiral structure is a quasi-stationary, wave-like density perturbation with a pattern
speed Ωp. Since stars and interstellar gas clouds in the perturbed disk have angular speeds Ω that
differ from Ωp (except near corotation), they move in and out of the spiral pattern. Therefore,
like waves on the surface of the ocean, the material making up a spiral arm changes constantly as
the arms propagate on the disk, and the arm is not sheared by differential rotation. Furthermore,
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Fig. 11.5. Self-consistent construction of density perturbations in a disk. Due to a non-axisymmetric m = 2
perturbation periodic orbits become elliptical. In the case of a bar-like perturbation (left panel) the orbits
align along the bar, while in the case of a spiral-like perturbation (middle and right panels), the orbit ori-
entation changes as function of radius. Note how the crowding of the orbits gives rise to a self-consistent
reproduction of the induced spiral pattern. [After Kalnajs (1973)]

disk material is compressed when swept by a spiral density wave. If the interstellar gas is cold,
its response to a spiral wave can produce narrow gaseous arms of enhanced density, where young
stars may form. Hence, spiral density waves can naturally explain why star formation occurs
predominantly along the spiral arms (see §9.2.2).

This density-wave theory faces two challenges. First of all, in order to consider it as a viable
theory for the observed grand-design spiral arms, one needs to demonstrate that a self-consistent
model can be constructed. Similar to the situation with a bar, this means that one has to find
a set of orbits in the perturbed potential that, once stacked together, can reproduce the density
distribution of the perturbed disk. Secondly, one needs to find a mechanism to create a spiral-
shaped density perturbation that is sufficiently long-lived. Although the details cannot be covered
here (see Binney & Tremaine, 1987), we briefly discuss the current ideas.

Consider an unperturbed stellar disk where all stars are on circular orbits with angular velocity
Ω(R). If the disk is subjected to a global � = m = 2 mode perturbation the circular orbits are
deformed into elliptical orbits (see §11.5.3). In general the perturbation will have a non-zero
pattern speed Ωp, which causes the orientation of the elliptical orbits to rotate with the same
frequency. In the case of a bar-like perturbation all orbits between the ILR and CR will have the
same phase as the bar, so that the bar perturbation can be constructed self-consistently (see the
left panel of Fig. 11.5). In the case of a spiral-shaped perturbation, the orientation of the elliptical
(periodic) orbits tend to align with the perturbing potential. As can be seen from Fig. 11.5, this
causes a crowding of the orbits along a two-armed spiral pattern that more or less follows the
shape of the m = 2 density perturbation, and has a pattern speed equal to Ωp. This demonstrates
that two-armed spiral density waves can be constructed self-consistently, and nicely explains
why the spiral pattern is also visible in the light emitted by the old stars. The real situation
is a bit more complicated than what is shown in Fig. 11.5. A general phenomenon in driven
oscillators is that the orientation of the response changes at resonance crossing. In the case of a
bar this explains why the bar cannot cross CR. In the case of a spiral arm, the 4 : 1 resonance
[i.e. where Ω(R)−κ(R)/4 =Ωp]4 plays an important role, as it causes a phase-shift in the orbit
orientation of π/4. Consequently, the orbits can only support the spiral structure between the ILR
and the 4 : 1 resonance, and the spiral is not expected to extent much beyond the 4 : 1 resonance
(Contopoulos & Grosbol, 1986), at least if grand-design spirals are long-lived features. In many
of the best known examples (e.g. M 51 and M 81) the structure appears to be a direct consequence

4 The 4 : 1 resonance is basically the first ultra-harmonic of the ILR and is located in between the ILR and CR.
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of an encounter with a companion, and so may not, in fact, be long-lived [see Binney & Tremaine
(1987) for further discussion].

In the case of a bar, the formation mechanism is the bar-mode instability discussed in §11.5.3.
It thus seems likely that the spiral density waves are also associated with some disk instability.
Unfortunately, deriving the dispersion relation for a general spiral wave is extremely complicated,
mainly because the tight-winding approximation used in §11.5.2 only holds for spirals with a
small pitch angle. In addition, the waves are traveling waves, because the disk has a finite extent
so that any realistic wave on the disk must be described by a wave packet. The group velocity of
a wave packet is vg = dω/dk which is non-zero in a dispersive medium [i.e. a medium in which
ω(k) is not linear in k]. Because of this non-zero group velocity, the wave packet will move
radially throughout the disk. At resonances, the waves can be reflected, transmitted or absorbed.
In particular, as shown by Mark (1974), waves can be absorbed at the Lindblad resonances. To
ensure long-lived spiral arms, a mechanism is therefore required either to prevent this absorption
or to amplify the waves. Several of these mechanisms have been proposed (Lin, 1970; Mark,
1976; Toomre, 1981) and it is likely that they all play some role in the creation of spiral density
waves (and bars).

(d) Bar-Driven Spiral Arms In many barred spirals, the spiral arms appear to start at the two
ends of the bar. This suggests that the bar and spiral pattern have the same pattern speed and thus
are related. Using hydrodynamical simulations, Sanders & Huntley (1976) studied the response
of gas to a bar perturbation. They considered a uniform, axisymmetric gas disk (with no self-
gravity) subjected to an additional potential due to a rigidly rotating bar. They found that the
gas eventually settled into a steady state with prominent trailing spiral structure. This happens
because of gas viscosity; simulations in which the gas disk was replaced by a collisionless disk
of test particles did not give rise to any spiral structure.

Although this suggests that bars can indeed induce spiral arms without the help of spiral den-
sity waves, the model cannot explain why many grand-design spiral patterns are also seen in old
stars. It is likely that spirals in barred galaxies are associated with a spiral density wave, proba-
bly with a pattern speed different from that of the bar. Indeed, Sellwood & Sparke (1988) have
shown that, in numerical simulations, multiple pattern speeds are quite common in disk galaxies,
with the spiral structure typically having a much lower pattern speed than the bar. This implies
a more or less random distribution of the phase difference between the bar and the start of the
arms, which seems to be in conflict with observations. However, as pointed out by Sellwood &
Sparke (1988), contour plots of the non-axisymmetric density in their simulations show that the
spiral arms appear to the eye to be joined to the ends of the bar for most of the beat frequency.
This suggests that the observed correlation between bars and spirals might simply be an illusion.

11.7 Stellar Population Properties

Important insight regarding the formation and evolution of disk galaxies can be obtained from the
properties of their stellar populations, such as ages and metallicities. In general, the stellar popu-
lations of disk galaxies are far more complicated than those of elliptical galaxies. Ellipticals have
little ongoing star formation, with spectral properties (e.g. colors and absorption line indices) that
can be well fit by a simple single-age stellar population (see §13.5). Disk galaxies, on the other
hand, typically have significant ongoing star formation, and their star-formation histories, often
‘modeled’ as exponentially declining functions of time [see Eq. (10.112)], are clearly inconsis-
tent with a single burst. In addition, disk galaxies are often dusty, so that broad-band colors have
to be carefully corrected for extinction effects. To complicate the matter even further, the various
components of a disk galaxy (thin disk, thick disk, bulge, stellar halo) all seem to have different
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stellar populations. Typically the spheroidal components (bulge and stellar halo) are dominated
by old stars, while the disk component is populated by stars of various ages and with a broad
range in metallicities. In addition, thick disk stars are older and more metal poor than thin disk
stars (Seth et al., 2005). In what follows, we focus on the disk components.

11.7.1 Global Trends

As discussed in §10.3.8, there are various diagnostics to determine the current star-formation rate
of a (disk) galaxy. However, determining the entire past star-formation history (SFH) is far from
trivial. We can get some insight, though, by comparing the current star-formation rates of disk
galaxies with their stellar masses (which reflect their integrated SFHs). A typical disk galaxy
has a star-formation rate per unit stellar mass, known as the specific star-formation rate (SSFR),
of a few 10−10 yr−1. For a galaxy like the Milky Way, this translates into a star-formation rate
of a few M� yr−1. One can characterize the relative importance of current star formation in a
galaxy using the ‘birthrate’, b, defined as the ratio between the current star-formation rate and
the average star-formation rate in the past: b = SFR/〈SFR〉. Since 〈SFR〉 = M�/t0, with M� the
stellar mass of the galaxy and t0 � 1010 yr the age of the Universe, we have that b = SSFR× t0.
The left-hand panel of Fig. 11.6 shows the birthrate for disk galaxies in the SDSS as a function
of absolute magnitude. On average, brighter disk galaxies have a lower birthrate. The brightest
disk galaxies have b ∼ 1 (albeit with a large amount of scatter), indicating that their current star-
formation rate is comparable to their average past star-formation rate. At the faint end, however,
b ∼ 3, implying that a large fraction of their stars have formed relatively recently.

The right-hand panel of Fig. 11.6 shows that the birthrate is fairly tightly correlated with the
0.1(g− r) color. This suggests that some information about the SFHs of (disk) galaxies can be
obtained from broad-band photometry. Since broad-band photometry is relatively easy to obtain,
one can obtain measurements for large, statistically significant samples. The color–magnitude
relation of disk galaxies is both steeper and broader than for early-type galaxies. A significant
part of this broadness is likely due to dust extinction combined with inclination effects (more
inclined galaxies are more extincted and hence redder). Indeed, using a dust extinction corrected

Fig. 11.6. The birthrate b = SSFR×1010 yr as function of the absolute magnitude in the r band, K-corrected
to z = 0.1 (left-hand panel) and as function of the 0.1(g− r) color for disk galaxies in the SDSS (right-hand
panel). Here, following Strateva et al. (2001), disk galaxies are (crudely) defined as galaxies with a concen-
tration index c = r90/r50 ≤ 2.6, with r90 and r50 the radii that contain 90 and 50 percent of the Petrosian
r band flux. The specific star-formation rates are derived using the stellar masses and star-formation rates
obtained by Kauffmann et al. (2003b) and Brinchmann et al. (2004), respectively.
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color–magnitude relation for edge-on spirals, Peletier & de Grijs (1998) obtain a tight color–
magnitude relation with a steeper slope than for early-type galaxies. Using stellar population
models, they conclude that this is most naturally explained as indicating trends in both age and
metallicity, with fainter spirals having both younger ages and lower metallicities than brighter
spirals.

However, as shown by Worthey (1994), the technique of using broad-band colors to probe
the stellar populations and SFHs of galaxies suffers from a strong age-metallicity degeneracy:
the spectra of composite stellar populations are virtually identical if the percentage change in
age and metallicity, Z, follows Δ ln(age)/Δ lnZ ∼ −3/2 (see §10.3.5). This degeneracy can be
partially broken using near-infrared photometry (e.g. H or K band) in addition to optical colors
(de Jong, 1996b; Cardiel et al., 2003). Essentially, optical colors are sensitive to the position of
the main-sequence turn-off, whereas near-infrared colors are more sensitive to the properties of
the red giants and AGB stars. Hence, using a combination of optical and near-infrared colors one
can differentiate between the effects of metallicity and the ratio of young (∼< 2Gyr) to old stars –
the latter reflects the average population age or birthrate parameter. Defining the average age of
a stellar population as

〈A〉 = t0 −
∫ t0

0 tΨ(t)dt∫ t0
0 Ψ(t)dt

, (11.147)

with Ψ(t) the SFH, the use of optical and near-infrared broad-band photometry has revealed
strong correlations of age and metallicity with Hubble type, rotation velocity, luminosity, gas
mass fraction and surface brightness, in the sense that earlier-type, faster rotating, more lumi-
nous, higher surface brightness and gas-poorer disk galaxies are older and more metal-rich (e.g.
de Jong, 1996b; Bell & de Jong, 2000; MacArthur et al., 2004). Several authors have argued
that the SFH of a disk galaxy is primarily driven by surface density, which may reflect a local
density dependence of the star-formation law, with total stellar mass seemingly a less important
parameter (e.g. Bell & de Jong, 2000; Kauffmann et al., 2003a). Total stellar mass does correlate
significantly with metallicity (see §2.4.4), suggesting that mass-dependent feedback may be an
important process in the chemical evolution of disk galaxies.

More recently, observations in the near UV with the Galaxy Evolution Explorer (GALEX),
which allow for an independent determination of star-formation rates, have also suggested that
disk galaxies occupy a reasonably tight locus in the SSFR vs. stellar mass plane that is well
represented by

log

(
SSFR
yr−1

)
= −0.36log

(
M�

M�

)
−6.4, (11.148)

with an intrinsic scatter of only ∼ 0.5 dex (Salim et al., 2007; Schiminovich et al., 2007). Hence,
more massive disk galaxies have lower specific star-formation rates, consistent with the trend
between the birthrates and absolute magnitudes in the right-hand panel of Fig. 11.6. This trend
can be difficult to reproduce in simple models of (disk) galaxy formation, which often predict
inverted trends, namely more massive (disk) galaxies have higher SSFRs (e.g. van den Bosch,
2002a; Bell et al., 2003a; Somerville et al., 2008b). In these models the inverted trend arises
because more massive halos (which host more massive galaxies) assemble later (see §7.3.4). The
discrepancy with observation indicates that a more detailed treatment of accretion, star-formation
and feedback processes is required, and indeed models which include such effects and attempt
to fit the galaxy population as a whole do typically produce birthrate trends similar to those
observed (e.g. Croton et al., 2006; Bower et al., 2006).

Arguably the best way to constrain the star-formation histories of (disk) galaxies is to measure
the SFR-M� relation as a function of redshift. Using multi-wavelength data, Noeske et al. (2007b)
have shown that disk galaxies out to z∼ 1 follow a narrow relation between SFR and stellar mass,
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with slope and scatter in agreement with that at z = 0 [Eq. (11.148)], but with a normalization that
evolves with redshift: disk galaxies at higher redshifts have higher SSFRs. This suggests that the
evolution in the cosmic star-formation history (see §2.6.8) is not primarily driven by evolution
in the frequency of (merger-induced) starbursts, but rather reflects a decline in the typical SSFRs
of ‘normal’ star-forming (disk) galaxies (see also §15.4.2). Although the data are consistent with
a simple model of gradual gas exhaustion, in which more massive galaxies experience an earlier
onset of star formation (Noeske et al., 2007a), exactly how such a behavior comes about in a
hierarchical model with continuing merging, gas accretion and various feedback modes is still
not clear.

11.7.2 Color Gradients

Fig. 11.7 shows the B−K colors as a function of R band surface brightness for a sample of 86
face-on spiral galaxies. There is a clear trend that disks are bluer at larger radii (lower surface
brightness). Because of these color gradients, disks appear larger in bluer bands, so that color
gradients also manifest themselves as systematic changes of disk scale length with waveband
(e.g. MacArthur et al., 2003).

The two most straightforward explanations for the color gradients are radial gradients in the
stellar populations and radial variations in the amount of reddening due to dust extinction. The
gradients in stellar populations, in turn, may be due to gradients in the IMF, in age, and/or in
metallicity. Using realistic 3D radiative transfer modeling, de Jong (1996b) and Kuchinski et al.
(1998) found that reddening by dust extinction is unlikely to be the major cause of the observed
color gradients: although dust is a likely contributor, especially in more massive disk galaxies,
the tentative consensus to date is that stellar population gradients dominate (see also Byun et al.,
1994; MacArthur et al., 2004).

If the color gradients are related to stellar population gradients, and if we ignore the possibility
that the IMF may vary systematically with radius, then the outer parts of disk galaxies need to
be younger and/or more metal-poor. There is evidence that both trends are present. Comparing

Fig. 11.7. Color gradients in disk galaxies. This plot shows the B−K color of disk galaxies as a function of
the azimuthally averaged R band surface brightness. Galaxies are divided into four morphological classes
according to the de Vaucouleurs’ T type (see §2.3.1 for definition). The reference line in each panel has a
B−K gradient of 0.14 magnitudes per unit surface brightness. [Adapted from de Jong (1996b)]
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the observed optical and near-IR color gradients to stellar population synthesis models, Bell &
de Jong (2000) inferred average gradients in age and metallicity per K-band disk scale length of
−0.79±0.08Gyr and −0.14±0.02 dex, respectively.5 Although the metallicity gradients are less
well measured and more sensitive to dust effects than age gradients, they are consistent with the
trends seen in the gas metallicity and discussed in §11.8.2 below. In addition, the age gradients
have additional support from the fact that the scale length of current star formation, as measured
by the Hα flux, is larger than that of the underlying older stellar population (e.g. Ryder & Dopita,
1994). This indicates that the fraction of young stars increases with galactocentric radius, which
would come about if star formation in a disk proceeds in an inside-out fashion. In that respect
it is reassuring that such an inside-out formation scenario is a natural prediction of the standard
formation models presented in §11.2.5.

11.8 Chemical Evolution of Disk Galaxies

The chemical properties of a galaxy reflect the amount of gas that has been reprocessed by
stars and exchanged with its environment over the galaxy’s lifetime. As such the metallicities
and abundances of galaxies, and of stars within them, serve as a fossil record of their formation
history. Before we describe some global relations for the population of disk galaxies, we focus on
the solar neighborhood where the ages and metal abundances of individual stars can be measured.

11.8.1 The Solar Neighborhood

In the solar neighborhood the available data on the chemical composition are much larger than for
any other system, allowing a detailed investigation of its chemical evolution. The most impor-
tant observational constraints are the age–metallicity relation traced by the iron abundance of
long-lived stars, the metallicity distribution of long-lived G-dwarfs, and the abundance ratios of
various elements, in particular oxygen and iron. In principle, an assumed one-to-one relation
between age and metallicity can be combined with the observed metallicity distribution to infer
the star-formation history of the solar neighborhood through

dM�

dt
=

dM�

d[Fe/H]
d[Fe/H]

dt
. (11.149)

Unfortunately, stellar ages are much harder to determine than stellar metallicities, and the age–
metallicity relation is still poorly constrained. Using a sample of 189 F-dwarfs, Edvardsson et al.
(1993) obtained a clear trend of increasing metallicity with decreasing age, albeit with substantial
scatter. Such a trend is naturally predicted if star formation causes a net enrichment of the ISM.
More recently, however, Nordström et al. (2004), using 462 F- and G-dwarfs, obtained an almost
flat age–metallicity relation with very large scatter. If confirmed, this suggests that star formation
causes little enrichment, either because most of the newly produced metals escape the solar
neighborhood due to outflows, or because there is a significant amount of infall of metal-poor
gas to dilute the ISM.

The shaded histogram in the left-hand panel of Fig.11.8 shows the metallicity distribution
of 287 G-dwarfs within 25 pc from the Sun, obtained by Rocha-Pinto & Maciel (1996). Note
that the distribution is fairly broad, covering roughly an order of magnitude from [Fe/H] �−0.7
(Z ∼ 0.2Z�) to [Fe/H]� 0.3 (Z ∼ 2Z�). What does this tell us about the chemical evolution of the
solar neighborhood? We can gain some insight by using the simple chemical evolution models
described in §10.4. In the solar neighborhood the baryonic surface density is ∼ 50M� pc−2, of

5 As pointed out by MacArthur et al. (2004), the age and metallicity gradients are typically steeper in the inner parts of
the galaxies, so that they cannot be fully described by a single number.
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Fig. 11.8. Left panel: The shaded histogram shows the metallicity distribution of G-dwarfs in the solar
neighborhood (data taken from Rocha-Pinto & Maciel, 1996). For comparison, we also show two predic-
tions of closed-box models with initial metallicities of Z(0) = 0 and Z(0) = 0.17, as indicated. Right panel:
Abundance ratios of stars as a function of metallicity, based on data published in Edvardsson et al. (1993,
open circles) and Wheeler et al. (1989, other symbols).

which ∼ 20% is in the form of gas (Kuijken & Gilmore, 1989a; Boissier & Prantzos, 1999).
In the closed-box model, this means that Mgas(t0)/Mgas(0) ≈ 0.2 at the present time t0. The
metallicity of the local ISM is similar to that of the Sun, so that Z(t0) ≈ Z�. Inserting these
numbers into Eq. (10.124) and assuming that the gas started out with a primordial composition
[i.e. Z(0) = 0] and that the instantaneous recycling approximation holds, we obtain a metal yield
yZ ≈ 0.62Z� ≈ 0.012. Using Eq. (10.126) we can then predict the metallicity distribution of long-
lived stars, which is plotted in the left-hand panel of Fig.11.8 as a solid histogram. The model
prediction is clearly inconsistent with the data. The closed-box model with Z(0) = 0 predicts that
∼ 28% of the long-lived stars have metallicities [Fe/H] <−0.7, in violent disagreement with the
data, which shows that only ∼ 3% of the G-dwarfs have such low metallicities. This discrepancy
is known as the G-dwarf problem.

An obvious way to reduce the number of low metallicity stars is to assume a non-zero initial
metallicity, Z(0). It is likely that the gas out of which the thin disk stars in the Milky Way formed
was pre-enriched to appreciable levels. Both the spheroid (bulge plus stellar halo) and the thick
disk of the Milky Way seem to have formed on a relatively short time scale about 10 Gyr ago. The
metals produced and expelled during this epoch may well have been mixed with the surrounding
gas, polluting the material for the subsequent formation of the thin disk. As a rough estimate,
assume that the mass of metals produced per unit stellar mass is the same for all components of
the Milky Way. The initial metallicity of the thin disk material can then be written as

Z(0) =
M�,old

M�,old +M�,d
Z(t0), (11.150)

where Z(t0) is the mean metallicity of the old components at the present time. For the Milky
Way, the stellar mass ratio between the disk and the ‘old’ component (spheroid plus thick disk)
is M�,d/M�,old ∼ 5, and Z(t0) ∼ Z�, yielding Z(0) ∼ 0.17Z�. Substituting this in Eq. (10.124)
and adopting again Mgas(t0)/Mgas(0) = 0.2 results in a metal yield yZ ≈ 0.52Z� ≈ 0.010. The
corresponding metallicity distribution of long-lived stars given by Eq. (10.126) is indicated as
the dashed histogram in the left-hand panel of Fig.11.8. Although it predicts a smaller number of
low-metallicity stars than the model with Z(0) = 0, the resulting metallicity distribution is still a
poor fit to the data, indicating that the solution to the G-dwarf problem is not as simple as merely
raising the initial metallicity.
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A more viable solution is to abandon the concept of a closed box, and to allow for inflow and/or
outflow. As seen in §7.3, dark matter halos are expected to continuously accrete new material.
As long as the baryonic material associated with the newly-accreted material is able to cool, a
prolonged inflow of new gas onto disk galaxies is a natural prediction of CDM cosmogonies.
There is also indirect observational evidence for this. The star-formation rate in the disk of our
own Milky Way is about a few solar masses per year, while the total gas mass is only ∼ 5×
109 M�. Thus, if there were no accretion of new material, our disk would run out of gas in only
a fraction of the Hubble time. Since gas-rich spirals are common in the Universe, disks must
continuously be replenished with infalling gas, unless the present time happens to coincide with
the end of the era of star forming disk galaxies. Numerous studies have shown that models with
infall can accurately reproduce the observed metallicity distribution of G-dwarfs in the solar
neighborhood (e.g. Larson, 1976; Sommer-Larsen, 1991; Prantzos, 2008). The details regarding
the exact infall rate depend on the adopted star-formation rate, but in general the infall rate has
to be a decreasing function of time.

Another important constraint on the chemical evolution of the solar neighborhood comes from
the abundance ratios of various elements. The general discussion in §10.4.4 shows that the abun-
dance ratio between the α-elements and Fe in stars with long lifetimes can be used to constrain
the star-formation history of a galaxy. The right-hand panel of Fig. 11.8 shows the ratio [α/Fe]
as a function of [Fe/H], obtained by Edvardsson et al. (1993). Note that [α/Fe] is approximately
constant for F and G stars with [Fe/H] ∼< −1 but decreases with increasing metallicity for larger
[Fe/H]. This behavior can be explained if stars with [Fe/H] < −1 formed on a relatively short
time scale (∼< 109 yr) before the onset of the enrichment by Type Ia SNe, while stars with higher
metallicity formed over a longer time scale (see discussion in §10.4.4).

It is clear from the above discussion that the combined data on the ages, metallicities and
abundances of (long-lived) stars in the solar neighborhood put important constraints on the star-
formation history, and on the amounts of inflow and outflow. Currently, the main problem is not
the lack of successful models, but rather the multiplicity of them, and the uncertainties in the
data (i.e. the age–metallicity relation discussed above). Larger data sets are required in order to
be able to discriminate between these models.

11.8.2 Global Relations

(a) The Metallicity–Luminosity Relation In §2.4.4 we have shown that more massive (more
luminous) galaxies have a higher gas-phase metallicity, something that holds for galaxies of
all types. The upper-left panel of Fig. 11.9 shows the metallicity–luminosity relation for a
sample of 70 disk galaxies (regular spirals and irregulars). There are a number of possible
explanations for this relation. Since in the simple closed-box model the metallicity is directly
related to the gas mass fraction, one possibility is that the metallicity–luminosity relation simply
reflects that less massive disk galaxies have a larger gas mass fraction (see upper-right panel
of Fig. 11.9), either because they are younger or because their star formation is less efficient.
Alternatively, the metallicity–luminosity relation may reflect the impact of inflow and/or out-
flow. If the infall rate is larger than the star-formation rate, the accreted metal-poor gas will
dilute the ISM faster than it can be enriched by evolving stars, thus causing the metallicity to
drop. Similarly, one can lower the metallicity via outflows, but only if the material in the out-
flow has a higher metallicity than the ISM. Thus, inflow and/or outflow can explain the observed
metallicity–luminosity relation provided that their efficiency is higher in lower mass galaxies.
Both inflow and outflow are likely to occur: inflow because in CDM cosmogonies dark matter
halos continue to accrete new mass, and outflow because this seems required to explain vari-
ous observations (see Chapter 15). Although there is no obvious reason why low-mass galaxies
should have a higher inflow rate than their massive counterparts, outflows are naturally expected
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Fig. 11.9. The upper left panel shows the metallicity–luminosity relation for a sample of 70 disk galaxies.
Solid and open circles correspond to spiral galaxies and irregulars, respectively. The upper right panel shows
the relation between the gas mass fractions, fgas, and the rotation velocities, Vrot. The lower panels show the
effective yields as function of Vrot and fgas. [Based on data published in Pilyugin et al. (2004) and kindly
provided by J. Dalcanton]

to be more efficient in less massive systems, simply because their potential wells are shallower
(see §8.6.3).

We can discriminate between some of these ideas using the so-called effective yield. As we
have seen in §10.4.2, under the assumption of closed-box evolution and using the instantaneous
recycling approximation, the metallicity of the gas, Z, is a simple function of the gas mass
fraction, fgas, and the true nucleosynthetic yield, yZ :

Z = yZ ln(1/ fgas), (11.151)

where we have assumed that the gas starts out with zero metallicity. The effective yield is
defined as

yeff =
Z

ln(1/ fgas)
. (11.152)

where Z is now the observed metallicity of a galaxy. Thus, if the galaxy has evolved as a closed
box, then yeff = yZ . As shown by Edmunds (1990), in the case of inflow or outflow one always
has yeff ≤ yZ .6 Thus, the effective yield is an observationally determined quantity that can be
used to diagnose the importance of inflows and/or outflows. The lower panels of Fig. 11.9 show
the relationships between yeff, fgas and the rotation velocities, Vrot. Compared to massive spirals,
the effective yield is reduced by a factor of several in low-mass galaxies (Vrot ∼< 40kms−1), all of
which are relatively gas rich ( fgas > 0.3).

If the true nucleosynthetic yield is roughly constant among galaxies, then this indicates that
low-mass disk galaxies do not evolve as a closed box, so that the metallicity–luminosity relation
is not just a consequence of variations in the gas mass fraction along the luminosity sequence.

6 The only exception is the accretion of gas with a metallicity comparable to or higher than that of the system itself.
Since this is highly unlikely, we will not consider this case here.
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Rather, the observed relation between yeff and Vrot suggests that inflow and/or outflow is impor-
tant, and that their efficiency depends on the rotation velocity (i.e. the depth of the gravitational
potential well) of the galaxy. As demonstrated by Dalcanton (2007), the only mechanism that can
explain the extremely low effective yields for low mass disk galaxies is metal-enriched outflows
(i.e. outflows with a metallicity larger than that of the gas). To see this, note that Z = MZ/Mgas,
with MZ the mass in metals (in the gas phase), and that fgas = Mgas/(M� + Mgas). When fgas is
large, a simple Taylor series expansion of Eq. (11.152) yields

yeff ≈ MZ

M�
for large fgas. (11.153)

This makes it immediately clear that in galaxies with a high gas mass fraction the accretion of
new gas does not have a significant impact on the effective yield. Although it will lower the
metallicity, Z, it will increase fgas as well, so that yeff is unaffected.

In the case of outflows, consider a galaxy with an initial gas mass Mgas,i and initial metallicity
Zi that experiences an impulsive outflow of gas with mass ΔMgas = foutMgas,i and with metallicity
Zout = xZi. The effective yield immediately after the outflow is then given by

yeff,f = yeff,i
1− x fout

1− fout

ln( fgas,i)
ln( fgas,f)

, (11.154)

where fgas,i and fgas,f are the gas mass fractions directly prior to and directly after the outflow
event, respectively, which are related according to

fgas,f

fgas,i
=

1− fout

1− fout fgas,i
. (11.155)

In the case of an unenriched outflow (x = 1) the final effective yield can only be significantly
lower than the initial one if the outflow removes nearly the entire ISM. Since the galaxies with a
small yeff are gas rich, outflows of unenriched gas cannot produce their low effective yields. How-
ever, outflows consisting primarily of escaped SN ejecta (so that x 	 1) are extremely efficient
at reducing the effective yield.

Thus, the data suggest that low-mass, gas-rich galaxies have experienced significant metal-
enriched outflows. Note, however, that this does not mean that massive, gas-poor galaxies have
not experienced similar metal-enriched outflows, or that inflows are not important. Rather, these
two processes simply do not cause a significant change of the effective yield in these galaxies.

(b) Metallicity Gradients The study of metal abundances in HII regions in the disks of spiral
galaxies has revealed the existence of metallicity gradients. In almost all cases the outer parts are
found to have lower metallicities than the central regions. In particular, in the case of the Milky
Way,

Δ[O/H]/ΔR = −(0.07±0.01)dex kpc−1 (11.156)

(Smartt & Rolleston, 1997). Late-type galaxies have somewhat steeper gradients than the more
luminous early-types, although this dependence disappears when the gradients are expressed in
units of the disk scale length. In addition, barred galaxies are found to have shallower gradients
than non-barred galaxies of the same luminosity (Vila-Costas & Edmunds, 1992; Zaritsky et al.,
1994).

From a theoretical point of view, the existence of metallicity gradients is not surprising, and
there are numerous explanations for their origin. Even within the simple closed-box chemical
evolution model, metallicity gradients are a fairly natural outcome. To see this, consider a gas
disk that forms stars according to a Schmidt-type star formation law (see §9.5.1),

dΣgas

dt
= −AΣn

gas, (11.157)
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with Σgas the gas surface density, and A a constant. Simple integration gives

ln

(
Σgas

Σtot

)
= −At (n = 1); (11.158)

Σgas

Σtot
=
[
1+(n−1)AtΣn−1

tot

]−1/(n−1)
(n �= 1), (11.159)

where Σtot is the total surface density, taken to be equal to Σgas at t = 0. Using Eq. (11.151) the
metallicity is then given by

Z =

{
yZ At (n = 1)

yZ
n−1 ln

[
1+(n−1)AΣ(n−1)

tot t
]

(n �= 1). (11.160)

Since dΣtot/dR < 0, this shows that simple closed-box evolution naturally yields a metallicity
gradient with dlogZ/dR < 0 as long as star formation follows a Schmidt law with n > 1. How-
ever, as shown by Phillipps & Edmunds (1991), the amplitude of the resulting metallicity gradient
is too small compared to observations. One way to steepen the metallicity gradients is to consider
inflow. As discussed in §11.2.5, disk galaxies are expected to grow from the inside-out in the stan-
dard paradigm. This implies that the outer disks form later so that t is shorter, which naturally
results in lower metallicities, hence steeper gradients. Indeed, metallicity gradients obtained by
analytical models and numerical simulations that specifically model the inside-out formation via
inflow match well observational results (e.g. Steinmetz & Mueller, 1994; Prantzos & Boissier,
2000).

Another process that may play an important role in producing metallicity gradients is radial
gas flows. If gas moves inward, while the long-lived stars stay at the radii where they were born, a
metallicity gradient may be produced in the stellar population (Lacey & Fall, 1985). Such radial
gas flows may occur due to viscosity (see §11.4.2) or due to the torques from bars and/or spiral
arms (see §11.5.4). On the other hand, gas flows can also wash out existing gradients by mixing
gas of different metallicities, and it is generally believed that mixing due to bar-induced gas flows
is responsible for the smaller metallicity gradients observed in barred galaxies in comparison to
those in unbarred galaxies.
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Galaxy Interactions and Transformations

So far we have treated galaxies as isolated, non-interacting systems. However, in the hierarchical
scenario of structure formation, galaxies and their associated dark matter halos undergo frequent
interactions with each other. As we have seen in §7.3.6, a large fraction of dark matter halos
are expected to be dynamically young (i.e. to have experienced a merger event in their recent
history). In fact, as shown by Li et al. (2007), each halo, independent of its mass, experiences
about three major mergers (defined as mergers with a progenitor mass ratio larger than 1/3) after
its main progenitor has acquired 1% of its present-day mass. Hence, galaxies and their associated
dark matter halos cannot be considered isolated ‘island universes’, but are constantly influenced
by gravitational interactions with other systems. These interactions may have dramatic impact on
the morphologies and star-formation histories of galaxies, making the study of their nature and
frequency an important part of galaxy formation and evolution.

Consider a body S which has an encounter with a perturber P with impact parameter b and
initial velocity v∞ (in the limit of infinite, initial separation between S and P). Let q be a particle
(e.g. a star) in S, at a distance r(t) from the center of S, and let R(t) be the position vector of
P from S (see Fig. 12.1 for an illustration). Since the gravitational force due to P is not uniform
over the body of S, the particle q experiences a tidal force per unit mass

Ftid(r) = −∇ΦP(|R− r|)+∇ΦP(R), (12.1)

withΦP the gravitational potential of P. Hence, because of the encounter, the rate at which particle
q gains energy per unit mass is

dEq

dt
= v ·Ftid(r), (12.2)

with v the velocity of q with respect to the center of S.
Similar to the way the Moon gives rise to oceanic tides on the Earth, the gravitational inter-

action between S and P enhances the gravitational multipole moments of both bodies, which
in turn may cause a backreaction on their orbit. Let τtide be the time for the tide to rise and
τenc � Rmax/V the time of the encounter, with V the relative velocity of the two bodies, and
Rmax = max[R0,RS,RP] with RS and RP the (characteristic) radii of S and P, and R0 the min-
imum distance of the encounter. If τenc 	 τtide then the time scale for the internal structures
of the deformable bodies to adjust themselve is much shorter than the time scale on which the
tides change (due to the change of the relative position and orientation between S and P). Con-
sequently, the effects of the encounter during approach and departure cancel each other (the
deformations are adiabatic), and there is no net transfer of energy. However, if τenc ∼< τtide the
response of the bodies lags behind the instantaneous magnitude and direction of the force, caus-
ing a backreaction on the orbit. The net effect in this case is a transfer of orbital energy to
internal energy of the two bodies, causing an increase in their mutual binding energy. Under
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Fig. 12.1. Schematic illustration of an encounter with impact parameter b between a system S and its
perturber P.

certain conditions, this may cause the two bodies to become gravitationally bound to each other,
in which case we speak of gravitational capture.

In the case of an encounter between two stars, τtide depends on the effective viscosity of the
stars. If sufficiently large, the deformations caused by the encounter induce oscillations in the two
stars, which are gradually damped by the viscosity and the corresponding energy is transformed
into heat. In the case of interest to us, the two bodies are collisionless systems (dark matter
halos and/or galaxies), and τtide ∼ R/σ , with R the characteristic size of the system and σ its
internal velocity dispersion. This implies that the situation τenc 	 τtide, which translates into
V � (Rmax/R)σ , does not occur. After all, Rmax ≥ R by definition, and one always has that
V ∼> σ because of the gravitational acceleration during the encounter. Therefore, an encounter
between two collisionless systems almost always leads to an increase of their internal energies.
In general, numerical simulations are required to determine how much energy transfer takes
place. However, in the case of high-speed encounters with V 	 σ , which we discuss in §12.1,
the amount of energy transfer can be calculated analytically. This energy deposition gives rise
to modifications of the internal structure of the two systems. In particular, certain stars or dark
matter particles may gain sufficient kinetic energy to become unbound. Hence, tidal interactions
during encounters may induce mass loss, which is discussed in §12.2. When a massive object
moves through a dark matter halo, its gravitational interaction with the constituent particles of the
halo induces a dynamical friction force on the object, which is the topic of §12.3. If the encounter
velocity between two bodies is not too large, the encounter may result in gravitational capture
and ultimately cause the two bodies to merge with each other. This merging process is discussed
in §12.4. Finally, in §12.5 we discuss a number of galaxy transformation processes operating in
clusters, which may be responsible for the various correlations between galaxy properties and
their environments.

12.1 High-Speed Encounters

In general, an encounter between two collisionless systems is extremely complicated, and one
typically has to resort to numerical simulations to investigate its outcome. However, in the lim-
iting case where the encounter velocity is much larger than the internal velocity dispersion of
the perturbed system the change in the internal energy can be approximated analytically. Such
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high-speed encounters play an important role in galaxy clusters, where the velocity dispersion
of the cluster (σcluster ∼ 1000km s−1) is significantly larger than the internal dispersions of the
individual member galaxies.

Consider the encounter between S and P illustrated in Fig. 12.1. Let v∞ be the initial velocity
of P with respect to S when their separation is large. In the large-v∞ limit the tidal forces due
to P act on a time scale that is much shorter than the dynamical time of S, and the encounter
is said to be impulsive. This means that we may consider q to be stationary with respect to the
center of S during the encounter, only experiencing a change Δv in its velocity. In this impulse
approximation, the potential energy of q before and after the encounter is the same (i.e. the
density distribution of S remains unchanged during the encounter), so that the change in the total
energy per unit mass of a particle of S is given by

ΔE =
1
2
(v+Δv)2 − 1

2
v2 = v ·Δv+

1
2
|Δv|2. (12.3)

We are interested in computing ΔES, obtained by integrating ΔE over the entire system S.
Because of symmetry, the integral of the first term on the right-hand side of Eq. (12.3) is typically
equal to zero, so that

ΔES =
1
2

∫
|Δv(r)|2ρ(r)d3r. (12.4)

In the large-v∞ limit the distance of closest approach R0 → b, and the velocity of P with respect
to S is vP(t) � v∞ez ≡ vPez. Hence, with a proper choice of time origin, R(t) = (0,b,vP t). Let r
be the position vector of a particle in S and let R be the instantaneous distance between S and P.
In the distant encounter approximation, where b 	 max[RS,RP], the perturber may be considered
a point mass. Hence, the potential at r due to P is

ΦP(r) = − GMP

|r−R| . (12.5)

Using the series expansion of (1+ x)−1/2 and the fact that |r−R| =
√

R2 −2rRcosφ + r2, with
φ the angle between r and R, we obtain

ΦP(r) = −GMP

R
− GMPr

R2 cosφ − GMPr2

R3

(
3
2

cos2 φ − 1
2

)
+O

[
(r/R)3] . (12.6)

Dropping the higher-order terms in the series expansion of the potential constitutes the tidal
approximation. Encounters for which both the tidal approximation and the impulsive approxi-
mation are valid are often called tidal shocks. The first term on the right-hand side of Eq. (12.6)
is a constant and does not yield any force. The second term yields a uniform acceleration GMP/R2

directed towards P, and describes how the center of mass of S changes its velocity. Since we want
to calculate the velocity change of a particle with respect to the center of S, this term is not of
interest to us. The third term of Eq. (12.6) corresponds to the tidal force per unit mass. In order
to calculate this force, it is more convenient to work in a coordinate frame, (x′,y′,z′), with the
origin at the center of S, with the x′ axis pointing towards the instantaneous position of P, and
with y′ in the yz plane. It is then easy to show that the tidal force (per unit mass) at r is

Ftid(r) =
GMP

R3 (2x′,−y′,−z′), (12.7)

with (x′,y′,z′) the coordinates of r in the primed system. Transforming to the (x,y,z) coordinate
system, and integrating Ftid = dv/dt over time, yields the cumulative change in velocity with
respect to the center of S,

Δv =
2GMP

vpb2 (−x,y,0). (12.8)
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Substituting Eq. (12.8) in Eq. (12.4), and assuming spherical symmetry for S, so that 〈x2〉 =
〈y2〉 = 〈r2〉/3, we finally obtain the tidal heating of S due to a high-speed encounter with P:

ΔES =
4
3

G2MS

(
MP

vP

)2 〈r2〉
b4 . (12.9)

As shown by Aguilar & White (1985), this derivation, which is originally due to Spitzer (1958),
is surprisingly accurate for encounters with b ∼> 5max[RP,RS], even for relatively slow encoun-
ters with v∞ � σS. Note that Eq. (12.9) is only valid for distant encounters in which P may be
considered a point mass. In the case of encounters with b ∼< RP, the internal structure of P has to
be taken into account. As shown in Gnedin et al. (1999), in the case of a spherical perturber, this
implies multiplying the right-hand side of Eq. (12.9) with a factor

f (b) =
1
2

[
(3J0 − J1 − I0)2 +(2I0 − I1 −3J0 + J1)2 + I2

0

]
. (12.10)

Here

I0(b) =
∫ ∞

1

MP(br)
MP

dr

r2(r2 −1)1/2
, (12.11)

J0(b) =
∫ ∞

1

MP(br)
MP

dr

r4(r2 −1)1/2
, (12.12)

I1(b) = b
dI0

db
and J1(b) = b

dJ0

db
(12.13)

with MP(r) the mass of P enclosed within a radius r. In general, f (b) decreases from unity in
the large-b limit to zero when b → 0. Note that ΔES ∝ b4, indicating that close encounters are
far more important than distant encounters. On the other hand, f (b) rapidly decreases with b
once b ∼< RP. Consequently, encounters with impact parameters b ∼ RP are the ones that have the
strongest impact on S.

In the impulse approximation, the encounter only changes the kinetic energy of a system,
but leaves its potential energy intact. Consequently, after the encounter the system is no longer
in virial equilibrium, and has to undergo a relaxation process in order to settle to a new virial
equilibrium. Let the initial kinetic and total energies of S be KS and ES, respectively. According
to the virial theorem (5.130) we have that ES = −KS. Due to the encounter, ES → ES +ΔES and,
since all this energy is invested in the internal kinematics of S, we also have that KS → KS +
ΔES. After S has relaxed to a new virial equilibrium, KS = −(ES +ΔES). Thus, the relaxation
process decreases the kinetic energy by 2ΔES. This energy is transferred to potential energy,
which becomes less negative, implying that tidal shocks cause systems to expand.

Note that the net effect of pumping energy into the system is therefore a decrease of its kinetic
energy (i.e. the system gets ‘colder’). This is a consequence of the negative specific heat of self-
gravitating systems. By analogy with the particles in an ideal gas, the kinetic energy in an N-body
system of equal point masses can be assigned a mean ‘temperature’:

1
2

Nm〈v2〉 =
3
2

NkB〈T 〉. (12.14)

Here kB is Boltzmann’s constant, and 〈v2〉 and 〈T 〉 are the mean velocity dispersion and mean
temperature, respectively. According to the virial theorem we have that

E = −K = −3
2

NkB〈T 〉, (12.15)
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which allows us to define the heat capacity of the system as

C ≡ dE
d〈T 〉 = −3

2
NkB. (12.16)

Note that C is always negative, so that a system becomes hotter when it loses energy. This is
a characteristic, and somewhat counter-intuitive, property of all systems in which the dominant
forces are gravitational. This includes the Sun, where the stability of nuclear burning is a con-
sequence of C < 0: If the reaction rates become too high, the excess energy input into the core
makes the core expand and cool. This makes the reaction rates drop, bringing the system back to
equilibrium.

12.2 Tidal Stripping

In the previous section we have seen how tidal shocks due to high-speed encounters heat a col-
lisionless system, which eventually results in expansion possibly associated with mass loss. We
now examine how tidal forces impact a collisionless system in the more general case (i.e. no
longer restricting ourselves to high-speed encounters). As we will see, even in a static con-
figuration tidal forces can strip material from the outer parts of a collisionless system, which
is generally known as tidal stripping. After introducing the concept of tidal radius, we briefly
discuss how this tidally stripped material gives rise to tidal streams and tails.

12.2.1 Tidal Radius

Let us start our exploration with a subject mass m (hereafter the satellite) on a circular orbit of
radius R in the potential well of a point mass M. In this case the tidal field across m is static.
Although this implies that there are no tidal shocks, the subject mass can still suffer mass loss
since particles in the outer parts may experience tidal forces that exceed their binding forces. The
gravitational attraction of M causes the center of the subject mass to experience an acceleration
GM/R2. If the satellite is spherical and has a radius r, then different accelerations, GM/(R+ r)2

and GM/(R− r)2, will be felt by the material at the nearest and farthest ends of the satellite from
M, respectively. Assuming that r � R, the difference between the accelerations at these points
and that at the center has the magnitude 2GMr/R3. If this tidal acceleration exceeds the binding
force per unit mass, Gm/r2, the material at a distance r from the center of m will be stripped
away from the subject mass. This defines a critical radius (the tidal radius): rt = (m/2M)1/3R.
If the radius of a subject mass is larger than its tidal radius rt, it will experience mass loss due
to tidal stripping. This simple derivation, however, ignores the fact that the subject mass also
experiences a centrifugal force associated with its (circular) motion around the center of M. This
can be accounted for using a more rigorous derivation based on the restricted three-body problem,
resulting in a tidal radius:

rt =
[

m/M
(3+m/M)

]1/3

R (12.17)

(see Binney & Tremaine, 1987).
Note that Eq. (12.17) is based on the assumption that M can be approximated as a point mass,

so that it is only valid if R is large compared to the size of M. In addition, we have made the
assumption that the subject mass is on a circular orbit. In many cases, however, we will be
concerned with the tidal stripping experienced by a subject mass on an eccentric orbit within a
host system of mass M (e.g. a satellite galaxy orbiting within the dark matter halo associated with
the Milky Way). In general, if the subject mass is on a non-circular orbit, its tidal radius cannot be
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rigorously defined. However, following King (1962), we can define an approximate tidal radius
as the distance from the center of m at which a point on the line connecting the centers of m
and M experiences zero acceleration with respect to the center of m when the subject mass has
its pericentric passage. Let R be the distance between the centers of m and M. Then, during its
pericentric passage the subject mass experiences an acceleration

R̈ = − dΦh

dR

∣∣∣∣
R0

+R0Ω2, (12.18)

where R0 is the pericentric distance, Ω is the angular speed, and Φh is the gravitational potential
of the host mass. Now consider a particle ‘p’ that is part of the subject mass, located a distance Rp

from the center of the host mass along the line connecting m and M. This particle’s acceleration is

R̈p = − dΦh

dR

∣∣∣∣
Rp

− dΦS

dr

∣∣∣∣
r
+RpΩ2, (12.19)

where r = |Rp −R| is the distance of p from the center of m, and ΦS is the gravitational potential
of the subject mass. Hence, the relative acceleration of p with respect to the center of m can be
approximated as

r̈ =

(
− d2Φh

dR2

∣∣∣∣
R0

− 1
r

dΦS

dr

∣∣∣∣
r
+Ω2

)
r. (12.20)

Using that dΦi/dr = GMi(r)/r2, with Mi(r) the mass of spherical object i enclosed within radius
r, and solving for r̈ = 0, we obtain that the tidal radius rt is given by the solution to

rt =

⎡⎣ m(rt)/M(R0)

2+ Ω2R3
0

GM(R0) − dlnM
dlnR

∣∣
R0

⎤⎦1/3

R0. (12.21)

This equation gives an approximation for the tidal radius of a subject mass m moving on an orbit
with pericenter R0 in or around a host system of mass M. In the limit where both m and M are
point masses traveling at separation R0 in a circular orbit around their mutual center of mass,
Ω2 = G(M +m)/R3

0, and Eq. (12.21) reduces to Eq. (12.17).
It should be pointed out, however, that even Eq. (12.21) is only a crude approximation. First

of all, as already alluded to above, in the case of non-circular orbits the concept of a tidal radius
is not well defined. In fact, one might argue that a pericentric passage is better described by the
impulse approximation, i.e. the subject mass experiences a tidal shock, even though the encounter
is not necessarily a high-speed encounter. Secondly, even in the case of point masses, the two-
dimensional surface along which r̈ = 0 is not spherical, and so cannot be characterized by a
single radius. And finally, in the derivation of Eq. (12.21) we have ignored the orbital motion of
particles within the subject mass. This, among other effects, gives rise to scatter in the circular
frequencies Ω, and effectively introduces some ‘thickness’ to the shell of particles for which the
internal and tidal forces balance. Despite these shortcomings, Eqs. (12.17) and (12.21) are often
used to model tidal stripping of satellite galaxies, globular clusters and/or dark matter subhalos
(e.g. Johnston, 1998; Taylor & Babul, 2001; Zentner & Bullock, 2003).

12.2.2 Tidal Streams and Tails

We now turn our attention to the fate of tidally stripped material. We consider two specific cases:
the stripping of a relatively small satellite system orbiting in a larger host system, and the tidal
stripping accompanying the merger between two disk galaxies of comparable masses.
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(a) Tidal Stripping of Satellite Galaxies Consider a collisionless system S orbiting inside the
(external) gravitational potential of a host system P (i.e. a satellite galaxy orbiting within the dark
matter halo of its host galaxy). Let (J̄,Θ̄) be the average action-angle variables of the particles
that make up S. Then, if the Hamiltonian of P is integrable, the equations of motion for S are

Ji(t) = Ji(0) = constant,

Θi(t) =
∂H

∂Ji
t +Θi(0), (12.22)

with i = 1,2,3 and H = H (J) the Hamiltonian (see §5.4.5). Since the constituent particles
of S have similar positions and velocities (phase-space coordinates) with respect to P, they also
have similar values for (J,Θ). In particular, if the distribution function of the ensemble of S
is a multivariate Gaussian in configuration and velocity space, then the distribution function
in action-angle variables is also a multivariate Gaussian (Helmi & White, 1999). Hence, the
particles of S that are stripped due to the tidal forces of P will have action-angle variables that are
similar to those of the particles that remain bound to S, and thus to (J̄,Θ̄). Since the actions are
integrals of motion, the differences ΔJi = Ji − J̄i, where Ji corresponds to the action of a tidally
stripped particle, remain constant. However, the differences ΔΘi = Θi − Θ̄i evolve with time.
Using Eq. (12.22) and expanding ΔΘi to first order in Jk − J̄k, we have that

ΔΘi(t) = ΔΘi(tstrip)+
∂ 2H

∂Ji∂Jk

∣∣∣∣
J
(Jk − J̄k)(t − tstrip), (12.23)

where tstrip is the time when the particle is stripped from S. Since the phase-space trajectories
Γ(t) of objects with similar actions are confined to similar invariant tori (see §5.4.5), the stripped
particles and S will be on similar orbits [which are the projections of Γ(t) in configuration space].
However, since |ΔΘ| increases with time, the differences in the orbital phases grow with time.
Thus, stripped stars move on roughly the same orbit as S, but, depending on the sign of Jk − J̄k,
either trail or lead S in terms of their orbital phases. As is evident from Eq. (12.23), the rate
at which the stripped stars disperse along the orbit of S is determined by the initial spread in
actions and by the (eigenvalues of the) Hessian of the Hamiltonian (Tremaine, 1999; Helmi &
White, 1999). Usually one of the eigenvalues is significantly larger than the other two, so that
the stripped particles form a relatively thin structure in configuration space, called a tidal stream
or tidal tail.1 Smaller systems S have a smaller spread in actions and therefore disperse more
slowly (i.e. produce shorter streams). The width of the tidal stream is mainly governed by the
values of the two non-dominant eigenvalues of the Hessian.

The most well-known example of tidal streams is the Magellanic stream, which is a stream
of neutral hydrogen stripped from the Magellanic clouds, and extending more than 100 degrees
on the sky (Wannier & Wrixon, 1972; Mathewson et al., 1974). Although gaseous streams may
also be produced by stripping due to ram-pressure (for instance if the Magellanic clouds have
traversed the HI disk of the Milky Way), the fact that the Magellanic stream also contains a
leading stream indicates that tides are the dominant mechanism responsible for its formation
(Putman et al., 1998). Other examples of tidal streams in the halo of the Milky Way are those
associated with the Sagittarius dwarf galaxy (Newberg et al., 2002) and with the globular cluster
Pal 5 (Odenkirchen et al., 2002).

Tidal streams are powerful diagnostics. First of all, they can be used to constrain the gravita-
tional potential of their host system (e.g. Murai & Fujimoto, 1980; Johnston et al., 1999). This is
easy to understand from the fact that the orbital energy, E = 1

2v
2 +Φ(x), is an integral of motion.

Hence, all stars along the stream should have similar values of E. This principle, together with

1 The term ‘tidal tail’ is usually reserved to refer to the structures formed by tidally stripped stars in major mergers
discussed below.
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measurements of the positions and velocities of the stream stars, puts constraints on Φ(x). In
fact, even without any kinematic data valuable constraints can be obtained. For example, in a
spherical potential, orbits (and thus also tidal streams) are confined to a plane. Consequently,
the stream stars will be located on a great circle on the sky. This principle applied to the tidal
stream associated with the Sagittarius dwarf galaxy has been used to argue that the halo of the
Milky Way is close to spherical (Ibata et al., 2001). However, current data is still consistent with
a Galactic dark matter halo that is either oblate or prolate, with minor-to-major density axis ratios
as low as 0.6 within the region probed by the orbit of the Sagittarius dwarf (Helmi, 2004).

A second application of tidal streams is to constrain the hierarchical formation history of
the Milky Way halo. Even after a satellite is completely disrupted, the tidal stream survives.
Although phase mixing may no longer allow one to detect the stream in configuration space, the
stream is still detectable as a pronounced peak in action-space, because the distribution function
f = f (J) is invariant and unaffected by tidal stripping or tidal destruction. Thus, if (i) one has
measured the phase-space coordinates of individual halo stars, (ii) the potential of the Milky Way
system is known, so that the actions of individual stars can be computed from their phase-space
coordinates, (iii) the Hamiltonian of the Milky Way system is (near-)integrable, and (iv) the
Milky Way system has not experienced significant violent relaxation (i.e. its potential has either
remained constant or evolved adiabatically), then one can in principle identify individual satellite
systems, even if they have been tidally disrupted a long time ago. Such information can put
constraints on the hierarchical formation of the Milky Way system. Although it is unlikely that all
of the above requirements are met, this archaeological approach to constraining galaxy formation
has recently become an extremely active field of research, largely due to the explosion of new
data provided by the SDSS (see Helmi, 2008, for a review)

(b) The Formation of Tidal Tails in Mergers In addition to the tidal streams produced when
satellite galaxies orbiting their hosts are stripped, tidal tails are also observed in merging (disk)
galaxies. Fig. 2.10 shows the merging galaxy pair NGC 4038 and NGC 4039, also known as
the Antennae, which reveals two prominent tails stretching a length over 100 kpc from end to
end. In a seminal paper, Toomre & Toomre (1972) showed that such tail structures are tidal
relics of close encounters (or mergers) between two disk galaxies. The tails are narrow because
they originate from dynamically cold disks; mergers between (dynamically hot) spheroids do not
produce narrow tidal tails.

Toomre & Toomre (1972) also showed that prograde encounters, in which the orbital angu-
lar momentum is aligned with the spin vectors of the initial disk galaxies, result in far more
prominent tidal tails than retrograde encounters, in which the orbital angular momentum is anti-
aligned with the disks’ spin vectors. This is easy to understand. If we follow Toomre & Toomre
(1972), and consider the disk galaxies to consist of point masses with disks made of massless test-
particles, the orbital frequency of a ring of radius r is ωring =

√
GM/r3. The angular velocity of

the line joining the two massive particles at pericenter is

ωorb =
[

2GM(1+ e)
R3

0

]1/2

, (12.24)

where e is the eccentricity of the orbit and R0 is the minimum separation of the two massive
particles. If ωorb = ωring, i.e. for a ring with radius r = R0/[2(1 + e)]2/3, and if the encounter
is prograde, then a test particle in the ring is in resonance with the tidal acceleration – it is
continuously pulled either inwards or outwards, depending on its orbital phase. Consequently,
the ring responds violently to the encounter. If, on the other hand, the encounter is retrograde,
then test particles will be pulled alternatively inwards and outwards, with a high frequency, and
the net effect of the tidal acceleration is small.
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Fig. 12.2. Snapshots that show the time evolution of a numerical N-body simulation of a prograde merger
between two disk galaxies that are embedded in dark matter halos. The snapshots show the disk particles
(‘stars’) only, and clearly reveal the formation of two prominent tidal tails. The length units labeling the
axes are given in h−1 kpc, and the numbers in the upper left corner of each panel indicate the elapsed time
since the start of the simulation in units of 9.8×108h−1 yr. [Adapted from Springel & White (1999)]
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In order to gain insight, the simulations of Toomre & Toomre (1972) were deliberately over-
simplified: they considered disks consisting of massless particles orbiting around point masses
(i.e. they ignored the self-gravity of the disks) and the disks were not embedded in dark matter
halos. Nevertheless, the main conclusions reached by the Toomres have since been confirmed by
increasingly larger numerical simulations that include self-gravity of the disks as well as dark
matter halos (e.g. Gerhard, 1981; Farouki & Shapiro, 1982; Barnes, 1988; Hernquist, 1992).
Fig. 12.2 shows an example of such a numerical simulation. It shows snapshots of a prograde
merger between two disk galaxies embedded in dark matter halos. Note that the formation of the
two prominent tidal tails carries away part of the energy and angular momentum of the initial
orbit, causing the progenitors to merge.

As shown by Dubinski et al. (1996), increasing the mass of the dark matter halo with respect
to that of the disk makes the tidal tails shorter and less massive. This simply reflects the fact
that more massive halos have deeper potential wells and higher encounter velocities. As a conse-
quence, the duration and overall strength of the tidal perturbations are smaller, and the perturbed
material cannot as easily climb out of the deeper potential well (White, 1982). Based on their
numerical simulations, Dubinski et al. (1996) argued that well-known merger candidates such as
the Antennae could not have originated from encounters in which the progenitor galaxies have
halo-to-disk mass ratios larger than 10:1. However, subsequent studies by Springel & White
(1999) and Dubinski et al. (1999) have shown that the halo-to-disk mass ratio is not a sufficient
condition to determine whether extended tidal tails can develop or not. Rather, Mo et al. (1998)
suggested using the ratio

E ≡ V 2
esc(2Rd)

V 2
c (2Rd)

, (12.25)

where Rd is the disk scale length, and Vesc and Vc are the escape velocity and circular veloc-
ity, respectively. Thus, E compares the depth of the potential well (∼ V 2

esc) with the specific
kinetic energy of the disk material (∼ V 2

c ). The reason for evaluating this ratio at 2Rd is that
this corresponds roughly to the half mass radius of an exponential disk. The simulation results of
Springel & White (1999) and Dubinski et al. (1999) show that E is indeed a suitable indicator of a
disk’s tail-making ability; prominent tidal tails are produced for E ∼< 6 (assuming prograde merg-
ers). Thus, the fact that prominent tidal tails such as those in the Antennae have been observed
implies that (at least some) disk galaxies must have dark matter halos for which E ∼< 6.

12.3 Dynamical Friction

When an object of mass MS (hereafter the subject mass) moves through a large collisionless
system whose constituent particles (the field particles) have mass m � MS, it experiences a drag
force, called dynamical friction, which transfers energy and momentum from the subject mass to
the field particles. Intuitively, this can be understood from the fact that two-body encounters cause
particles to exchange energies in such a way that the system evolves towards thermodynamic
equilibrium. Thus, in a system with multiple populations, each with a different particle mass mi,
two-body encounters drive the system towards equipartition, in which the mean kinetic energy
per particle is locally the same for each population: m1〈v2

1 〉 = m2〈v2
2 〉 = mi〈v2

i 〉. Since MS 	 m
and particles at the same radius in inhomogeneous self-gravitating systems tend to have similar
orbital velocities, the subject mass usually has a much larger kinetic energy than the typical
field particles it encounters, producing a net tendency for it to lose energy and momentum. An
alternative but equivalent way to think about dynamical friction is that the moving subject mass
perturbs the distribution of field particles causing a trailing enhancement (or ‘wake’) in their
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Fig. 12.3. As a massive object M moves through a sea of particles, the particles passing by are accelerated
towards the object. As a result, the particle number density behind the object is higher than that in front of
it, and the net effect is a drag force (dynamical friction) on the object.

density. The gravitational force of this wake on the subject mass MS then slows it down (see
Fig. 12.3).

In order to obtain an analytical expression for the dynamical friction force, we follow the
original derivation due to Chandrasekhar (1943) in which dynamical friction is considered as a
sum of uncorrelated two-body encounters between the subject mass and individual field particles.
The principle here is that the momentum lost by the subject mass must be equal to the momentum
gained by the field particles. Let us first consider a single encounter under the assumption that
both the subject mass and the field particles are point masses. As shown in §5.4.1, when a point
mass MS moving with velocity vS has an encounter with impact parameter b with a point mass
m moving with velocity vm, the components of its velocity in the directions perpendicular and
parallel to the initial encounter velocity change by

|Δvs,⊥| = 2mbv3
∞

G(MS +m)2

[
1+

b2v4
∞

G2(MS +m)2

]−1

, (12.26)

and

|Δvs,||| =
2mv∞

(MS +m)

[
1+

b2v4
∞

G2(MS +m)2

]−1

, (12.27)

where v∞ = |v∞| = |vm − vS| is the initial relative velocity of the encounter. Note that these
equations ignore the external potential due to the other field particles. The derivation that follows
is therefore only strictly valid for a scenario in which the unperturbed orbits are straight lines,
i.e. in which the distribution of field particles is infinite and homogeneous.

When moving through such a sea of field particles, the subject mass experiences many encoun-
ters with different impact parameters b and different encounter velocities vm−vS. The cumulative
effect of all these encounters results in a total velocity change per unit time of(

dvS

dt

)
i
=
∫ ∫

Δvs,i(b,vm)
dNenc

dbd3vm dt
dbd3vm, (12.28)

where i indicates either perpendicular or parallel to v∞ and Nenc is the number of encounters.
If the phase-space distribution function of the field particles is given by f (x,v), the number
density of particles in the velocity-space volume d3v is f (x,v)d3v. As mentioned above, our
derivation assumes that the number density distribution of field particles is homogeneous, so
that f (x,v) = f (v). Obviously, in this case the net cumulative effect on vs,⊥ is zero, and in
what follows we focus on dvs,||/dt. The number of encounters in a time interval Δt with impact
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parameters between b and b+db is then simply the number density of particles times the volume
of an annulus with inner radius b, outer radius b+db and length |vm −vS|×Δt. Thus

dNenc

dbd3vm dt
= 2πb |vm −vS| f (vm). (12.29)

Substituting Eqs. (12.27) and (12.29) in Eq. (12.28), and integrating the impact parameter over
the range 0 < b < bmax yields

dvS

dt
=
(

dvS

dt

)
||

= 4πG2(MS +m)m
∫

d3vm f (vm) lnΛ
vm −vS

|vm −vS|3 . (12.30)

Here

lnΛ≡ 1
2

ln

[
1+
(

bmax

b90

)2
]
� ln

(
bmax

b90

)
, (12.31)

is the Coulomb logarithm, with b90 ≡ G(MS +m)/v2
∞ the impact parameter for which the deflec-

tion angle of the reduced particle of the encounter is equal to 90◦ (see Binney & Tremaine, 2008).
This Coulomb logarithm basically describes the cut-off at the maximum impact parameter, bmax,
as is required because Eq. (12.28) diverges logarithmically for large impact parameters (i.e. most
of the contribution to dvS/dt comes from encounters with large impact parameters). The second
equality of Eq. (12.31) holds as long as bmax 	 b90, which is virtually always the case. Note that
the Coulomb logarithm depends on the encounter velocity v∞ = |vm − vS|, and therefore has to
be integrated over velocity space. In practice, however, since Λ is typically large, we do not make
a large error by replacing v∞ in the definition of lnΛ by a typical encounter speed v̄enc. We can
then take the Coulomb logarithm outside of the integral.

In order to evaluate the integral over velocity space in Eq. (12.30), we use that

∇x

(
1

|x′ −x|
)

=
x′ −x
|x′ −x|3 (12.32)

to write ∫
d3vm f (vm)

vm −vS

|vm −vS|3 = ∇H(vS), (12.33)

where

H(vS) =
∫

d3vm
f (vm)

|vm −vS| (12.34)

is known as the first Rosenbluth potential (e.g. Rosenbluth et al., 1957). In terms of Legendre
polynomials, the inverse ‘distance’ between the vectors vm and vS can be written as

1
|vm −vS| =

∞

∑
l=0

v l−
v l+1
+

Pl(cosθ), (12.35)

where v− = min(|vm|, |vS|), v+ = max(|vm|, |vS|) and θ is the angle between the two velocity
vectors. If we now assume that f (vm) is isotropic, so that it only depends on vm = |vm|, symmetry
dictates that the Rosenbluth potential only depends on vS = |vS|. With the help of Eq. (12.35) we
then have that

H(vS) = 2π
∞

∑
l=0

∫ ∞

0
dvm

v2
m v l−
v l+1
+

f (vm)
∫ π

0
dθ sinθ Pl(cosθ). (12.36)

Using that
∫ 1
−1 Pl(x)dx = 2δl0, this reduces to

H(vS) = 4π
[

1
vS

∫ vS

0
f (vm)v2

m dvm +
∫ ∞

vS

f (vm)vm dvm

]
. (12.37)
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Under the assumption of isotropy

∇H(vS) =
∂H
∂vS

vS

vS
, (12.38)

so that we finally obtain that∫
d3vm f (vm)

vm −vS

|vm −vS|3 = −4π
vS

v3
S

∫ vS

0
f (vm)v2

mdvm. (12.39)

Substituting Eq. (12.39) into Eq. (12.30), and taking MS 	 m, we finally obtain the dynamical
friction force

Fdf = MS
dvS

dt
= −16π2 G2M2

Sm lnΛ
[∫ vS

0
f (vm)v2

m dvm

]
vS

v3
S

= −4π
(

GMS

vS

)2

lnΛρ(< vS)
vS

vS
, (12.40)

where ρ(< vS) is the density of field particles with speeds less than vS. This is known as the
Chandrasekhar dynamical friction formula. Similar to the frictional drag in fluid mechanics,
dynamical friction exerts a force always pointing in the direction opposite to the motion. How-
ever, contrary to hydrodynamic friction, which always increases in strength when the velocity
increases, the drag due to dynamical friction has a more complicated velocity dependence. In
the low vS limit, f (vm) in Eq. (12.40) may be replaced by f (0), resulting in Fdf ∝ vS, similar
to hydrodynamic friction. However, at the high vS limit, ρ(< vS) becomes independent of vS so
that Fdf ∝ v−2

S .
Note that Fdf is independent of the mass m of the field particles, at least in the limit MS 	 m.

Hence, Chandrasekhar’s dynamical friction formula is also valid for a background field with a
distribution of particle masses. Note also that Fdf ∝ M2

S. This can be understood by considering
the deflection of the field particles as illustrated in Fig. 12.3. Because of the gravitational focus-
ing, a density wake is created downstream from the subject mass. Since the mass of the wake is
proportional to MS, the gravitational force of the wake on the subject mass is proportional to M2

S.

12.3.1 Orbital Decay

Dynamical friction causes a relatively massive object orbiting in a background host system to
lose energy and angular momentum to the ‘field’ particles of the host. Consequently, the orbit
of the massive object decays with time, transporting it towards the center of the host’s potential
well. Thus, dynamical friction causes mass segregation, with more massive particles typically
residing deeper in the potential well. This is in contrast to violent relaxation which does not
separate particles according to their individual masses. In this section we use Chandrasekhar’s
dynamical friction formula to estimate orbital decay rates. These play an important role in galaxy
formation and evolution.

(a) Circular Orbits Consider a subject mass on a circular orbit in a spherical, singular isother-
mal host halo with density distribution ρ(r) = V 2

c /(4πGr2), where Vc is the circular velocity
which is independent of r. If we assume that the constituent ‘field’ particles all have mass m and
follow a locally Maxwellian velocity distribution, the phase-space distribution function is

f (x,v) = f (r,v) =
ρ(r)

m
1

(2πσ2)3/2
exp

(
− v2

2σ2

)
, (12.41)
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where the velocity dispersion σ =Vc/
√

2. Consequently, in the limit MS 	m, dynamical friction
results in a deceleration

dvS

dt
= −4π

G2MS

v2
S

lnΛρ(r)

{
erf

(
vS

Vc

)
− 2√

π
vS

Vc
exp

[
−
(

vS

Vc

)2
]}

vS

vS
. (12.42)

Using that on circular orbits in a singular isothermal sphere vS = Vc and that the dynamical
friction force is tangential, the rate at which the subject mass loses its specific angular momentum
LS = rvS is

dLS

dt
= r

dvS

dt
= −0.428lnΛ

GMS

r
. (12.43)

Since the circular speed is independent of radius, the subject mass continues to orbit at speed Vc

as it spirals inward, so that the radius of the orbit, r, changes with time as

r
dr
dt

= −0.428lnΛ
GMS

Vc
. (12.44)

For an initial orbit with radius ri, the dynamical friction time (i.e. the time it takes for the orbit to
decay to zero radius) is then

tdf =
1.17
lnΛ

r2
i Vc

GMS
=

1.17
lnΛ

(
ri

rh

)2(Mh

MS

)
rh

Vc
, (12.45)

with rh and Mh the radius and mass of the host system.
If we set the maximum impact parameter, bmax, equal to the size of the host system, rh, and

we use that v̄enc �Vc =
√

GMh/rh, the Coulomb logarithm [Eq. (12.31)] becomes

lnΛ� ln

(
Mh

MS

)
, (12.46)

which is the form that is often used in estimates of orbital decay rates. If ri ∼ rh, and for a dark
matter halo in an EdS universe, we thus obtain

tdf ≈ 1.17
ln(Mh/MS)

(
Mh

MS

)
1

10H(z)
, (12.47)

where we have used that, to good approximation, rh/Vc ≈ 1/10H(z) [see Eq. (7.137)]. Thus, the
dynamical friction decay time from the edge of a halo to the center is longer than the age of the
Universe for Mh/MS ∼> 15: only the most massive subhalos and satellite galaxies in a dark matter
halo are expected to be substantially segregated by mass.

(b) Eccentric Orbits Now consider the orbital decay of an eccentric orbit, whose eccentricity
is defined as

e =
r+ − r−
r+ + r−

, (12.48)

with r+ and r− the apo- and pericenter of the orbit, respectively. For an orbit with energy E and
angular momentum L (both per unit mass) in a spherical potential, r− and r+ are the roots for r of

1
r2 +

2[Φ(r)−E]
L2 = 0 (12.49)

(e.g. Binney & Tremaine, 1987). For a singular isothermal sphere, whose potential is given by
Φ(r) = V 2

c ln(r/r0), the maximum angular momentum for a given energy E is given by Lc(E) =
rc(E)Vc, with

rc(E) = r0 exp

[
E −V 2

c /2
V 2

c

]
, (12.50)
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the radius of a circular orbit with energy E. It is useful to express the angular momentum of an
eccentric orbit in terms of the orbital circularity,

η ≡ L
Lc(E)

, (12.51)

which is a monotonically decreasing function of the orbital eccentricity (i.e. dη/de < 0). Circular
orbits have η = 1 and e = 0, while purely radial orbits have η = 0 and e = 1.

Dynamical friction transfers both energy and angular momentum from the subject mass M
to the field particles of mass m making up the host system. This causes a change in the orbital
circularity given by

dη
dt

=
1

Lc(E)
dL
dt

− L
L2

c(E)
∂Lc(E)
∂E

dE
dt

= η
[

1
L

dL
dt

− 1
V 2

c

dE
dt

]
, (12.52)

where we have used Eq. (12.50). Using that L = rv⊥, with v⊥ the velocity in the direction
perpendicular to the radial vector, we have that

dE
dt

= v
dv
dt

and
dL
dt

=
L
v

dv
dt

, (12.53)

where dv/dt is the frictional deceleration given by Eq. (12.40). Substituting Eq. (12.53) in
Eq. (12.52) we have that

de
dt

=
η
v

de
dη

[
1−
(

v
Vc

)2
]

dv
dt

. (12.54)

At pericenter v > Vc, and since η > 0, de/dη < 0 and dv/dt < 0 we thus have that de/dt < 0.
However, at apocenter v < Vc so that de/dt > 0. Thus, while dynamical friction causes an orbit
to become more circular near pericenter, it causes an increase of the orbit’s eccentricity near
apocenter. Numerical simulations of the orbital decay of a solid body in a spherical halo with a
realistic density distribution, show that the effects at apo- and pericenter almost cancel each other,
so that there is virtually no net evolution in the orbital eccentricity (van den Bosch et al., 1999).
The same simulations also show that the dynamical friction time scales with the orbit’s circularity
as tdf ∝ η0.53, indicating that more eccentric orbits decay more rapidly. These results agree quite
well with those obtained by direct integration of Chandrasekhar’s formula along eccentric orbits
(White, 1976b)

(c) Orbital Decay in the Presence of Mass Loss In the above derivation of the dynamical
friction time we have assumed that the subject mass MS is constant. However, unless the subject
mass is a compact object (e.g. a black hole), the tidal forces due to the host system, with potential
Φh, will cause mass loss and thus a decrease of MS with time (see §12.2). To estimate how
tidal stripping impacts on the dynamical friction time, assume that the host system is a singular
isothermal sphere with circular velocity Vh and mass profile Mh(r) = V 2

h r/G. As above, we refer
to the mass inside a radius rh as the total host mass Mh. Now consider a subject mass, which has
the density distribution of a singular isothermal sphere with circular velocity VS. If located at a
radius r within the host system, we assume that its mass distribution is truncated at its tidal radius

rt =
[

MS(rt)
2Mh(r)

]1/3

r, (12.55)
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(see §12.2.1). Hence, at radius r the subject mass is equal to

MS(r) =
V 2

S rt(r)
G

=
r√
2G

V 3
S

Vh
. (12.56)

Substituting Eq. (12.56) in Eq. (12.44), and assuming that the subject mass starts on an initial
circular orbit of radius ri, we obtain a dynamical friction time

t̃df =
3.30
lnΛ

(
ri

rh

) (
Vh

VS

)3 rh

Vh
, (12.57)

where the tilde is to indicate that this dynamical friction time accounts for mass loss due to
tidal stripping. Since (Vh/VS)3 � (Mh/MS), which follows from the fact that, according to the
spherical collapse model, all virialized structures have similar densities, a comparison with the
dynamical friction time in the absence of mass loss, given by Eq. (12.45), shows that t̃df � 2.8tdf

for ri = rh. Thus, in the presence of mass loss due to tidal stripping, the dynamical friction time
is expected to be almost three times as long as without mass loss. Note that we have assumed
that the Coulomb logarithm is a constant along the orbit, and independent of whether mass loss
occurs or not. Since lnΛ∼ ln(Mh/MS), the appropriate value depends on the stripping and also on
which region of the host halo should be used to estimate Mh. Nevertheless, numerical simulations
show that, for a satellite system with an initial mass ratio of MS/Mh = 0.1, mass loss causes an
increase in the dynamical friction time by a factor of 2–3 (Colpi et al., 1999; Boylan-Kolchin
et al., 2008; Jiang et al., 2008), in good agreement with our estimate above. In addition, these
simulations show that in the presence of mass loss the dynamical friction time scales with the
orbit’s circularity as tdf ∝ ηs with s ∼ 0.3–0.4. This dependence is considerably weaker than in
the absence of mass loss, reflecting the fact that stripping is more effective on orbits of small
pericenter and partially counterbalances the enhanced friction.

12.3.2 The Validity of Chandrasekhar’s Formula

Although the Chandrasekhar dynamical friction formula has often been used to estimate the
decay times of satellite galaxies, globular clusters and supermassive black holes, it is important
to be aware of its shortcomings. Its derivation is based on the following three assumptions:

(i) the subject mass and the field particles are point masses;
(ii) the self-gravity of the field particles can be ignored;

(iii) the distribution of field particles is infinite, homogeneous and isotropic.

None of these assumptions is realistic. In what follows we briefly describe how dynamical
friction changes when the above assumptions are relaxed.

(a) Dynamical Friction on Extended Subject Mass In deriving Eq. (12.40) we have made the
assumption that the subject mass MS is a point mass. In general, though, we are interested in the
dynamical friction experienced by extended objects, such as globular clusters, satellite galaxies
or dark matter subhalos. When the impact parameter becomes smaller than or comparable to the
size of the subject mass, Eq. (12.27) is no longer valid. Rather, as shown by White (1976a), in
the case of an extended body Eq. (12.27) becomes

|ΔvS,||| = 2
G2b2m

(MS +m)v3
∞

I2
S(b), (12.58)

with

IS(b) =
∫ ∞

b

MS(r)dr

r2(r2 −b2)1/2
. (12.59)
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Substituting Eq. (12.58) in Eq. (12.28), and repeating the same analysis as above, we obtain the
same dynamical friction force as in Eq. (12.40), but with a Coulomb logarithm given by

lnΛ=
1

M2
S

∫ bmax

0
I2
S(b)b3 db. (12.60)

Let rt be the tidal radius of the subject mass, defined so that MS(r) is equal to the total mass MS

for r ≥ rt. Then we can rewrite Eq. (12.60) as

lnΛ= ln

(
bmax

krt

)
with ln

(
1
k

)
=

1

M2
S

∫ rt

0
I2
S(b)b3 db. (12.61)

This demonstrates that the Chandrasekhar dynamical friction formula can also be used for
extended sources by simply replacing b90 in the Coulomb logarithm of Eq. (12.31) with krt.
For realistic density distributions 0.1 ∼< k ∼< 0.3 (White, 1976a).

(b) Self-Gravity of the Field Particles The derivation of Chandrasekhar’s dynamical fric-
tion formula neglects the self-gravity of the host system, i.e. it only considers the interaction of
the field particles with the subject mass, but not with one another. A more sophisticated treat-
ment of dynamical friction, which does take the self-gravity of the background field particles
into account, requires the linear response theory developed by Marochnik (1968) and Kalnajs
(1972a). Rather than considering a sequence of uncorrelated two-body interactions, in linear
response theory the subject mass is regarded as a moving, external potential which gives rise to a
response density in the host system. Dynamical friction manifests itself as the gravitational force
due to this response density, as obtained from the Poisson equation. An important difference
between this derivation of dynamical friction and that due to Chandrasekhar is that in the latter
case dynamical friction is considered a purely local effect. This is evident from the fact that in
Chandrasekhar’s formula the dynamical friction force is proportional to the local density ρ(r)
[see Eq (12.42)]. According to the linear response theory, however, dynamical friction is a global
effect, arising from a global perturbation of the potential of the host system (e.g. Weinberg,
1986, 1989; Colpi, 1998). A clear demonstration that dynamical friction is not a purely local
phenomenon comes from the fact that Eq. (12.40) predicts that a subject mass orbiting beyond
the outer edge of a finite host system experiences no dynamical friction (i.e. the local density is
zero). This, however, is inconsistent with numerical simulations, which clearly show that even
in such a case the subject mass loses momentum due to the gravitational backreaction of the
response density (e.g. Lin & Tremaine, 1983).

(c) Inhomogeneous Background and the Coulomb Logarithm Arguably the most problem-
atic aspect of Chandrasekhar’s dynamical friction formula is the introduction of the Coulomb
logarithm, lnΛ. It originates from the introduction of a maximum impact parameter, bmax,
required to avoid divergence. This divergence, however, arises because we made the (unrealistic)
assumption of a homogeneous and infinite medium. In general we will be concerned with dynam-
ical friction operating on a subject mass orbiting in a host system of mass Mh 	MS (e.g. a galaxy
in a dark matter halo). In this case, a logical value for bmax is the size of the host system, for which
the Coulomb logarithm reduces to the form of Eq. (12.46). Note, however, that the derivation of
Chandrasekhar’s dynamical friction formula is based on Eq. (12.27), which is only valid for an
infinite, homogeneous medium: in a finite host system the orbits will not be straight lines.

Despite this inconsistency, numerical simulations and linear response calculations have shown
that Chandrasekhar’s dynamical friction formula gives a reasonably accurate description of the
dynamical friction experienced by a subject mass orbiting within a finite, inhomogeneous host
system, provided that (i) the entire orbit lies inside the host system, (ii) mass loss is taken into
account by replacing MS with MS(t), (iii) the subject mass MS ∼< Mh/10, and (iv) the Coulomb
logarithm is treated as a free parameter (e.g. Cora et al., 1997; Colpi et al., 1999; Velazquez &
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White, 1999; Fujii et al., 2006). The latter implies that one can in general find a value for lnΛ for
which integration of the equation of motion,

dvS

dt
= −∇Φh(r)−4π

G2Msρ(< vS)
v2

S

lnΛ
vS

vS
(12.62)

(with Φh the gravitational potential of the host system), yields a fairly accurate description of
the orbital evolution. Unfortunately, the ‘best-fit’ value for lnΛ depends on the orbit and on the
density distribution of the satellite. Currently, there is still no detailed understanding of how
the Coulomb logarithm depends on these parameters, so that different semi-analytical models
typically make different assumptions. Given the shortcomings of the Chandrasekhar dynamical
friction formula, it is clear that the choice for lnΛ remains somewhat arbitrary.

Finally, we emphasize that in an inhomogeneous background density, there will be a net
dynamical friction force in the direction perpendicular to vS, i.e. the velocity changes Δvs,⊥ of
individual encounters [Eq. (12.26)] no longer sum to zero. In particular, any density gradient in
the direction perpendicular to the motion of MS induces a non-zero force (sometimes called the
inhomogeneous dynamical friction force). For realistic density distributions, this inhomogeneous
friction force is typically an order of magnitude smaller than the homogeneous friction force, and
can therefore be ignored for most practical purposes (see e.g. Just & Peñarrubia, 2005).

12.4 Galaxy Merging

If the orbital energy is sufficiently low, close encounters between two systems can lead to a
merger. In the hierarchical scenario of structure formation, mergers play an extremely important
role in the assembly of galaxies and dark matter halos. After discussing the criteria under which
mergers take place, we briefly discuss the demographics of mergers, the connection between
mergers, starbursts and AGN activity, and the heating of galactic disks due to the accretion of
satellite galaxies.

12.4.1 Criterion for Mergers

In order to examine the conditions under which an encounter can result in a merger, we closely
follow Binney & Tremaine (1987) and consider a simple case in which the two galaxies are
identical, non-rotating and spherical. Suppose that each galaxy has mass M and median radius
rmed. The internal mean-square velocity is 〈v2〉 = aGM/rmed, where a is a parameter of order
unity that depends on the density distribution of the galaxy. Such an encounter is completely
specified by Eorb (the orbital energy per unit mass) and L (the orbital angular momentum per unit
mass) in units of the characteristic values derived from 〈v2〉 and rmed:

Ê ≡ Eorb

(1/2)〈v2〉 and L̂ ≡ L

〈v2〉1/2rmed
. (12.63)

With this, each encounter is associated with a point in the (Ê, L̂) plane which can be divided
into different regions, as shown in Fig. 12.4. The line of parabolic orbits (Ê = 0) separates
bound (elliptic) orbits, for which Ê < 0, from unbound (hyperbolic) orbits, for which Ê > 0. For
bound orbits with a fixed Ê, the largest angular momentum corresponds to a circular orbit. The
corresponding locus L̂ = L̂circ(Ê) is indicated as a solid curve; no orbits can exist above this curve.

In principle, any bound orbit will eventually lead to a merger because the tidal interaction
between the two galaxies always transfers orbital energy into internal energy. However, if the
angular momentum is high and if the orbital energy is not low enough, the merger will not
happen in a Hubble time. Numerical simulations show that L̂ ∼< 4 is required for mergers from



562 Galaxy Interactions and Transformations

Fig. 12.4. Merging criteria for two spherical galaxies with the same mass. Orbits in the upper-left region
are forbidden, because for a given orbital energy the largest possible angular momentum is that of a circular
orbit (indicated by the solid curve). Encounters with orbital energy and/or angular momentum that are too
high cannot lead to a merger. Mildly hyperbolic orbits can lead to a merger if the orbital angular momentum
is sufficiently low. Mergers occur within a few galaxy dynamical times of first pericentric passage for
encounters lying below and to the left of the dashed line. [After Binney & Tremaine (1987)]

parabolic encounters to happen within a few galactic dynamical times. Since tidal interactions
can effectively drain orbital energy during a close encounter, mergers can also happen between
two galaxies on an initially unbound orbit as long as L̂ is sufficiently small. Numerical simula-
tions of head-on encounters (L̂ = 0) show that mergers can still happen within a relatively small
number of galaxy dynamical times for Ê ∼< 1.4. The dashed curve in Fig. 12.4 roughly delineates
the region where the time between pericentric passage and merging is short enough to be relevant
for real systems.

There are two important conclusions to draw from Fig. 12.4. First of all, mergers are only
expected to be effective when Ê ∼< 1. If the galaxies are moving in a system with velocity disper-
sion σ , then the specific orbital energy for a typical encounter is Eorb ∼ σ2. Thus, mergers are
only effective in systems with a velocity dispersion smaller than or comparable to the internal
velocities of the orbiting galaxies. Hence galaxy mergers can occur effectively in groups of galax-
ies, but not in rich clusters.2 Secondly, for given orbital energy and angular momentum, mergers
are expected to be more effective for more extended objects (i.e. with larger rmed and thus smaller
L̂). This means that it is crucial to take account of the fact that galaxies are believed to reside in
extended dark matter halos. When two such systems have an encounter, their extended halos may
merge to form a common halo even if the two systems are on a mildly hyperbolic orbit. The two
galaxies themselves, however, being more compact than the halos, may not merge at the same
time as their halos, but only later (if at all) when their distance and relative velocity at pericenter
become comparable to their radii and internal velocities. Thus, the two galaxies are expected to

2 Mergers onto the central cluster galaxy are an important exception here; see §12.5.2.
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orbit in a common halo until dynamical friction and tidal interactions have removed sufficient
orbital energy for the galaxies to merge.

12.4.2 Merger Demographics

Contrary to the cases of high-speed encounters and dynamical friction, for which reasonably
accurate analytical descriptions are available, mergers between systems of comparable mass typ-
ically cannot be treated analytically. When two systems merge, their orbital energy is transferred
to the internal energy of the merger product. In addition, some of the orbital energy can be car-
ried away by material ejected from the progenitors (for instance in the form of tidal tails). In
the case of galaxies embedded in extended dark matter halos, a significant fraction of the orbital
energy of the stellar components can be transferred to the dark matter by dynamical friction. Due
to the strong tidal perturbations and the exchange of energy between components, the system
needs to settle to a new (virial) equilibrium after merging, which it does via violent relaxation,
phase mixing and Landau damping of global modes (see Barnes, 1998, for a detailed review).
As discussed in §5.5, the outcome of such relaxation is difficult to predict theoretically, and one
has to resort to numerical simulations.

The first self-consistent three-dimensional simulations of encounters of galaxies, with and
without rotation, were carried out by White (1978, 1979). These considered the collisions of
two (or four) spherical, self-gravitating galaxies of equal mass on parabolic orbits, and demon-
strated that interpenetrating encounters from such orbits generally lead to mergers within a few
dynamical times, and that the structure of the merger remnants converges towards a density pro-
file similar to that of elliptical galaxies. Since the early 1980s, N-body merger simulations of
ever increasing numerical resolution have been performed. Gerhard (1981), Farouki & Shapiro
(1982), Negroponte & White (1983), Barnes (1988), and Hernquist (1992) all carried out fully
self-consistent merger simulations of two equal mass stellar disks embedded in extended dark
matter halos. These simulations showed that mergers between disk galaxies of roughly equal
mass produce remnants that resemble elliptical galaxies. This is also supported by observations.
For example, Fig. 12.5 shows the heavily distorted galaxy NGC 7252, which reveals multiple

NGC 7252

Ground View HST View

Fig. 12.5. The galaxy NGC 7252, whose distorted morphology, including several tidal tails, leaves little
doubt that this is a remnant of a relatively major merger that occurred not too long ago. The right-hand
panel shows a view of the central region obtained with the HST. It reveals the presence of a spiral structure,
which formed out of the gas that has fallen towards the center during the merger. This gas has accumulated
in a disk, and is forming stars. [Left Credit: F. Schweizer, taken with 4-meter telescope at the Cerro Tololo
Inter-American Observatory. Right Credit: B. Whitmore and NASA]
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tidal features and fine structure. There is little doubt that this is a system that has recently under-
gone a merger, as numerical simulations of mergers between two disk galaxies can reproduce
various properties of this system in detail (e.g. Borne & Richstone, 1991; Hibbard & Mihos,
1995). The main part of NGC 7252 appears to have already relaxed towards an equilibrium
state with properties similar to those of elliptical galaxies: its light profile is well fitted by an
R1/4 law (Schweizer, 1982) and it even obeys the Faber–Jackson relation (Lake & Dressler,
1986). These findings suggest that some, if not all, elliptical galaxies are the remnants of merg-
ers between two or more disk galaxies. This idea, originally due to Toomre & Toomre (1972),
will be explored in more detail in §13.2.2, where we also present a more detailed comparison
of the properties of merger remnants in numerical simulations with the observed properties of
elliptical galaxies.

A large number of more recent studies based on high-resolution numerical simulations
(e.g. Barnes, 1992; Hernquist, 1992, 1993; Barnes & Hernquist, 1996; Dubinski et al., 1996;
Springel & White, 1999; Naab & Burkert, 2003; Boylan-Kolchin et al., 2005; Cox et al., 2006)
have made clear that the structure of the remnant of a merger between two galaxies depends
primarily on four properties:

• The progenitor mass ratio q ≡ M1/M2, where M1 ≥ M2. If q ∼< 4 (q ∼> 4) one speaks of a major
(minor) merger.3 In major mergers violent relaxation plays an important role during the relax-
ation of the merger remnant, and the remnant typically has little resemblance to its progenitors.
In minor mergers, on the other hand, phase mixing and/or Landau damping dominate, and the
merger is less destructive. Consequently, the remnant of a minor merger often resembles its
most massive progenitor.

• The morphologies of the progenitors (disks or spheroids). Galactic disks are fragile, and are
therefore relatively easy to destroy, especially when q is small. Disks that accrete small satel-
lites (i.e. in the minor merger regime with q ∼> 10) typically survive the merger event but
can undergo considerable thickening (see §12.4.4 below). As discussed in §12.2.2, mergers
that involve one or more disk galaxies tend to create tidal tails, which are absent in mergers
between two spheroids.

• The gas mass fractions of the progenitors. Unlike stars and dark matter particles, gas responds
to pressure forces as well as gravity and can lose energy through radiative cooling. Moreover,
gas flows develop shocks whereas streams of stars can freely interpenetrate. Consequently,
mergers between gas-rich progenitors (often called ‘wet’ mergers) can have a very different
outcome from mergers between gas-poor progenitors (‘dry’ mergers).

• The orbital properties. The orbital energy and angular momentum not only determine the prob-
ability for a merger to occur (as discussed above), but also have an impact on the merger
outcome. For example, as discussed in §12.2.2, the relative orientation of the orbital spin with
respect to the intrinsic spins of the progenitors (prograde or retrograde) is an important factor
determining the prominence of tidal tails.

12.4.3 The Connection between Mergers, Starbursts and AGN

An important aspect of (wet) mergers, and of interactions in general, is that they may be
responsible for triggering (nuclear) starbursts and AGN activity. Numerical simulations of
mergers and encounters between gas-rich disks show that the tidal perturbations can cause
the disks to become globally unstable and to develop pronounced bars. Since the gas and
stars do not have the same response to the tidal force, the gaseous and stellar bars generally

3 Note that the exact value at which one distinguishes major from minor mergers is somewhat arbitrary.
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have different phases (see §11.5.4). This phase difference gives rise to torques that can effec-
tively remove angular momentum from the gas. As a result, the gas flows towards the central
region and eventually forms a dense gas concentration at the center of the merger remnant
(e.g. Negroponte & White, 1983; Noguchi, 1988; Combes et al., 1990b; Mihos & Hernquist,
1996).

The surface density of this central gas can easily be several orders of magnitude higher than the
typical surface density of gas in (undisturbed) disk galaxies. A simple application of the Schmidt
law of star formation (see §9.5.1) suggests that this gas may form stars at an extremely high rate,
giving rise to a nuclear starburst (see also §2.3.7). In addition, if some of the nuclear gas can
continue to lose angular momentum, it may be able to fuel or even form a central black hole,
resulting in an active galactic nucleus (e.g. Hernquist, 1989; Barnes & Hernquist, 1991).

There is strong observational support that some starbursts and active galaxies are triggered by
mergers and/or encounters between gas-rich galaxies. Using integrated colors, Larson & Tinsley
(1978) showed that many interacting and merging galaxies have undergone short bursts (∼< 108 yr)
of star formation involving up to ∼ 5% of their total luminous mass. All ULIRGs, which are
starbursting galaxies with far-infrared luminosities exceeding 1012 L� (see §2.3.7), show clear
signs of recent or continuing interactions, such as shells, tidal tails and complex velocity fields
(Joseph & Wright, 1985). In addition, most ULIRGs have dominant non-thermal optical emission
lines, indicative of an embedded active galactic nucleus (Sanders et al., 1988). Many bright radio
galaxies also reveal structural peculiarities indicative of a recent interaction. Together with the
absence of nearby companions, this suggests that some radio galaxies may have resulted from
mergers of disk galaxies (e.g. Heckman et al., 1986).

Although many details are still poorly understood, it is clear from these and other observations
that the presence of gas in a merger between two galaxies can result in enhanced star formation
and/or AGN activity. Important outstanding questions are what fraction of the present-day stars
formed in merger-induced starbursts (see e.g. Somerville et al., 2001) and what is the role of
feedback in regulating and terminating the starburst and AGN activity (see e.g. Springel et al.,
2005b).

12.4.4 Minor Mergers and Disk Heating

As discussed above, because of the highly nonlinear effects involved, mergers between galaxies
and/or dark matter halos are best studied using numerical simulations. In the minor merger limit
of large mass ratios q = M1/M2, though, the most massive progenitor will only be mildly dis-
turbed, and it is still possible to use simple approximations to estimate the impact of the merger
event4 on the structural and kinematical properties of the massive progenitor. As an example, we
discuss the (vertical) heating of a galactic disk due to the accretion of a low mass satellite galaxy.

Consider a satellite system of mass Ms (e.g. a dark matter subhalo, with or without an embed-
ded satellite galaxy) orbiting within a halo of mass Mh 	 Ms that hosts a central disk galaxy
of mass Md. As we have seen in §12.3, the subhalo experiences a drag force due to dynamical
friction by the halo–disk particles and loses orbital energy. Because of energy conservation, this
energy loss of the satellite must be equal to the energy pumped into the halo and the disk. As a
result, both the halo and the disk will be heated up. We expect the ratio of the energies transferred
to the disk and the halo to be of the order of the mass ratio of the energy sinks, i.e.

η ≡ ΔEh

ΔEd
∼ Mh

Md
, (12.64)

which is also borne out by a more careful analysis (see Tóth & Ostriker, 1992).

4 Note that in the case of a large mass ratio one also often speaks of an accretion event.
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For simplicity, we assume that the disk plus halo system can be described by a singular isother-
mal sphere, whose potential is given by Φh(r) = V 2

c ln(r), with V 2
c = GMvir/rvir the circular

velocity of the system, Mvir = Mh +Md, and rvir the halo’s virial radius. Since the rotation curve
of the disk–halo system is flat (consistent with observations), the velocity of the satellite does not
change significantly as it spirals towards the center. Hence, the change in the energy of the sink-
ing satellite comes only from the change in potential energy. If the satellite starts out at the halo
virial radius, rvir, and is (instantaneously) dissolved (due to tidal forces) at a radius rdiss, the
energy deposited into the disk is

ΔEd = mdΔEs = RmdMsV
2
c , (12.65)

with md ≡ Md/Mvir = 1/(1+η) and

R = ln

(
rvir

rdiss

)
. (12.66)

The actual mechanism by which the accreting satellite deposits its energy into the disk is
resonant excitation, either of individual stellar orbits (direct heating; see Spitzer, 1958) or of
collective modes (both vertical bending waves and horizontal density waves). These waves sub-
sequently experience Landau damping (see §5.5.4) so that the energy deposited into the disk is
typically distributed over large scales (Sellwood et al., 1998). We therefore do not make a large
error if we simply assume that ΔEd is distributed equally among all disk stars, so that the energy
deposited into the disk per unit area is

Δed =
Σd(R)

Md
ΔEd = md RΣd(R)

Ms

Md
V 2

c . (12.67)

The disk heating energy will be shared by the energy increases in the vertical and planar direc-
tions. Since we are mainly interested in the effect on the disk thickness, we are only concerned
with the former. For simplicity we assume that the energy is shared equally among all directions,
so that Δed,z = Δed/3. As shown by Tóth & Ostriker (1992), this is a reasonable approximation.

Part of Δed,z is stored in kinetic energy in the vertical direction, while the rest is stored in
potential energy as the disk thickens. To estimate the changes in disk thickness and in stellar
velocity dispersion, we use the virial theorem. A small part of the disk can be regarded as a one-
dimensional system in the external potential of the halo, and the virial theorem can be applied
to a unit surface area. Since the local gravitational potential balancing the local vertical velocity
dispersion, σz, is dominated by disk self-gravity (rather than by halo gravity), we can ignore the
potential energy associated with the disk–halo gravity. For a thin disk, the thickening may be
treated locally as a one-dimensional problem in the vertical direction, and only the z dependence
of the disk potential at a given radius matters. Setting the zero-point of the potential (i.e. that
corresponding to zero thickness) to be zero for each R independently, the virial theorem can be
written as

2td −wdd ≈ 0 (12.68)

(Tóth & Ostriker, 1992). Here

td ≡ 1
2
Σd(R)σ2

z (R), (12.69)

is the kinetic energy in the vertical direction per unit area, and

wdd ≡ 1
2

∫ ∞

−∞
Φd(R,z)ρd(R,z)dz = αGΣ2

d(R)zd (12.70)

is the potential energy per unit area associated with the disk self-gravity, with Φd and ρd the
potential and density of the disk, zd the disk scale height, and α a geometrical factor of order
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unity. Using that ed,z ≈ td + wdd, we have that Δed,z = (3/2)Δwdd. Assuming that Σd(R) is
unaffected by the heating, and using Eq. (12.67), we obtain that

Δzd

zd
(R) =

1
3
Δσ2

z

σ2
z

(R) =
2R

9
md

Ms

Md

[
Vc

σz(R)

]2

, (12.71)

where we have used that zd = σ2
z (R)/[αGΣd(R)], which follows from the virial theorem. To gain

further insight, we assume that the initial disk has a density distribution

ρd(R,z) = ρ0 exp(−R/Rd)sech2(z/2zd). (12.72)

As shown in §11.1.1, the velocity dispersion in the z direction is then given by Eq. (11.21), which
allows us to rewrite Eq. (12.71) as

Δzd

zd
(R) =

2
9
λ√

2
ln

(√
2
λ

)
Rd

zd

Ms

Md
exp(R/Rd), (12.73)

where we have used that Rd/rvir = λ/
√

2, with λ the spin parameter of the disk (see §11.2.2), and
we have assumed that rdiss � Rd. As is evident from Eq. (12.73), disk thickening is more effective
(i) for more massive satellites, (ii) at larger radii, (iii) for disks with a larger spin parameter (i.e.
with a larger disk scale length and lower surface density), and (iv) for disks that are initially
thinner (i.e. have a larger value of Rd/zd). The latter implies that disk thickening saturates, i.e.
that the accretion of subsequent satellites of similar mass has a smaller effect on the scale height
of the disk. As a specific example, for λ = 0.05 and zd/Rd = 0.1, which are typical values,
Eq. (12.73) reduces to

Δzd

zd
(R = 2Rd) � 1.4

Ms

Md
. (12.74)

Thus, the accretion of satellites with Ms ∼< Md/10 only causes a relatively small amount of heat-
ing. However, if the disk accretes a satellite with a mass that is comparable to that of the disk
itself, its scale height at 2Rd more than doubles. As argued by Tóth & Ostriker (1992), the fact
that the disk of our Milky Way has a thin component with a scale height of ∼ 0.3kpc at the
solar radius (R� � 8kpc � 2.3Rd), seems to suggest that it cannot have accreted more than a few
percent of its stellar mass inside the solar radius within the last 5 Gyr.

Although the analytical treatment presented above is based on numerous assumptions and
oversimplifications, detailed numerical simulations have largely confirmed its predictions, both
qualitatively and quantitatively (e.g. Walker et al., 1996; Huang & Carlberg, 1997; Velazquez &
White, 1999; Kazantzidis et al., 2008; Purcell et al., 2009). In addition, these simulations have
shown that the accretion of satellite systems produces distinctive morphological features in the
disk, including bars, warps, and low surface brightness features similar to those detected in the
Milky Way (e.g. Newberg et al., 2002; Jurić et al., 2008) and the outskirts of M31 (e.g. Ferguson
et al., 2002). Furthermore, the thickened disks in the simulations have structural and kinemati-
cal properties similar to those of the thick disk in the Milky Way (Villalobos & Helmi, 2008).
Depending on the density and orbit of the satellite, the core of the satellite may survive the
merger and sink towards the galactic center to form a bulge-like entity (e.g. Tremaine et al.,
1975; Aguerri et al., 2001). Alternatively, if it is tidally disrupted before it reaches the center,
its stars may contribute to the stellar component of the (thickened) disk (e.g. Abadi et al., 2003;
Peñarrubia et al., 2006). Since thick disks, bars, warps and low surface brightness features are
ubiquitous among disk galaxies, it seems likely that minor mergers play an important role in
galaxy evolution along the Hubble sequence.

However, the disk heating associated with the accretion of satellite systems may also signal a
potential problem for the hierarchical model of structure formation. As we have seen in §7.5.3,
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dark matter halos are expected to host large populations of subhalos (with or without satellite
galaxies). Given that each of these subhalos may cause some amount of disk heating, this raises
the question whether thin disks are expected to survive in a CDM cosmology. If the total heating
rate due to the cumulative effect of the entire population of subhalos expected in the host halo of
a disk galaxy is large, the ubiquity of observed thin disks may indicate a serious problem for the
CDM paradigm.

In order to compute the net heating rate, we first compute the heating rate due to a single
satellite. The time scale on which a satellite system transfers (part of) its orbital energy to the
disk is the dynamical friction time, tdf, given by Eq. (12.45). Thus we have that

dEd

dt
(Ms) =

ΔEd

tdf
� 8.5R md lnΛ

GM2
s

rvir
H(z), (12.75)

where we have used Eq. (12.65) and the fact that, to good approximation, rh/Vc ≈ 1/10H(z)
[see Eq. (7.137)]. Thus, we have that the total heating rate in a host halo of mass Mh, due to the
cumulative effect of all dark matter subhalos, is

dEd

dt
∝
∫

n(Ms|Mh)M2
s dMs, (12.76)

with n(Ms|Mh) the mass function of dark matter subhalos that are accreted by a host halo of mass
Mh (i.e. the unevolved subhalo mass function; see §7.5.3). For CDM cosmologies n(Ms|Mh) ∝
M−γ

s , with γ � 1.8. Hence, the heating rate will be dominated by the few most massive satellite
systems, making disk heating a stochastic process. Using numerical simulations of structure
formation, Stewart et al. (2008) have shown that ∼ 70% of Milky Way sized dark matter halos
with a mass of ∼ 1012 M� have accreted a system of mass Ms � 1011 M� � 3Md in the last 10
Gyr. Since such a merger event largely destroys a thin disk (Purcell et al., 2009), the only recourse
for explaining the ubiquity of thin disks in a CDM universe is that the disks have a significant gas
component. Since gas can dissipate, it can have a stabilizing effect on the stellar disk, and it can
even reform a thin disk after the heating event (e.g. Robertson et al., 2006a; Moster et al., 2009).
Detailed hydrodynamical simulations of disk formation and evolution are required to investigate
whether or not the CDM paradigm is consistent with the existence of a large population of (thin)
disk galaxies.

12.5 Transformation of Galaxies in Clusters

As discussed in §2.4.5, denser environments host larger fractions of galaxies morphologically
classified as early types. In addition, galaxies in denser environments are on average redder,
less gas-rich, and have lower specific star-formation rates. Although far from unambiguous, this
strong environment dependence is often interpreted as indicating that galaxies undergo trans-
formations (e.g. late type → early type, star forming → passive) once they enter or become
part of a denser environment. Clusters of galaxies are the largest virialized structures in the
Universe, with masses of about 1014–1015 M�, and velocity dispersions of about 1,000kms−1,
and the environments with the highest number densities of galaxies. Hence, galaxy interac-
tions are frequent, making clusters the ideal environments to look for possible transformation
processes.

In this section we take a closer look at various processes that operate in clusters of galaxies,
and that may be responsible for transforming star-forming disk galaxies into passive spheroids.
Roughly speaking, cluster galaxies can be affected by the cluster environment in three dif-
ferent ways: (i) tidal interactions with other cluster members and with the cluster potential,
(ii) dynamical friction, which causes the galaxy to slowly make its way to the cluster center, and
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(iii) interactions with the hot, X-ray emitting intracluster medium (ICM) that is known to perme-
ate clusters (see §8.8.1). In what follows we discuss each of these processes in turn, focusing on
their potential impact on the properties of the galaxies.

12.5.1 Galaxy Harassment

In a cluster of galaxies, the typical velocity of a galaxy is of the order of the velocity dispersion
of the cluster, which is much larger than the internal velocity dispersion of the galaxy. Thus, the
encounters of a galaxy with other member galaxies and cluster substructures are all high-speed
in nature. As we have seen in §12.1, during a high-speed encounter, a colliding galaxy is impul-
sively heated (i.e. its internal energy is increased). As a result, the perturbed galaxy becomes less
bound, and more vulnerable to disruptions by further encounters and by tidal interactions with
the global cluster potential. The cumulative effect of multiple high-speed impulsive encounters is
generally referred to as galaxy harassment. Early studies of this process focused on how it mod-
ifies the structure of elliptical galaxies in clusters and whether it can account for the extended
outer envelopes of central cluster galaxies (Richstone, 1976; Aguilar & White, 1985). A particu-
larly interesting result by Aguilar & White (1986) was that the de Vaucouleurs surface brightness
profile appears invariant to harrassment, i.e. rapid encounters between galaxies with this structure
can cause substantial mass loss but the profile of the final object is still well fit by the r1/4 law;
there is no tendency for harrassment to produce a tidal cut-off in the density profiles of cluster
galaxies.

The effects of harassment on disk galaxies falling into clusters was first simulated by Farouki
& Shapiro (1981), who showed that disks can be almost entirely destroyed by one or two passages
through the cluster. These results were confirmed and extended using much larger simulations by
Moore et al. (1996) and Moore et al. (1998b) who highlighted the damage caused to the fragile
disks of late-type (Sc-Sd) spiral galaxies. If such galaxies experience several close encounters
with relatively massive cluster members, they may lose very substantial amounts of mass as
impulsive heating pushes stars onto unbound orbits. The disk stars that remain bound to the
galaxy are also heated, causing a transformation of the (dynamically cold) disk into a spheroidal
component closely resembling a dwarf elliptical. Since dwarf ellipticals are ubiquitous in clus-
ters, it may well be that they are the remnants of the disk galaxies that have experienced such
harassment. This is consistent with the fact that the galaxy population of clusters is observed
to have evolved rapidly over the past few billion years: at redshifts z ∼ 0.4, clusters contain a
large population of star-forming galaxies, many of which are disturbed and show evidence for
multiple bursts of star formation (see §2.5.1). This population of ‘Butcher–Oemler’ galaxies is
almost entirely absent from clusters at z ∼ 0 (Butcher & Oemler, 1978). As discussed in §13.6.2,
however, this scenario is made less plausible by the fact that many dwarf ellipticals show little or
no rotation, while the objects formed in numerical simulations by harassing disk galaxies always
seem to preserve significant amounts of rotation.

Although harassment may have a strong impact on the morphology of late-type (Sc-Sd) disk
galaxies, which typically have relatively low surface density disks, numerical simulations indi-
cate that it has little impact on the more compact early-type (Sa-Sb) disk galaxies (Moore
et al., 1999b). This is easy to understand from the fact that the dynamical time in denser,
more compact disks is shorter. In Sa and Sb galaxies the orbital time within a couple of disk
scale lengths is short enough for the disk to respond adiabatically to the high-speed encounters
experienced in clusters. In addition, since denser systems have a smaller fraction of their mass
located beyond the tidal radius, they are also less susceptible to tidal stripping. Tidal shocks
therefore can neither remove large amounts of material from early-type disk galaxies, nor trans-
form them into spheroids. Nevertheless harassment can still significantly heat the disks and drive
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disk instabilities that funnel gas into the central regions. Combined with ram-pressure strip-
ping (see §12.5.3), it is thus plausible that harassment can transform Sa-Sb galaxies into S0
galaxies.

12.5.2 Galactic Cannibalism

As discussed in §12.4.1, galaxies in clusters are unlikely to merge since their encounter speed
is typically much larger than their internal velocity dispersion. However, there is one important
exception: because of dynamical friction, galaxies lose energy and momentum which causes
them to ‘sink’ towards the center of the potential well. If the dynamical friction time is sufficiently
short, the galaxy will ultimately reach the cluster center, where it will merge with the central
galaxy already residing there. Hence, a central cluster galaxy may accrete satellite galaxies, a
process called galactic cannibalism.

Roughly speaking, a satellite galaxy will be cannibalized by its central galaxy when dynam-
ical friction can bring it to the center of the potential well within a Hubble time 1/H(z). From
Eq. (12.45) we see that the critical radius for this to occur to a satellite galaxy of mass MS in an
isothermal host halo of mass Mh is

rcrit ∼ 0.1rh

(
lnΛ
10

)1/2( MS

10−4Mh

)1/2

, (12.77)

where we have used Vh/rh = 10H(z) [see Eq. (7.137)]. Thus, although it is preferentially the
massive satellites that will be cannibalized, in the central regions of a cluster even low-mass
galaxies can be accreted by the central galaxy within a Hubble time.

Galactic cannibalism has two important effects: it causes the central galaxy to increase in mass,
and it causes a depletion of massive satellite galaxies, for which the dynamical friction time is
the shortest. Consequently, cannibalism causes an increase of the magnitude difference, ΔM12,
between the brightest and second brightest member of a cluster. If galactic cannibalism is the
main mechanism regulating the luminosity of the central galaxy, the magnitude gap ΔM12 can
thus be used as a measure for the dynamical age of the cluster: older systems will have a larger
magnitude gap.

As discussed in §2.5.1, the central cluster galaxy is typically also the brightest cluster galaxy
and often has an extraordinarily diffuse and extended outer envelope, in which case it is called
a cD galaxy (see Oemler, 1976; Schombert, 1986, for detailed photometric properties). Numer-
ous studies have suggested that these cD galaxies are the product of galactic cannibalism (e.g.
Ostriker & Tremaine, 1975; White, 1976b; Hausman & Ostriker, 1978; Malumuth & Richstone,
1984). This would explain not only their large masses, but also their diffuse envelopes, which,
in this picture, consist of material tidally stripped from the cannibalized galaxies as they spiral
into the cluster center (Gallagher & Ostriker, 1972; Richstone, 1976). Some of the assumptions
made in these early models were poorly chosen and led to overestimates of the efficiency of
the process. For example, most studies ignored mass loss from the satellite galaxies due to tidal
stripping [as does Eq. (12.77)]. As we have seen in §12.3.1, this can increase dynamical friction
times by a factor of several, a correction that results in current cD growth rates too low to explain
the observed luminosities (Merritt, 1985), but in excellent agreement with the rates inferred from
the fraction of cD galaxies harboring multiple nuclei (Lauer, 1988; Merrifield & Kent, 1991;
Blakeslee & Tonry, 1992). This is not fatal, since clusters have been growing at the same time as
their central galaxies, and merging onto the central object should have occurred more rapidly in
lower mass progenitors than in today’s cluster. As noted by Merritt (1984), this implies that can-
nibalism must be followed throughout the hierarchical growth of the cluster, rather than just in the
present-day system. The merger tree techniques discussed in §7.3 make it possible to solve this
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problem in detail in a CDM cosmology. Current results show that the cannabalism model pro-
vides a detailed explanation for most properties of the cluster/cD population (Aragon-Salamanca
et al., 1998; De Lucia & Blaizot, 2007), although there is still some tension with observational
results suggesting that cDs built up most of their mass at earlier times than the model predicts
(Collins et al., 2009).

12.5.3 Ram-Pressure Stripping

When a galaxy moves through the intracluster medium (ICM), its gas component experiences
a ram pressure, just like one feels wind drag when cycling. As first discussed by Gunn & Gott
(1972), if the ram pressure is sufficiently strong, it may strip the gas initially associated with the
galaxy.

Consider a disk galaxy of radius Rd moving through an ICM of density ρICM with velocity V .
For simplicity, assume that the velocity vector of the disk galaxy is pointing perpendicular to the
disk, so that it experiences a face-on wind. The amount of ICM material swept per unit time by
the disk is πR2

dρICMV . If we assume that the wind is stopped by the interstellar medium (ISM) of
the disk, then the momentum transferred to the disk per unit time is πR2

dρICMV 2, corresponding
to a ram pressure Pram = ρICMV 2. If this pressure exceeds the force per unit area that binds the
ISM to the disk, the gas will be stripped. To estimate the binding force, assume that the mean
surface density of interstellar gas is ΣISM and that the mean mass density (usually dominated by
stars) of the disk is Σ�. The gravitational field of the disk is approximately 2πGΣ� in the disk and
so the gravitational force per unit area on the interstellar gas is 2πGΣ�ΣISM. Hence, we expect
that stripping occurs if

ρICM >
2πGΣ�ΣISM

V 2 . (12.78)

To put this in perspective, consider a disk similar to that of the Milky Way, with a stellar mass of
5×1010 M� and an ISM mass of 5×109 M�, both spread over a disk of radius 10kpc. Suppose
that this disk is moving at a speed V = 1,000kms−1 (the typical velocity dispersion of galaxies
in rich clusters) with respect to an ICM. Eq. (12.78) then gives ρICM > 4.6×10−27gcm−3 as the
condition for ram-pressure stripping to occur. The typical density of the ICM in clusters is ∼ 10−3

particles per cubic centimeter (see §8.8.1), or ∼ 10−27gcm−3, of the same order as required for
ram-pressure stripping to be effective. In general, a disk galaxy will be on an eccentric orbit
along which its velocity and the ICM density change as function of time. Hence, whether condi-
tion (12.78) is satisfied or not depends on time. In general, though, since the surface densities of
stars and gas decline as a function of galactocentric distance, one can typically identify a radius
in the disk beyond which ram-pressure stripping is efficient.

When a spiral galaxy loses most of its interstellar gas, its potential for future star formation
is greatly reduced. Ram-pressure stripping is therefore often invoked to explain why dense envi-
ronments, such as clusters, reveal a clear deficit of gas-rich, star-forming galaxies (see §2.4.5).
With (most of) its interstellar medium removed, and with star formation quenched, the resulting
disk galaxy may look like a S0 galaxy. Thus, ram-pressure stripping may explain why clusters
contain a larger fraction of S0 galaxies than the field.

However, the importance of ram-pressure stripping for transforming spirals into S0s, and for
quenching star formation, is still a matter of debate. Although there is ample observational evi-
dence that ram-pressure stripping is occurring (see van Gorkom, 2004, for a review), in almost
all cases only the gas at relatively large galactocentric radii is being stripped. This is consis-
tent with numerical, hydrodynamical simulations, which show that if a Milky-Way-like galaxy
falls through the center of the Coma cluster, only about 80% of its gas mass is stripped; the
inner 20% survives a plunge through the densest region of the ICM (Abadi et al., 1999). Fur-
thermore, it is not even clear that ram-pressure stripping necessarily results in a reduction of the
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galaxy’s star-formation rate. The remaining non-stripped gas may actually be compressed by the
ram pressure, giving rise to enhanced star formation in the disk (Dressler & Gunn, 1983; Gavazzi
et al., 1995), or the stripped gas may remain bound to the galaxy, fall back and induce a later star-
burst (Vollmer et al., 2001). Somewhat surprisingly, the effect of ram-pressure stripping seems
to be enhanced if the gas disk is porous, so that part of the wind can stream through the holes.
Although this results in less direct momentum transfer to the gas disk, streaming through the
holes can ablate their edges through turbulent viscous stripping, and can prevent the stripped gas
from falling back. Numerical simulations suggest that ram-pressure stripping may in some cases
strip porous disks of their entire gas reservoir within ∼ 108 yr (Quilis et al., 2000), resulting in
rapid truncation of their star formation. However, it should be noted that the apparent HI holes
in real disk galaxies may not be empty, but rather filled with molecular gas. In this case, the
flow cannot pass through the disk, and ram-pressure stripping remains inefficient in removing
the inner material.

12.5.4 Strangulation

The ram-pressure stripping discussed above may strip a galaxy of its entire cold gas reservoir,
causing an abrupt quenching of its star formation. However, if only the outer parts of a galaxy’s
gas disk are stripped, star formation may continue until all fuel is exhausted. In normal field
spirals, the gas consumption time scale is typically only a few Gyrs (see §9.3). Their lifetimes
can be significantly extended only if they continue to accrete fresh gas. Galaxies are believed to
be surrounded not only by halos of dark matter, but also by substantial amounts of hot/warm gas.
This consists in part of gas that is just falling onto the system for the first time, in part of gas
which has already fallen in and been shocked to high temperature, but has not yet cooled, and in
part of gas that has been reheated and expelled from the galaxy by feedback processes. The infall
and cooling of this material can replenish the ISM as it is consumed by star formation, allowing
the galaxy to continue forming stars over long time scales. Hence, this extended gas component
can be regarded as a reservoir of fuel for future star formation.

Since this gas reservoir is only relatively loosely bound to the galaxy, it is fairly easily stripped
off, either by tides or by ram pressure. Hence, it is to be expected that a large fraction, if not
all, of this halo gas is stripped off from a galaxy after it is accreted into a larger system such
as a cluster. This is called strangulation, and results in a fairly gradual decline of the galaxy’s
star-formation rate as it slowly runs out of fuel (Larson et al., 1980).

It is well established that galaxies in the field form stars at rates several times higher than
systems of similar luminosity in the denser environments associated with groups and clusters
(e.g. Dressler et al., 1985; Balogh et al., 1997). Although this is partly a reflection of the well-
known morphology–density relation (see §2.4.5), in that ellipticals and S0 galaxies, which have
lower specific star-formation rates than spirals, are more abundant in denser environments, even
galaxies of given stellar mass and given internal structure show a strong correlation between
star-formation rate and environment density (Kauffmann et al., 2004). Late-type disk galaxies
in clusters clearly have less gas and form stars at lower rates than those in the field (e.g. van
den Bergh, 1976; Balogh et al., 1999). As argued by several studies, strangulation seems to be
the main mechanism responsible for this environment dependence of the specific star-formation
rates (e.g. Balogh et al., 2000; Balogh & Morris, 2000; van den Bosch et al., 2008a; Weinmann
et al., 2009).

Most current models for the evolution of the galaxy population and its environment depen-
dence include strangulation by assuming that a galaxy’s gas reservoir is completely and
instantaneously stripped when it is accreted onto a bigger host system (e.g. Kauffmann et al.,
1993; Baugh et al., 1996; Springel et al., 2001a). In combination with merging, strangulation
can reproduce most of the observed trends of star-formation activity and morphology with stellar
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mass and environment. Nevertheless, a detailed comparison shows that current implementations
predict too many faint galaxies in clusters, and, in particular, much too high a fraction of red
satellite galaxies (Weinmann et al., 2006a; Baldry et al., 2006; Kimm et al., 2009). This has
become known as the over-quenching problem. Extending the time scale on which the gas reser-
voir is stripped to ∼ 2 Gyr reproduces the color distribution of satellite galaxies considerably
better (Wang et al., 2007b; Kang & van den Bosch, 2008; Font et al., 2008). Such delayed strip-
ping is also suggested by hydrodynamical simulations (McCarthy et al., 2008), which show that
up to ∼ 30% of the initial hot gas can remain bound to a satellite galaxy even 10 Gyr after it has
been accreted.
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Elliptical Galaxies

Elliptical galaxies are smooth, roundish stellar systems which contain little cold gas or dust. Until
the 1970s, they were thought to be relaxed, oblate systems, flattened by rotation and with close-to
isotropic velocity dispersions. The same was assumed for the bulges of disk galaxies. Nowadays
it is known that elliptical galaxies are far more complex systems than their outwardly bland and
symmetrical morphologies seem to suggest. Based on their kinematics and photometry, ellipticals
can be roughly divided into three different classes. The bright end (MB ∼< −20.5) is dominated
by systems with little rotation, typically boxy isophotes, and relatively shallow central surface
brightness profiles. Ellipticals of intermediate luminosity (−20.5 ∼< MB ∼< −18), on the other
hand, seem to be supported by rotation, have disky isophotes and steep central surface brightness
cusps. At the faint end (MB ∼>−18), the majority of dwarf ellipticals (dEs) and dwarf spheroidals
(dSphs) reveal no or very little rotation, and have roughly exponential surface brightness
profiles.

Despite these clear differences, elliptical galaxies as a class conform to a number of tight, well-
defined scaling relations. As we have seen in §2.3.2, they occupy a two-dimensional plane (the
fundamental plane) in three-dimensional parameter space of size, velocity dispersion and surface
brightness. In addition, the colors and metallicities of elliptical galaxies are tightly correlated
with their luminosities, in that more luminous galaxies are both redder and more metal rich. All
in all, elliptical galaxies therefore form a remarkably homogeneous class that is clearly distinct
from the disk population described in Chapter 11. We do stress, however, that S0 galaxies seem
to represent a transition class, linking the early-type spirals to the disky ellipticals, in a smooth
sequence of decreasing disk-to-bulge (or disk-to-spheroid) ratio.

In this chapter we use the various ingredients discussed in the previous chapters to investi-
gate possible formation scenarios for elliptical galaxies. We start in §13.1 with a description of
models that can be used to describe their photometric and kinematic structure. In §13.2 we dis-
cuss two constrasting scenarios for the formation of elliptical galaxies, which we compare to
various observational tests and constraints in §13.3. The fundamental plane, together with its
physical interpretation, is the topic of §13.4. The stellar populations and chemical evolution of
elliptical galaxies are discussed in §13.5. Throughout this chapter we use the term ‘elliptical
galaxies’ to refer mainly to relatively bright early-type galaxies with MB ∼< −18. The dEs and
dSphs, which make up the faint members of the early-type family, will be discussed separately
in §13.6.

13.1 Structure and Dynamics

Elliptical galaxies are prime examples of collisionless systems (of stars). Consequently, their
structure and dynamics are completely determined by the phase-space distribution function. After
a description of how the (projected) observables are related to the intrinsic quantities, we give a
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brief overview of the observed structure and kinematics of elliptical galaxies. Subsequently, we
describe two techniques to model the dynamics of elliptical galaxies, give an overview of the
evidence for the presence of dark halos and supermassive black holes in elliptical galaxies, and
discuss the internal shape of elliptical galaxies and its relation to the dynamical structure.

13.1.1 Observables

The observables of a galaxy, such as the surface brightness, rotation velocity and velocity
dispersion at a position (x,y) on the sky are line-of-sight projections of the corresponding three-
dimensional quantities. Let ρ(x) and ν(x) be the three-dimensional distributions of stellar mass
and light, respectively, which are related via the stellar mass-to-light ratio ϒ(x). In what follows
we will ignore any spatial variations in the stellar populations (see §13.5) and simply assume a
constant stellar mass-to-light ratio, ϒ(x) = ϒ. The surface brightness at a position (x,y) on the
sky is then given by

I(x,y) =
Σ(x,y)
ϒ

=
1
ϒ

∫
ρ(x)dz, (13.1)

where Σ(x,y) is the projected surface mass density, and z is the distance along the line-of-sight.
Similarly, the normalized line-of-sight velocity distribution (LOSVD) is given by

L (x,y,vz) =
1

Σ(x,y)

∫ ∫ ∫
f (x,v)dvx dvy dz, (13.2)

with f (x,v) the phase-space distribution function. Observationally, the LOSVDs can be obtained
from spectroscopy, by analyzing the profiles of absorption lines that arise in the atmospheres of
stars along the line-of-sight.

In general, the LOSVDs are not perfectly Gaussian, and it has become customary to
parameterize the LOSVD with a Gauss–Hermite series

L (v) =
α(w)
σ

[
1+

N

∑
j=3

h jHj(w)

]
, (13.3)

where

α(w) ≡ 1√
2π

e−w2/2, w ≡ (v −V )/σ . (13.4)

Here v is the line-of-sight velocity, V and σ are the mean and dispersion of the best-fit Gaussian,
and Hj is the Hermite polynomial of degree j. The Gauss–Hermite moments h j ( j ≥ 3) measure
deviations of the LOSVD from the best-fit Gaussian, and are related to the jth velocity moments
of the LOSVD (see van der Marel & Franx, 1993). These in turn are related to the intrinsic
velocity moments according to〈

v j
los

〉
(x,y) =

1
I(x,y)

∫
ν(x)

〈
v j

z

〉
(x)dz. (13.5)

In general, the Gauss–Hermite moments h j ( j ≥ 3) are quite small (|h j| ∼< 0.1), indicating that
the LOSVDs do not depart dramatically from a Gaussian.

For a spherical system there is a unique relation between Σ(R)〈v j
los〉(R) and ρ(r)〈v j

z 〉(r), or,

equivalently, between I(R)〈v j
los〉(R) and ν(r)〈v j

z 〉(r), given by the Abel transformation:

Σ(R)〈v j
los〉(R) = 2

∫ ∞

R
ρ(r)〈v j

z 〉(r)
r dr√

r2 −R2
, (13.6)

ρ(r)〈v j
z 〉(r) = − 1

π

∫ ∞

r

d
dR

[
Σ(R)〈v j

los〉(R)
] dR√

R2 − r2
. (13.7)
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This analytical deprojection is used mainly to obtain the three-dimensional luminosity density
ν(r) from the observed, two-dimensional surface brightness I(R), which corresponds to setting
j = 0. In practice, however, the observational data contains noise and a direct differentiation
of the data is generally too noisy to be useful. Therefore, one normally either fits I(R) with an
analytical fitting function and uses Eq. (13.7) to infer (a smooth version of) ν(r), or adopts a
functional form for ν(r) and uses Eq. (13.6) to constrain the free parameters by comparing I(R)
to the observed surface brightness profile.

In the case of an axisymmetric system, the deprojection of the observed surface brightness
distribution, I(x,y), to a three-dimensional luminosity density, ν(R,z), is indeterminate unless
the galaxy is seen edge-on (in which case, the Abel transformation can be used). In all other
cases, and for triaxial systems, no unique deprojection is possible. In practice this problem is
often circumvented by making ad hoc assumptions about the density distribution. However, one
can always redistribute the mass (or light) and still project to exactly the same surface density
(or brightness). In fact, any density distribution whose Fourier transform is only non-zero inside
a cone with half-opening angle θ and aligned with the symmetry axis of the Fourier transform
of the density distribution (the so-called ‘cone of ignorance’) projects to zero surface density
when seen under any inclination angle i < 90◦ − θ (Rybicki, 1987; Gerhard & Binney, 1996).
Such density distributions, sometimes called konus densities, have regions with both positive
and negative density, and basically describe how the matter can be redistributed without affect-
ing the projected mass distribution. As such, they quantify the degeneracy in the deprojection.
However, not all hope is lost: although the addition of a konus density to a mass model does
not affect the surface densities, it does affect the dynamical structure (also in projection) so that
the corresponding degeneracy can in principle be broken using kinematic data (Romanowsky &
Kochanek, 1997; van den Bosch, 1997).

13.1.2 Photometric Properties

As discussed in §2.3.2, the surface brightness of elliptical galaxies is typically specified by a
radial surface brightness profile, I(R), and by the radial dependency of the shapes of the isophotes
(ellipticity, position angle and diskiness). Bright ellipticals (MB ∼< −20.5) have relatively low
ellipticities (ε ∼< 0.3) and often reveal boxy isophotes. Ellipticals with −20.5 ∼< MB ∼< −18, on
the other hand, span a wider range in ellipticities (ε ∼< 0.7), and typically have disky isophotes.
This diskiness is often interpreted as due to an embedded stellar disk (Rix & White, 1990;
Scorza & Bender, 1995). Disky ellipticals, therefore, seem to form a continuous sequence in
the Hubble diagram from S0s to galaxies with smaller disk-to-bulge ratios (e.g. Kormendy &
Bender, 1996).

A significant fraction of the boxy ellipticals show isophote twisting, in that the position angle
of the isophote changes as a function of radius. This is impossible for an intrinsically axisym-
metric system, but occurs naturally if one projects a triaxial system with varying axis ratios (e.g.
Stark, 1977). This is one of several reasons why bright ellipticals are generally believed to be
triaxial. Disky ellipticals, on the other hand, only rarely reveal isophote twisting, consistent with
them being axisymmetric.

The dichotomy between disky and boxy ellipticals is reinforced by their nuclear properties:
high-resolution images from the Hubble Space Telescope have shown that the central regions
of disky ellipticals typically have steep cusps, while many boxy ellipticals have gently rising
inner luminosity profiles or central cores (Ferrarese et al., 1994; Lauer et al., 1995; Rest et al.,
2001). If the surface brightness profiles, I(R), are inverted to obtain the three-dimensional lumi-
nosity density profiles, ν(r), the distribution of the inner logarithmic slope of these profiles,
S ≡ dlnν/dlnr, appears bimodal, with most galaxies having S near −0.9 or −1.8. Furthermore,
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Fig. 13.1. Panel (a) shows luminosity density profiles of 86 elliptical galaxies obtained by deprojecting
their surface brightness profiles observed with the HST. Panel (b) shows the correlation between the inner
cusp slopes S ≡ dlnν/dlnr (measured at r = 0.1 arcsec) and the absolute magnitude of the galaxy, while the
distribution of cusp slopes, dN/dS, is shown in panel (c). Note that bright and faint ellipticals typically have
shallow and steep cusps, respectively. [Based on data published in Lauer et al. (2007) and kindly provided
by K. Gebhardt]

there is a correlation with luminosity, in the sense that brighter ellipticals tend to have shallower
cusps (see Fig. 13.1).

A number of recent studies have argued that the transition at MB ∼ −20.5 between disky
ellipticals with cusps and boxy ellipticals with cores is too smooth to be characterized as a true
dichotomy. Indeed, it is already apparent from Fig. 13.1 that there is no clear feature at MB ∼
−20.5. Côté et al. (2007) have argued that the bimodality in the distribution of cusp slopes S
in the lower-right panel of Fig. 13.1 could simply reflect sample selection effects. Using a more
complete sample of early-types in the Fornax and Virgo clusters, Ferrarese et al. (2006b) find
a smooth distribution of central cusp slopes with no sign of bimodality. The lack of a clear
dichotomy or bimodality is also supported by Pasquali et al. (2007), who have shown that the
fraction of early-type galaxies with disky isophotes is a smooth function of absolute magnitude,
given by

fdisky(MB) = (0.61±0.02)+(0.17±0.03) [MB −5logh+20] , (13.8)

with no sign of any specific ‘transition’ scale. Thus, although there is no doubt that bright and
faint ellipticals have different properties, whether or not there is any dichotomy or bimodality is
still under debate.

13.1.3 Kinematic Properties

The kinematics of elliptical galaxies have to be determined from absorption line spectroscopy,
requiring sensitive spectrographs and detectors. As a result, the first kinematic data for elliptical
galaxies became available only in the 1970s. Before this, it was generally believed that both ellip-
ticals and the bulges of disk galaxies are oblate systems with near-isotropic velocity dispersions
and are flattened by rotation. This belief was overturned when Bertola & Capaccioli (1975) and
Illingworth (1977) obtained kinematics for a number of elliptical galaxies and showed that their
rotation velocities are much too small to explain their observed flattening, which must therefore
reflect anisotropic velocity dispersions rather than rotation. As more and more data became avail-
able, it became clear that the dichotomy present in the photometric properties of ellipticals is also
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Fig. 13.2. Major axis kinematics of M 87 (left) and NGC 4342 (right). [Based on data published in van der
Marel (1994) and van den Bosch et al. (1998)]

reflected in their kinematics (Davies et al., 1983). While bright, boxy ellipticals are slow rota-
tors, supported by anisotropic velocity dispersions, the fainter, disky ellipticals typically have
much higher rotation velocities, often consistent with them being purely rotationally flattened
(see Fig. 2.16 and §13.1.7 below). As first discussed by Binney (1976), it is then more natural
to assume that bright ellipticals, as a class, are triaxial, rather than axisymmetric. At the faint
end (MB ∼> −18), spatially resolved kinematics have revealed an intriguing diversity among the
population of dEs and dSphs: while the majority have no detectable rotation, roughly 20% have
kinematics consistent with rotation producing their flattening (e.g. Bender et al., 1991; De Rijcke
et al., 2001; Geha et al., 2002).

Fig. 13.2 shows the major axis kinematics of two typical examples: M87, one of the bright-
est ellipticals in the Virgo cluster, and NGC 4342, a much fainter E/S0 galaxy (with disky
isophotes). M87 reveals absolutely no rotation, indicating that its modest flattening (ε ∼ 0.1)
must be due to anisotropy. NGC 4342, on the other hand, has a rotation curve fairly reminis-
cent of that of spiral galaxies, and its flattening is consistent with being due to the centrifugal
forces generated by rotation. Both galaxies have a velocity dispersion profile that is charac-
teristic of the kinematics of early-type galaxies: it shows a pronounced peak at the center,
and becomes flat at larger radii. Finally, the Gauss–Hermite moments h3 and h4 are close to
zero, indicating that the LOSVDs are close to Gaussian. Often, though, galaxies with substan-
tial rotation tend to have significantly skewed LOSVDs, in the sense that h3 has the opposite
sign to the rotation velocity V . Such skewed profiles are most easily explained by a (thin) disk
component embedded in a spheroid with little or no rotation (e.g. Cinzano & van der Marel,
1994; van den Bosch & de Zeeuw, 1996), and therefore provides further support for the idea
that disky ellipticals are two-component systems similar to S0s, but with a larger bulge-to-disk
ratio.
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For an oblate rotator, the kinematic axis, defined as the axis along which the observed rotation
velocity is zero, is aligned with the minor axis of the photometry. A number of elliptical galaxies,
however, are observed to have rotation along both the major and the minor axes (e.g. Franx
et al., 1991), so that their kinematic and photometric axes do not coincide. The magnitude of this
misalignment is typically characterized by the kinematic misalignment angle

Ψ= |θkin −θphot|, (13.9)

with θkin and θphot the position angles of the projected kinematic axis and the photometric
minor axis, respectively. When integral field spectroscopy is available, the kinematic axis can
be determined directly from the two-dimensional velocity field, V (x,y). Alternatively, if the only
kinematic data that is available is long-slit spectroscopy along the major and minor axes, it is
customary to estimate the kinematic misalignment angle using Ψ= tan−1(vmin/vmaj), with vmin

and vmaj the maximum rotation velocities along the minor and major axes, respectively (Franx
et al., 1989a). In general, kinematic misalignment is another signature of triaxiality, and can be
caused by two effects. First, for nearly all viewing angles the projected surface brightness of a
triaxial galaxy has an apparent minor axis that is misaligned from its projected short axis. If the
mean streaming is around the intrinsic short axis, an observer will generally measure rotation
along both projected axes. Secondly, the total angular momentum of a triaxial galaxy can be
intrinsically misaligned, and lie anywhere in the plane containing the long and short axes (e.g.
Levison, 1987). This reflects the fact that triaxial potentials support orbits with a net sense of
rotation both around the short axis and around the long axis (Statler, 1987). Kinematic misalign-
ments are more common among the bright, velocity-dispersion supported ellipticals, consistent
with their general shapes being triaxial. Rapidly rotating ellipticals, on the other hand, rarely
reveal kinematic misalignment, consistent with them being axisymmetric.

Finally, the velocity fields of ∼ 25% of all ellipticals have a kinematically decoupled core
(KDC) whose angular momentum vector is misaligned with respect to that of the bulk of the
galaxy. In extreme cases, the core can even be counter-rotating with respect to the outer regions.
KDCs are usually attributed to dynamically distinct subsystems that are the remnants of accreted
companions. However, kinematic twists can also result from the projection of the major families
of circulating orbits in a triaxial potential, without the core being a separate dynamical subsystem
(Statler, 1991). The photometry and velocity dispersion profiles of ellipticals with KDCs do
not appear particularly unusual, and most data suggest a smooth variation of stellar population
properties between the KDC and their direct surroundings (Forbes et al., 1995; Carollo et al.,
1997). Thus, it remains unclear whether KDCs originate from accreted material or merely reflect
projection effects in a triaxial system.

13.1.4 Dynamical Modeling

Modeling the dynamics of elliptical galaxies has two main goals. First of all, comparing models
to kinematic data helps to constrain the mass-to-light ratio, which holds information regarding
both stellar populations and the presence of dark matter or supermassive black holes. Secondly,
the models can be used to constrain the orbital structure, or equivalently, the phase-space dis-
tribution function, in the hope that this can be used to discriminate between different formation
scenarios. In §11.1 we have seen that, for disk galaxies, it is relatively straightforward to deter-
mine the mass profile from the observed rotation curves, and thus to infer the presence of dark
matter halos. This reflects the relatively simple dynamics of an almost two-dimensional, rotation-
ally supported configuration. In elliptical galaxies, however, the situation is more complicated.
In the first place, observations only provide the stellar distribution in one of the three velocity
coordinates and two of the three position coordinates. As we saw in §13.1.1, this can lead to
degeneracy. Secondly, ellipsoidal structures support a much richer variety of orbits than thin,
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rotationally supported disks. In what follows we briefly describe two commonly used modeling
techniques. A more general description of collisionless dynamics can be found in §5.4.

(a) Jeans Models One way to constrain the mass distribution from the observed kinematics
is to solve the Jeans equations relating the gravitational potential to various intrinsic velocity
moments, which are in turn related to the observed velocity moments via Eq. (13.5). As dis-
cussed in §5.4.3, however, the Jeans equations do not in general form a closed set, and certain
assumptions have to be made in order to proceed.

As an example, consider a spherical system for which one has observed the surface brightness
profile, I(R), and the projected velocity dispersion profile, σp(R), with R the projected radius.
The only non-trivial Jeans equation for a spherical system is

1
ρ

d(ρ〈v2
r 〉)

dr
+2β

〈v2
r 〉
r

= −dΦ
dr

, (13.10)

where β (r) is the anisotropy parameter , defined by

β (r) ≡ 1−〈v2
ϑ 〉/〈v2

r 〉. (13.11)

Since dΦ/dr = GMtot(r)/r2, where Mtot(r) is the total enclosed mass within a radius r, we can
rewrite the Jeans equation as

Mtot(r) = −〈v2
r 〉r
G

[
dlnρ
dlnr

+
dln〈v2

r 〉
dlnr

+2β
]
. (13.12)

Thus, the mass profile depends both on 〈v2
r 〉(r) and on the anisotropy profile β (r). Since the

line-of-sight velocity is given by vlos = vr cosα− vϑ sinα , with cosα = R/r, we have that

σ2
p (R) =

2
I(R)

∫ ∞

R

(
1−β R2

r2

)
ν 〈v2

r 〉r dr√
r2 −R2

. (13.13)

The observable σ2
p (R) thus depends on both 〈v2

r 〉(r) and β (r), and there is no unique solution
for Mtot(r). In the absence of additional information, this lack of uniqueness, often referred to
as the mass-anisotropy degeneracy, prevents a determination of the mass-to-light ratio profile,
even for spherical galaxies. Since systems with the same mass profile but a different velocity
anisotropy have different orbital structures, one can in principle break this degeneracy, at least
partially, by including higher-order velocity moments (see e.g. van der Marel & Franx, 1993).
However, one then needs to consider higher-order Jeans equations in order to interpret these
higher-order velocity moments of the LOSVD. As discussed in §5.4.3, such higher-order Jeans
equations involve new unknowns, so that one still has to make ad hoc assumptions in order to
close the set of equations.

In axisymmetric systems the situation is similar. One can only solve the Jeans equations
under certain idealized assumptions. For axisymmetric systems one typically assumes that
f = f (E,Lz), which is equivalent to assuming that the system is isotropic in the meridional plane,
i.e. σR = σz. Although this allows for a solution of the Jeans equations (e.g. Hunter, 1977a; Bin-
ney et al., 1990), there is no reason to believe that f = f (E,Lz) should hold for real systems.
Furthermore, even if a particular Jeans model is found to match the data perfectly, it is rarely
unique and it may be unphysical, i.e. its distribution function may not obey f ≥ 0 everywhere.

(b) Schwarzschild Orbit-Superposition Models One can improve upon the Jeans modeling
described above by using the Schwarzschild orbit-superposition technique. This leads to com-
pletely numerical, three-integral models that are fully general, and, by construction, always obey
f ≥ 0. The method is computationally expensive, however, and has only been viable for accurate
modeling of high-quality data since the late 1990s.
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The method, first introduced by Schwarzschild (1979), works as follows. One starts by
assuming a stellar mass-to-light ratio, ϒ(x), which is used to transform the deprojected light dis-
tribution, ν(x), into a stellar mass distribution, ρ(x). Next integrate the Poisson equation to find
the corresponding potential, Φ(x), and add the contribution, Φext(x), due to additional compo-
nents such as a dark halo or a supermassive black hole. Then calculate a large number of orbits
by numerical integration of the equations of motion, and compute each orbit’s contribution to
each of the observational constraints. For example, suppose that one has measured the surface
brightness and LOSVDs on a grid (i, j) of pixels on the sky. Then, the contribution of orbit k to
the surface density at (i, j) is proportional to the time the projected orbit appears in pixel (i, j),
while its contribution to the LOSVD is simply its distribution of line-of-sight velocities during
those periods. What remains to be done is to find the linear combination of orbit weights, wk,
that best matches the set of observations. If no acceptable fit can be obtained then the assumed
ϒ(x) and/or Φext(x) can be excluded. Thus, this modeling technique can be used to constrain the
mass profiles, and to test for the presence of dark halos and/or supermassive black holes.

The integrals of motion do not appear explicitly in this scheme, but the resulting orbital
weights effectively describe the distribution of tracers as a function of them. Since each (reg-
ular) orbit is uniquely characterized by three independent, isolating integrals of motion (see
§5.4.6), Schwarzschild’s method provides a numerical representation of the distribution func-
tion which depends implicitly on these three integrals. For further details about this technique
see, for example, Cretton et al. (1999) and references therein.

Schwarzschild (1979) originally used this orbit-superposition scheme to prove the existence
of triaxial equilibrium models that resemble real ellipticals. Richstone (1980) used the method to
show that many different orbit combinations can reproduce the same mass model. More recently,
the method has mainly been used to investigate the existence of massive black holes at the centers
of elliptical galaxies, and of dark halos surrounding them (e.g. Rix et al., 1997; Cretton & van
den Bosch, 1999; Gebhardt et al., 2003), as well as to constrain the orbit structure of ellipticals by
comparison with kinematic data including higher-order LOSVD moments (e.g. Cappellari et al.,
2007).

13.1.5 Evidence for Dark Halos

As discussed in Chapter 11, the HI rotation curves of spiral galaxies provide strong evidence
that they are embedded in extended dark halos. According to the standard paradigm for galaxy
formation described in this book, elliptical galaxies should reside in similar dark halos. However,
finding direct, dynamical evidence for dark halos around elliptical galaxies has proven difficult
because of the lack of suitable and easily interpretable tracers at large radii. In addition, modeling
the stellar dynamics of ellipticals is far more complicated than for the cold HI disks of spirals
because one must solve simultaneously for the potential and for the orbit populations, given
the observed kinematics. Here we describe a few techniques that have been used to probe the
gravitational potentials of elliptical galaxies at large radii.

One possibility is to use the stellar kinematics, obtained from absorption line spectroscopy
of the integrated stellar light. However, since the surface brightness of elliptical galaxies drops
rapidly with radius, it is difficult to obtain reliable measurements much beyond one effective
radius. To date, stellar kinematics have been measured out to ∼ 2Re for only about a dozen
cases. These typically show that the line-of-sight velocity dispersion profile is roughly constant
beyond ∼ 1Re. Although consistent with a mass-to-light ratio profile that increases outward, as
expected if the system is embedded in a dark halo, a constant σp(R) can also signal a velocity
distribution that becomes more tangentially anisotropic with increasing radius. As mentioned in
§13.1.4 above, this mass-anisotropy degeneracy can be broken using measurements of the shapes
of the velocity profiles beyond the second moments (i.e. via the Gauss–Hermite moments).
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Comparing such data with dynamical models has indicated that, in general, the mass-to-light
ratios increase with radius, consistent with the presence of dark halos, although there are also
cases where the data is consistent with a constant M/L all the way out to 2Re (e.g. Rix et al.,
1997; Kronawitter et al., 2000). The inferred mass-to-light ratios in the central regions are higher
than the stellar mass-to-light ratios inferred from stellar population models, and indicate that, on
average, ∼ 30 percent of the total mass within one Re is dark matter (e.g. Gerhard et al., 2001;
Cappellari et al., 2006).

An alternative way to probe the mass distribution at larger radii is to use discrete dynam-
ical tracers, such as globular clusters, planetary nebulae or satellite galaxies. Although this
has the advantage that the tracers can be observed out to large galactocentric radii, dynamical
modeling of the observed radial velocities of a discrete tracer population is beset by the same
mass-anisotropy degeneracy that plagues the interpretation of the integrated light measurements.
Since the available number of tracers is relatively small, it is difficult to obtain accurate measure-
ments of the higher-order moments of the LOSVD and so to constrain the velocity anisotropy.
As a result, these studies have often produced ambiguous results (e.g. Ciardullo et al., 1993;
Romanowsky et al., 2003; Dekel et al., 2005).

In addition to dynamical modeling, there are two other techniques that have been used to
probe the potentials of elliptical galaxies at large radii: X-ray mapping and gravitational lens-
ing. As discussed in §2.3.2, bright ellipticals are often surrounded by extended X-ray emitting
coronae of hot gas. As we have seen in §8.2.1, under the assumption that the X-ray emitting
gas is in hydrostatic equilibrium, the total gravitational mass enclosed within a radius r is given
by Eq. (8.16). A comparison with Eq. (13.12) shows that this hydrostatic equation is similar to
the stellar dynamical equivalent, but with the stellar velocity dispersion 〈v2

r 〉 replaced by the gas
temperature T and with β (r) = 0. For a few bright ellipticals, both the temperature, T (r), and
the density, ρ(r), of the gas can be determined from X-ray measurements, and Eq. (8.16) can
be solved for the total mass profile M(r). In all cases the mass-to-light ratios thus derived reach
values of ∼ 100M�/L� on scales of ∼ 100kpc, providing strong evidence for the presence of
dark halos (e.g. Forman et al., 1985; Mushotzky et al., 1994). Obviously, this method does not
suffer from the mass-anisotropy degeneracy that hampers mass determinations based on kine-
matics, but as discussed in §8.2, there are other problems due to the fact that the pressure can
have significant and poorly known non-thermal contributions due to turbulence, magnetic fields
and relativistic particles (cosmic rays).

Another powerful method to probe the total gravitational mass of elliptical galaxies, indepen-
dent of their kinematic structure, is provided by gravitational lensing (see §6.6). In particular,
multiple image configurations yield information regarding the mass distribution of the lens, first
and foremost a precise and robust measurement of the mass projected within the Einstein radius
(see §6.6.2). Except for the central galaxies of rich clusters, the latter is usually smaller than the
photometric effective radius of the galaxy (Bolton et al., 2008). Although only a small fraction
of all ellipticals are lenses, this technique provides clear evidence that the mass distributions of
elliptical galaxies are more extended than their stellar components, either from the analysis of
individual systems or by considering statistical ensembles (e.g. Maoz & Rix, 1993; Kochanek,
1995; Rusin & Ma, 2001). Furthermore, when lensing data is combined with stellar kinematics,
the mass-anisotropy degeneracy can be broken. This has been used to put constraints on the actual
density distribution of the dark matter halos surrounding ellipticals (e.g. Treu & Koopmans,
2004).

13.1.6 Evidence for Supermassive Black Holes

Considerable evidence suggests that the energetic processes in active galaxies and quasars are
due to the accretion of matter onto supermassive black holes (SMBHs) with masses in the range
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106 M� ∼< MBH ∼< 109 M� (see Chapter 14). Since quasars were far more numerous at z ∼ 2 than
at the present, many normal (quiescent) galaxies should harbor such a dead quasar engine in
their nucleus. Consequently, there has been a large effort to search for SMBHs in the centers
of (nearby) galaxies through kinematic studies. In particular, one tries to find evidence for an
increase in the mass-to-light ratio towards the center to values that cannot be explained by nor-
mal stellar populations. Although this may indicate the presence of a SMBH, it may also be due
to the presence of a dense cluster of non-luminous objects, such as brown dwarfs or stellar rem-
nants (white dwarfs or neutron stars). If the inferred mass-to-light ratio is sufficiently high, and
restricted to a sufficiently small region, these alternatives can be ruled out by the fact that these
dense clusters would have lifetimes that are significantly shorter than the age of the galaxy (e.g.
Maoz, 1998). Currently, the only case in which we can convincingly rule out all alternatives in
favor of a SMBH is the Milky Way (see §14.2.8). Relying on Occam’s razor, it is then reasonable
to assume that all central supermassive dark objects are SMBHs.

A massive black hole (BH) at the center of a galaxy only significantly influences the dynamics
inside a radius of influence,

rBH =
GMBH

σ2 = 10.8pc

(
MBH

108 M�

)( σ
200kms−1

)−2
, (13.14)

where σ is the characteristic velocity dispersion of the stars near the center of the galaxy. Clearly,
finding evidence for SMBHs requires kinematic observations with high spatial resolution, which
is why spectroscopy with the HST has played a major role in this field.

As already mentioned in §13.1.3, many elliptical galaxies have velocity dispersion profiles
that rise steeply towards the center. Fitting simple isotropic models to these data often indicates
a central rise of the mass-to-light ratio, in agreement with the presence of a SMBH. However,
this interpretation is ambiguous because of the same mass-anisotropy degeneracy that plagues
the search for massive halos. In particular, a central rise in σp(R) can occur in a system without
a SMBH if the central region becomes radially anisotropic (e.g. Binney & Mamon, 1982). As in
the case of dark halos, this ambiguity can be largely removed by measuring the entire LOSVD
(or at least some higher-order moments, such as the Gauss–Hermite moments h3 and h4). Such
data, combined with sophisticated orbit superposition models, have provided strong (though not
conclusive) evidence for SMBHs in a few dozen cases of nearby elliptical galaxies. Two exam-
ples are M87 and NGC 4342, whose kinematics are shown in Fig. 13.2. The inferred SMBH
masses for these two cases are ∼ 3× 109 M� and ∼ 3× 108 M�, respectively (van der Marel,
1994; Cretton & van den Bosch, 1999).

In addition to stellar kinematics, in some cases the presence of a SMBH is inferred from
the kinematics of small disks of ionized gas (e.g. Harms et al., 1994; van der Marel & van
den Bosch, 1998). Although the rotational velocities of gas disks in principle yield fairly direct
measures of the enclosed mass, gas is very responsive to non-gravitational forces, so that the
inferred kinematics have to be interpreted with care.

Over the last decade stellar- and gas-dynamical studies have indicated the presence of a SMBH
in an ever-increasing number of galaxies (see also §14.2.8), and it is now generally accepted that
every relatively massive spheroid, whether an elliptical or a bulge, contains a SMBH at its center
(see Kormendy & Richstone, 1995; Ferrarese & Ford, 2005, for comprehensive reviews). This
has permitted an examination of the correlation between BH mass and the properties of the host
galaxy. It was soon realized that MBH is well correlated with the luminosity of the spheroid. An
even tighter correlation exists between the BH mass and the velocity dispersion of the spheroid
(typically measured inside an aperture with radius proportional to Re), which is given by

MBH = (1.3±0.2)×108 M�
( σe

200kms−1

)γ
(13.15)
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(see Fig. 2.17). The value of γ ranges from 3.75 (Gebhardt et al., 2000) to 4.8 (Ferrarese &
Merritt, 2000) depending on the sample used and on the exact definition of σe (see discussion in
Tremaine et al., 2002). The intrinsic dispersion in Eq. (13.15) is no larger than 0.3 dex. Equally
tight relations have been obtained between the BH mass and the stellar mass of the spheroid
(Häring & Rix, 2004) and between the BH mass and the Sérsic index of the light distribution of
the spheroid (Graham et al., 2001). These BH demographics strongly suggest that the formation
of the SMBH is tightly entwined with that of (the spheroidal component of) its host galaxy.

13.1.7 Shapes

(a) Rotational Support versus Anisotropy The tensor virial theorem (§5.4.4) applied to a
steady-state stellar system is

2Ti j +Πi j +Wi j = 0, (13.16)

where
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1
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Wi j = −
∫
ρ xi

∂Φ
∂x j

d3x. (13.19)

For simplicity, let us consider an axisymmetric system that rotates about its symmetry axis (the z
axis) and is seen edge-on (with the x axis being the line-of-sight). For such a system, Wxx = Wyy

and Wi j = 0 for i �= j, and similar relations also hold for Ti j and Πi j. Eq. (13.16) then reduces to

2Txx +Πxx +Wxx = 0; 2Tzz +Πzz +Wzz = 0. (13.20)

If the only streaming motion is rotation about the z axis, then Tzz = 0 and

2Txx =
1
2

∫
ρ
〈
vφ
〉2

d3x =
1
2

Mv2
0 , (13.21)

where
〈
vφ
〉2 = 〈vx〉2 +

〈
vy
〉2

, M is the mass of the system, and v0 is the mass-weighted rotation
velocity. Similarly, we can write

Πxx = Mσ2
0 ; Πzz = (1−δ )Mσ2

0 , (13.22)

where σ2
0 ≡ (1/M)

∫
ρ σ2

xxd3x is the mass-weighted velocity dispersion along the line-of-sight,
and δ ≡ 1−Πzz/Πxx < 1 is a measure of the anisotropy in the velocity dispersion. It then follows,
from the ratio between the two expressions in Eq. (13.20), that

Wxx

Wzz
=

1
1−δ

(
1+

1
2

v2
0

σ2
0

)
. (13.23)

As shown by Roberts (1962), for systems stratified on similar coaxial oblate ellipsoids, Wxx/Wzz

depends only on the ellipticity ε . In particular, for an oblate system

Wxx

Wzz
=

1
2

[
arcsine− e

√
1− e2

e
√

1− e2 − (1− e2)arcsine

]
, (13.24)

with e =
√

1− (1− ε)2. It is then obvious from Eq. (13.23) that a stellar system can be flattened
(i.e. ε > 0) either by rotation (i.e. v2

0 > 0) or by anisotropic velocity dispersion (i.e. δ > 0).



13.1 Structure and Dynamics 585

0.20
0

0.5

1

0.4 0.6
ellipticity

δ = 0
0.1

0.2
0.3

0.4

0.5

πv
0/

4σ
0  

 v m
/σ

Fig. 13.3. The anisotropy diagram, showing the relation between the kinematic parameter vm/σ � πv0/4σ0
and the ellipticity ε . The solid lines indicate the relation obtained from the tensor virial theorem for sys-
tems stratified on similar coaxial oblate ellipsoids. Results are shown for different values of the anisotropy
parameter δ , as indicated. The dashed lines show how systems with edge-on quantities specified by the
solid dots move through the anisotropy diagram if their inclination angles decrease towards face-on. [After
Binney & Tremaine (1987)]

If we are able to measure ε , v0 and σ0 from observations, Eqs. (13.23) and (13.24) enable us to
determine the anisotropy parameter δ . Long-slit spectroscopy typically yields Vrot(R) and σ(R)
measured along the projected major axis of the elliptical. It is customary to identify σ0 with σ ,
the mean velocity dispersion interior to half the effective radius, and v0 with 4vm/π , with vm

the maximum rotation velocity. Although neither of these identifications has a rigorous basis,
detailed dynamical models show that they are sufficiently accurate for most practical purposes
(Binney, 2005).1 Fig. 13.3 shows the relation between ε and πv0/4σ0 � vm/σ for different values
of the anisotropy parameter δ , obtained using Eqs. (13.23) and (13.24). For an oblate system with
isotropic velocity dispersion (δ = 0), this relation is approximated by

vm

σ
≈
√

ε
1− ε , (13.25)

to good accuracy.
An important complication arises from the fact that the relation between ε and vm/σ derived

above is only (approximately) valid for systems observed close to edge-on. In general, a galaxy is
observed under an inclination angle i, so that the observed values of ε and vm/σ differ from those
appearing in the above equations. It is easy to show that the values observed under an inclination
angle i are related to those observed edge-on (i = 90◦) according to

εi = 1−
√

(1− εi=90◦)2 sin2 i+ cos2 i, (13.26)

and (vm

σ

)
i
=
(vm

σ

)
i=90◦

sin i√
1−δ cos2 i

. (13.27)

1 With integral-field spectroscopy one can in principle do better, and measure kinematic quantities that are more directly
related to v0 and σ0 (e.g. Cappellari et al., 2007).
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The dashed lines in Fig. 13.3 show how galaxies with edge-on quantities specified by the solid
dots move through the anisotropy diagram if their inclination angles decrease towards face-on.
This illustrates that these inclination effects can be very substantial and need to be corrected for
with the use of the inverse of Eqs. (13.26) and (13.27). Unfortunately, in general the inclination
angle under which an elliptical galaxy is observed is unknown, and so no reliable correction can
be applied. A common practice is to ignore the inclination and to simply assume that the galaxy
has been observed edge-on. As is apparent from Fig. 13.3, this results in an underestimate of
the inferred anisotropy parameter δ , which should be kept in mind when interpreting anisotropy
diagrams such as that shown in Fig. 2.16.

Kinematic studies of several dozen ellipticals and S0 galaxies have shown that the majority
of bright ellipticals (MB ∼< −20.5) are slow rotators, with vm/σ <

√
ε/(1− ε). They typically

have only modest ellipticities (ε ∼< 0.3), and their velocity dispersion has anisotropy that spans
the range 0 < δ ∼< 0.3. On the other hand, fainter ellipticals typically have much higher values
of vm/σ . Early studies indicated that their rotation velocities are consistent with being isotropic,
oblate rotators. However, more recent studies based on integral field spectroscopy have shown
that the majority of the fast-rotating, low luminosity ellipticals have velocity anisotropy, δ , that
deviates strongly from zero, reaching values as high as 0.5 (Emsellem et al., 2007; Cappellari
et al., 2007).

(b) Intrinsic Shapes The above analysis of the flattening of ellipticals is based on the observed,
projected flattening. More stringent constraints on the formation of elliptical galaxies come from
their intrinsic three-dimensional shapes.

As discussed in §13.1.1, in general the deprojection of an observed surface brightness distribu-
tion to the three-dimensional luminosity density is not unique. It is often assumed that the mass
and luminosity density are stratified on concentric ellipsoids with semimajor axes a ≥ b ≥ c.
When the axis ratios β ≡ b/a and γ = c/a are constant for a given galaxy (0 ≤ γ ≤ β ≤ 1), the
projected surface brightness is stratified on ellipses of constant projected axis ratio, q, and there is
no isophote twist. In this case, q is a function of four variables; the intrinsic axis ratios β and γ as
well as two viewing angles, ϑ and ϕ . Clearly, even in this idealized case of concentric ellipsoids
with constant axis ratios one cannot determine a unique probability distribution ψ(β ,γ) from the
observed probability distribution φ(q).

The situation simplifies if all ellipticals are either pure oblate (β = 1) or pure prolate (β = γ).
In both cases, there are only two unknowns per galaxy, namely γ and the inclination angle i
(where i = 0◦ corresponds to face-on and end-on projections for oblate and prolate systems,
respectively). Under the realistic assumption of randomly distributed orientations, the probability
distribution of inclination angles is simply given by p(i)di = sin idi, and the probability density
of intrinsic flattening, ψ(γ), can be uniquely inferred from the observed φ(q), and vice versa.
The relation between γ , q, and i is given by

γ2 sin2 i+ cos2 i =
{

q2 (oblate)
q−2 (prolate).

(13.28)

Using that

φ(q) =
∫ 1

0
p(q|γ)ψ(γ)dγ, (13.29)

where

p(q|γ)dq = p(i[q]|γ) |dq/di|−1dq, (13.30)



13.2 The Formation of Elliptical Galaxies 587

and the fact that the orientations are distributed randomly, the relation (13.28) between γ , q, and i
yields

φ(q) =

⎧⎪⎨⎪⎩
q
∫ q

0
ψ(γ)dγ√

(1−γ2)(q2−γ2)
(oblate)

q−2 ∫ q
0

ψ(γ)γ2dγ√
(1−γ2)(q2−γ2)

(prolate).
(13.31)

As shown by Fall & Frenk (1983), the inversion of these integral equations can be performed
analytically, resulting in

ψ(γ) =
2
π
√

1− γ2

⎧⎪⎨⎪⎩
1
γ
∫ γ

0
dφ
dq

qdq√
γ2−q2

(oblate)

1
γ3

∫ γ
0

d(q3φ)
dq

qdq√
γ2−q2

(prolate).
(13.32)

Various studies have used this approach to infer ψ(γ) from the observed φ(q) of elliptical galax-
ies (e.g. Fasano & Vio, 1991; Lambas et al., 1992; Tremblay & Merritt, 1995). In all cases,
the inferred ψ(γ) are negative at the high-γ end, indicating that the observed distribution of
ellipticities is inconsistent with ellipticals as a class being either pure oblate or pure prolate.

Although the data are consistent with a mixed model, with partly oblate and partly prolate
models, a more likely alternative is that at least some fraction of the ellipticals is triaxial. As dis-
cussed in §13.1.2 and §13.1.3 this is supported by various photometric and kinematic properties.
Tremblay & Merritt (1996) presented evidence that elliptical galaxies have a bimodal distribu-
tion of shapes: while low-luminosity ellipticals are consistent with being oblate spheroids, bright
ellipticals are only consistent with a triaxial intrinsic shape that is rounder on average than low
luminosity ellipticals. A similar conclusion was reached by Franx et al. (1991) from their anal-
ysis of the distribution of kinematic misalignment angles. Although these results are supported
by various other observations, we caution that the data can still be reproduced by a wide variety
of intrinsic shape distributions. Furthermore, a proper interpretation of the data is complicated
by the fact that the ellipticities and kinematic alignment angles are often functions of radius (e.g.
Arnold et al., 1994; Emsellem et al., 2004) so that it is generally impossible to characterize the
full shape of a single elliptical galaxy with only one or two parameters.

13.2 The Formation of Elliptical Galaxies

The fact that the dynamical structure of elliptical galaxies is less ordered than that of disk galaxies
immediately suggests that their formation was more violent. Indeed, all theories for the formation
of elliptical galaxies assume that violent relaxation played an important role during some stage
of the formation process. This is in part a consequence of the discovery, already discussed in
§5.5, that violent relaxation either during collapse from cold and asymmetric initial conditions
or following a merger between objects of similar mass produces ellipsoidal systems with density
profiles similar to those of elliptical galaxies. Before the current structure formation paradigm
was established, there were two competing scenarios for the formation of elliptical galaxies:

(i) The monolithic collapse scenario: In this scenario elliptical galaxies form on a short
time scale through collapse and virialization from idealized ‘uncollapsed’ initial condi-
tions whose prior evolution is not considered. If the star-formation time scale is short
compared to the free-fall time scale the collapse is effectively dissipationless. If the two
time scales are comparable, then radiative energy losses are important and one speaks
of dissipational collapse. The main characteristic of this scenario is that the stars form
simultaneously with the assembly of the final galaxy.
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Fig. 13.4. A schematic illustration highlighting the differences between the traditional monolithic collapse
(upper panel) and merger (lower panel) scenarios for the formation of the elliptical galaxy population. Solid
curves show the mean star-formation history, while dashed curves show the mean rate of increase in the
baryonic mass of the largest progenitor. In the monolithic collapse scenario, stars are assumed to form in a
single short burst (typically more than 10 Gyr ago), and to assemble into the final galaxy during or shortly
after the burst. In the merger scenario, however, the stars are formed over an extended period of time in two
or more pre-existing galaxies, which only merge into the final elliptical at a (sometimes much) later time.

(ii) The merger scenario: In this scenario, an elliptical forms when two or more pre-existing
and fully formed galaxies merge together. The main differences with respect to the
monolithic collapse scenario is that formation of the stars occurs before, and effectivly
independently of, the assembly of the final galaxy.

Neither of these scenarios is a good representation of how ellipticals are expected to form in
the current ΛCDM structure formation paradigm, where mergers of dark matter halos occur
continually across a very wide mass range and galactic star formation continues at a significant
level from the epoch of re-ionization right down to the present day. In this paradigm both the
assembly of galaxies and the formation of stars within them must be considered as processes
rather than events. Nevertheless, for elliptical galaxies in particular, it is useful to distinguish the
formation history of the stellar population from the assembly history of this baryonic material
into a single object. Fig. 13.4 contrasts these in a schematic representation of the expectations
for an ensemble of ellipticals in the two toy scenarios discussed above. We now discuss each
of them individually before explaining why models for elliptical formation within the ΛCDM
hierarchical clustering paradigm need to include aspects of both.

13.2.1 The Monolithic Collapse Scenario

In the monolithic collapse scenario elliptical galaxies form in a single burst of intense star
formation at high redshift, which is coincident with their collapse to equilibrium and is fol-
lowed by passive evolution of their stellar populations to the present day (Partridge & Peebles,
1967; Larson, 1975). This scenario was inspired by the fact that elliptical galaxies appear to be
a remarkably homogeneous class of objects with uniformly old stellar populations. The mor-
phology and size of the final object depend critically on when star formation occurs relative
to collapse, and, in particular, on whether substantial radiative energy losses can increase the
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binding energy of the system before the stars form. In the dissipationless extreme, all the gas
associated with the object is turned into stars either prior to the collapse or during its early
stages. The collapse then effectively conserves energy and according to the spherical collapse
model, the final system has an average density that is ∼ 200 times that of the average density of
the universe at the time of collapse (see §5.4.4). Given the observed sizes and masses of elliptical
galaxies [see Eq. (13.38) below] this implies that they must all have formed at redshifts greater
than 20. This is quite incompatible with our current understanding of the star-formation history
of the Universe according to which only a very small fraction of all stars formed before z = 6
(see §2.6.8).

A second conflict between this dissipationless collapse scenario and our current understanding
of cosmic structure comes from the fact that violent relaxation does not differentiate between
stars and dark matter and so cannot separate them. This is incompatible with the observation
that the visible regions of ellipticals contain rather little dark matter, but are surrounded by dark
matter halos with masses at least 10 times the stellar mass of the galaxy and sizes which are well
over an order of magnitude greater (see §13.1.5). Clearly any collapse model should apply to the
total mass associated with the virialized system, but it then needs to explain why the stars occupy
a very small region at the center of the final object. The dissipationless collapse simulations of
van Albada (1982) (see §5.5.3), although able to produce convincing R1/4 profiles, are clearly
not a viable description for the formation of real ellipticals.

The situation is different if substantial dissipation can occur during collapse, requiring a star-
formation time scale which is comparable to or somewhat longer than the collapse time scale.
The gas can then segregate from the dark matter at the center of the potential well before turning
into stars, and the final galaxy can end up with a binding energy that is substantially greater
than, and a characteristic time scale which is much shorter than, those which characterized the
protogalaxy before it collapsed and which continue to characterize the dark halo of the final
system. During such an extended collapse, stars form at later times out of gas that was enriched
in metals by earlier generations. This can result in metallicity gradients similar to those seen in
many real ellipticals (e.g. Larson, 1974a).

Although clearly a more promising picture than dissipationless monolithic collapse, several
issues remain. As we show below in §13.3.2 the observed properties of ellipticals lead to inferred
collapse factors of their baryonic component which are comparable to those inferred for the
material collecting in galaxy disks (see §11.2). Why then does the gas end up in a rotationally
supported configuration in one case but not in the other? This would require ellipticals either to
form from protogalaxies with substantially lower initial angular momentum, or for their forma-
tion process to be much more efficient at transferring angular momentum from baryons to dark
matter. This is not implausible; the distribution of spin parameters of dark matter haloes is broad
(see §7.5.4) and galaxy formation simulations often reveal efficient angular momentum transfer
to the extent that it turns out to be much easier to make spheroid-dominated systems like ellip-
ticals than disk-dominated systems like late-type spirals (e.g. Katz & Gunn, 1991; Katz, 1992,
and the discussion in §11.2.6).

A more difficult problem for the monolithic collapse model comes from its principal assump-
tion that the final assembly of an elliptical galaxy occurs simultaneously with the formation of
the bulk of its stars over a relatively short time interval, perhaps a Gyr or two. The great major-
ity of normal elliptical galaxies appear to have old stellar populations with a mean age of 10
Gyr or more, implying that the formation events should have occurred at z ∼> 2 and that the
galaxies should have evolved passively thereafter. However, the total mass density in relatively
massive, passively evolving galaxies appears to be a factor of 3–4 lower at z ∼ 1 than it is today
(Bell et al., 2004; Brown et al., 2007; Faber et al., 2007; Taylor et al., 2009, see also §2.6.3).
Thus at least 70% of present-day ellipticals were either still forming stars at z = 1 or had not
yet been assembled. In either case this contradicts the simple monolithic collapse hypothesis.
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Additional evidence against purely passive evolution of ellipticals since high redshifts comes
from recent observations that show strong evolution in their sizes: passive galaxies at z ∼> 1.5
are much smaller than present-day ellipticals of the same stellar mass (e.g. Daddi et al., 2005;
Trujillo et al., 2006; van Dokkum et al., 2008; van der Wel et al., 2008).

Theoretical difficulties with the monolithic collapse scenario arise because its initial conditions
are not well motivated and are difficult to reconcile with the cold dark matter paradigm. Why was
there no significant star formation before the onset of collapse? Why did all star formation cease
immediately after collapse? How do we relate the formation of ellipticals to that of other galaxies
and other kinds of structure in order to understand why ellipticals are predominantly the most
massive galaxies and are preferentially found in clusters? Such questions can be addressed within
the hierarchical structure formation picture, where mergers appear a more natural explanation for
many of the systematic properties of ellipticals. Thus while monolithic collapse is the simplest
toy model for elliptical formation, it does not appear realistic and we therefore turn now to a
discussion of mergers.

13.2.2 The Merger Scenario

The merger hypothesis was introduced by Toomre (1977) as an alternative to the monolithic col-
lapse picture discussed above. In its extreme form, this hypothesis assumes that star formation
only occurs in galactic disks and that all ellipticals formed by mergers of disk galaxies. The
first assumption seems at least plausible, since star formation in the local Universe is restricted
almost entirely to the disks of spiral and irregular galaxies and to starbursts where the fuel came
from pre-existing disks (as in a merging system). Whether the second assumption is consistent
with observation is less obvious. There is no doubt that mergers do occur. The outstanding iss-
sues are: (i) whether mergers of observed galaxies (not necessarily z = 0 galaxies) can produce
remnants that resemble present-day ellipticals; and (ii) whether the merger rate as a function of
progenitor properties and environment, when integrated over redshift, can reproduce the z = 0
population, i.e. the observed abundance of elliptical galaxies as a function of stellar mass, age,
metallicity, size, velocity dispersion and environment. These two aspects of the problem have
typically been addressed separately. We discuss the first in this subsection and the second in the
next.

Early simulations of disk mergers considered stellar disks embedded in relatively low-mass
dark matter halos (Gerhard, 1981; Farouki & Shapiro, 1982; Negroponte & White, 1983; Barnes,
1988). In such mergers, the orbital angular momentum of the merging galaxies is largely con-
verted to internal spin (some is carried away by tidal tails), producing remnants that rotate too
fast to represent slowly rotating massive ellipticals. However, as pointed out by Barnes (1988), in
simulations where the disks are embedded in extended dark matter halos, the final remnants are
found to rotate more slowly, in qualitative agreement with observations of luminous ellipticals.
The reason for this is that dynamical friction is able to transfer the orbital angular momentum
of the two disks to the more weakly bound dark matter halo before the disks finally merge (see
§12.3). As a result, the material in the tightly bound region of the remnant rotates only slowly,
with a typical ratio between rotation speed and velocity dispersion of v0/σ0 ∼ 0.2. In addition,
the remnants display a variety of isophotal shapes (both disky and boxy), have luminosity pro-
files that are well fit by R1/4 laws over a large radial range, and in projection have ellipticities that
span a broad range with a peak near ε � 0.4 (e.g. Hernquist, 1992; Barnes, 1992). The high ellip-
ticities and low rotation speeds demonstrate that remnant shapes typically reflect an anisotropic
velocity dispersion rather than rotation.

Although some of these aspects agree well with the observed properties of bright ellip-
ticals, observationally bright ellipticals are always found to have relatively small elliptici-
ties ε ∼< 0.3, inconsistent with the simulations which suggest that the majority should have
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ε > 0.3. In addition, the simulations cannot account for ellipticals of intermediate luminos-
ity (−18 ∼> MB ∼> −20.5), which typically have values of v0/σ0 similar to those expected for
oblate, isotropic rotators. Finally, the remnants produced by mergers of purely stellar disks are
insufficiently centrally concentrated, with constant density cores that are much larger than those
observed in bright ellipticals.

One possible reason for the discrepancy is that simulations have tended to focus on equal mass
mergers. As shown by Naab & Burkert (2003), mergers between progenitors with mass ratios of
the order of 1:3 produce remnants that are significantly different from 1:1 mergers. In particular,
1:3 mergers result in ellipticals that are predominantly disky and have kinematics more simi-
lar to oblate rotators (see also Naab et al., 1999; Bendo & Barnes, 2000). Although this is in
good agreement with the observed properties of ellipticals of intermediate luminosity, it seems
unlikely that mass ratio is the main parameter underlying the dichotomy among ellipticals. This
would require more massive ellipticals to have similar mass progenitors more frequently than less
massive ellipticals, which seems a priori surprising (Khochfar & Burkert, 2003). A similar sug-
gestion from Weil & Hernquist (1996) is that the luminosity dependence of elliptical properties
could be explained by considering multiple mergers. It is quite likely that multiple mergers occur,
especially in (compact) groups of galaxies, but simulations of multiple mergers have produced
remnants with even more extended cores than in the single-merger case. This arises from the fact
that the phase-space densities of the progenitor disks (which were designed to mimic present-
day disks) were not as high as those in the central regions of many elliptical galaxies (see §13.3.3
below). The discrepancy could be alleviated by adding dense bulges or gas components to the
progenitors.

Hydrodynamical simulations have demonstrated that tidal perturbations during mergers cause
much of the gas to concentrate near the center of the remnant (see discussion in §12.4.3). Sim-
ulations that include prescriptions for star formation show that this gas may be transformed into
stars in bursts accompanying the first passage of the two galaxies and their final merger (Mihos
& Hernquist, 1996), giving rise to a more concentrated remnant which agrees better with the
structure of observed ellipticals. This process also has convincing observational support, since
strongly star-bursting galaxies (i.e. galaxies with a greatly elevated star-formation rate) almost
always have highly distorted morphologies suggestive of a recent merger (see §2.3.7). Since most
disk galaxies have non-negligible gas mass fractions, it seems natural that the progenitor disks
should have a gas component. In particular, since most ellipticals have old stellar populations,
any merger involving disks is likely to have happened at relatively high redshift, where such
galaxies are expected to have higher gas fractions than at the present time.

Using a large suite of simulations of mergers between equal-mass disk galaxies, both with
and without gas, Cox et al. (2006) showed that dissipational merger remnants differ substan-
tially from their dissipationless counterparts. In particular, gas dissipation and the associated
star formation result in remnants that are more compact, rounder, have higher central velocity
dispersions and rotation velocities, and are much closer to isotropic than without dissipation.
Consequently, as shown in Fig. 13.5, dissipationless and dissipational remnants occupy different
regions in the diagram of v0/σ0 vs. ellipticity: while dissipationless mergers only occupy the
region with low v0/σ0 and extend to high ellipticities, dissipational mergers span a much larger
range of rotation properties, including remnants that reside close to the oblate isotropic rotator
line of Eq. (13.25). As is evident from Fig. 13.5, dissipational mergers are a much better match to
the observational data (see also Burkert et al., 2008). In addition, such mergers also yield much
smaller kinematic misalignments than their dissipationless counterparts, in better agreement with
observation.

On the other hand, dissipational mergers have difficulty producing remnants that are slow
rotators and boxy, and so comparable to the majority of luminous ellipticals. In particular, the
presence of a dissipative component causes the production of a steep central cusp which is not
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Fig. 13.5. The anisotropy diagram of vm/σ vs. ellipticity for dissipationless (left-hand panel) and dissi-
pational (right-hand panel) merger remnants obtained from a large suite of hydrodynamical simulations
(gray scale). Overplotted, with different symbols, are data for observed ellipticals from Davies et al. (1983),
Bender (1988), Bender & Nieto (1990), and de Zeeuw et al. (2002). Note that the dissipational simula-
tions yield remnants in much better agreement with these data. The solid line in both plots corresponds to
Eq. (13.25), and indicates the expected relation for an oblate isotropic rotator. [Adapted from Cox et al.
(2006) by permission of AAS]

only inconsistent with the shallow cusps seen in massive ellipticals (see §13.1.2), but also desta-
bilizes the box orbits responsible for the boxiness of the isophotes (Gerhard & Binney, 1985;
Merritt & Fridman, 1996). It has therefore been suggested that massive ellipticals are the rem-
nants of ‘dissipationless’ (also called ‘dry’) mergers of elliptical progenitors. This is supported
by numerical simulations, which seem to indicate that the remnants of dry mergers between
elliptical progenitors of roughly equal mass are typically slow rotating, boxy ellipticals (e.g.
Khochfar & Burkert, 2005; Naab et al., 2006; Cox et al., 2006) that lie on the fundamental plane
(Nipoti et al., 2003; Boylan-Kolchin et al., 2006; Robertson et al., 2006b).2 If both progenitors
contain a supermassive black hole in their nuclei, a black hole binary may form in the central
region of the merger remnant. The orbital decay of such a binary can produce a core in the rem-
nant by pumping energy into the orbits of the tightly bound stars that made up the cusps of the
progenitors (e.g. Begelman et al., 1980; Ebisuzaki et al., 1991). As a rule of thumb, the total
ejected mass of stars is comparable to that of the black hole binary (see Gualandris & Merritt,
2007, and references therein), which seems to be sufficient to explain the observed cores in mas-
sive ellipticals (e.g. Faber et al., 1997; Milosavljević et al., 2002). Hence, dry mergers appear
to be a viable mechanism for the formation of massive ellipticals. The obvious question is why
massive ellipticals apparently form via dissipationless (‘dry’) mergers, while their less massive
counterparts seem to require dissipational (‘wet’) mergers. This is part of the second class of
issues which we referred to at the beginning of this subsection and which we address in the
next.

To summarize, the merger scenario seems able to explain a large number of observable proper-
ties of individual elliptical galaxies, as long as dissipation plays an important role at the low-mass
end, while the more massive ellipticals are mainly the product of dry mergers. Further support
for this conclusion is presented in §13.3.

2 Dry mergers between disky progenitors with a mass ratio significantly different from unity typically yield disky
remnants.
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13.2.3 Hierarchical Merging and the Elliptical Population

Given that mergers between objects similar to observed z > 0 galaxies appear able to produce
remnants with structural properties spanning the full range seen in present-day ellipticals, the
critical question becomes whether real merger rates are, in fact, compatible with production of
the current population of elliptical galaxies (i.e. their abundance as a function of stellar mass,
stellar age, metallicity, size, velocity dispersion and environment) from the observed population
of higher redshift galaxies. This is a complex question. Since it is very difficult to measure merger
rates observationally to the necessary precision (see §13.3.6 below), it has so far been addressed
primarily from a theoretical point of view. The question can be phrased as follows: Assume that
structure grows hierarchically with galaxies condensing at the center of dark matter halos. If this
process is tuned to reproduce the observed galaxy population at each redshift, does the merger
rate predicted in a particular CDM cosmology then vary with progenitor properties and redshift
as needed to produce the current elliptical galaxy population, given the simulation results for
individual galaxy mergers reviewed in the previous subsection?

The first serious attempt to address this question was that of Kauffmann et al. (1993). These
authors modeled the statistics of the build-up of dark matter halos in a CDM universe using
merger trees of the kind described in §7.3. Within each halo they assumed gas to cool off onto a
central disk at rates given by a model similar to those of §8.4 and to turn into stars according to
a prescription similar to that of §9.5.1, modified by supernova feedback using the simple model
discussed in §8.6.3. Adopting plausible efficiencies for star formation and feedback, they showed
that these assumptions result in predicted galaxy luminosity functions in crude agreement with
data, both at z = 0 and at higher redshift (see also Kauffmann et al., 1994). In conjunction with a
dynamical friction model similar to that of §12.3, the halo merger trees then allowed merger rates
to be calculated as a function of galaxy properties and redshift. Assuming that elliptical galaxies
are produced only from those major mergers that are unable to regrow a disk at later times,
Kauffmann et al. (1993) showed that z = 0 ‘ellipticals’ are predicted to dominate the population
of high-mass galaxies, to be an increasingly small fraction of the population at lower masses,
to have red colors, and to be found predominantly in clusters. These predicted trends all agreed
quite well with observation.

Later work showed that cluster ellipticals are expected to have uniformly old stellar popula-
tions in this model, but that ‘field’ ellipticals (i.e. objects embedded in lower mass halos) should
be significantly younger (Kauffmann, 1996b; Baugh et al., 1996). In addition, more massive
ellipticals were predicted to be systematically younger. Both trends disagree with observation.
As discussed in §13.5.1 below, real massive ellipticals appear to have older stellar populations
than lower mass galaxies, and the variation of mean stellar age with environment is weaker than
predicted. The resolution of this problem may be related to another difficulty of these early CDM
models, namely their inability to produce a galaxy luminosity function that cuts off as sharply
as observed at the bright end. This cut-off appears to require a process which suppresses star
formation in massive systems without forming new stars (i.e. other than supernova feedback).
As discussed in §14.4, feedback from an active galactic nucleus (AGN) is a candidate for such a
process. An extension of the above models to include AGN feedback can not only reproduce the
observed luminosity function cut-off, but also reverse the predicted trend between stellar mass
and mean stellar age, and substantially reduce the predicted correlation between mean stellar age
and environment, leading to much better agreement with the observed population of ellipticals
(De Lucia et al., 2006, see also discussion in §15.5.1). Such hierarchical formation models also
predict the gas content of merging galaxies (i.e. the fraction of ‘wet’ versus ‘dry’ mergers) to
vary with remnant mass in the way needed to explain the luminosity dependence of the struc-
tural properties of elliptical galaxies highlighted in the previous subsection (Khochfar & Burkert,
2003; Kang et al., 2007).
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13.3 Observational Tests and Constraints

The main areas where observations can test the theories for the formation of elliptical galaxies,
discussed above, are the following:

(i) Star-formation history: while quasi-monolithic collapse assumes the stars of each ellip-
tical to form in a single burst, hierarchical merging predicts star formation in several
different sites and over a more extended period, possibly with merger-induced starbursts.

(ii) Assembly history: for quasi-monolithic collapse the assembly of an elliptical is coeval
with the formation of its stars, while in the merger scenario, most of the stars form in
progenitor galaxies well before assembly of the final elliptical. In addition, assembly
may involve multiple mergers, and so occur over an extended period of time.

(iii) Progenitor properties: for quasi-monolithic collapse, the immediate progenitor of an ellip-
tical galaxy is a single starbursting gas cloud, while in the hierarchical merging picture
ellipticals have diverse progenitors (spirals, ellipticals, irregulars, etc.).

Observations of (the evolution of) the structural, kinematic, spectral and chemical properties of
elliptical galaxies can clearly test these ideas in some detail. Here we focus predominantly on the
structural and kinematical properties. Constraints from spectral and chemical properties will be
discussed in §13.5 below.

13.3.1 Evolution of the Number Density of Ellipticals

An important difference between quasi-monolithic collapse and assembly through hierarchical
merging concerns their predictions for how and when ellipticals are finally assembled. The first
scenario requires the present population of ellipticals to be present with essentially no change in
comoving number density out to the relatively high redshift when collapse occurred, whereas the
second predicts that the comoving number density above any given stellar mass should decrease
with increasing redshift. Note, however, that the rate of this decrease is quite dependent on
cosmology, since this sets the merger rate for dark matter halos (see §7.3.5).

Early attempts to apply this test suggested strong evolution in the observed comoving number
density of bright and/or red galaxies – presumably ellipticals (e.g. Kauffmann et al., 1996; Zepf,
1997; Kauffmann & Charlot, 1998b; Aragon-Salamanca et al., 1998). These analyses were pri-
marily based on an assumed Einstein–de Sitter cosmology, and later studies with larger samples
and the now favored ΛCDM gave more ambiguous results – the switch in cosmology weakens
both the evolution inferred from the observational data and the evolution predicted by the mod-
els. As noted in §13.2.1, recent work seems to have reached a consensus that the total stellar
mass in red, passively evolving galaxies is a factor of several lower at z ∼ 1 than it is today (Bell
et al., 2004; Brown et al., 2007; Faber et al., 2007; Taylor et al., 2009). Indeed, the total stellar
mass in galaxies of all types at redshifts 1.3 < z < 2 seems to be factor of several below the
current value for ellipticals if one integrates down to individual stellar masses of a few 1010 M�
(Marchesini et al., 2008). At face value, this appears a definitive exclusion of quasi-monolithic
collapse at z ∼> 2. However, the situation is less clear for the most massive galaxies. For exam-
ple, a number of papers have argued that the abundance of the most massive ellipticals changes
little if at all back to z ∼ 1 (e.g. Daddi et al., 2000; Cimatti et al., 2002b; Collins et al., 2009).
This may reflect the difficulty of reliably establishing the abundance of the most massive (and
thus rarest) galaxies, as well as in measuring their masses accurately. At the highest masses both
observational and theoretical abundances are extremely sensitive to mass, so that the comparison
between the two becomes very sensitive both to theoretical assumptions and to observational
error in the measured masses (e.g. Bower et al., 2006; Kitzbichler & White, 2007).
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13.3.2 The Sizes of Elliptical Galaxies

As we have seen in §11.2, the standard formation paradigm allows us to make predictions for the
sizes of galaxy disks. This reflects the fact that disk formation is assumed (though not proven)
to be a near-adiabatic process governed by angular momentum conservation. The situation is
far more complicated for elliptical galaxies, because of the highly nonlinear, and non-adiabatic
processes involved. Nevertheless, with some idealizations one can still make simple predictions
(e.g. Shen et al., 2003; Boylan-Kolchin et al., 2005). In general, the size of an equilibrium galaxy
is related to its mass and binding energy via the virial theorem (see §5.4.4), which states that
E = W/2. Here

W = −4πG
∫ ∞

0
ρs(r) [Ms(r)+Mh(r)]r dr, (13.33)

is the potential energy of the stellar system, and we have assumed spherical symmetry. The
subscripts s and h refer to stars and the dark matter halo, respectively. The potential energy
thus consists of a term that describes the self-energy of the stellar system plus a cross-term that
describes the interaction energy of the stellar system with the dark matter halo. In general, we
can cast Eq. (13.33) in the form

W = −ζ GM2
s

re
, (13.34)

with re some characteristic radius of the stellar system, and ζ a form factor that depends on the
density distributions of the stars and dark matter. In the absence of a dark matter halo, a Hernquist
sphere has ζ � 0.303, if re is defined as the effective radius, while realistic models with a dark
matter halo typically have ζ ∼ 0.6±0.1 (Boylan-Kolchin et al., 2005).

In the case of the monolithic collapse scenario, consider a perturbation consisting of both gas
and dark matter with a homogeneous density distribution, and having a total mass of Mvir at
turn-around. The initial energy of the gas at turnaround is then simply

Ei = Wi = −3
5

GM2
gas

fgasrt
, (13.35)

where fgas = Mgas/Mvir and rt is the turnaround radius. Suppose that, while the dark matter
collapses and virializes, the gas dissipates its binding energy (due to radiative cooling) until
it is instantaneously turned into stars at a time when the absolute value of its binding energy
has increased to |Ef| = η |Ei|. From that point on the stellar system experiences dissipationless,
gravitational collapse resulting in a virialized stellar system, embedded in a virialized dark matter
halo. According to the virial theorem we then have that

Ef =
Wf

2
= −ζf

GM2
gas

2re
, (13.36)

where we have assumed that all the gas is turned into stars. Relating this to the initial binding
energy of the gas, and using that ζf ∼ 0.6, we obtain that

η � fgas
rvir

re
, (13.37)

where rvir is the virial radius of the final dark matter halo, which we have taken to be half
the turnaround radius (see §5.4.4). Using the Sloan Digital Sky Survey, Shen et al. (2003)
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found that the effective radii of elliptical galaxies are related to their stellar masses, M�,
according to3

re = 0.98h−1 kpc

(
M�

1010h−1 M�

)0.56

. (13.38)

Substituting this into Eq. (13.37) and assuming that the average density of a dark matter halo is
100 times the critical density for closure (see §5.4.4), we finally obtain that

η = 6.9

(
fgas

0.15

)0.44( Mvir

1012h−1 M�

)−0.23

. (13.39)

Thus, in the monolithic collapse scenario the binding energy of the gas has to become more
negative by a factor ∼ 7 before it forms stars, in order to explain the observed sizes of elliptical
galaxies.

In the merger scenario, the size of the remnant depends on those of the progenitors as well as
on the amount of dissipation and star formation during the merger. The latter processes depend
strongly on the gas content of the progenitors and on the details of the merger. Simulations
which follow gas, stars, dark matter, star formation and feedback from supernovae are normally
required to make realistic predictions for the sizes of merger remnants. In special circumstances,
however, simple predictions are still possible. In particular, in the case of a merger between
two galaxies with no gas (a ‘dissipationless’ or ‘dry’ merger), dissipation and star formation
do not play a role, and one can predict the size of the remnant from the sizes and masses of
the progenitors. Consider two virialized, gas-poor galaxies with stellar masses M1 and M2 and
effective radii r1 and r2, which merge to form a new galaxy with stellar mass Mf and effective
radius rf. We assume that initially both progenitors reside in their own dark matter halos (both
are two-component systems), and are on an orbit with energy

Eorb = − forb
GM1M2

(r1 + r2)
. (13.40)

Here, for convenience, we have introduced forb to express the orbital energy in units of the
orbital energy of two point masses, M1 and M2, on circular orbits with separation r1 + r2. Note
that forb = 0 for a parabolic orbit, while elliptic (bound) and hyperbolic (unbound) orbits have
forb > 0 and forb < 0, respectively (see §12.4.1). Once the merger remnant has established virial
equilibrium, the total energy of its stars is given by

Ef = −ζf
G(M1 +M2 −Mej)2

2rf
+Eej +Etr. (13.41)

Here Eej = 1
2 Mejv2

ej is the kinetic energy of the stellar mass, Mej, that has been ejected from the
remnant (due to the violent potential fluctuations) with an average ejection speed vej at infin-
ity, and Etr is the energy that has been transferred from the stars to the dark matter. Energy
conservation allows us to write

ζf
(M1 +M2 −Mej)2

rf
= ζ1

M2
1

r1
+ζ2

M2
2

r2
+2( forb + fej + ftr)

M1M2

r1 + r2
, (13.42)

where ftr and fej are defined by

Etr = ftr
GM1M2

(r1 + r2)
and Eej = fej

GM1M2

(r1 + r2)
. (13.43)

3 Here we ignore the fact that observationally the effective radii are obtained from the projected surface brightness,
which may differ somewhat from those obtained from the 3D luminosity density.
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While, by definition, fej ≥ 0, the value of ftr can be either positive or negative. The former
corresponds to a net transfer of energy from the stars to the dark matter (due, for instance, to
dynamical friction), while a negative value of ftr indicates that energy has been transferred from
the dark matter to the stars (due to violent relaxation). For brevity, in what follows we write the
results in terms of ftot ≡ forb + ftr + fej. In addition, we assume homology, so that ζf = ζ1 =
ζ2 ≡ ζ . Numerical simulations suggest that this is a reasonable assumption, and that homology
is fairly well preserved during dissipationless mergers (Boylan-Kolchin et al., 2005).

If we assume that the progenitors follow a (narrow) radius–mass relation of the form r ∝Mα ,
then in terms of the progenitor mass ratio q ≡ M1/M2 (with q ≥ 1), we can rewrite Eq. (13.42) as

rf

r1
= (1+q)2

[
q2 +qα +

2 ftot

ζ
q

1+q−α

]−1(
1− Mej

M1 +M2

)2

, (13.44)

which reduces to

rf

r1
=

4
2+ ftot/ζ

(
1− Mej

M1 +M2

)2

(13.45)

for an equal mass merger (q = 1). To gain some insight, consider a few idealized cases. In the
case of single-component systems (i.e. elliptical galaxies without dark matter halos), we have that
ftr = 0. If in addition we ignore mass ejection ( fej = 0) and adopt parabolic orbits ( forb = 0), then
equal mass mergers result in rf = 2r1. If some mass is ejected ( fej > 0), then rf < 2r1, because the
ejected mass carries away binding energy, leaving a more strongly bound remnant. In the absence
of mass loss, equal mass mergers that start from elliptic and hyperbolic orbits result in rf < 2r1

and rf > 2r1, respectively. In the case of two component systems (i.e. elliptical galaxies embedded
in extended dark matter halos), the situation is more complicated. In particular, since ftr can be
both positive and negative, it is difficult to make a priori predictions. Numerical simulations
indicate that the ejected mass is typically sufficiently small that it can be neglected, and that
equal mass mergers between two-component systems with initial parabolic orbits typically have
rf/r1 close to 2. This implies that ftr ∼ 0, i.e. there is little net transfer of energy from the stellar
component to the dark matter (Nipoti et al., 2003; Boylan-Kolchin et al., 2005; Robertson et al.,
2006b). On the other hand, Boylan-Kolchin et al. (2005) have shown that realistic orbits typically
have forb > 0, with forb ∼ 0.1 for the ‘most probable’ orbit. Equal mass mergers starting from
such orbits have ftr ∼ 0.4 (i.e. dynamical friction causes a significant transfer of energy from
stars to dark matter), so that rf/r1 ∼ 1.4.

It is interesting to see whether the remnants of dry mergers have the same radius–mass relation,
r ∝Mα , as the progenitors. Since the merger causes a transition M → (1 + q−1)M in mass, we
need rf/r1 = (1 + q−1)α in order for the remnant to obey the same radius–mass relation. Using
Eq. (13.44), and ignoring mass loss, the condition for conserving the radius–mass relation can
be written as

ftot =
ζ
2

qα +1
q

[
(1+q)2−α −q2−α −1

]
. (13.46)

Setting α = 0.56 (Shen et al., 2003) and ζ = 0.6 we find ftot(q) ∼ 0.43, with remarkably weak
dependence on q: it changes by no more than 2% over the entire range of q from 1 to 100. This
is in reasonable agreement with the value of ftot obtained by Boylan-Kolchin et al. (2005) for
the most probable orbit, suggesting that dry mergers roughly preserve the observed radius–mass
relation.

Finally, we emphasize that these results are only valid for dissipationless mergers. If the pro-
genitor galaxies have a significant gas reservoir, dissipation can occur, which in general will
result in a remnant with a smaller rf than that of the equivalent remnant in a dissipationless
merger.
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13.3.3 Phase-Space Density Constraints

As discussed in §5.5.1 the maximum value of the coarse-grained phase-space density of a col-
lisionless system cannot increase during its evolution. If giant elliptical galaxies are produced
by collisionless mergers of stellar disks, then their maximum phase-space densities should not
exceed those of their disk progenitors.

The phase-space density in the central region of a galaxy can be estimated by dividing the
central mass density by the volume occupied by an ellipsoid with its axes equal to the three
velocity dispersions. As a reasonable approximation, we assume that elliptical galaxies can be
described by an isothermal sphere with the boundary conditions ρ(0) = ρ0 and dΨ/dr(0) = 0.
As we have seen in §5.4.7, the core region of such a system has a density distribution given by

ρ(r) ≈ ρc

[1+(r/rc)2]3/2
, (13.47)

where

rc =
3σ√

4πGρc
, (13.48)

is the King radius, at which the projected surface density drops to half of the central value, with
σ the one-dimensional velocity dispersion of the system. The central phase-space density can
then be written as

f0 =
27

16π2

1
Gσ0r2

c
= 39.5M� pc−3(kms−1)−3

( σ
kms−1

)−1
(

rc

pc

)−2

. (13.49)

Note that both σ and rc can be obtained observationally.
For disk galaxies, we model the vertical structure as that of an isothermal sheet (see §11.1.1).

The central velocity dispersion in the vertical direction can then be written as

σ2
z (0) = 2πGΣ0zd with zd = ςRd, (13.50)

where the vertical scale height, zd, is assumed to be proportional to the disk scale length.
Assuming further that the dispersions of the other two velocity components are proportional
to σz,

σφ = kφσz, σR = kRσz, (13.51)

the central phase-space density of a disk can be written as

fc =
3ρ0

4πσz(0)σφ (0)σR(0)
=
Σ0

4Rd

1

(2πGΣ0Rd)3/2

3

4πς5/2kRkφ
. (13.52)

For numerical values we take ς = 0.1 (Bottema, 1997), kφ =
√

2 and kR = 2. The values of kR and
kφ are motivated by observations of our local disk and the flat rotation curves of disk galaxies (see
Carlberg, 1986). Fig. 13.6 compares the observed central phase-space densities for disks with
those for elliptical galaxies. As one can see, the central phase-space densities of ellipticals with
MB ∼>−22 are more than three orders of magnitude higher than those of the observed disks. This
result has been used to argue against the merger scenario for the formation of elliptical galaxies.

This argument has two important limitations, however. First of all, as shown in §11.2, disks
that formed at high redshifts are expected to be smaller and denser than their present-day coun-
terparts. It may therefore be possible that these high-redshift disks are dense enough to form the
elliptical galaxies observed today. Second, the central phase-space density of an elliptical galaxy
is associated with a small fraction of the total stellar mass at system center and is much higher
than the values typical for the main body of the galaxy. An important question, therefore, is
whether the main bodies of elliptical galaxies could be produced by stellar mergers, even if their



13.3 Observational Tests and Constraints 599

Fig. 13.6. The central phase-space densities (in arbitrary units) of elliptical galaxies (solid symbols, with
triangles showing lower limits) compared to those of spiral galaxies (open circles). [After Mao & Mo
(1998)]

central parts are not. These two issues have been discussed by Mao & Mo (1998). By defining
‘average’ phase-space densities for galaxies, they found that the main body of giant ellipticals
can be produced by mergers of high-redshift disks. However, high-redshift disks are still not
dense enough to produce the high central phase-space densities of (some) low-luminosity ellip-
ticals. Using numerical simulations and analytical arguments, Hernquist et al. (1993) estimated
that this discrepancy is confined to the inner ∼ 15% of the stellar mass.

One obvious way to alleviate this problem is to assume that the progenitors had dense stel-
lar bulges (Barnes, 1992). Another is to circumvent the phase-space constraints by assuming
that the progenitors contained significant amounts of gas. Since gas can lose energy through
radiation before it turns into stars, it can easily produce enhanced central phase-space densities.
Hernquist et al. (1993) estimated that dissipation and star formation can result in sufficiently
high phase-space densities if the progenitors had a gas mass fraction of ∼ 25−30%. Subsequent
hydrodynamical simulations of disk galaxy mergers have clearly demonstrated that merging
promotes the accumulation of large quantities of gas in the central regions. If converted into
stars, this gas can give rise to dense cusps/cores in reasonable agreement with observation (e.g.
Mihos & Hernquist, 1996; Cox et al., 2006).

13.3.4 The Specific Frequency of Globular Clusters

Elliptical galaxies are found to have more globular clusters per unit stellar mass than spirals
(see Harris, 1991, for a review). In terms of the specific frequency, SN, defined as the number
of globular clusters divided by the galaxy luminosity in units of MV = −15, ellipticals in rich
clusters have SN ∼ 5, field ellipticals have SN ∼ 3, and spirals have SN ∼ 0.5–1. This difference
in globular cluster frequency appears to be a serious problem for the merger scenario: if elliptical
galaxies are the merger remnants of spirals, they should have the same SN as spirals. However,
this argument applies only to mergers of pure stellar disks. If gas is involved in the mergers,
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the situation may be different. In fact, violent mergers often reveal large populations of newly
forming, massive young star clusters, with masses and sizes consistent with globular clusters
(e.g. Holtzman et al., 1992; Schweizer et al., 1996; Whitmore et al., 1999, see also Fig. 2.10).
Furthermore, it has become clear that globular clusters have a bimodal color distribution, with
a blue (metal-poor) population and a distinct red (metal-rich) population (e.g. Zepf & Ashman,
1993; Forbes et al., 1997). A consistent interpretation of the data appears to be that the metal-poor
population formed at high redshifts in protogalactic fragments, while the metal-rich population
formed during merger-induced starbursts (e.g. Ashman & Zepf, 1992; Beasley et al., 2002). In
this picture, the high specific frequency of globular clusters in elliptical galaxies may simply be
a relic of their formation by major, dissipational mergers.

13.3.5 Merging Signatures

If many elliptical galaxies indeed formed via major mergers, we would expect to find observa-
tional signatures of these events in some fraction of them. The most obvious sign of a (recent)
merger is a clearly distorted morphology, such as that of NGC 7252 (Fig. 12.5) or the Anten-
nae (Fig. 2.10). In many cases these peculiar galaxies reveal pronounced tidal tails, which, as
we have seen in §12.2.2, are produced in the merger of two stellar disks with similar masses.
Unfortunately, since violent relaxation lasts only a few dynamical times, the strongly distorted
morphology is visible only for a fraction of the Hubble time. It the relevant time scale can be
estimated, this signature may be used to determine the instantaneous merger rate (see below),
but it cannot be used to test whether a specific elliptical indeed formed through a major merger.
Tidal tails are somewhat longer-lived, but they are typically low surface brightness features that
are difficult to detect, especially at high redshift. Moreover, not all merger configurations produce
prominent tidal tails.

Mergers can also produce ‘shells’, ‘ripples’ and ‘plumes’ in the outer parts of the remnants
which can survive for longer periods. Such fine structures are due to material that was originally
in the outer disk(s) of the progenitor(s) and will mix into the remnant long after the inner region
has relaxed (e.g. Hernquist & Spergel, 1992). Shells can also form in minor mergers when a
dwarf galaxy disrupts on a relatively radial orbit and ‘phase-wraps’ its dynamically cold material
around the larger galaxy it fell into (Quinn, 1984).

Schweizer et al. (1990) defined an empirical index to quantify the significance of fine structure:

Σ≡ S + log(1+n)+ J +B+X , (13.53)

where S is a visual measure of the most prominent ripple on a scale of 0 to 3, n is the number of
detected ripples, J is the number of optical ‘jets’, B is a visual estimate of the maximum boxiness
of the galaxy’s isophotes on a scale from 0 to 4, and X equals 0 or 1 depending on whether or not
the image of the galaxy shows an X-shaped structure. A survey by Seitzer & Schweizer (1990)
showed that more than half of all ellipticals, and at least one third of all S0s, posses significant
fine structure. The link to mergers (major and minor) is supported by observations that show
a correlation between the presence and strength of fine structure and other merger signatures,
such as tidal tails, multiple nuclei and young stellar populations (e.g. Malin & Carter, 1983;
Schweizer & Seitzer, 1992). It is important to stress, however, that these fine structures form
only when the merger involves at least one dynamically cold progenitor (disk or dwarf galaxy);
mergers between two dynamically hot systems (i.e. between two ellipticals) do not produce shells
and ripples, simply because the intrinsic velocity dispersion is too high. Thus, whereas the pres-
ence of fine-structure is a strong indication for a merger origin, the lack of fine-structure does not
necessarily imply that the system has not undergone a major merger in its not-too-distant past.
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13.3.6 Merger Rates

What is the rate of major mergers as a function of redshift and of galaxy properties? Obviously
this is an important question, whose answer determines the abundance and properties of merger
remnants, and hence, under the hypothesis that all ellipticals form via major mergers, the prop-
erties of the present-day elliptical population. We reviewed theoretical estimates of these rates in
§13.2.3; we now turn to direct observational estimates.

Two different techniques have been used to probe the redshift evolution of the galaxy merger
rate, ṅmrg, defined as the number of merger events per unit time per unit comoving volume. The
first method estimates the fraction of galaxies that are in the process of merging, fmrg, as function
of redshift. This merger fraction is related to the merger rate according to

ṅmrg(z) =
fmrg(z)ngal(z)
τmrg(z)

, (13.54)

where ngal is the comoving number density of the galaxy population probed, and τmrg is the time
scale over which the merger can be identified as such (which is proportional to the dynamical
time). Unfortunately, because of cosmological surface brightness dimming (see §3.1.6), most
of the merger signatures discussed in the previous section are too diffuse to be identified at
high redshift, and one must typically resort to estimating the incidence of strongly disturbed
galaxies as a function of redshift. With the high spatial resolution provided by the HST, it soon
became clear that the number density of peculiar (i.e. strongly distorted) galaxies increases
strongly with increasing redshift (e.g. Driver et al., 1995; Glazebrook et al., 1995; Brinch-
mann et al., 1998). Unfortunately, it has also become clear that not all galaxies with disturbed
morphologies are undergoing a (major) merger; in some cases the distortions merely reflect indi-
vidual star-formation regions within the galaxies. Because of this, results for the evolution of
the merger fraction obtained using this technique are still very uncertain. If the evolution is
parameterized as

fmrg ∝ (1+ z)m, (13.55)

the best-fit values for m claimed by different studies cover the entire range 0 ∼< m ∼< 4 (e.g. Le
Fèvre et al., 2000; Conselice et al., 2003; Lotz et al., 2008). In addition, the time scale τmrg(z)
and its dependence on redshift cannot be estimated reliably, leading to another major uncertainty
when merger fraction is converted to merger rate.

An alternative is to infer the merger rate from the number density of close galaxy pairs (typi-
cally with separations less than ∼ 20–50kpc). Under the assumption that these pairs will merge
on a time scale τdf due to dynamical friction, the merger rate is related to the pair fraction, fpair,
according to

ṅmrg(z) =
1
2

fpair(z)ngal(z)
τdf(z)

, (13.56)

where the factor 1/2 takes account of the fact that a galaxy pair creates a single merger. An
advantage of this method over the direct identification of mergers is that it simultaneously pro-
vides statistics on the progenitor properties, such as mass ratios and morphologies. The downside
is that one has to be aware of projection effects, and that evolution in the number density of close
pairs does not necessarily reflect evolution in the merger rate (see Berrier et al., 2006). Fur-
thermore, the characteristic time scale, τdf, required to convert the number density of pairs into a
merger rate has an uncertainty of at least a factor two (but see Kitzbichler & White, 2008). Param-
eterizing the redshift dependence of fpair with the same power-law dependence as in Eq. (13.55),
different studies once again have found values for m spanning the entire range 0 ∼< m ∼< 4 (e.g.
Patton et al., 2002; Lin et al., 2004a; Bell et al., 2006b).
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What do these merger rates imply for the idea that all ellipticals have formed by major
mergers? The number density of merger remnants at time t0, nrem(t0), can be (approximately)
estimated from the number density of merger candidates at t0, nmrg(t0), using

nrem(t0)
nmrg(t0)

≈
∫ t0

0 ṅmrg(t)dt∫ t0
t0−τmrg

ṅmrg(t)dt
. (13.57)

If we make the simplifying assumptions that ngal does not evolve with redshift, and that H0t =
2
3 (1 + z)−3/2 (as for an Einstein–de Sitter cosmology; see §3.2.3), we can write the present-day
ratio between the number of merger remnants and that of ongoing mergers as

nrem

nmrg
=

(1+ zf)m−3/2 −1
(m−3/2)H0τmrg

, (13.58)

where zf is the typical redshift from which present-day merger remnants began to form, and we
have assumed that H0τmrg � 1. As an illustration, let us take H0 = 70kms−1 Mpc−1, τmrg =
5× 108 yr, and zf = 3. It then follows from Eq. (13.58) that 15 ∼< nrem/nmrg ∼< 350 for m in the
range 0 < m < 4. From the New General Catalog, Toomre (1977) found that 11 out of about 4,000
galaxies show tidal tails and other indications of mergers, while ∼ 800 are ellipticals. Under the
assumption that all ellipticals are merger remnants the data thus suggests that nrem/nmrg ∼ 70.
Given the huge uncertainties on m, on zf, and even on τmrg, all we can conclude at this stage is
that the data are not inconsistent with the hypothesis that all elliptical galaxies formed via major
mergers.

13.4 The Fundamental Plane of Elliptical Galaxies

As we have seen in §2.3.2, elliptical galaxies obey a tight scaling relation between central velocity
dispersion, σ0, effective radius, Re, and 〈I〉e, the average surface brightness within Re (Djorgov-
ski & Davis, 1987; Dressler et al., 1987). This so-called fundamental plane (hereafter FP; see
Fig. 2.18) is generally written in the form

logRe = a logσ0 +b log〈I〉e + constant. (13.59)

Typically the best-fit parameters range from a ∼ 1.2 in the blue to a ∼ 1.5 in the near-infrared,
while b �−0.8 with only very weak dependence on the photometric band (e.g. Jørgensen et al.,
1996; Pahre et al., 1998; Colless et al., 2001b; Bernardi et al., 2003b). The most striking obser-
vational property of the FP is its small and nearly constant thickness: the distribution of logRe

around the best-fit FP (at fixed σ0 and 〈I〉e) has a measured rms corresponding to scatter in Re of
only 15–20%.

The origin of the FP is usually interpreted in terms of the virial theorem (§5.4.4):

GM
〈R〉 = 〈v2〉, (13.60)

where M is the mass of the system, 〈R〉 is an average radius so defined that the left-hand-side is
the absolute value of the mean potential energy per unit mass, and 〈v2〉 is the average squared
velocity so that 〈v2〉/2 is the mean kinetic energy per unit mass. The virial relation given above
can be expressed in terms of the observables of an elliptical galaxy. In particular, we write Re =
kR〈R〉, and σ0 = kV

√
〈v2〉, where kR and kV are dimensionless quantities which depend on the

density profile and orbital structure of the galaxy, respectively. Using that the luminosity of the
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galaxy is L = 2π〈I〉eR2
e (which follows from the definition of 〈I〉e), we obtain the following

relation between Re, σ0 and 〈I〉e:

Re = CRσ2
0 〈I〉−1

e

(
M
L

)−1

, CR ≡ 1

2πGkRk2
V

. (13.61)

If elliptical galaxies are homologous, so that they have self-similar density and orbital distribu-
tions, CR has the same numerical value for all ellipticals. If, in addition, all ellipticals have the
same (M/L), then the virial relation defines a FP with a = 2 and b = −1. The deviation of the
observed a and b from these virial predictions is called the ‘tilt’ of the fundamental plane, and
indicates that (M/L) and/or CR have power-law dependence on 〈I〉e, σ0 and/or Re. Furthermore,
the thinness of the observed FP indicates that such power-law dependence itself cannot have
much scatter, which puts tight constraints on models for the formation and evolution of elliptical
galaxies.

Given the observed diversity in the structural and kinematic properties among elliptical
galaxies, it is clear that they do not form a perfectly homologous class. Furthermore, the
color–magnitude relation clearly indicates that there are also systematic variations in stellar pop-
ulations, and thus in the mass-to-light ratios. This is further supported by the fact that the value
of the FP slope, a, depends on the photometric band in which the FP is defined. The challenge is
to determine which of these effects is most important for setting the tilt of the FP, and to under-
stand why the scatter in the FP is so small. Numerous studies have estimated the contribution of
different effects to the origin of the tilt in the FP, sometimes with contradictory results, and there
is still no clear consensus.

One extreme possibility is that the entire tilt is due to non-homology. As discussed in §2.3.2
and §13.1.3, bright galaxies are supported by velocity dispersion, while low-luminosity ellipti-
cals have kinematics consistent with them being rotationally supported. However, using detailed
dynamical models it has been shown that the variations of rotational support and/or velocity
anisotropy from galaxy to galaxy contribute very little to the observed tilt (Ciotti et al., 1996;
Lanzoni & Ciotti, 2003). On the other hand, the surface brightness profiles of ellipticals are
well fit by a Sérsic profile, with a Sérsic index n that systematically increases with increasing
luminosity (see Fig. 2.13). Several studies have argued that this non-homology is responsible
for a significant part of the observed tilt (e.g. Graham & Colless, 1997; Trujillo et al., 2004),
although others claim that non-homology cannot produce more than ∼ 15% of the observed tilt
(e.g. Cappellari et al., 2006).

The other extreme is to assume that ellipticals are homologous, and that the tilt is entirely due
to systematic variations in the mass-to-light ratios. The observed FP then implies a change of
(M/L) with L and 〈I〉e given by

(M/L) ∝ L(2−a)/2a〈I〉−1/2−(1+2b)/a
e . (13.62)

For example, the results of Jørgensen et al. (1996), who obtained a = 1.24 ± 0.07 and b =
−0.82±0.02 in the optical, imply that

(M/L) ∝ L0.31〈I〉0.02
e (in optical), (13.63)

and thus that the mass-to-light ratio increases with increasing luminosity, with only very mild
dependence on the average surface brightness.

Using that (M/L) = ϒ(M/M�), with ϒ the stellar mass-to-light ratio and M� the stellar mass,
it is clear that there are two effects that can contribute to variations in (M/L): (i) variations in
the stellar populations (ages and/or metallicities), and (ii) variations in the contribution and/or
concentration of the dark matter to the total, dynamical mass.4 Comparing spatially resolved

4 Note that, strictly speaking, variations in M/M� are also a manifestation of non-homology.
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kinematic data of relatively small samples of nearby ellipticals with detailed dynamical models,
a number of studies have found that (M/L)∝Mγ with γ � 0.3±0.1 (van der Marel, 1991; Magor-
rian et al., 1998; Gerhard et al., 2001; Cappellari et al., 2006). This corresponds to (M/L) ∝ Lα

with α = γ/(1− γ) � 0.4±0.2, and is thus well in the range needed to explain the tilt of the FP.
Although the variation of the FP slope with wavelength is strong evidence for systematic varia-
tions in the stellar content, numerous studies have suggested that the expected change in ϒ alone
cannot explain the observed tilt (Prugniel & Simien, 1996; Pahre et al., 1998). Rather, what is
needed is an additional, systematic change in the dark matter content of ellipticals, in the sense
that M/M� increases with the mass (or luminosity) of the galaxy (e.g. Cappellari et al., 2006).

13.4.1 The Fundamental Plane in the Merger Scenario

An important question is whether a thin FP relation, with the correct tilt, can be produced in
the merger scenario discussed in §13.2.2. Using a large suite of hundreds of merger simulations,
Robertson et al. (2006a) have demonstrated that a successful reproduction of the FP relation
requires the presence of gas in the progenitor galaxies. Whereas dissipationless mergers of disks
produce remnants that occupy a FP similar to that expected from the virial relation (i.e. a � 2,
b �−1), mergers between disks with gas fractions fgas ∼> 30% results in remnants that occupy a
tilted FP, similar to what is observed. In their simulations, this tilt arises mainly from systematic
variations in M/M�. During the merger a large fraction of the gas is collisionally heated to high
temperatures. In massive systems this hot gas becomes X-ray luminous (and thus provides an
explanation for the X-ray halos observed around massive ellipticals), but does not cool efficiently.
In low mass systems, on the other hand, the collisionally heated gas cools rapidly and forms new
stars at the center of the merger remnant, causing a significant decrease in M/M�. Thus, the halo
mass dependence of the cooling efficiency (see §8.4.1) induces a mass dependence of M/M�,
hence a tilt in the FP.

Observations have shown that at z ∼< 1 a significant fraction of the luminous elliptical galaxies
undergo mergers with other ellipticals (van Dokkum, 2005; Bell et al., 2006a; McIntosh et al.,
2008). These mergers are typically dissipationless (i.e. ‘dry’ mergers). This raises the question of
whether such mergers will change the tilt and destroy the thinness of the observed FP. Numerical
simulations suggest that dry mergers between spheroidal galaxies do, in fact, roughly maintain
the FP tilt (e.g. Nipoti et al., 2003; Boylan-Kolchin et al., 2005; Robertson et al., 2006a). This
can be understood from the fact that violent relaxation tends to mix dark matter and stars (i.e.
it reverses the impact of dissipation which segregates baryons, and thus the stars, from dark
matter). The net effect is that the dark matter fraction interior to the final Re is larger than the
dark matter fraction interior to the initial Re. This implies a modification of kR, which, according
to the simulations, is sufficient to maintain the tilt of the FP.

13.4.2 Projections and Rotations of the Fundamental Plane

(a) The κ Coordinates Instead of using σ0, 〈I〉e, and Re, one can use some orthogonal com-
binations of them to label the parameter space of the FP. Algebraically, this corresponds to a
rotation of the coordinate axes. A particularly useful example, proposed by Bender et al. (1992),
is based on the parameters

κ1 ≡
(
logσ2

0 + logRe
)
/
√

2, (13.64)

κ2 ≡
(
logσ2

0 +2log〈I〉e − logRe
)
/
√

6, (13.65)

κ3 ≡
(
logσ2

0 − log〈I〉e − logRe
)
/
√

3, (13.66)
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where σ0 is in kms−1, Re in kpc, and 〈I〉e in L�/pc2. The three-dimensional parameter space
(κ1,κ2,κ3) is called κ space, and has the advantage that the physical interpretation of the FP
relation is more transparent. In particular, the parameter κ1 is a measure of the mass because
κ1 ∝ log(σ2

0 Re), κ3 is a measure of the mass-to-light ratio because κ3 ∝ log(σ2
0 Re/〈I〉eR2

e), and
κ2 is proportional to the mass-to-light ratio times 〈I〉3

e , which is required so that it is orthogonal
to κ1 and κ3. The κ1-κ2 projection is very close to a face-on projection of the FP, while the κ1-κ3

projection shows the FP nearly edge-on. In fact, if ellipticals are homologous and (M/L) ∝Mγ ,
the virial theorem (13.60) implies a FP relation given by κ3 =

√
2/3γ κ1 + constant.

(b) The Faber–Jackson Relation Before it was realized that elliptical galaxies obey a FP rela-
tion, Faber & Jackson (1976) had noticed that the luminosity of an elliptical galaxy is correlated
with its central velocity dispersion:

L ∝ σβ0 with β ∼ 4. (13.67)

Note that this Faber–Jackson relation is similar to the Tully–Fisher relation for spiral galaxies
discussed in §11.3. Since L ∝ 〈I〉eR2

e , the Faber–Jackson relation implies a FP relation with a =
β/2 ∼ 2 and b = −1/2. These values of a and b are very different from the best-fit values of the
observed FP relation, indicating that the Faber–Jackson relation is far from an edge-on projection
of the FP, which also explains why its scatter is considerably larger than that in the FP relation.

(c) The Dn-σ Relation Rather than expressing the size of an elliptical galaxy via its effective
radius, Re, that encloses half of the total light, one can also use the radius at which the average,
enclosed surface brightness reaches a fixed value. One such example is the parameter Dn, which
is defined as the diameter within which the mean surface brightness drops to some fiducial value
〈I〉n, i.e.

〈I〉n =
2π
∫ Dn/2

0 I(R)RdR
1
4πD2

n

. (13.68)

If, for simplicity, we write the surface brightness profiles of elliptical galaxies as a single power
law I(R) ∝ 〈I〉e(R/Re)−ξ , we have that

Dn ∝ Re 〈I〉1/ξ
e . (13.69)

Since ξ > 0 this implies that higher surface brightness galaxies have a larger ratio of Dn/Re (as
long as ξ is roughly the same for all galaxies). Using Eq. (13.69) to eliminate Re from Eq. (13.59),
we obtain the FP relation expressed in terms of Dn:

Dn ∝ σa
0 〈I〉b+1/ξ

e . (13.70)

Since in general ellipticals do not have pure power-law surface brightness profiles, the character-
istic value of ξ depends on the choice of the fiducial value of 〈I〉n. As shown by Dressler et al.
(1987), the value of b + 1/ξ can be made insignificantly small by adopting 〈I〉n = 20.75mag
arcsec−2 in the B band, so that the FP relation reduces to

Dn ∝ σa
0 with a ∼ 1.2. (13.71)

This is called the Dn-σ relation, and is basically another edge-on projection of the FP: for a given
σ0, the scatter in Dn is typically 15% from galaxy to galaxy.

(d) The Kormendy Relation In Fig. 2.14 we have seen that more luminous ellipticals are
larger, and have a lower characteristic surface brightness. Consequently, there is also an anti-
correlation between size and surface brightness. In the optical

〈I〉e = Rνe with ν ∼−1.3±0.1 (13.72)
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(e.g. Kormendy, 1977; Bernardi et al., 2003a). This relation, which is a projection of the FP along
the σ0 direction, is known as the Kormendy relation.

An anticorrelation between surface brightness and size is a fairly natural prediction of the
merger scenario. Consider an equal mass merger between two identical progenitors of mass
Mi and radius ri, that results in a remnant of mass Mf = 2Mi and radius rf = Rri. Assuming
that (M/L) ∝ Mγ , and using that 〈I〉e ∝ L/r2, then under the additional assumption of homol-
ogy the surface brightness of the final remnant will be 21−γR−2 times that of the progenitors.
Consequently,

ν = (1− γ) ln2
lnR

−2. (13.73)

If we adopt γ = 0.3, in rough agreement with what is required to explain the tilt of the FP (see
above), then an anticorrelation between 〈I〉e and Re will arise as long as R > 1.27. As we have
seen in §13.3.2, dry (dissipationless) mergers typically have R ∼ 1.4 for their most probable
orbit, which would leave the observed size–mass relation of elliptical galaxies intact. However,
this value of R implies ν ∼ −0.6, inconsistent with the observed Kormendy relation, which
requires R ∼ 2 instead. Apparently, dry mergers cannot simultaneously explain the observed
size–mass and size–surface-brightness relations (e.g. Nipoti et al., 2003).

13.5 Stellar Population Properties

In the previous sections we have focused on the structural and kinematic properties of elliptical
galaxies. We now turn our attention to the properties of their stellar populations. In general,
a stellar population is characterized by its star-formation history (SFH), ψ(t), an initial mass
function (IMF), φ(m), and its history of chemical enrichment. In the case of a closed box, the
latter is completely determined by ψ(t) and φ(m) (see §10.4.2), although in the more general
case with inflow and/or outflow the various element abundances may differ strongly from that of
a closed box.

In what follows we will make the assumption of a universal IMF, and discuss various con-
straints on the SFHs of elliptical galaxies. We will distinguish between two different approaches:
the archaeological approach, in which one tries to infer ψ(t) from the observable properties
of present-day ellipticals, and the evolutionary approach, where ψ(t) is constrained using the
observed properties of ellipticals as a function of redshift. We will discuss both approaches, and
their results, in turn.

13.5.1 Archaeological Records

(a) Color–Magnitude Relation With only very few exceptions, early-type galaxies (ellipticals
and S0s) have red colors. More importantly, the colors of early-type galaxies are tightly correlated
with their luminosities. Fig.13.7 shows the color–magnitude relation for ellipticals and S0s in the
Coma Cluster. Note that more luminous early-types are redder, and that the overall scatter in the
color–magnitude relation is remarkably small (the rms scatter is ∼ 0.05 mag, of which more than
half can be accounted for by observational errors).

Unfortunately, an interpretation of this color–magnitude relation in terms of the physical prop-
erties of the underlying stellar populations is severely impeded by the age–metallicity degeneracy
discussed in §10.3.5. If we provisionally make the naive assumption that elliptical galaxies all
have the same metallicity, the slope of the color–magnitude relation implies that more massive
early-types are older. As shown in §10.3.3, the colors of a passively evolving, single-age stel-
lar population (SSP) younger than about 5 Gyr depend significantly on its age. For example,
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Fig. 13.7. The color–magnitude relation for early-type galaxies in the Coma Cluster. [Adapted from Bower
et al. (1992)]

the (U −V ) color of a coeval stellar population formed 5 Gyr ago changes at a rate of about
0.05 magnitude per Gyr. Unless all early-types formed during a very narrow epoch in cosmic
time, the small amount of scatter therefore implies that ellipticals must have formed the bulk of
their stars more than ∼ 10 Gyr ago (see Fig.10.6). However, as already alluded to, this inter-
pretation is severely hampered by the age–metallicity degeneracy, in that redder colors can also
indicate a more metal-rich stellar population. Thus, the slope of the color–magnitude relation
may simply indicate that more massive early-types are more enriched in metals, while the small
scatter may come about if stellar populations that formed earlier were less enriched in metals.
Using additional data that can help to break the age–metallicity degeneracy (see below), it has
become clear that more massive early-types are both older and more metal rich. Nowadays,
most studies seem to agree that the slope of the color–magnitude relation is primarily driven by
metallicity rather than age (e.g. Kodama & Arimoto, 1997; Graves et al., 2009), while the small
amount of scatter mainly reflects that early-type galaxies have old, passively evolving stellar
populations.

(b) Absorption Line Indices More detailed insight into the physical properties of the stel-
lar populations of elliptical galaxies comes from their absorption line indices, such as the Lick
indices discussed in §10.3.4. The main advantage of this approach is that it allows one to break the
age–metallicity degeneracy that plagues the broad-band colors discussed above. Based on spec-
tral synthesis modelling, it is found that some indices (e.g. G4300 and Balmer indices such as
Hβ and Hδ ) are more sensitive to age, while others (e.g. Mgb, Mg2, Fe5270, Fe5335) are more
indicative of the population’s metallicity. Thus, by measuring these different indices, which is
fairly straightforward and only requires spectra of moderate resolution, and comparing their val-
ues with predictions from models, one can determine both the (luminosity-weighted) age and the
metallicity of the stellar population. Until recently a major problem with this approach has been
that different metal line indices sometimes yielded different metallicities, [Z/H]. This problem
was due to the fact that most models assumed solar abundance ratios for the various elements,
while in reality giant ellipticals are typically enhanced in α elements (relative to iron) when
compared to stars in the solar neighborhood (e.g. Worthey et al., 1992).
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Fig. 13.8. The Lick indices Hβ vs. [MgFe]′ for a sample of ellipticals, lenticulars and cD galaxies with
overplotted a grid of SSP models of Thomas et al. (2003) for metallicities of [Z/H] = 0.0, 0.35 and 0.67,
and ages of 2, 3, 5, 10 and 15 Gyr. The median 1σ error bars of the data points are shown in the lower-
left corner. Results are shown separately for galaxies in high- and low-density environments (left and right
panels, respectively). [Adapted from Thomas et al. (2005) by permission of AAS]

Using more sophisticated stellar population models that allow for non-solar abundance ratios
(e.g. Trager et al., 2000b; Proctor & Sansom, 2002; Thomas et al., 2003), it has recently become
possible to determine reliable ages, metallicities and α enhancements from Lick indices such as
Hβ , Mgb, Fe5270 and Fe5335. In particular, the indices Hβ and

[MgFe]′ ≡
√

Mgb× [0.72Fe5270+0.28Fe5335] (13.74)

can be used to determine the ages and metallicities of single-age stellar populations with virtu-
ally no dependence on [α/Fe] (Thomas et al., 2005). Fig. 13.8 shows Hβ versus [MgFe]′ for 124
early-type galaxies (ellipticals, lenticulars and cD galaxies). A comparison with the SSP mod-
els of Thomas et al. (2003), shown as the grid, indicates that their stellar populations are not
as homogeneous as traditionally thought. In particular, elliptical galaxies seem to span a wide
range of ages, from about 2 to 15 Gyr, but a small range of metallicities. In addition, there is a
weak indication that ellipticals in high-density environments (groups and clusters) have some-
what older stellar populations than those in low density environments. Note, however, that these
age estimates are heavily weighted towards young stellar populations. Detailed spectral-synthesis
calculations show that a population with an age of 1 Gyr has Balmer absorption lines that are
about 5 times stronger, and a luminosity that is more than 6 times higher, than a population of 15
Gyr with the same mass. Thus, even a few percent (by mass) of a young population can dominate
the age estimate. Indeed, present data favor such a ‘frosting’ model, in which the low apparent
SSP ages are produced by adding a small frosting of younger stars (typically ∼ 10–20 percent in
mass) to an older ‘base’ population of 10-15 Gyr (de Jong & Davies, 1997; Trager et al., 2000a).

Observations show that various Lick indices of early-type galaxies are correlated with their
velocity dispersions, σ (and thus also with the luminosity or stellar mass). In particular, Mgb
and 〈Fe〉 = 0.5(Fe5270 + Fe5335) increase with increasing σ , while Hβ decreases with it (e.g.
Terlevich et al., 1981; Bender et al., 1993; Kuntschner et al., 2001; Bernardi et al., 2003c). For
ellipticals with stellar masses M� ∼> 1010 M�, Thomas et al. (2005) inferred the following scaling
relations:
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log(t/Gyr) = +0.46(+0.17)+0.24(0.32) log(σ/kms−1)
[Z/H] = −1.06(−1.04)+0.55(0.57) log(σ/kms−1) (13.75)

[α/Fe] = −0.42(−0.42)+0.28(0.28) log(σ/kms−1)

where the values outside (inside) of the brackets correspond to high (low) density environments
(see also Nelan et al., 2005). The observed scatter in these relations implies an intrinsic scatter
of about 20% in age, ∼ 0.1 dex in [Z/H] and ∼ 0.05 dex in [α/Fe] at fixed velocity dispersion.
Thus, more massive ellipticals are older, more metal enriched and more enhanced in α elements.
As discussed in §10.4, the latter implies that more massive ellipticals have formed their stars on
a shorter time scale (at least if ellipticals have a universal IMF). Furthermore, ellipticals in low-
density environments are, on average, ∼ 2 Gyr younger than their counterparts in high-density
environments. Note that these ages refer to the old populations; about 15% of early-type galaxies
have an additional, younger frosting population with an age between 1 and 2 Gyr. This fraction
rapidly increases with decreasing stellar mass.

13.5.2 Evolutionary Probes

Rather than trying to infer the star-formation histories of elliptical galaxies from their present
day archaeological records, one can also trace their evolution by studying their properties as
function of redshift. Although this has the advantage of being more direct, the limited spatial
resolution makes it difficult to accurately determine the morphologies of high redshift galaxies
and to select clean samples of a fixed morphological type. In particular, the increasing popu-
lation of blue galaxies with increasing redshift (the Butcher–Oemler effect) may introduce a
systematically greater contamination at higher redshifts. Fortunately, the superior imaging capa-
bility of the HST has made it possible to identify elliptical galaxies out to redshifts z ∼ 1 based
purely on their morphologies (e.g. Driver et al., 1995; Abraham et al., 1996). Together with red-
shift measurements, these observations can be used to directly probe the evolution of elliptical
galaxies.

Using a sample of 94 luminous ellipticals in nine clusters at redshifts 0.17 < z < 1.21, Schade
et al. (1997) found that the absolute magnitudes of elliptical galaxies of fixed sizes increase with
redshift roughly as ΔMB ∼ (−1.05±0.25)Δz. High redshift ellipticals are also found to be bluer
than their low redshift counterparts (e.g. Aragon-Salamanca et al., 1993; Rakos & Schombert,
1995), but they still obey a tight color–magnitude relation with the same intrinsic scatter and
slope as at z = 0 (Ellis et al., 1997; Stanford et al., 1998). All these results are consistent with
a picture in which elliptical galaxies in clusters formed their stars at high redshifts (z > 2) in a
well-synchronized fashion, and evolved passively thereafter. Furthermore, the fact that the slope
of the color–magnitude relation shows no significant change out to z ∼ 1 supports the belief that
it arises from a correlation between galaxy mass and metallicity, rather than age.

With modern 10-meter class telescopes it has also become possible to measure kinematics of
(elliptical) galaxies out to redshifts z ∼ 1. Together with HST photometry, these kinematic data
make it possible to study the fundamental plane of elliptical galaxies at high redshifts. Several
studies have shown that cluster ellipticals out to z ∼ 1 satisfy a tight FP relation with a slope and
scatter that are similar to those at z = 0 (e.g. van Dokkum & Franx, 1996; Kelson et al., 1997).
The zero-point of the FP, however, is found to evolve with redshift in a way consistent with an
evolution of the mass-to-light ratios given by Δ log(M/LB) ∝ −0.5z (van Dokkum et al., 1998).
Once again, these results indicate that elliptical galaxies formed their stars early (z > 2) and have
been evolving passively ever since.

Finally, Ziegler & Bender (1997) used medium-resolution spectroscopy of elliptical galaxies in
three clusters at z ∼ 0.37 to measure absorption line indices. They found a clear relation between
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the line strength of Mgb and the galaxy’s velocity dispersion, σ , similar to that of nearby ellipti-
cals. However, at a given σ the Mgb line strength of the distant ellipticals is significantly lower
than the mean value of the nearby sample. This difference can be fully attributed to the lower age
of the distant galaxies and is in excellent agreement with a passively evolving population that
formed the bulk of its stars at z > 2.

Thus, there seems to be good overall agreement, both among different evolutionary probes
and with the archaeological records, that elliptical galaxies in clusters formed their stars in a
relatively short time at high redshifts.

13.5.3 Color and Metallicity Gradients

In addition to the global properties discussed above, the stellar populations of elliptical galaxies
also reveal radial gradients within individual galaxies. As discussed in §2.3.2, the outskirts of
elliptical galaxies are typically bluer than their central regions. In the absence of dust, these color
gradients indicate that the central regions are older and/or more metal rich than the outer regions.

Radial gradients have also been observed in various absorption line indices. Using a small
sample of 13 elliptical and lenticular galaxies, Davies et al. (1993) obtained average gradients of
ΔMg2/Δ logr = −0.059± 0.022 mag and Δ〈Fe〉/Δ logr = −0.38± 0.26Å. From a comparison
with SSP models, these authors inferred an average metallicity gradient of Δ[Fe/H]/Δ logr =
−0.2±0.1, which largely accounts for the color gradients mentioned above. Similar metallicity
gradients were obtained by Trager et al. (2000b), who used population models which allow for
non-solar abundance ratios. In addition, they found that stellar ages are on average ∼ 25% older
in the outer parts, while the amount of α enhancement is nearly constant with radius. Two-
dimensional maps of absorption line indices across the images of elliptical galaxies show a wide
variety of behaviors, suggesting that there are a variety of formation paths which can lead to quite
different metallicity structures (Kuntschner et al., 2006).

13.5.4 Implications for the Formation of Elliptical Galaxies

As discussed above, the stellar populations of elliptical galaxies are characterized by the
following properties:

(i) The evolution of the stellar population of elliptical galaxies is roughly consistent with the
passive evolution of a SSP.

(ii) More massive ellipticals form their stars earlier and over a shorter time scale.
(iii) Ellipticals in dense environments form their stars earlier than their counterparts of the

same stellar mass in low-density environments.
(iv) More massive ellipticals are more enriched in metals.
(v) The inner parts of elliptical galaxies are more enriched in metals, and slightly younger,

than their outer parts.

We now discuss whether these observational facts favor a single, major formation event (a quasi-
monolithic collapse), or formation in diverse sites and assembly over an extended period, as
expected for hierarchical merging.

(a) The Monolithic Collapse Scenario In the monolithic collapse scenario, elliptical galaxies
are assumed to form the majority of their stars in a single burst of star formation and to evolve
primarily passively thereafter. This is a particularly simple model which naturally accounts for
some of the characteristic properties of the star-formation histories mentioned above. On the
other hand, this scenario lacks a natural explanation for the mass and environment dependencies
of the observed star-formation histories, and it is inconsistent with the observed abundances and
sizes of z ∼ 1 ellipticals which appears several times smaller than today.
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If star formation were to proceed to completion according to a closed-box model (see §10.4.2),
then the observed trend of metallicity with velocity dispersion would be difficult to establish. On
the other hand, in the outflow model discussed in §10.4.3, star formation stops when the gas
is exhausted, i.e. when M� = Mtot = Mtot(0)/(1 +α). The mean stellar metallicity at this final
stage is

Z� =
1+α

Mtot(0)

∫ ∞

0
Z M�(Z)dZ =

yZ

1+α
, (13.76)

where the second equation follows from differentiating Eq. (10.131). Thus, the average stellar
metallicity is lower for systems where the gas outflow caused by star formation is more effective
(i.e. where α has a larger value). Hence, what is required is a mechanism that can naturally
explain a more pronounced outflow in less massive galaxies. As first postulated by Mathews &
Baker (1971), the ISM of an elliptical galaxy can be heated significantly by supernova explosions
and be driven out of the galaxy in a galactic wind once the thermal energy of the gas exceeds its
gravitational binding energy. Larson (1974b) noted that the binding energy per unit gas mass is
higher in more massive galaxies, and that more massive galaxies can therefore retain their gas for
a longer period so as to attain a higher metallicity (see also Dekel & Silk, 1986). Once specific
assumptions are made regarding the star-formation law and the density profiles of stars, gas and
dark matter, one can work out the details of the galactic wind (see §8.6), and, in combination with
the chemical evolution models described in §10.4.3, predict the chemical composition of the final
galaxy. Such calculations have been carried out by a number of authors (e.g. Arimoto & Yoshii,
1987; Matteucci, 1992; Gibson, 1997), who have shown that monolithic collapse, in combination
with this classic wind model, is able to explain the observed relation between metallicity and
velocity dispersion.

As we have seen in §13.3.2, in order for the monolithic collapse scenario to be consistent
with the observed sizes of elliptical galaxies, the original collapse needs to be extremely dissi-
pative. This dissipation naturally leads to the formation of radial gradients in the metallicities
and ages of the resulting stellar populations. The idea is that stars begin to form everywhere dur-
ing the collapse and remain in orbit with little net inward motion, whereas the gas continues to
sink towards the center due to dissipation, and is enriched by the evolving stars. Consequently,
the stars that form late at the center of the galaxy are more metal-enriched, and somewhat
younger, than those that formed earlier in the outskirts. Detailed calculations of this mech-
anism have typically produced metallicity gradients Δ[Z/H]/Δ logr ∼ −1, much steeper than
observed (e.g. Larson, 1974a, 1975). To alleviate this problem, Carlberg (1984) suggested that
the pressure associated with the energy output from supernova explosions during the collapse
may reduce the gas inflow rate. This reduces the metallicity gradient to Δ[Z/H]/Δ logr ∼−0.5,
which is still somewhat too steep compared to the data. In addition, galactic winds may also
create radial gradients. Since the escape velocity of a galaxy is lower at larger radii, a galac-
tic wind is expected to occur earlier in the outer regions of a galaxy. As the star-formation rate
is expected to be substantially reduced after the onset of the wind, stars in the outer region
will have formed from gas which is less enriched by the evolving stars and thus have lower
metallicity. Detailed calculations of this kind of wind models show that this effect by itself is
already sufficient to reproduce the metallicity gradients observed (e.g. Martinelli et al., 1998).
Thus, overall monolithic collapse models appear to produce metallicity gradients that are too
steep.

(b) The Hierarchical Merger Scenario In the hierarchical merger scenario, the assembly of
elliptical galaxies involves the merging of two or more progenitor galaxies. Since these progen-
itors have evolved largely independently of each other, and may have formed their stars over
extended periods of time, and since merging is an ongoing process, one expects the result-
ing ellipticals to contain stars of different ages. At first sight, this seems inconsistent with the
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data which favors passive evolution of a SSP. However, there are two caveats. First of all, if
most mergers happen early, and there is little or no subsequent star formation, the resulting
stellar population will be virtually indistinguishable from that of an old SSP, and thus con-
sistent with the data (which in any case often require at least a ‘frosting’ of younger stars).
Secondly, the data suffer from what is called progenitor bias (van Dokkum & Franx, 1996);
if the progenitors of some present-day ellipticals were spirals, these would not be included in
observed samples of high-redshift ellipticals, causing evolution to appear more ‘passive’ than it
actually is.

Detailed galaxy formation models within the hierarchical CDM framework show that, in spite
of their violent formation history, the predicted scatter in the color–magnitude relation of cluster
ellipticals is remarkably small, in reasonable agreement with observations (Kauffmann, 1996b;
Baugh et al., 1996; Kauffmann & Charlot, 1998a; De Lucia et al., 2006). This demonstrates
that the apparent ‘homogeneity’ of the stellar population properties of cluster ellipticals is not
inconsistent with the merger scenario. In addition, these hierarchical models also predict that
ellipticals in dense environments form their stars earlier than their counterparts in low-density
environments, in qualitative agreement with the data. This is a natural outcome of the hierarchical
scenario, because present-day ellipticals in clusters form from the highest peaks in the primordial
density field, leading to an earlier onset of the collapse of their dark matter halos and to more
rapid mergers.

Despite these successes, early models for the formation of (elliptical) galaxies in a hierarchical
universe all predicted that more massive ellipticals should have younger stellar populations, in
clear conflict with the (more recent) data. As we have seen in §7.3.4, a characteristic feature of
hierarchical models is that more massive halos assemble later. Thus, if the star-formation history
of an elliptical galaxy were to trace its assembly history, as is to some extent the case in these
early models, the resulting age–mass trend is inverted with respect to the data. This is why the
observed relation between age and mass is often called ‘antihierarchical’. However, as illustrated
in Fig. 13.4, in the hierarchical merger scenario the star-formation history and assembly history
of an elliptical galaxy can be very different. Although more massive haloes assemble later, their
progenitors form earlier. Since stars are expected to form whenever the progenitors form, and not
only when the progenitors assemble to form the final object, it is more natural for the hierarchical
scenario to predict that more massive galaxies have older stellar populations (Neistein et al.,
2006; Li et al., 2008).

There are two reasons why the early models predicted the opposite trend. First of all, they
considered an Einstein–de Sitter cosmology, in which there is far more merger activity at late
times than in the currently popular ΛCDM cosmologies. Secondly, it has become clear that in
order to be successful, the models need to include a mechanism that can prevent star formation at
late times. One such mechanism, which has received a lot of attention in recent years, is feedback
from an active galactic nucleus (AGN). Although the details of such a feedback mechanism are
still poorly understood (see discussion in §14.4), modern models often incorporate it in such
a way that it prevents hot gas from cooling in massive halos (Springel et al., 2005c; Monaco &
Fontanot, 2005; Bower et al., 2006; Croton et al., 2006). As shown by De Lucia et al. (2006), once
AGN feedback is included, and if one adopts a ΛCDM concordance cosmology, the models can
nicely reproduce the observed trend between mass and stellar age. In addition, they even predict
that more massive ellipticals formed their stars over a shorter time scale, in good qualitative
agreement with observation.

In addition to AGN feedback, these models also include a description for galactic winds
(assumed to be powered by supernovae). Since more massive ellipticals typically have more mas-
sive progenitors, galactic winds have the same impact as in the monolithic collapse model, and
their efficiency can be tuned to yield a mass–metallicity relation that matches the observational
data (e.g. Kauffmann & Charlot, 1998a; De Lucia et al., 2006).
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The age and metallicity gradients observed in elliptical galaxies would be difficult to explain
in the hierarchical formation scenario if mergers would completely randomize the material in
their progenitors, i.e. if the final binding energies of the stars would be uncorrelated with their
binding energies in the progenitors. However, as discussed in §5.5, violent relaxation never pro-
ceeds to completion. Consequently, any gradient present in the progenitors will be retained to
some degree in the merger remnant. Using numerical simulations, White (1980) showed that
any pre-existing gradients are diluted by roughly a factor of two after three merger events. Fur-
thermore, the merger process itself may also create metallicity and/or age gradients. If galactic
winds occurred in the progenitors, stars in more massive progenitors are expected to be more
enriched in metals. Since stars from the more massive progenitor have a tendency to end up at
smaller galactocentric radii in the merger remnant, unequal mass mergers can create metallicity
gradients even if these are not present in the progenitors. Furthermore, as discussed in §13.2.2,
mergers may drive gas to the centers of their remnants to ignite a starburst, thus giving rise to, or
enhancing, an age and/or metallicity gradient.

13.6 Bulges, Dwarf Ellipticals and Dwarf Spheroidals

Thus far our discussion has mainly focused on elliptical galaxies with MB ∼<−18. These form the
bright end of a much larger family of dynamically hot, spheroidal systems which encompasses,
in addition to elliptical galaxies, the bulges of spiral and S0 galaxies, as well as dwarf ellipticals
(dEs) and dwarf spheroidals (dSphs).

Fig. 13.9 shows the distribution of various classes of dynamically hot galaxies in the κ-space
(see §13.4.2a). Note that we have split the elliptical population into bright ellipticals (MB ≤
−20.5) and those with intermediate luminosities (−20.5 < MB ≤ −18.5). This roughly repre-
sents a separation of boxy, velocity-dispersion supported systems from disky, rotation supported
systems. The (κ1,κ3) plane (upper panel) is an almost edge-on view of the fundamental plane
(FP). Except for the dSphs, all systems seem to roughly obey the same FP. Recall that both
the brightest ellipticals and the dEs are (mainly) supported by anisotropic velocity dispersion,
while the galaxies with intermediate luminosities are mainly rotationally flattened. Yet, they all
roughly populate the same FP, although the dEs tend to have a higher FP zeropoint than the over-
all population. As discussed in Bender et al. (1992), this result most likely indicates that dEs have
somewhat higher mass-to-light ratios than their more massive counterparts. This trend continues
to lower κ1, i.e. towards the dSphs, where galaxies lie well above the FP relation defined by the
overall population. Indeed, dSphs are known to have extremely high mass-to-light ratios, and
their dynamics are almost completely dominated by the dark matter halos in which they reside
(e.g. Mateo, 1998).

The lower panel of Fig. 13.9 shows the distribution of dynamically hot galaxies in the (κ1,κ2)
plane, which is an almost face-on view of the FP. Note that the ellipticals (both bright and inter-
mediate) and bulges form a single smooth sequence in this plane. In fact, as shown in §2.3.3,
ellipticals of intermediate luminosity and (massive) bulges share many characteristics and seem
to form a smooth, continuous sequence in bulge-to-disk ratio, suggesting that they may have been
formed by the same mechanism. On the other hand, the dynamically hot dwarf galaxies (dEs and
dSphs) populate a sequence in the (κ1,κ2) space almost perpendicular to that populated by the
ellipticals and bulges. This is clearly due to the fact that the surface brightness of dwarf systems
increases with increasing luminosity, while ellipticals and bulges show the opposite trend (see
§2.3.2a).

If it were not for the bulges, one could argue that the ellipticals of intermediate luminosity
actually occupy the same sequence as the dwarf galaxies, and that it is only the brightest ellipti-
cals that seem to deviate from this sequence (see also the discussion in §2.3.5). However, once
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Fig. 13.9. The distribution of dynamically hot galaxies in κ space. The upper and lower panels show the
edge-on and face-on views of the (fundamental) plane populated by these systems. Galaxies are split in five
subclasses as indicated. Note that dwarf galaxies (dEs + dSphs) occupy a different locus in the face-on
projection (κ1,κ2) than that occupied by ellipticals and bulges. The dashed line in the upper panel indicates
the FP of Virgo ellipticals (κ3 = 0.15κ1 +0.36) and is shown for comparison. [Based on data published in
Bender et al. (1992)]

the bulges are taken into account, there seems to be an indication that dwarf galaxies occupy
a sequence distinct from that of the other dynamically hot systems. We do caution, however,
that the κ parameters of the bulges may be significantly more uncertain than those for the
other systems due to the larger than average measurement errors associated with the bulge–disk
decomposition (see §2.3.3b).

13.6.1 The Formation of Galactic Bulges

As briefly mentioned in §2.3.3, massive bulges, which are predominantly found in S0 and
Sa galaxies, share many properties with ellipticals of intermediate luminosities (see Wyse
et al., 1997, for a review). In particular, massive bulges are consistent with being flattened
by rotation (Fig. 2.16), and the best-fit Sérsic parameter for their surface brightness profiles
scales with luminosity in the same way as for ellipticals (Fig. 2.13). In addition, massive
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bulges and ellipticals obey similar color–magnitude relations (Balcells & Peletier, 1994), similar
metallicity–luminosity relations (Jablonka et al., 1996), similar fundamental plane relations (see
Fig. 13.9) and the same MBH-σ relation (see §13.1.6). All this suggests that massive bulges form
in the same way as ellipticals of intermediate luminosity (i.e. most likely via the merging of gas-
rich progenitor galaxies). Whether they end up as bulges or as (disky) ellipticals just depends on
the size and mass of the disk that manages to survive the merger, or that manages to grow after
the merger due to the accretion of new gas (e.g. Kauffmann et al., 1993; Baugh et al., 1996). In
this picture, early-type disk galaxies, S0s and disky ellipticals are all part of the same family,
and represent a sequence of decreasing disk-to-bulge ratio. As described in §13.2.2, such forma-
tion of bulges via major mergers fits nicely in the framework of hierarchical structure formation.
However, it does not provide a natural explanation of why the effective radii of bulges are always
of the order of 20% of the disk scale length (see §2.3.3), nor does it explain why the colors of
bulge and central disk are so similar. It remains to be seen whether or not these observations pose
a serious challenge to this picture.

It is often assumed that small bulges, which are predominantly found in late-type spiral galax-
ies, form in a different fashion than their more massive counterparts. This is motivated by the
fact that the properties of small bulges are more reminiscent of disks than of ellipticals. Their
surface brightness profiles are close to exponential, and their ratios of vm/σ are significantly
higher than expected for an isotropic oblate rotator (Kormendy & Kennicutt, 2004). As shown in
Fig. 13.3, this latter property indicates that the system must be highly flattened intrinsically (i.e.
disk-like). Furthermore, in late-type disk galaxies seen close to edge-on, the bulge component
often has a boxy or peanut shape. These bulges are often called ‘pseudo-bulges’, to differentiate
them from the ‘classical’ bulges that are more elliptical-like. It is generally believed that pseudo-
bulges form via secular evolution from the disk component. As discussed in §11.5.4, bars and
spiral arms can rearrange angular momentum in disk galaxies, which may result in the forma-
tion of a central mass concentration. When this central disk material is kinematically heated in
the vertical direction, for example via the bending instability, it may result in the formation of a
peanut-shaped bulge.

A merit of this scenario is that it explains naturally why the colors of bulges are very similar
to those of the inner disk. Support also comes from numerical simulations, which show that
angular momentum redistribution in disk galaxies may indeed result in the formation of bulges
with close to exponential surface brightness profiles, and with bulge-to-disk size ratios that are in
good agreement with observations (e.g. Pfenniger & Friedli, 1991; Debattista et al., 2006). The
simulations even show that the angular momentum transfer can create outer breaks in the surface
density distributions of the disks as seen in real disk galaxies (§2.3.3). However, it should be
emphasized that, although secular evolution can indeed transfer mass towards the center, there is
no reason to believe that disks should form as pure exponentials. Indeed, as discussed in §11.4, it
may well be that disks form already with an ‘excess’ of low angular momentum material in the
central part. Hence, pseudo-bulges may well be a direct outcome of disk formation, without the
additional need for secular evolution (e.g. van den Bosch, 1998).

A final process that may play a role in bulge building is the accretion of satellite galaxies
and/or globular clusters. As discussed in Chapter 12, dynamical friction causes satellite galaxies
and globular clusters to transfer their orbital energy and angular momentum to the dark matter,
and thus to sink to the center of the potential well. If sufficiently dense, they can survive complete
tidal disruption before reaching the center, thus giving rise to a bulge component, or adding mass
to a pre-existing bulge. In addition to being sufficiently dense, they also need to have masses
in a fairly restricted range to form a bulge. If the mass of the satellite is too low, the dynamical
friction time scale will be too long to bring it to the center. If too massive, the satellite will destroy
the disk component, which basically puts the accretion in the major-merger regime. Numerical
simulations show that when the mass of the satellite is of the order of 10% of the disk, it can sink
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to the center of the potential well in a few Gyr (e.g. Walker et al., 1996). Aguerri et al. (2001)
have shown that the accretion of multiple satellite galaxies may even create a relation between the
bulge mass and the best-fit Sérsic profile n that is in good agreement with the observed relation.
In addition to building a bulge, this process also causes a significant modification of the disk
component. Dynamical friction can transport part of the orbital energy and angular momentum
of the satellite(s) to the disk stars, causing an increase of both the scale length and scale height.
The formation of the bulge may thus be intimately coupled to the creation of the thick disk.
Whether or not this mechanism can explain the fact that the bulge-to-disk size ratio is roughly
independent of Hubble type remains to be seen.

To summarize, there are multiple processes that may be responsible for the formation of
bulges. It is almost certain that each of these processes is at work; what remains unclear, how-
ever, is what their relative importance is as a function of the various properties of the bulges, and
whether such a hybrid scenario for bulge formation can match the data.

13.6.2 The Formation of Dwarf Ellipticals

It is tempting, and natural, to envision that dEs form in the same way as their more massive
counterparts, namely via the merger scenario discussed in §13.2.2. The only difference with
respect to the regular ellipticals is then simply that the progenitors of dEs are dIrrs rather than the
more luminous spirals. In this scenario, the lower metallicities and lower surface densities of dEs
compared to regular ellipticals simply reflect the lower metallicities and lower surface densities
of their progenitor galaxies, which in turn can be explained by assuming that the feedback from
supernova results in a relatively low efficiency of star formation and chemical enrichment in low-
mass halos (Larson, 1974b; Dekel & Silk, 1986; Vader, 1986; Yoshii & Arimoto, 1987; Dekel &
Woo, 2003, see also §8.6.3).

A prediction of this scenario is that the majority of dEs should reside in low-mass halos, and
so should be less strongly clustered than more massive ellipticals. This is in violent disagreement
with data from large galaxy redshift surveys, which show that faint red galaxies are as strongly
clustered as the most massive ellipticals (e.g. Norberg et al., 2002a). Indeed, dEs are preferen-
tially found in dense cluster environments to the extent that there are few, if any, examples of
isolated dEs (Binggeli et al., 1987; Wang et al., 2008c). Another problem with the simple merger
scenario is that, as mentioned in §13.1.3, the majority of dEs have kinematics more akin to that
of bright ellipticals rather than of ellipticals of intermediate luminosity: they are supported by
anisotropic velocity dispersion rather than rotation. It is unclear why mergers between two dIrrs,
which are gas rich, would result in velocity-dispersion supported systems. After all, as discussed
in §13.2.2, simulations of mergers between gas-rich disk galaxies typically result in a disky
elliptical with significant rotation.

Because dEs seem to be restricted to massive clusters, it is often suggested that they are the
remnants of a population of progenitor galaxies that are transformed into dEs via cluster-specific
processes. Indeed, the spatial and velocity distributions of cluster dEs support the notion that
they have been accreted into the cluster fairly recently (e.g. Bothun & Mould, 1988; Conselice
et al., 2001). In what follows we describe three different formation scenarios for dEs and dSphs
in clusters.

(a) Gas Stripping (dIrr → dE/dSph) In this scenario, originally proposed by Lin & Faber
(1983), it is assumed that the progenitors of dEs and dSphs are dIrrs that had their gas stripped due
to ram pressure by the intracluster medium after they were accreted into the cluster. This scenario
is supported by recent observations which indicate that a significant fraction of (relatively bright)
dEs contain (or are) stellar disks (Lisker et al., 2006, and references therein). This scenario can
also accommodate the stellar population properties of dEs, and yields a natural explanation for
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why they have surface brightness profiles that are close to exponential. However, it faces two
important challenges. First of all, since gas stripping should not have a dramatic impact on the
kinematics of the stars, this model predicts that dEs and dSphs should be supported by rotation,
in clear contradiction with the observed kinematics (see §13.1.3). Secondly, since it is unlikely
that ram-pressure stripping promotes the formation of globular clusters, dEs are expected to have
a similar specific frequency of globulars, SN, as dIrrs. However, as shown by Durrell et al. (1996)
and Miller et al. (1998), dEs have SN = 5.2±1.1, comparable to that of more massive ellipticals
but much larger than the typical value, SN < 1, for spirals and dIrrs (see §13.3.4). The removal
of gas can result in a quenching of star formation, and thus in a (passive) fading of the galaxy,
which boosts SN under the conservation of the number of globulars. However, the amount of
fading expected is not sufficient to explain the high values of SN observed.

(b) Galaxy Harassment (S → dE/dSph) As discussed in §12.5.1, high-speed impulsive
encounters with other cluster galaxies can transform a low surface-brightness disk galaxy into a
dE or dSph. An interesting aspect of this harassment scenario is that the progenitor population
of dEs might be the blue Butcher–Oemler disk galaxies seen in clusters at moderate redshifts
(Moore et al., 1996, see also §2.5.1). Although this process tends to increase the velocity dis-
persion of the harassed system, simulations suggest that a significant fraction of the progenitor’s
rotation is preserved. Hence, it seems unlikely that harassment can account for the large fraction
of dEs that show absolutely no sign of rotation. In addition, this scenario has the same problem
as the gas-stripping scenario in explaining the high specific frequency of globular clusters, unless
their formation is somehow promoted by the harassment.

(c) Tidal Stripping (E → dE/dSph) In this scenario dEs and dSphs are the remnants of more
massive ellipticals that have been tidally stripped by the gravitational potential of the cluster
and its massive member galaxies. Of all scenarios, this is perhaps the least likely one, as it
faces two important problems. First of all, it would predict that the dwarfs have metallicities and
chemical abundances similar to those of more massive ellipticals, which is clearly inconsistent
with the data (except for special cases like M 32). Secondly, since tidal stripping should not
impact the nuclear black hole, the dEs should have SMBHs with masses that would place them
far off the MBH-σ relation. This is clearly in contradiction with kinematic data, which excludes
that dEs harbor SMBHs more massive than ∼ 107 M� (Geha et al., 2002).

To summarize, there is currently no single formation model for dwarf ellipticals that can
explain all their observed properties. It may well be that there are multiple formation channels
leading to the formation of dEs and/or dSphs. For example, there are indications that nucleated
and non-nucleated dEs have different spatial distributions in clusters (Ferguson & Sandage, 1989;
Lisker et al., 2007) and different SN (Miller et al., 1998). On the other hand, nucleated and non-
nucleated dEs are remarkably similar in terms of their position in the FP, their morphologies, and
their stellar populations. Hence, how exactly dwarf ellipticals have formed is still an unsolved
problem.
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Active Galaxies

Our discussion so far has mainly focused on the formation and evolution of ‘normal’ galaxies,
the ones whose emission is dominated by stars. Since stellar atmospheres are basically in hydro-
dynamical and thermal equilibrium, this emission is predominantly thermal radiation whose
spectrum is roughly a sum of the Planck spectra corresponding to the temperatures of all the
individual stars in the galaxy. Since the temperatures of stars only cover a relatively narrow
range, 3,000K ∼< T ∼< 40,000K, and since the Planck spectrum for a given temperature is fairly
narrow, the spectrum of a normal galaxy is largely confined to the wavelength range between
∼ 4,000Å and ∼ 20,000Å. If the galaxy is actively forming stars and dusty, the emission from
young hot stars can extend this range to smaller wavelengths, while thermal emission from the
dust (heated by these young stars) extends it to the far-infrared.

A small, but important, fraction of all galaxies have a spectral energy distribution that is much
broader than what is expected from a collection of stars, gas and dust. They typically emit over
the full wavelength range from the radio to the X-ray, suggesting that the radiation is non-thermal.
In addition, the optical/UV parts of their spectra often reveal numerous strong and very broad
emission lines. These galaxies are referred to as active galaxies, and examples include Seyfert
galaxies, radio galaxies, and quasars. The non-thermal emission of active galaxies in general
emanates from a very small central region, often less than a few parsec across, which is called
the active galactic nucleus (AGN).1 The amazing aspect of an AGN is that, despite its extremely
small size, the (non-thermal) luminosity can exceed that of the host galaxy, sometimes by as
much as a factor of a thousand.

Understanding the properties and formation of active galaxies is an important part of galaxy
formation. First of all, active galaxies form an important population of galaxies, and so any
theory of galaxy formation should also address the formation of AGN. Secondly, as discussed
in §14.2 below, it is believed that AGN are powered by matter accreting onto a supermassive
black hole (SMBH). The observed correlation between the masses of SMBHs and the masses of
their host galaxies, shown in Fig. 2.17, strongly suggests that the formation of SMBHs is closely
connected to galaxy formation. Furthermore, the fact that virtually all spheroids are found to
harbor a SMBH suggests that many, if not all, normal galaxies may have experienced an active
phase in their past. Finally, AGN are powerful energy sources, and their energy feedback may
have important impact on the intergalactic medium as well as on the formation and evolution
of galaxies. The effects of such feedback must be taken into account in any theory of galaxy
formation and evolution.

In §14.1 we start with a summary of the properties of different classes of active galaxies. Theo-
retical models, based on the paradigm that AGN are powered by SMBHs, are described in §14.2,
together with a brief description of the various emission mechanisms. In §14.3, the evolution

1 The term AGN is also often used to denote active galaxies, although strictly speaking an active galaxy also includes
the host galaxy.
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Table 14.1. Local number densities.

Type of object Number density [Mpc−3]

Field galaxies 10−1

Luminous spirals 10−2

Seyfert galaxies 10−4

Radio galaxies 10−6

QSOs 10−7

Radio-loud quasars 10−9

of the AGN population is discussed in connection to our current ideas of galaxy formation.
Finally, in §14.4, we discuss the feedback effects of the AGN population on galaxy formation.
The presentation in this chapter serves only as a brief introduction to the topic of active galaxies,
emphasizing the connections to galaxy formation and evolution. Readers who want to learn more
about AGN and the related physics are referred to the excellent text books and monographs by
Robson (1996), Krolik (1998) and Kembhavi & Narlikar (1999).

14.1 The Population of Active Galactic Nuclei

Roughly speaking, an object is defined to be an AGN if one or more of the following properties
are observed:

(i) a compact nuclear region much brighter than a region of the same size in a normal galaxy;
(ii) non-stellar (non-thermal) continuum emission;

(iii) strong emission lines;
(iv) variability in continuum emission and/or in emission lines on relatively short time scales.

The observed AGN population is classified into subgroups according to their observational prop-
erties. As with the classification of galaxies, some elements of this classification are mainly
historical and do not necessarily differentiate the underlying physical processes. In the follow-
ing, we give a brief overview of the different classes of AGN. Table 14.1 gives a rough idea of
the number densities of the objects we are concerned with. Clearly, the AGN population only
makes up a relatively minor fraction of all galaxies observed at the present time. However, as we
will see, it is believed that AGN have relatively short lifetimes, and it is well possible that many,
if not all galaxies, have gone through one or more AGN phases. This is supported by the fact that
virtually all spheroids seem to harbor a SMBH.

(a) Seyfert Galaxies Seyfert galaxies, named after their discoverer Carl Seyfert (1943), are
active galaxies characterized by spiral-like morphologies with bright star-like nuclei. Spectro-
scopic observations show that the spectra of Seyfert nuclei have non-thermal continua and
contain strong and broad emission lines of high excitation (see Fig. 14.1). Moreover, in many
Seyfert galaxies, the radiation from the nuclei can vary by a factor of more than two in less than
a year, indicating that the sizes of these nuclei are smaller than one light year across (see §14.2.8).

Seyfert galaxies are subdivided into two categories, Seyfert 1 and Seyfert 2, according to the
widths of their emission lines. In Seyfert 1 galaxies, the permitted lines, mainly from hydrogen,
are very broad with full widths at half maxima (FWHM) corresponding to velocities in the range
1000–5000kms−1. The forbidden lines (see §14.2.4 for a definition), such as [OIII], are much
narrower, with FWHM corresponding to velocities of a few hundred kms−1. In Seyfert 2 galax-
ies, on the other hand, both permitted and forbidden lines have narrow velocity widths, typically
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Fig. 14.1. A composite spectrum of QSOs revealing the typical non-thermal continuum and various emis-
sion lines. Lines in brackets are forbidden lines, those in semibrackets are semiforbidden lines, and lines
without brackets are permitted lines. Note that the permitted lines are much broader than the forbidden lines,
as is typical for QSOs and Seyfert 1 galaxies. [Courtesy of C. Foltz and P. Hewett, based on an extension of
the data published in Francis et al. (1991)]

of a few hundred kms−1. In general, Seyfert 1 galaxies have stronger non-stellar continua and
stronger hard X-ray emission than Seyfert 2 galaxies.

The linewidths reflect the velocities of the emitting gas clouds. The large difference in the
FWHM between the permitted and forbidden lines in Seyfert 1 galaxies indicate that these two
types of emission lines are probably produced in different regions, while in Seyfert 2 galaxies
both permitted and forbidden lines are likely to emanate from the same region. In general, very
broad lines, with FWHM larger than 103 kms−1, are said to come from a broad-line region, while
lines with smaller FWHM are said to arise from a narrow-line region. As we will see §14.2.7, the
lack of broad emission lines in Seyfert 2 does not necessarily imply the absence of a broad-line
region; it may merely reflect that this region is blocked from our view.

A class of active galaxies related to Seyferts are the LINERs (low-ionization nuclear emission
line regions). These objects have properties similar to those of Seyfert 2 galaxies, except that
their forbidden lines tend to arise from less ionized atoms. LINERs were initially thought of as
a separate class of AGN, but are nowadays most often considered as a low-luminosity extension
of Seyferts.

(b) Radio Galaxies Radio galaxies are a class of active galaxies characterized by relatively
strong radio emission. Since normal spirals often have weak radio emission (mainly due to
supernova remnants), with power P1.4GHz ∼< 2× 1023WHz−1 at ∼ 1.4GHz, radio galaxies are
commonly defined as galaxies with P1.4GHz larger than this. Radio galaxies were initially iden-
tified in radio surveys, such as the well-known third survey carried out at Cambridge (the 3C
catalog; see Edge et al., 1959). Over time almost all 3C objects have been unambiguously iden-
tified with optical sources, which has revealed that almost all host galaxies of radio AGN are
ellipticals.
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Fig. 14.2. Radio image of 3C175 (a prototypical FR II radio galaxy) at 4.9 GHz (see Bridle et al., 1994).
The source has a redshift z = 0.768, and the overall linear size of the image is 212h−1kpc. The source shows
double lobes with prominent hot spots, a narrow jet, but no counterjet. [NASA/courtesy of nasaimages.org]

The spectra of the optical sources associated with radio galaxies typically reveal strong emis-
sion lines. Similar to Seyfert galaxies, one distinguishes radio galaxies between broad-line radio
galaxies (BLRGs) and narrow-line radio galaxies (NLRGs). In principle BLRGs and NLRGs can
be considered as radio-loud Seyfert 1 and Seyfert 2 galaxies, respectively, albeit with a different
morphology of the host galaxy.

In addition to the classification in BLRGs and NLRGs based on their optical spectra, radio
galaxies are also distinguished based on their radio morphology. Radio maps of powerful radio
galaxies typically reveal a double-lobed structure extending to several hundred kiloparsecs or
even megaparsecs from the central nucleus (Fig. 14.2) that coincides with the center of the host
galaxy. Often jet-like structures are observed to stretch from the compact core towards the lobes,
suggesting that these jets are responsible for transporting energy from the core out into the radio
lobes. The jets are rarely symmetric: often only one jet is observed, and in sources with two jets,
one is usually significantly brighter than the other. For weak radio galaxies, the radio emission
has a more irregular and more concentrated structure. Based on radio morphology Fanaroff &
Riley (1974) divided radio galaxies into two subgroups. In class FR I, the distance between the
two most intense spots on either side of the nucleus (called ‘hot spots’) is smaller than half the
overall source size, while in class FR II this distance is larger. It turns out that class FR II are
powerful radio sources, with P1.4GHz ∼> 4×1025WHz−1, while class FR I typically have weaker
radio power.

On the basis of their radio spectral properties, radio galaxies are also subdivided into ‘steep-
spectrum’ and ‘flat-spectrum’ sources. This is done by fitting the flux at ∼ 1GHz with a power
law, Fν ∝ ν−α , and the division is made at α = 0.4. Flat-spectrum sources tend to be compact
and show observable variability, while steep-spectrum sources are usually extended.

(c) Quasars and QSOs The name quasar (from Quasi-Stellar Radio Source) was originally
used for the optical identifications of compact radio sources with Seyfert-like spectra. The radio
characteristics of quasars are similar to those of powerful radio sources, but their optical images
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are unresolved (at θ ∼ 1′′), luminous (MB ∼< −21.5 + 5logh) nuclei that are unusually blue and
often variable.

Radio observations of high spatial resolution have shown that flat-spectrum quasars often con-
tain very compact nuclei (∼ 10−3 arcsec). Some of these have elongated structure (jets) consisting
of two or more closely separated components whose relative motion to each other can be detected
on time scales of a few years. In some cases, the apparent velocity of separation in the transverse
direction is inferred to exceed the speed of light. Such ‘superluminal’ motion is likely due to
relativistic jets lying almost along the line-of-sight (see §14.2.5).

The extremely blue colors of quasars means they can also be detected using optical photom-
etry only, without the need to first detect them in the radio. This color-selection technique has
proved very successful, and resulted in the detection of many intrinsically bright, high-redshift
sources with broad emission lines. It came somewhat as a surprise when many of these sources
turned out to be invisible in the radio. Originally, the term quasi-stellar object (QSO) was used to
refer to these radio-quiet quasar analogs, which were found to outnumber the radio-loud quasars
by a factor 10 to 100. Because of their similarities in optical properties, it has become common
practice to use the terms ‘QSO’ and ‘quasar’ without distinction. When referring to their radio
properties, the adjectives ‘radio-quiet’ and ‘radio-loud’ are used, giving rise to confusing nomen-
clature such as ‘radio-loud QSOs’ and ‘radio-quiet quasars’. At the risk of confusing the reader,
we also use this muddled nomenclature throughout this book.

The optical spectrum of a quasar is very similar to that of a Seyfert 1 galaxy. Formally these
two classes of AGN are separated at an absolute magnitude of MB = −21.5 + 5logh, although
this distinction is mainly historical, as there seem to be no fundamental differences between
quasars and Seyfert 1 galaxies, other than their AGN luminosities. QSOs are the most luminous
AGNs, with luminosities as high as a thousand times that of an L∗ galaxy. Consequently, being
outshined by the QSO, their host galaxies are extremely difficult to detect. Nevertheless, largely
due to the unprecedented spatial resolution achievable with the HST, host galaxies of several low-
redshift QSOs have now been observed. Although in many cases the images are not sufficiently
clear to reveal the details about their morphologies, they suggest that the host galaxies of low-
redshift QSOs have diverse properties; while some appear to be normal spirals and ellipticals,
others are strongly disturbed or interacting systems (Bahcall et al., 1997).

(d) BL Lac Objects and OVVs A special subclass of quasars are the optically violently vari-
ables (or OVVs for short), which are characterized by very strong and rapid optical variability.
The optical flux of OVVs can vary by a significant fraction in less than one day, suggesting
that the regions from which the optical emission emanates are less than 1 light-day across. In
addition to their strong variability, OVVs are also characterized by a relatively strong polariza-
tion of the optical light, typically at the level of a few percent (compared to ∼< 1% for regular
quasars). OVVs are also variable at other wavelengths, with the time scale of variability typically
becoming smaller towards shorter wavelengths.

A class of objects closely related to OVVs are the BL Lac objects, named after their prototypi-
cal source BL Lacertae, originally believed to be a variable star (which explains its stellar name).
Like OVVs, BL Lac objects are strong radio emitters, highly variable in optical and X-ray emis-
sion, and with strongly polarized radio and optical emission. But unlike OVVs, BL Lac objects
reveal no emission lines; their spectra are featureless power laws. The similarity of their radio
properties with flat-spectrum radio quasars suggests that BL Lac objects are probably associated
with elliptical galaxies. Indeed, in a number of cases, faint surrounding nebulosity is detected
with a surface brightness profile similar to that of an elliptical galaxy. However, there are also
cases where the profile of the nebulosity is disk-like.

Although the distinction between BL Lac objects and OVVs is that the latter reveal broad
emission lines which are absent in the former, this difference may well be a reflection of the
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intrinsic variability of these sources: the emission lines may be visible when the continuum
is relatively faint, but become undetectable if the continuum is bright. Consequently, BL Lac
objects and OVVs are often grouped together in a single class known as blazars.

14.2 The Supermassive Black Hole Paradigm

In terms of energetics, an AGN is extraordinary in that it emits a large amount of energy from
a very small region. An obvious question is how this energy is generated. The small size of
the emission region and the large amount of energy output suggest that the central engine
must be compact and have relatively large mass. It is now generally believed that this central
engine is a supermassive black hole (SMBH), an idea originally proposed by Salpeter (1964),
Zel’dovich & Novikov (1964) and Lynden-Bell (1969). In this section, we describe the current
paradigm for understanding the properties of AGN. In addition to the central engine, the black
hole (BH), the standard AGN model also assumes the existence of other components, such as
broad and narrow line regions (BLR and NLR), an accretion disk, and jets (see Fig. 14.3). The
roles of these components for interpreting the observational properties of AGN are discussed
in the following subsections. Observational support for the existence of SMBHs is presented in
§14.2.8.

14.2.1 The Central Engine

In the SMBH paradigm, an AGN is assumed to be powered by a SMBH accreting gas, and the
energy source is the gravitational potential of the central black hole. To comprehend the energy
scale involved with such accretion, consider a simple spherical model in which a central source
with luminosity L is surrounded by gas with density distribution ρ(r). The flux at a radius r from
the source is L/(4πr2) and the radiation pressure is

Prad(r) =
L

4πr2c
. (14.1)

If the gas is ionized, the pressure force on a unit volume of gas due to the scattering of photons
by electrons is

Frad = σTPrad(r)ne(r)r̂, (14.2)

Fig. 14.3. Different components of an AGN in the standard paradigm.
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where σT is the Thomson scattering cross-section, and ne(r) is the electron density at radius r.
In order for the gas not to be dispersed quickly, this pressure force must be smaller than the
gravitational force on the gas, i.e.

|Frad| ≤ Fgrav =
GMBHρ(r)

r2 . (14.3)

This defines a maximum luminosity (the Eddington luminosity) for a given black hole MBH:

LEdd ≡ 4πGcmp

σT
MBH ≈ 1.28×1046M8 ergs−1 (M8 ≡ MBH/108 M�), (14.4)

with mp the proton mass. This Eddington luminosity is the largest possible luminosity that can
be achieved by spherical accretion. The above relation can be inverted to give a minimum central
mass required to achieve a given luminosity:

MEdd = 8×107L46 M�, [L46 ≡ L/(1046 ergs−1)]. (14.5)

From these simple considerations, we see that a bright quasar with a luminosity L ∼ 1046 ergs−1

may be powered by a black hole with a mass MBH ∼ 108 M�.
What kind of mass accretion rate is required in order to power an AGN? To answer this ques-

tion, we note that, under the assumption that the luminosity is powered by the gravitational
potential of the central BH, the accretion luminosity can be written as

L =
GMBH

r
ṀBH, (14.6)

where ṀBH is the mass accretion rate, i.e. the rate at which mass crosses a shell of radius r.
From this we see that the efficiency at which the rest mass of accreted material is converted into
radiation is

εr ≡ L

ṀBHc2
=

1
2

rS

r
, (14.7)

where

rS =
2GMBH

c2 ≈ 10−2M8 light-days (14.8)

is the Schwarzschild radius of a black hole with mass MBH. As we shall see below, the bulk
of the continuum radiation (which is dominated by photons with frequencies around the blue
bump; see Fig. 14.4) originates from r ∼ 5rS. It then follows that εr ∼ 0.1. This is a very high
efficiency, much higher than the efficiency with which hydrogen is burned into helium, which
is only ∼ 0.007. With this efficiency, an accretion rate of Ṁ ∼ 2M� yr−1 is required to power a
bright quasar with luminosity L = 1046 ergs−1. In particular, the Eddington luminosity defined
in Eq. (14.4) corresponds to a mass accretion rate

ṀEdd =
LEdd

εrc2 ≈ 2.2M8

( εr

0.1

)−1
M� yr−1, (14.9)

which is the highest possible accretion rate in the simple spherical model. Super-Eddington
accretion is possible if the mass accretion is non-spherical, e.g. primarily in the equatorial plane
of a disk while the radiation escapes from the polar zones.

14.2.2 Accretion Disks

Since the gas to be accreted by a SMBH in general has angular momentum, the accretion is most
likely through a Keplerian disk. If the accretion disk is axisymmetric and thin, the structure of
the disk is described by its surface density Σ(R, t), where R is the radius on the disk. The time
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evolution of Σ(R, t) is governed by the conservations of mass and angular momentum. For a
constant accretion rate, i.e. 2π

∫
Σ̇RdR = ṀBH = constant, conservation of angular momentum

gives

∂Σ
∂ t

= − 1
R
∂
∂R

{
(∂/∂R)

[
νkΣR3 (dω/dR)

]
(d/dR)(R2ω)

}
, (14.10)

where νk is the kinetic viscosity, and ω is the rotation velocity of the gas (see §11.4.2). The
viscosity is thought to be due to turbulence or magnetic stress, but the details are still poorly
understood. Usually a simple prescription proposed by Shakura & Sunyaev (1973) is adopted
(e.g. Pringle, 1981), in which the effective viscosity is assumed to be a constant, α , times the
total internal energy density in the disk. Integrating the above equation twice with respect to R,
we get

2πνkΣR3ω ′ = A− ṀBHR2ω, (14.11)

where a prime denotes derivative with respect to R, and A is independent of R. For a Keplerian
disk, ω = (GMBH/R3)1/2, and

νkΣ=
ṀBH

3π

(
1−
√

Rin

R

)
, (14.12)

where Rin is an inner radius of the accretion disk.
In order to predict the emission properties of an accretion disk, we need to know its tem-

perature structure. Consider a mass element within a ring between R and R + dR. Because of
viscosity and differential rotation, there is angular momentum flow at both the inner radius R and
the outer radius R + dR. The angular-momentum transfer rate at a radius R due to viscosity is
G = 2πR3νkΣω ′, which corresponds to an energy transfer rate Gω . Thus, the total work done on
the material in the ring is (Gω)′dR, and the work done on a unit area is

W =
(Gω)′ΔR
2πRΔR

=
G ′ω+Gω ′

2πR
. (14.13)

The term withω ′ reflects the change of the rotation velocity of the ring due to angular momentum
transfer, while the term containing G ′ describes the energy dissipation in the ring.

Assuming that all the dissipated energy is radiated away at the radius where it is produced
and that the disk is optically thick, so that the dissipated energy is completely thermalized, the
temperature at R is then given by

2σSBT 4(R) =
3GMBHṀBH

4πR3

(
1−
√

Rin

R

)
, (14.14)

where σSB is the Stefan–Boltzmann constant, and the factor 2 on the left-hand side is due to
the fact that the dissipated energy is radiated away from both faces of the disk. The temperature
peaks at R = (7/6)2Rin, while the energy emitted in rings with fixed ΔR peaks at R = (5/4)2Rin.
The total luminosity is L = GMBHṀBH/Rin, and half of the energy is radiated within a radius of
∼ 8Rin. Clearly, most emission emanates from the inner disk where the temperature is also the
highest. If Rin ∼ rS, then L ∼ ṀBHc2/4.

Outside Rin, the temperature is

T (R) ∼
(

3GMBHṀBH

8πσSBr3
S

)1/4( R
rS

)−3/4

≈ 6.3×105
(

ṀBH

ṀEdd

)1/4

M−1/4
8

(
R
rS

)−3/4

K, (14.15)

where εr = 0.1 is assumed. For a disk around a MBH = 108 M� black hole accreting at the Edding-
ton limit, the thermal radiation at a radius not much larger than Rin ∼ rS peaks at a frequency
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ν ∼ 1015 - 1016 Hz. This frequency is similar to that of the blue bump often observed in quasar
continua. It is therefore believed that the blue bump is produced by the accretion disk. Because
of the change of temperature with radius R, the expected spectrum from an accretion disk at
low frequency is actually very different from a thermal spectrum. In the Rayleigh–Jeans limit
(hPν� kBT ), where the Planck function Bν(T ) ∝ ν2T , the spectrum is

Fν ∝ ν2
∫

T (R)RdR ∝ ν1/3, (14.16)

where the second relation uses T ∝ R−3/4, and the integration is from Rin to an outer radius given
by kBT (R) = hPν, beyond which the Rayleigh–Jeans approximation fails.

At small radii, the assumption of a geometrically thin disk is not valid, as the inner disk can
be puffed up either by radiation pressure from the central source or due to insufficient cooling
of the accreted gas. In both cases, a geometrically thick disk may form in the inner part of an
accretion disk. Detailed modeling shows that such a thick disk has a torus-like structure, which
may provide a funnel to collimate the radiation produced in the central region. The pressure of
such collimated radiation may help to produce a collimated jet of material along the funnel, as
seen in some AGN (see Rees, 1984, and references therein).

14.2.3 Continuum Emission

An AGN typically has a very broad spectrum, ranging from the radio all the way to gamma rays
(see Fig. 14.4). To a very rough approximation, the overall spectral energy distribution (SED)
of an AGN can be described by a power law, Fν ∝ ν−α , with 0 ∼< α ∼< 1. A closer examination

Fig. 14.4. The spectrum of 3C273, Fν (upper panel) and νFν (lower panel), showing the large-scale power-
law behavior as well as several pronounced bumps. [Based on data presented in Lichti et al. (1995)]
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reveals that the SED contains depressions and bumps, with the blue bump around ν ∼ 1015–
1016 Hz and the broad bump around ν ∼ 1020–1021 Hz being the most prominent.

The broad energy range observed in an AGN spectrum suggests that a variety of emission
mechanisms is involved. It is generally believed that relativistic electrons play a crucial role
here. To see this, define a ‘brightness temperature’ for a radiation field in terms of its specific
intensity Jν :

Tb ≡ c2Jν
2kBν2 . (14.17)

Inspecting the Planck function Bν(T ) we see that the brightness temperature is the lowest possi-
ble temperature to produce the specific intensity if the radiation field were thermal. For compact
radio sources, the values of Tb can often reach 1011 K, but the amount of gamma-ray emission
corresponding to such high temperatures is not observed. This indicates that the radio emission
is non-thermal. On the other hand, the electrons responsible for the radio emission must each
have an energy of the order kBTb. This is much higher than the rest-mass energy of an electron,
mec2 ≈ 5.8×109kB K, and so the electrons involved must be highly relativistic.

Relativistic electrons in AGN are believed to be generated by the first-order Fermi acceler-
ation in shocks that are likely to form from supersonic flows near the central SMBH. Fermi
acceleration is the acceleration that charged particles undergo when they are reflected by a mov-
ing interstellar magnetic field (Fermi, 1949). In shocks, this process is particularly effective: a
charged particle ahead of the shock front can pass through the shock and then be scattered by
magnetic inhomogeneities behind the shock. The particle gains energy from this bounce and
flies back across the shock, where it can be scattered by magnetic inhomogeneities ahead of the
shock. This enables the particle to bounce back and forth again and again, gaining energy each
time. Because the mean energy gain depends only linearly on the shock velocity, this process is
called first-order Fermi acceleration, and typically results in a power-law energy distribution for
the accelerated particles (Blandford & Eichler, 1987; Jones & Ellison, 1991). The motion of rel-
ativistic electrons with a power-law energy distribution in a magnetic field produces synchrotron
radiation with a power-law spectrum that can cover many decades in frequency in the radio band.
In addition, photons with energies all the way up to the X-ray band can also be generated directly
from relativistic electrons through the inverse Compton process. In what follows we examine in
more detail the continuum to be expected from these two processes.

(a) Synchrotron Emission When a charged particle is accelerated, it radiates photons. In the
instantaneous rest-frame of the charge, the total emitted power is given by Larmor’s formula,

PS =
2q2

3c3 |v̇|2 , (14.18)

where q is the charge of the particle and v̇ is the acceleration in the instantaneous rest-frame. To
obtain the emitted power in the observer’s frame, we seek a form of PS which is invariant under
the Lorentz transformation. In special relativity, the Lorentz-invariant space-time interval is

ds2 = ημνdxμdxν = c2dt2 −dxidxi = c2γ−2dt2, (14.19)

where ημν is the Minkowski metric (see Appendix A), and

γ =
(
1−β 2)−1/2

with β = v/c (14.20)

is the Lorentz factor. From the four-coordinate xμ one can form a four-velocity, Uν = cdxμ/ds,
and a four-acceleration,

aμ ≡ c
dUμ

ds
= γ

dUμ

dt
. (14.21)
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Fig. 14.5. Synchrotron radiation is generated by relativistic electrons spiraling in a magnetic field. The
radiation is beamed into a forward cone with opening angle Δθ ∼ γ−1.

One can then form a Lorentz scalar,

PS =
2q2

3c3 aμaμ , (14.22)

which reduces to Larmor’s formula in the instantaneous rest-frame of the charge. The power PS

in the observer’s frame can be obtained by inserting the expression of aμ into Eq. (14.22):

PS =
2q2

3c

{[
γ

d
dt

(
γ

v
c

)]2

−
(
γ

dγ
dt

)2
}

. (14.23)

Using γ2 = (1− v2/c2) and dγ/dt = γ3(v̇ ·v/c2), we can write

PS =
2q2

3c3 γ
6
[(

v̇ · v
c

)2
+
(

1− v2

c2

)
|v̇|2
]

=
2q2

3c3 γ
6
(
|v̇|2 −|v̇×v/c|2

)
. (14.24)

For synchrotron radiation created by a relativistic electron spiraling in a static magnetic field
B (Fig. 14.5), v̇ = ωB ×v, where the gyrotation frequency of the electron is

ωB = ωL/γ, (14.25)

with ωL ≡ qeB/(mec) the Larmor angular frequency. It then follows that

PS = 2σTcγ2β 2EB sin2α, (14.26)

where α is the angle between v and B, σT is the Thomson cross-section, and EB ≡ B2/8π is the
energy density of the static magnetic field. For an isotropic distribution of relativistic electrons,
the average power is

〈PS〉 = 2σTcγ2β 2EB〈sin2α〉 =
4
3
σTcγ2β 2EB. (14.27)

The synchrotron emission from a relativistic electron is concentrated within a small beam,
with an opening angle Δθ ∼ γ−1, aligned with the instantaneous velocity of the electron
(Fig. 14.5). Thus, as an electron is spiraling in the magnetic field, the radiation signals received
by an observer are short pulses. The width of each pulse and the interval between successive
pulses can be estimated as follows. The time interval for the electron to cover the angle Δθ is
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Δtem = Δθ/ωB ∼ γ−1/ωB. For an observer in the direction n̂, the time interval of being swept by
the beam is

Δtobs ≈
(

dτ
dt

)−1

Δtem = (1−β · n̂)Δtem, (14.28)

where β = v/c, and dτ is the proper time interval for the electron. For γ 	 1 we obtain

Δtobs ∼
[
1−β +(Δθ)2/2

]
Δtem ∼ 1

2γ3ωB
. (14.29)

The time interval between successive pulses is the same as the time of gyration 2π/ωB. Thus, the
observer receives radiation pulses of width ∼ γ−3/2ωB separated with intervals ∼ 2π/ωB. If we
were to Fourier transform the signal, we would see significant power at frequencies all the way
from the fundamental frequency νB = ωB/2π ∝ 1/γ to the high harmonic

νc ≡ ωB

2π
γ3 =

ωL

2π
γ2 ∝ γ2. (14.30)

For given B, the power spectrum depends only on γ , and we can formally write the angle-
averaged power spectrum as

PS(ν;γ)dν =
4
3
σTcγ2β 2EBφ(ν;γ)dν, (14.31)

where φ(ν;γ) is the spectrum shape normalized so that
∫
φ(ν;γ)dν = 1.

If the electrons in a cosmic radio source have some distribution in their energy mec2γ , i.e.
the number density of electrons per unit Lorentz factor is given by some distribution function
N (γ)dγ , we can integrate over the distribution to get the total volume emissivity:

εν =
∫

PS(ν;γ)N (γ)dγ. (14.32)

Based on the discussion given above, we may assume a power-law form for N (γ):

N (γ)dγ = Kγ−p dγ. (14.33)

As an approximation, we treat the spectral emissivity of a single particle by a delta-function
centered on the highest harmonic frequency νc, i.e. we write φ(ν;γ) = δ (ν − νc). This is a
good approximation as long as the width of φ in ν is much narrower than the frequency range
covered by the electron energy distribution. Assuming further that the main contribution to the
total emissivity is from electrons with γ 	 1 so that β = (1− 1/γ2)1/2 ∼ 1, we can write the
volume emissivity as

εν ≈
∫ ∞

1
PS(ν;γ)N (γ)dγ ∼ 2

3
cσTKEBν

−1
L

(
ν

νL

)−s

, (14.34)

where s = (p−1)/2 is the spectral index. The observed spectral index for extended radio sources
is s ∼ 0.7. The corresponding index of the electron energy distribution is p ∼ 2.5, consistent with
what is expected from first-order Fermi acceleration in shocks.

The above result is valid only when the sources are optically thin so that the photons created by
the synchrotron process are emitted without being absorbed and re-emitted by the plasma. How-
ever, this may not be true at low frequencies where emitted photons can be effectively absorbed
by the electrons. The effect of self-absorption on the spectral shape can be obtained using the
radiative transfer equation:

dJν
dx

=
εν
4π

−κνJν , (14.35)
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where Jν is the specific intensity, dx = cdt is the proper length along the path of the light ray, and
κν is the opacity (the fractional decrease of the specific intensity due to the absorption over a unit
of x). Detailed calculations of synchrotron absorption (see Shu, 1991b) show that the opacity of
self-absorption scales as

κν ∝ neB(2+p)/2ν−(4+p)/2, (14.36)

where p is the index in Eq. (14.33). Since p is expected to be larger than −4, a dense source may
become optically thick at low frequencies. For a source with uniform properties, the radiative
transfer equation can be solved to give

Jν = Sν
(
1− e−κνx) , Sν ≡ εν

4πκν
∼
(

m3
ec

qe

)1/2

B−1/2ν5/2. (14.37)

It then follows that

Jν =
{

[ενx/4π] ∝ ν−s (for κνx � 1)
Sν ∝ ν5/2 (for κνx 	 1).

(14.38)

The spectrum is thus peaked at a frequency given by κνx∼ 1, with the peak frequency determined
by the magnetic field strength B and the electron column density nex of the source.

(b) Inverse Compton Scattering Another important radiation mechanism involving relativis-
tic electrons is the production of high-energy photons through the scattering of low-energy ones
by high-energy electrons. The net result of this process is the emission of radiative energy from
electrons, and it arises because electrons moving in a radiation field are accelerated by the elec-
tromagnetic fields (see §B1.3.6). The radiation power in this process is given by Eq. (14.22) with
the four-acceleration given by

aμ = c
dUμ

ds
,

dUμ

ds
=

qe

me
FμνUν , (14.39)

where Fμν = ∂ μAν−∂ νAμ . It then follows that the angle-averaged emission rate per electron is

〈PIC〉 =
σTcγ2

4π

〈
(E+β ×B)2 − (E ·β )2

〉
=

4
3
σTcγ2β 2Erad, (14.40)

where Erad is the energy density of the radiation field. Since the number of photons is conserved
in the inverse Compton process, on average each collision upshifts the photon frequency as

ν0 → 〈ν〉 =
4
3
γ2ν0 (γ 	 1), (14.41)

where ν0 is the frequency of the seed photons. The photon frequency is therefore boosted by
a factor of ∼ γ2, which is large for highly relativistic electrons with γ 	 1. Thus, as long as
relativistic electrons are available, photons generated by the synchrotron process can be scattered
into the optical regime and beyond by the inverse Compton process. Note that the mean frequency
〈ν〉 given above has the same γ dependence as νc in Eq. (14.30) for the synchrotron emission. If
the frequency distribution around 〈ν〉 is not very broad for a given γ , the spectral shape of the
inverse Compton emission is determined by N (γ)dγ , the energy distribution of the relativistic
electrons.

The importance of Compton losses relative to synchrotron losses is given by the ratio

〈PIC〉
〈PS〉 =

Erad

EB
=

(4π/c)
∫

Jν dν
B2/8π

, (14.42)

where Jν is the specific intensity of the seed radiation field for the inverse Compton process.
To get an order-of-magnitude estimate, we write

∫
Jν dν = Jν∗ν∗, where ν∗ is some average
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frequency. If the seed radiation field is provided by the synchrotron photons, and if ν∗ is high
enough so that the optical depth of the source is small, we can write

Jν∗ =
2ν2∗
c2 kBTb ∼

(
m3

ec
qe

)1/2

B−1/2ν
5/2
∗ , (14.43)

where Tb is the brightness temperature defined in Eq. (14.17). It then follows that

〈PIC〉
〈PS〉 ∼

(
kBTb

mec2

)5 σ1/2
T ν∗

c
∼
(

Tb

1012 K

)5( ν∗
1GHz

)
. (14.44)

Thus, the power of inverse-Compton emission exceeds that of synchrotron emission if Tb >
1012 K. When this occurs, the cooling of the electrons by radiation is catastrophic, because
the inverse-Compton photons can themselves be scattered by the relativistic electrons, enhanc-
ing the inverse-Compton emission power even further. Thus, the brightness temperature of the
synchrotron emission must in general be below 1012 K in order for the electrons to remain
relativistic.

To determine the values of Tb for AGN, we need to know the sizes of the regions from which
the radio emission originates. For a given luminosity, the smaller the size, the higher the bright-
ness temperature. Currently, the most stringent limit comes from estimates based on source
variability, l ∼ cΔt. Based on the observed time scale of variability, the inferred values of Tb

often exceed 1012 K, indicating that the real size of the emission region must be larger than
that implied by the observed variability time scale. This can be achieved if relativistic motion is
involved in the source, so that time dilation causes the observed time scale of variability to be
compressed relative to the real time scale of variability.

14.2.4 Emission Lines

As mentioned in §14.1, an important characteristic of AGN spectra is the presence of strong
emission lines produced by the transitions of excited atoms. In this subsection we briefly describe
how studies of these emission lines can be used to infer both the physical conditions of the
emitting gas (such as density, temperature, chemical composition, ionization state and turbulent
motion) and the properties of the ionization sources. A more detailed description can be found in
Osterbrock (1989).

The observed emission lines are generally divided into two categories, permitted lines and
forbidden (or improbable) lines, according to the rate of spontaneous transition between the
energy levels responsible for the emission. Lines with an intermediate spontaneous transition
probability are called semiforbidden lines. Permitted lines are associated with transitions allowed
by the electric-dipole selection rules, while forbidden lines are associated with transitions with
zero dipole component but non-zero high-order components. Forbidden lines are denoted by
square brackets, such as the [OIII] lines of doubly ionized oxygen, and semiforbidden lines are
designated with a single square bracket, such as CIII]. In general, forbidden transitions have
lower probability than permitted ones. Because of the low transition probability, forbidden lines
are not expected from gas with high density, where relevant ions can be removed quickly from
the excited state by collisions with electrons before they have a chance to make the forbidden
transition. On the other hand, permitted lines are expected in both high- and low-density gas. To
see this more clearly, let us consider a simple example in which an ion has only two levels, 1 and
2, with E1 < E2. The equation for the balance between excitation and de-excitation is

nen1P12 = nen2P21 +n2A21, (14.45)

where n1 and n2 are the population densities of states 1 and 2, respectively, ne is the electron
density, A21 the Einstein coefficient of spontaneous emission, P12 the probability for the ion to
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undergo a transition from state 1 to state 2 in a unit time due to collisions with electrons, and P21

the corresponding probability from state 2 to state 1 (see Appendix B for details). The relative
population of the two states is then given by

n2

n1
=

neP12

A21

1
1+neP21/A21

. (14.46)

Since the line emission is produced mainly by spontaneous transitions, the line luminosity per
unit volume due to collisional excitation is

Lc = n2A21hPν12 =
nen1P12hPν12

1+neP21/A21
. (14.47)

It then follows that

Lc =
{

nen1P12hPν12 (if A21 	 neP21)
n1 (P12/P21)A21hPν12 (if A21 � neP21).

(14.48)

In low density regions where ne � A21/P21, Lc is independent of A21 and so both the forbidden
and permitted lines can be produced with significant strengths. On the other hand, in high density
regions where ne 	 A21/P21 for the forbidden line but not for the permitted line, the strength of
the forbidden line is reduced by a factor of A21/(neP21). Consequently, the relative strength of
forbidden lines with respect to permitted lines can be used as a probe into the density of the emit-
ting gas. The most important diagnostic lines are the forbidden [OIII]λλ (4959,5007) Å doublet
and the semiforbidden CIII]λ1909Å. The critical electron density, A21/P21, is ∼ 106 cm−3 for
[OIII] and ∼ 1010 cm−3 for CIII], while for permitted lines it is much higher.

As mentioned in §14.1, if we divide the emission lines in AGN spectra into two classes
according to their linewidth, broad lines with FWHM corresponding to Doppler-broadening
velocities ∼> 103 kms−1 are almost exclusively permitted lines, while narrow lines with velocities
∼ 102 kms−1 can be either permitted lines or forbidden lines. Using the forbidden-line diag-
nostics discussed above, we infer that broad lines are produced in the innermost emission-line
regions where the gas densities and velocities are high, while narrow lines emanate from more
extended regions characterized by lower gas densities and velocities (see also §14.2.6).

To interpret an observed emission-line spectrum in detail, we must know how the emitting gas
is ionized. In general, gas can be ionized by collisional processes and by photoionization, depend-
ing on the density and temperature of the gas, and on the local intensity of ionizing radiation.
With the principles described in §B1.3, it is straightforward to calculate the number densities of
various species for a gas with given density, temperature and chemical composition. The volume
emissivity of an emission line, which is proportional to nmAmnhPνmn (where m and n are the two
energy levels responsible for the line emission), can then be obtained. The line profile can also
be related to the temperature and turbulent motion of the gas, as described in detail in §16.4.
With such a procedure, one can in principle fit an observed emission-line spectrum by tuning the
conditions in the emitting gas and the properties of the ionizing source.

One important application of emission-line spectra is to use line ratios to separate AGN from
star-forming galaxies whose spectra also contain emission lines due to the HII regions generated
by young massive stars (see §10.3.7). As far as emission lines are concerned, the main difference
between an AGN and a star-forming galaxy is in the level of ionization and temperature of the
emitting gas, both expected to be higher in an AGN due to the stronger UV flux involved. In addi-
tion, the radiation field in an AGN is also ‘harder’, i.e. contains a larger fraction of high-energy
photons. These photons have a larger mean free path in a neutral medium, and can therefore
penetrate farther to give rise to a larger partially ionized zone. Detailed photoionization model-
ing (Osterbrock, 1989) shows that the optical line ratio, [OIII]λ5007/Hβ , is a good indicator of
the mean level of ionization and temperature, while [OI]λ6300/Hα , [SII]λλ6717,6731/Hα and
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Fig. 14.6. The emission-line flux ratio [OIII]λ5007/Hβ versus the ratio [NII]λ6583/Hα for a galaxy sam-
ple constructed from the SDSS. A diagram of emission-line ratios like this is often called a BPT diagram,
after Baldwin et al. (1981) who demonstrated its usefulness for separating AGN from normal star-forming
galaxies. The dashed curve represents the demarcation line of pure star formation defined by Kauffmann
et al. (2003a) and the dotted line is the extreme starburst demarcation line of Kewley et al. (2001). Seyfert
galaxies are often defined to have [OIII]/Hβ > 3 and [NII]/Hα > 0.6, and LINERs to have [OIII]/Hβ < 3
and [NII]/Hα > 0.6. [Adapted from Kauffmann et al. (2003a)]

[NII]λ6583/Hα are sensitive to the relative importance of a large partially ionized zone produced
by high-energy photoionization. Fig. 14.6 shows an example of how one can use these line ratios
to separate AGN from star-forming galaxies. Typically, systems with both high [OIII]λ5007/Hβ
and high [NII]λ6583/Hα are likely to be ionized by an AGN (e.g. Baldwin et al., 1981).

14.2.5 Jets, Superluminal Motion and Beaming

(a) Jets and Collimation In broad terms, jets are well-collimated outflows of material. As we
have seen in §14.1, in many radio galaxies, the radio emission is not isotropic but shows an elon-
gated structure with a length that is many times larger than the width (opening angle ∼< 0.1). Such
structure is called a radio jet (see Fig. 14.2 for an example). With high-resolution observations,
the structure of a radio jet can be resolved down to sub-parsec scales, and the results are remark-
able. In some cases, a thin jet (with width of ∼ 1pc) is observed to extend continuously from
the innermost parsec-scale region of a galaxy to a distance up to several hundreds of kiloparsecs
where it eventually runs into a flaring lobe. Clearly, the radio lobes are fueled by the narrow,
core-powered jets. The question is how the material in the core is funneled into an out-going
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flow, and how the flow is collimated to such high degree. Although jets and their collimation are
still not well understood, numerous interesting ideas have been proposed (Begelman et al., 1984,
and references therein).

Suppose we have a well-collimated jet flow somehow generated by an AGN. The question is
then how the flow is kept collimated as it moves to large distances. We all know that it is very
difficult to have well-collimated smoke from a chimney in the presence of air flow (wind), but
we often see a well-collimated thrust from a supersonic jet plane. The key difference in these
two cases is that the gas in the thrust has large density and high speed, and is therefore less
affected by the medium in which it is moving. However, as long as the flow is subsonic, it is
in general difficult to sustain a good collimation. If the jet is diffuse, perturbations from the
medium can easily change its course; if the jet is dense, its pressure over the medium will cause
it to disperse sideways before it propagates far. The situation is different if the jet material is
moving at supersonic speed. In this case, the speed of sideways dispersion (which is smaller than
or of the same order as the sound speed of the medium) is much smaller than the speed of the
jet flow, and collimation can be sustained. Indeed, a jet can remain collimated as long as it is
supersonic, which suggests that a well-collimated jet is likely a supersonic flow.

Supersonic flows arise naturally under the conditions present in AGN. To see this, consider the
behavior of a relativistic fluid, whose motion is governed by the conservations of particle number
and energy-momentum tensor:

∂
∂xμ

Jμ = 0;
∂
∂xν

T μν = 0. (14.49)

Here the particle flux, Jμ , and the energy–momentum tensor, T μν , are given by

Jμ = nUμ , T μν = wUμUν +Pgμν . (14.50)

In these equations, Uμ = (dxμ/dτ) = γ(c,v) is the four-velocity, w ≡ ρ + P/c2, ρ and P are
the gas density and pressure, and n is the proper number density of gas particles. The μ = 0
component of the energy–momentum equation gives

dγ2w
dt

=
1
c2

∂P
∂ t

− γ2w∇ ·v, (14.51)

which, together with the conservation equation of particle number, yields

d
dt

(γw
n

)
=

Ṗ
γnc2 . (14.52)

For a steady flow, this equation gives γw/n = constant. The application of this steady-flow
equation to an ultra-relativistic fluid (for which w = 4P/c2 ∝ n4/3) gives

γ = (P0/P)1/4, (14.53)

where P0 is the pressure at the origin of the flow. Thus, a relativistic flow can be generated from
an internally relativistic fluid by a significant decrease in the pressure along the flow. For a steady
jet flow, Eq. (14.51) reduces to ∫

γ2w∇ ·vd3x = γ2wvA = Q, (14.54)

where Q is a constant, A is the cross-section of the jet at a location where the flow velocity is v ,
and the volumic enthalpy is w. Since w = 4P/c2 and P = P0γ4, we get

A =
(

Q
4P0c

)
1

y(1− y)1/2
, (14.55)
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with y ≡ (P/P0)1/2. Thus if the pressure decreases monotonically along the jet, the cross-section
decreases with decreasing y initially, reaches a minimum at y = 2/3, and then flares out at y <
2/3. At the point of minimum cross-section, the flow has a speed v = c/

√
3, identical to the

sound speed in an ultra-relativistic fluid, and the pressure drops by a factor of only 4/9. The fluid
is subsonic at y > 2/3 and supersonic at y < 2/3. If the pressure drops with increasing distance
as P ∝ r−α , the solid angle subtended by the jet is

A/r2 ∝ y−1 ∝ r(α−4)/2. (14.56)

This indicates that a relativistic supersonic jet can remain collimated if α < 4. The simple con-
sideration given here suggests that it is relatively easy to generate a relativistic jet and keep it
collimated. What is needed is an internally relativistic fluid, a relatively small gradient of pres-
sure in the medium that confines the jet, and an initial flow in some preferred direction. This
mechanism was first considered by Blandford & Rees (1974).

The simple version of the Blandford–Rees model has a problem, though. From Eq. (14.55)
we see that the jet cross-section A should be large at its origin (y ∼ 1), while observations show
that jets originate from sub-pc scales. For a given Q, the cross-section can be made smaller by
increasing the pressure P0, but this would require the existence of a hot gas in the nucleus and
predict extremely strong X-ray emission, which is not observed. Thus, although the Blandford–
Rees mechanism may play a role in jet collimation at large radii, the processes involved in the
production and initial collimation of the jet may be more complicated.

Jets may form naturally in the funnels of a radiation-supported torus (Fig. 14.3). However, the
material in jets formed in this way can only be accelerated to a small Lorentz factor (γ ∼< 3),
even if the jets consist of pair-plasma and the sources radiate at super-Eddington luminosities
(see Sikora & Wilson, 1981). The values of γ are even smaller if the jets consist of normal
plasma. These values of γ are too small to explain the observed superluminal motions (see
below). Furthermore, such a mechanism is not relevant for sources radiating at sub-Eddington
luminosities.

As shown in §14.2.3, strong magnetic fields must exist to generate the synchrotron emission
from AGN. It is therefore possible that magnetohydrodynamic processes play an important role
in the production and collimation of jets (Blandford & Payne, 1982; Camenzind, 1990). Because
of the coupling between the magnetic field and the plasma, the magnetic field lines wind up as
material is accreted onto a differentially rotating disk, producing a strong magnetic field along
the rotation axis. Outflows generated by, for example, radiation pressure in the central region
may then stream along the rotation axis, producing a collimated jet.

(b) Superluminal Motion Given that the material in jets is moving at relativistic velocities,
how does this relativistic motion appear to an observer? To see this, consider a blob of material
ejected from an AGN with a velocity v ≡ βc towards an observer at an angle θ relative to the line-
of-sight. For simplicity, we assume the AGN to be at rest with respect to the observer. Suppose
that at some time, t1, the blob is at point P1 with a distance r1 from the observer. The light signal
emitted by the blob from this point is then observed at tobs,1 = t1 +r1/c. Suppose that after a small
time interval Δt the blob moves to another point P2 at a distance r2 from the observer. The light
signal emitted by the blob at this point will then be observed at a time tobs,2 = t1 +Δt + r2/c.
Simple geometrical consideration shows that r2 = r1 − vΔt cosθ (for small Δt). Thus for the
observer the time taken for the blob to move from P1 to P2 is

Δtobs = tobs,2 − tobs,1 = Δt (1−β cosθ) . (14.57)

The transverse distance between P1 and P2 is vΔt sinθ and so, to the observer, the apparent
transverse velocity of the blob, v⊥, is given by
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v⊥
c

=
β sinθ

1−β cosθ
. (14.58)

Clearly, if β = v/c is close to 1, v⊥ can exceed the speed of light provided that θ is sufficiently
small. For example, if β = 0.99 and θ = 5◦, then v⊥ = 6.27c. This kind of motion with an
apparent velocity exceeding the speed of light is called superluminal motion. High-resolution
observations of radio jets over long time scales (several years) can detect the motion of bright
spots in a jet relative to the core. In many radio-loud quasars, the inferred apparent velocities
range from ∼ 3h−1c to ∼ 10h−1c. The discussion given above shows that such superluminal
motion arises naturally from relativistic motion of the material in jets.

(c) Relativistic Beaming Another observational effect of relativistic jets is beaming. Consider
a blob of material in a jet which is moving towards us with a velocity, v , in a direction, θ ,
relative to the sightline to the AGN. The observed frequency, ν, is related to the frequency in the
rest-frame of the blob, ν ′, by

ν = Dν ′, (14.59)

where

D =
1

γ(1−β cosθ)
(14.60)

is the Doppler boosting factor. Suppose that the observed specific intensity of the blob is J(ν).
It can be shown (see Rybicki & Lightman, 1979) that J(ν)/ν3 is a Lorentz invariant, and so the
observed intensity is related to the intensity in the rest frame of the blob by

J(ν) = D3J′(ν ′). (14.61)

For an optically thin source, the observed flux is proportional to the source intensity: Fν ∝ J(ν).
If the source has a power-law spectrum J′(ν ′) ∝ ν ′−α , then

Fν = D3+αF ′
ν . (14.62)

Clearly, for a given rest-frame flux, F ′
ν , the observed flux depends on θ : it is higher if the jet

is moving towards us and lower if moving away from us. For two blobs with the same intrinsic
properties but moving in opposite directions, the flux ratio between the blobs moving in (towards
us) and out (away from us) is

Fν,in
Fν,out

=
(

1+β cosθ
1−β cosθ

)3+α
. (14.63)

The boost is somewhat different for a jet that can be considered to be a number of unresolved
blobs. In this case, the total observed flux is an integration over the jet,

Fν =
∫

J(ν)dΩdl =
∫
ε(ν)

dadl

d2
A

, (14.64)

where ε(ν) is the emissivity, dΩ is the element of solid angle, da is the area element perpen-
dicular to the line-of-sight, and dA is the angular-diameter distance to the source. The emissivity
transforms as ε(ν) = D2ε ′(ν ′), and so

Fν =
D2+α

d2
A

∫
ε ′(ν)dadl = D2+αF ′

ν . (14.65)

Thus, for two identical jets propagating in opposite directions, we have

Fν,in
Fν,out

=
(

1+β cosθ
1−β cosθ

)2+α
. (14.66)



14.2 The Supermassive Black Hole Paradigm 637

If β ∼ 1 and θ is small, the flux from the incoming jet is much higher than that of the outgoing
one. This explains why the observed jets in powerful radio galaxies tend to be one-sided (see
Fig. 14.2).

14.2.6 Emission-Line Regions and Obscuring Torus

(a) Broad-Line Region The optical spectra of Seyfert 1 galaxies and quasars contain strong
emission lines with velocity widths σv > 1,000kms−1. If these velocity widths are due to the
gravitational motion in the vicinity of the central black hole, the sizes of the broad-line regions
should be of the order

R ∼ GM
σ2

v
∼< 0.5M8

(
σv

1,000kms−1

)−2

pc. (14.67)

This argument suggests that the broad lines are produced in a small inner region surrounding the
accretion disk. Direct imaging of the broad-line region has not yet been possible, but the observed
variabilities of broad lines suggest a typical size of ∼< 1 light-year (∼ 0.3pc), consistent with that
based on the velocity width. Broad forbidden lines (such as [OIII]) are not observed, indicating
that the electron density of the gas producing the broad lines is very high (see §14.2.4). Detailed
photoionization models of the broad-line spectra give densities as high as 1010 cm−3 and gas
temperatures ∼ 104 K.

(b) Narrow-Line Region The optical spectra of many AGN reveal strong narrow lines with
velocity widths σv ∼ 100kms−1. From Eq. (14.67) we see that such lines may be produced in a
region of size ∼ 50pc around the central engine. Because of their relatively large sizes, narrow-
line regions in nearby AGN can be spatially resolved even with ground-based observations. The
observed sizes range from ∼ 10pc to ∼ 100pc, again in good agreement with the sizes inferred
from the velocity widths. Since forbidden [OIII] lines are usually observed, the density of the
narrow-line gas must be ∼< 106 cm−3. Detailed modeling of the narrow-line spectra yields den-
sities in the range (104–106)cm−3. This relatively large range is also required within individual
AGN to explain the observed line ratios, indicating that the gas within a narrow-line region is
highly inhomogeneous. Indeed, high-resolution HST imaging of narrow-line regions of some
Seyfert 2 galaxies shows very clumpy and distorted media rather than smooth gas distributions
(Capetti et al., 1996; Bennert et al., 2002). The gas is mainly photoionized by the central source,
although collisional ionization may also be involved in some cases. The temperature of the gas
is in the range (1–2)×104 K.

(c) Obscuring Torus One defining difference between Seyfert 1 and Seyfert 2 galaxies is the
presence of strong broad lines in the spectra of Seyfert 1 versus the absence of such lines in the
spectra of Seyfert 2. It was therefore a surprise to find that the spectrum of NGC1068 (a clas-
sical Seyfert 2 galaxy) shows broad emission lines in its polarized light (Antonucci & Miller,
1985). The simplest mechanism for producing polarized light is by the reflection from a ‘mir-
ror’ consisting of dust grains or electrons. It is thus likely that NGC1068 contains a Seyfert 1
nucleus (i.e. a broad-line region) surrounded by an obscuring torus (or just obscuring clouds,
see Fig. 14.3), which obscures the broad-line region from our direct view but whose emission
is reflected to us by dust and electrons above the obscuring torus. The torus must be inside the
narrow-line region in order for the narrow-line emission not to be obscured. In order to provide
sufficient extinction to hide the broad-line region, the torus must contain a sufficient amount of
material to make it opaque to the broad-line emission. Furthermore, since strong X-ray and UV
continua are observed in Seyfert 1 but not in Seyfert 2, the torus should also be opaque to these
continuum photons. The torus must therefore have a large column density of absorbing gas (e.g.
Krolik & Begelman, 1988). In addition to NGC1068, several other Seyfert 2 galaxies have now
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been observed in polarized light, again revealing broad emission line regions (e.g. Tran, 1995a).
Furthermore, using optical interferometry, it has recently become possible to directly image the
nuclear regions of AGN on the scale of the expected torus. These confirm the presence of a
geometrically thick, torus-like dust distribution (Tristram et al., 2007; Raban et al., 2009). All
these observations support the idea that Seyfert 1 and 2 galaxies are the same type of objects, but
observed at different angles (Tran, 1995b).

14.2.7 The Idea of Unification

Although different classes of AGN appear quite differently, many of them have properties in com-
mon. For example, radio-quiet quasars (QSOs) and radio-loud quasars have very different radio
properties, but their emission line properties are very similar. An obvious question is whether
different classes of AGN are intrinsically different or whether they are intrinsically similar but
only appear different because we observe them at different angles. Given that the basic struc-
ture of an AGN is axisymmetric rather than spherically symmetric, similar objects may appear
different if their orientations relative to the line-of-sight are different. The question is whether
such ‘geometrical’ effect is sufficient to explain the observed diversity of the AGN population.
As discussed above, in the case of Seyfert galaxies, there is substantial evidence to support the
notion that Seyfert 1 and 2 galaxies are intrinsically the same objects, and this may indicate that
other classes of AGN are also similar to Seyfert galaxies except for their orientation with respect
to the observer. Although this idea of unification is widely accepted, many open issues remain
(see Antonucci, 1993; Urry & Padovani, 1995). In what follows we give a brief overview of some
of the basic ideas related to AGN unification.

As described in §14.1, radio quasars are observed both as compact core-dominated radio
sources and as extended double-lobed radio sources. Observations of faint extended regions
around compact quasars show that they have luminosities comparable to those of the lobes in
the extended sources. It is therefore possible that these two types of quasars belong to the same
population, with compact core-dominated quasars being the double-lobed ones seen end-on. A
detailed model for this unification was developed by Orr & Browne (1982). This idea can be
tested observationally, because relativistic beaming is expected to be more important for the
core-dominated component from the relativistic jet than for the extended lobes. The importance
of relativistic beaming can be characterized by the ratio

R = Fν,cc(θ)/Fν,ec, (14.68)

where Fν,cc is the flux from the compact component of a source, while Fν,ec is that from the
extended component. Because of beaming, the flux of the compact component depends on the
angle, θ , between the jet and the line-of-sight, and this dependence is given by Eq. (14.66). We
can then write

R =
R⊥
2

[
(1−β cosθ)−(2+α) + (1+β cosθ)−(2+α)

]
, (14.69)

with R⊥ ≡ R(θ = π/2) and α the power-law index of Eq. (14.62). The first term on the right-
hand side is the contribution of the incoming jet, while the second term is that of the outgoing
one. If the idea of unification is correct, then the distribution of R should follow that given
by a random distribution of source orientations. Unfortunately, observational results are not yet
conclusive (see Murphy et al., 1993; Urry & Padovani, 1995). A related unification scheme was
proposed by Blandford & Rees (1978) for blazars and double-lobed radio sources. In this scheme,
a blazar is a radio source seen almost exactly along the jet, and the observed rapid variability and
high degree of polarization of blazars are attributed to the relativistic flow in the jet.

Along this line of reasoning, it has been suggested that all radio sources form a continuous
sequence in the viewing angle, θ . As θ changes from π/2 to 0, a radio source would appear
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successively as a radio galaxy, an extended (lobe-dominated) quasar, a compact (core-dominated)
quasar, and a blazar. There is some observational support for this unification scheme (see Urry &
Padovani, 1995), but more work is needed for a decisive conclusion.

14.2.8 Observational Tests for Supermassive Black Holes

The SMBH paradigm is by far the most successful model for interpreting the observed proper-
ties of AGN. Obviously, an ultimate test of this paradigm is to prove the existence of SMBHs
observationally. By definition SMBHs cannot be seen directly. Instead, evidence for their exis-
tence has to come from the impact of SMBHs on their direct surroundings. One of the strongest
motivations for considering SMBHs as the engines of AGN is the fact that AGN are extremely
luminous (they can outshine their entire host galaxy) and confined to extremely small regions.
Strong limits on the sizes of the emission regions come from variability arguments. The fact that
some AGN reveal large changes in luminosity on time scales as short as Δt ∼ 1 hour, suggests
that the emission emanates from a region not much larger than ∼ cΔt (i.e. one light-hour across).
Although SMBHs with their associated accretion disks are the only known sources that could
plausibly explain these phenomena, this in itself constitutes no proof. Unambiguous evidence for
the existence of a SMBH requires the detection of relativistic motion in a region the size of a few
Schwarzschild radii.

Although galaxies with AGN are the obvious places to look for evidence for the existence of
SMBHs, the fact that quasars were much more numerous at z∼ 2 than at the present suggests that
dead quasar engines (i.e. SMBHs with little or no accretion) should be hiding in many nearby,
quiescent galaxies. As discussed in §13.1.6, the kinematics of stars and gas in the central regions
of spheroidal galaxies clearly indicate that their nuclei contain massive dark objects, with masses
comparable to those of SMBHs required to power AGN. Although suggestive, these kinemat-
ics are typically measured on scales comparable to the radius of influence of the SMBH, rBH,
given by Eq. (13.14). For a typical galaxy, this corresponds to rBH ∼ 106rS. Consequently, these
data only prove the existence of a massive dark object, but not necessarily a SMBH. Alterna-
tives are dense clusters of stellar remnants (e.g. neutron stars), or more exotic objects such as
balls of heavy fermions (sterile neutrinos, gravitinos or axinos) held up by degeneracy pressure
(e.g. Tsiklauri & Viollier, 1998) or boson stars, which are hypothetical stars made of bosons
(e.g. Torres et al., 2000). Ruling against these alternatives and in favor of a SMBH requires the
detection of higher velocities on smaller scales.

In a few cases, special circumstances allow us to probe the kinematics at much smaller scales.
The most impressive example is our own Milky Way, where the radial velocities, proper motions
and accelerations of individual stars can be measured. This has provided strong evidence for
the presence of a central massive object with M ∼ 3× 106 M� within a radius of ∼< 10 light-
hours centered on the radio source Sgr A∗ (Genzel et al., 2000; Schödel et al., 2003; Ghez et al.,
2005). This implies a mass density of > 3×1019 M� pc−3, much higher than that of any known
astronomical object, leaving a SMBH as the most likely option. In the galaxy NGC 4258, water
masers have been detected, whose kinematics reveal perfect Keplerian motion around a central
mass of ∼ 3.6 × 107 M� within a radius < 0.13pc (Miyoshi et al., 1995). As for the Milky
Way, it is difficult to explain these observations by any object other than a SMBH. Finally, the
extreme broadness and asymmetry of the fluorescent Fe K line (at ∼ 6 keV) detected in the
active galaxy MCG-6-30-15 suggests relativistic motions (∼ 105 kms−1) of the gas. The most
likely explanation is that the line arises from an accretion disk in a region between three and ten
Schwarzschild radii from a SMBH (Tanaka et al., 1995).

Another method to estimate the masses of SMBHs in AGN is reverberation mapping (e.g.
Blandford & McKee, 1982; Peterson, 1993). This method uses the intrinsic flux variability of the
UV/optical continuum generated in the accretion disk surrounding the SMBH and the time delay
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in the response of the broad emission lines to the change in the continuum flux. The time delay,
τ , is a measure of the light crossing time of the broad-line region, and so provides a measure of
its size: r ∼ cτ . Meanwhile, the emission linewidth, Δv , reflects the velocity dispersion of the
emission-line clouds in the gravitational potential well which is dominated by the SMBH. Thus,
the mass of the SMBH can be estimated through MBH = f cτ(Δv)2/G, where f is a dimensionless
factor of order unity that depends on the kinematics, geometry, and inclination of the AGN.
So far this method has been used to measure black hole masses in a few dozen AGN, and the
reverberation mass measurements are consistent with other mass estimates within a factor of a
few (e.g. Bentz et al., 2009).

To summarize, in a restricted few cases the evidence for the existence of SMBHs is extremely
strong, in particular in our own Milky Way. Although there is still no direct proof for the existence
of an event horizon, virtually all other alternatives are currently ruled out. Unless the Milky Way
happens to be a special place, Occam’s razor therefore strongly suggests that the nuclei of many,
if not all, (spheroidal) galaxies indeed host SMBHs that can power AGN activity.

14.3 The Formation and Evolution of AGN

In the SMBH paradigm described above, the two most important conditions for producing an
AGN are (1) the existence of a central SMBH, and (2) a sufficient amount of gas to fuel the
nucleus. Thus, in order to understand the formation of AGN, we must understand how SMBHs
form and which mechanisms are responsible for transporting gas towards the center of the host
galaxy to feed the black hole. In this section, we describe possible scenarios for the formation
of AGN. We demonstrate that not only can the formation of AGN be understood in the general
framework of galaxy formation, but AGN can also have significant impact on the formation
and evolution of galaxies. Finally, we will show how to test the scenario of AGN formation
by studying the redshift evolution of the AGN population in connection to other populations of
galaxies.

14.3.1 The Growth of Supermassive Black Holes and the Fueling of AGN

One important fact that any theory of AGN formation must take into account is that quasars are
observed at redshifts up to ∼ 7. As shown in §3.2.5, the cosmic time at such a redshift is about
0.5 Gyr, and so the time scale for the formation of a SMBH must be shorter than 0.5 Gyr. Since
black holes are believed to form in collapsed objects, another relevant time scale is the free-fall
time scale of a virialized halo, tff ∼ rvir/Vc ∼ 1/[10H(z)] (with rvir the virial radius and Vc the
circular velocity of the halo), which is about 5× 107 yr at z = 7. These two time scales should
be compared to the time scale for the growth of a SMBH. If the growth of a SMBH is through
radiative accretion, the mass accretion rate can be written as

ṀBH =
L
εrc2 =

(
L

LEdd

)
MBH

εrtEdd
, (14.70)

where the first equation follows from the definition of εr in Eq. (14.7), LEdd is the Eddington
luminosity defined in Eq. (14.4), and

tEdd ≡ σTc
4πGmp

≈ 4.4×108 yr (14.71)

is the Eddington time. If both L/LEdd and εr are independent of time, we get

MBH(t) = MBH,0 exp

(
t

tBH

)
, (14.72)
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where MBH,0 is the mass of the black hole at an initial time t = 0, and

tBH =
(

L
LEdd

)−1

εrtEdd ≈ 4.4×107
( εr

0.1

)( L
LEdd

)−1

yr (14.73)

is the time scale for the black hole mass to increase by a factor of e.
The time required for a black hole to reach MBH ∼ 108 M� depends on the seed mass MBH,0

which, in turn, depends on how the black hole was initially created. In broad terms, there are
three possibilities for the initial creation of a black hole (Rees, 1984): (i) the collapse of an
isolated massive star, (ii) the merger and accretion of neutron stars, and (iii) the collapse of a gas
cloud. The first two possibilities are almost certain to happen. As discussed in §10.1.5, massive
stars with initial mass ∼> 20M� have lifetimes ∼ 107 yr. At the end of their lifes, these stars
either collapse directly into black holes, or produce core-collapse supernovae with black holes or
neutron stars as the remnants. Even if the remnants are neutron stars, some of them may end up
in close binaries, and a black hole can form when some dissipative processes (e.g. gravitational
radiation) brings them together. Black holes that form through such a channel should have stellar
masses, and so MBH,0 is of the order of 10M�. However, supermassive Population III stars, with
masses of a few hundred solar masses, may be able to form at z ∼ 10–20 when the gas in the
Universe is too metal poor to cool down to a temperature that allows gravitational instability on
smaller mass scales (see §9.7). Such stars may collapse directly to form black holes with masses
∼ 100M�. The third possibility is uncertain: it is unclear how often the collapse of a gas cloud
can lead directly to the formation of a black hole; it is also difficult to estimate the initial mass of
a black hole that can form through such a collapse (see Koushiappas et al., 2004, and references
therein)

If MBH,0 is of the order of 100M�, we see from Eq. (14.72) that about 14 e-foldings are
required to reach a mass MBH = 108 M�. The time interval required is then

t ≈ 14tBH ≈ 6×108
( εr

0.1

) ( L
LEdd

)−1

yr. (14.74)

If L ∼< LEdd and εr ∼ 1, this would signal a problem for growing black holes to the required mass
within a Hubble time at z ∼ 7. In order to achieve a sufficiently high growth rate, either the gas
accretion is at a super-Eddington rate (so that L 	 LEdd), or the radiative efficiency is low (so
that εr � 0.1). Super-Eddington accretion can be achieved if the accretion is very anisotropic, so
that the outgoing radiation is well separated from the infalling material. A smaller εr can lead to
higher accretion rates, allowing the black hole to accrete the required mass in a shorter period of
time and yet to radiate at the Eddington limit. However, the value of εr cannot be much smaller
than 0.1, at least for the last few e-foldings before the AGN is observed, as it is constrained by
the radiative properties of the accretion disk (see §14.2.2).

Despite the many uncertainties, the formation of a SMBH generically requires a considerable
amount of gas to be funneled into the center of a dark matter halo on a short time scale. Indeed,
even with εr ∼ 0.1 and L ∼ LEdd, the time scale tBH is shorter than the free-fall time scale of a
dark matter halo at z ∼< 5. Once a SMBH has managed to form in the center of a host galaxy,
whether or not it can be observed as a bright AGN again depends on whether or not it is fed with
gas at a sufficiently high rate. The typical rate required to power a black hole at the Eddington
luminosity is that given by Eq. (14.9), or ∼ 2M� yr−1 for a 108 M� black hole. Note that the
fueling of a bright AGN leads to further growth of the black hole mass, and the time scale of the
growth is MBH/ṀBH ∼ εrtE(L/LEdd)−1. This time scale is comparable to that for the growth of
a SMBH accreting at the Eddington limit, indicating that the growth of a SMBH and the fueling
of a bright AGN go hand in hand. Hence, the key step towards understanding the formation of
an AGN is therefore to identify the mechanism(s) that can effectively bring gas into the center of
the host galaxy.
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The amount of mass involved in both the formation of a SMBH and the fueling of a bright
AGN is only a small fraction of the total mass of the host galaxy. So, in principle, there is
no difficulty in having a sufficiently large gas reservoir. The real problem is how to funnel the
required amount of gas into a very small region. Let us assume first that the gas reservoir is cold,
so that the pressure of the gas does not resist accretion. Even in this case, gas accretion would
be impossible if the gas has a significant amount of angular momentum. The specific angular
momentum of gas clouds on a orbit of radius R in the potential well of mass M is j ∼ (GMR)1/2.
For a parcel of gas in a typical galaxy, M ∼ 1011 M� and R ∼ 10kpc. If this parcel is to be moved
to a location within ∼ 0.1pc of a 108 M� central black hole, its specific angular momentum must
be reduced by a factor of 104. This clearly indicates that the formation of a bright AGN must be
connected with events in which the gas in the host galaxy can lose its angular momentum very
effectively.

As discussed in §12.4.3, one such process is gravitational interaction with other galaxies. Tidal
forces during galaxy encounters can cause otherwise stable disks to develop bars, and gas in
such barred disks, subjected to strong gravitational torques, can lose angular momentum very
effectively and flow into the central region. Numerical simulations show that the merger of a pair
of galaxy-sized gaseous disks can produce a central cloud with mass ∼ 109 M� and size ∼ 100pc
(Barnes & Hernquist, 1996). The detailed structure of such clouds is not yet resolved by current
simulations, and it is unclear whether the gas can indeed be funneled directly into the central
parsec region (see Phinney, 1994, and references therein).

Significant gas inflow may also be generated in minor mergers in which a bar instability is
induced in a disk by the perturbation from a smaller satellite galaxy. Although such interactions
may be less effective than major mergers in bringing a large amount of gas into the central region
of a galaxy, they are more common. In some cases, a disk may become unstable spontaneously
and form a bar-like structure. This may occur as a result of the interaction between the disk
and other components of the galaxy, or when the disk becomes globally unstable during the
formation process. It is therefore also possible that some AGN are fueled without involving
strong interaction with other galaxies.

Fig. 14.7 is a schematic chart showing how various paths of gas evolution in galaxies can lead
to the formation of SMBHs and to the fueling of AGN. The mechanisms involved are plausible,
but the details have yet to be worked out in order to determine which processes are the most
relevant.

One prediction of the merger scenario of AGN formation is that bright AGN powered by large
accretion rates should be preferentially observed in interacting systems. There is some evidence
that this may indeed be the case for quasars at low redshifts. Early suggestions that quasars
have close companions are supported by recent observations of quasar host galaxies out to z ∼ 1
(e.g. Lacy et al., 2002). Tidal tails and other signatures of violent interaction are also observed
in nearby host galaxies (Bahcall et al., 1997). Many of these systems involve small satellites,
presumably because such encounters are more common. Unfortunately, the signatures of inter-
actions are usually faint, hence difficult to observe at high redshifts (see §13.3.5). However, in
the hierarchical scenario of structure formation it is expected that at high redshift galaxy mergers
are more frequent, and that the merging galaxies are more gas rich. Both are favorable for fast
gas accretion onto a central black hole. Thus, if the merger scenario is correct, and if SMBHs
had managed to form at high redshift, we would expect to find more bright AGN at higher red-
shifts. As we will see in §14.3.2, the comoving number density of quasars peaks around z ∼ 2–3
at a value more than 100 times higher than that in the local Universe. Since the total number
of SMBHs is not expected to decrease with time, the drop at lower redshift is likely due to a
decline of systems in which a large amount of gas can be funneled to feed the central SMBHs.
The drop in the number density at higher z is also expected, because SMBHs need time to grow
and because there were not as many galaxy-sized objects to host bright AGN at z 	 3.
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Fig. 14.7. Flow-chart diagram showing how SMBHs may have formed and how AGN may be fueled in a
host galaxy. [After Shlosman et al. (1990)]

SMBHs more massive than 109.5 M� are rare (Marconi et al., 2004), and so a SMBH cannot
accrete at the Eddington limit continuously over its entire lifetime. This is perhaps not surprising,
given that AGN can release huge amounts of energy, both in radiation and in kinetic forms, into
its surrounding. Such energy feedback can heat the gas in the host galaxy or even drive the
gas out of it, thereby quenching further gas accretion. It is therefore possible that the growth
of a SMBH is self-regulated, so that significant growth only occurs during the active (quasar)
phase(s) of the AGN, while the mass remains more or less constant during the long dormant
phase(s). The growth of a SMBH will eventually stop if the host galaxy runs out of cold gas to
feed the black hole. Mergers among black holes may also play a role in the growth of SMBHs, but
their importance is limited by the merger frequency of massive galaxies (e.g. Yoo et al., 2007).

Most of the SMBHs at low redshifts are observed to be hosted by early-type galaxies, such
as ellipticals and the bulges of early-type spirals. This is consistent with the formation scenario
for SMBHs outlined above, because the formation of early-type galaxies involves many of the
same processes – galaxy mergers, galaxy interactions, disk instability, etc (see §13.2). These
black holes are not observed as bright AGN at the present time, because they are starved of gas.
Early-type galaxies do contain large amounts of gas, but it is hot and difficult for the SMBHs to
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accrete. In a hot medium, a SMBH can still accrete some gas through Bondi accretion (Bondi,
1952). Bondi accretion is spherical accretion onto an object, and occurs within a region where
the gravitational potential of the black hole overcomes the specific thermal energy of the gas.
This defines an accretion radius, rA ∼ GMBH/c2

s , where cs is the sound speed of the hot gas. The
accretion rate is roughly

ṀBH ∼ 4πr2
AρAcs(rA), (14.75)

where ρA and cs(rA) are the density and sound speed of the gas at rA, respectively. Assuming a
black hole mass MBH = 109 M�, a gas temperature T = 1keV and a gas density n = 0.1cm−3,
we have ṀBH ∼ 0.04M� yr−1, which is about 500 times lower than the corresponding Edding-
ton rate. Nevertheless, such a rate may be sufficient to power many of the radio galaxies in the
local Universe (e.g. Allen et al., 2006). At such a low accretion rate, the standard geometri-
cally thin, optically thick disk model described in §14.2.2 may not be valid. Instead, the disk
may be geometrically thick and optically thin, as in the advection dominated accretion flow
(ADAF) and advection dominated inflow–outflow solution (ADIOS) models (Narayan & Yi,
1994; Blandford & Begelman, 1999). In this case, the accretion is expected to be radiatively
inefficient, with εr � 0.1, and much of the accretion energy is expected to be in strong gas out-
flows, which may explain why many massive elliptical galaxies are radio sources that have low
radiative efficiencies but possess radio jets and lobes.

As we will see in §14.4, the energy feedback from AGN not only limits the growth of SMBHs,
but can also have important impact on the formation of galaxies in their surroundings. Hence,
the study of AGN is not just for understanding AGN per se, but is an inseparable part of galaxy
formation.

14.3.2 AGN Demographics

The formation scenario discussed above predicts that the AGN population must be evolving with
time. Given the intrinsic brightness of QSOs, they can be studied out to very high redshifts,
thus allowing us to probe their evolution directly. Such studies provide important clues about the
formation and evolution of the AGN population, and its connection to galaxies and dark matter
halos.

(a) Luminosity Function and Number Density Information about the evolution of the AGN
population can be obtained by studying how the luminosity function of AGN varies with redshift.
Fig. 14.8 shows the luminosity function of QSOs in six redshift intervals covering the range
0.4 < z < 2.1 (Croom et al., 2004). The observed luminosity functions are well fitted by the
following form:

φ(L,z)dL = φ ∗(z)

{[
L

L∗(z)

]β1

+
[

L
L∗(z)

]β2
}−1

dL
L∗(z)

, (14.76)

where β1 and β2 are two constant indices and L∗(z) is a characteristic luminosity. Assuming a
flat universe with Ωm,0 = 0.3, the best fit gives β1 = 3.9 and β2 = 1.5. The data are consistent
with pure luminosity evolution in which φ ∗ is independent of z but L∗(z) ∝ L∗(0)(1 + z)k with
k ∼ 3.45. Results based on the SDSS QSO survey, which covers the redshift range from ∼ 0.5
up to about 6 (Richards et al., 2006; Fan et al., 2004), show that the overall number density φ ∗(z)
is quite independent of z over the whole redshift range, but the characteristic luminosity peaks at
z ∼ 2 and declines rapidly towards higher z.

To see more directly how the number density of AGN changes with redshift, one can calculate
the number density of AGN of a given luminosity as a function of redshift. Fig. 14.9 shows the
results based on a combination of a number of large QSO surveys (see Hopkins et al., 2007). The
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Fig. 14.8. The luminosity function of QSOs in six redshift intervals covering the range 0.4 < z < 2.1
determined from the 2dF QSO Redshift Survey (Croom et al., 2004). The dotted lines show the best fit to
the data by the double power-law model given in Eq. (14.76). The dashed vertical line denotes the separation
between QSOs and Seyfert galaxies. [Adapted from Croom et al. (2004)]

data clearly show that the number density of bright QSOs peaks at z ∼ 2–3, and declines rapidly
towards both the lower- and higher-redshift ends. The peak appears to shift to lower redshift for
fainter QSOs.

(b) Spatial Clustering With the advent of large QSO surveys, it is now possible to determine
the spatial correlation function for QSOs at different redshifts. Results based on the 2dF QSO
survey (e.g. Porciani et al., 2004; Croom et al., 2005) show that the amplitude of the two-point
correlation function increases with redshift, in contrast to the amplitude of the correlation func-
tion of mass in the ΛCDM model, which decreases with redshift. This implies that the linear
bias factor of QSOs, which measures the ratio between the correlation amplitude of the QSOs
and that of the mass on large scales, increases rapidly with redshift, with QSOs at higher redshift
being more strongly biased with respect to the mass.

Assuming that each QSO is associated with a dark matter halo in a ΛCDM universe, the bias
parameter for QSOs should reflect that of the dark matter halos in which they reside (see §15.6).
As shown in §7.4, at a given redshift, the bias parameter of dark matter halos is determined by
their masses. If the halos which can host QSOs have the same clustering properties as the total
halo population, the observed bias parameter for QSOs can be used to estimate the typical mass
of the host halos. The results of Porciani et al. (2004) and Croom et al. (2005) show that the host
halo mass is roughly 1012.5–1013h−1 M� (assuming the ΛCDM concordance cosmology), quite
independent of redshift over the range 0.4 < z < 2.5. At lower redshifts the number density of
QSOs is too low to reliably measure their clustering properties. However, as discussed in §14.1,
the optical properties of Seyferts, whose clustering properties can be measured at low redshifts
(z∼ 0.1), resemble those of QSOs except that their luminosities are lower. Interestingly, as shown
by Wake et al. (2004) and Li et al. (2006a), Seyfert galaxies also preferentially reside in halos
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Fig. 14.9. The comoving space density as a function of redshift for QSOs of different luminosities.
[Adapted from Hopkins et al. (2007) by permission of AAS]

with masses in the range 1012–1013h−1 M�. A similar result was obtained by Pasquali et al.
(2009) using a large galaxy group catalogue. It thus seems that halos of this mass range are the
typical hosts of optical AGN, and that their activity is stronger at higher redshifts (giving rise to
QSOs) than at low redshifts (where the AGN are typically Seyfert galaxies and LINERS). This
is consistent with the fact that the peak in the number density–redshift relation shifts to smaller
redshifts for fainter QSOs (see Fig. 14.9).

(c) Implications for AGN Formation At any redshift, the number density of halos that can
host QSOs (i.e. halos with masses ∼ 1012.5h−1 M�) is much larger than the number density of
bright QSOs observed at the same redshift. Clearly, not all halos with the right mass host a bright
AGN at any time. It is believed that halos of the right mass have relatively short ‘duty cycles’, so
that each of them hosts a bright QSO only for a brief period of time. If the average duty time of
a halo is tQ, then the probability to observe a halo during the duty cycle at redshift z is roughly
the ratio tQ/t(z), where t(z) is the age of the Universe at redshift z. This ratio should be equal to
the ratio between the number density of QSOs and that of dark matter halos capable of hosting
QSOs. Using the observed number density of QSOs and the abundance of dark matter halos with
masses ∼> 1012.5h−1 M� predicted by the ΛCDM model, tQ is estimated to be of the order of
107–108 yr (Porciani et al., 2004; Croom et al., 2005).2 This time scale is much shorter than the

2 Note that the data cannot discriminate between a single activity phase of duration tQ, and many shorter bursts with a
combined duration of tQ.
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age of the Universe at any redshift at which QSOs are observed. Because of this, the number
density of bright quasars observed at a given redshift is directly related to the rate at which QSOs
are activated at that redshift. The results shown in Fig. 14.9 therefore indicate that bright QSOs
started to form at z ∼> 6, with the activation rate peaking at z ∼ 2–3 and declining rapidly at lower
redshifts. The question is: what determines such redshift-dependence of the activation rate?

If QSOs are hosted by relatively massive dark matter halos, as indicated by the clustering
data described above, the number density of QSOs should depend on the number density of dark
matter halos available to host them. In the ΛCDM model, the number density of dark matter
halos with M ∼ 1012.5h−1 M� increases rapidly with time at z > 3. It is thus possible that the
rapid increase of QSO number density with decreasing redshift seen at z > 3 is dictated directly
by the increase of the number of massive halos. At z ∼< 3, on the other hand, the number density
of M ∼ 1012.5h−1 M� halos keeps on increasing with time, albeit at a slower rate, in contrast to
the rapid decrease in the number density of QSOs. Hence, there must be some processes that
regulate the formation of bright AGN in massive halos at z ∼< 3 in such a way that the fraction of
SMBHs in a bright AGN phase decreases.

If quasar activity were triggered by galaxy interactions, the decline of the number density of
bright quasars at z ∼< 3 may reflect a decline in the rate of major mergers. The observed merger
rate of galaxies increases with redshift and is usually approximated by a power law, (1+z)m with
m > 0. If m ∼ 4, this effect alone would mean a drop by a factor of ∼ 100 in the number density
of quasars from z = 2 to z = 0, consistent with the data shown in Fig. 14.9. Unfortunately, the
value of m is still very uncertain (see §13.3.6). In addition to a drop in the merger rate, there are
a number of other plausible effects that may also have played a role. First of all, galaxies are less
gas-rich at lower redshift, and so a stronger (and rarer) interaction may be required in order to
funnel a large amount of gas into the halo center to feed a bright AGN. Secondly, as discussed
below, AGN in their bright phases can output large amounts of energy into their surroundings,
thereby suppressing the gas accretion by the black hole. It is possible that such feedback is more
effective at lower redshift when the gas density in the host galaxies is lower. Finally, at low
redshift many galaxies that host SMBHs may have merged into massive systems (clusters and
rich groups) where the gas is too hot to be accreted by the SMBH. Indeed, as shown by Pasquali
et al. (2009), optical AGN become rare in halos with M ∼> 1014h−1 M�; the AGN hosted by such
high-mass halos are preferentially radio galaxies.

14.3.3 Outstanding Questions

Although there has been a tremendous increase in the amount of data, many open ques-
tions regarding AGN demographics remain. For example, what is so special about halos of
1012.5h−1 M�, i.e. why do AGN appear to be absent in lower mass halos, or equivalently in
galaxies with stellar masses below 1010 M., as seems to be the case, at least at the present day
(Kauffmann et al., 2003a; Pasquali et al., 2009). Is it mainly because the AGN in these halos
are too faint to be detected with current surveys, or because these halos do not host (sufficiently
massive) black holes, or because they do not have sufficient gas accretion to feed the black holes?
In the first case one would expect a correlation between AGN luminosity and halo mass, which
would then mean that fainter QSOs are less strongly clustered. Currently, there is no convincing
evidence that the clustering strength of QSOs depends strongly on their luminosities (Croom
et al., 2005; Myers et al., 2007).

Another outstanding question is what determines an AGN to be radio-quiet or radio-loud.
There are indications that this may be related to the environment in which the active galaxy is
located. Radio-loud AGN in the local Universe, which are mainly hosted by elliptical galaxies,
are found to be located preferentially in central galaxies of groups and clusters as opposed to
other galaxies of the same (stellar) mass (e.g. Best et al., 2007; Pasquali et al., 2009). This
indicates that the conditions for triggering a radio AGN may be very different from those for
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triggering an optical AGN. The optical AGN phenomenon apparently requires a galaxy with a
young stellar population, and therefore seems to be linked with the availability of the supply of
cold gas that not only serves as the fuel for ongoing star formation, but also feeds the central
SMBH. In contrast, radio AGN are triggered in dense environments (i.e. massive halos) where
large amounts of cold gas are not available. However, exactly how radio jets develop in such
environments is still unclear. It may be that the radio mode predominantly develops in massive
halos because they contain large amounts of hot gas. It is unclear, though, whether the hot halo
is required to form the jet in the first place, or whether the hot corona merely acts as a working
surface for the jet to dissipate its energy (e.g. Kauffmann et al., 2008).

In recent years, it has become clear that the presence of a hot corona, combined with the
absence of a significant cold gas supply in the host galaxy, may have an important impact on the
radio loudness of the AGN. At low redshift, the majority of radio galaxies are low-power FR I
sources residing mainly in elliptical galaxies with very little ongoing star formation and with
weak emission lines (e.g. Ledlow & Owen, 1995). X-ray studies suggest that the active nuclei in
these radio galaxies are not radiatively efficient (Hardcastle et al., 2007). There is almost never
any evidence for a heavily absorbed nuclear X-ray component, indicating that these systems
may lack the classical accretion disk and obscuring torus. One possibility is that the absence of
large amounts of cold gas result in radiatively inefficient, advection dominated accretion flows
(e.g. Narayan & Yi, 1994). Alternatively, the SMBH may accrete the hot gas directly via Bondi
accretion (see §14.3.1). The latter is supported by a tight observed correlation between the Bondi
accretion rate, inferred from the estimated SMBH mass and the observed temperature and density
profile of the gas, and the power emerging from these systems in relativistic jets (Allen et al.,
2006).

In contrast, the more powerful FR II radio galaxies often show strong emission lines with
strengths tightly correlated with their radio fluxes (e.g Baum et al., 1995). This suggests that
both the optical and radio emission are due to radiatively efficient accretion via an accretion
disk, similar to the accretion mode of an optical AGN. Hence, it seems that the difference
between FR I and FR II radio galaxies is in their gas accretion mode. Powerful radio sources
only develop when a sufficient supply of cold gas is available so that a radiatively efficient
accretion disk can develop. On the other hand, when only hot gas is available, the accre-
tion is radiatively inefficient, and almost all the accretion energy is channeled into the jets,
giving rise to a radio galaxy of relatively low power (see Körding et al., 2006, for an inter-
esting analogy with X-ray binaries). Since galaxies are expected to be more gas rich at higher
redshifts, this picture gives a natural explanation for the fact that the space density of FR II
sources increases strongly with increasing redshift (e.g. Laing et al., 1983; Dunlop & Peacock,
1990).

14.4 AGN and Galaxy Formation

As shown above, an AGN can release a huge amount of energy during its lifetime. In general we
may express the power of the energy output as

dE
dt

= εṀBHc2, (14.77)

where ε = εr + εm is an efficiency factor, and we use εr and εm to denote the radiative and
mechanical efficiencies, respectively. Integrating the power over the history of an AGN, we get
the total energy output,

E = εMBHc2, (14.78)
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where ε is the mean efficiency. In order to see whether the energy feedback from AGN can have
significant impact on galaxy formation and evolution, compare the total energy output from an
AGN with the binding energy of its host galaxy. Suppose that the mass and velocity dispersion of
the host galaxy (assumed to be an early-type galaxy) are Mgal and σ , respectively. According to
the virial theorem, the gravitational binding energy is roughly W ∼−Mgalσ2. It then follows that

E
|W | ∼

εMBH

Mgal

( c
σ

)2
. (14.79)

According to the observational result shown in Fig. 2.17, MBH/Mgal ∼ 10−3. Thus, for a massive
galaxy with σ ∼ 300kms−1, the ratio E/|W | is about 103ε , indicating that the AGN energy can
easily surpass the total binding energy of the host galaxy. It is therefore very well possible that the
energy feedback from AGN plays an important role in the formation and evolution of galaxies.

There are two questions to be addressed in order to quantify the impact of AGN feedback on
galaxy formation. The first is the value of the feedback efficiency, ε , with which the accretion
power of the SMBH is released, and the second is how effective the feedback energy is coupled to
the gas in the host galaxy and its large scale environment. Clearly, the answers to these questions
depend on the details of the feedback processes involved.

Roughly speaking, there are three possible processes that can channel the energy from an AGN
into its surrounding gas:

• Radiative processes: As we have seen above, the radiative efficiency of an accreting SMBH is
εr ∼ 0.1 in bright AGN, and so the amount of energy available in this channel is enormous.
This energy can, in principle, feed back into the environment of an AGN through both radiation
pressure and radiative heating.

• Mechanical processes: Observations show that jets and winds associated with radio galaxies
contain large amounts of kinetic energy that are comparable to the radiation energy of the
source.

• Energetic particles (cosmic rays): Although there is no evidence that the total energy released
via this channel is significant, the production of energetic particles could in principle contribute
to the overall pressure of the gas surrounding an AGN (see §8.2).

In what follows, we describe in more detail how the radiative and mechanical feedback from
AGN can affect the gas in their environments. Given our poor understanding of the primary
production of cosmic rays in AGN, we will not discuss this option further.

14.4.1 Radiative Feedback

Ultraviolet and X-ray photons generated by AGN can ionize neutral atoms (or partially ionized
ions) through photoionization and heat the gas through photoionization heating. As we will see
in §16.1, the intergalactic medium (IGM) is highly ionized at z ∼< 6, although it was almost
completely neutral after recombination at z ∼ 1000. It is believed that the IGM is re-ionized by
radiative sources that can output large amounts of ionizing (UV) photons. Although part of the
UV photons responsible for the ionization of the IGM is produced by star-forming galaxies, the
contribution from AGN is significant, and perhaps even dominant at z ∼< 2 when the number
density of star-forming galaxies starts to drop rapidly. In the process of photoionization, the
energy surplus of an ionizing photon is converted into kinetic energy of the electron that is
removed from the atom (or ion). Hence, UV photons can not only ionize gas but also heat it. As
we will see in §16.3, the UV background produced by the radiation emanating from AGN can
heat the IGM to a temperature of about 104 K. This heating can significantly suppress gas cooling
and star formation in low mass halos (see §8.1.4).
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If the host galaxy of an AGN contains a significant amount of dust, the radiation from the
central AGN can be effectively channeled into the surrounding gas by dust absorption. The part
of the radiation energy that goes into heating the dust grains does not have a net effect, because it
is rapidly re-emitted in the infrared. However, for a central source, the radiation pressure on the
dust grains can transfer the momentum of the radiation field into the gas through the coupling
between the gas and the dust grains. If the radiation pressure can overcome the gravitational
force of the host halo, the gas can flow out from the center in the form of a momentum-driven
wind (e.g. Murray et al., 2005). If all photons are absorbed by the dust grains, i.e. the absorption
optical depth of the gas is τ ∼> 1, then the pressure force on the gas is F = L/c, and the total
momentum injected into the gas is p = E/c, where E is the total energy radiated by the AGN. If
the gas is optically thin, then both F and p should be reduced by a factor of τ . Detailed modeling
shows that the specific cross-section of dust absorption is ∼ 100cm2 g−1 (Draine & Lee, 1984),
which implies that τ ∼ 1 requires a column density of dust of the order of Σd ∼ 10−2gcm−2 ∼
50M� pc−2. Such a column density can easily be reached in the central part of an AGN host
galaxy. If all the momentum of the radiation is transferred into the gas, the total energy extracted
is roughly a fraction of v/c of the total radiation energy of the AGN, where v is the velocity of
the accelerated gas. Thus, the energy feedback generated by radiation pressure is more efficient
if the radiation pressure accelerates a smaller amount of gas to a higher velocity. In broad-line
QSOs, where the gas outflow velocity can be as high as ∼ 0.2c, acceleration by radiation pressure
is an efficient energy injection mechanism.

Another coupling between photons produced by an AGN and the surrounding gas is through
Compton heating. If the gas is ionized and has a temperature lower than the effective (Comp-
ton) temperature of the radiation field, T , then the Compton scattering between an electron
and a photon transfers energy from the photon to the electron, thereby heating the gas. As
shown in §B1.3, on average a photon loses a fraction ∼ 4kBT/mec2 of its energy in each
scattering, which corresponds to an efficiency of ∼ 10−1 for T ∼ 10keV. Nearby AGN that
have been studied in detail, such as 3C273 and 3C279, have T ∼ 10keV or higher, indicat-
ing that Compton heating may be an important form of AGN feedback (e.g. Ciotti & Ostriker,
2001).

The momentum-driven feedback and Compton heating are expected to be more important
for AGN in the high-accretion phase where AGN radiate efficiently. Although the number is
very uncertain, it is usually assumed that a small fraction, e.g. ∼ 5%, of the radiative energy is
deposited as thermal energy into the surrounding gas through these processes. Numerical simu-
lations of galaxy formation incorporating such an energy source in mergers of gas-rich galaxies
(which may trigger a bright quasar) show that such an energy injection may have significant
impact on the gas in the host galaxy, producing gas outflows that can effectively quench the
growth of the central SMBH and suppress star formation in the host galaxy (e.g. Springel et al.,
2005b; Hopkins et al., 2006).

14.4.2 Mechanical Feedback

During the low-accretion mode of an AGN, when the accretion rate of the SMBH is much lower
than the Eddington rate, AGN feedback is believed to proceed mainly through radiatively inef-
ficient, mechanical forms, such as radio jets and lobes. Evidence for such energy feedback can
be seen in a number of elliptical galaxies at the centers of clusters, which contain X-ray cavities
filled with relativistic gas (e.g. Fabian et al., 2006; Forman et al., 2007). These X-ray cavities,
often loosely referred to as ‘bubbles’, are believed to be inflated by the jet launched from the
central SMBH, and the power involved can be substantial. The typical kinetic power estimated
for the central galaxy of a cluster is about 1045ergs−1, more than enough to offset the radiative
cooling of the intracluster gas (e.g. Böhringer et al., 2002).



14.4 AGN and Galaxy Formation 651

As a crude approximation, the evolution of a jet-powered bubble is similar to that of an adia-
batic stellar wind bubble. The assumption of no radiative cooling in the bubble is valid, because
the gas density is low and the temperature is high. Assuming that the energy input rate, L, is a
constant, and that the bubble expands as a spherically symmetric strong shock, the bubble radius
evolves as

R ∼
(

L
ρ

)1/5

t3/5, (14.80)

where ρ is the density of the medium into which the bubble expands (see §8.6.2). The expan-
sion velocity is v ∼ (L/ρ)1/3R−2/3. During the supersonic expansion, the feedback energy is
transferred into the gas through shocks as more and more gas is swept up by the shock front.
The supersonic expansion ends when the expansion velocity becomes of the order of the sound
speed of the medium. For a bubble expanding into a hot medium with temperature T = 1keV and
density n = 1cm−3, the sonic radius is ∼ 50kpc assuming L = 1045 ergs−1. Once the expansion
becomes subsonic, the energy is being transferred into the gas through PdV work. Meanwhile, if
the gas pressure is stratified, the buoyancy of the gas can cause the bubble to rise in the poten-
tial well of the host, spreading the feedback energy into gas that is far away from the central
source. Numerical simulations of buoyancy-driven bubbles generated in the centers of X-ray
clusters indicate that they can effectively channel the feedback energy into thermal energy of the
intracluster gas (e.g. Binney & Tabor, 1995; Churazov et al., 2002; Brüggen & Kaiser, 2002;
Reynolds et al., 2002). It is believed that such a feedback process may be responsible for the
quenching of cooling flows in clusters of galaxies (see §8.8.1).

Since every early-type galaxy seems to host a SMBH at its center, this mechanical AGN feed-
back may have operated in all these galaxies, affecting their formation and evolution. Suggestions
have been made that such feedback may effectively heat the gas in the halos of early-type galax-
ies, quenching radiative cooling and star formation in these systems (e.g. Bower et al., 2006;
Croton et al., 2006). As discussed in §15.7, such quenching may have played an important role
in shaping the galaxy luminosity function, and in establishing the color–magnitude relation of
galaxies.
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Statistical Properties of the Galaxy Population

15.1 Preamble

Galaxies are observed to have different intrinsic properties (luminosity, morphological type, size,
color, age, nuclear activity, etc.) and to reside in different environments (field, group, cluster,
etc.). In the previous four chapters, we have described how the properties of individual galaxies
are determined by their formation mechanisms and the various processes that play a role during
their subsequent evolution. The goal there has been to constrain the initial conditions and physi-
cal processes that lead to the formation of a galaxy with some specific intrinsic properties. In this
chapter, we study the statistical properties of the galaxy population, i.e. we address the question
of how galaxies are distributed with respect to their intrinsic properties and in space. The goal
here is to understand the conditions for the formation and evolution of the galaxy population as
a whole. Clearly, in order to achieve this goal, we need not only to understand the processes that
govern the formation and evolution of individual galaxies, but also to understand how this forma-
tion and evolution is linked to the cosmological initial and boundary conditions that determine
the statistical properties of the cosmic density field.

The distribution of the galaxy population can be described formally by a multivariate
distribution function, φ , defined by

dn = φ(G1,G2, . . .)dG1 dG2· · ·, (15.1)

where the Gi (i = 1,2, . . .) each stand for a specific property of galaxies, such as luminosity,
size, color, etc, and dn is the number density of galaxies with properties G1,G2, . . . in the ranges
G1 ±dG1/2,G2 ±dG2/2, . . ., respectively. An important goal of astronomy is both to determine
the form of φ observationally and to understand its origin from physical principles.

Ideally, we would like to obtain the joint distribution function of all the important properties
of galaxies. In practice, however, observational data are usually sufficient only to determine the
marginal distribution functions of a few quantities. These marginal distribution functions are
the projections of the full distribution function onto specific axes and planes. For example, the
luminosity function is the full distribution function projected onto the luminosity axis, while
the color–luminosity distribution is the projection onto the color–luminosity plane. In this chapter
we focus on some of the most important observed properties of the galaxy distribution, and
describe how these can be understood in the current paradigm of structure formation.

As described throughout this book, galaxies are believed to form and reside in extended dark
matter halos. The properties of the galaxy population are therefore related to the cosmological
density field through the properties of the dark matter halo population. Since the formation and
properties of the halo population depend only on gravitational processes, and can be understood
relatively easily with numerical simulations and analytical models (see Chapter 7), it is conve-
nient to describe the galaxy population in terms of its connection to dark matter halos. In the
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remainder of this section, we provide a formal discussion about how to link galaxies with dark
matter halos. Such discussion is useful, because it allows us to clearly see how the different
processes of galaxy formation and evolution described in the earlier chapters play their role in
shaping the statistical properties of the galaxy population.

A dark matter halo at a given redshift can be characterized by a set of quantities that describe
its salient properties, such as mass, concentration, shape, angular momentum, formation his-
tory, and environment. For convenience, we denote these halo quantities, including the redshift
at which a halo is identified, collectively by H . Similarly, we use G = {G1,G2, . . .} to denote
collectively the quantities that characterize the properties of a galaxy, such as luminosity, mor-
phology, color, etc. The connection between halos and galaxies can formally be described by a
conditional distribution function, P(G |H ), which gives the probability of finding a galaxy with
property G in a halo with property H . The distribution function of the galaxy population with
respect to G can then be written as

P(G ) =
∫

P(G |H )P(H )dH , (15.2)

where P(H ) is the distribution function of dark matter halos with respect to H . As a simple
example, the luminosity function can formally be written as

φ(L) =
∫
Φ(L|M)n(M)dM, (15.3)

where n(M) is the mass function of dark matter halos, and Φ(L|M) is the conditional luminosity
function that describes the probability of finding a galaxy with luminosity L in a halo of mass M
(see §15.3 for details).

When describing the properties of the galaxy population, it is useful to separate galaxies into
two categories: central and satellite galaxies. The central galaxy in a halo is the one residing at
(or near) the bottom of the halo potential well, while all other galaxies within the halo are satel-
lite galaxies. The central galaxy is usually the most massive one among all member galaxies,
although there are exceptions, especially in massive clusters where there are often two or more
dominating galaxies of comparable masses. The reason for considering the centrals and satellites
separately is that they are expected to have undergone different evolutionary processes. Based
on the current theory of galaxy formation, the gas that cools inside a dark matter halo accumu-
lates at the center of the halo’s potential well. Furthermore, galaxy mergers are more likely to
occur near the bottom of the halo potential well, as the orbits of satellite galaxies decay due to
dynamical friction. Hence, central galaxies may continue to grow due to the accretion of cooling
gas and/or the accretion of satellite galaxies. A satellite galaxy, on the other hand, is subjected to
various environmental effects, such as ram-pressure stripping, tidal stripping and strangulation
(see §12.5), that can strip its associated gas reservoir, thereby suppressing the formation of new
stars. In addition, satellite galaxies are also subjected to various interactions with the host halo
and other galaxies in the halo, which can cause them to undergo a morphological transformation.
Note that mergers among satellites are expected to be rare (see §12.4).

Central and satellite galaxies are also different in their relationships with dark matter halos.
The centrals, which form and reside near the centers of their host halos, are expected to be closely
related to the formation histories of their hosts. On the other hand, satellites are believed to be
associated with subhalos, and so their properties may be more related to the formation histories
of the subhalo population. As seen in §7.5.3, subhalos are themselves independent halos before
merging into bigger ones. Hence, a satellite itself is a central galaxy before its halo becomes a
subhalo. This suggests that we may link the properties of satellite galaxies to those of its host
halo via the following formal relation,

Ps(G |H ) =
∫ ∫

P(G |Ga)Pc(Ga|Ha)P(Ha|H )dHadGa, (15.4)
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where Ha denotes the property of a subhalo at the time of accretion, i.e. when it first became
a subhalo, and Ga denotes the property of a satellite galaxy at the time when it first became a
satellite. In the above equation, P(Ha|H ) is the probability of finding a subhalo with property
Ha at the time of accretion in a halo with property H , Pc(Ga|Ha) is the probability to form
a central galaxy of property Ga in a halo of property Ha, and P(G |Ga) is the probability for a
central galaxy of property Ga to be transformed into a satellite galaxy of property G .

The formal relationship between galaxies and dark matter halos/subhalos as represented by
Eqs. (15.2) and (15.4) provides a useful way to understand how the statistical properties of the
galaxy population are determined by the various aspects of galaxy formation and evolution. First,
the properties of the galaxy population depend on the properties of the halo and subhalo popula-
tions, as represented by the distribution functions, P(H ) and P(Ha|H ). Second, the properties
of the galaxy population depend on how individual galaxies form in the centers of dark matter
halos, as indicated by the conditional distribution function, Pc(G |H ). Finally, the properties of
the galaxy population also depend on how galaxies are transformed by environmental effects in
dark matter halos, which is indicated by P(G |Ga). Note that the description here is based on dark
matter halos; any environmental effects on superhalo scales can be taken into account by includ-
ing in the halo property, H , a set of quantities that describes the large-scale environment of dark
matter halos.

Clearly, in order to model the galaxy population in detail, one needs to model all the important
aspects of galaxy formation and evolution. In the following sections, we will use the formalism
introduced here to demonstrate how the statistical properties of the galaxy population can be
understood in terms of the physical processes described in the previous chapters.

15.2 Galaxy Luminosities and Stellar Masses

One of the most basic properties of a galaxy is its luminosity. Roughly speaking, the luminosity
of a galaxy is proportional to the number of stars in the galaxy and is a measure of its stellar mass.
However, the luminosity of a galaxy can change with time as stars form and evolve. The study
of the distribution of galaxies with respect to their luminosities can therefore provide important
clues regarding the evolution of the galaxy population.

15.2.1 Galaxy Luminosity Functions

The luminosity function of galaxies, φ(L), is defined as

dn(L) = φ(L)dL, (15.5)

where dn(L) is the comoving number density of galaxies with luminosities in L± dL/2. Since
luminosities are usually measured in a specific waveband, the luminosity function is typically
also determined in a specific waveband. Terms like the B band luminosity function, K band
luminosity function, etc. are frequently used (see §2.1.1 for the definitions of different bands).

Before describing the observed luminosity functions, we first discuss how a luminosity func-
tion is derived from a given sample of galaxies. Suppose we have a magnitude-limited sample
which includes all galaxies, in a patch of sky, with apparent magnitudes (in a given waveband)
brighter than a limit mlim. For a galaxy at redshift z with an apparent magnitude m, its absolute
magnitude is given by

M = m−5log [dL(z)/Mpc]−25−K(z), (15.6)

where dL(z) is the luminosity distance corresponding to redshift z (see §3.2.6). The term K(z) in
Eq. (15.6) is the ‘K correction’ and is required in order to correct the observed flux into a fixed
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rest-frame band, so that the absolute magnitudes are the same for identical galaxies at different
redshifts (see §10.3.6). By definition, the luminosity of a galaxy (in the chosen waveband) is
related to the absolute magnitude by

2.5log(L/L�) = M�−M , (15.7)

where the subscript � denotes values for the Sun in the same waveband (see §2.1.1).
Because of the apparent magnitude limit, a galaxy with a luminosity L will only be part of the

observed sample if it is located within a maximum luminosity distance dmax (corresponding to a
redshift zmax) given by

5log [dmax(L)/Mpc] = mlim −M�−25+2.5log(L/L�)−K(zmax). (15.8)

Thus, for a magnitude-limited sample covering a solid angle, ω , the expected number of galaxies
with luminosities in the range L±dL/2 is

dN = φ(L)Vmax(L)dL, (15.9)

where Vmax is the comoving volume out to zmax. For a flat universe,

Vmax(L) =
ω
3

[
dmax(L)

1+ z

]3

, (15.10)

(see §3.2). From Eq. (15.9) we have

φ(L)dL =
dN(L)

Vmax(L)
=∑

i

1
Vmax(Li)

, (15.11)

where the summation extends over all galaxies in the luminosity interval L±dL/2. This equation
outlines the basic principle for deriving the luminosity function of galaxies from a magnitude-
limited sample.

The observed luminosity function of galaxies is usually fitted by a functional form known as
the Schechter function [see Eq. (2.34)]. Based on the principle outlined above, one can estimate
the values of the three parameters, φ ∗, α and L∗ (or M ∗), which characterize the Schechter func-
tion, from a magnitude-limited galaxy sample by fitting the measurement given by Eq. (15.11) to
the Schechter function. In practice, one often uses a maximum likelihood method to determine
these parameters (e.g. Sandage et al., 1979; Efstathiou et al., 1988). The probability for a galaxy
with luminosity Li and redshift zi to be included in a magnitude-limited sample is

pi = φ(Li)
/∫ ∞

Lmin(zi)
φ(L)dL, (15.12)

where Lmin(zi) is the lowest luminosity a galaxy at redshift zi can have in order for it to be
included in the sample. From pi one can form a likelihood function

L =∏
i

pi, (15.13)

where the product extends over all galaxies in the sample. This function depends on the free
parameters characterizing the luminosity function φ (e.g. α and L∗ in the Schechter function),
and the best estimates of these parameters are obtained by requiring that they maximize L . Note
that this method does not provide an estimate for the overall amplitude φ ∗, but its value can
be obtained by requiring the luminosity function to reproduce the total number of galaxies in
the sample. The errors in the parameters α and L∗ can be estimated by using the fact that the
maximum likelihood estimate is asymptotically normal. Hence, we can write

lnL = lnLmax − 1
2
χ2
β (k), (15.14)
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Table 15.1. Galaxy luminosity functions in different bands.

Band α M ∗ −5logh φ∗/(h3 Mpc−3) Reference

u −0.92±0.07 −17.93±0.03 (3.05±0.33)×10−2 Blanton et al. (2003)
g −0.89±0.03 −19.39±0.02 (2.18±0.08)×10−2 Blanton et al. (2003)
r −1.05±0.01 −20.44±0.01 (1.49±0.04)×10−2 Blanton et al. (2003)
i −1.00±0.02 −20.82±0.02 (1.47±0.04)×10−2 Blanton et al. (2003)
z −1.08±0.02 −21.18±0.02 (1.35±0.04)×10−2 Blanton et al. (2003)
J −1.10±0.04 −22.85±0.04 (0.71±0.01)×10−2 Jones et al. (2006)
H −1.11±0.04 −23.54±0.04 (0.72±0.01)×10−2 Jones et al. (2006)
K −1.16±0.04 −23.83±0.03 (0.75±0.01)×10−2 Jones et al. (2006)
bJ −1.21±0.03 −19.66±0.07 (1.61±0.08)×10−2 Norberg et al. (2002b)
Near-UV −1.12±0.10 −17.77±0.15 (1.22±0.20)×10−2 Budavári et al. (2005)
Far-UV −1.10±0.12 −17.20±0.14 (1.30±0.20)×10−2 Budavári et al. (2005)

where χ2
β (k) is the β point (the confidence level) of the χ2 distribution with k degrees of freedom,

and k is equal to the number of free parameters in the fit (see Eadie et al., 1971). For example, the
β = 96% confidence level for the values of α and L∗ is just the curve, lnL (α,L∗) = lnLmax −
3.0, in the α-L∗ plane.

The method outlined above can also be used to estimate the luminosity function without
assuming a functional form for φ . One can assume that the luminosity function is represented by
the values of φ(L) in a number of discrete bins in L: φk (k = 1,2, . . .,K), and obtain the values of
φk by maximizing the likelihood function with respect to all the φk (e.g. Efstathiou et al., 1988).

(a) The Observed Galaxy Luminosity Functions in Different Wavebands With the advent
of large redshift surveys, the luminosity function of the total galaxy population can nowadays
be estimated accurately down to relatively faint absolute magnitudes in optical, infrared and UV
bands. Table 15.1 list the Schechter parameters obtained from fitting the observed luminosity
functions in different bands. These results are for galaxies brighter than ∼ M ∗ + 3mag. The
behavior of the galaxy luminosity function at the very faint end is still uncertain, mainly because
in a magnitude-limited sample these galaxies can only be observed within a very small, local
volume so that the errors are dominated by cosmic variance. Current results based on the SDSS
suggest that the luminosity function may steepen significantly with respect to the Schechter
function at M ∼> M ∗ +3mag (e.g. Blanton et al., 2005).

(b) The Stellar Mass Function of Galaxies With multi-band photometry and high-quality
spectroscopy, the total stellar mass of individual galaxies can be estimated using the population
synthesis method described in §10.3. One can therefore also estimate the stellar mass function
of galaxies from observations. One problem here is that such an estimate requires a large sample
complete in stellar mass, while galaxy samples are typically either magnitude limited, or selected
to be complete in luminosity (in some band). Care must therefore be taken to ensure that any
incompleteness is properly corrected for. As shown in Bell & de Jong (2001), the stellar mass-
to-light ratios in the near-infrared bands vary only by a factor of 2 or less over a wide range of
star-formation histories, in contrast with a factor of 10 in the blue bands. Thus, the luminosity
of a galaxy in a near-infrared band (e.g. the K band) is a better tracer of its total stellar mass,
and it is therefore advantageous to start with a complete sample selected in the near-infrared
when estimating the stellar mass function. Galaxy stellar mass functions have been estimated
based on near-infrared and optical data (e.g. Cole et al., 2001; Bell et al., 2003b), and the stellar
mass function thus obtained can be described by a Schechter form with a slope at the low-mass
end, α ∼ −1.1, and a characteristic stellar mass ∼ 5× 1010h−2 M�. The estimated stellar mass
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density of the Universe is ρ� ∼ 5.5× 108hM� Mpc−3, corresponding to a density parameter,
Ω�,0 ∼ 2×10−3h−1. There are still substantial uncertainties in these numbers, because of cosmic
variance and because of the uncertainties in the stellar population synthesis models, in particular
regarding the assumed initial mass function and the adopted spectra of individual stars (e.g. Bell
et al., 2003b).

(c) Dependence on Galaxy Color As shown in Fig. 2.27, the galaxy population at low red-
shift exhibits a clear bimodal distribution in the color–luminosity space. One can therefore study
how the galaxy luminosity function depends on galaxy color by measuring the galaxy luminosity
function separately for the red and blue populations. The results of such measurements show
that the red population in general has a brighter characteristic magnitude, M ∗, and a shallower
faint-end slope (i.e. a larger value of α), than the blue population (see Fig. 2.33 for an exam-
ple), suggesting that the fraction of red galaxies decreases with decreasing luminosity. However,
this trend may not hold at the very faint end (Mr − 5logh ∼> −17), where the luminosity func-
tion of the red population appears to show an upturn (Blanton et al., 2005). These faint red
galaxies usually have low surface brightness and show exponential profiles, similar to the dwarf
ellipticals observed in nearby groups and clusters (see below). Unfortunately, the significance of
such upturn is still difficult to quantify, again because the cosmic volume within which the faint
galaxies can be observed is small.

(d) Dependence on Galaxy Morphology As we have seen in §2.3.1, the morphologies of
galaxies are strongly correlated with their colors. The color dependence of the galaxy luminosity
function described above thus suggests that the luminosity function should also depend on galaxy
morphology. Fig. 15.1 shows schematically how the luminosity function decomposes into the
contributions from galaxies of different types. The bright-end of the luminosity function is clearly
dominated by ellipticals, while the spiral galaxies dominate the intermediate luminosity range. At
the faint end, the luminosity function is dominated either by irregulars (in the field) or by dwarf
ellipticals (in clusters). The luminosity functions of spirals, S0s and ellipticals are peaked around

Fig. 15.1. Morphology dependence of the galaxy luminosity function. The left and right panels show the
luminosity functions for galaxies in the field and in clusters, respectively. The plot for cluster galaxies is
based on the results published in Jerjen & Tammann (1997). The plot for field galaxies is based on the
argument by Binggeli et al. (1988) that the shapes of the luminosity functions for individual morphological
classes are invariant, while their amplitudes change with environment.
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some characteristic luminosities and follow roughly a Gaussian form instead of a Schechter form.
On the other hand, both irregulars and dwarf ellipticals have Schechter-type luminosity functions,
but the faint-end slope is steeper for dwarf ellipticals than for irregulars. As mentioned above,
these dwarf ellipticals may be responsible for the upturn of the luminosity function of red galaxies
at the faint end.

(e) Dependence on Environment Is the luminosity function universal, or does it change with
environment? To answer this question, one can compare the luminosity function of galaxies in
clusters (high-density environment) with that in the general field. The luminosity function of
cluster galaxies has been estimated for a number of nearby clusters (e.g. Jerjen & Tammann,
1997; Trentham & Hodgkin, 2002; Popesso et al., 2006). The observational results show that
the luminosity function of cluster galaxies has a systematically steeper slope, with a marked
upturn at the faint end (Mr − 5logh ∼> −17), and a more extended tail at the bright end than
the field luminosity function. As shown by Binggeli et al. (1988), when galaxies are subdivided
according to morphological type, the shapes of the luminosity functions are similar for both
cluster and field galaxies within the same morphology subclass. The differences in the composite
luminosity functions arise from the fact that the relative amplitudes of the luminosity functions of
different subclasses change with environment, as illustrated in Fig.15.1. For instance, the steep
faint-end slope for cluster galaxies is caused by the high fraction of dwarf spheroidals, while
the extended tail at the bright end is caused by the increased fraction of bright ellipticals. This
suggests that the environment dependence of the galaxy luminosity function may be understood
in terms of the morphology dependence of the luminosity function discussed above, together
with the morphology–density relation described in §2.4.5.

(f) Redshift Evolution With the capacities of the current generation of telescopes, complete
samples of galaxies to very faint magnitude limits, with spectroscopic or photometric redshifts,
can be obtained in various optical and infrared bands. With such samples, the luminosity func-
tion can be determined for galaxies at different redshifts. As described in §2.6, the observational
results (see Fig.2.33 for an example) indicate that the luminosity function of galaxies has under-
gone significant changes in the past ∼ 8 Gyr, with the red and blue populations showing different
evolution. In particular, the data suggests that the total stellar mass density in the red population
has roughly doubled since z ∼ 1, while that of the blue population has remained roughly constant
(e.g. Borch et al., 2006; Faber et al., 2007). Apparently, while stars form in the blue population,
a significant fraction of the blue galaxies must have had their star formation quenched by some
physical processes so as to join the red population.

15.2.2 Galaxy Counts

Often, especially when faint galaxies are concerned, redshifts (and thus distances) of individual
galaxies are not available. In these cases, one can still distill some information regarding the
evolution of the galaxy population from the galaxy counts, N (m), defined as the number of
galaxies per unit apparent magnitude (in an observational waveband) per unit solid angle:

d2N(m) = N (m)dmdω. (15.15)

Although galaxy counts are easy to obtain from any galaxy catalogue with uniform photometry,
we now show that a proper interpretation in terms of the evolution in the number densities or
luminosities of galaxies is far from trivial.

Suppose that the luminosity function of galaxies at redshift z in a fixed passband of the
rest-frame spectra is φ(L,z)dL. Suppose further that these galaxies are divided into subclasses
according to their spectral energy distribution Fν . In a given subclass, the number of galaxies per
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unit redshift and per unit apparent magnitude (in the same passband) in a sample complete to an
apparent magnitude mlim is

dzN
dmd

=
ω
4π

dV (z)
dz

φ(L,z)
dL
dm

, (m < mlim), (15.16)

where ω is the solid angle covered by the sample, V (z) is the comoving volume within redshift
z, and the luminosity, L, is related to the apparent magnitude by Eq. (15.6). The total number
counts is the sum over all subclasses, each with its own dL/dm due to different K-corrections.
The redshift distribution of galaxies in the sample is then obtained by integrating Eq. (15.16) over
m to mlim:

dN(< mlim)
dz

=
ω
4π

dV (z)
dz

∫ ∞

Llim(z)
φ(L,z)dL, (15.17)

where the limiting luminosity, Llim, is related to mlim by Eqs. (15.7) and (15.6). Similarly, the
count of galaxies brighter than an apparent magnitude m can be written as

N(< m) =
ω
4π

∫ ∞

0
dz

dV (z)
dz

∫ ∞

Lm(z)
φ(L,z)dL, (15.18)

with Lm(z) related to m by Eqs. (15.7) and (15.6). The differential count is then

N (m) =
ln10
10π

∫ ∞

0

dV
dz
φ [Lm(z),z]Lm(z)dz. (15.19)

If the luminosity function does not depend on z, so that φ(L,z) = φ(L), and if K corrections can
be neglected, we can write Lm(z) = 4π fmd2

L(z), where fm is the energy flux corresponding to
apparent magnitude m ( fm ∝ 10−0.4m). In this case, Eq. (15.18) reduces to

N(< m) =
ω
3

(4π fm)−3/2
∫ ∞

0

3V (z)
4πd3

L(z)
L3/2φ(L)dL, (15.20)

where z is related to L by L = 4π fmd2
L(z). If we further neglect the expansion of the Universe,

this equation becomes

N(< m) =
ω
3

(4π fm)−3/2
∫ ∞

0
L3/2φ(L)dL

=
ω
3

(4π fm)−3/2 φ ∗L∗3/2Γ
(
α+

5
2

)
, (15.21)

where the Schechter form (2.34) is used for φ(L) in the second equation. Thus, for non-evolving

sources in a non-expanding Euclidean space, N(< m) ∝ f−3/2
m ∝ 100.6m. In general, however,

galaxy counts will be different from this relation, because of the expansion of the Universe,
because of K corrections, and because of the evolution of the luminosity function.

With current telescopes and detectors we can detect galaxies to very faint magnitudes. Fig. 2.32
shows examples of the galaxy counts in the U , B, I, and K bands, along with the predictions of
some theoretical models. Note that even in the no-evolution model [i.e. φ(L,z) = φ(L)], the

counts N(< m) increase with m slower than the f−3/2
m law, because the luminosity distance

increases with redshift faster than the angular-diameter distance in an expanding universe. The
observed galaxy counts are significantly higher than the prediction of the no-evolution model at
the faint end, particularly in the bluer bands. Since the apparent magnitude of a galaxy depends
both on its luminosity and its redshift, the excess can be either due to an increase in the number
density of intrinsically faint galaxies at relatively low redshift, or due to an increase in the num-
ber density of intrinsically bright galaxies at relatively high redshift, or a combination of both.
The nature of the faint-blue excess has been partially elucidated by the deep imaging surveys
made by the HST. Because of the high image resolution, galaxies to very faint magnitudes in
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the Hubble Deep Field and in the Medium Deep Survey can be assigned rough morphological
types, so that counts can be estimated separately for galaxies of different morphological types
(e.g. Abraham et al., 1996). The result is that objects classified as irregulars show the largest
excess relative to what is expected from the no-evolution model, while the excess for ellipticals
and spirals are relatively modest, suggesting that the observed excess of galaxy counts in blue
bands is probably dominated by the evolution of intrinsically faint galaxies.

In broad terms, there are two different kinds of evolution that can cause an excess of galaxy
counts at the faint end. The first is luminosity evolution, in which the comoving number density
of galaxies remains the same but galaxies become intrinsically brighter at higher redshifts. The
second is number evolution, in which galaxies are created and destroyed, so that the number
density of galaxies changes with redshift. In reality, it is likely that both kinds of evolution are
relevant.

In the case of pure luminosity evolution, galaxy counts can be obtained from the local lumi-
nosity function together with an assumption about how the luminosities of galaxies evolve with
redshift. In practice, the galaxy counts can be calculated from Eq. (15.18) by replacing φ(L,z)
with the local luminosity function and by adding an E correction term in the relation between m
and M :

m = M +5log

[
dL(z)
10pc

]
+K(z)+E(z), (15.22)

where E(z) is the change in magnitude in the observational pass band for a galaxy at redshift z
when it is evolved to the present time (see §10.3.6). Models of luminosity evolution considered
in the literature generally assume that elliptical galaxies formed their stars in short bursts at an
early epoch and have since evolved only passively, while disk galaxies formed their stars con-
tinuously over a substantial fraction of their lifetimes. The amount of luminosity evolution can
then be calculated from the population synthesis models described in §10.3. For pure luminosity
evolution, galaxies of a given stellar mass are brighter and bluer at higher redshifts. Therefore,
luminosity-evolution models in general predict a significant excess in the blue counts relative to
the no-evolution model, but only a moderate excess in the K-band. This is in qualitative agree-
ment with the data, suggesting that the observed excess of galaxy counts may, at least partly, be
due to luminosity evolution of the galaxy population.

In the hierarchical scenario of galaxy formation, galaxies continuously merge to build larger
galaxies and one thus expects some evolution in the comoving number density of galaxies with
redshift. The exact rate of evolution, however, depends on the balance between the destruction
rate of existing galaxies and the formation rate of new ones. Since merging increases the stellar
masses of the galaxies involved, naive expectations are that massive galaxies should be rarer
at higher redshift, while low-mass galaxies were more abundant. In such a scenario, one might
expect that the observed faint-blue excess is owing to an increase in the comoving number of
relatively low-mass galaxies. However, luminosity evolution complicates such an interpretation.
Even in the hierarchical scenario it may still be possible for the galaxy counts at the faint end
to contain a significant fraction of relatively massive galaxies that were brighter in the past. It is
exactly this degeneracy between luminosity evolution and number evolution that limits the power
of the galaxy-count statistic for constraining the evolution of the galaxy population.

15.2.3 Extragalactic Background Light

When galaxies are too far away to be identified as discrete sources, we can only observe their
contribution to the radiation background. The observed extragalactic background radiation over
the entire electromagnetic spectrum is shown in Fig. 2.2. In what follows we examine how to use
these data to constrain galaxy evolution.
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In practice, background radiation is usually measured within a unit frequency range around
some frequency νo in the rest frame of the observer. The flux received by the observer due to a
source of luminosity L at redshift z is given by

f (ν0,L,z) =
L (L,ν,z)
4πd2

L(z)
dν
dνo

=
(1+ z)L (L,ν,z)

4πd2
L(z)

, (15.23)

where ν = νo(1 + z) is the frequency in the rest frame of the source, dL(z) is the luminosity
distance, and L (L,ν,z)dν is the average energy emitted by a galaxy with luminosity L at redshift
z in the frequency range (ν,ν+ dν). The specific intensity of the radiation background can be
written as

J(νo) =
1

4π

∫
dV (z)

∫
dL f (ν0,L,z)φ(L,z), (15.24)

where φ(L,z)dL is the galaxy luminosity function at redshift z. Using dV (z) = 4πd2
L(z)cdt/(1+

z) (see §3.2.6), we can write this as

J(νo) =
c

4π

∫ ∞

0

ε(ν,z)
(1+ z)3

dt
dz

dz, (15.25)

where

ε(ν,z) = (1+ z)3
∫ ∞

0
L (L,ν,z)φ(L,z)dL (15.26)

is the mean emissivity at redshift z. As one can see, the background radiation produced by
the galaxy population is determined by the number density and mean spectrum of galaxies as
functions of redshift.

As an example, let us consider how the observed background radiation can be used to constrain
the global star-formation history of the Universe. Denoting the mean star-formation rate per unit
comoving volume at time t by ρ̇�(t), we can write the emissivity due to the radiation of stars as

ε(ν,z) = (1+ z)3
∫ t

0
ρ̇�(t ′)Fν(t − t ′)dt ′, (15.27)

where z is the redshift corresponding to time t, Fν(Δt) is the stellar population spectrum, defined
as the power radiated per unit frequency per unit initial mass by a generation of stars with age
Δt. For a given initial mass function, the form of Fν(Δt) can be obtained from the population
synthesis models described in §10.3. In the optical/UV wavebands, the luminosity of a galaxy is
dominated by massive stars with masses ∼> 2M�, which have lifetimes shorter than the age of the
Universe. In this case, the emissivity can be written approximately as ε(ν,z) ∼ (1+ z)3ρ̇�(z)Eν ,
where Eν is the energy radiated at rest-frame frequency ν per unit mass due to massive stars.
Inserting this expression of ε into Eq. (15.25) gives∫

J(νo)dνo =
c

4π
E ρ�,0, (15.28)

where E =
∫

Eνdν is the total energy radiated per unit mass due to massive stars, and ρ�,0 =∫
ρ̇�(z)dt is the comoving density of massive stars formed over the entire history of the Universe.

Since the most important energy source during a star’s lifetime is the conversion of hydrogen
into helium in the core, during which about 0.7% of the rest mass energy of the burned hydrogen
atoms is released, we can write E ∼ 0.007Mcorec2, with Mcore the mass of the helium core. In a
massive star, the helium core is eventually converted into metals (e.g. carbon and oxygen) and
ejected into the interstellar medium at the end of its lifetime. Thus, the energy released from such
a star is related to the amount of metals produced by E ∼ 0.007MZc2. This in Eq. (15.28) gives∫

J(νo)dνo =
c3

4π
0.007ρZ,0 ∼ 3.0×10−4ZΩb,0h2Wm−2 sr−1, (15.29)
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where ρZ,0 is the mean mass density of metals at the present time, and Z = ρZ,0/(ρcrit,0Ωb,0) is
the mean metallicity of the present-day Universe. TakingΩb,0h2 = 0.02 and Z = 0.001, we obtain∫

J(νo)dνo ∼ 6 [nWm−2 sr−1], which is comparable to the observed radiation background at the
optical/UV wavebands (see Fig. 2.2). This suggests that the star-formation history responsible
for the production of metals in the Universe may also be responsible for the production of the
radiation background observed in the optical/UV wavebands.

If a significant fraction of all stars formed in dusty environments, the intensity of the back-
ground radiation in the optical/UV wavebands would be lower than that expected from the metal
production, because a significant fraction of the optical/UV radiation may have been absorbed
by dust grains. Since the absorbed optical/UV radiation is expected to be re-emitted in the far-
infrared and submillimeter wavebands, with λ ∼ (100–2000)μm, we expect star formation in
dusty environments (e.g. starbursts) to produce background radiation in these wavebands. Such
background radiation has indeed been detected by the Far Infrared Absolute Spectrophotome-
ter (FIRAS) on board of the COBE satellite (Fixsen et al., 1998). The average spectrum of the
background in the wavelength range λ = 125–2000μm is roughly

J(ν) = (1.3±0.4)×10−5
(

λ
100μm

)−0.64±0.12

Bν(18.5±1.2K), (15.30)

where Bν(T ) is the Planck function at temperature T . If this background radiation is interpreted
as due to star formation, we can derive a limit on the global star-formation rate in the Universe.
The stellar radiation which is absorbed by dust in a unit comoving volume can be written as

Ea(z) = (1+ z)−3
∫ ∞

0
Aνε(ν,z)dν , (15.31)

where ε(ν,z) is the emissivity of stars and Aν is the mean fraction of photons of frequency ν
absorbed by dust. This is also the energy re-radiated by the dust because of energy balance. The
stellar radiation absorbed by the dust is expected to be re-radiated thermally, and so the spectrum
of dust emission depends on the temperature distribution of the dust grains. If we denote the
fraction of dust grains with temperatures between T and T +dT by η(T )dT , the dust emissivity
can be written as

εd(ν,z) = 4πρdκd(ν)
∫ ∞

0
Bν(T )η(T )dT, (15.32)

where ρd is the mean mass density of dust grains in comoving units (usually assumed to be pro-
portional to the mean mass density of metals, ρZ), and κd(ν) is the absorption coefficient per unit
mass of dust grains. Energy balance requires that

∫
εd(ν,z)dν = Ea(z). This shows that predict-

ing the far-infrared/submillimeter background requires models for κd(ν), Aν and η(T ). These are
not yet well established, so that one typically has to rely on a number of uncertain assumptions
(see, e.g. Pei et al., 1999). Despite this, some interesting conclusions can already be made from
such modeling. The global star-formation rate required to explain the far-infrared/submillimeter
background appears to be higher than that inferred from data in the UV-optical (see §15.4.2).
This suggests that there might be a large number of dust-enshrouded star-forming galaxies that
are missed in UV/optical surveys due to dust extinction. Indeed, observations with the SCUBA
camera (see §2.6.6) have revealed the existence of a population of ultraluminous infrared galaxies
(called SCUBA sources) whose space density may be sufficient to account for nearly all observed
far-infrared/submillimeter background radiation (Sanders, 1999). Clearly, detailed modeling of
the background radiation can provide important constraints on the star-formation history in the
Universe (see §15.4.2).
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15.3 Linking Halo Mass to Galaxy Luminosity

In the current paradigm of structure formation, galaxies are believed to form and evolve within
dark matter halos. It is therefore instructive to understand the galaxy luminosity function, φ(L),
in terms of the mass function of dark matter halos and the occupation statistics of galaxies in
individual dark matter halos.

According to the description presented in §15.1, we can formally write the galaxy luminosity
function at redshift z as

φ(L,z)dL = dL
∫
Φ(L|M,z)n(M,z)dM, (15.33)

where n(M,z) is the mass function of dark matter halos at redshift z, and Φ(L|M,z)dL is the
conditional luminosity function at z, which specifies the average number of galaxies with lumi-
nosities in the range L±dL/2 that reside in a halo of mass M at redshift z. For a given model of
structure formation, n(M,z) can be obtained through the models described in §7.2. As shown
in §7.2.1, the number density of dark matter halos of mass M can be approximated by the
Press–Schechter function,

n(M)dM =
ρ
M

fPS

[
σ(M∗)
σ(M)

]
dM
M

. (15.34)

For a power-law spectrum, P(k) ∝ kn, we have

fPS =

√
2
π

(
1+

n
3

)
x(n+3)/6 exp

[
−1

2
x(n+3)/3

]
, (x ≡ M/M∗). (15.35)

For a CDM spectrum, the halo mass function on galaxy scales can be approximated by the above
expression with an effective power index n ∼−2.

Clearly, for a given model of structure formation, the galaxy luminosity function can be cal-
culated once the conditional luminosity function, Φ(L|M,z), is known. The form of Φ(L|M,z)
encapsulates all the information about galaxy formation and evolution in individual halos. In
what follows, we use simplified, yet physically motivated, models for Φ(L|M,z) to demonstrate
how the luminosity function of galaxies is shaped by various processes.

15.3.1 Simple Considerations

The simplest assumption about the galaxy–halo relation is that the total luminosity of a galaxy
in a halo is directly proportional to the halo mass M:

L =
εSF

ϒ�
Mbaryon =

εSF

ϒ�

Ωb,0

Ωm,0
M. (15.36)

Here εSF is a constant factor describing the star-formation efficiency of the baryons associated
with the halo, and ϒ� is the mass-to-light ratio of the stellar population in solar units. The dashed
curve in Fig. 15.2a shows the predicted galaxy luminosity function obtained assuming εSF =
ϒ� = 1 and a halo mass function given by the standard ΛCDM model. Evidently, this naive model
overpredicts the observed luminosity function (indicated by the solid curve) on all mass scales,
indicating that εSF/ϒ� � 1. Furthermore, the shape of the predicted function is very different
from that observed, suggesting that εSF and/or ϒ� must vary as function of halo mass.

In order to obtain some insight into the relationship between L and M that is required by
the observed luminosity function, let us assume that there is a monotonic relation between the
luminosity of a galaxy and the mass of its host halo. In this case, the dependence of L on M can be
obtained by matching the number densities of galaxies and halos, i.e. by solving L as a function
of M from

∫ ∞
L φ(L′)dL′ =

∫ ∞
M n(M′)dM′. The L-M relation thus obtained is shown in Fig. 15.2b.
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Fig. 15.2. (a) A fit to the observed luminosity function of galaxies (solid curve) compared to the model
prediction (dashed curve) obtained under the assumption that each CDM halo at the present time hosts one
galaxy with a luminosity, L, proportional to the total baryon mass associated with the halo. (b) The relation
between the luminosity, L, and the halo mass, M, obtained by matching the number densities of the halo
mass function and the galaxy luminosity function.

Since, εSF/ϒ� ∝ L/M, we immediately see that the ratio εSF/ϒ� is halo mass dependent, being
the highest for M ∼ 1012h−1 M� and becoming lower towards both the low- and high-mass ends.
In what follows we will assume ϒ� to be constant, and that only the star-formation efficiency, εSF,
depends on halo mass. Although this is not a realistic assumption – it is known that galaxies in
more massive halos have older stellar populations hence larger ϒ� – it does not have a significant
impact on our qualitative discussion that follows.

The behavior of the L-M relation shown in Fig. 15.2b is consistent with what would be
expected from the processes that regulate the star formation in galaxies. As seen in §8.6.3,
the star-formation efficiency in low-mass halos can be affected by the energy feedback from
supernova explosions and stellar winds. Consider, for instance, the simple model in which a
protogalaxy can turn just enough gas into stars for the resulting supernovae to blow the rest of
the gas out of the system. Since the specific binding energy of a protogalaxy is proportional to
V 2

c (where Vc is the circular velocity of the system), the fraction of gas turned into stars is also
proportional to V 2

c . In this case, we have L ∝ MV 2
c ∝ M5/3. In massive halos, three important

processes may act to limit the luminosities (stellar masses) of the central galaxies. First, the time
scale of radiative cooling becomes longer than the age of the Universe for halos with masses
M ∼> 1012h−1 M�, and the efficiency of star formation is expected to be suppressed accord-
ingly in these massive halos (see §8.4). Second, as discussed in §14.4, AGN feedback may
be important in halos more massive than ∼ 1013h−1 M�, causing a further suppression of star
formation. Finally, galactic cannibalism, which can increase the stellar mass of a central galaxy
(see §12.5.2), is expected to become less efficient in very massive halos, simply because the
time scale of dynamical friction becomes too long. Taken together, these considerations sug-
gest a characteristic mass, ∼ 1012−13h−1 M�, beyond which the luminosity of the central galaxy
increases only slowly with halo mass.

Evidently, in order to model the luminosity function in detail, one has to model all these
processes properly. In addition, one should also take into account the fact that some halos,
particularly the massive ones, may contain multiple galaxies, and that the luminosities of satel-
lite galaxies may also be affected by environmental effects, such as ram-pressure stripping and
harassment (see §12.5). Unfortunately, how exactly all these processes act together to shape the
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galaxy luminosity function is still not well understood and certainly too convoluted to be pre-
sented here. In what follows, we restrict ourselves to simple analytical models for the L-M
relation. Although highly oversimplified, these models suffice to provide insight and under-
standing of the different processes by which galaxies form and evolve within dark matter
halos.

15.3.2 The Luminosity Function of Central Galaxies

Let us start with the luminosity function of the central galaxies introduced in §15.1. For clarity
we use a subscript ‘c’ to denote the quantities of central galaxies. Observational results based
on galaxy groups and satellite kinematics, as well as theoretical results based on semi-analytical
modeling both show that, for a given halo mass, the distribution of the luminosity (stellar mass)
of the central galaxy is roughly log-normal, with a dispersion of about 0.15 dex (e.g. Yang et al.,
2008; More et al., 2009). This dispersion is sufficiently small that we can ignore it (at least for the
purpose of modeling the global properties of the luminosity function), which allows us to write
the conditional luminosity function of central galaxies as Φc(L|M) = δ [L−Lc(M)]. Here Lc(M)
is the luminosity of the central galaxy in a halo of mass M and, for brevity, its dependence on z
is included implicitly. The luminosity function of the central population can then be written as

φc(L) = n[M(L)]
dM(L)

dL
, (15.37)

where M(L) is the halo mass corresponding to a central luminosity L. Based on the results pre-
sented in §15.3.1, we assume that the luminosities of central galaxies are related to their halo
masses as

Lc = L0
XβL

1+Xβ−γL

, (15.38)

where β > γ > 0, XL ≡ M/ML, and ML is a characteristic halo mass such that Lc ∝ Mβ for
M � ML and Lc ∝ Mγ for M 	 ML. The values of β , γ , ML, and L0 are determined by the
combination of a number of processes that regulate the growth of stellar mass in dark matter halos
(see §15.3.1). In particular, based on the various considerations given above, ML is expected to
be of the order 1012−13h−1 M�.

In general, if we write the Lc-M relation piecewisely as a power law, Lc ∝Mη , then the lumi-
nosity function given by Eq. (15.37) over the luminosity range where the power law holds can be
written as

Lφc(L) =
ρ
ηM∗

√
2
π

(
1+

n
3

)( L
L∗
η

) n−3
6η

exp

⎡⎣−1
2

(
L

L∗
η

) n+3
3η
⎤⎦ , (15.39)

where L∗
η = L0(M∗/ML)η . For the model given by Eq. (15.38), we have η = β for M � ML,

and η = γ for M 	 ML. Thus, for a CDM spectrum where the effective power index on the
galaxy mass scale is n ∼ −2, the predicted faint-end slope of φc(L) at L � min [L∗

β ,L0] is α ∼
−1−5/(6β ). The observed luminosity function of central galaxies has α close to −1 (Yang et al.,
2009a), implying that the value of β must be large. This suggests that the luminosity of the central
galaxy in a low-mass halo increases rapidly with halo mass. If Lc were directly proportional to
M in low-mass halos, so that β ∼ 1, the faint-end slope would be very steep, with α ∼−1.8. The
simple model of supernova feedback based on a binding-energy argument, which gives L∝M5/3

(see §8.6.3), leads to a faint-end slope, α ∼ −1.5, also considerably more negative than that of
the observed luminosity function. This discrepancy suggests that the feedback effect that reduces
the star-formation efficiency in small halos at the present time must be stronger than that based
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on the simple binding-energy consideration. There are a number of processes that might make the
L-M relation steeper at the low-mass end. First of all, supernova feedback may be more efficient
in low-mass halos than predicted by the simple energy argument. For instance, low-mass halos
may contain relatively little hot halo gas (see §8.4.4), so that it is easier for the supernova-driven
winds to escape. Secondly, if the intergalactic medium was preheated to a high temperature, the
total amount of gas that could be accreted into low-mass halos would be reduced (e.g. Mo et al.,
2005). An example of such a preheating mechanism is cosmic re-ionization (see §16.3), which
heats the IGM to temperatures ∼ 104 K, thereby suppressing the cooling in dark matter halos
with circular velocities Vc ∼< 30kms−1 (e.g. Efstathiou, 1992). Finally, if significant amounts of
star formation can occur only in disks above the surface-density threshold described in §9.5.1,
a certain reduction in the cold gas mass fraction due to supernova feedback and/or preheating
may imply a much larger reduction in the actual stellar mass fraction. At the present, it is still
unclear which processes are the most important in shaping the faint end of the galaxy luminosity
function.

At the bright end (L 	 max [L∗
γ ,L0]), the luminosity function given by Eq. (15.39) assuming

n = −2 goes roughly as exp[− 1
2 (L/L∗

γ )
1/(3γ)]. This is an exponential break similar to that in the

Schechter function if γ ∼ 1/3. However, L∗
γ , which is the luminosity of the central galaxy in

an M∗ halo, cannot be identified as the characteristic luminosity, L∗, in the observed luminosity
function. The reason is that the predicted number density at L∗

γ in the current ΛCDM model,
which is ∼ n(M∗) in the model, is much lower than φ ∗ in the luminosity function. However, if
ML < M∗ (so that L∗

γ > L0), the central luminosity function has an additional break at L0, where
the slope of the luminosity function changes from ∼ −1− 5/(6β ) to ∼ −1− 5/(6γ). Since γ
is expected to be a small, positive number, this break can be sharp. It is this sharp break that is
believed to be responsible for the ‘exponential’ break seen in the observed luminosity function.
Thus, the characteristic luminosity, L∗, is not determined by the characteristic mass in the halo
mass function, M∗, but by the characteristic mass, ML, in the L-M relation.

We can use the above model to understand how the luminosity function of central galaxies may
evolve with redshift. For a CDM-like spectrum, the slope of the halo mass function at the low-
mass end does not change significantly with time, while the characteristic mass, M∗, decreases
with increasing redshift. Thus, any evolution in the faint-end slope of the galaxy luminosity
function must be due to a change of β with redshift. The characteristic mass, ML, may also
evolve with redshift, which may cause an evolution in the characteristic luminosity at which
the luminosity function breaks. For example, if ML decreases with increasing redshift slower
than M∗, the characteristic luminosity, L∗, will be determined by M∗ at high redshifts where
ML > M∗. Since M∗ ∝ [D(z)]6/(n+3) ∝ (1+ z)−6 (assuming z 	 1 and n = −2) decreases rapidly
with increasing redshift, L∗ is therefore expected to decrease with increasing z. At lower redshifts,
where ML < M∗, the evolution of L∗ is determined by the evolution of the halo mass scale ML.

15.3.3 The Luminosity Function of Satellite Galaxies

Next, let us consider the luminosity distribution of satellite galaxies in a halo of a given mass M.
In what follows we use a subscript ‘s’ to denote the quantities of satellite galaxies. As discussed
in §15.1, satellite galaxies are associated with dark matter subhalos. According to Eq. (15.4), this
allows us to formally write the conditional luminosity function of satellite galaxies as

Φs(L|M) =
∫

P(L|La)P(La|ma,za)na(ma,za|M)dma dLa dza. (15.40)

Here ma and za are the subhalo mass and redshift at the time of accretion (i.e. when the halo
first became a subhalo), na(ma,za|M) is the distribution function of subhalos with respect to the
accretion mass and redshift, P(La|ma,za) is the probability for such a subhalo to host a central
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galaxy of luminosity La at the time of accretion, and P(L|La) is the probability for a galaxy
of luminosity La at za to evolve into a galaxy of luminosity L at the present time. To proceed,
we start with a simple fiducial model based on the following two assumptions: (i) the stellar
mass and luminosity of a galaxy do not change after it became a satellite, so that P(L|La) =
δ (L−La); (ii) the luminosity–halo mass relation is independent of redshift, so that P(La|ma,za) =
P(La|ma). The effects of relaxing these assumptions will be discussed in §15.3.5. With these two
assumptions we can write

Φs(L|M) =
∫

P(L|ma)na(ma|M)dma. (15.41)

In order to keep the problem simple, we model na(ma|M) with the unevolved subhalo mass
function (see §7.5.3) given by Eq. (7.151).1 We can then write the luminosity function of satellite
galaxies in a halo of mass M as:

LΦs(L|M) = A[y(L)]−p exp{− [y(L)]q} dlny
dlnL

, (15.42)

where A ≈ 0.345, p ≈ 0.8, q ≈ 3, and y = ma/( f M) (with f ≈ 0.43) is related to L through
L = Lc(ma). As an illustration, we assume that Lc(ma) has the same form as given by Eq. (15.38).
Thus, at L � L0 we have ma � ML, so that

LΦs(L|M) ≈ A
β

(
f M
ML

)p( L
L0

)−p/β
. (15.43)

This implies a faint-end slope of α ′ =−1− p/β , which is close to −1 if β is large. The behavior
of Φs(L|M) at the bright end depends on the mass of the halo, M. For massive halos with f M 	
ML we have

L ∼ LM f γyγ , (15.44)

where LM = L0(M/ML)γ . In this case,

LΦs(L|M) =
A
γ

(
L

f γLM

)−p/γ
exp

[
−
(

L
f γLM

)q/γ
]

. (15.45)

As mentioned above, physical considerations suggest that γ is a small positive number, so that
Φs(L|M) is expected to have a sharp break at Lbk ∼ f γLM ∼ LM . The value of the luminosity
function at the break is LbkΦs(Lbk|M) ∼ A/(eγ), which is ∼ 1 assuming the observed value of
γ ∼ 0.3 (Yang et al., 2009a). Since the central galaxy in the host halo has a luminosity L ∼ LM ,
there is no significant luminosity gap between the central galaxy and the brightest satellite galaxy.
For low-mass halos with f M � ML, we have

L ∼ LM f β yβ , (15.46)

where LM = L0(M/ML)β , and

LΦs(L|M) =
A
β

(
L

f βLM

)−p/β
exp

[
−
(

L

f βLM

)q/β
]

. (15.47)

Since β is expected to be a large positive number, the break in the satellite luminosity function
occurs at Lbk ∼ f βLM � LM . In this case, there is a large luminosity gap between the central

1 Note, however, that this function only includes the population of subhalos that are directly accreted onto the main
progenitor of the host halo and neglects the possibility that subhalos may themselves contain ‘sub-subhalos’, and
sub-subhalos may contain ‘sub-sub-subhalos’ and so on. As demonstrated in Yang et al. (2009b), neglecting these
higher-order subhalos is a valid assumption to first order.
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galaxy and the brightest satellite galaxy. As LbkΦs(Lbk|M) ∼ A/(eβ ) � 1, the conditional lumi-
nosity function of all (central plus satellite) galaxies is expected to show a prominent peak at the
bright end, which is dominated by the central galaxies.

These predicted trends are in qualitative agreement with observations. Using a large catalogue
of galaxy groups and clusters constructed from the SDSS, Yang et al. (2008) found that the
conditional luminosity function of galaxies in groups with masses lower than ∼ 1013h−1 M�
clearly shows a prominent peak at the bright end. This peak becomes successively weaker for
more massive clusters. The luminosity gap, in terms of the difference in the magnitudes of the
central galaxy and the brightest satellite galaxy, was found to become increasingly larger for
lower-mass systems. The simple model considered here demonstrates that such luminosity gap
can be produced naturally if L depends strongly on M for low-mass halos, as is required by the
observed faint-end slope of the galaxy luminosity function.

The total luminosity function of satellite galaxies can be written as

φs(L) =
∫
Φs(L|M)n(M)dM. (15.48)

Let us first consider the behavior of this function at the faint end where L ∝Mβ . Since Φs(L|M)
declines rapidly at L ∼> f βLM , only halos with masses M ∼> Mmin(L) = f−1M∗(L/L∗

β )1/β make a
significant contribution to φs(L) at a given L. With the expression ofΦs(L|M) given in Eq. (15.43)
and the halo mass function given in Eq. (15.34), one can show that

Lφs(L) =
A
β

(
f M∗

ML

)p ρ
M∗

√
2
π

(
1+

n
3

)( L
L0

)−p/β
Iβ

(
L/L∗

β

)
, (15.49)

where

Iβ (L/L∗
β ) =

(
3

n+3

)
2aΓ(b+1,ymin) , (15.50)

a =
6p+n−3
2(n+3)

, b =
6p−n−9
2(n+3)

, ymin =
1
2

(
L

f βL∗
β

) (n+3)
3β

. (15.51)

If β is large and n = −2, ymin depends only weakly on L, and so φs(L) ∝ L−1−p/β . For p = 0.8
the implied faint-end slope is similar to that of the central galaxies described in §15.3.2.

At the bright end where L ∝ Mγ , the satellite luminosity function can be written in the same
form as Eq. (15.49) with β replaced by γ . Since γ is expected to be much smaller than β , there
is a break at L ∼ L0 where the slope of the luminosity function changes from −1 − p/β to
−1− p/γ . For L 	 f γL∗

γ (i.e. ymin 	 1), we have Iγ ∼ [3/(n + 3)]2ayb
mine−ymin , and so φs(L)

breaks exponentially at L ∼> f γL∗
γ .

15.3.4 Satellite Fractions

In the previous two subsections we investigated the luminosity functions of central and satellite
galaxies, respectively. In order to develop some feeling for the relative contributions of centrals
and satellites to the total luminosity function, consider the satellite fraction,

fsat(L) =
φs(L)

φc(L)+φs(L)
=

Fs(L)
1+Fs(L)

(15.52)
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where Fs(L) = φs(L)/φc(L) is the ratio between the satellite and central luminosity functions. At
the faint end, we can use the results presented above to obtain

Fs(L) = IβA

(
f M∗

ML

)p
(

L
L∗
β

)(3−n)/(6β )(
L
L0

)−p/β
. (15.53)

If n = −2 then Fs ∼ A f pIβ . For a large value of β , Iβ ∼ 1.6, and so fsat ∼ 0.22 (Fs ∼ 0.28)
independent of L. Thus, the luminosity function at the faint end is expected to be dominated
by central galaxies. At the bright end, using the asymptotic behavior of the incomplete gamma
function leads to

Fs(L) = A f p
(

3
3+n

)
2a−b

(
L

f γL∗
γ

)b(n+3)/(3γ)

∼
(

L
L∗
γ

)−1.2

, (15.54)

where we have used that γ ∼ 0.3. Thus, the satellite fraction becomes negligible at the bright
end (L 	 Lγ∗). These simple estimates are in good agreement with the satellite fractions inferred
from galaxy–galaxy lensing, galaxy clustering and galaxy group catalogues, all of which indicate
that fsat decreases from ∼ 0.35±0.1 at L ∼ 109h−2 L� to ∼ 0.05±0.05 at L ∼ 5×1010h−2 L�
(e.g. Mandelbaum et al., 2006b; Tinker et al., 2007; van den Bosch et al., 2007, 2008a; Yang
et al., 2008). These studies also find that red galaxies have significantly higher satellite fractions
than blue galaxies, reaching values of ∼ 0.6±0.1 at L ∼ 109h−2 L�. Thus, at all luminosities (at
least above ∼ 109h−2 L�), the total luminosity function is dominated by central galaxies. Only
the faint end of the luminosity function of red galaxies may actually be dominated by satellite
galaxies.

15.3.5 Discussion

The results obtained above are based on two naive assumptions: (i) the relation (15.38) between
luminosity and halo mass is independent of redshift, and (ii) the luminosity of a satellite galaxy
remains constant. None of these assumptions is expected to hold accurately. Even in the case of
passive evolution (see §10.3.3), the luminosities of galaxies are expected to evolve with redshift,
and it would be highly coincidental if galaxy luminosity and halo mass evolve in exactly the same
way. Indeed, using halo occupation statistics to model the observed evolution of the stellar mass
function and the normalization of the observed relation between star-formation rate and stellar
mass to z ∼ 1, Conroy & Wechsler (2009) have shown that the relation between luminosity
and halo mass is likely to evolve with redshift (although only mildly so between z = 0 and
z = 1). The second assumption is also unlikely to hold in detail. As discussed in §12.2, satellite
galaxies may lose substantial amounts of mass due to tidal stripping. In addition, dynamical
friction may cause (massive) satellites to sink towards the halo center, where they can be accreted
by the central galaxy (see §12.3), and strangulation and ram-pressure stripping are expected to
quench the star formation of satellite galaxies, causing their luminosities to evolve passively.
Clear indications that the above two assumptions cannot both be correct comes from a study
by Yang et al. (2009b), who have shown that the conditional luminosity function for satellite
galaxies predicted under these two assumptions [i.e. Eq. (15.42)] is in clear disagreement with
the Φs(L|M) obtained directly from a large galaxy group catalogue. Yang et al. (2009b) argued
that most likely a significant fraction of satellite galaxies is disrupted by tidal forces, giving rise
to a significant stellar halo component, in quantitative agreement with the observational results
obtained by Gonzalez et al. (2007).
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15.4 Linking Halo Mass to Star-Formation History

Having linked galaxy luminosity to halo mass, we now proceed to link the build-up of galaxy
luminosity (i.e. the star-formation history) to halo mass. After constraining the present-day spe-
cific star-formation rates of galaxies as function of halo mass using the color–magnitude relation,
we describe the global star-formation history of the Universe.

15.4.1 The Color Distribution of Galaxies

In §2.4.3 we have seen that brighter galaxies in the local Universe on average have redder colors.
Furthermore, for a given luminosity (or stellar mass), the color distribution is bimodal, with a
relatively well defined red sequence and a broader blue sequence usually referred to as the blue
cloud (see Fig. 2.27). Recent observations have shown that this color bimodality in the galaxy
population persists at least out to z � 1 (e.g. Bell et al., 2004; Willmer et al., 2006; Cooper et al.,
2007), and that the total stellar mass density of galaxies on the red sequence has roughly doubled
over the last 6–8 Gyr while that of blue galaxies has remained roughly constant (e.g. Bell et al.,
2004; Borch et al., 2006; Faber et al., 2007). Since new stars form primarily in blue galaxies, this
suggests that galaxies are being transformed from the blue to the red population. In this section,
we give a very crude but insightful description of how different processes in galaxy formation
and evolution may give rise to the observed color distribution of galaxies.

As seen in §10.3.2, the color of a galaxy is determined mainly by its star-formation history,
assuming dust extinction is properly taken into account. Based on the spectral synthesis results
shown in Fig. 10.6, the time required for a galaxy to move from the blue cloud to the red sequence
after its star formation has been truncated is roughly 2Gyr, which is short compared to the typ-
ical age of the stellar populations of present day galaxies. In addition, a galaxy with a current
specific star-formation rate as low as 0.1/t0 (with t0 the age of the Universe) will still have blue
colors. Thus, by and large the color distribution of galaxies reflects a distribution in their current
specific star-formation rates. Because of this, our discussion of galaxy colors will be based on
the following parameter:

S ≡ Ṁ�

L
= ϒ�

Ṁ�

M�
. (15.55)

Here M� is the stellar mass, Ṁ� is the current star-formation rate, and ϒ� is the stellar mass-to-
light ratio. In what follows we assume that all galaxies have the same ϒ� at all times, so that
S is directly proportional to the specific star-formation rate. Although clearly unrealistic, this
oversimplification does not invalidate any of the quantitative results presented below.

(a) Central Galaxies Let us first consider star formation in the central galaxies of dark matter
halos. As described above, the relation between the luminosity of a central galaxy and the mass of
its host halo can roughly be described by Eq. (15.38). In order to model the specific star-formation
rate, S, we also need a model for the star-formation rates in central galaxies. Considerations based
on the radiative cooling efficiency of hot gas in dark matter halos described in §8.4, and on the
energy feedback from AGNs described in §14.4, suggest that star formation is suppressed in
halos with masses exceeding ∼ 1013h−1 M�. In addition, central galaxies are only expected to
cannibalize gas-rich satellite galaxies, which may lead to the formation and presence of young
stars in the central galaxy, in halos with M ∼< 1013h−1 M�; in more massive halos the dynamical
friction times are simply too long (see §12.3). Based on these considerations, we consider a
simple model in which the star-formation rate is related to the halo mass through

R ≡ Ṁ�

M
= R0(z)

Xβ
′

R

1+Xβ
′−γ ′

R

, (15.56)
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Fig. 15.3. (a) An illustration showing the specific star-formation rate as a function of luminosity. The solid
curve is for central galaxies and the dashed curve for satellite galaxies. (b) The expected color–luminosity
relation corresponding to the specific star-formation rates shown in panel (a). Note that the luminosity
dependence of color can be enhanced by the fact that more massive galaxies are metal richer and therefore
appear redder.

where XR ≡ M/MR with MR ∼ 1012−13h−1 M� a characteristic halo mass above which star for-
mation is heavily suppressed (i.e. γ ′ is expected to be a large negative number).2 In the above
expression, R0 represents an overall normalization, which we set to be R0(z) ∝ H(z).

Inserting Eqs. (15.56) and (15.38) into Eq. (15.55) we obtain, for central galaxies only,

S =
MR0

L0

Xβ
′

R

1+Xβ
′−γ ′

R

1+Xβ−γL

XβL
. (15.57)

For M � min(MR,ML), we have

S =
R0

L0

Mβ
L

Mβ ′
R

Mβ ′+1−β . (15.58)

Thus, in low-mass halos the specific star-formation rate of central galaxies increases (decreases)
with halo mass if β ′ > β +1 (β ′ < β +1). For halos with M 	 max(MR,ML), we have

S =
R0

L0

Mγ
L

Mγ ′
R

Mγ ′−γ+1. (15.59)

Recall that γ > 0. Thus, if γ ′ is a large negative number, then a sharp break of S is expected
at M ∼ MR, implying that the central galaxies in halos of M > MR have very low specific star-
formation rates. As an illustration, the solid curve in Fig. 15.3a shows the expected behavior of
S versus L, where we have assumed that β ′ < β + 1. The sharp break occurs at a luminosity
corresponding to that of the central galaxy in a halo of mass MR.

(b) Satellite Galaxies Next consider the present specific star-formation rate for a galaxy that
became a satellite at z = za. Formally we can write

S(z0) = T (z0,za)S(za), (15.60)

2 In reality, we also expect R to be truncated at low-mass halos due to photoionization heating (see §8.1.4). Since we are
not concerned with dwarf galaxies in this section, this aspect is ignored here.
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where S(za) is the specific star-formation rate of the galaxy at the time of accretion and T (z0,za)
describes the change in the specific star-formation rate after the galaxy became a satellite. As dis-
cussed in §12.5 satellite galaxies are exposed to tidal stripping, strangulation and ram-pressure
stripping, all of which cause star-formation quenching. Hence, in general we expect that T < 1.
For simplicity, we assume that the various star-formation quenching mechanisms cause, on
average, an exponential decline in the star-formation rate of satellite galaxies, i.e.

T (z0,za) = exp

(
− t0 − ta

τ

)
, (15.61)

where τ is the star-formation quenching time scale, ta is the time of accretion, and t0 is the
time corresponding to z0. If τ � t0 − ta then the satellite galaxy is expected to have its star
formation quenched (i.e. S ∼ 0). On the other hand, if τ 	 t0 − ta the satellite will have roughly
the same specific star-formation rate as a central galaxy of the same luminosity. If the quenching
mechanisms mentioned above are efficient, we expect a satellite to be stripped of its gas (or at
least a significant fraction thereof) on a time scale that is comparable to the dynamical time of its
host halo, which at z = 0 (z = 1) is ∼ 2Gyr (∼ 0.7Gyr). Thus, except for the satellites accreted
recently, we expect them to have specific star-formation rates substantially lower than for central
galaxies of the same luminosities. This is illustrated by the dashed curve in Fig. 15.3(a).

The existence of a truncation halo mass for star formation in central galaxies combined with
one or more star-formation quenching mechanisms for satellites is the key concept in our under-
standing of the color–magnitude distribution of galaxies. It is important to realize, though, that
the colors of galaxies are not determined entirely by their (current) specific star-formation rates;
metallicity also plays an important role. Since more massive galaxies have higher metallicities
(see §2.4.4), and since metal-rich stars are redder than metal-poor stars (see §10.3.5), the depen-
dence of color on luminosity is enhanced relative to the effect due to the specific star-formation
rate alone. Hence, under the assumptions made, the color–luminosity relations for central and
satellite galaxies are expected to roughly resemble the solid and dashed curves in Fig. 15.3(b),
respectively.

(c) Additional Considerations Using galaxy group catalogues, van den Bosch et al. (2008a)
have tested some of these ideas by comparing the colors of central and satellite galaxies of the
same stellar mass. Indeed, satellite galaxies are found to be significantly redder than their central
counterparts, but not by an awful lot. Furthermore, a significant fraction of satellite galaxies are
still blue, especially at the low-mass end. Both these results indicate that star-formation quench-
ing in satellite galaxies takes place on relatively long time scales (see also Baldry et al., 2006;
Weinmann et al., 2006a, 2009; Kang & van den Bosch, 2008). This advocates strangulation
(see §12.5.4) as the most likely quenching mechanism, as it implies a star-formation quenching
time scale equal to the gas consumption time scale, Mcold/Ṁ�, which can be significantly longer
than the dynamical time (see §9.3). Ram-pressure stripping and tidal stripping may also play
a role, but are apparently unable to strip a satellite galaxy of its entire cold gas reservoir on a
dynamical time.

In summary, the most massive central galaxies are expected to be on the red sequence because
of a (currently not yet well understood) star-formation truncation mechanism, which is likely to
be connected to a characteristic halo mass, MR ∼ 1012−13h−1 M�. With the exception of satellite
galaxies accreted recently (within the last ∼ 2Gyr), most satellite galaxies are also expected to
be on the red sequence due to one or more star-formation quenching mechanisms (most likely
dominated by strangulation). Most central galaxies in halos with M < MR are expected to be
forming stars actively, and thus to have blue colors. There are, however, also central galaxies in
low mass halos that are red (e.g. van den Bosch et al., 2008a). Those that are relatively close to
a nearby more massive halo (roughly within three virial radii) may actually have passed through
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their massive neighbors, and thus have experienced the same quenching mechanisms that make
the satellite galaxies red (Wang et al., 2008c). Those that are not associated with a nearby more
massive halo may have experienced a major merger which has used up all gas in a starburst
and/or expelled the remaining gas due to feedback processes (e.g. Springel et al., 2005a; Hopkins
et al., 2006). This is supported by the fact that most red centrals are ellipticals. Thus, at least
qualitatively, our current framework of galaxy formation seems able to explain the observed
color–magnitude distribution of the present-day galaxy population. However, in order to make
more quantitative predictions, one has to model all the relevant processes in detail. In §15.7
we will see how to achieve this goal with the use of numerical simulations and semi-analytical
modeling.

15.4.2 Origin of the Cosmic Star-Formation History

As shown in §2.6.8, the global star-formation history of the Universe can be characterized by a
global quantity, ρ̇�(z), which describes the average amount of mass that turns into stars per unit
time per unit comoving volume at redshift z. Observations of star-forming galaxies have been
used to estimate ρ̇�(z) over a wide range of redshifts, from z ∼ 0 to z ∼ 6 (see Fig. 2.35).

In order to understand the redshift dependence of the global star-formation history, we once
again try to link (specific) star-formation rates to dark matter halos. Since star formation in satel-
lite galaxies is expected to be suppressed, as described above (see also §15.5.1), we simplify the
problem by assuming that star formation only occurs in central galaxies. We can then formally
write

ρ̇�(z) =
∫
〈Ṁ�〉(M,z)n(M,z)dM, (15.62)

where 〈Ṁ�〉(M,z) is the mean star-formation rate in the central galaxies of halos of mass M at
redshift z. As described above, physical considerations suggest that 〈Ṁ�〉(M,z) may be approxi-
mated as 〈Ṁ�〉(M,z) = MR(M,z), with R given by Eq. (15.56). Assuming a power-law spectrum,
P(k) ∝ kn, we can then write

ρ̇�(z) =

√
2
π
ρ0R0(z)

∫ ∞

νmin

(ν/νR)β
′
n

1+(ν/νR)β ′n−γ ′n
exp

(
−ν

2

2

)
dν, (15.63)

where ρ0 is the average comoving density of the Universe, β ′
n = 6β ′/(n + 3), γ ′n = 6γ ′/(n +

3), ν = [M/M∗(z)](n+3)/6, and νR = [MR(z)/M∗(z)](n+3)/6. In the above expression, we have
included a minimum halo mass, Mmin (through νmin), for significant star formation, to mimic
the suppression of star formation by photoionization heating (see §8.1.4) in low-mass halos with
M < Mmin.

In what follows we assume that MR(z) does not evolve much with redshift. Hence, at high
redshifts MR(z) 	 M∗(z) (i.e. νR 	 1) so that Eq. (15.63) reduces to

ρ̇�(z) ≈ 2β
′
n/2

√
π
ρ0R0(z)ν

−β ′n
R Γ

(
β ′

n +1
2

,
νmin

2

)
, (15.64)

where Γ(x,y) is the incomplete gamma function. At sufficiently high redshifts, where νmin 	 1,
we can use the properties of the incomplete gamma function to write

ρ̇�(z) ≈
√

2
π
ρ0R0(z)ν

−β ′n
R ν

β ′n−1
min exp

(
−ν

2
min

2

)
. (15.65)

In the presence of photoionization, halos with virial temperatures below ∼ 104.5 K are not able
to trap gas to form stars. In this case, the minimum halo mass for star formation may be taken
as Mmin ∼ 1010h−1 M�/H(z), so that νmin ∝ [H(z)]−1/6[D(z)]−1 ∝ (1+ z)3/4 at z 	 1 (assuming
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n = −2). Therefore, an exponential decline of ρ̇�(z) is expected at high z if the Universe was
already re-ionized by photoionization at such redshift. This decline is expected to set in roughly
at νmin ∼

√
2, which corresponds to a redshift of about 4, assuming M∗

0 = 1013h−1 M�.
At lower redshifts, νmin � 1 and Eq. (15.63) reduces to

ρ̇�(z) ≈
√

2
π
ρ0R0(z)νR

∫ ∞

0

yβ
′
n

1+ yβ ′n−γ ′n
exp

(
−ν

2
R

2
y2
)

dy. (15.66)

When νR is large, the contribution to the integration is dominated by y � 1, and we can write

ρ̇�(z) ≈
√

2
π
ρ0R0(z)νR

∫ ∞
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′
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2
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. (15.67)

Assuming MR is independent of z, we have νR ∝ [D(z)]−1. Thus, if β ′ > 0, so that β ′
n = 6β ′/(n+

3) ∼ 6β ′ is a positive number, a power-law decline of ρ̇�(z) with increasing redshift is expected
to occur at νR > 1. With MR ∼ 1012h−1 M�, νR = 1 corresponds to z ∼ 2 in the ΛCDM model,
implying that the power-law decline starts at z ∼ 2. Finally let us consider the behavior of ρ̇�(z)
at low-z when νR � 1. If γ ′n < −1 (i.e. γ ′ ∼< −1/6 assuming n = −2), then the exponential term
in the integration in Eq. (15.66) can be replaced by 1, so that

ρ̇�(z) ≈
√

2
π
ρ0R0(z)νR

∫ ∞

0

yβ
′
n

1+ yβ ′n−γ ′n
dy. (15.68)

In this case, ρ̇�(z)∝ R0(z)νR ∝H(z)[D(z)]−1 (for a MR that is independent of z), which increases
with increasing redshift.

To summarize, the standard ΛCDM model, together with the simple star-formation model
considered here, leads to a global star-formation history with the following properties: the star-
formation density, ρ̇�(z), increases with redshift at low z, reaches a maximum where νR ∼ 1
(z ∼ 2), then declines with z as a power law before breaking exponentially at a redshift z ∼
4 corresponding to νmin ∼ 1. These properties are qualitatively consistent with the observed
cosmic star-formation history shown in Fig. 2.35, suggesting that, within the CDM scenario of
galaxy formation, we have a reasonable understanding of the origin of the cosmic star-formation
history.

15.5 Environmental Dependence

As we have seen in §2.7, on large scales galaxies are distributed in a complex web of filaments
and sheets surrounding large empty voids (see Fig. 2.36), so that galaxies can reside in a variety
of environments. The properties of galaxies are correlated with their environments, as is evi-
dent from, among others, the morphology–density relation (see §2.4.5) and the color–luminosity
dependence of the galaxy correlation function (see Fig. 6.4). In this section we take a closer look
at the environment dependence of galaxy formation and evolution.

There are numerous parameters that can be used to characterize the environment of a galaxy.
However, since galaxies are believed to form and reside in dark matter halos, it is convenient
to separate these parameters into two categories: those related to properties of the host halo of a
galaxy (e.g. halo mass, halo spin, halo shape), and those describing the environment on superhalo
scales (e.g. mass of filament or sheet in which the host halo of a galaxy is embedded, or the mass
overdensity on scales significantly larger than individual halos). As seen in the previous chapters,
in our current paradigm galaxy properties are expected to depend strongly on the properties of
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the host halos. For example, more massive halos are expected to host more massive galaxies,
while the spin of a halo is expected to control the size of the disk galaxy it hosts. In addition,
the efficiency of many important processes for galaxy formation, such as cooling, star formation
and feedback, are expected to scale with halo mass. Whether or not galaxy properties depend on
environmental properties on superhalo scales is less clear. The dynamical times on these scales
are typically longer than or comparable to the Hubble time, indicating that there has not been
enough time to induce a direct environmental dependence on superhalo scales by gravitational
processes alone. However, it could still be possible for non-gravitational processes to introduce
some environment dependence on large scales.

Before we discuss the environmental impact on galaxy formation and evolution in more detail,
it is important to realize that a correlation between galaxy properties and a particular environ-
mental property does not necessarily imply a causal connection. Let P(G |H ) be the probability
distribution of galaxy property G given environmental property H . In general, we can say that
G is independent of H if P(G |H ) = P(G ), i.e. if the conditional on H does not affect the
probability distribution of G . Note, however, that the inverse is not true: P(G |H ) �= P(G )
does not necessarily mean causal dependence of G on H . To see this, consider two halo
properties, H1 and H2. Suppose that G depends causally on H1, but not at all on H2. Then
P(G |H1,H2) = P(G |H1), and we have that

P(G |H2)
P(G )

=
∫

P(G |H1)P(H1|H2)dH1∫
P(G |H1)P(H1)dH1

. (15.69)

This is only equal to unity if H1 and H2 are independent of each other, so that

P(H1|H2) = P(H1,H2)/P(H2) = P(H1).

Otherwise P(G |H2) �= P(G ) even if there is no causal connection between G and H2; the cor-
relation between G and H2 is entirely due to the correlation between G and H1 combined with
the correlation between H1 and H2. This demonstrates that, in order to investigate whether the
properties of galaxies causally depend on some environmental property H ′, one needs to use all
other environmental properties that are correlated with H ′ as control variables. In general, this
is not an easy task, as one is not always aware of all these environmental properties, and as not
all environmental properties are readily accessible observationally. Thus, while it is in principle
straightforward to investigate the correlation of some galaxy property with some environmental
property, the interpretation of such a correlation in terms of a causal, physical connection can be
extremely complicated.

15.5.1 Effects within Dark Matter Halos

Let us first consider the environmental dependence of the galaxy population within dark matter
halos, ignoring any effects on superhalo scales. Here it is useful to once again consider central
galaxies and satellite galaxies separately, simply because they are expected to be influenced by
their environments in different ways. In what follows we discuss both in turn.

(a) Central Galaxies As mentioned above, the properties of central galaxies are expected to
strongly depend on the mass of the halo in which they reside. First and foremost, brighter, more
massive centrals reside in more massive halos. This is not only expected from the simple fact
that more massive halos form from larger Lagrangian volumes, which thus contain more bary-
onic material, but is also supported by a large range of observations, including gravitational
lensing (e.g. McKay et al., 2001; Guzik & Seljak, 2002; Hoekstra et al., 2004; Sheldon et al.,
2004; Mandelbaum et al., 2006b; Cacciato et al., 2009) and satellite kinematics (Brainerd &
Specian, 2003; Prada et al., 2003; van den Bosch et al., 2004; Conroy et al., 2007; More et al.,
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2009). On average, central galaxies in more massive halos are also redder and more centrally
concentrated. As discussed in the previous section, the colors are related to both metallicity and
star-formation history. Since galactic winds are less likely to develop in more massive halos
owing to their deeper potential wells (see §8.6.3), more massive halos are more likely to retain
their metals, hence to have redder centrals. In addition, the progenitors of more massive halos
start forming earlier (although they may assemble later, see §7.3.4), so that their central galaxies
are expected to have older stellar populations. And finally, as mentioned in §15.4, cooling and
AGN feedback may suppress star formation in halos with masses exceeding a characteristic mass
of MR ∼ 1012−13h−1 M�. The combination of these three effects are believed to be responsible
for the fact that more massive halos host redder centrals.

But why do central galaxies in more massive halos tend to be more centrally concentrated, or
equivalently, why are they more likely to be ellipticals? In the standard paradigm most, if not
all, galaxies are believed to form as disk galaxies, which can then be transformed into ellipticals
due to major mergers (see §13.2.2). Subsequently, a new disk may form around the spheroidal
merger remnant if new gas is able to cool, giving rise to a disk–bulge system (e.g. Kauffmann
et al., 1993; Baugh et al., 1996). This suggests two possible explanations for the observed trend
of morphology with halo mass: either more massive halos experience more major mergers, or
in more massive halos no gas is able to cool after a major merger. The former is inconsistent
with a CDM cosmology, in which halos of all masses are predicted to have (average) merger
histories that are very similar in terms of the mass ratios of their progenitors (see §7.3).3 The latter
explanation is consistent with the existence of a characteristic mass, MR, required to explain why
almost all central galaxies in massive halos are red. As discussed above, the existence of such a
characteristic mass is believed to be associated with the onset of AGN feedback which suppresses
cooling in massive halos. Such feedback is invoked not only to explain both the morphologies
and the colors of central galaxies in massive halos, but also to explain the cut-off in the stellar
mass function at the high-mass end (see §15.3; see also Bower et al., 2006; Cattaneo et al., 2006;
Croton et al., 2006; Kang et al., 2006; Somerville et al., 2008b). However, many uncertainties
still remain as far as the details of this feedback mechanism are concerned (see discussion in
§14.4).

In addition to halo mass, the spin and shape of dark matter halos are also expected to have
some impact on the properties of central galaxies. Unfortunately, since the spin and shape of
dark matter halos are not easily accessible observationally, relatively little is known about this
aspect of the ‘environment dependence’. An interesting exception is the observational indication
that central galaxies tend to align with the major axes of their dark matter halos (Hoekstra et al.,
2004; Mandelbaum et al., 2006a; Wang et al., 2008a), suggesting that the properties of central
galaxies are indeed affected by other halo properties in addition to mass.

Finally, it is important to keep in mind that the central regions of dark matter halos are special
environments in themselves. They are the repositories of low angular momentum material and of
massive objects (satellite galaxies and/or supermassive black holes) brought to the center of the
potential well by dynamical friction. Consequently, central galaxies are exposed to a number of
processes that satellite galaxies are not, such as galactic cannibalism (see §12.5.2) and cooling
flows (see §8.8.1), which can also have a substantial impact on their evolution.

(b) Satellite Galaxies As discussed in detail in §12.5, satellite galaxies are susceptible to a
number of environmental processes, such as harassment, ram-pressure stripping, tidal stripping,
dynamical friction, and strangulation, that only operate on satellite galaxies. All these processes
are expected to suppress or quench star formation (see discussion in §15.4 above) and/or to
transform disk components into more spheroidal morphologies.

3 The main difference between massive and low-mass halos is in assembly times, with more massive halos assembling
later.
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The impact of these processes on the properties of galaxies can be investigated by comparing
the properties of satellite and central galaxies, and by studying the properties of satellite galaxies
located in halos of different masses and at different halo-centric radii. Such analysis has been
carried out recently with the use of large samples of galaxy groups and clusters constructed from
the SDSS. It is found that, on average, satellite galaxies are more massive, more centrally con-
centrated and redder in more massive halos and/or at smaller halo-centric radii (e.g. Weinmann
et al., 2006b). Although suggestive, it is unclear whether these trends are a direct, causal result
of the satellite-specific environmental effects described above. For instance, they could simply
be a reflection of the fact that more massive galaxies (including central galaxies) in general are
redder and more concentrated, combined with the fact that more massive halos host, on aver-
age, more massive satellite galaxies.4 To further test whether the properties of satellite galaxies
are influenced by environmental processes, van den Bosch et al. (2008a) compared the colors
and concentrations of satellites galaxies to those of central galaxies of the same stellar mass,
adopting the hypothesis that the latter are the progenitors of the former. They found that satellite
galaxies are on average redder and more concentrated than central galaxies of the same stellar
mass, indicating that satellite-specific transformation processes do operate (see also Weinmann
et al., 2009). They also found that the color and concentration differences of central–satellite
pairs matched in stellar mass are quite independent of the host halo mass of the satellite galaxy,
indicating that satellite-specific transformation mechanisms are equally efficient in halos of dif-
ferent masses. This rules against mechanisms that operate only in very massive halos, such as
ram-pressure stripping and harassment, suggesting that strangulation and/or tidal interactions
are the dominant transformation mechanisms. As discussed in §15.4, the same conclusion can be
derived from the fact that a significant fraction of satellite galaxies still have blue colors indicative
of ongoing star formation.

Can strangulation also explain the fact that satellite galaxies are somewhat more concentrated
than central galaxies of the same stellar mass? At first sight, the answer seems to be no, because
strangulation refers only to stripping of the gaseous halo of a satellite galaxy. However, as shown
by van den Bosch et al. (2008a), central–satellite pairs that are matched in both stellar mass
and color show no difference in average concentration. This suggests that one and the same
mechanism may well explain both the color and concentration differences between centrals and
satellites. Indeed, as shown by Weinmann et al. (2009), all observed differences between satellite
and central galaxies can be explained by a simple fading model, in which the star formation in
the disk decreases over a time scale of 2–3 Gyr after a galaxy becomes a satellite. This not only
causes an overall reddening of the galaxy, but the light distribution also becomes more centrally
concentrated owing to the presence of color gradients (see §11.7.2) and the fact that blue (young)
stellar populations redden faster than red (old) stellar populations.

15.5.2 Effects on Large Scales

We now turn our attention to environment dependence on superhalo scales. A convenient way
to parameterize this environment is via the mass overdensity, δR = M/M − 1, where M is the
mass within a volume V = 4πR3/3 and M = ρV , with ρ the average density of the Universe.
Observationally, it is easier to measure the overdensity in luminosity rather than mass. In what
follows we assume that these are equivalent to each other, which is a reasonable assumption as
long as R is sufficiently large.

A number of studies have measured galaxy luminosity functions as function of δR, Φ(L|δR),
using 5h−1 Mpc ∼< R ∼< 10h−1 Mpc. The results show that (i) Φ(L|δR) is well fit by a Schechter

4 The latter is simply a consequence of the way halos assemble, combined with the fact that central galaxies display a
relatively tight relation between halo mass and stellar mass.
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function, (ii) the characteristic luminosity, L∗, brightens with increasing δR, and (iii) the faint-
end slope becomes significantly steeper with increasing δR for early-type galaxies, but is roughly
independent of δR for late-type galaxies (Bromley et al., 1998; Hütsi et al., 2002; Croton et al.,
2005). At first sight these results seem to suggest that some environmental processes are at work
on superhalo scales. However, as shown in §7.4, regions of different mass overdensity δR also
have a different halo mass function: at any given time halos of higher masses are biased towards
higher density environments. Thus, any dependence of galaxy property, G , on halo mass, M, will
also induce a dependence on δR via

P(G |δR) = V
∫

P(G |M)n(M|δR)dM, (15.70)

where n(M|δR) is the conditional mass function of dark matter halos, which gives the number
density of halos as a function of halo mass in a large-scale environment with mass overdensity δR.
For a given model of structure formation, n(M|δR) can be obtained through the halo bias model
described in §7.4 or from cosmological N-body simulations. As shown by Mo et al. (2004),
the entire δR-dependence of the galaxy luminosity function can be accurately reproduced in a
model where galaxy luminosity and type depend only on halo mass as described by Eq. (15.70).
This indicates that the environmental dependence of the galaxy population on superhalo scales
is mainly a consequence of halo bias, rather than due to causal environmental effects operating
on superhalo scales. This is in quantitative agreement with Kauffmann et al. (2004), who have
shown that the dependence of star formation activity on the density on scales R > 1h−1 Mpc
largely disappears once the density on smaller scales is specified (see also Blanton et al., 2006;
Blanton & Berlind, 2007, for similar results).

In order to examine any environmental effects beyond the modulation of the halo mass function
by large-scale structure, one has to compare the properties of galaxies in halos of the same mass
but residing in different large-scale environments (i.e. one has to use halo mass as a control
variable). One way to do this is to use a galaxy group catalogue and to shuffle the positions of
galaxies among groups (halos) of similar masses. This changes the large-scale environment of
the galaxies while leaving P(G |M) invariant. If this shuffling modifies the two-point correlation
function of galaxies of property G , then G must depend on its large-scale environment. Such a
test applied to the SDSS by Blanton & Berlind (2007) has shown that groups with red centrals
are more strongly clustered (and thus reside in denser large-scale environments) than groups
of the same mass but with blue centrals. Similar results were obtained by Yang et al. (2006)
and Wang et al. (2008b) using the cross-correlation function between groups and galaxies. In
addition, these authors also found that the color dependence is more prominent in less massive
groups and becomes insignificant in groups with M ∼> 1014h−1 M�.

These observational trends seem to indicate that there is some dependence of galaxy properties
on large-scale environment that is not accounted for by halo-mass dependence alone. This result
is usually interpreted as a consequence of the environmental dependence of halo assembly time,
i.e. the halo assembly bias described in §7.4.2. Since halos, especially low-mass ones, in higher-
density environments on average have earlier assembly times, a correlation between the color of
a galaxy and the assembly time of its host halo would lead to environmental dependence similar
to what is observed. Note again that no environmental process operating on superhalo scales is
evoked here. Rather, it is due to a dependence of color on halo assembly time (a halo property),
combined with a correlation between large-scale environment (i.e. δR) and halo assembly time.
However, this interpretation is not unique. A similar trend could result if star formation in a halo
is affected by some processes operating on superhalo scales, such as the radiation and feedback
from galaxies in neighboring dark matter halos (e.g. Shapiro et al., 2004; Iliev et al., 2005).
Although such effects may only be effective for low-mass halos at high redshifts, it is premature
to rule out that similar processes also play a role at later times for more massive halos.
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15.6 Spatial Clustering and Galaxy Bias

In §2.7 we have seen that galaxies are clustered in space, and in §6.5 we have described how
to quantify such clustering using various statistical measures. In this section we examine how
the clustering properties of galaxies are related to the formation and evolution of the galaxy
population. Since galaxies are believed to reside in dark matter halos, and since the clustering
properties of dark matter halos can be modeled reliably (see §7.4), it is instructive to describe the
properties of galaxy clustering in terms of the halo clustering and the distribution of galaxies in
dark matter halos.

In the spirit of the halo model discussed in §7.6, we split the two-point correlation function
of galaxies into a one-halo term and a two-halo term. Suppose that, for a halo of mass M,
the number of galaxies contained in it (the occupation number) is N, and the (average) spatial
distribution of galaxies in a halo of mass M is given by a normalized function u(x|M). It is then
easy to show that the average number of galaxy pairs, separated by r = x2 − x1, within such a
halo is

Nu(x1 −x0|M) (N −1)u(x2 −x0|M)dV1 dV2,

where x0 is the position of the halo center, dVi = d3xi is the volume element at xi. Since pairs are
specified by a vector r, there is no double counting. Thus, the average number of pairs separated
by r per unit volume in a halo of mass M which hosts N galaxies is

GG1h(r|M,N) =
∫

Nu(x1 −x0|M)(N −1)u(x2 −x0|M)d3x0

=
∫

Nu(x|M)(N −1)u(x+ r|M)d3x, (15.71)

where the superscript ‘1h’ indicates that such a pair is located within a single halo, and therefore
contributes to the one-halo term. Taking account of the fact that different halos of mass M can
host different N, the average number of pairs per unit volume in a halo of mass M is

GG1h(r|M) =∑
N

P(N|M)GG1h(x|M,N)

=
∫
〈N(N −1)|M〉u(x|M)u(x+ r|M)d3x, (15.72)

where P(N|M) is the halo occupation distribution, and

〈Nk|M〉 ≡∑
N

NkP(N|M). (15.73)

Integrating over the halo mass function, we obtain the total number of galaxy pairs:

GG1h(r) =
∫

dM n(M)〈N(N −1)|M〉
∫

d3xu(x|M)u(x+ r|M). (15.74)

Note that GG is the number of pairs per volume-squared.
Next, consider the two-halo term. Let M1 be the mass of a halo which contains N1 galaxies,

and M2 the mass of a different halo hosting N2 galaxies. The number of interhalo galaxy pairs
separated by r = x2 −x1 contributed by these halos per dV1 dV2 is then given by

N1 u(x1 −x|M1)N2 u(x2 −x′|M2).

Since dark matter halos are correlated in space, the joint probability of finding a halo of mass M1

at x and a halo of M2 at x′ is proportional to

n(M1)dM1 n(M2)dM2
[
1+ξhh(x−x′|M1,M2)

]
d3xd3x′,
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where ξhh is the halo–halo two-point correlation function (see §7.4). Thus, the probability of
having an interhalo galaxy pair, which is separated by r and which is hosted by an M1-M2 halo
pair separated by x− x′, is equal to the product of the two quantities given above. The average
number of interhalo galaxy pairs per dV1 dV2 separated by r = x2 − x1 can then be obtained by
first summing the product over N1 and N2, and then integrating the result over the halo masses,
M1 and M2, and over the halo locations, x and x′:

GG2h(r) =
∫

dM1 n(M1)dM2n(M2)〈N1|M1〉〈N2|M2〉

×
∫

d3xd3x′u(x1 −x|M1)u(x2 −x′|M2)
[
1+ξhh(x−x′|M1,M2)

]
. (15.75)

Finally, with the definition given in §6.1.1, the two-point correlation function of galaxies can be
written as

ξgg(r) =
[GG1h(r)+GG2h(r)]dV1 dV2

RR(r)dV1 dV2
−1, (15.76)

where RR(r)dV1 dV2 = n2
gdV1 dV2, with ng =

∫
n(M)〈N|M〉dM the mean number density of galax-

ies, is the expected number of pairs in the absence of clustering. As one can see, once a model of
structure formation is adopted, so that the halo mass function, n(M), and the halo–halo correla-
tion function, ξhh, can be obtained, the two-point correlation function of galaxies is determined
by the first two moments of the halo occupation distribution P(N|M), i.e. 〈N|M〉 and 〈N2|M〉,
and by the galaxy distribution within individual halos, u(x|M). On large scales where the sizes
of individual halos can be neglected, and the halo correlation function is related to the correla-
tion function of matter, ξ (r), by the linear bias relation, ξhh(r|M1,M2) = bh(M1)bh(M2)ξ (r) (see
§7.4.1), we have

ξgg(r) ≈ b2
gξ (r), (15.77)

where

bg =
∫

dM n(M)bh(M)
〈N|M〉

ng
(15.78)

is the mean bias parameter of the galaxy population.
The Fourier transform of ξgg(r) gives the power spectrum:

Pgg(k) = P1h
gg (k)+P2h

gg (k), (15.79)

where

P1h
gg (k) =

∫
dM n(M)

〈N(N −1)|M〉
n2

g
|ũ(k|m)|2; (15.80)

P2h
gg (k) ≈ Plin(k)

[∫
dM n(M)bh(M)

〈N|M〉
ng

ũ(k|M)
]2

, (15.81)

with ũ(k|M) the Fourier transform of u(x|M), and Plin(k) the linear power spectrum of the mass
distribution (see §7.6). On large scales, where the two-halo term dominates and ũ(k|m) → 1, the
above expression reduces to

Pgg(k) ≈ b2
gPlin(k). (15.82)

The model considered above assumes that every galaxy in a halo samples the profile u(x|M) in
an unbiased way. This is unlikely to hold for all galaxies. In particular, according to the current
theory of galaxy formation, a central galaxy is assumed to always sit near the center of the host
halo, while the distribution of the satellite galaxies may be described by a density profile. Thus,
the central galaxy in a halo does not really sample the density profile and has to be treated
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separately. Suppose that the profile of the satellite distribution in a halo of mass M is given by
us(x|M). The number of one-halo satellite–satellite pairs is then

SS1h(r) =
∫

dM n(M)〈Ns(Ns −1)|M〉
∫

d3xus(x|M)us(x+ r|M), (15.83)

where Ns is the number of satellite galaxies. Since each halo contains either one or zero central
galaxy, the central galaxies only contribute to the one-halo term through central–satellite pairs,
and the number of such pairs can be written as

CS1h(r) =
∫

dM n(M)〈Nc|M〉〈Ns|M〉us(r|M), (15.84)

where 〈Nc|M〉 indicates the average number of central galaxies in a halo of mass M and ranges
from zero to unity. Note that here we have assumed that Nc and Ns are independent random
variables. It then follows that the one-halo term of the power spectrum can be written as

P1h
gg (k) =

∫
dM n(M)

〈Ns(Ns −1)|M〉
n2

g
|ũs(k|m)|2

+
∫

dM n(M)
〈Nc|M〉〈Ns|M〉

n2
g

|ũs(k|M)|. (15.85)

A comparison of the above expressions for ξgg and Pgg with those for the dark matter in §7.4
shows that the distribution of galaxies is only unbiased relative to the mass distribution if the
following three criteria are met: 〈N|M〉∝M, 〈N(N−1)|M〉∝M2, and the distribution of galaxies
within individual halos is identical to that of the dark matter particles. It is unlikely that all these
criteria are met for any (sub)population of galaxies, so that we expect galaxies, in general, to be
a biased tracer of the mass distribution. On large scales, the galaxy correlation function depends
on the halo occupation distribution only through its first moment, independent of the distribution
of galaxies within individual halos. Thus, if a population of galaxies forms in massive halos,
the correlation function of this population on large scales should be as strong as the massive
halos within which these galaxies form and reside. This is why cD galaxies, which only reside
at the centers of rich clusters, reveal a correlation function similar to that of rich clusters (e.g.
West & van den Bergh, 1991). This principle also allows us to understand why bright galaxies
are more strongly clustered than faint galaxies (see Fig. 6.4): bright galaxies, on average, reside
in more massive halos, which are more strongly clustered (see §7.4). Thus, once a model of
structure formation is adopted, the correlation amplitude of galaxies on large scales can be used
to constrain the masses of their host halos. This principle has been used extensively to constrain
the halo occupation statistics of various subclasses of galaxies (e.g. Yang et al., 2003; van den
Bosch et al., 2003, 2007; Porciani et al., 2004; Tinker et al., 2005)

For separations smaller than the size of a typical dark matter halo, most of the galaxy pairs
are contained in individual halos. In this case, the two-point correlation function depends not
only on the average occupation number, but also on the second moment of the halo occupation
distribution, as well as on how galaxies are distributed within individual halos. Clearly, a more
concentrated population is expected to have a steeper correlation function on small scales. As
mentioned in §2.5.1, red satellites are more centrally concentrated than blue satellites, which
explains, at least partly, why red galaxies have a steeper correlation function on small scales than
blue galaxies (see Fig. 6.4).

Based on the principle outlined above, one can also develop halo occupation models for the
higher-order correlation statistics of the galaxy distribution, such as the three-point correlation
function and bispectrum. On large scales, these statistics depend only on the higher-order corre-
lation functions of dark matter halos and the mean occupation 〈N|M〉. On small scales, however,
they depend also on the spatial number density distribution of galaxies within individual dark
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matter halos, u(x|M), and the higher-order moments of the halo occupation distribution (e.g.
Cooray & Sheth, 2002; Wang et al., 2004).

Clearly, the halo occupation distribution, P(N|M), is a key element in understanding the
clustering of galaxies. Physically, the form of P(N|M) encapsulates all information about how
galaxies form in dark matter halos, and should, in principle, be derived from the theory of galaxy
formation. However, in the absence of a complete theory, one typically adopts simple models
for P(N|M) and uses the observed correlation function of galaxies to constrain the associated
free parameters. For instance, a simple model adopted in the literature assumes that the mean
occupation number for galaxies above a certain luminosity threshold changes with halo mass as

〈N|M〉 =

{
1+
(

M
M0

)α
(for M > Mmin)

0 (for M < Mmin).
(15.86)

where M0, Mmin and α are free parameters. In general, we expect α > 0, because a more massive
halo should, on average, host a larger number of galaxies. A minimum halo mass, Mmin, is intro-
duced to account for the fact that only halos that are sufficiently massive can host a galaxy above
a certain luminosity threshold. The form (15.86) is actually in qualitative agreement with the halo
occupation statistics obtained from galaxy groups (Collister & Lahav, 2005; Yang et al., 2005a),
as well as with the predictions from semi-analytical models and hydrodynamical simulations of
galaxy formation (e.g. Berlind et al., 2003; van den Bosch et al., 2003). The halo occupation
distribution for the satellite galaxies, P(Ns|M), is usually modeled to be a Poisson distribution:

P(Ns|M) =
e−〈Ns〉〈Ns〉Ns

Ns!
; 〈Ns(Ns −1)〉 = 〈Ns〉2, (15.87)

where 〈Ns〉 = 〈N|M〉− 1. This model is consistent with the observed halo occupation statistics
obtained from galaxy groups (e.g. Collister & Lahav, 2005; Yang et al., 2005a, 2008). Further-
more, numerical simulations of the subhalo population (see §7.5.3) show that the number of
subhalos in a halo of a given mass roughly has a Poisson distribution (Kravtsov et al., 2004).
Since satellite galaxies are believed to be associated with subhalos, P(Ns|M) is also expected to
be approximately Poissonian. With proper choices of model parameters (M0, Mmin, α), the above
simple halo occupation model, combined with the halo population predicted by the current model
of structure formation, is remarkably successful in matching the observed two-point correlation
function of galaxies (e.g Jing et al., 1998; Tinker et al., 2005; Zehavi et al., 2005; Zheng et al.,
2005).

More generally, we can consider the halo occupation distribution as a function of galaxy lumi-
nosity using the conditional luminosity function, Φ(L|M), introduced in §15.3. Based on the
formalism outlined above, it can be shown that the mean linear bias factor for galaxies with
luminosities L1 ≤ L < L2 can be written as

bg(L1,L2) =
1

ng(L1,L2)

∫ L2

L1

dL
∫ ∞

0
Φ(L|M)bh(M)n(M)dM, (15.88)

where

ng(L1,L2) =
∫ L2

L1

φ(L)dL =
∫ L2

L1

dL
∫ ∞

0
Φ(L|M)n(M)dM, (15.89)

with φ(L) the galaxy luminosity function. Thus, once a cosmological model is adopted so that
n(M) and bh(M) can be calculated, the correlation amplitude of galaxies as a function of lumi-
nosity constrains the conditional luminosity function, Φ(L|M). As shown in Yang et al. (2003)
and van den Bosch et al. (2003), in the current ΛCDM cosmogony the form of Φ(L|M) required
to match the observed luminosity dependence of the two-point correlation function of galaxies
is similar to that required to match the observed galaxy luminosity function, and the implied
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relation between the central galaxy luminosity and host halo mass is very similar to that given by
Eq. (15.38) with ML ∼ 1012h−1 M�, β ∼ 4 and γ ∼ 0.3. This suggests that the current CDM cos-
mogony can accommodate not only the intrinsic properties of galaxies but also their clustering
in space.

15.6.1 Application to High-Redshift Galaxies

With the advent of deep imaging and spectroscopic surveys, large and homogeneous samples
of high-redshift galaxies can now be constructed, allowing the statistical properties of the high-
redshift galaxy population to be studied in a way similar to that in the local Universe. Since
galaxies at higher redshifts are on average younger, the study of the galaxy population as a
function of redshift can provide direct information about the formation and evolution of galaxies
through the history of the Universe. Many of the observational aspects of high-redshift galaxies
are described in §2.6. Here we concentrate on what the clustering properties of high-redshift
galaxies can tell us about galaxy formation and evolution.

As described above, the large-scale clustering amplitude of a population of galaxies is deter-
mined by the mass distribution of their host halos so that the observed correlation amplitude can
be used to constrain the mass distribution of the halos hosting the galaxy population in question.
Consider, for example, a population of galaxies at redshift ∼ z with luminosity function φ(L,z).
As shown in §15.3, we can write φ(L,z) in terms of the dark matter halo mass function at z,
n(M,z), as

φ(L,z) =
∫
Φ(L|M,z)n(M,z)dM, (15.90)

where Φ(L|M,z) is the conditional luminosity function. According to Eq. (15.88) the linear bias
factor for this population of galaxies can be written as

bg(z) =
1

ng(z)

∫
bg(L,z)φ(L,z)dL, (15.91)

where ng(z) =
∫
φ(L,z)dL, and

bg(L,z) =
1

φ(L,z)

∫
Φ(L|M,z)bh(M,z)n(M,z)dM. (15.92)

Thus, for a given model of structure formation, one can constrain Φ(L|M,z) from the observed
clustering. The simplest model for Φ(L|M,z) is the one in which L is determined entirely and
deterministically by M. In this case, Φ(L|M,z) is a Dirac delta function of M, and bg(L,z) =
bh(M,z), with L related to M through a deterministic function, L = L(M). More generally, we
can define a characteristic mass, Mc, so that bh(Mc,z) = bg(L,z). Using Eq. (15.77), the galaxy
bias bg(L,z) can be determined from

bg(L,z) =

√
ξgg(r|L,z)
ξ (r|z) , (15.93)

in the limit of large r, where ξgg(r|L,z) is the two-point correlation function of galaxies of lumi-
nosity L at redshift z, and ξ (r|z) is the two-point correlation function of the matter at that redshift
in the assumed model of structure formation. With the bg(L,z) thus obtained, the corresponding
characteristic mass, Mc, follows from its definition given above.

As an example, consider the population of Lyman break galaxies (LBGs) described in §2.6.4.
Bright LBGs at z ∼ 3 are found to be strongly clustered, with a correlation length r0 ≈ 6h−1Mpc
(in comoving units) assuming a flat universe with Ωm,0 = 0.3 and ΩΛ,0 = 0.7 (e.g. Steidel et al.,
1999). In the standard ΛCDM model, this correlation length corresponds to a bias factor of ∼ 3.
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Using the expression of the bias given in §7.4, we can infer Mc ∼ 1012 M�. This suggests that
bright LBGs at z ∼ 3 are typically hosted by relatively massive halos (e.g. Mo et al., 1999;
Bullock et al., 2002). The correlation amplitude is found to decrease with galaxy luminosity,
indicating that fainter LBGs are, on average, hosted by halos of lower masses.

According to Eq. (7.105), the bias factor, b′, for the present-day descendents of a halo popu-
lation of mass M at z is related to bh(M,z) by b′ = 1+D(z)[bh(M,z)−1]. The value of the bias
factor quoted above for the bright LBGs gives b′ ∼ 1.6. Since normal L∗ galaxies at z = 0 have
b ∼ σ−1

8 , the correlation amplitude for the descendents of LBGs is thus predicted to exceed that
of normal bright galaxies by a factor of about (σ8b′)2, or ∼ 1.7 assuming the standard ΛCDM
model with σ8 = 0.8. This suggests that the descendents of bright LBGs are probably among the
brightest galaxies at z ∼ 0 (e.g. Mo & Fukugita, 1996), while the fainter ones may evolve into
the more typical population of galaxies at the present time.

15.7 Putting it All Together

In the previous sections of this chapter we have used statistical techniques and simple argu-
ments, based on our current paradigm of hierarchical galaxy formation, to link galaxy properties
(luminosity, stellar mass, star-formation rate, color, morphology, etc.) to halo properties. We
now briefly discuss a more thorough approach based on ab initio modeling of the galaxy popula-
tion. Starting from the initial conditions (the density perturbations discussed in Chapter 4), this
method predicts the properties of galaxies by following the merger histories of dark matter halos
and by modeling the various astrophysical processes within those halos that lead to the formation
of galaxies (gas cooling, star formation, feedback processes, galaxy mergers, etc.). Two differ-
ent approaches have been used: one treating the important processes in a semi-analytical fashion,
and the other using cosmological hydrodynamical simulations. In what follows we briefly discuss
these two methods in turn.

15.7.1 Semi-Analytical Models

A semi-analytical model of galaxy formation typically consists of the following steps:

(i) Choose a cosmological model, i.e. choose the cosmological parameters that specify the
geometry and matter content of the universe (Ωm,0,Ωb,0,ΩΛ,0, H0) and the amplitude and
shape of the initial fluctuation spectrum (σ8 and n, respectively).

(ii) Use N-body simulations, or the extended Press–Schechter formalism (§7.3), to trace the
merger histories for a series of dark matter halos of different (present-day) masses.

(iii) Within each dark matter subunit which is present at any stage of one of these merger
histories, follow three distinct baryonic components: hot gas, cold gas (presumably in a
disk), and stars.

(iv) Use simple prescriptions to specify the conversion rates between these baryonic compo-
nents: cooling converts hot gas into cold gas, star formation converts cold gas into stars,
and feedback from massive stars and AGN either converts cold gas into hot gas, or reheats
the hot gas directly. At the same time, keep track of the metallicity of each of the three
different components using chemical evolution models (§10.4).

(v) Use a stellar population synthesis model (§10.3) to convert the star-formation history and
metallicity of the stellar population into luminosity and color, including a model for dust
extinction.

(vi) Adopt prescriptions to specify the dynamical evolution of the various components when
halos merge. Typically these consist of the following: The hot gas components in the
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merging progenitors are heated to a new virial temperature as they merge. The least mas-
sive progenitor galaxy becomes a satellite galaxy in the new system and ceases to accrete
new gas (strangulation, see §12.5.4). The most massive progenitor galaxy becomes the
new central galaxy and continues to accrete new gas as long as radiative cooling in the
host halo is efficient.

(vii) Assume that satellites can merge with central objects on a time scale set by dynamical
friction (§12.3), and make simple assumptions about the outcome of such a merger. Pre-
sumably, if the mass of the satellite galaxy is much smaller than that of the central galaxy,
the satellite is ‘cannibalized’ (§12.5.2) without major impact on the morphology of the
central galaxy. If, on the other hand, the mass of the satellite galaxy is comparable to that
of the central, the disks of both progenitors are likely to be destroyed, resulting in the for-
mation of an elliptical remnant (§12.4.2 and §13.2.2). If new gas is able to subsequently
cool, a new disk may grow around the spheroid, giving rise to a galaxy consisting of disk
and bulge.

(viii) In order to build a sample of model galaxies that fairly represents the galaxy population
in the present-day Universe, repeat this procedure for a large number of halos at z = 0
that properly sample the present-day halo mass function.

Thus, in a semi-analytical model the complicated, tightly intertwined astrophysical processes
associated with the formation and evolution of galaxies are modeled as a set of ‘recipes’ and ‘pre-
scriptions’ which carry a number of free model parameters (see Baugh, 2006, for more details).
In principle, these model parameters should be chosen such that the underlying physical pro-
cesses are represented as adequately as possible. Unfortunately, our understanding of many of
these processes is still too limited, and the prescriptions are often too oversimplified, so that
the values of the model parameters cannot be derived from first principles. Rather, one typically
‘normalizes’ the model using some observational constraints. For example, one can set the free
parameters governing the efficiency of star formation and the efficiency of stellar energy feed-
back to guarantee that a ‘Milky Way’ halo contains, on average, the same mass in stars and in
cold gas as our own Galaxy, and adjust the dynamical friction time scale (which depends on the
orbital properties and the efficiency of tidal stripping) so that a ‘Milky Way’ halo contains, on
average, the right number of ‘Magellanic Cloud’-sized satellites (e.g. Kauffmann et al., 1993).
Another possibility is to normalize these parameters so that the model reproduces the observed
luminosity function of galaxies (e.g. Cole et al., 2000) and/or the zero-point of the Tully–Fisher
relation (Kauffmann et al., 1999a).

Once the free parameters are set, the semi-analytic scheme can be used to generate large
samples of model galaxies, whose properties (luminosities, stellar masses, colors, sizes, mor-
phologies, metallicities, etc.) can be compared to data. Such a comparison allows an assessment
of the success of each particular model and of the importance of certain specific model
ingredients (e.g. compare models with and without AGN feedback).

When the first semi-analytical models were constructed in the early 1990s, it immediately
became clear that in the absence of any form of energy input an unacceptably large fraction of the
baryons will cool and condense in low-mass halos at high redshifts (e.g. Cole, 1991; White &
Frenk, 1991). Although this is generally interpreted as a requirement for supernova feedback
and/or re-ionization, to this date fitting the faint-end slope of the galaxy luminosity function
remains challenging (e.g. Benson et al., 2003). In addition to the problem with the faint-end slope
of the galaxy luminosity function, early models also suffered from three other major problems:
(i) they predicted a color–magnitude relation that was inverted with respect to the observations
(ii) they overpredicted the number density of bright galaxies, a problem that was more severe for
cosmologies with a lower value of Ωm,0, and (iii) the models were unable to simultaneously fit
the luminosity function and the normalization of the Tully–Fisher relation (e.g. Kauffmann et al.,
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1993; Cole et al., 1994; Heyl et al., 1995). It soon became clear that the first problem could be
remedied by including chemical evolution and/or a treatment for dust extinction, but the problem
with the bright galaxies being too blue remained (Kauffmann & Charlot, 1998a; Somerville &
Primack, 1999; Cole et al., 2000). This problem, together with the overprediction of the number
density of massive galaxies, seems to require a mechanism that can suppress cooling in massive
halos. Several such mechanisms have been suggested, including AGN feedback (e.g. Bower et al.,
2006; Cattaneo et al., 2006; Croton et al., 2006; Kang et al., 2006), thermal conduction (Benson
et al., 2003; Voigt & Fabian, 2004), multi-phase cooling (Maller & Bullock, 2004), and heating
by substructure or clumpy, cold accretion (Khochfar & Ostriker, 2008; Dekel & Birnboim, 2008).
When one or more of these ingredients are included, the models are able to fit the observed
luminosity function, as well as the color–magnitude relation. However, to this date the problem
with the Tully–Fisher zero-point remains largely unsolved. Typically the models predict disk
rotation velocities that are too high, unless adiabatic contraction and/or self-gravity of the disk are
ignored (Cole et al., 2000; Dutton et al., 2007). The main cause of this discrepancy seems to be
that CDM halos are predicted to have too concentrated mass distributions. As discussed in §11.3,
it remains to be seen whether this implies a problem for the CDM framework, or it indicates that
our models for disk formation are inappropriate. In addition to this persisting problem with the
Tully–Fisher zero-point, it has been shown that, among others, semi-analytical models typically
overpredict the fraction of red satellite galaxies (Baldry et al., 2006; Weinmann et al., 2006a), and
have problems matching the evolution of the galaxy mass function with redshift (e.g. Somerville
et al., 2008b; Fontanot et al., 2009).

Most semi-analytical models use the extended Press–Schechter (EPS) formalism to construct
merger histories for the dark matter halos. Although this has the advantage of not being overly
CPU intensive, the downside is that the EPS merger histories suffer from several systematic
inaccuracies (see §7.3). Hence, several investigators have constructed semi-analytical models
based on merger histories extracted directly from numerical N-body simulations (e.g. Kauffmann
et al., 1999a; Kang et al., 2005; Croton et al., 2006). This has the additional advantage that the
information about the spatial distribution of the dark matter halos allows one to investigate the
predicted clustering properties of the model galaxies, and the model predictions are found to be
in reasonable agreement with observations (e.g. Kauffmann et al., 1999b; Springel et al., 2005c).

To summarize, despite several outstanding problems, the overall agreement between the pre-
dictions of semi-analytical models and observational results is encouraging, and seems to suggest
that our current comprehension of galaxy formation may already have captured the essence of
the problem. Nevertheless, it is important to realize that the theory is far from complete, mainly
because many of the astrophysical processes involved have not yet been treated accurately from
first principles.

15.7.2 Hydrodynamical Simulations

In a cosmological hydrodynamical simulation, one again starts by choosing a cosmology. The
initial density fields in both dark matter and baryonic gas are sampled either on a large spatial
grid (in the Eulerian approach) or by a large number of particles (in the Lagrangian approach)
(see Appendix C). The evolution of the density fields is then followed by solving the gravita-
tional and hydrodynamical equations numerically. In principle, hydrodynamical simulations can
follow the evolution of both the gas and dark matter without relying on simplified approxima-
tions of all the important processes. In practice, however, simulations are limited by numerical
resolution. Consequently some of the physical processes still have to be modeled approximately
on the subgrid level, using ‘recipes’ that are not very different from those adopted in the semi-
analytical method described above. For instance, the star-formation rate within a fluid element
is usually modeled with the Schmidt law based on the local cold gas density, without taking
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into account any of the detailed star-formation processes described in Chapter 9. The feedback
from supernova explosions and AGN is typically included as energy/momentum sources based
on simple prescriptions without treating the supernova remnants and AGN-driven outflows from
first principles. Despite these limitations, hydrodynamical simulations have several important
advantages over semi-analytical models. First, the evolution of the dark matter halo population is
followed in detail, and no assumption is needed to model the structure and formation history of
individual halos. In particular, the interaction between the dark matter and baryon components
is taken into account without relying on simple approximations such as the adiabatic contraction
described in §11.1.3. Second, hydrodynamical simulations follow the dynamics of the diffuse
cooling gas in full generality, without having to make assumptions such as spherical symmetry
or quasi-static evolution. Third, once a feedback scheme is adopted on the subgrid level, hydro-
dynamical simulations can treat the subsequent evolution of the supernova/AGN-driven winds
and their interactions with the gas component fully self-consistently without adopting simpli-
fied prescriptions to specify the impact of these winds. Finally, in a hydrodynamical simulation
mergers of dark matter halos and galaxies are followed self-consistently as part of the dynamical
process, rather than being modeled with simple prescriptions based on dynamical friction time
scales and on the mass ratio of the merger progenitors.

With computational facilities and simulation codes currently available, hydrodynamical simu-
lations can now be used to study galaxy formation and evolution in a full cosmological context.
However, computational power is still a severe limitation at the present, and one has to compro-
mise between simulation resolution and box size. Typically, the internal structure of galaxies can
only be resolved in simulations of small volumes (containing a relatively small number of galax-
ies), while simulations of large volumes containing sufficient numbers of galaxies to represent
the total galaxy population typically lack the spatial resolution to resolve the internal structure
of the simulated galaxies. Hydrodynamical simulations of individual galaxies have already been
discussed in some detail in Chapters 11 and 13. In what follows we focus on simulations of
cosmologically representative volumes.

In a cosmological hydrodynamical simulation, galaxies are typically identified as massive and
dense stellar clumps. Their luminosities and colors are obtained from the corresponding star-
formation histories with the use of a stellar population synthesis model. With these, one can then
generate galaxy ‘catalogues’ that contain both the intrinsic properties (stellar mass, luminos-
ity, cold gas mass) and locations of individual galaxies, and study the luminosity (stellar mass)
function, star-formation histories and the large-scale distribution of galaxies.

Simulations without supernova/AGN feedback generally overpredict the number density of
galaxies at all galaxy masses, in particular at the low- and high-mass ends (e.g. Kereš et al.,
2009). Massive galaxies are also predicted to be too blue in such simulations, because signif-
icant amounts of gas can cool, even in massive halos, to form stars in the central galaxies. In
recent years, star formation and feedback recipes are routinely incorporated in hydrodynamical
simulations of galaxy formation. It has been demonstrated that simply including the supernova
energy in the thermal content of the surrounding gas is very ineffective, because supernovae
typically explode in high density regions where the cooling time is short, so that the feedback
energy is radiated away before it can affect the hydrodynamics (e.g. Katz, 1992; Mac Low &
Ferrara, 1999b). Because of this, alternative implementations have been proposed. For example,
Gerritsen & Icke (1997) proposed a scheme in which the cooling rate of the heated gas par-
ticles is reduced by turning off radiative cooling for a brief period of time after the heating;
Thacker & Couchman (2000) used a scheme in which the density of heated gas is artificially
reduced; Navarro & White (1993) suggested incorporating the supernova energy as outward
motions imposed on surrounding gas. Although these implementations have some success in
reducing the star-formation efficiency, they are fairly arbitrary and ad hoc, with results depending
significantly on the details of the implementation.
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More recently, Springel & Hernquist (2003) developed a smoothed-particle hydrodynamics
(SPH) code (see Appendix C) which treats the ISM as a multi-phase medium with a co-spatial
mixture of a cold dense phase and a hot diffuse phase. Some feedback schemes have also been
implemented in this code (e.g Springel et al., 2005b; Scannapieco et al., 2006). In such a multi-
phase model, supernova energy is injected mainly into the hot diffuse phase where radiative
cooling is inefficient, making the feedback more effective in driving outflows and in reducing
star formation in galaxies. Such a scheme seems to be able to produce disk galaxies with char-
acteristics similar to those of real galaxies. Simulations of mergers of relatively massive gas-rich
galaxies have also been carried out, incorporating feedback effects from both AGN and starbursts
(e.g. Naab et al., 2007; Di Matteo et al., 2008). The results demonstrate that star formation can
be effectively quenched even in a massive system after an initial burst of stars accompanied by
the formation of AGN/starburst-driven outflows, producing massive red galaxies reminiscent of
the bright ellipticals observed today.

In summary, it is clear that hydrodynamical simulations provide a promising avenue to study
galaxy formation and evolution in a fully cosmological context. At the present, however, such
simulations still suffer severely from insufficient numerical resolution, and many key processes,
in particular star formation and feedback, still have to be treated approximately on subgrid level.
The arbitrariness in the implementations of these processes make their validity uncertain, and so
the results obtained with such simulations should be interpreted with caution.
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The Intergalactic Medium

Galaxies are ecosystems consisting of dark matter, stars and gas. It is useful to split the gas into
three broad components according to its relation to the galaxy. The first is the interstellar medium
(ISM), which is the gas that is directly associated with the galaxy. The second is the halo gas,
which is distributed outside the galaxy but inside the host dark matter halo of the galaxy. The third
is the gas that is not associated with dark matter halos. The latter two components combined are
known as the intergalactic medium (IGM). During the formation and evolution of a galaxy, the
ISM and IGM interact actively with each other. Halo gas can cool and be accreted into the galaxy
to become part of the ISM. The gas in the ISM can be ejected into the halo or even into the large-
scale environment by galactic winds and stripping. And finally, dark matter halos can accrete gas
from the IGM in their large-scale environments.

Clearly, the IGM is a crucial ingredient of any theory of galaxy formation and evolution.
In fact, by definition, all baryons were part of the IGM at sufficiently early times (before the
formation of stars and galaxies). At later times, more and more material of the IGM is accreted
by virialized dark matter halos, where it can be converted into cold gas (ISM) or stars. However,
even at the present day, a very substantial fraction of the baryons is believed to still reside in
the IGM. As described in §2.10.2, the total mass in stars in the present-day Universe accounts
for less than 10% of the total baryonic mass expected from cosmic nucleosynthesis and from
observations of the cosmic microwave background. After adding the baryonic material detected
as cold gas (atomic or molecular) associated with galaxies, and the hot gas in the ICM of clusters,
still more than 50% of the baryonic material is unaccounted for. These missing baryons are
believed to reside in the IGM.

The properties of the IGM (density, temperature, ionization state, chemical composition, spa-
tial distribution, etc.) can be studied through its absorption of light from background sources or
through the radiation field it produces. The study of the IGM is important for several reasons.
First of all, since galaxy formation is a process of gas condensation in the cosmological density
field, the IGM reflects the embryonic material out of which galaxies form. Furthermore, galaxies
in turn can have a significant impact on the IGM by injecting it with energy and mass (in particu-
lar metals). Studying the properties of the IGM as function of redshift can thus provide important
insight into the formation and evolution of galaxies. Secondly, since the properties of the IGM
can be affected by various radiative and gas-dynamical processes, studying the IGM at different
redshifts may also provide insight into cosmological events that have occurred since recombi-
nation. Finally, the gas in the IGM may interact with the CMB photons, thereby distorting the
CMB spectrum. Hence, a proper interpretation of the CMB also requires a proper understanding
of the IGM.

In this chapter, we first describe the global properties of the IGM and examine how various
radiative and gas-dynamical processes drive the evolution of the IGM. We then describe how to
probe the IGM in more detail using various QSO absorption line systems.
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16.1 The Ionization State of the Intergalactic Medium

16.1.1 Physical Conditions after Recombination

We have seen in §3.5 that the gas in the Universe became predominantly neutral at z = zrec ∼
1,300 when electrons recombined with protons to form hydrogen atoms. The Universe at such
early times must also be highly uniform, as indicated by the high degree of isotropy in the CMB,
so that very few, if any, bright objects could have formed. Consequently, the Universe cooled
below a few thousand degree due to adiabatic expansion, and entered a ‘dark age’ in which the
Universe was filled with CMB photons (with frequencies in the infrared), a predominantly neutral
gas, and dark matter particles. Since there were no heating and cooling sources, the Universe
evolved adiabatically, and the temperature of the CMB decreased with redshift as

Tγ = 2.736(1+ z)K. (16.1)

Since photons have decoupled from baryons, naively one would expect the temperature of the
baryonic gas to decrease as Tgas ∝ (1 + z)2, and so Tgas would be lower than Tγ soon after the
decoupling. In reality, however, the residual ionization fraction (although small) can channel
a significant amount of energy from the radiation field to the gas through Compton scattering,
keeping baryons at the same temperature as the CMB until a much later time (z∼ 100, see §3.5.3).
Since primordial nucleosynthesis produces very little heavy elements (see §3.4), the baryonic
content of the Universe during the ‘dark age’ consists almost entirely of hydrogen and helium,
with He/H ≈ 0.07 by number. The mean number density of hydrogen atoms in the medium at
redshift z (in proper units) can then be written as

nH(z) � ρIGM(z)
1.3mH

≈ 8.6×10−6Ωb,0 h2(1+ z)3 cm−3, (16.2)

where Ωb,0 is the present-day density parameter of the baryons.
Because recombination requires the encounter of an electron with a proton, the rate of recom-

bination is expected to decrease as the number densities of electrons and protons are reduced
by recombination and by the expansion of the Universe. At the time when the recombination
rate becomes much lower than the expansion rate, the number of free electrons is frozen, and
the residual ionization fraction is of the order Xe ≡ ne/n ∼ 10−5–10−3 (see §3.5.1). As shown in
§9.7, this residual of free electrons can act as a catalyst for the formation of molecular hydrogen,
which may be the main source of cooling at high redshift for the formation of the first generation
of luminous objects in the Universe.

The ‘dark age’ is expected to end when some perturbations in the cosmic density field evolve
into the nonlinear regime and collapse to form objects (e.g. stars, galaxies and/or AGN) that can
re-ionize the IGM. An important question is whether or not such re-ionization indeed occurred
and, if the answer is yes, when and how the IGM was re-ionized. In the remainder of this section
we will focus on observational constraints on the state of the IGM, leaving the discussion of the
other aspects of the problem to the following two sections.

16.1.2 The Mean Optical Depth of the IGM

A powerful way to probe the ionization state of the IGM is by examining how it absorbs the
radiation coming from background sources. Suppose that a source is located at some high redshift
ze (corresponding to a time te) and emits with an intrinsic spectral energy distribution L (ν)dν
(defined as the the luminosity of the source at frequency ν). If the emitted light travels in a
vacuum, an observer at z = 0 should observe a flux given by
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F(ν)dν =
L [ν(1+ ze)]

4πd2
L

(1+ ze)dν, (16.3)

where dL is the luminosity distance (see §3.2.6). In this case, the observed spectrum has a shape
similar to the intrinsic one, except that it is stretched by the expansion of the Universe. If, how-
ever, the emitted photons travel in a medium of atoms and/or ions, they may be absorbed and
re-emitted, and so the spectrum of the source is reprocessed before it is observed. If the emission
from the medium is negligible, the number density of photons in the light ray from the source
decreases on its way to the observer, because photons can be absorbed by the medium and scat-
tered away from the line-of-sight. For photons with initial frequencies in the range νe to νe +dνe,
the rate of change in the number density is given by

ṅγ(νe, t) = −Λ
[
νe

a(te)
a(t)

, t

]
nγ(νe, t), (16.4)

where Λ(ν, t) is the absorption coefficient at time t for photons with frequency ν. The factor
a(te)/a(t) describes the redshift of the photon frequency as they travel from te to t. The solution
of the above equation is

nγ(νe, t) = e−τnγ(νe, te), (16.5)

where

τ =
∫ t

te
Λ
[
νe

a(te)
a(t ′)

, t ′
]

dt ′ (16.6)

is the optical depth due to absorption.
In many of our following applications, we are interested in resonance absorption which

involves the transition of an atom between two bound states 1 and 2. The energies of these
two states will be denoted by E1 and E2 (we assume E2 > E1 as a convention), and the photon
frequency involved in the transition is therefore ν12 ≡ (E2 −E1)/hP. The probability per unit
time, P12, that the atom undergoes a transition from the low state 1 to the high state 2 due to
photon excitation is P12 = B12Bν , where B12 is the Einstein coefficient of excitation and Bν dν is
the brightness of the radiation field (see §B1.3). Note that P12 is just the probability per unit time
with which a photon with frequency ν is absorbed by the atom, and we can express it in terms of
the absorption cross-section σ12:

P12 = B12Bν =
∫
σ12(ν)cnγ(ν)dν. (16.7)

Conventionally, B12 is expressed in terms of the oscillator strength f12:

B12 =
4πa12

hPν12
, a12 =

πq2
e

mec
f12. (16.8)

For resonance absorption, σ12(ν) is peaked sharply at the resonance frequency ν12, and so the
cross-section is related to a12 by

a12 =
∫
σ12(ν)dν. (16.9)

The absorption rate by atoms in state 1 is proportional to the number density of atoms in that
state and the absorption cross-section. Thus, the absorption rate Λ in Eq. (16.4) can be written as

Λ(ν, t) = cn1(t)σ12(ν). (16.10)

As discussed in §B1.3, we can write the absorption cross-section as

σ12(ν) = a12φ12(ν) with
∫
φ12(ν)dν = 1, (16.11)

where φ12(ν) describes the profile of the absorption line in ν space.
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An atom at the excited state 2 tends to decay back spontaneously to the low energy state 1,
emitting a photon with energy hPν12 in a random direction. Because photons emitted in this
process have random propagation direction, they will not be observed as part of the emission from
the source, although they contribute to the background radiation. Thus, the net effect of photon
excitation and spontaneous emission is to scatter a photon off the line-of-sight to the source,
causing the source to dim at the absorption frequency ν12. In addition to the spontaneous decay,
an atom at state 2 can also make a transition back to state 1 due to the stimulus of a photon in
the light beam. Unlike the spontaneous emission, the photon emitted from a stimulated transition
propagates in the same direction as the incident photon. Such photons will be observed as part
of the emission from the source, and so stimulated transitions do not lead to net absorption. The
rate of stimulated emission, Ω(ν, t), is related to the absorption rate Λ by the Einstein relations,
Ω(ν, t)∝ n2B21 ∝ (n2g1/n1g2)Λ(ν, t), where gi is the number of internal states of level i, so that

Ω(ν, t) = exp

(
− hPν

kBT

)
Λ(ν, t). (16.12)

This rate should be added to the right-hand side of Eq. (16.4). With this term, the optical depth
becomes

τ =
∫ t

te

{
1− exp

[
− hPνea(te)

kBT (t ′)a(t ′)

]}
Λ
[
νe

a(te)
a(t ′)

, t ′
]

dt ′. (16.13)

Now suppose that a photon from a source at redshift ze is absorbed in resonance at redshift za

(corresponding to a time ta). The frequencies at emission (νe), at absorption (νa = ν12), and at
observation (νo) are related by

νe =
1+ ze

1+ za
ν12 = (1+ ze)νo. (16.14)

Since the absorption cross-section is peaked sharply at ν12, the optical depth at the observed
frequency νo is

τ(νo) ≈ cn1(ta)
a(ta)H0E(za)

{
1− exp

[
− hPν12

kBT (ta)

]}
I12, (16.15)

where n1(ta) is the proper number density of the absorbing atoms at the position of the absorption,
H0E(za) ≡ ȧ(ta)/a(ta) is the Hubble constant at za [see §3.2.3 for the expression of E(z)], and

I12 =
1
ν12

∫
σ12(ν)dν. (16.16)

Since the absorption can be caused only by atoms between the source and the observer, the
wavelength range (in the observed spectrum) over which absorption can possibly occur is

λ12 ≤ λo ≤ (1+ ze)λ12. (16.17)

16.1.3 The Gunn–Peterson Test

As mentioned in the beginning of this section, intergalactic space may contain a diffuse compo-
nent of neutral (mainly HI) gas. The density of this component can be estimated by measuring its
optical depth in Lyα absorption. This absorption occurs when a hydrogen atom is excited from
the 1s state to the 2p state by a resonant photon, and the wavelength, frequency, and temperature
associated with this transition are

λLyα = 1216Å, νLyα = 2.47×1015Hz, TLyα ≡ hPνLyα

kB
= 1.18×105 K. (16.18)
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If the temperature of the IGM T � TLyα , we can neglect the exponential term in the optical depth
of Eq. (16.15) and obtain

τ(νo) =
cnHI(ta)

a(ta)H0E(za)
ILyα , (16.19)

where

ILyα =
aLyα

νLyα
= 4.5×10−18 cm2. (16.20)

It then follows that the proper number density of HI atoms is related to the optical depth by

nHI(ta) = 2.4×10−11hE(za)τ cm−3. (16.21)

A constraint on nHI can therefore be obtained from measurements of the optical depth τ .
The optical depth of the IGM can be probed by measuring the absorption it causes in the

spectra of QSOs at high redshifts. The most basic observable in a QSO spectrum is the flux
decrement, D, defined as the mean value of the ratio between the observed continuum flux and
the expected continuum flux in the absence of absorption. Such a decrement caused by the dif-
fused component of the IGM is usually referred to as the Gunn–Peterson effect. In practice, one
measures the mean flux decrement DA between the Lyα and Lyβ emission lines (with rest-frame
wavelengths λLyα = 1216Å and λLyβ = 1026Å):

DA =
〈

1− Fobs(λ )
Fcont(λ )

〉
= 〈1− e−τ〉 = 1− e−τeff , (16.22)

where Fobs(λ ) is the observed flux at wavelength λ , Fcont(λ ) is the estimated flux of the con-
tinuum in the absence of absorption, the average is over the wavelength range covering the
observed Lyα and Lyβ emission lines, and the last equation defines the effective optical depth,
τeff. Measurements of DA imply an effective optical depth of

τeff(z) = (0.85±0.06)×
(

1+ z
5

)4.3±0.3

for z ∼< 5.5 (16.23)

(Fan et al., 2006). This optical depth in Eq. (16.21) implies that

nHI(z) ∼ 2.0×10−11hE(z)
(

1+ z
5

)4.3

cm−3, (16.24)

or in terms of the critical density,

ΩHI(z) ≡ nHI(z)mp

ρcrit,0(1+ z)3 ∼ 1.4×10−8h−1E(z)
(

1+ z
5

)1.3

. (16.25)

Comparing this with the density parameter of baryons, Ωb,0 ∼ 0.02h−2, given by cosmic nucleo-
synthesis (see §3.4), we see that the fraction of hydrogen in the neutral diffuse component must
be smaller than 10−4 at z ∼< 5.5! Thus, given that only a small fraction of the baryons are locked
up in stars, the IGM must be highly ionized at z ∼< 5.5.

Results based on the spectra of QSOs at z ∼> 6 show that the effective optical depth increases
very rapidly with redshift (Fan et al., 2006). This indicates a rapid increase in the neutral content
of the IGM at z ∼> 6. However, because the Lyα absorption cross-section is so large, even a small
fraction of neutral hydrogen can result in an almost complete absorption of Lyα flux, making
it difficult to estimate nHI(z) accurately. A more stringent constraint on the neutral hydrogen
fraction can be obtained from the optical depth in higher order lines, such as Lyβ and Lyγ , which
have lower absorption efficiencies. The effective Lyα optical depth obtained from such analyses
is ∼> 10 for z ∼ 6.5. Unfortunately, even such an optical depth corresponds to a neutral fraction of
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only about 10−3, still far from that of a predominantly neutral gas. Thus, it is still unclear whether
the IGM becomes neutral quickly at a redshift slightly above 6 or slowly so that the re-ionization
of the IGM occurred at a much higher redshift.

Constraints on nHI can also be obtained by considering the Lyman limit absorption, which
involves the ionization of a neutral hydrogen from its ground state. The wavelength at the
ionization threshold is λL = c/νL = 912Å. The photoionization (bound-free) cross-sections
for hydrogenic atoms are given in §B1.3. For the Lyman-limit absorption of hydrogen atoms,
we have

σL(ν) ≈ K0 (νL/ν)3 (16.26)

for ν ≥ νL, while σL(ν) = 0 for ν < νL, and K0 ≈ 7.91× 10−18 cm2. For a uniform medium,
nHI(t)∝ 1/a3(t). Under the assumption that T � TL ≡ hPνL/kB ≈ 1.6×105 K, the optical depth
can be written as

τ(νo) =
c

H0
nHI(ta)K0

∫ ∞

za

dz
(1+ z)E(z)

(16.27)

= 5×1010h−1 (1+ za)
−3/2

[
nHI(ta)
cm−3

]
(for EdS),

where za = (νL/νo)− 1. The problem with this test is again that the absorption cross-section is
large for UV photons. The optical depth of the IGM is expected to be of order unity only in the
extreme UV and soft X-ray, a regime difficult to observe because of Galactic absorption.

The Gunn–Peterson test can also be based on absorption by other atoms. For example, in the
presence of neutral helium, its (1s)2 → 1s2p absorption can cause a flux decrement at 584Å <
λ < 584Å(1 + ze) in the observed spectra of QSOs. Similarly, in the presence of singly ionized
helium, its 1s → 2p absorption can cause a flux decrement at 304Å < λ < 304Å(1 + ze). Such
observations require spectroscopy in the UV, and have been carried out for a number of quasars
at z ∼ 3 (e.g. Jakobsen et al., 1994; Heap et al., 2000).

16.1.4 Constraints from the Cosmic Microwave Background

An independent test of the epoch of re-ionization is provided by the anisotropy of the cosmic
microwave background (CMB). As described in §6.7, once the Universe is ionized, CMB photons
can interact with the free electrons through Thomson scattering as they propagate to us from
the original last-scattering surface at z ∼ 1000. This re-scattering suppresses the temperature
fluctuations in the CMB and polarizes it. Both effects are proportional to the Thomson optical
depth of the IGM, which is determined by the ionization state of the IGM.

The Thomson optical depth up to a redshift z along a line-of-sight can be written as

τ(z) = σT

∫ z

0
ne(z′)

dl(z′)
dz′

dz′, (16.28)

where σT is the Thomson cross-section, ne(z) is the number density (in proper units) of free elec-
trons at redshift z along the line-of-sight in question, and dl is the proper depth corresponding to
dz (see §3.2.6). We write ne(z) = np(z)Xe(z), where np is the number density of protons (includ-
ing those in helium), and Xe is the ionization fraction. Assuming the IGM gas to be primordial
with 24% of the mass in helium, we have np(z) = 0.88ρb(z)/mp, where ρb is the baryonic mass
density and mp is the mass of a proton. With all these, the optical depth can be written as

τ(z) ≈ 0.063hΩb,0

∫ z

0

(1+ z′)2

E(z′)
[
1+δb(z′)

]
Xe(z′)dz′, (16.29)
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where δb(z′) ≡ [ρb(z′)/ρb(z
′)]−1 is the density fluctuation at z′ along the line-of-sight in ques-

tion. As one can see, the optical depth along a line-of-sight depends on both the gas density
distribution and ionization fraction along the line-of-sight. Therefore, a map of τ across the sky
can in principle be used to probe the ionization structure of the IGM. Consider a simple case in
which the IGM is uniform so that δb = 0, and re-ionization occurs instantaneously at z = zri so
that Xe(z) = 0 for z > zri and Xe(z) = 1 for z < zri. Assume further that zri 	 1. The optical depth
towards the CMB generated by re-ionization is then

τ(zri) ≈ 0.07

(
h

0.7

)(
Ωb,0

0.04

)(
Ωm,0

0.3

)−1/2(1+ zri

10

)3/2

. (16.30)

Thus, if re-ionization occurs at zri ∼ 10, the free electrons can scatter about 10% of the CMB
photons. As shown in §6.7, the effect of such scattering can be observed in the CMB temperature
and polarization spectra on scales comparable to the horizon size at the re-ionization epoch. The
result obtained from the WMAP 3-Year data release gives τ = 0.1± 0.03 (Page et al., 2007),
which corresponds to a re-ionization redshift 9 ∼< zri ∼< 14 under the assumption of a homoge-
neous IGM and instantaneous re-ionization. With better data anticipated from future missions,
such as PLANCK, it will be possible to probe the re-ionization process in more detail.

16.2 Ionizing Sources

The discussion in the last section shows that only a very small fraction of the baryons in the
Universe reside in a neutral, diffuse component at redshift z ∼< 6. Since the IGM is expected to be
predominantly neutral immediately after recombination (see §16.1.1), the IGM must have been
re-ionized during the epoch associated with the redshift range 6 ∼< z ∼< 1,000. In this section, we
examine possible sources that may have contributed to the re-ionization. Details regarding the
re-ionization process itself will be described in the next section.

16.2.1 Photoionization versus Collisional Ionization

There are two main processes by which the IGM can be re-ionized: photoionization and
collisional ionization. In what follows we describe both processes in turn.

(a) Photoionization Photoionization is the process in which an atom is ionized by the absorp-
tion of an ionizing photon (see §B1.3). As we will see below, the observed flux of ionizing
photons can roughly be approximated by

J(ν) =
(νL

ν

)β
J−21 ×10−21ergcm−2 s−1 Hz−1 sr−1, (16.31)

where νL is the frequency of a Lyman-limit photon. It then follows that the photoionization rate
for hydrogen is

Γγ ,H =
∫ ∞

νt

4πJ(ν)
chPν

cσL(ν)dν = Γ−12 ×10−12s−1, (16.32)

where σL is the photoionization cross-section of a hydrogen atom, and

Γ−12 ≈ 12
β +3

J−21, (16.33)

assuming σL given by Eq. (16.26). This rate corresponds to a time scale tpi ∼ Γ−1
γ ,H ∼ 105Γ−1

−12
yr, which is much shorter than the expansion time scale a/ȧ at the redshifts we are concerned
with here, unless Γ−12 is very small. Thus, if the IGM is photoionized, the neutral fraction is
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determined by the condition that photoionization balances recombination between electrons and
photons. The equilibrium equation in terms of the mean number density of HI is

Γγ ,H〈nHI〉 = αH〈npne〉 = αHQ〈np〉2, (16.34)

where αH ≈ 5×10−13(T/104 K)−0.7 cm3 s−1 is the recombination coefficient of H+ (see §B1.3),
and we have assumed that ne = np, which is a good approximation for a highly ionized IGM
dominated by hydrogen. The factor Q ≡ 〈n2

p〉/〈np〉2 > 1 takes account of possible clumpiness of
the medium. Thus, the mean density of HI gas is

〈nHI〉 =
αHQ〈np〉2

Γγ ,H
. (16.35)

The Gunn–Peterson limit on nHI given in Eq. (16.24) then requires

Γ−12 ∼ 20Qh−1
(

Ωp

0.02h−2

)2(1+ z
5

)1.7 1
E(z)

T−0.7
4 , (16.36)

where

Ωp ≡ npmp

ρcrit,0(1+ z)3 . (16.37)

Since the IGM is highly ionized, the density parameter of the IGM is ΩIGM ≈ 1.3Ωp, assuming
a mass fraction in helium of 0.24. Thus, if a non-negligible fraction of baryons is in the diffuse
IGM at z ∼ 4, then Γ−12 ∼ 1, assuming T4 = (T/104 K) ∼ 2. An obvious question is: what are
the sources that can generate such an UV flux?

(b) Collisional Ionization In addition to photoionization, the IGM can also be ionized by col-
lisional processes. The most important one is the ionization of a hydrogen atom by collision with
an electron. Neglecting photoionization, the ionization equilibrium gives

Γe,H

ne
〈nHI〉 = αH〈np〉, (16.38)

where Γe,H is the collisional rate (see §B1.3). Note that Γe,H ∝ ne and so clumpiness of the
medium does not enter here. Inserting the expressions of αH and Γe,H into this equation, we
obtain

〈nHI〉 = 7.5×10−13 cm−3
(

Ωp

0.02h−2

)
(1+ z)3

(
Tt

T

)1.2

exp

(
Tt

T

)
1+T 0.5

5

1+T 0.7
6

, (16.39)

where T5 and T6 are the temperature in units of 105 K and 106 K, respectively, and Tt ≈ 157,809K.
Thus, if a substantial fraction of the baryons at z ∼ 3 are part of the IGM, and if collisional
ionization dominates, then the observed Gunn–Peterson limit in Eq. (16.24) requires T ∼> 106 K.
Such a high temperature is neither consistent with that inferred from the linewidths of Lyα lines
in the Lyα forest (see §16.5) nor with the lack of spectral distortions in the CMB which are
expected to be produced by such a hot medium (see §3.5.4). Therefore, it is nowadays generally
believed that the IGM is predominately ionized by photoionization.

(c) Possible Ionizing Sources There are several obvious candidates for the sources of UV
radiation that may contribute to the re-ionization of the IGM. Quasars are known to emit copi-
ous amounts of UV photons, and since they are observed out to redshifts z ∼ 6.5, their role in
re-ionizing the IGM has been examined extensively. We will describe in detail how to calcu-
late the ionizing flux expected from quasars in §16.2.2. As we will see there, quasars alone may
not be sufficient to provide all the UV flux required to re-ionize the Universe to the observed
level, especially at redshifts beyond ∼ 2 where the space density of bright quasars is observed to
decline rapidly with increasing redshift (§14.3.2).
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Young galaxies are another obvious source of Lyman continuum photons. As described in
§2.6, optical surveys have revealed large numbers of Lyman-break galaxies at z ∼ 3. The light
of these galaxies observed in the visible bands, corresponding to the rest-frame UV continuum
at ∼ 1500Å, indicates that these galaxies are strong UV emitters. The contribution of young
galaxies to the UV flux can be estimated from their UV luminosity function, as we will see in
§16.2.2. The main uncertainty is that star-forming galaxies are often dusty, making it difficult to
determine the exact fraction of UV photons that can escape from the sources to contribute to the
UV background. Current estimates indicate that the combination of young galaxies and quasars
provide sufficient UV flux to keep the Universe at the observed ionization level at z ∼< 5. An
interesting possibility is that the Universe has been re-ionized at z ∼> 10 by Population III stars
forming from the primordial gas that manages to cool inside small collapsed dark matter halos
(see §9.7). This population of objects has yet to be discovered, and its exact role in re-ionizing
the IGM is still unclear. Nevertheless, as we will see in §16.3, numerous theoretical studies have
investigated their potential impact on the re-ionization history of the Universe.

16.2.2 Emissivity from Quasars and Young Galaxies

The starting point of calculating the flux of ionizing photons is the radiative transfer equation
(B1.18). Applying this equation to an expanding universe and integrating along the path of a
light ray gives the specific intensity at a space-time position (xo, to) in a direction k̂o:

J(νo, k̂o,xo, to) =
c

4π

∫ to

0
dt

a3(t)
a3(to)

ε
[

a(to)
a(t)
νo,x(t), t

]
e−τ [νo,xo,to,x(t),t], (16.40)

where

τ[νo, to,xo,x(t), t] = c
∫ to

t
ρ[x(t ′), t ′]κ

[
a(to)
a(t ′)

νo,x(t ′), t ′
]

dt ′ (16.41)

is the optical depth at frequency νo [as observed by an observer at (xo, to)] for light emitted from
(x, t). Hence, in order to obtain J in a given direction, we need to know the emissivity ε and
opacity ρκ along the line-of-sight.

Consider a class of discrete sources with luminosity function φ(L,z)dL, which is the comoving
number density at redshift z for sources with luminosity in the range L to L+dL. For simplicity,
we assume that the spectral energy distribution depends only on L and is L (L,ν)dν. The mean
emissivity at z can then be written as

ε(ν,z) = (1+ z)3
∫ ∞

0
L (L,ν)φ(L,z)dL. (16.42)

If the shapes of spectra are similar for all sources, we can write L (L,ν) = L f (ν) with∫
f (ν)dν = 1, and

ε(ν,z) = (1+ z)3 f (ν)
∫ ∞

0
Lφ(L,z)dL. (16.43)

Thus, once φ(L,z) and f (ν) are known for a given class of sources, it is straightforward to
calculate the mean emissivity. As one can see, if f (ν) is a power law, f (ν) ∝ ν−α , and if there
is no absorption by the IGM, the ionizing flux J(ν) is a power law with the same power index as
f (ν), and with an amplitude that is determined by the luminosity density of the sources.

(a) Quasars The continuum emission spectrum of a quasar in the ultraviolet can be approxi-
mated by a power law,

f (ν) = f∗
(
ν

ν∗

)−α
, (16.44)
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where α is the power index, and ν∗ is a reference frequency. The observed quasar luminosity
function is usually parameterized as

φ(L,z)dL = φ ∗
{[

L
L∗(z)

]β1

+
[

L
L∗(z)

]β2
}−1

dL
L∗(z)

, (16.45)

where β1 and β2 are constant power indices, and L∗(z) is the characteristic luminosity (see
§14.3.2). The redshift dependence of L∗(z) over the entire redshift range may be parameterized as

L∗(z) = L∗(0)(1+ z)α−1 exp

[
− z(z−2z∗)

2σ2∗

]
. (16.46)

It then follows that the mean emissivity from quasars is

εq(ν,z) = εq(ν∗,0)
(
ν

ν∗

)−α
(1+ z)α+2 exp

[
− z(z−2z∗)

2σ2∗

]
, (16.47)

where εq(ν∗,0) is the emissivity at the reference frequency ν∗ at the present time.
The constants in Eq. (16.47) can all be determined from the observed quasar luminosity func-

tion. Assuming α = 1, h = 0.5 and q = 0.1, Pei (1995) obtained that β1 = 1.83, β2 = 3.7, z∗ =
2.77, σ∗ = 0.91, log(φ ∗/Gpc−3) = 2.37, and log[L∗(0)/L�] = 13.4 (in the B-band). If we choose
the reference frequency at ν∗ = c/(4400Å), then εq(ν∗,0)≈ 6.4×1032 ergGpc−3 s−1 Hz−1. The
dotted line in Fig. 16.1 shows the UV flux obtained from the quasar emissivity in a perfectly
transparent universe (where τ = 0). This flux is roughly a power law, J(ν) ∝ ν−1.

Fig. 16.1. The ionizing background between 0.1 and 200 Ryd at z = 3. The dotted line shows the unat-
tenuated (τ = 0) spectrum due to quasars. The dashed line shows the result after absorption due to an
intervening medium is taken into account, while the solid line shows the results when also accounting for
the recombination emissivity. [Based on data published in Haardt & Madau (1996)]
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(b) Young Galaxies A massive (OB) star can emit a significant amount of UV photons during
its main-sequence lifetime. Thus, star-forming galaxies can also contribute to the UV back-
ground. Since massive stars are short-lived, their number density should be directly proportional
to the current star-formation rate density. Suppose that the mean star-formation rate per unit
proper volume at time t is ρ̇�(t). The mean emissivity from star-forming galaxies can then be
written as

εg(ν, t) =
∫ t

0
dt ′
∫ ∞

0
dm

φ(m)
M�

fν(m, t − t ′)ρ̇�(t ′), (16.48)

where φ(m) is the IMF, and fν(m,τ) is the energy spectrum of a star with mass m at age τ .
The star-formation history of the Universe, ρ̇�(z), has been determined observationally out to

z ∼ 6 (see §2.6.8). With the use of spectra of stars of different masses and ages (see §10.3.1),
the total background emissivity can be calculated. It turns out that the contribution of young
galaxies to the UV background radiation is comparable to that of quasars at z ∼ 2, is dominating
at z > 3 and is unimportant at z < 1. Since stellar spectra are generally soft with little emission
at ν > 4Ryd, star-forming galaxies contribute mainly to the ionizing flux at ν < 4Ryd.1

16.2.3 Attenuation by Intervening Absorbers

As shown by Eq. (16.40), in order to obtain the ionizing flux from the emissivity, one also needs
to know the effective optical depth of the medium. The Gunn–Peterson test shows that the optical
depth due to the diffuse part of the IGM is very small. However, the optical depth due to discrete
absorption systems may still be important. Here we show how to calculate the effective optical
depth from discrete systems (e.g. clouds).

As one can inspect from Eq. (16.40), in the absence of local emission the fluxes at two adjacent
points t − dt (corresponding to redshift z + dz) and t (corresponding to z) along a particular
line-of-sight are related by

j(νo, k̂o,z) = j(νo, k̂o,z+dz)exp
[−τ(νo, k̂o,z,z+dz)

]
, (16.49)

where j(νo, k̂o,z) = J(νo, k̂o,z)/(1+ z). Averaged over different lines-of-sight, this gives

j(νo,z) = j(νo,z+dz)
〈
exp
[−τ(νo, k̂o,z,z+dz)

]〉
k̂o

. (16.50)

In a cloudy medium, if a line-of-sight ‘hits’ a cloud in the redshift range z → z + dz, the flux
will be reduced by a factor exp[−τc(νz)], where τc(νz) is the optical depth of a cloud to photons
with frequency νz = (1 + z)νo. Otherwise, if the line-of-sight does not hit a cloud there is no
absorption. If we denote the probability for a line-of-sight to hit a cloud in the redshift range
z → z+dz to be ηzdz, we have that〈

exp
[−τ(νo, k̂o,z,z+dz)

]〉
k̂o

= (1−ηzdz)+ηz dze−τc(νz). (16.51)

Inserting this into Eq. (16.50) and integrating over redshift we get

j(νo,zo) = j(νo,zem)exp [−τeff(νo,zo,zem)] , (16.52)

where the effective optical depth is

τeff(νo,zo,zem) =
∫ zem

zo

ηz

[
1− e−τc(νz)

]
dz. (16.53)

1 The Rydberg constant (Ryd) represents the limiting value of the highest wavenumber (the inverse wavelength) of any
photon that can be emitted from the hydrogen atom and corresponds to 1.0974×105 cm−1.
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The optical depth of a single cloud depends on its HI column density, NHI. Thus, for a medium
consisting of clouds with various column densities, the effective optical depth can be written as

τeff(νo,zo,zem) =
∫ zem

zo

dz
∫ ∞

0
dNHI F (NHI,z)

[
1− e−τ(ν,NHI)

]
, (16.54)

where τ(ν,NHI) [with ν ≡ νo(1+ z)/(1+ zo)] is the optical depth of an absorber with HI column
density NHI for photons with frequency ν, and F (NHI,z) is the average number of absorption
systems per line-of-sight, per unit redshift interval around z, and per unit interval of HI col-
umn density around NHI (see §16.4.1). As we will see in §16.5.2, the form of F (NHI,z) can be
determined from observations of quasar absorption line systems. For a hydrogen–helium gas, the
optical depth can be written as

τ(ν,NHI) = NHIσHI(ν)+NHeIσHeI(ν)+NHeIIσHeII(ν)

= NHYHI

[
σHI +

NHe

NH

(
YHeI

YHI
σHeI +

YHeII

YHI
σHeII

)]
, (16.55)

where σi is the photoionization cross-section of species ‘i’, YHI ≡ NHI/NH, YHeI ≡ NHeI/NHe,
and YHeII ≡ NHeII/NHe. As expected, the optical depth of a cloud depends not only on its HI
column density, but also on the column density ratios such as NHeI/NHI and NHeII/NHI. Thus
a self-consistent calculation of the effective optical depth requires a detailed understanding of
the ionization state of the absorbing gas. This in turn requires a self-consistent treatment of
the evolution of the thermal and ionization states of the IGM. To proceed, we assume that the
absorbing gas is optically thin so that the ionization intensity does not change significantly across
an absorber. We also assume that the absorbing gas is in thermal and ionization equilibrium.
Under these assumptions, the ionization fractions for a hydrogen–helium gas are given by

1−YHI = YHIIHI, (16.56)

YHeII = YHeIIHeI, 1−YHeI −YHeII = YHeIIIHeII, (16.57)

where

Ii =
Γγ ,i

neαi(T )
, Γγ ,i =

∫ ∞

νi

dν
4πJ(ν)

hPν
σi(ν), (i = HI,HeI,HeII). (16.58)

In the above equations, T is the temperature of the gas, αi is the radiative recombination rate
to all levels of species ‘i’ (the Case A recombination rate), νi is the ionization threshold, and σi

is the photoionization cross-section. These rates and cross-sections for hydrogen and helium are
given in §B1.3. Inserting Eqs. (16.56) and (16.57) into Eq. (16.55) we have

τ(ν,NHI) = NHI

[
σHI +

NHe

NH

(σHeI + IHeIσHeII)(1+ IHI)
1+ IHeI(1+ IHeII)

]
. (16.59)

For highly ionized gas, YHI � 1, YHeI � YHeII � 1, and so IHI 	 1, IHeI 	 1, and IHeII 	 1. It
then follows that

τ(ν,NHI) = NHI

[
σHI(ν)+

NHe

NH

IHI

IHeII
σHeII(ν)

]
. (16.60)

Under these assumptions, τ depends on NHI but does not depend on the density of the absorbing
gas. Since σHI and σHeII are strongly peaked at the HI and HeII ionization edges, respectively,
the absorption by hydrogen and helium in intervening clouds produces two breaks near 1 and
4 Ryd in the ionizing flux, even though the emissivity ε(ν) is a pure power law in ν (see
Fig. 16.1).

So far we have only considered the absorbing effect of intervening clouds. Ionized and excited
atoms in the clouds can also emit photons through recombination and de-excitation. Although
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such photons do not contribute to the emission we observe from a source (because they have
random propagation direction), they contribute to the radiation background. The emissivity
from such processes should therefore be included in the calculation of the ionizing flux. As
an example, let us consider the recombination emissivity from hydrogen atoms. As described
in §B1.3, when a hydrogen ion captures an electron, the recombination is either directly to the
ground level or first to an excited level which then decays radiatively to the ground state. In
general, the emissivity associated with a given transition (free–bound or bound–bound) can be
written as

εrec(ν,z)dν = hPν fγ(ν)dν
[
nHIΓγ ,H

] αnn′

αH
, (16.61)

where fγ(ν)dν is the probability for a recombination to produce a photon with frequency
between ν and ν + dν, and the ratio αnn′/αH is the fraction of recombinations leading to the
transition in question (see Chapter 4 of Osterbrock, 1989). The quantity in brackets is the photo-
ionization rate per unit volume, and is equal to the volume recombination rate under the condition
of ionization equilibrium. Given the HI column density distribution, the mean value of nHI can
be obtained as

nHI(z) =
1
c

dz
dt

∫
F (NHI,z)NHI dNHI. (16.62)

For bound–bound transitions, fγ(ν) = δ (ν − νnn′), while for free–bound transitions, fγ(ν) is
given by the velocity distribution of free electrons f (v) (e.g. a Maxwellian distribution) as
fγ(ν) = f (v)(dv/dν), where 1

2 mev2 = hP(ν−νt) with νt the threshold frequency of the energy
level in consideration. With all these, the recombination emissivity from hydrogen atoms can be
calculated. Similar procedures can be used for other atoms or ions. The solid line in Fig. 16.1
shows the predicted UV background when these recombination processes are accounted for; the
bumps, which sometimes look like emission lines, are mainly due to Lyα line emission from the
absorbing clouds.

16.2.4 Observational Constraints on the UV Background

The UV flux in the local Universe can be measured directly from space. However, since it is
difficult to isolate the contribution due to the Galactic component, it is still somewhat uncertain
what this implies for the UV background radiation (see Henry, 1991, for a review).

At z > 0, the existence of an ionizing background can be probed by the proximity effect. As
noted by Weymann et al. (1981), the number density of Lyα forest lines (produced by HI Lyα
absorption) in a quasar absorption spectrum decreases as the absorption redshift approaches that
of the quasar. The standard interpretation of this proximity effect is that the absorbing clouds
near the quasar are more ionized than average because of the local UV radiation produced by
the quasar. Since the strength of a Lyα line measures the amount of HI gas in the absorber (see
§16.4), a reduction in the neutral fraction causes a decrease in the number of lines above a given
threshold strength. The extent of this proximity effect can therefore be used to measure the inten-
sity, J(ν), of the UV background. For example, if we define a ‘zone of influence’ for a particular
quasar as the region within which the ionizing radiation from the quasar is larger than or equal
to that of the ambient background, then the larger the ambient flux J(ν) is, the smaller this ‘zone
of influence’. The ionizing flux from a quasar can be inferred from its luminosity and spectrum.
Together with a measurement of the extent of the proximity effect, we can in principle esti-
mate the background J(ν) at the HI ionization edge. Since the mean flux, J(ν), is by definition
a constant at a given redshift, in practice many quasars with similar redshifts are used to give
a statistical measurement. The basic formalism for such analyses is described by Bajtlik
et al. (1988). Observational results for J(ν) can be found in Lu et al. (1991), Bechtold
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(1994), Giallongo et al. (1996) and Scott et al. (2000), among others. These results can be
summarized as

J(1Ry) = (0.1 → 1)×10−21 ergs−1 cm−2 Hz−1 sr−1 (2 ∼< z ∼< 4). (16.63)

At lower redshifts (z ∼< 2), the observational results are more uncertain. The rather limited obser-
vational data show that J(1Ry) decreases by a factor of 10–100 from z ∼ 2 to z ∼ 0 (Kulkarni &
Fall, 1993; Donahue et al., 1995; Scott et al., 2000), consistent with the fact that the comoving
number density of bright quasars decreases rapidly with decreasing z at z ∼< 2 (see §14.3.2).

The observed optical depth can also be used to constrain the UV background, if assumptions
are made about cosmology, in particular the value of Ωb,0, and about the temperature of the
IGM. This is a model-dependent approach, but it can provide a useful check on whether the
UV flux required in current models of structure formation to match the observed optical depth
is consistent with the UV background expected from quasars and young galaxies. The standard
approach adopted here is to use gas simulations or semi-analytical models to trace the structure,
temperature and ionization state of the IGM, assuming a UV background, which is tuned to match
the observed optical depth. The results from such analyses (e.g. McDonald & Miralda-Escudé,
2001; Fan et al., 2002; Bolton et al., 2005) show that Γ−12 ∼ 1 at z ∼ 2–3, dropping by a factor
of ∼ 10 at z ∼ 6, and by a similar factor at z ∼ 0.

16.3 The Evolution of the Intergalactic Medium

For regions much smaller than the Hubble radius, the IGM is adequately described by a
Newtonian fluid. The basic equations governing the evolution of the IGM are therefore those
described in Appendix B. To summarize briefly, the baryonic component obeys the fluid equa-
tions, and is coupled to the dark matter component through gravity and to the radiation field
through radiative processes. Once the ionizing and heating sources are known, these equations
can in principle be solved to determine the thermal and ionization states of the IGM, as well
as the properties of the radiation field. Obviously, the solution to such a dynamical system is in
general extremely complicated, and in many cases one has to resort to numerical simulations.
In what follows, we describe the basic properties of IGM evolution, often based on simplifying
assumptions that allow us to gain insight.

16.3.1 Thermal Evolution

Assuming that the IGM is uniform and in thermal equilibrium, the entropy equation (see §B1.2)
can be written as

d lnT
dln(1+ z)

= (γ−1)
[

3+
1

(γ−1)
dlnμ

dln(1+ z)
− H −C

H(z)nkBT

]
, (16.64)

where n is the particle number density, γ is the adiabatic index, μmp ≡ ρ/n is the mean molecular
weight, and the gas density evolves with z as ρ(z) = ρ(0)(1+z)3. For a primordial gas consisting
of hydrogen and helium, the particles involved are H0, H+, He0, He+, He++, and e. The electron
number density and the total number density of particles are

ne = nH+ +nHe+ +2nHe++ , (16.65)

n = nH0 +2nH+ +nHe0 +2nHe+ +3nHe++ , (16.66)

respectively. The number densities of ions obey the following set of ionization equations:

dni

dt
= −(Γγ ,i +Γe,ine

)
ni +αi+1ni+1ne, (16.67)
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where (i, i + 1) are (H0,H+), (He0,He+), (He+,He++), and Γγ ,i, Γe,i, αi are the rates of photo-
ionization, collisional ionization, and recombination, respectively. These rates for hydrogen and
helium are given in §B1.3. The three ionization equations, together with the total mass density,
ρ = mHnH +mHenHe, and the relative number of H and He atoms, Y ≡ nHe/nH, completely deter-
mine the number densities of ions, once the temperature, T , and the ionizing intensity, J(ν), are
given. With this, the cooling rate C can also be calculated using the formulae given in Table B1.2.

The ionization time scale for species i and the recombination time scale for species i+1 are

tion(i) = (Γγ ,i +Γe,ine)−1 and trec(i) = (αi+1ne)−1, (16.68)

respectively. If these time scales are shorter than the Hubble time, then we can set dni/dt = 0
in Eq. (16.67) and the assumption of ionization equilibrium is justified. As is evident from
Eq. (16.68), at low redshifts, where ne is small, the recombination time scale may become longer
than the Hubble time for the species in consideration. In this case, the assumption of ionization
equilibrium is invalid, and one has to solve the time-dependent ionization equation to determine
the densities of ions.

(a) Photoionization Heating In order to solve Eq. (16.64) we also need to specify the heating
rate H . If there is no heating source other than photoionization, the heating rate is

H = nH0εH0 +nHe0εHe0 +nHe+εHe+ , (16.69)

with

εi =
∫ ∞

νi

4πJ(ν)
hPν

σi(ν)hP(ν−νi)dν, (16.70)

where νi is the frequency at the ionizing threshold for species i and σi is its photoionization
cross-section (see §B1.3). In this simple case, the evolution of the IGM is completely specified
by ρ , Y and J(ν).

Eq. (16.64) has been integrated for various choices of ρ , J(ν) and Y . For ρ ∼ 10−6(1 +
z)3mH cm−3 and Y ∼ 0.1, the typical values for the IGM, and for a UV flux similar to that given
by Eq. (16.31) with Γ−12 ∼ 1, the results can be summarized as follows. If the initial temper-
ature is less than 104 K, the IGM is heated up quickly by photoionization to a level of a few
×104 K and then decreases slowly due to adiabatic cooling as the Universe expands. If some
(unknown) sources [other than those responsible for J(ν)] once heated the gas up to T 	 104 K
at a time when Compton cooling is still efficient (i.e. at z > zComp, see §8.1.2), Compton cooling
against the CMB photons rapidly reduces the IGM temperature to a level of about 3× 104 K,
after which the temperature continues to decrease slowly due to the expansion of the Universe.
In this case, the heating does not have an important effect on the IGM. If, however, the heating
epoch is at z < zComp, then Compton cooling is insufficient, and the temperature of the IGM can
remain significantly higher than 104 K even up to the present time.

(b) Shock Heating Apart from the heating by photoionization, the IGM may also have been
shock heated. There are basically two sources for shock heating: gravitational collapse and
explosive events such as supernovae, and we will discuss both of these in turn.

As discussed in §8.3, when density perturbations collapse, the associated gas is shock heated
to the virial temperature of the corresponding structure. As discussed in §5.3, the collapse of
density perturbations is generically aspherical, first forming sheet-like pancakes (first axis col-
lapse), followed by filamentary structures (second axis collapse), and eventually virialized dark
matter halos (third axis collapse). Hence, we expect the space between the halos to be permeated
with sheets and filaments as in numerical simulations of structure formation in hierarchical cos-
mogonies (see §5.6). In the process of forming these sheets and filaments, the associated gas is
shock heated to temperatures in the range 105 K ∼< T ∼< 106 K (Mo et al., 2005). At redshifts z ∼> 2
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the density of this shock heated gas is sufficiently high that it manages to cool back to its orig-
inal temperature within a Hubble time. However, at z ∼< 2 the cooling time exceeds the Hubble
time, and since a significant fraction of the IGM is embedded within these sheets and filaments,
the gravitational collapse associated with their formation is expected to cause a net heating of
the IGM. This is indeed confirmed by hydrodynamical simulations, which show that at z ∼ 2,
between 30% and 40% of the IGM is heated to temperatures in the range 105 K ∼< T ∼< 107 K,
making up what is called the warm-hot intergalactic medium (WHIM) which is distributed in
sheets and filaments (e.g. Cen & Ostriker, 1999; Davé et al., 2001). Although this WHIM is
extremely difficult to detect, there is observational support for its existence from OVI absorption
line systems (see §16.9.2).

In addition to gravitational collapse, shocks can also be produced by stars. In particular, as
discussed in §10.5, the total kinetic energy associated with supernova explosions in young galax-
ies is comparable to the binding energy of the interstellar gas. If this kinetic energy is effectively
thermalized, the interstellar gas can be heated up to temperatures high enough for the gas to
escape from a galaxy, producing galactic winds that may heat the IGM. This possibility has been
discussed in some detail by Ikeuchi & Ostriker (1986). Neglecting the details of shock propaga-
tion and thermalization, one can assume that the average heating rate due to young galaxies is
proportional to the star-formation rate, H (z) = Aρ̇�(z). In this case Eq. (16.64) can be solved if
the form of ρ̇�(z) and the value of A are known. As mentioned above, an instantaneous heating
at z > zComp has little effect on the thermal evolution of the IGM at lower redshift, but heating
at a later epoch can raise the gas temperature to T 	 104 K. In the extreme cases considered
by Ikeuchi & Ostriker, the temperature of the IGM was initially heated to a value higher than
106 K. Although such high temperatures is what is required to collisionally ionize the IGM to the
Gunn–Peterson limit, the existence of a hot IGM is stringently constrained by the lack of spectral
distortions in the CMB (see §6.7) and by the velocity widths of absorption lines in the Lyα forest
(see §16.5).

16.3.2 Ionization Evolution

In the photoionization model, the IGM is ionized by the UV photons from ionizing sources.
Here we describe how such photoionization proceeds. To start with, consider an isolated ioniz-
ing source embedded in an ambient medium which is initially neutral and has a mean density
〈ρ〉 = mpnI and temperature TI. The photons from the source ionize the medium, producing
an ionization front which propagates into the neutral medium. The production of electrons by
ionization at a radius r from the source is governed by the equation

∂ne

∂ t
+∇ · (nev) = −∇ ·

[
Ṅγe−τ(r)

4πr2 r̂

]
−αHn2

e , (16.71)

where Ṅγ is the number of ionizing photons released by the source per unit time, and τ(r) ∼ 0 is
the optical depth from the source to radius r due to the small fraction of neutral hydrogen in the
ionized region. The motion of an ionization front in a uniform medium is characterized by two
distinct stages. During the first stage, the ionized volume grows rapidly in size to an equilibrium
radius equal to that of a Strömgren sphere,

ri =
(

3Ṅγ
4πn2

IαH

)1/3

, (16.72)

within which the gas is highly ionized and heated by photoionization to a temperature TII ∼ 104 K.
The second stage begins when the overpressure (due to the high temperature) in the ionized
region causes a significant outward motion of the ionized gas. This motion pushes the ambient
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medium, shocking and compressing the swept-up gas into a thin mass shell. The expansion of
the ionized gas reduces the overpressure, and the final number density of electrons, n f , within
the ionized volume is given by pressure balance with the ambient gas: 2n f TII = nITI. The final
radius of the ionized volume is

rf =

(
3Ṅγ

4πn2
fαH

)1/3

= ri

(
2TII

TI

)2/3

. (16.73)

This final radius can be reached if the lifetime of the ionizing source is long enough.
The motion of the ionization front during the first stage can be easily obtained. Since little

mass motion is involved, we can neglect the term containing v in Eq. (16.71). Integrating this
equation over the volume V enclosed by the instantaneous ionization front, we have

d
dt

[〈ne〉V ] = Ṅγ −αH
〈
n2

e

〉
V, (16.74)

where we have allowed possible inhomogeneity in the ionized volume and denoted the average
over V by 〈· · ·〉. If the medium is expanding with the Universe, we have 〈ne〉 ≈ nI ∝ a−3, where
the first relation follows from the fact that the gas within V is highly ionized. We can then write
Eq. (16.74) as

dV
dt

− 3ȧ
a

V =
Ṅγ
nI

− V
trec

, (16.75)

where

trec ≡ 〈ne〉
αH〈nenp〉 ≈

1
QαHnI

(16.76)

(with Q the clumpiness factor; see §16.2.1) is the mean recombination time scale within V .
If trec � t, so that the expansion of the Universe can be neglected, the solution to the above
equation is

V (t) =
Ṅγ trec

nI

[
1− exp

(
− t

trec

)]
. (16.77)

In this case, the ionized volume is simply a time-dependent Strömgren sphere.
If the mean number density of the ionizing sources at redshift z is ns, the volume filling factor

of Strömgren spheres is nsV , and the rate per unit comoving volume at which ionizing photons
are emitted is

˙Nγ(z) ≡ nsṄγ . (16.78)

In order for the Universe to be completely ionized (nsV > 1), it is required that

˙Nγ >
nI(0)
trec(z)

≈ 5.3×1050 s−1 Mpc−3
(

Q

10

)(
1+ z

6

)3(Ωb,0h2

0.02

)2

. (16.79)

16.3.3 The Epoch of Re-ionization

In reality, re-ionization is a process rather than an event. It is expected to proceed in the following
phases: (i) an initial phase in which the Universe is largely neutral except for isolated HII regions
produced by individual ionizing sources; (ii) a second phase in which individual HII regions start
to overlap, but about half of the IGM is still neutral; (iii) a third phase in which the Universe is
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largely ionized, except for some pockets of neutral gas associated with high density regions; and
(iv) a final phase in which the Universe is completely ionized, with a very small neutral fraction,
similar to what is inferred from the Gunn–Peterson test at z ∼ 6.

The details of this re-ionization process depend on a number of factors. First of all, it depends
on the physical properties of the individual ionizing sources, such as luminosity, spectrum, and
the fraction of ionizing photons that can escape from the source. Secondly, it depends on the prop-
erties of the source population, such as number density, time evolution, and spatial distribution
(clustering) in the cosmic density field. Thirdly, it depends on the properties of the gas density
field. In particular, since recombination is a two-body process, accurate predictions for the ion-
ization fraction requires accurate modeling of the high-density regions, even if these only cover
a small fraction of the total volume. And finally, the first generation of sources can affect the
IGM not only through ionization, but also through photoheating, shock-heating, and chemical
enrichment, which can affect the subsequent formation of ionizing sources. Clearly, modeling
the re-ionization history of the Universe is a daunting challenge, even with modern computer
simulations. On the one hand, one needs very high resolution to properly model star formation,
feedback effects and small-scale clumpiness in the IGM. On the other hand, one needs a large
volume to properly represent the cosmic density field. In addition, one needs to keep track of the
radiation field through radiative transfer and to calculate the ionization states of different species
by solving the ionization equations. In recent years, the re-ionization history of the Universe has
been investigated both numerically and analytically (Loeb & Barkana, 2001; Ciardi & Ferrara,
2005). Although many of the details are still uncertain, there are a number of results that are
worth mentioning.

During the early phase, re-ionization proceeds slowly because of the small number density of
ionizing sources and because of the small sizes of HII regions due to the high density of the IGM.
The re-ionization process accelerates as more ionizing sources form and the average density of
the IGM decreases. As soon as the HI regions start to percolate, re-ionization proceeds very fast
as the ionizing photons can propagate to large distances to ionize the neutral medium. Since the
medium is inhomogeneous and the sources are clustered in space, re-ionization can be extremely
patchy, with complicated morphologies. Naively, one might expect percolation of the HII regions
to occur first in regions of high source density. However, if ionizing sources form preferentially
in high density regions, the answer is not obvious. The ionization fraction of the gas depends not
only on the local flux of ionizing photons, but also on the recombination rate, which is higher in
regions of higher gas densities. As shown by Gnedin (2000) and Miralda-Escudé et al. (2000), the
enhancement of the recombination rate in high density regions may overcome the high UV flux
associated with the high source density, so that re-ionization proceeds in an outside-in fashion,
i.e. from low density to high density. Unfortunately, the results depend on the details of the
assumptions about source distribution and the radiative transfer around sources. For instance,
Ciardi & Madau (2003) and Iliev et al. (2006) find that re-ionization proceeds basically in an
inside-out fashion, i.e. from high density regions near the sources to lower density regions that
are farther away.

The recombination time scale is comparable to the Hubble time at z ∼ 8. Since this redshift
is within the range in which re-ionization may occur, it allows more complexities in the re-
ionization history. For instance, if the IGM was first re-ionized at z∼> 8 by a generation of sources,
it could have recombined again if feedback from the ionizing sources can effectively suppress
further source formation. The IGM would then have to be re-ionized once again at a later stage
when new ionizing sources manage to form. Indeed, it has been suggested that Population III stars
may re-ionize the IGM a first time at z ∼> 10 and, in doing so, quench the subsequent formation of
such objects. The Universe may then recombine as the ionizing sources die off, and be re-ionized
a second time at z ∼ 6–7 by young galaxies that form in halos where atomic cooling becomes
important (e.g. Cen, 2003).
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16.3.4 Probing Re-ionization with 21-cm Emission and Absorption

As discussed in the previous subsection, re-ionization is believed to be a complicated process.
Hence, detailed observations are required in order to gain insight into how re-ionization has pro-
ceeded. The Gunn–Peterson test described in §16.1.3 provides a probe along sightlines towards
high-redshift quasars. Unfortunately, the number of quasars available for such test is limited, and
it is hard to use it to probe the structure of re-ionization in a statistical way. Furthermore, the large
optical depth of neutral hydrogen makes it difficult to use this method to determine the ioniza-
tion fraction accurately. The test based on the polarization of the cosmic microwave background
(CMB), described in §6.7.4, is sensitive to the total optical depth of Thomson scattering, but the
lack of detailed redshift information in the test makes it insensitive to the exact re-ionization
history. Recently, a potentially powerful method has been proposed, which may probe the era of
cosmological re-ionization directly. This method is based on the fact that neutral hydrogen may
be directly detectable in emission or absorption against the CMB at the frequency corresponding
to the redshifted HI 21-cm lines associated with the spin-flip transition in the ground (n = 1) state
(e.g. Field, 1959). Since the CMB provides an all-sky background, and since the emission and
absorption are produced by resonant transitions with a specific rest-frame wavelength (21cm), it
is possible to obtain 21-cm tomography that can be used to probe the structure of gas density and
ionization fraction in three-dimensional space (e.g. Madau et al., 1997). In what follows we give
a brief description of the basic principles.

Due to the spin–spin coupling of proton and electron, the ground (n = 1) state of a neutral
hydrogen atom is split into two hyperfine states; a singlet state corresponding to anti-alignment
of the two spins, and a degenerate triplet state corresponding to alignment of the two spins.
In what follows, these two states are referred to as the singlet state (or state 0) and the triplet
state (or state 1), respectively. The energy difference, is E10 ≡ E1 −E0 ≈ 5.9× 10−6 eV, cor-
responding to a wavelength of λ10 ≈ 21cm, a frequency ν10 ≈ 1,420MHz, and a temperature
T10 ≡ E10/kB ≈ 0.068K. In equilibrium, the population ratio in these two states is determined by
the spin temperature, Ts, as

n1

n0
=

g1

g0
exp

[
−T10

Ts

]
. (16.80)

where g1/g0 = 3. Note that Ts characterizes the thermal equilibrium between the two spin states,
and should not be confused with the kinetic temperature of the gas.

As CMB photons propagate through a medium containing neutral hydrogen, some of them
can be absorbed as they excite hydrogen atoms from the singlet level to the triplet level. The
corresponding optical depth is

τ(z) =
3c2hPA10nHI(z)

32πν2
10kBTs(z)H(z)

, (16.81)

where A10 ≈ 2.9× 10−15 s−1 is the spontaneous decay rate from state 1 to state 0 (Wild, 1952;
Field, 1959). The brightness temperature of the CMB then becomes

Tb(z) = TCMB(z)e−τ(z) +
(

1− e−τ(z)
)

Ts(z), (16.82)

where TCMB(z) is the brightness temperature of the CMB in the absence of absorption. Thus, the
change in the brightness temperature, seen by an observer at the present time, is

δT = Tb −TCMB =
(1− e−τ(z))[Ts(z)−TCMB(z)]

(1+ z)
. (16.83)
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Assuming τ � 1 and z 	 1, we have

δT ≈ 28mK

(
Ωb,0h

0.03

)(
Ωm,0

0.3

)−1/2(1+ z
10

)1/2 (Ts −TCMB)
Ts

xHI, (16.84)

where xHI is the neutral fraction. As one can see, if the spin temperature is the same as the CMB
temperature, no net effect is produced by the gas on the CMB. In this case, the spin state is
in thermal equilibrium with the CMB, so that absorption is exactly compensated by emission.
On the other hand, Ts > TCMB leads to net emission (δT > 0), while Ts < TCMB leads to net
absorption (δT < 0).

The spin temperature can be made different from TCMB in the presence of radiation sources or
when the kinetic temperature of the gas is different from TCMB. Re-ionization can create such a
condition, so that it can be probed by observing the 21-cm emission and absorption it produces.

There are two processes that can change the spin temperature in a neutral gas. One is the
collisional excitation/de-excitation of the spin states, and the other is the mixing of the two spin
states via the Wouthuysen–Field process (Wouthuysen, 1952; Field, 1958) whereby a hydrogen
atom initially in the n = 1 electronic level with a given spin state absorbs a Lyα photon to jump
to the n = 2 level and then spontaneously decays back to the n = 1 level with a different spin
state. These processes can couple the spin temperature to the kinetic temperature of the gas, TK,
and to the brightness temperature of the radiation field, Tα . In general, we can write

Ts =
TCMB + yαTα + ycTK

1+ yα + yc
, (16.85)

where yα and yc are the coupling factors of the Wouthuysen–Field and collisional processes,
respectively (Field, 1958).

In a predominantly neutral gas, the main collisional process is that among the neutral hydrogen
atoms themselves. In this case, yc can be written as

yc =
C10

A10

T10

TK
, (16.86)

where C10 is the rate of collisional de-excitation of the triplet state. The value of C10/nHI as
a function of TK can be found in Allison & Dalgarno (1969) and Zygelman (2005). For the
Wouthuysen–Field process, the coupling factor can be written as

yα =
P10

A10

T10

Tα
, (16.87)

where P10 is the de-excitation rate of the triplet state due to the absorption of Lyα photons. This
rate is related to the total scattering rate of Lyα photons by P10 = 4Pα/27. In the presence of a
radiation field with specific intensity Jν , the total scattering rate is

Pα =
∫

dΩ
∫

Jν
hPν

σνdν, (16.88)

where σν is the Lyα absorption cross-section. The brightness temperature of the radiation field,
Tα , is defined through the occupation number of photons, Nν , near the Lyα frequency:

1
Tα

= −kB

hP

(
∂ lnNν
∂ν

)
ν=να

, (16.89)

where Nν = c2Jν/(2hPν
3), assuming an isotropic radiation field. Because of the large cross-

section of neutral hydrogen near the Lyα frequency, and because photons can exchange energy
with the gas through the recoil of the atoms while emitting a Lyα photon, the radiation spec-
trum near Lyα can be thermalized effectively with the gas (Field, 1959). Thus, the brightness
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temperature Tα defined above is expected to relax quickly to the kinetic temperature of the
gas, TK.

During the re-ionization process, re-ionization sources may produce non-ionizing UV photons
(with energies between Lyα and the Lyman limit) which can propagate into the neutral medium
and be redshifted to the Lyα frequency, providing Lyα photons required for the Wouthuysen–
Field process. In addition, the collisional process may also play a role in changing the spin
temperature in regions where the gas density is high. The source information, together with the
gas density and ionization fraction produced by the re-ionization process can in principle be used
to make detailed predictions for the 21-cm tomography of the re-ionization epoch (see Ciardi &
Ferrara, 2005, and Barkana & Loeb, 2007, for reviews on this rapidly expanding field).

16.4 General Properties of Absorption Lines

An extremely powerful probe of the IGM is provided by quasar absorption lines, which are
produced by gas clouds along the quasar’s line-of-sight. Since quasars can be observed out to
very high redshifts, these absorption line systems can be used to study the evolution of the IGM
over a large part of cosmic history. In this section, we start with a general discussion about quasar
absorption lines, to show what kind of information we can obtain from studying the properties
of these lines. In the subsequent sections we then discuss the specific properties of the different
classes of absorption line systems mentioned in §2.8.2.

An absorption line in a quasar spectrum is produced by an intervening gas cloud through the
absorption of continuum light from the quasar near the resonance frequency, ν12 = |E2−E1|/hP,
between two energy levels E1 and E2 of the absorbing atoms in question (see §16.1.2 for a
more detailed description of resonance absorption). Since photons at the resonance frequency
are absorbed much more efficiently than other photons, the line profile, φ(ν), can roughly be
approximated by a delta function in photon frequency ν at ν12. In reality, however, absorption
lines are broadened by various effects, and the shape (profile) of an absorption line contains
much information about the physical properties of the absorbing gas, such as density, temperature
and ionization state. In addition, the abundance patterns of quasar absorption systems provide
information regarding the nucleosynthetic origins and dust content of the gas and regarding the
build-up of metals with cosmic time.

A great advantage of absorption line spectroscopy is its tremendous sensitivity. Quasar absorp-
tion lines can be used to detect low-density gas that is orders of magnitude below the detection
threshold of most other techniques. While current techniques require considerable effort to detect
the emission of neutral hydrogen with a column density of NHI ∼ 1018 cm−2, it has become fairly
straightforward to detect hydrogen with column densities as low as NHI ∼ 1012.5 cm−2 in absorp-
tion. In addition, absorption lines can be measured comparably well from z = 0 out to z > 4,
while current facilities only allow the detection of 21-cm emission from the nearby Universe.

16.4.1 Distribution Function

Let n(N,z)dN denote the comoving number density of absorption line systems with column
densities in the interval (N,N + dN) at redshift z, and σ(N,z) the (proper) absorption cross-
section of an absorber with column density N at z. Then the expected number of absorption lines
per unit column density per unit redshift along a random line-of-sight is

F (N,z) ≡ d2N

dN dz
= n(N,z)(1+ z)3σ(N,z)

dl
dz

=
c

H(z)
(1+ z)2n(N,z)σ(N,z), (16.90)
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where dl = cdt is the interval of proper distance corresponding to dz, and H(z) is the Hubble
constant at z (see §3.2.6). If there is no evolution in the absorbers [i.e. both n(N,z) and σ(N,z)
are independent of z], then for a matter dominated universe,

d2N

dN dz
∝
{

1+ z for q0 = 0
(1+ z)1/2 for q0 = 1/2.

(16.91)

It is sometimes useful to replace z by a coordinate X defined by

dX =
H0

c
(1+ z)3 dl =

(1+ z)2

E(z)
dz, (16.92)

where E(z) = H(z)/H0. In this coordinate, the line density is

F (N,X) ≡ d2N

dN dX
=

c
H0

n(N,z)σ(N,z), (16.93)

which is independent of cosmological redshift for a non-evolving population of absorbers.
Once the distribution function F (N,z) is known, it can be used to compute the total mass

density of absorbers. For example, consider Lyα absorbers, so that N is now the column density
of neutral hydrogen, NHI. The neutral hydrogen mass of an absorber with column density NHI at
redshift z is mHNHIσ(NHI,z), with mH the mass of a hydrogen atom. The comoving density of
neutral hydrogen at redshift z is therefore

ρHI,com(z) = mH

∫
NHIσ(NHI,z)n(NHI,z)dNHI =

H0

c
mH

∫
F [NHI,X(z)]NHI dNHI. (16.94)

This is often expressed in terms of the critical density at z = 0:

ΩHI(z) ≡ ρHI,com(z)
ρcrit,0

. (16.95)

Note that this should not be confused with the cosmological density parameter of neutral hydro-
gen at redshift z, which is equal to ρHI(z)/ρcrit(z), with ρHI = ρHI,com(1+ z)3 the proper density
of neutral hydrogen at z. Rather, it is the cosmological density parameter of neutral hydrogen the
Universe would have at z = 0 if the comoving number density and absorption cross-sections of
the absorbers do not evolve from redshift z.

16.4.2 Thermal Broadening

If the absorbing gas is not at rest with the expanding background, then in addition to the redshift
caused by the general expansion of the Universe, the observed frequency will be shifted by the
Doppler effect by an amount

νo −νa = −v
c
νa, (16.96)

where νa is the absorption frequency in the rest frame of the absorber, νo is the frequency
observed by a fundamental observer (who moves with the general expansion), and v is the pecu-
liar velocity of the absorbing atom projected along the line-of-sight (v being positive when the
atom is moving away from the observer). If the velocity distribution of the absorbing atoms is
Maxwellian, then the distribution of v is

P(v)dv =
1

π1/2b
exp

(
−v2

b2

)
dv , (16.97)

where the Doppler parameter, b, is related to the velocity dispersion of the gas, σ , by b =
√

2σ .
If v is caused solely by thermal motion, then b2 = 2kBT/m, where T is the gas temperature and
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m is the mass of an absorbing atom. In the more general case where turbulent motion (usually
assumed to be independent of the thermal motion) with a Gaussian distribution is included, we
can write

b2 =
2kBT

m
+b2

turb, (16.98)

where bturb is the b parameter due to turbulent motion. The line profile defined in Eq. (16.11) can
then be written as

φ12(ν)dν =
1

π1/2bν
exp

[
− (ν−ν12)2

b2
ν

]
dν with bν ≡ ν12

c
b. (16.99)

In this case, the line profile is a Gaussian centered at the resonance frequency ν12, with a width
given by bν .

16.4.3 Natural Broadening and Voigt Profiles

In the absence of any other broadening, there is a minimal (natural) amount of line broadening
due to the fact that the lifetime of an excited state is finite so that the energy of the photon
associated with the transition cannot be exact due to Heisenberg’s uncertainty principle. This
natural broadening can be calculated rigorously from quantum electrodynamics by considering
an atom with two energy levels in a radiation field (see Shu, 1991b, for details). If we write
γ ≡ A21/(4π), where A21 is the spontaneous transition coefficient, then the natural profile can be
written as

φ12(ν) = L (ν), (16.100)

where

L (ν) ≡ 1
π

[
γ

(ν−ν12)2 + γ2

]
(16.101)

is the Lorentzian (or Cauchy) profile whose FWHM is equal to 2γ .
In the presence of thermal broadening, the line profile is a convolution of this Lorentzian

profile with the thermal Gaussian profile:

φ(ν) =
∫ ∞

−∞
L
[
ν
(

1− v
c

)]
P(v)dv . (16.102)

We can write

φ(ν) =
1√
π

c
b

V (A,B)
ν

, (16.103)

where

V (A,B) =
A
π

∫ ∞

−∞
exp
(−y2

)
dy

(B− y)2 +A2 , (16.104)

with

A ≡ c
b
γ
ν

; B ≡ c
b
ν−ν12

ν
. (16.105)

This profile is called the Voigt profile and V (A,B) is the Voigt function. A useful approximation
to the Voigt function is

V (A,B) ≈ exp
(−B2)+ 1√

π
A

A2 +B2 , (16.106)

which shows that near the center of an absorption line the profile is dominated by thermal
broadening while the wings (where |ν− ν12|/ν12 	 b/c so that B 	 1) are dominated by the
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Lorentzian profile. These frequency intervals, in which natural broadening dominates Doppler
broadening, are called the damping wings of the line profile.

16.4.4 Equivalent Width and Column Density

The strength of an absorption line is usually measured by its equivalent width, defined as

W =
1
f0

∫
[ f0 − f (λ )] dλ , (16.107)

where f (λ ) is the observed spectrum as a function of wavelength, and f0 is what would be
expected if the line were absent. Since f (λ ) = f0 exp[−τ(λ )], where τ(λ ) is the optical depth at
wavelength λ , we can write

W =
∫ ∞

0

[
1− e−τ(λ )

]
dλ . (16.108)

For a Voigt profile, τ is related to the column density N by

τ(λ ) = Nσ12(ν) = η0V (A,B) where η0 ≡ 1√
π

c
b

a12

ν12
N. (16.109)

The plot of W as a function of η0 is called the theoretical curve of growth. For a given species of
absorbing atoms, this curve relates W with N and b. As an example, Fig. 16.2 plots the equivalent
width W of the HI Lyα line as a function of NHI and b.

When η0 ∼< 1, the optical depth is small and the equivalent width reduces to

W �
∫ ∞

0
τ(λ )dλ =

a12

ν12
Nλ12. (16.110)

In this case, the equivalent width increases linearly with the column density, independent of the
b parameter. For the Lyα absorption of HI gas, we obtain

W = 0.055

(
NHI

1013 cm−2

)
Å, (16.111)

in the rest frame.
When η0 > 104, the main contribution to the integration in Eq. (16.108) comes from B	 1. As

we have seen, the Voigt profile in this case is dominated by the Lorentzian profile. The equivalent
width can then be written as

W � λ12x0

∫ ∞

x−1
0

[
1− exp

(−y−2)] dy with x2
0 =

2
3π

(
a12

ν12

)2 N

λ 2
12

. (16.112)

Since x0 is generally smaller than one and since the integrand in the above expression goes to
zero rapidly for |y| > 1, we can replace the lower limit of the integration by −∞. It then follows
that W ∝ N1/2, independent of b. For Lyα absorption we have

W = 7.3

(
NHI

1020 cm−2

)1/2

Å, (16.113)

in the rest frame. Because the observed equivalent width of a line formed at redshift z is Wobs =
(1 + z)W , systems with NHI > 1020 cm−2 at z = 2 have Wobs > 22Å. Lines this strong are easily
identified, even when they are embedded in a Lyα forest. The damping wing due to Lorentzian
broadening, φ(ν) ∝ 1/[(ν− ν12)2 + γ2], becomes detectable when NHI ∼> 5× 1018 cm−2 for HI
Lyα lines.

In the intermediate range of η0, the line profile is still dominated by thermal broadening,
but becomes optically thick near the line center [i.e. τ(λ ) > 1 for λ ∼ λ12]. In this case, the
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Fig. 16.2. The upper panel shows the equivalent width of the Lyα line as as a function of the HI column
density NHI for three different values of the b parameter, as indicated. The three lower panels show the
absorption line profiles (in terms of the fractional transmitted flux) for different values of NHI and b, as
indicated.

integration in Eq. (16.108) is dominated by the constant part and W increases very slowly with
η0 (or N). The line is then saturated (see the bottom panels of Fig. 16.2). For 10 ∼< η ∼< 1,000,
we can approximate the relation by

W ≈ 2b
ν12

(lnη0)
1/2 . (16.114)

Because of the degeneracy between a small change in the apparent line width and a large
change in the column density, it is relatively difficult to infer the column density from an
observed equivalent width in this case. Note that in this regime W increases almost linearly
with b. For Lyα absorption, the value of η0 defined in Eq. (16.109) is related to the HI column
density by

NHI ≈ 2.6×1013η0

(
b

20kms−1

)
cm−2. (16.115)

Thus, if b ∼ 20kms−1 (the characteristic value for absorbers with NHI ∼ 1013–1015 cm−2; see
§16.5), an HI Lyα line becomes saturated when NHI ∼> 1014 cm−2.



714 The Intergalactic Medium

16.4.5 Common QSO Absorption Line Systems

Some absorption line systems, such as HI, CII, CIV, OVI, MgII, SiIV, are more frequently
detected in QSO spectra than other systems, because the elements of these species have relatively
high cosmic abundances and because the transitions involved have large oscillator strengths (see
§B1.3). In addition, real spectrographs can cover only a limited wavelength range, say from λmin

to λmax. Some absorption lines are not detected simply because they are out of the observa-
tional window. Since the observed wavelength λo is related to the wavelength at absorption λa

by λo = λa(1+ za), for a fixed λa, only systems in the redshift range from zmin ≡ λmin/λa −1 to
zmax ≡ λmax/λa −1 can be observed.

The number density of atoms (for a given element) at a particular ionization state depends not
only on the element abundances, but also on the balance between ionization and recombination.
This balance depends on the density and temperature of the absorbing gas, as well as on the
intensity of the ionizing photons. For example, if the temperature of the gas is about 104 K, large
number densities are only expected for low ionization species, such as HI, CII, MgII. On the other
hand, if T > 105 K, only highly ionized species, such as CIV and OVI, are expected to be abun-
dant. Therefore, the relative strengths of different absorption lines not only convey information
about abundance ratios, but also about the thermal and ionization state of the absorbing gas.

16.4.6 Photoionization Models

Although individual absorption line systems may have diverse properties, in many cases we
can abstract an absorption system as a gas cloud heated and ionized by a radiation field. This
allows one to predict the physical conditions (temperature, density, ionization state, etc.) by solv-
ing equations which describe heating/cooling and ionization/recombination processes. Such an
approach is powerful, because a large number of observables can be predicted from relatively
few input parameters. The most important input parameters are (i) the shape and intensity of the
UV background, (ii) the chemical composition of the gas, and (iii) the geometry (i.e. the spatial
density distribution) of the gas. From these one can obtain the temperature of the gas, the ion-
ization fractions of various elements, and the relative populations of different ionization stages,
which can be used to compute the absorption and emission properties of the gas to compare with
observation. Although a well-defined problem, the treatment of all relevant radiative processes
for a large number of elements can be extremely tedious. Fortunately, computer programs for
this kind of calculations are publicly available, a well-known example of which is CLOUDY
(Ferland et al., 1998).

16.5 The Lyman α Forest

The Lyman α (Lyα) forest is the set of absorption lines arising from the absorption of Lyα
resonance photons by neutral hydrogen along the line-of-sight towards a QSO. Since neutral
hydrogen clouds at different positions along this line-of-sight see the photons at different wave-
lengths (due to the redshift), each individual cloud leaves its fingerprint as an absorption line
at a different position in the observed spectrum blueward to the Lyα emission line of the QSO.
Fig. 16.3 shows the spectrum of a QSO whose redshift is z = 3.5. The numerous lines to the left
of the Lyα emission line are the ‘trees’ that make up the Lyα forest.

With a spectrum of sufficient spectral resolution (i.e. with FWHM ∼< 25kms−1) the typ-
ical Lyα lines are resolved, and one can model the forest by fitting each individual line
with a Voigt profile. The standard approach relies on χ2 minimization to achieve a complete
decomposition of the spectrum into as many independent Voigt profiles as necessary to make
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Fig. 16.3. Typical spectrum of a quasar, showing the quasar continuum and emission lines, and the absorp-
tion lines produced by galaxies and intergalactic material that lie between the quasar and the observer. This
spectrum of the z = 1.34 quasar PKS0454+039 was obtained with the Faint Object Spectrograph on the
HST. The emission lines at ∼ 2400Å and ∼ 2850Å are Lyβ and Lyα . The Lyα forest, absorption produced
by various intergalactic clouds, is apparent at wavelengths blueward of the Lyα emission line. The two
strongest absorbers are a damped Lyα absorber (DLA) at z = 0.86 and a Lyman limit system (LLS) at
z = 1.15. The former produces a Lyman limit break at ∼ 1700Å and the latter a partial Lyman limit break at
∼ 1950Å since the neutral hydrogen column density is not large enough for it to absorb all ionizing photons.
Many absorption lines are produced by the DLA at z = 0.86 (C IV 1548, for example, is redshifted onto the
red wing of the quasar’s Lyα emission line). [Adapted from Charlton & Churchill (2000)]

the χ2 probability consistent with that expected from random fluctuations. As a result, one
obtains a list of absorption lines, each with a redshift z, a column density NHI and a Doppler
parameter b.

16.5.1 Redshift Evolution

For a QSO at z ∼ 3, Lyα forest lines can be observed over a redshift range Δz ∼ 1. This range
covers a significant fraction of the Hubble time at z ∼ 3, so that we may expect to see some
evolution in the properties of the absorbers over the observed redshift range.

The observed line density of Lyα forest systems above a certain column density (or rest-frame
equivalent width) threshold is usually expressed in the form

dN

dz
= A(1+ z)γ . (16.116)

For 2 ∼< z ∼< 4 and NHI ≥ 1014 cm−2, observational determinations give

A ∼ 3.5 and γ ∼ 2.7 (16.117)

(e.g. Lu et al., 1991; Kim et al., 1997). However, the variance in both A and γ from different
studies is quite large. This is mainly due to uncertainties in the method used for counting the
lines. The number of lines given by the Voigt profile fitting can be affected by line blending,
which depends on both spectral resolution and redshift. Furthermore, the finite redshift range
available in each individual study and possible dependence of γ on column density also contribute
to the uncertainty.

Some of the uncertainties in the line counting approach can be reduced by considering the
effective optical depth of the forest. Using the distribution function F (NHI,b,z), which is a
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straightforward extension of the distribution function defined in §16.4.1 that includes the Doppler
parameter b, we can write the effective optical depth caused by absorbers with NHI ∈ [N1,N2],
b ∈ [b1,b2] and z ∈ [z1,z2] as

τeff =
∫ z2

z1

∫ b2

b1

∫ N2

N1

[
1− e−τ(NHI,b)

]
F (NHI,b,z)dNHI dbdz, (16.118)

where τ(N,b) is the optical depth of an individual absorber with column density N and Doppler
parameter b, and is given by Eq. (16.109) for a Voigt profile. Assuming that the distributions
of NHI and b are independent of z and that the redshift distribution of line density can be
approximated by a power law, we can write F (NHI,b,z) = (1+ z)γF (NHI,b), and thus

τeff =
(1+ z)γ+1

λa

∫ b2

b1

∫ N2

N1

F (NHI,b)W (NHI,b)dNHI db, (16.119)

where W is the rest-frame equivalent width. This relation can be used to measure γ even if
individual lines are not resolved. For z ∼> 2, this approach gives γ = 2.5–3 (e.g. Press et al.,
1993; Zuo & Lu, 1993). Despite the large uncertainties, the derived values of γ imply significant
evolution in the absorbing clouds that make up the Lyα forest at z > 2. As we will see in §16.5.7,
this is in stark contrast to the Lyα forest at lower redshifts.

16.5.2 Column Density Distribution

The HI column densities of Lyα forest lines span the range from ∼ 1012 cm−2 to ∼ 1017 cm−2.
The lower limit reflects the resolution limit of the state-of-the-art high-resolution spectroscopy,
while the upper limit comes from the fact that clouds with HI column densities above 1017 cm−2

are optically thick to Lyman continuum photons and are detected as Lyman-limit systems (to be
discussed in §16.7).

The HI column density distribution is described by a distribution function F (NHI) which is
defined as the number of absorption lines per unit NHI per unit X [defined in Eq. (16.92)]:

dN = F (NHI)dNHI dX . (16.120)

In practice, F (NHI) is estimated by counting the number of absorption lines in finite bins of NHI

and X :

F (NHI) =
N

ΔNHI∑i(ΔX)i
, (16.121)

where ∑i(ΔX)i is the total surveyed distance interval.
Observations show that the column density distribution is well described by a simple

power law:

F (NHI) ∝ N−β
HI . (16.122)

For the Lyα forest at z ∼> 2, E. M. Hu et al. (1995) obtained

F (NHI) = 4.9×107 cm2
(

NHI

cm−2

)−1.46

for 12.3 < logNHI < 14.5. (16.123)

These results are shown in Fig. 2.40, along with the results for higher column density systems
compiled by Petitjean et al. (1993) that will be discussed in the following sections. It is remark-
able that the HI column density distribution over the entire observable range (nearly ten orders
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Fig. 16.4. Distribution of Doppler b parameters for Lyα forest lines with HI column densities in the range
1012.5 ≤ NHI ≤ 1014 cm−2. [Based on data published in E. M. Hu et al. (1995), Lu et al. (1996b), and Kim
et al. (1997)]

of magnitude in column density) is well represented by a single power law with power index
β � 1.5 (but see discussion in §16.8.1).

16.5.3 Doppler Parameter

From the Voigt profile fitting, we can also obtain the Doppler b parameter for each Lyα forest
line. As shown in §16.4, the values of b may be used to infer the temperature and kinematics
(turbulence) of the absorbing clouds.

High-resolution spectra show that many Lyα systems with NHI ∼< 1015 cm−2 have b =
(10−50)kms−1, consistent with the assumption that the absorbing clouds are heated by photo-
ionization (T ∼ 104.5 K), although some lines have b values as large as 100kms−1. Fig. 16.4
shows the Doppler parameter distribution of Lyα forest lines obtained with KECK spectroscopy
(E. M. Hu et al., 1995; Lu et al., 1996b; Kim et al., 1997). Hu et al. found that the b parameter
distribution at z ∼ 3 can be well represented by a Gaussian with a median bm = 28kms−1, a
width σb ≈ 10kms−1, and with a cutoff below bc ≈ 20kms−1. There seems to be a trend of the
b distribution with redshift, with both bm and bc decreasing with increasing redshift. For exam-
ple, the median Doppler parameter for relatively strong lines (13.8 < logNHI < 16.0) is found to
change from 41kms−1 at 〈z〉 ∼ 2.3 (Kim et al., 1997) to 23kms−1 at 〈z〉 ∼ 3.7 (Lu et al., 1996b),
with the lower cutoff bc dropping from 24 to 15kms−1 over the same redshift range. Kirkman &
Tytler (1997) find bc ≈ 19kms−1 for systems with logNHI > 13.8 and mean redshift 〈z〉 ∼ 2.7,
consistent with the results of Kim et al. (1997). However, for systems with logNHI > 12.5 at the
same redshift, the median and lower cutoff drop to bm ∼ 23kms−1 and bc ∼ 14kms−1, respec-
tively, suggesting that the Doppler parameter may be correlated with column density (but see
Rauch et al., 1992).
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16.5.4 Sizes of Absorbers

One basic property of absorbing clouds is their sizes. With the knowledge of cloud sizes, we
can hope to infer their gas densities from the observed column densities, thereby inferring other
physical properties of the absorbing clouds. As one can see from Eq. (16.90), the line density of
Lyα forest systems is proportional to the number density of absorbing clouds and their absorp-
tion cross-sections (properly averaged). Thus, in order to infer cloud sizes from the observed line
density, one must know the number density of the absorbing clouds. To proceed, first consider a
simple model in which the comoving number density of clouds is assumed to be the same as the
number density of local galaxies. In this case, the number density is given by the galaxy luminos-
ity function φ(L)dL. As an illustration, let us also assume that the cross-section for absorption
associated with a galaxy depends only on its luminosity, i.e. σ = σ(L). The number of absorption
lines per unit redshift is then

dN

dz
=

(1+ z)2

E(z)

∫
σ(L)φ(L)dL. (16.124)

Using a luminosity function of the Schechter form (2.34) and assuming σ(L) ≡ πR∗2(L/L∗)β ,
we have

dN

dz
=

(1+ z)2

E(z)
φ ∗R∗2Γ(1+β −α). (16.125)

Taking φ ∗ = 1.5×10−2h3 Mpc−3 and α = −1, and assuming that the gaseous sizes of galaxies
obey the Holmberg (1975) relation R ∝ L0.4, so that β = 0.8, one finds that the observed line
density for z = 3 requires that R∗ = 1h−1Mpc. This radius is much larger than the optical radius
of an L∗ galaxies, indicating that the majority of the Lyα forest clouds at high redshift cannot be
closely associated with individual galaxies.

The typical sizes of absorption clouds can be estimated directly by studying the coincidence
of lines in the spectra of close quasar pairs or the images of a lensed quasar. In the case of quasar
pairs, the separation (in proper units) of the two lines-of-sight at the redshift of absorption za is
related to the angular separation of the two quasars, ϑ , as

l⊥ = a(za)r(za)ϑ = 145h−1 kpc

(
ϑ

10′′

)
H0a0r(za)
c(1+ za)

, (16.126)

where r(za) is the radial coordinate at redshift za (see §3.2.6). For an Einstein–de Sitter universe,
ϑ = 10′′ corresponds to a separation l⊥ ≈ 40h−1kpc at za = 2. If the absorbing clouds at redshift
za have a typical size D > l⊥, then they can intersect the two lines-of-sight simultaneously, and the
spectrum of each quasar will contain an absorption line produced by the same cloud. It is there-
fore possible to estimate the typical cloud size by analyzing the frequency of line coincidences in
the spectra of quasar pairs with various angular separations. Applications of this method to real
data can be found in, Crotts & Fang (1998) and D’Odorico et al. (1998) for example. The sizes
of Lyα forest clouds appear to be large, with typical sizes of the order of 200–500h−1kpc.

For a lensed quasar the geometry of the system is shown in Fig. 16.5. At redshift za < zL

(where zL is the redshift of the lens), the separation of the two lines-of-sight is also given by
Eq. (16.126), with ϑ being the angular separation of the two images. At za > zL, we can write
l⊥ = dSa(za)ϑ ′, where dSa is the angular-diameter distance from the source to the absorber at za,
and ϑ ′ is the angle between the two lines-of-sight at the source position. Since ϑdOL = ϑ ′dSL,
we have

l⊥ =
dOLdSa

dSL
ϑ , (za > zL), (16.127)
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Fig. 16.5. The geometry of a lensed quasar. See text for details.

where di j is given in §3.2.6. The observed spectra of multiple images of a lensed quasar usually
appear very similar, which yields a lower limit of ∼ 50kpc for the sizes of the absorbing clouds
(e.g. Smette et al., 1992; Impey et al., 1996a).

16.5.5 Metallicity

The discussion in §16.5.4 shows that the majority of the absorbing clouds responsible for the
Lyα forest at high redshift (z ∼> 2) must be intergalactic. Therefore, in early studies it was gener-
ally assumed that the absorbing clouds of the high-redshift Lyα forest had mainly a primordial
composition with little or no metal enrichment. However, the situation changed when better spec-
tra became available which showed that some absorbing clouds, especially those with relatively
large equivalent widths, have weak CIV absorption (Meyer & York, 1987). From high-resolution
spectra taken with modern 10-m class telescopes we now know that most Lyα systems with
NHI ∼> 1015 cm−2 and more than half of all systems with NHI ∼> 3× 1014 cm−2 have detectable
CIV lines associated with them (Cowie et al., 1995; Tytler et al., 1995; Songaila & Cowie, 1996).
The observed CIV column densities are in the range 1012 < NCIV < 1014 cm−2, implying a metal-
licity of about Z ∼ (10−4–10−2)Z� for the absorbing clouds (e.g. Simcoe et al., 2004). Lu et al.
(1998) found that the mean metallicity for systems with 1013.5 < NHI < 1014 cm−2 is a factor of
10 lower than that inferred for Lyα clouds with NHI > 3×1014 cm−2. However, low HI column
density systems with high metallicity have also been observed (Schaye et al., 2007), suggesting
that the scatter in metallicity is large.

The presence of CIV absorption in the Lyα clouds indicate that the IGM may have been
enriched in heavy elements at high redshift. The level of the enrichment and its relation to the
column density therefore contain important information about how the IGM may have been
enriched. As we show in §16.6, hydrodynamical cosmological simulations indicate that Lyα sys-
tems with NHI ∼> 1014.5 cm−2 are mostly associated with filaments connecting collapsed objects
in which star formation may have occurred, while systems with lower HI column densities are
preferentially found in lower density regions farther away from collapsed objects. It is then
conceivable that the high column density systems are enriched locally by star formation in the
collapsed objects, while the low column density clouds remain more or less primordial. On the
other hand, if the IGM was enriched by Population III stars at an early epoch, the chemical
enrichment might be more uniform, and there should not be a strong cutoff in the metallicity at
low NHI.
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16.5.6 Clustering

An important question is how the absorbers that make up the Lyα forest are distributed in
space. Are they randomly distributed or clustered? Do they trace the same large-scale struc-
ture as galaxies? The answers to these questions not only help to constrain the nature of Lyα
forest systems, but also tell us whether they can be used to study the mass distribution in the
Universe.

For a forest of Lyα lines, a simple measure of clustering is the two-point correlation function
of lines in redshift (velocity) space along the line-of-sight. For a given line at redshift z1, the
probability of finding another line whose redshift separation to the first one is in the interval
Δz±δ z/2 can be written as

δP(z1,Δz) =
(

dN

dz

)
z2

[1+ξ (Δz)]δ z, (16.128)

where Δz = z2 − z1, and ξ (Δz) is the two-point correlation function. If ξ = 0, then δP
is just the expected number of lines from the mean line density dN /dz. In real applica-
tions Δz � z ≡ (z1 + z2)/2, and we can define the two-point correlation function in velocity
space as

δP(z,Δv) =
(

dN

dz

)
z
(1+ z) [1+ξ (Δv)]

δv
c

, (16.129)

where Δv = cΔz/(1+z) is the velocity difference in the rest frame at the mean redshift z. Thus the
two-point correlation function can be estimated by counting pairs (of lines) of different velocity
separations. This has been done in many studies. For Lyα forest systems at high redshift (z ∼ 3),
significant clustering is detected only at small separations, Δv ∼< 300kms−1 (e.g. Rauch et al.,
1992; Cristiani et al., 1997). The clustering amplitude, ξ (100kms−1) ∼ 0.5, is much lower than
that of local galaxies at similar separations (assuming that the velocity separation is related to the
spatial separation Δr by Δv ∼ H0Δr for local galaxies). The amplitude of ξ appears to increase
with the HI column density of Lyα forest systems (Cristiani et al., 1995, 1997).

There is, however, a severe uncertainty in the estimated correlation function based on indi-
vidual absorption lines. Because of line blending the clustering amplitude on small scales may
be dramatically underestimated (Rauch et al., 1992). There are indications that line blending is
indeed playing an important role. For example, the metal lines associated with Lyα systems,
which are less sensitive to blending than Lyα lines owing to the higher mass of the absorbing
atoms (hence smaller b parameters), often reveal much stronger clustering on small scales, i.e.
for small Δv (Cowie et al., 1995). Because of this uncertainty, two other definitions of ξ (Δv)
have been proposed. The first defines the correlation function in a similar way as given by
Eq. (16.129), but each line is assigned a weight equal to its rest-frame equivalent width (in units
of the average equivalent width) in the pair counting (Webb & Barcons, 1991; Zuo, 1992). The
other method considers the Lyα forest as a one-dimensional intensity field sampled on pixels,
rather than individual lines, and correlates the pixel intensities (Press et al., 1993; Zuo & Bond,
1994).

Nowadays the statistic of choice to study the clustering of Lyα forest is based on the power
spectrum, PF(k,z), of the normalized transmitted flux, F(λ ) = exp[−τ(λ )]. After removing metal
lines and highly saturated Lyα lines, and after correcting for possible variations in the continuum,
the normalized flux F(λ ) in a wavelength range, usually between the Lyα and Lyβ emission
lines of the QSO, is Fourier transformed to obtain the power spectrum as a function of k, the
wavenumber corresponding to the separation in redshift (velocity) space (e.g. Croft et al., 1998;
Kim et al., 2004; McDonald et al., 2005; Jena et al., 2005). The power spectrum, PF(k,z), can
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now be determined quite accurately over a large range of wavenumbers, 0.2 ∼< k/(hMpc−1)∼< 5.
As we will see in §16.6, PF(k,z) is directly related to the linear power spectrum of the matter
distribution, and thus gives important constraints on the model of structure formation.

In addition to the two-point correlation function and power spectrum, several other statistical
methods have been used to study the clustering of Lyα forest systems. A particularly interesting
statistic is the void probability function, which is designed to detect voids (gaps) in the Lyα
forest. If Lyα lines have a Poisson distribution along a line-of-sight, the probability of finding a
gap of Δz in the redshift distribution is

P(z,Δz) = exp

[
−
(

dN

dz

)
Δz

]
. (16.130)

Any deviation from this distribution will be an indication of clustering. Based on such analysis,
Carswell & Rees (1987) concluded that voids with sizes like those in the galaxy distribution
(∼ 50h−1Mpc comoving) are very rare in the Lyα forest. This conclusion is confirmed by subse-
quent studies based on larger datasets, indicating that Lyα forest systems are indeed not tightly
associated with galaxies. Nevertheless, large gaps with low line densities are occasionally found
along individual sightlines (Crotts, 1987; Dobrzycki & Bechtold, 1991; Cristiani et al., 1995).
It is not clear, though, whether these large-scale gaps are due to the large-scale structure in the
mass distribution. It is also possible, for instance, that they are produced by the ionizing radiation
from quasars and star-forming galaxies close to the lines-of-sight, an analogy of the proximity
effect discussed earlier. Gaps in the Lyα forest can also be produced in a sightline intersecting
with the winds and outflows from star-forming galaxies, which can heat their environments (e.g.
Adelberger et al., 2003).

16.5.7 Lyman α Forests at Low Redshift

Since the Lyα resonance transition has a wavelength of 1,216 Å, the Lyα forest at z ∼< 1.5 is
unaccessible with optical spectra. With the capabilities of UV spectroscopy onboard the Hubble
Space Telescope, it became possible to also probe this low-redshift Lyα forest. This has resulted
in the detection of a large number of Lyα absorption lines in the redshift range 0 < z ∼< 1.5 (e.g.
Bahcall et al., 1991; Weymann et al., 1998; Penton et al., 2004). The number of lines per unit
redshift derived from this sample can be summarized as follows:

dN

dz
∼ A(1+ z)γ with γ ∼ 0.15 and A ∼ 35 (16.131)

for Lyα systems with rest-frame equivalent widths Wr > 0.24Å. Remarkably, the value of γ for
the low-z systems is much smaller than that for the Lyα forest systems at z ∼> 2 (γ ∼ 2.5) and is
consistent with the assumption of no evolution in the absorbers [see Eq. (16.91)]. In the range
0.1Å < Wr < 1Å, the distribution of the rest-frame equivalent widths can be approximated by an
exponential function exp(−Wr/W∗) with W∗ ≈ 0.27Å (Weymann et al., 1998). This equivalent-
width distribution corresponds to a column-density distribution similar to that for high-z Lyα
systems (§16.5.2).

The marked difference between the dN /dz at low and high redshifts is believed to be due to
changes in the UV background intensity. At high redshifts dN /dz falls steeply with declining
redshift due to the decreasing gas density caused by the expansion of the Universe. However, at
z ∼< 2 the UV background intensity drops due to a decline in the universal star-formation rate and
in the space density of quasars (see §16.2.4). This fading of the UV background counteracts the
decreasing density so that the forest does not thin out as rapidly as expected from the expansion
of the Universe alone (e.g. Theuns et al., 1998; Davé et al., 1999).
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If we assume that the comoving number density of the absorbers for the low-z Lyα sys-
tems is the same as the number density of local galaxies, the typical absorption radius given
by Eqs. (16.131) and (16.125) is R∗ ∼ 400h−1kpc for systems with Wr > 0.24Å. This value
of R∗ is much larger than the optical radii of normal galaxies, but is comparable to the virial
radius of galactic-sized halos at z ∼ 0. Thus it is possible that strong Lyα systems at low red-
shifts are associated with extended galactic halos. For the low-z systems, redshift surveys of
galaxies around QSO sightlines can be carried out to directly investigate possible links between
Lyα absorbers and galaxies. This has been done for several sightlines towards nearby QSOs
(Salzer, 1992; Spinrad et al., 1993; Morris et al., 1993; Salpeter & Hoffman, 1995; Penton et al.,
2002). Redshift coincidences between absorbers and galaxies (which are usually hundreds of
kpc away from the absorbers) are found for some of the lines-of-sight, but not for all. This sug-
gests that at least some of the low-z Lyα clouds are intergalactic. This is also supported by
the work of Morris et al. (1993), who found that the cross-correlation between absorbers and
galaxies is weaker than the galaxy–galaxy correlation in the same field. Furthermore, modeling
Lyα absorbers as a mixture of randomly distributed objects and clouds associated with galactic
halos, Mo & Morris (1994) found that only about a quarter of all Lyα systems detected along the
3C273 sightline are associated with galactic halos. In contrast, by using a larger galaxy survey
and selecting stronger lines, Lanzetta et al. (1995) concluded that many Lyα systems in their
sample are related to the gaseous envelopes of galaxies, which have radii up to ∼ 200h−1kpc.
Furthermore, Lanzetta et al. also found an anticorrelation between the rest frame line equivalent
width and the impact parameter of the sightlines to the centers of galaxies, suggesting that the
absorbers are indeed physically connected with the galaxies. The first result of Lanzetta et al.
was confirmed by subsequent observations (Le Brun et al., 1996; Bowen et al., 1996) and is
consistent with the strong clustering found for strong lines at low redshift (Bahcall et al., 1996;
Ulmer, 1996). The existence of an anticorrelation between Wr and impact parameter for strong
lines is also seen in the data of Penton et al. (2002). Taken together, these results suggest that
many strong Lyα lines at low redshift may be produced by clouds associated with galaxies, while
weak lines are probably associated with intergalactic gas.

16.5.8 The Helium Lyman α Forest

Since helium is the second most abundant element in the Universe, one also expects absorption
due to HeI and HeII in the IGM. For a realistic ionizing background, HeI is undetectable because
most helium atoms are in HeIII and HeII. The important absorption lines are then HeII Lyα with
a wavelength of 304Å, one fourth that of HI Lyα . Since the ionization threshold of HeII is at
λ = 228Å, the abundance of HeII depends on the intensity of the UV background in the far-UV
(at much shorter wavelengths than the HI edge). Hence, observations of HeII Lyα lines can yield
independent constraints on the state of the IGM and the UV background.

The basic observable of an HeII Lyα forest is the ratio between the HeII and HI Gunn–Peterson
optical depths:

τHeII

τHI
=

1
4
η where η ≡ nHeII

nHI
. (16.132)

This follows from Eq. (16.15) assuming that hPν12 	 kBT and using the fact that the value of I12

for HI Lyα is 4 times that for HeII Lyα (since νHeII = 4νHI and both transitions have the same
oscillator strengths, see Table B1.1). For an optically thin gas highly ionized by photoionization
we have

η =
αHeIIInHeIII

αHIInHII

Γγ ,HI

Γγ ,HeII
≈ 4nHe

nH

Γγ ,HI

Γγ ,HeII
, (16.133)
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where Γγ ,HI and Γγ ,HeII are the photoionization rates defined in Eq. (16.32). Assuming J(ν) ∝
ν−βHI just above νHI and J(ν) ∝ ν−βHeII just above νHeII and using the photoionization cross-
sections given in §B1.3, we obtain

η ≈ 1.7
(3+βHI)J(νHI)

(3+βHeII)J(νHeII)
≈ 1.7

J(νHI)
J(νHeII)

. (16.134)

Thus the HeII/HI ratio, η , is determined by the ratio of the UV background intensities at the two
absorption edges. Depending on the shape of J(ν), the value of η is generally much larger than
4, and so the optical depth in HeII is much larger than that in HI. As a result, the HeII Lyα Gunn–
Peterson effect is a more sensitive measure of diffuse gas than that of HI Lyα (Miralda-Escude,
1993).

Because of its short wavelength, HeII Lyα absorption can only be observed at z ∼> 2.5 even
with the far UV bands accessible to the Hubble Space Telescope. Consequently, only a small
number of QSOs are suitable for the search. A non-zero HeII Lyα Gunn–Peterson optical depth
(τHeII ∼ few) has been detected by a number of observations (Jakobsen et al., 1994; Davidsen
et al., 1996; Hogan et al., 1997; Reimers et al., 1997). However, whether the observed optical
depth is due to discrete Lyα forest systems or due to a diffuse component is still unclear. In
addition, the data are not accurate enough to constrain the shape of J(ν).

16.6 Models of the Lyman α Forest

A number of models have been proposed to explain the origin of the Lyα forest. Since Lyα forest
systems are observed over a large range of redshift, they are not just a transient phenomenon.
Therefore, one important question any model should address is how these systems are sustained
or replenished. In this section, we describe some of the most influential models that have been
proposed.

16.6.1 Early Models

(a) Pressure Confinement As we have seen, the majority of the Lyα forest systems at z ∼> 2
are intergalactic instead of being associated closely with galaxies, and they are produced by
gas that is relatively cold (T ∼ 104 K), as indicated by their Doppler b parameters. One pos-
tulation for the origin of the Lyα forest systems is that there exists an ambient hot, tenuous
component in the IGM which acts to ‘confine’ the cooler and denser Lyα clouds by its pres-
sure. The standard version of this pressure confinement model (Sargent et al., 1980; Ostriker &
Ikeuchi, 1983; Ikeuchi & Ostriker, 1986) assumes spherical and homogeneous clouds. Because
of the general expansion of the Universe, the pressure of the ambient gas scales with redshift
as P ∝ ρT ∝ (1 + z)5 for adiabatic expansion. Since the temperature of Lyα clouds is roughly
constant (Tcloud ∼ 104 K), their densities drop as ρcloud ∝ (1 + z)5 as the Universe expands until
heating by photoionization can no longer compensate the work of expansion. Thereafter the
clouds cool and expand less rapidly than the background. The sound speed drops even faster,
and so eventually pressure equilibrium with the hot IGM breaks and the clouds expand freely.
The range of cloud masses is constrained by the fact that massive clouds are Jeans-unstable
and too small clouds are evaporated by the hot medium due to heat conduction, which gives
105 ∼< Mcloud ∼< 1010 M� (Sargent et al., 1980; Ostriker & Ikeuchi, 1983).

One motivation for the pressure confinement model at the time when it was proposed was that
the hot ambient IGM needed to confine Lyα clouds might also be responsible for the observed
X-ray background. In the explosive scenario proposed by Ostriker & Cowie (1981), large-scale
explosions (probably from starburst galaxies or QSOs) in the early Universe might have driven
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shock waves into the IGM, re-ionizing the IGM and heating it to a high temperature. Meanwhile
the dense shells enclosing the hot cavities might cool and fragment to form the Lyα clouds. How-
ever, the pressure confinement model has several problems. There is now much evidence that the
observed X-ray background is produced by discrete sources rather than by a diffuse medium, and
observations of the Compton-y parameter in the CMB also put stringent limits on the existence
of a hot diffuse component in the IGM. These leave little room for the existence of the hot gas
required for the pressure confinement. Furthermore, the observed large range of HI column den-
sities (1013 ∼< NHI ∼< 1016 cm−2) is difficult to accommodate in the pressure confinement model. It

requires some nine orders of magnitude in cloud mass (since NHI ∼ nHIRcloud ∼ M1/3
cloudJ−1P−5/3,

with J the ionizing flux and P the confining pressure), or a factor of about 100 in pressure; both
are difficult to realize in the standard pressure confinement model.

Although implausible for explaining Lyα forest systems at high redshift, pressure confinement
of cold clouds may happen in the halos of galaxies, where dense clouds may have formed via
local instabilities and be in pressure equilibrium with a hot halo gas at the virial temperature.
Some of the observed Lyα systems at low redshift may be produced in this manner (e.g. Mo,
1994; Mo & Miralda-Escudé, 1996).

(b) Gravitational Confinement Since the large-scale structure in the Universe is generally
believed to be produced by gravitational instability, a natural hypothesis is that Lyα clouds
are confined by gravity. Self-gravitating gas clouds were proposed by Melott (1980) and Black
(1981) as an alternative to the pressure confinement model. However, self-gravitating gas clouds
are unstable in the presence of effective cooling, and it is unclear how the absorbing clouds are
sustained or replenished.

In the CDM-type of cosmogonies, dark matter halos form constantly as density perturbations
turn around and collapse. In ‘minihalos’ where the potential is too shallow for the trapped gas
(photoionized by the UV background) to cool and to collapse, but deep enough to keep the photo-
ionized gas from escaping, gas may be stably confined. Since the temperature of a photoionized
gas is of the order of a few ×104 K, the circular velocities of these minihalos are ∼ 30kms−1

(Rees, 1986; Ikeuchi, 1986). For an isothermal halo, the density profile is n(r) ∝ r−2 and, for a
photoionized optically thin gas, the HI density profile is nHI ∝ r−4, assuming balance between
recombination and photoionization. The resulting HI column density distribution, sampled by
random sightlines through different parts of such halos, is dN /dNHI ∝ N−1.5

HI , similar to the
observed distribution. In addition, because of the large density gradient, a large range in column
densities can be produced, and since minihalos are constantly created from the collapse of density
peaks and destroyed by merging, one naturally expects some evolution in the number density of
absorbers. From the Press–Schechter halo mass function (see §7.2.1), we see that the comoving
number density of minihalos [which has δc(z)/σ � 1 at z ∼< 3 for a realistic power spectrum] at

a fixed circular velocity changes with redshift as n(Vc,z) ∝ (1 + z)5/2 in an EdS universe. If the
absorption cross-section does not change rapidly with z for fixed Vc, then dN /dz ∼ (1+ z)3, not
very different from the observed value [see Eq. (16.117)]. Since minihalos are generally sub-M∗
halos, they are also expected to be weakly clustered (e.g. Mo et al., 1993).

16.6.2 Lyman α Forest in Hierarchical Models

The simple minihalo model discussed above is obviously an oversimplification of what really
happens in hierarchical clustering. As discussed in §5.6, the collapse in hierarchical models is
highly non-spherical, proceeding from sheets (first axis collapsed) to filaments (first two axes
collapsed) to halos (all three axes collapsed). Thus, at any given time, the Universe consists of
dark matter halos, filaments and sheets, as well as density perturbations that are still in the linear
regime. In principle, all these structures can produce QSO absorption systems, as long as their
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column densities of neutral gas are sufficiently high. Therefore, it really does not make much
sense to stick to the notion of distinct objects for the Lyα absorbers. Rather, one should consider
the entire cosmic density field.

This change of notion started when H. Bi and collaborators (Bi et al., 1992; Bi, 1993; Bi &
Davidsen, 1997) realized that the absorption optical depth fluctuations corresponding to the lin-
ear density fluctuations in the IGM can already give a realistic representation of the Lyα forest
(ignoring high column density systems which may be produced by collapsed objects, such as
minihalos). Because the involved physics (quasi-linear collapse and optically thin gas) is rel-
atively simple, model predictions can be worked out in some detail and their connections to
cosmogonic parameters are easy to make.

(a) Optical Depth Fluctuations Consider a sightline through the cosmic density field. We
denote the comoving position along the sightline by x – which is related to the redshift z as
described in §3.2.6. The optical depth at an observed frequency νo due to the Lyα absorption of
the HI gas in the density field can be written as

τ(νo) =
∫ ∞

0
nHI(x)σLyα(ν)

dx
1+ z

; ν = νo(1+ z)
[

1+
vr(x)

c

]
, (16.135)

where nHI(x) and vr(x) are the proper number density and radial peculiar velocity of the HI gas
at x, and σLyα(ν) is the Lyα absorption cross-section at frequency ν. Assuming Voigt profiles,
σLyα is given by Eqs. (16.11) and (16.103). Thus, in order to calculate τ(νo) we need to know
nHI(x), vr(x), and b(x) (the velocity dispersion of the gas). In principle, these quantities can be
obtained by tracing in detail the evolution of the hydrodynamical, thermal and ionizational states
of the absorbing gas. In what follows we use a simple analysis, which, although oversimplified,
allows one to gain useful insight.

If we assume that the absorbing gas is optically thin and highly ionized by photoionization,
then nHI can be obtained by the equation of ionization balance (assuming ionization equilibrium),
nHI(x) = n2

H(x)αH+(T )/Γγ ,HI, where αH+(T ) is the recombination rate coefficient, and Γγ ,HI is
the photoionization rate. It then follows that

nHI(x) ≈ 5.9×10−11
[

nH(x)
nH(z)

]2

A (T ) cm−3, (16.136)

where

A (T ) ≡
(
Ωb,0h2

0.02

)2(
1+ z

4

)6

T−0.7
4

(
Γγ ,HI

10−12s−1

)−1

. (16.137)

In the above expressions, T4 = T/104 K, nH is the mean number density of hydrogen atoms
in the Universe, and for simplicity we have approximated the recombination rate coefficient as
αH+ ≈ 4.3×10−13T−0.7

4 cm3 s−1. If nH(x) is proportional to the baryonic gas density ρb(x), we
can write

nH(x) = nH(z)[1+δb(x)], (16.138)

where δb(x) is the density fluctuation in the baryonic gas. For an ideal gas with a polytropic
equation of state, we have that

T = T0(1+δb)Γ−1, (16.139)

where T0 is independent of position and Γ is the polytropic index, which should not be confused
with the photoionization rate which always carries an index. If the gas evolves adiabatically, then
Γ= 5/3 (see §B1.1). In reality, both T0 and Γ are expected to depend on the thermal and ioniza-
tion history of the gas, but numerical simulations show that Eq. (16.139) holds approximately for
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δb ∼< 5, with T0 ∼ 104 K and Γ∼ 1.5 at z∼ 3 (e.g. Hui & Gnedin, 1997). Under these assumptions
we can write

nHI(x) ≈ 5.9×10−11 A (T0) [1+δb(x)]
q cm−3, (16.140)

with

q ≡ 2+0.7(1−Γ). (16.141)

Note that at a given redshift, the mean optical depth τ ∝ (Ωbh2)2/Γγ ,HI. Since Γγ ,HI can be
estimated directly from the observed ionizing background, observational constraints on the mean
optical depth can in principle be used to constrain Ωbh2 (Rauch et al., 1997).

If the Universe is dominated by CDM and if the mass density field is in the linear regime, then

δb(k) =
δDM(k)

1+ k2/k2
J

, where kJ =

√
2
3

a
cst

(16.142)

(see §4.1.6) and, from the continuity equation,

v(k) =
iak
k2

dδb(k)
dt

≈ iak
k2 H f (Ωm)δb(k), (16.143)

where f (Ωm)≈Ω0.6
m is given by Eq. (4.78). Thus if the initial density field is Gaussian, both δb(x)

and vr(x) are correlated Gaussian random fields determined by the following power spectrum:

Pb(k) =
PDM(k)

(1+ k2/k2
J )2

. (16.144)

We can write these two fields as linear combinations of two independent Gaussian fields u(k)
and w(k):

δb(k) = D(a) [u(k)+w(k)] , vr(k) = H(a) f (Ωm)ikα(k)w(k), (16.145)

where D(a) is the linear growth factor, and

α(k) =
∫ ∞

k Pb(k′)k′−3 dk′∫ ∞
k Pb(k′)k′−1 dk′

. (16.146)

The power spectra for w and u are

Pw(k) =
2π
α(k)

∫ ∞

k
Pb(k′)

dk′

k′
; Pu(k) = 2π

∫ ∞

k
Pb(k′)k′ dk′ −Pw(k), (16.147)

respectively (Bi & Davidsen, 1997). To take into account some of the nonlinear evolution in the
density field, Bi and Davidsen used a log-normal distribution for the density field. In this case,
Eq. (16.138) is replaced by

nH(x) = nH(z)exp

[
δb(x)− 〈δ 2

b 〉
2

]
. (16.148)

Thus, for a given PDM(k), one can easily construct Monte Carlo realizations of δb(x) and vr(x),
and obtain τ(νo), i.e. a model Lyα absorption spectrum. For CDM-type models, these model
spectra are remarkably similar to the observed Lyα forest. When the simulated spectra are
fitted by Voigt line profiles, the observed HI column density distribution and b parameter dis-
tribution can all be reproduced reasonably well. More sophisticated approximations, such as the
Zel’dovich approximation and particle-mesh simulations of dark matter particles, have also been
used to trace the cosmic density field (Hui et al., 1997; Petitjean et al., 1995), with basic results
similar to those obtained from the linear theory.
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(b) Line Profiles Consider the gas density field in the neighborhood of a point at redshift z1.
Assuming that Lyα absorption lines are broadened by thermal motion, we can write the optical
depth as

τ(so) =
∫

ñHI(s)ILyα
c√
πb

exp

[
− (s− so)2

b2

]
ds, (16.149)

where ILyα is given by Eq. (16.20),

ñHI(s) ≡ nHI(x)
1+ z

∣∣∣∣ds
dx

∣∣∣∣−1

, (16.150)

so ≡ c

[
1− νo

νLyα
(1+ z1)

]
, (16.151)

and we have used a velocity coordinate s which is related to x by

s = c
νo

νLyα

[
(z− z1)+(1+ z)

vr(x)
c

]
≈ H(z1)(x− x1)

1+ z1
+ vr(x). (16.152)

From Eq. (16.149) it is clear that τ is just the convolution of the HI density in velocity space, ñHI,
with a Gaussian due to thermal broadening. Note that an absorption system can thus be produced
by a velocity perturbation even without a perturbation in the HI density. For a local maximum in
ñHI at some s = smax with width much smaller than b, the exponential factor in Eq. (16.149) can
be considered as a constant and taken out of the integral;

τ(so) =
c√
πb

exp

[
− (smax − so)2

b2

]
ILyα

∫
ñHI(s)ds. (16.153)

In this case, the absorption line has a Gaussian profile with a strength given by the density in
velocity space. If, on the other hand, the distribution of ñHI(s) in velocity space has a width
much larger than b, then

τ(so) = cILyα ñHI(so). (16.154)

In this case, the absorption profile is completely determined by the velocity-space density ñHI,
independent of the thermal broadening. An absorption system is then merely a fluctuation in the
optical depth, not a line in the conventional sense. A Voigt profile may still be used to model
such systems, but the b parameter obtained is no longer equal to (2kBT/m)1/2. To see this more
clearly, we can expand the optical depth, τ , as a function of s around a local maximum smax to
the first non-zero order, which gives

τ(s) = exp [lnτ(s)] ≈ τ(smax) exp

[
1
2
(lnτ)′′(s− smax)2

]
, (16.155)

where the prime denotes differentiation with respect to s. This is just a Voigt profile (for low-NHI

systems) with an effective b parameter

beff =
√

−2/η ′ with η = (lnτ)′. (16.156)

In the first case discussed above, we have beff = b from Eq. (16.153), while in the second case
beff =

√−2/(lnñHI)′′. In what follows we adopt the shorthand notation

ζ ≡ (lnτ)′′ = − 2

b2
eff

. (16.157)
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Using the properties of a Gaussian random density field, we can also gain some insight into the
distribution of b (Hui & Rutledge, 1999). Suppose that the number density of peaks in ln[τ(s)]
per unit s with η ′ < ζ < 0 is dN . From Eq. (16.156) it then follows that

dN

db
=

4
b3

dN

dζ
. (16.158)

In general we can write the number density at a given point s as N (s) = ∑i δ (D)(s− si) where
the summation is over points where η = 0 and η ′ < ζ < 0 (because the peak points are local
maxima; see §7.1). Around a given peak we can expand η(s) to get η(s) ≈ (s− si)η ′(si), and so

N (s) =∑
i
δ (D)(s− si) = |η ′(s)|δ (D)[η(s)]Θ[−η ′(s)+ζ ], (16.159)

where Θ(x) is the Heaviside step function which enforces that η ′ < ζ . Performing an ensemble
average over this equation and inserting it into Eq. (16.158) yields

dN

db
=

8
b5

〈
δ (D)(η)δ (D)(η ′ −ζ )

〉
. (16.160)

Note that the quantity in 〈·〉 is just the joint probability of η and η ′, and that no assumption
about the Gaussianity has been made in deriving Eq. (16.160). If the underlying density field is
Gaussian, then η and η ′ are independent Gaussian random fields, and the joint probability of η
and η ′ is the product of two Gaussian functions with variances 〈η2〉 and 〈η ′2〉. It then follows
from Eq. (16.160) that

dN

db
∝

4b4
σ

b5 exp

(
−b4

σ
b4

)
, with b4

σ ≡ 2
〈η ′2〉 . (16.161)

This distribution exhibits a power-law form in the high-b tail (∝ b−5) and an exponential cutoff
at low b. Both these characteristics are in good agreement with observations (see Fig. 16.4).

(c) Column Density Similar consideration can also be used to calculate the column density
distribution (Hui et al., 1997). The HI column density around a density peak at xmax can be
written as

NHI =
∫

pk
nHI(x)

dx
1+ z

, (16.162)

where the integration is over a sufficient interval around xmax. Expanding nHI(x) around xmax to
second order, we have

ln [nHI(x)] = ln [nHI(xmax)]+
1
2

[
d2 lnnHI

dx2

]
xmax

(x− xmax)
2 , (16.163)

which in Eq. (16.162) gives

NHI =
√

2π
nHI(xmax)
1+ zmax

[(
−d2 lnnHI

dx2

)
xmax

]−1/2

. (16.164)

It then follows from Eq. (16.140) that

NHI ≈ 4.4×1014 A (T0)
1− zmax

(ω/Mpc)√
q

cm−2, (16.165)

where

ω ≡ [1+δb(xmax)]
q

{[
−d2ln(1+δb)

dx2

]
xmax

}−1/2

. (16.166)
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Thus, if we denote by Npk the number of peaks as a function of ω and x, the HI column density
distribution defined in Eq. (16.120) can be written as

F (NHI,z) =
d2Npk

dωdx

(
dω

dNHI

)(
dx
dX

)
= 2.5×10−15 cm2 Mpc

c
H0

√
q

(1+ z)A (T0)
d2Npk

dωdx
. (16.167)

Defining ξ (x)≡ ln[1+δb(x)], and using the same argument leading to Eq. (16.160) we can write

d2Npk

dωdx
=
〈
|ξ ′′|δ (D)(ωξ −ω)δ (D)(ξ ′)Θ(−ξ ′′)

〉
=

1
qω

〈
|ξ ′′|δ (D)(ξ −ξω)δ (D)(ξ ′)Θ(−ξ ′′)

〉
, (16.168)

where

ωξ =
exp(qξ )√

−ξ ′′ , and ξω =
1
q

ln
(
ω
√

−ξ ′′
)

, (16.169)

with the prime denoting differentiation with respect to x. Thus, if the joint distribution function
for ξ , ξ ′ and ξ ′′ is given, it is straightforward to calculate the column density distribution. In the
special case where ξ (x) is a Gaussian random field (so that δb has a log-normal distribution), this
joint distribution is a multivariate Gaussian, with covariance matrix given by the power spectrum
of ξ . The final result can be written in the form (Gnedin & Hui, 1998):

d2Npk

dωdx
=

1
qω

1

(2π)3/2R∗σ3
0 γ2
√

9/5− γ2

∫ ∞

0
ye−Q(ω,y)dy, (16.170)

where

Q(ω,y) =
1

2σ0(9/5− γ)
(

9
5
Δ2 −2yΔ+

y2

γ2

)
, (16.171)

and

Δ(ω,y) =
1
q

ln

(
ωy1/2

R∗

)
+
σ2

0

2
, (16.172)

with σ0, R∗, γ defined as in §7.1, and ω related to NHI by Eq. (16.165). For a given power
spectrum, Pb(k), these three quantities can be calculated, and the integral in Eq. (16.170) can be
computed numerically.

As one can see from Eqs. (16.167) and (16.170), the shape of the HI column density distri-
bution depends on σ0, R∗, and γ . Indeed, it can be shown by direct integration of Eq. (16.170)
that, for CDM-type models, the shape of F (NHI) depends mainly on σ0, with a lower value
of σ0 resulting in a steeper distribution. The overall amplitude of F (NHI) depends on A ∝
(Ωbh2)2/Γγ ,HI; an increase in A shifts F (NHI) horizontally to larger NHI.

(d) Clustering The theoretical model of the Lyα forest described above predicts a tight relation
between the optical depth of Lyα absorption and the underlying mass density field. This suggests
that it is possible to infer the clustering properties of the cosmic density field from the clustering
in the Lyα forest.

Consider a three-dimensional field δ (x,y,z). When this field is observed along a particular
line (without losing generality, we assume it to be along the z axis), we obtain a one-dimensional
field, δ1d(z) ≡ δ (0,0,z). Denoting the Fourier transform of δ (x,y,z) by δ̃ (k), we can write

δ1d(z) =∑
kz

δ̃1d(kz)e−ikzz with δ̃1d(kz) = ∑
kx,ky

δ̃ (kx,ky,kz), (16.173)
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where we assume that δ (x,y,z) is periodic on a cubic box with volume Vu. It then follows that
the power spectrum of δ1d(z) is

P1d(kz) ≡V 1/3
u

〈
|δ̃1d(kz)|2

〉
= V−2/3

u ∑
kx,ky

P(kx,ky,kz), (16.174)

where P(kx,ky,kz) ≡Vu〈|δ̃ (k)|2〉 is the power spectrum of the three-dimensional field, δ (x,y,z).
If the field is isotropic in the (x,y) plane, and changing the summation into integration, we can
write

P1d(kz) =
1

2π

∫
P(k⊥,kz)k⊥ dk⊥. (16.175)

If δ is also isotropic in space, we have

P1d(kz) =
1

2π

∫ ∞

kz

P(k)k dk, and P(k) = −2π
k

d
dk

P1d(k). (16.176)

In this special case, one can derive the three-dimensional power spectrum from its one-
dimensional counterpart.

For the Lyα forest, what we observe is the optical depth τ(so) as a function of velocity coordi-
nate so [related to the observed frequency νo by Eq. (16.151)], or the flux transmission F = e−τ .
In the limit of small perturbations, the fluctuation in flux transmission, δF ≡ (F −F)/F , is pro-
portional to the fluctuation in optical depth, δτ ≡ (τ − τ)/τ . Keeping terms to first order in δb

and vr, we obtain from Eqs. (16.149) and (16.140) that

δF(so) ∝ δτ(so) =
∫ [

qδb − ∂vr

∂ s
+(Γ−1)

b2
0

4
∂ 2δb

∂ s2

]
W (s− so)ds, (16.177)

where Γ is the polytropic index, b0 = (2kBT0/m)1/2, and

W (s− so) =
1√
πb0

exp

[
− (s− so)2

b2
0

]
. (16.178)

Using the convolution theorem, it then follows that the one-dimensional power spectrum for the
flux transmission is

PF(kz) =
1

2π

∫ ∞

kz

W (kz,k)Pb(k)k dk, (16.179)

with

W (kz,k) = Aexp

(
−k2

z b2
0

2H2

)[
1+

f (Ωm)
q

k2
z

k2 − Γ−1
4q

k2
z b2

0

H2

]2

, (16.180)

where A is a constant, and H is the Hubble constant at the redshift in consideration (Hui, 1999).
It is clear from this expression that, in the linear regime, the power spectrum for the flux trans-
mission is just the power spectrum of the gas distribution convolved with a kernel, W , which
depends both on the thermal broadening and on the peculiar velocity distortions [the term with
f (Ωm)]. Thermal broadening reduces the transmission power on small scale (large k) and is neg-
ligible on scales much larger than b0/H. If peculiar velocity distortions are neglected, the filter
W is independent of k and Eq. (16.179) can be easily inverted to obtain Pb(k) – up to the constant
factor A – from PF(k) by direct differentiation (Croft et al., 1998). In general, one can use an iter-
ative procedure to obtain Pb(k) from PF for a given set of model parameters: Ωm, Γ (or q), b0/H.
The constant A can be determined by requiring that the predicted mean optical depth of HI Lyα
absorption matches the observed one. Tests with numerical simulations show that this method
can recover the true mass power spectrum on comoving scales in the range ∼ 1 → 10h−1Mpc
(Croft et al., 1998). This method has also been applied to real data (e.g. Croft et al., 1998; Kim
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Fig. 16.6. Spatial distribution of HI column density in a simulation of the IGM at redshift z ∼ 2. The
comoving size of the box is 22.22 Mpc. The gray scale is such that the white blobs correspond to
NHI ≥ 1016.5 cm−2, the faint filaments correspond to 1014.5 cm−2 ≤ NHI ≤ 1015.5 cm−2, and the dark voids
correspond to NHI ≤ 1014.5 cm−2. [Adapted from Katz et al. (1996) by permission of AAS]

et al., 2004; McDonald et al., 2005; Jena et al., 2005), and the results put stringent constraints on
the matter power spectrum on scales ∼< 10h−1Mpc (e.g. Spergel et al., 2007).

16.6.3 Lyman α Forest in Hydrodynamical Simulations

If Lyα forest systems are indeed produced by gravitationally induced density fluctuations in the
general matter density field, the whole process can be studied in more detail by hydrodynam-
ical cosmological simulations. Starting from cosmological initial conditions, such simulations
follow the motions of gas and dark matter under their mutual gravitational field, as well as the
heating, cooling, ionization, and chemical-enrichment processes of the gas component (e.g. Cen
et al., 1994; Zhang et al., 1995; Miralda-Escudé et al., 1996; Hernquist et al., 1996). Despite
some quantitative differences in details, the general picture emerging from these simulations are
similar. Fig. 16.6 shows the spatial distribution of HI gas in one of such simulations. As one can
see, depending on their HI column densities, Lyα absorbers show a variety of structures. Systems
with NHI ∼< 1014 cm−2 are generally associated with sheet-like structures while higher-NHI clouds
arise from more filamentary structures. These structures generally extend hundreds to thousands
of kiloparsecs. At the lowest column density, the absorbing clouds remains unshocked and are
ripples on a low-density background, and the gas is partly confined by gravity and partly by the
ram pressure of the ambient gas. At the high column density end (NHI ∼> 1016 cm−2), the absorb-
ing clouds become more or less spherical, reminiscent of virialized minihalos. Detailed analyses
of such simulations show that the observed column density distribution, Doppler b parameter
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distribution, redshift evolution of line density, absorber sizes, and clustering can all be reproduced
reasonably well in the current CDM cosmogonies.

There are, however, many important unresolved issues in simulating the Lyα forest in a cos-
mological context. Some of the problems arise from limitations of the simulations, others are due
to the lack of proper understanding of the details of the physical processes involved. For example,
many Lyα forest systems are found to be enriched in heavy elements. If the enrichment is due to
mass loss of massive stars, the gas distribution in the IGM may have been affected significantly
by the energy and momentum injection from these stars. In this case, the origin of some of the
Lyα forest systems may be gas-dynamical instead of gravitational.

16.7 Lyman-Limit Systems

Lyman-limit systems are narrow line absorption systems which are optically thick to photons
capable of ionizing hydrogen atoms. Although Lyman-limit systems can also be detected as
strong, heavily saturated Lyα lines, their high column densities make them physically distinct
from the optically thin Lyα forest lines.

To start with, consider a ray of photons with wavelengths shorter than λLL = 912Å and with
an initial intensity I0. Upon passing through an absorbing cloud with HI column density NHI it
will emerge with an attenuated intensity

I(λ ) = I0(λ )exp [−τ(λ )] , (16.181)

where the optical depth is

τ(λ ) = NHIσpi(λ ) =
(

NHI

1.6×1017 cm−2

)(
λ

912Å

)3

for λ ≤ λLL (16.182)

and τ(λ ) = 0 for λ > λLL. Thus, if we define Lyman-limit systems as the ones with τ > 1 for
Lyman continuum radiation, then their HI column density NHI > 1.6×1017 cm−2. Such systems
cause a break (from I = I0 to I < 0.368I0) at the rest wavelength 912 Å, which is very easy
to recognize in a QSO absorption line spectrum (see Fig. 16.3 for an example). For a break at
observed wavelength λo, a strong Lyα line is expected at a wavelength (1215/912)λo. Because of
their large optical depths to Lyman continuum photons, Lyman-limit systems may be important
in attenuating the ionizing background (see §16.2.3).

The number of Lyman-limit systems per unit redshift has been found to roughly follow a
power law

dN

dz
= 0.27(1+ z)1.55 for 0.01 < z < 5 (16.183)

(Storrie-Lombardi et al., 1994; Stengler-Larrea et al., 1995). Under the assumption that the
comoving number density of Lyman-limit absorbers is the same as the number density of local
galaxies, the typical absorption radius obtained from Eq. (16.125) is R∗ ∼ 70h−1kpc at z ∼ 1
and R∗ ∼ 80h−1kpc at z ∼ 3 (assuming a flat universe with Ωm,0 = 0.3). These values of R∗ are
roughly consistent with the absorbers being clouds in galactic halos.

Although all Lyman-limit systems have HI column densities NHI > 1.6 × 1017 cm−2, an
accurate determination of their column densities is difficult because the associated Lyα lines
are heavily saturated (see §16.4.4). For systems with τ ∼ 1, the HI column densities can be
estimated from the strength of the break at the Lyman limit, but the number of such sys-
tems is small. For other systems, weak lines in the Lyman series may be used, but such
lines are difficult to identify because they are usually embedded deeply in the Lyα for-
est. Photoionization models (see §16.4.6) may help to constrain the HI column density of
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a Lyman-limit system with the metal lines associated with it, but this is model dependent.
Because of all these difficulties, the distribution of HI column densities for QSO absorp-
tion line systems is still poorly determined over the range 1017 cm−2 ∼< NHI ∼< 1020 cm−2 (see
Fig. 2.40).

Observationally, Lyman-limit systems are always associated with metal absorption line sys-
tems. This is not surprising, given the fact that virtually all Lyα forest systems with NHI ∼>
1015 cm−2 are known to have associated metal lines. Unfortunately, since a direct measurement of
the HI column density of a Lyman-limit system is difficult, one typically requires photoionization
models (§16.4.6) in order to infer their metallicities. Steidel (1990) derived a value Z ∼ 10−2Z�
from modeling individual Lyman-limit systems at z ∼ 3, consistent with the metallicities of Lyα
forest systems with high column densities.

16.8 Damped Lyman α Systems

Damped Lyα systems (hereafter DLAs) are defined as systems with an HI column density
NHI ≥ 2×1020 cm−2, and are characterized by absorption line profiles dominated by the damp-
ing wings due to natural broadening (see Fig. 16.7 for an example). This defining limit for
NHI, first introduced by Wolfe et al. (1986), is largely historical and was chosen to match the
sensitivity limit of early 21-cm observations of local spirals by Bosma (1981). As we have
seen in §16.4.4, though, technically speaking any absorption system with NHI ∼> 1019 cm−2

will exhibit damping wings. It has become customary to refer to absorption line systems with
1019 cm−2 ≤ NHI ≤ 2×1020 cm−2 as sub-DLAs (Péroux et al., 2002).2 Although the distinction

Fig. 16.7. A damped Lyα system (upper panel) at z = 2.84 and its associated metal lines of the highly
ionized CIV (lower panel) and lowly ionized SiII (middle panel). [After Lu et al. (1996a)]

2 Note that both DLAs and sub-DLAs are also Lyman-limit systems.
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between DLAs and sub-DLAs is somewhat arbitrary, there is a subtle physical difference: the
hydrogen in DLAs at high redshifts is largely neutral, while that in sub-DLAs may still be
significantly ionized (Prochaska & Wolfe, 1996).

16.8.1 Column Density Distribution

The column density of a DLA is relatively easy to determine from its observed equivalent width
[see Eq. (16.113)]. The HI column density distribution of DLAs is shown in Fig. 2.40. At first
sight it seems to follow the overall power law F (NHI) ∝ N−1.5

HI , which also fits the Lyα forest
and Lyman-limit systems. However, more detailed studies, based on larger data sets, have shown
that the single power law is not a good fit to the data at the high column density end of the
distribution. Since the data reveal a pronounced steepening of F (NHI) at large NHI, it has become
customary to fit the column density distribution of DLAs (and sub-DLAs) with a Schechter
function

F (NHI)dNHI = F ∗
(

NHI

N∗
HI

)β
exp

(
−NHI

N∗
HI

)
dNHI

N∗
HI

, (16.184)

which is often referred to as the ‘Γ function’ in the DLA community. The best-fit values of β
and N∗

HI depend on both redshift and on the minimum column density considered, but typically
fall in the range −2 < β < −1 and 1021 cm−2 < N∗

HI < 1021.5 (Storrie-Lombardi & Wolfe, 2000;
Péroux et al., 2003; Prochaska et al., 2005).

Because of their high HI column densities, the gas in DLAs responsible for the absorption
somehow must have cooled and collapsed, and it is thus expected that DLAs reside in dark
matter halos. In order to predict the column density distribution for DLAs, we need to model
how the cold gas is distributed within individual dark matter halos. Let Σ(R|Mh,λ ) be the surface
density distribution of a (neutral) gas disk residing in a halo of mass Mh and spin parameter λ (as
discussed in §11.2, the size and surface density of a disk are expected to depend on both Mh and
λ ). For a given cosmology, the halo mass function n(Mh,z) and spin parameter distribution p(λ )
are known (see §7.2 and §7.5.4, respectively), and it is straightforward to compute the F (NHI,z)
expected from such a population of disk galaxies (e.g. Fall & Pei, 1993; Mo et al., 1998). Under
the assumption that the gas disks are exponential, the resulting F (NHI,z) are in good agreement
with observations, provided halos with circular velocities as low as ∼ 50kms−1 are included.
Similar conclusions were also reached by Gardner et al. (1997) and Nagamine et al. (2004a)
based on numerical simulations.

16.8.2 Redshift Evolution

DLAs are relatively rare. For NHI ≥ 1020.3 cm−2, the number of lines per unit redshift interval is

dN

dz
= 0.04(1+ z)1.3±0.5 (0.1 < z < 4.7) (16.185)

(Storrie-Lombardi et al., 1996a), which has a redshift dependence similar to that for the Lyman-
limit systems but with a normalization that is ∼ 7 times lower [see Eq. (16.183)]. Using
Eq. (16.125), we obtain R∗ ∼ 30h−1kpc at z ∼ 3 under the assumption that the comoving num-
ber density of DLAs is the same as that of local galaxies. Although this radius is somewhat
larger than that of HI disks for typical spiral galaxies at z = 0, it suggests a close connection
between DLAs and (proto)-galaxies. Hence, any successful model of galaxy formation should
accommodate the observational results for DLAs.
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Fig. 16.8. The cosmic density parameter of baryonic material associated with DLAs as a function of red-
shift. The data points with error bars are taken from Storrie-Lombardi et al. (1996b). Note thatΩDLA ∝ h−1.
The shaded area indicates the present-day cosmic density parameter of stars and its uncertainties, and the
three lines are CDM model predictions for the evolution of the cosmic density parameter of cold gas in
dark matter halos with circular velocities ≥ 50kms−1 (∝ h−2) for three different cosmologies. Solid line:
Ωm,0 = 1, h = 0.5, Γ= 0.5. Long-dashed line: Ωm,0 = 1, h = 0.5, Γ= 0.2. Short-dashed line: Ωm,0 = 0.3,
ΩΛ,0 = 0.7, h = 0.7, Γ = 0.2. All three models assume Ωb,0 = 0.015h−2 and are normalized so that
σ8 = 0.5Ω−0.5

m,0 .

Since the power-law slope, β , of F (NHI,z) at the low column density end is larger than −2,
the total mass in neutral hydrogen is dominated by systems with high column densities. To a
good approximation we can therefore write

ΩHI(z) � H0

c
mH

ρcrit,0

∫ ∞

Nmin

F (NHI,z)NHI dNHI, (16.186)

with Nmin � 2×1020 cm−2 (see §16.4.1). Since DLAs are largely neutral, we have that the cosmic
density parameter of baryonic material associated with DLAs is equal to ΩDLA(z) = μΩHI(z)
where μ ∼ 1.3 is the mean molecular weight taking account of the mass in helium.

Fig. 16.8 shows ΩDLA(z) obtained by Storrie-Lombardi et al. (1996b). For z ∼ 3, the observed
column density distribution of DLAs implies

ΩDLA ∼ 0.0015h−1 (z ∼ 3). (16.187)

For comparison, the mass density of stars in present-day galaxies is Ωstar ∼ 0.003h−1 (see
§2.10.2). Thus, DLAs at z ∼ 3 contain roughly half the amount of baryons that at z = 0 is locked
up in stars.

At z > 3 the data of Storrie-Lombardi et al. (1996b) suggest that ΩDLA(z) decreases with
redshift. However, as shown by Péroux et al. (2003) this is due to the fact that at z > 3.5 up to
45% of the neutral hydrogen gas resides in sub-DLAs (at z < 3.5 this fraction is less than 10%).
After correcting for this by changing Nmin in Eq. (16.186) to 1019 cm−2, there is no evidence for
any evolution in the cosmic density parameter of neutral gas at high redshifts.

In general, we can write the mass density of gas in DLAs as

ΩDLA(z) =Ωb,0F(z), (16.188)
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whereΩb,0 is the cosmic density parameter of baryons at the present time, and F(z) is the fraction
of baryons in gas clouds which are capable of producing DLAs. As argued above, it is expected
that DLAs reside in dark matter halos. As discussed in §8.1.4, photoionization heating can pre-
vent the gas from cooling in halos with virial temperatures Tvir ∼< 105 K, which corresponds to
halos with a circular velocity Vc ∼< 50kms−1 [see Eq. (8.45)]. If we make the naive assumption
that in halos with Vc ≤ Vlim = 50kms−1 cooling is completely inhibited, while in halos with
Vc > Vlim all gas has cooled, then the Press–Schechter model (see §7.2) yields

F(z) = erfc

[
δc(z)√

2σ(Mlim)

]
, (16.189)

where δc(z) � 1.69/D(z), with D(z) the linear growth rate normalized to unity at the present,
σ(M) is the mass variance of the smoothed density field (see §7.2.1), and Mlim is the mass of a
dark matter halo with circular velocity Vlim. The three curves in Fig. 16.8 showΩDLA(z) for three
different cosmologies, obtained by inserting Eq. (16.189) in Eq. (16.188) with Vlim = 50kms−1.

Obviously, since not all gas in dark matter halos with Vc > Vlim can cool and since star forma-
tion consumes gas that has cooled, these curves have to be considered upper limits. A comparison
with the data shows that this rules against an Einstein–de Sitter cosmology with a shape parame-
ter Γ = 0.2 (see §4.3.2 for the definition of Γ). On the other hand, a ΛCDM cosmology with
parameters that are consistent with the CMB constraints obtained from the WMAP mission
(Spergel et al., 2007) yields a ΩDLA(z) that lies well above the data, as required. Thus, at least in
the currently favored cosmologies, the total amount of gas locked up in DLAs is consistent with
a picture in which they are protogalaxies residing in dark matter halos with circular velocities
Vc ∼> 50kms−1.

Since star formation in the Universe occurs mainly in high-density gas clouds, we expect that
DLAs are a major source of cold gas for star formation in the Universe. As shown in Fig. 16.8,
the value of ΩDLA drops significantly with decreasing z from its maximum value at z ∼> 3 to
a value that is 5–10 times smaller at z ∼ 0. This decrease of the HI content is likely due to
the consumption by star formation, and may thus be used to infer the star-formation history
in the Universe. Numerous studies have used analytical techniques or numerical simulations
to predict ΩDLA(z) taking account of star formation, inflow (gas accretion) and outflow due to
feedback processes (see Wolfe et al., 2005, for a detailed review). Typically, these models predict
metallicities for the DLAs that are significantly higher than the observed values discussed below,
unless significant corrections for dust obscuration are invoked (e.g. Pei & Fall, 1995; Pei et al.,
1999; Somerville et al., 2001; Cen et al., 2003; Nagamine et al., 2004b).

16.8.3 Metallicities

As we have seen, the total amount of gas contained in DLAs at z ∼ 3 is comparable to the
luminous matter in galaxies. Hence, it may well be that high-redshift DLAs are the progenitors
or building blocks of present day galaxies, comprising the neutral gas reservoir for star formation.
Therefore, the evolution of the chemical composition of DLAs with redshift may directly probe
the history of chemical enrichment and star formation in protogalaxies.

Damped Lyα systems are excellent targets for abundance studies. Their HI column density
can be accurately determined from their damping wings, and since the absorbing hydrogen gas is
predominantly neutral, no ionization corrections are needed to obtain their total column density
of hydrogen. Furthermore, because of the high HI column densities involved, metal lines associ-
ated with DLAs are relatively easy to detect, even if the gas metallicity is low. The task is then
to identify suitable metal line systems produced in the same region as the damped system and to
measure their column densities. In order to have accurate estimates of the column densities, weak
lines (which are not saturated) with accurate oscillator strengths are preferred (e.g. Verner et al.,
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Fig. 16.9. Metallicity, expressed via the Zn abundance, of DLAs as a function of z. Abundances are mea-
sured on a log scale relative to the solar value, indicated by the dashed line at [Zn/H] = 0.0. Upper limits,
corresponding to non-detections of the ZnII lines, are indicated by downward pointing arrows. [Adapted
from Pettini et al. (1999) by permission of AAS]

1994; Savage & Sembach, 1996). The most important species are low (mostly singly ionized)
ions, such as SiII, MnII, FeII, NiII, ZnII, CrII (Pettini et al., 1997; Lu et al., 1996a). DLAs are
optically thick at photon energies 13.6eV ≤ hPν ≤ 400eV. Since the ionization potentials of the
singly ionized elements are lower than that of hydrogen, photons with hPν < 13.6eV, which can
penetrate deep into the neutral gas, are capable of photoionizing the neutral state of each element
to the singly ionized state. Higher energy photons, which would photoionize the elements to
higher states, cannot penetrate the neutral gas. An exception are photons with hPν > 400eV, but
because the photoionization cross-sections are low at such photon energies, the ionization rates
are low. Consequently, the total element abundances can be inferred directly from the observed
column densities without significant ionization corrections. One potential problem is that some
elements can be depleted onto dust grains, causing an underestimate of the inferred abundance.
Consequently, elements that are less affected by dust grains (such as Zn) are preferred over
elements (such as Fe) that are easily depleted by dust (Jenkins, 1987).

Fig 16.9 shows the observed Zn abundance in 40 DLAs with 0.4 ∼< z ∼< 3.4. The majority of the
DLAs have metallicities in the range −2 ∼< [Zn/H] ∼< −0.5, i.e. about 1/100 to 1/3 of the solar
metallicity (e.g. Pettini et al., 1999; Kulkarni et al., 2005). These low metallicities are consistent
with the assumption that DLAs are gas clouds that have not experienced much star formation. In
addition, the metallicity does not seem to increase rapidly with decreasing redshift, at least not
over the redshift range probed. To quantify this, one can estimate the total mass density of metals
in DLAs as a function of redshift z:

ΩZ(z) =ΩDLA(z)Z(z), (16.190)

where Z is the column-density weighted mean abundance of heavy elements in the gas:

Z = ∑i(NHI)iZi

∑i(NHI)i
. (16.191)

The summation in the above equation is over all DLAs within a redshift bin centered at z. The
data in Fig. 16.9 show that Z(z) is roughly constant with redshift. This result, together with the
observed ΩDLA(z) discussed in the previous subsection, implies that the total metal content in
DLAs does not increase significantly with decreasing redshift. This is not expected if DLAs
trace the galaxy population in an unbiased way, because the typical metallicity of present day
galaxies is roughly solar. One possibility is that DLAs arise preferentially in gas clouds with
low star-formation rates, for instance if in systems with high star-formation rates the resulting
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energy output reduces the HI column density to a level below the detection threshold. Another
possibility is that the lines-of-sight through metal-rich gas are systematically under-represented
because the background QSOs are obscured by the dust associated with the metal-rich gas. In
order to discriminate between these two effects, a large survey of radio selected QSOs (in which
dust obscuration is not important) is required. Thus far, only one modest-size radio selected
sample has been published (Ellison et al., 2001), which indicates that at most half of all DLAs
are missing from optically selected samples.

16.8.4 Kinematics

One can study the internal velocity structure of DLAs from the line-of-sight velocity profiles of
the associated narrow absorption lines produced by electronic transitions in low ions, such as SiII
and NiII (Prochaska & Wolfe, 1997, see Fig. 16.7 for an example). These low ions are accurate
tracers of neutral hydrogen at NHI > 2×1020 cm−2, because the gas is effectively shielded from
ionizing photons (see above). The observed line-of-sight velocity profiles often comprise multi-
ple narrow components, suggesting that the absorbing gas is distributed among multiple discrete
clouds with small internal velocity dispersions. The velocity spread among the components has
a quite uniform distribution between ∼ 20 and ∼ 200kms−1. Some profiles show a pronounced
skewness, reminiscent of the line profiles of rotating disks.

Detailed modeling by Prochaska & Wolfe (1998) shows that, in order to explain the observed
velocity structures with isolated rotating disks, the disks must be thick (with scale heights that
are at least one third of the scale lengths) and rotating fast (with rotation velocity ∼> 200kms−1).
This is a problem, since as we have seen above, the observed abundances require many DLAs to
reside in dark matter halos with small circular velocities. However, if DLAs indeed arise in disk
galaxies, this would severely underpredict the observed line widths. Hence, it appears difficult
to reconcile the observational results with a model in which DLAs are associated with disk
galaxies in centrifugal equilibrium. Using hydrodynamical simulations, Haehnelt et al. (1998)
demonstrated that this inconsistency within hierarchical models for galaxy formation dissappear
if the gas is modeled with a more realistic spatial distribution and kinematic structure. In their
simulations, DLAs arise from multiple protogalactic clumps bound to a virialized dark matter
halo, and the kinematic structure is due to a mixture of rotation, random motions, infall and
mergers. In addition, it has been shown that galactic winds and outflows associated with star
formation in DLAs may spread out cold gas, thereby generating broad velocity structures even
in halos with relatively low masses (Nulsen et al., 1998; Schaye, 2001). Although no simulation
to date has been able to simultaneously and self-consistently match the observed abundances,
metallicities and kinematics of DLAs from z ∼ 4 to the present day, it is unlikely that DLAs arise
solely from well-developed disks.

16.9 Metal Absorption Line Systems

In addition to absorption lines due to hydrogen and helium, QSO spectra also frequently show
absorption lines due to metals. The best known examples are MgII, CIV and OVI systems, which
are caused by the strong resonance-line doublets, MgIIλλ2796,2800, CIVλλ1548,1550, and
OVIλλ1031,1037, respectively. The MgII and CIV lines have rest-frame wavelengths longer
than λLyα = 1,216Å, and can therefore appear on the red side of the Lyα emission line in the
QSO spectrum. These lines are thus relatively easy to identify, as they are not embedded in the
thick Lyα forest (see Fig. 16.3 for an example). On the other hand, the OVI lines are usually
embedded in the Lyα forest, making them more difficult to identify, especially at high redshifts
where the Lyα forest is thick.
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The ionization thresholds of these species are quite different (15eV for MgII, 65eV for CIV,
and 138eV for OVI), which suggests that they are probably associated with gas in different
environments. While MgII systems, like HI Lyα , may be produced by relatively cold gas with
T ∼ 104 K, CIV and OVI systems are likely associated with hotter gas with T ∼ (105 −106)K.
Thus, by studying different metal absorption line systems one can probe the different phases of
the IGM.

16.9.1 MgII Systems

Because of their relatively long wavelengths, MgIIλλ2976,2803 doublets can only be observed
at relatively low redshift (z ∼< 2.2 for a spectrum that can cover wavelengths up to about 104Å).

(a) Line Density and Column Density In the redshift range from 0.2 to 2.2, the observed line
density can be approximated by

dN

dz
= 0.55(1+ z)0.8 (16.192)

for systems with rest-frame equivalent widths W0(MgII) ≥ 0.3Å (Steidel & Sargent, 1992).
According to Eq. (16.91), this redshift dependence is consistent with no evolution in the
absorbers, a conclusion that is supported by more recent observations (e.g. Nestor et al., 2005).
Using Eq. (16.125), we obtain R∗ ∼ 50h−1kpc under the assumption that the comoving number
density of MgII absorbers is the same as that of local galaxies. This radius is larger than that of
HI disks, but smaller than that of the corresponding dark matter halos. Hence, it is possible that
MgII systems are produced by gas clouds that are somehow associated with galactic halos.

It is in general quite difficult to determine the column density of a MgII system from the
observed line profiles, because the observed lines are often heavily saturated. Assuming a gas
temperature of a few times 104 K, the curve of growth (see §16.4.4) gives NMgII ∼ 1013 cm−2 for
lines with Wr = 0.3Å. The ionization threshold for MgII (∼ 15.0eV) is not very different from
that of HI. Thus, if the UV flux above 80.1 eV (the ionization threshold of MgIII) is weak, so
that most Mg is in the form of MgII, the ratio NMgII/NHI for a photoionized cloud should not
depend strongly on the UV flux. This ratio is proportional to the metallicity of the gas, and for
Z = 0.1Z� gives NMgII/NHI ∼ 10−4. Thus, MgII systems with NMgII ∼> 1013 cm−2 are expected
to be similar to Lyman-limit systems in terms of their HI column densities.

(b) Connection to Galaxies Since MgII absorption lines can be observed at relatively low red-
shifts, where normal galaxies are easily detected, they are ideally suited to probe the connection
between (MgII) absorbers and galaxies. Observations with deep imaging and follow-up spec-
troscopy around MgII absorption lines have shown that one usually finds a nearby galaxy with
a redshift similar to that of the absorption line (Bergeron & Boissé, 1991; Bergeron et al., 1992;
Bechtold & Ellingson, 1992; Steidel, 1995). Note, though, that such an association by itself does
not necessarily imply a direct connection between the absorber and the galaxy proper. After all,
since galaxies are clustered, it is possible that the association is merely a result of absorbers
preferentially residing in denser regions (i.e. regions with a larger number density of galaxies),
without a direct connection with the galaxies. It is therefore crucial to check whether or not the
properties of absorption line systems are correlated with the properties of their identified host
galaxies. Unfortunately, the observational results are mixed. While some observations indicate
that the strength and kinematics of MgII absorption lines are correlated with the luminosity, mor-
phology and/or kinematics of the host galaxies (e.g. Steidel, 1995; Steidel et al., 2002; Kacprzak
et al., 2007), others do not find any compelling evidence for such correlations (e.g. Churchill
et al., 1996). In addition, there is only a very weak correlation, with a large scatter, between the
strength of the absorption line (i.e. its equivalent width) and the impact parameter to its host
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galaxy (e.g. Steidel, 1995; Tripp & Bowen, 2005). Furthermore, while early studies seemed to
indicate that every bright galaxy produces a MgII absorption line system in a QSO sightline as
long as its impact parameter ∼< 40h−1 kpc (e.g. Steidel, 1995), more recent studies (Bowen et al.,
1995; Tripp & Bowen, 2005) find much lower rates of incidence. This indicates that the gas
clouds responsible for the absorption must have a covering factor that is significantly smaller
than unity.

16.9.2 CIV and OVI Systems

(a) CIV Systems CIV is another species commonly found in QSO absorption spectra as
absorption line doublets CIVλλ1548,1550. Because of their short wavelengths, CIV absorp-
tion lines can be observed at redshift z ∼> 1.2 in optical spectroscopy, and complete samples can
be selected according to a rest-frame equivalent width threshold. For Wr(CIV1548) > 0.15Å, the
observed line density is dN /dz ∼ 3 at z ∼ 2 (Steidel 1990), which is about two times as high as
that of Lyman-limit systems. This suggests that a large fraction of the CIV systems are probably
associated with gas clouds which are optically thin. The value of dN /dz appears to decrease
with increasing redshift at z ∼> 2 for strong lines with Wr ∼> 0.4 (Sargent et al., 1988). This is con-
trary to the redshift evolution of Lyα forest lines and Lyman-limit systems, suggesting a build-up
of the metal content in the absorbing gas with the passage of time.

The ionization threshold of CIV is 64.5 eV, and so it is a highly ionized species compared to
HI and MgII. If the ionization is produced by a UV flux, J(ν), with a fixed shape, then we expect
NCIV/NHI ∝ (J0/ne)2, where J0 is a measure of the amplitude of J. This follows from the fact
that NHI/NH ∝ ne/J0 (because most hydrogen atoms are in HII) and NCIV/NC ∝ J0/ne (because
most carbon atoms are in lower ions than CIV unless the UV flux is extremely hard). Thus, for
a given HI column density, the CIV absorption is expected to be stronger if the gas density is
lower. Because of this, strong CIV lines are probably associated with relatively low-density but
highly ionized gas in the IGM. Some of the CIV absorption systems may also be produced by
collisionally ionized gas with a temperature of ∼ 105 K. Such gas may exist as the conduction
front between a hot (106 K) medium and cold (104 K) clouds, or produced by shocks associated
with the formation of sheets and filaments around galaxy-sized halos.

(b) OVI Systems and Warm-Hot IGM As mentioned in §2.10.2, the total amount of baryons
in stars, cold gas and hot X-ray gas at z ∼ 0 is only about half of all the baryons in the Universe. It
is likely that the ‘missing’ part makes up the warm-hot intergalactic medium (WHIM), a diffuse
medium with T ∼ (105−107)K that is difficult to detect in emission. This conjecture is supported
by cosmological hydrodynamical simulations of structure formation in the CDM scenario, which
show that a large fraction of baryons can be in this form at the present time (e.g. Cen & Ostriker,
1999; Davé et al., 2001).

For gas at such a high temperature, only highly ionized species can exist in significant amounts.
Here OVI absorption lines can play an important role for two reasons. First, in collisional ion-
ization equilibrium, the OVI ion fraction peaks at about ∼ 105.5 K, making it a sensitive probe
of the WHIM. Secondly, the doublet OVIλλ1031,1037 is usually strong and relatively easy to
identify in a UV spectrum at low redshifts where the Lyα forest is relatively thin. Although cur-
rent data on OVI absorption line systems at low redshifts is still fairly limited, it suggests that it
may contain a significant fraction of the baryons at the present epoch (Tripp et al. 2000, 2007;
Savage et al. 2005; Sembach et al. 2001; Richter et al. 2004; Danforth & Shull 2005). More
importantly, these observations demonstrate the potential of using OVI absorption lines to map
out the distribution of the ‘missing’ baryons in the local Universe.



Appendix A

Basics of General Relativity

General relativity (hereafter GR) is the subject dealing with the structure of space-time and with
how to describe physical laws in any given space-time. The perspective of space-time in GR
is very different from that in Newtonian physics. In Newtonian physics, space is considered
to be flat, infinite and eternal, time is considered to flow uniformly, and physical processes are
considered to act in this external space-time frame. In the framework of GR, however, space-time
is a four-dimensional manifold which may be curved and the properties of space-time itself are
determined by dynamical processes.

This appendix provides a brief summary of the aspects of GR that are used in this book. More
details can be found in the excellent textbooks by Weinberg (1972), Misner et al. (1973), Rindler
(1977), and Carroll (2004).

A1.1 Space-time Geometry

In order to gain some insight in how to describe space-time as a four-dimensional manifold
(hypersurface), consider a two-dimensional analog. To describe a two-dimensional surface, we
can construct a coordinate system and label each point on the surface by its coordinates. The
geometrical properties of the surface can be obtained by considering the distance between each
pair of infinitesimally close points on the surface in terms of the differences in coordinates. In
general, the square of this distance can be written as

dl2 =
2

∑
i, j=1

gi j(x)dxi dx j, (A1.1)

where x = (x1,x2) are the coordinates and gi j(x) is the metric which gives the distance in terms of
the difference in coordinates. As an example, if we use Cartesian coordinates (x,y), then gi j = δi j

is the metric for a plane, because ds2 = dx2 +dy2. Similarly,

ds2 =
R2 − y2

R2 − x2 − y2 dx2 +
R2 − x2

R2 − x2 − y2 dy2 +
2xy

R2 − x2 − y2 dxdy (A1.2)

gives the metric of a sphere with radius R. This is evident by using the spherical coordinates:

dl2 = R2(dϑ 2 + sin2ϑ dϕ2), (A1.3)

where (ϑ ,ϕ) is related to (x,y) by x = Rsinϑ cosϕ , y = Rsinϑ sinϕ . This shows that the metric
not only depends on the properties of the surface, but also on the choice of the coordinate system.
In general, one chooses a coordinate system which simplifies the problem at hand.

The geometrical properties of the space-time can be described in a similar manner. Each point
on the four-dimensional space-time hypersurface is an event, represented by a time coordinate
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and three spatial coordinates. The ‘distance’ between any two points (events) on this hypersurface
is the interval ds. For a flat space-time this interval has the same form as in special relativity:

ds2 = c2dt2 −dx2 −dy2 −dz2 = ημν dxμdxν = c2dt2 −δi j dxidx j, (A1.4)

where x,y,z are the Cartesian coordinates, (x0,x1,x2,x3) = (ct,x,y,z), δi j is the Kronecker delta
function, and

ημν = diag(1,−1,−1,−1) (A1.5)

is the Minkowski metric. In Eq. (A1.4) and in the following, a pair of repeated upper and lower
indices implies summation over their range, Greek indices run from 0 to 3 while Latin indices
run from 1 to 3. For a general space-time, the interval can be written as

ds2 = gμν dxμ dxν , (A1.6)

where xμ (μ = 0,1,2,3) are general space-time coordinates and the metric gμν gives the interval
in terms of the difference in space-time coordinates. Note that gμν = gνμ .

Since ds is invariant under coordinate transformation, the metric must transform as

gμν(x) → g′μν(x
′) =

∂xα

∂x′μ
∂xβ

∂x′ν
gαβ (x), (A1.7)

under a general coordinate transformation x → x′. The inverse four-metric gμν is the inverse of
gμν :

gμαgαν = δμν , (A1.8)

and so transforms as

gμν(x) → g′μν(x′) =
∂x′μ

∂xα
∂x′ν

∂xβ
gαβ (x). (A1.9)

From the space-time metric, one can derive other useful geometric quantities. The affine
connection, Γμαβ , which connects vectors in nearby tangent spaces, is defined as

Γμαβ =
1
2

gμσ
(
∂βgσα +∂αgσβ −∂σgαβ

)
, (A1.10)

where ∂μ ≡ ∂/∂xμ . The Riemann–Christoffel curvature tensor, Rμναβ , which describes the
curvature of the space-time manifold, is defined as

Rμναβ = ∂αΓμνβ −∂βΓμνα +ΓμσαΓσ νβ −ΓμσβΓσ να . (A1.11)

The Ricci tensor and the curvature scalar are defined as

Rμν ≡ Rσ μσν and R ≡ gμνRμν , (A1.12)

respectively.
For the Robertson–Walker metric,

ds2 = c2dt2 −a2(t)
[

dr2

1−Kr2 + r2(dϑ 2 + sin2ϑ dϕ2)
]
, (A1.13)

the non-zero components of the affine connection are

Γ0
11 = c−1aȧ/(1−Kr2); Γ0

22 = c−1aȧr2; Γ0
33 = c−1aȧr2 sin2ϑ ;

Γ1
01 = Γ2

02 = Γ3
03 = ȧ/ca; Γ2

12 = Γ3
13 = 1/r;

Γ1
11 = Kr/(1−Kr2); Γ1

22 = −r(1−Kr2); Γ1
33 = −r(1−Kr2)sin2ϑ ;

Γ2
33 = −sinϑ cosϑ ; Γ3

23 = cotϑ ,

(A1.14)
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where (x0,x1,x2,x3) = (ct,r,ϑ ,ϕ) and ȧ = da/dt. The non-zero components of the Ricci
tensor are

R00 = − 3
c2

ä
a
, Ri j = − 1

c2

[
ä
a

+2
ȧ2

a2 +
2c2K

a2

]
gi j, (A1.15)

and the curvature scalar is

R = − 6
c2

[
ä
a

+
ȧ2

a2 +
Kc2

a2

]
. (A1.16)

For small perturbations of Minkowski space-time, the perturbed metric can in general be
written as

ds2 = c2(1+2Ψ/c2)dt2 −2cwi dt dxi − [(1−2Φ/c2)δi j +Hi j
]

dxi dx j, (A1.17)

where the perturbation quantities |Ψ|/c2, |Φ|/c2, |wi|, and |Hi j| are all � 1. To the first order of
the perturbation quantities, the non-zero components of the affine connection are:

Γ0
00 = ∂0Ψ; Γ0

i0 = ∂iΨ;

Γi
00 = ∂iΨ+∂0wi; Γi

j0 = 1
2 (∂ jwi −∂iw j)+ 1

2∂0hi j;

Γ0
jk = − 1

2 (∂ jwk +∂kw j)+ 1
2∂0h jk; Γi

jk = 1
2 (∂ jhki +∂kh ji)− 1

2∂ih jk,

(A1.18)

where hi j = Hi j −2Φδi j. The components of the Ricci tensor are

R00 = δ i j∂i∂ jΨ+3∂ 2
0Φ+∂0∂ jw j;

R0 j = − 1
2δ

kl∂k∂lw j + 1
2∂ j∂kwk +2∂0∂ jΦ+ 1

2∂0∂kHj
k;

Ri j = ∂i∂ j(Φ−Ψ)− 1
2∂0(∂iw j +∂ jwi)+δi jημν∂μ∂νΦ− 1

2η
μν∂μ∂νHi j + 1

2∂k(∂iHj
k +∂ jHi

k).
(A1.19)

These results can also be used in dealing with small metric perturbations of a flat, expanding
universe. Here the perturbed metric can be written as

ds2 = c2(1+2Ψ/c2)dt2 −2cawi dt dxi − [(1−2Φ/c2)δi j +Hi j
]

a2 dxi dx j, (A1.20)

where a(t) is the scale factor. It is evident that if we use a new set of space-time coordinates,
(ct,x′1,x′2,x′3) where dx′i = adxi, the affine connection and Ricci tensor corresponding to metric
(A1.20) will have the same forms as given by Eqs. (A1.18) and (A1.19), except that all spatial
derivatives are with respect to x′i. The quantities in terms of the comoving coordinates, xi, can
then be obtained by using general coordinate transformations (see below).

A1.2 The Equivalence Principle

According to the principle of general relativity, all reference frames are equivalent, and a physical
law should have the same form under general coordinate transformation (the general covariance).
Because of this, physical fields defined on a space-time must transform according to a set of rules
under the general coordinate transformation. Depending on whether it is a scalar, S, a vector, V,
or a tensor, T, a physical field transforms as

S′(x′) = S(x); V ′μ(x′) =
∂x′μ

∂xα
Vα(x); T ′μν(x′) =

∂x′μ

∂xα
∂x′ν

∂xβ
Tαβ (x), (A1.21)

under the general coordinate transformation xμ → x′μ . From a given vector or a given tensor, we
can define another vector or another tensor as

Vμ = gμνV
ν ; Tμν = gμαgνβTαβ . (A1.22)
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In general, new tensors can be obtained by using gμν to lower indices and by using gμν to raise
indices. As in special relativity, Vα and Vα are called the covariant and contravariant components
of V. Generally, a lower index is called the covariant index while an upper index is called a
contravariant index. It is easy to prove that under general coordinate transformation, Vμ and Tμν
transform as

V ′
μ(x

′) =
∂xα

∂x′μ
Vα(x); T ′

μν(x
′) =

∂xα

∂x′μ
∂xβ

∂x′ν
Tαβ (x). (A1.23)

Thus, both V μVμ and T μνTμν are invariant under general coordinate transformations.
From the perspective of GR, gravitation is manifested as curved space, and so the space-

time must be (locally) Minkowskian in a frame which is in free fall in a gravitational field. An
important aspect of GR is embodied in the equivalence principle that can be stated as follows: In
a reference frame which is in free fall in a gravitational field, all physical laws have their special
relativistic form, except the gravitational force which disappears. Together with the principle
of general relativity, the equivalence principle enables us to find physical equations valid for any
general reference frame: what we need to do is just to write the usual special relativistic equations
in covariant forms.

Since physical equations generally involve derivatives with respect to the space-time coordi-
nates, we need to find the covariant forms of the derivatives of physical fields. The covariant
derivative with respect to a space-time coordinate xμ is usually denoted by a subscript ‘;μ’. For
a scalar field it is defined as

S;μ ≡ ∂μS, (A1.24)

while for vector fields it is defined as

Vα
;β = ∂βVα +ΓαμβV μ , Vα;β = ∂βVα −ΓμαβVμ . (A1.25)

It is easy to show that, under general coordinate transformation, S;μ transforms as a vector, while
Vα

;β and Vα;β transform as tensors. In general, to obtain the covariant derivative of the tensor
T ······ with respective to xα , we add to the ordinary derivative ∂αT ······ a term −ΓμβαT ····μ· for each

covariant index β (T ···
·β ·), and a term Γβ μαT ·μ·

··· for each contravariant index β (T ·β ·
··· ). Note that

the affine connection itself is not a tensor.
Using the definition of the metric, one can show that

√−gd4x =
√

−g′ d4x′, (A1.26)

where g is the determinant of gμν . This means that
√−gd4x is an invariant volume ele-

ment. Thus, if S(x) is a scalar field, then
∫

S(x)
√−gd4x is independent of the choice of

coordinates.

A1.3 Geodesic Equations

As an application of the equivalence principle, consider the motion of a free particle with non-
zero mass in a gravitational field. In the reference frame comoving with the particle (where,
according to the principle of equivalence, the space-time must be locally Minkowskian with
metric ημν), the motion of the particle is given by

d2ξ μ

ds2 = 0, (A1.27)
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where ds/c is the proper time interval measured in the free-fall frame, and ξ μ is the space-time
coordinates of the particle. For a general reference frame with coordinates xμ related to ξ ν by
xμ(ξ ), the metric is related to ημν by

gμν = ηαβ
∂ξα

∂xμ
∂ξβ

∂xν
. (A1.28)

In the x-frame, the equation of motion (A1.27) becomes

d2xμ

ds2 = −Γμαβ
dxα

ds
dxβ

ds
, (A1.29)

where

Γμαβ =
∂xμ

∂ξ ν
∂ 2ξ ν

∂xα∂xβ
. (A1.30)

One can prove that Γμαβ is just the affine connection defined by Eq. (A1.10). This can be done
by using the relation

∂λgμν = Γαλμgαν +Γαλνgαμ , (A1.31)

and the results of cyclically permuting the three indices. Thus, in the x-frame there is a force
exerting on the free-fall particle. This is gravity. But in the perspective of GR it is because the
particle is moving in a curved space (non-zero affine connection). Free particles move along
geodesics, and so Eq. (A1.29) is also the geodesic equation. If we define the four-momentum as

pμ = mUμ , Uμ = c
dxμ

ds
, (A1.32)

where m is the rest mass of the particle, Eq. (A1.29) can be written in the form

p0

c
dpμ

dt
= −Γμαβ pα pβ , (A1.33)

where p0 = mcdx0/ds = mc2dt/ds. Another useful form of Eq. (A1.29) is

p0

c

dpμ
dt

=
1
2
(∂μgαβ )pα pβ , (A1.34)

where pμ = gμν pν . Note that

gμν pμ pν = m2c2. (A1.35)

In time-orthogonal coordinates, where g00 = 1 and g0i = 0, we have

(p0)2 +gi j p
i p j = m2c2. (A1.36)

If we define the magnitude of the three-momentum as p2 = −gi j pi p j, then

(p0)2 = p2 +m2c2, (A1.37)

and cp0 can be considered the total energy of the particle in the time-orthogonal frame.
For massless particles ds → 0 and so Eq. (A1.29) is invalid. However, both Eqs. (A1.33)

and (A1.34) are well defined for massless particles, provided that pμ is properly defined. One
possibility is to define the four-momentum as

pμ =
p0

c
dxμ

dt
, (A1.38)

which is the same as Eq. (A1.32) for massive particles if we choose p0 = mc2 dt/ds. For massless
particles, gμν pμ pν = 0. It can then be shown that in time-orthogonal coordinates, cp0 is the
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energy of the particle. To cast the equation of motion for massless particles in the form of the
geodesic equation (A1.29), we introduce an affine parameter λ by the equation

p0 ≡ dx0

dλ
. (A1.39)

Eq. (A1.33) can then be written in the form

d2xμ

dλ 2 = −Γμαβ
dxα

dλ
dxβ

dλ
. (A1.40)

A1.4 Energy–Momentum Tensor

If a charge Q is invariant under Lorentz transformation, the equation of charge conservation can
be written in the form

∂ (nQ)
∂ t

+∇ · j = 0, (A1.41)

where j = nQv is the current density. In covariant form this is

Jμ ;μ = 0, (A1.42)

where Jμ is the four-current density vector. One might consider applying this to the mass to
obtain a covariant form for the continuity equation. However, mass is not invariant under Lorentz
transformation; it depends on momentum because of its connection to energy. Thus, a covariant
continuity equation must involve both energy and momentum. The conserved quantity we are
seeking is expected to have 16 components: the energy and energy current in three directions,
plus momenta in three directions and their currents (each momentum has three components).
Thus the quantity must be a 4×4 tensor which we call the energy–momentum tensor and denote
by T μν . The conservation of energy–momentum can then be written in the covariant form

T μν ;μ = 0. (A1.43)

In many cosmological applications, the material content can be approximated by a fluid. To
obtain the corresponding energy–momentum tensor, we again use the equivalence principle. A
fluid is characterized by the density, ρ(x), and pressure, P(x), both measured by an observer
comoving with the fluid at the point x, and the velocity of the fluid element relative to some
reference frame. Note that ρ and P defined in this way are invariant under general coordinate
transformation. In the rest frame of a fluid element, the energy–momentum tensor is

T μν = diag(ρc2,P,P,P) = (ρ+P/c2)UμUν −Pημν , (A1.44)

where Uμ = (c,0,0,0) is the four-velocity of the fluid element in the comoving frame. We can
make a Lorentz transformation to get the energy–momentum tensor in a reference frame which
is in free fall in the gravitational field at the point of the fluid element:

T μν = (ρ+P/c2)UμUν −Pημν , (A1.45)

where Uμ is the four-velocity of the fluid element in the free-fall reference frame. Thus, using
the principle of equivalence, the energy–momentum tensor in a general coordinate system is

T μν = (ρ+P/c2)UμUν −Pgμν , (A1.46)

where Uμ = cdxμ/ds.
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A1.5 Newtonian Limit

One interesting question is what form the space-time metric takes in the Newtonian limit of
gravity. Such a metric tells us how Newtonian gravity (the gravitational potential) is interpreted
in terms of geometric quantities, thereby providing a hint how to construct the field equation in
GR by generalizing the Newtonian field equation (Poisson’s equation). To start with, consider a
reference frame O′ which is in free fall in a Newtonian gravitational potential Φ which is zero at
some large distance. In this frame, the metric has the Minkowski form:

ds2 = c2dt ′2 −dx′2. (A1.47)

Now consider another reference frame O relative to which O′ has the free-fall velocity given by
v2 = −2Φ (assumed to be in the x-direction). According to Lorentz transformation, we have

dt ′ = (1+2Φ/c2)1/2 dt; dx′ = (1−2Φ/c2)1/2 dx. (A1.48)

Thus, the metric in terms of the coordinates in the O system can be written as

ds2 = c2 (1+2Φ/c2) dt2 − (1−2Φ/c2)(dx2 +dy2 +dz2) . (A1.49)

This is the metric in the Newtonian limit.

A1.6 Einstein’s Field Equation

In the Newtonian limit, the 0–0 component of the energy–momentum tensor has the form T00 =
ρc2, and g00 = (1+2Φ/c2). The Poisson equation for gravity therefore takes the form

∇2g00 = 8πGT00/c4. (A1.50)

This is a relation between the energy–momentum tensor and the derivatives of the metric. In
general, the field equation must be a covariant extension of the above relation. We therefore
expect the right-hand side of the above equation to be replaced by 8πGTμν/c4, and the left-hand
side to be replaced by a 4× 4 tensor constructed from the metric and its derivatives. Einstein
proposed a tensor (the Einstein tensor) of the form

Gμν = Rμν − 1
2

gμνR, (A1.51)

and so the Einstein field equation takes the form

Gμν =
8πG
c4 Tμν . (A1.52)

Using that gμνgμν = 4, we see that the trace of the field equation is R = −8πGT/c4, where
T = Tμ μ . The field equation can then be written in the form

Rμν =
8πG
c4

(
Tμν − 1

2
gμνT

)
. (A1.53)

It can be shown that, in the Newtonian limit (A1.49), this equation reduces to the Poisson
equation.

Einstein also realized that he could add to Gμν a term −Λgμν and write the field equation as

Rμν − 1
2

gμνR−Λgμν =
8πG
c4 Tμν , (A1.54)

where Λ is a constant called the cosmological constant. Using the expression of Tμν for an ideal
fluid [see Eq. (A1.46)], we see that the Λ term can be included in the energy–momentum tensor
as an ideal fluid with ρ = −P/c2 = c2Λ/8πG.



Appendix B

Gas and Radiative Processes

Galaxy formation and evolution involves many gaseous and radiative processes. In this appendix
we review some of the basic concepts that are related to our descriptions in the main text. More
detailed descriptions can be found in Rybicki & Lightman (1979), Osterbrock (1989), and Shu
(1991a,b).

B1.1 Ideal Gas

An ideal gas is a hypothetical gas that consists of identical particles of zero volume that undergo
perfectly elastic collisions and for which the intermolecular forces can be neglected. These
assumptions are valid, to good approximation, for low and moderate density gases, and therefore
have many applications in astrophysics. An ideal gas obeys the ideal gas law

PV = NkBT, (B1.1)

with P the absolute pressure, V the volume, N the number of particles, kB the Boltzmann constant,
and T the absolute temperature. This can also be written as

P =
kBT
μmp

ρ, (B1.2)

where ρ = Nμmp/V is the matter density, and μ is the mean molecular mass of a gas particle in
units of the proton mass, mp. For a gas of fully ionized hydrogen, one has that μ = 1/2, while
μ � 0.59 for a fully ionized gas of primordial composition (assuming a mixture of 75% hydrogen
and 25% helium, in terms of mass).

The specific internal energy (i.e. the internal energy per unit mass) of an ideal gas depends
only on temperature, and is given by

E =
1

γ−1
kBT
μmp

. (B1.3)

Here γ = cP/cV is the adiabatic index, which is defined as the ratio of the specific heats

cP = T

(
∂S
∂T

)
P

and cV = T

(
∂S
∂T

)
V

, (B1.4)

with S the specific entropy. For an ideal gas, we have that γ = (q+5)/(q+3), with q the internal
degrees of freedom of the particles. Thus, for a monatomic gas of point particles, q = 0 and
γ = 5/3.

Although the general equation of state of an ideal gas is of the form P = P(ρ,T ), one often
considers special cases in which the equation of state is barotropic, meaning P = P(ρ). The two
most important cases are the ideal isothermal process, for which the temperature stays constant

748
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so that P∝ρ , and the ideal isentropic process,1 for which the entropy of the gas remains constant,
so that P ∝ ργ . More generally, a barotropic equation of state of the form P ∝ ρΓ is known as
a polytropic equation of state, with Γ the polytropic index. Note that Γ = 1 for an isothermal
equation of state, while Γ is equal to the adiabatic index in the case of an isentropic equation of
state.

B1.2 Basic Equations

(a) Fluid Equations In many problems discussed in this book the gas component can be
approximated as a fluid in terms of its macroscopic properties. The evolution of a fluid is gov-
erned by a set of hydrodynamical equations which is derived from the Boltzmann equation under
the assumption that the mean free path of gas particles, l, is much smaller than the smallest
macroscopic scale of the structure, L, we are interested in. In this case, the gas can be considered
in local thermal equilibrium (LTE), and can be described as a continuous medium characterized
by a set of thermal dynamical quantities, such as density ρ , pressure P, and temperature T , all
varying with time, t, and spatial location, x = (x1,x2,x3).

The first moment of the Boltzmann equation leads to mass conservation:

Dρ
Dt

+ρ
∂u j

∂x j
= 0, (B1.5)

where u = (u1,u2,u3) is the velocity of the fluid, repeated indices imply summation, and

D
Dt

≡ ∂
∂ t

+ui
∂
xi

(B1.6)

is the convective time derivative. The second moment of the Boltzmann equation leads to
momentum conservation:

ρ
Du j

Dt
= − ∂P

∂x j
+
∂π jk

∂xk
−ρ ∂Φ

∂x j
, (B1.7)

where Φ is the gravitational potential, and π jk is the viscous stress tensor defined as follows.
Suppose that a particle at a given location in the fluid has velocity U. In general we can write
U = u+w. By definition 〈U〉= u, so that 〈w〉= 0 and 〈UiUj〉= uiu j + 〈wiw j〉. The pressure and
the viscous stress tensor are then given by

P =
1
3
ρ〈w2〉; πi j = Pδi j −ρ〈wiw j〉. (B1.8)

The energy equation given by the Boltzmann equation can be written as

∂
∂ t

[
ρ
(

u2

2
+E

)]
+

∂
∂xk

[
ρ
(

u2

2
+E

)
uk +

(
Pδ jk −π jk

)
u j +Fcond,k

]
= −ρuk

∂Φ
∂xk

, (B1.9)

where E is the specific internal energy, and

Fcond =
1
2
ρ〈w2w〉 (B1.10)

is the conduction flux. Under the assumption of LTE, one can define a specific entropy, S =
cV ln(Pρ−γ). The energy equation can then be combined with the mass and momentum equations
to give the entropy equation,

ρT
DS
Dt

= −∂Fcond,k

∂xk
+V , (B1.11)

1 An isentropic process is a process that is adiabatic (i.e. no heat transfer) and reversible.
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where

V ≡ πi j
∂ui

∂x j
(B1.12)

is the viscous dissipation.
If the mean free path l is zero, then Fcond = 0, πi j = 0, and the above set of equations

reduces to the normal Euler equations. In this case, the specific entropy is conserved accord-
ing to Eq. (B1.11), as is expected from the fact that there is no heat flow across the border of a
fluid element.

To the first order in l/L, we have

Fcond,k = −K
∂T
∂xk

, (B1.13)

where K ∼ (3/2)kBnvthl is the coefficient of thermal conductivity, with vth = (kBT/μmp)1/2

the thermal velocity, and

πik = ν
[
∂ui

∂xk
+
∂uk

∂xi
− 2

3
∂u j

∂x j
δik

]
, (B1.14)

where ν ∼ μmpvth/σ is the coefficient of shear viscosity, with σ the typical collision cross-
section of gas particles. Note that in this approximation both the conduction flux and the viscous
stress are written in terms of other fluid quantities.

In the presence of energy sources (heating) and sinks (cooling), the following energy loss
function should be added at the right-hand sides of Eqs. (B1.9) and (B1.11):

L ≡ C −H , (B1.15)

where H and C are the heating and cooling rates per unit volume, respectively. We are particu-
larly interested in radiative heating and cooling, for which both C and H can be calculated by
modeling the relevant microscopic processes (see §B1.3 below). One can also include mass and
momentum source/sink terms in the mass and momentum equations.

(b) Ionization Equations The main processes for the production and destruction of ions of a
specific species are photoionization, by which an atom or ion is ionized by a photon, and two-
body processes, by which an atom or ion is ionized due to a collision with another particle (e.g.
an electron or another ion). The number density for any given species a (including free electrons)
is therefore governed by

∂na

∂ t
+∇ · (nav) =∑

b,c

kbcnbnc −∑
b

kabnbna +∑
c
Γγ ,cnc −Γγ ,ana, (B1.16)

where kab is the rate coefficient for a two-body interaction between species a and b, and Γγ ,a is
the photoionization rate for species a. The sum ∑b,c in the above equation is over all reactions of
the kind b+c→ a, and∑c is over those of the kind c+γ→ a, both representing the production of
species a. The sum ∑b is over all two-body reactions involving the annihilation of an a particle.
This term, together with the term Γγ ,ana, represents the destruction rate of species a.

(c) Radiative Transfer Equations Since baryonic gas interacts with photons, a consistent
treatment of the gas component must also include the evolution of the radiation field. The radia-
tion field at a space-time position (r, t) is described by the specific intensity, J(ν, k̂,x, t), defined
so that

dE ≡ J(ν, k̂,x, t) k̂ · n̂ dAdΩdν dt (B1.17)
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is the amount of radiant energy carried by photons with frequencies between ν and ν+ dν and
propagating in a direction within a solid angle dΩ centered around k̂, through an area dA with
unit normal n̂, in a time interval dt. The unit of J is therefore [J] = ergs−1cm−2Hz−1sr−1. The
time evolution of J along the path of a light ray is given by the radiative transfer equation,
which can be derived as follows. We can label the position along the path of a light ray by
a time t so defined that (to − t) is the time needed for a photon package at that position to
reach an observer located at a position ro along the path at time to. The trajectory of the pho-
ton package is x = x(t) with x(to) = xo. The change of J per unit time along the path can be
written as

dJ
dt

≡ ∂J
∂ t

+ ck̂ ·∇xJ

=
c

4π
ε[ν,x(t), t]− cρκ[ν,x(t), t]J. (B1.18)

Here ε(ν,x, t) is the emissivity (assumed to be isotropic) per unit proper volume at (x, t); ρκ is
the opacity, i.e. the fractional decrease of the specific intensity due to absorption per unit proper
length along the path. So defined, κ is the absorption cross-section per unit mass.

Both the opacity and emissivity depend on the composition and ionization state, as well as
thermodynamic properties (temperature, pressure, etc.) of the gas. In addition, the emissivity
also depends on the properties and distribution of radiating sources.

B1.3 Radiative Processes

Radiative processes involve the interactions of photons with atoms, ions and electrons. The cross-
sections of all such interactions can, in principle, be calculated from quantum electrodynamics,
but such calculations are very tedious for complex atomic systems. In practice, many of the cross-
sections for complex systems have to be determined through laboratory experiments. Atomic data
are published and updated regularly in Atomic Data and Nuclear Data Tables (Academic Press);
there are also projects like the Opacity Project (Seaton, 1995) that are specifically devoted to the
determinations of radiative cross-sections.

Radiative processes can be classified into several broad categories:

• Bound–bound processes: These are the processes by which an electron makes a transition from
one bound level to another bound level in an atom (or ion). Such transitions can be made either
by collisions with electrons (collisional excitation and de-excitation) or by interactions with
photons (photon excitation, spontaneous and stimulated decay).

• Bound–free processes: These processes involve the removal of an electron from a bound orbit,
which can happen when an atom (or ion) collides with an electron (collisional ionization) or
when it absorbs a photon (photoionization). The reverse process is recombination, by which a
free electron recombines with an ion.

• Free–free processes: These processes involve electrons only in unbound (free) states. When
a free electron is accelerated or decelerated, it emits photons through bremsstrahlung. A free
electron can also absorb a photon through free–free absorption.

• Compton scattering: This is the process in which photons are scattered by free electrons (or
ions). If the photon energy is high, electrons gain energy (the Compton process). On the other
hand, if the kinetic energy of the electron is much larger than the photon energy, energy is
transferred from the electron to the photon (the inverse Compton process).

In the following we describe some of these processes in more detail.
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Fig. B1.1. Illustration of the energy levels of the hydrogen atom and some of the most important transitions.

B1.3.1 Einstein Coefficients and Milne Relation

The bound–bound and bound–free processes are related to the energy levels of the atom in ques-
tion and the transition probabilities associated with them. As an example, Fig. B1.1 shows the
basic energy levels of the hydrogen atom and some of the most important transitions. To start
with, consider the transition between two bound energy states of a given atom, which we call
state ‘i’ and state ‘ j’. The energies of these two states will be denoted by Ei and E j, and as a
convention we assume E j > Ei. The photon frequency involved with the transition is therefore
νi j ≡ (E j −Ei)/hP. The probability per unit time, Pi j, that the atom will undergo a transition from
the low state ‘i’ to the high state ‘ j’ due to photon excitation is

Pi j = Bi jBν , (B1.19)

where Bν dν is the brightness of the radiation in the frequency range ν± dν/2, and Bi j is the
Einstein coefficient of the excitation due to the absorptions of photons of frequency ν. Note that
[Bi j] = g−1 s, [Bν] = gs−2 so that [Pi j] = s−1. An atom at the excited state ‘ j’ tends to decay back
spontaneously to the low-energy state ‘i’, emitting a photon with energy hPνi j but in a random
direction. The probability for this to happen is given by the Einstein coefficient for spontaneous
transition, A ji. In addition to the spontaneous decay, an atom at state ‘ j’ can also make a transition
back to state ‘i’ due to the stimulus of a photon. The rate of stimulated transition is B jiBν ,
where B ji is the Einstein stimulated emission coefficient. The total probability of emission is
therefore

Pji = A ji +B jiBν . (B1.20)

Under the assumption of thermodynamical equilibrium, the number of transitions from ‘i’ to ‘ j’
should be equal to that from ‘ j’ to ‘i’, and so

niPi j = n jPji, (B1.21)



B1.3 Radiative Processes 753

where ni and n j are the number densities of atoms in state ‘i’ and state ‘ j’, respectively. Because
of thermodynamical equilibrium, the number of atoms in each of the two states is given by the
Boltzmann distribution, so that

n j

ni
=

g j

gi
exp

(
−hPνi j

kBT

)
, (B1.22)

where gk is the statistical weight of state ‘k’, and T is the equilibrium temperature. This in
Eq. (B1.21) gives

giBi jBν = exp

(
−hPνi j

kBT

)
(g jA ji +g jB jiBν) . (B1.23)

The brightness of blackbody radiation at temperature T is given by the Planck function

Bν(T ) =
2hPν

3

c2

[
exp

(
hPν

kBT

)
−1

]−1

=
hPν

4π
cNγ(ν), (B1.24)

where Nγ(ν)dν is the number density of photons with frequencies in the range ν ± dν/2.
Inserting this with ν = νi j into Eq. (B1.23) gives

2hPν
3
i j

c2 giBi j = exp

(
−hPνi j

kBT

)[
2hPν

3
i j

c2 g jB ji −g jA ji

]
+g jA ji. (B1.25)

Since this relation is expected to hold for all T , we must have the following relations between
the Einstein coefficients:

g jA ji =
2hPν

3
i j

c2 giBi j and g jB ji = giBi j. (B1.26)

These relations involve only the properties of the atoms, and so are expected to hold in general
cases, although they are derived under the assumption of thermodynamical equilibrium. With
these relations, the photon excitation process is completely determined by one of the Einstein
coefficients, e.g. giBi j. Conventionally, we write

Bi j =
4πai j

hPνi j
, (B1.27)

where ai j is related to the oscillator strength of the transition, fi j, by

ai j =
πq2

e

mec
fi j, (B1.28)

with qe and me the charge and mass of an electron, respectively. The oscillator strength fi j (or
ai j) of a transition can be calculated from quantum electrodynamics or obtained from laboratory
experiments. Table B1.1 lists the atomic data for several important transitions; more complete
lists can be found in Cox (2000) and Verner et al. (1994), for example.

Inserting the relation between Bi j and B ji given by Eq. (B1.26) into Eq. (B1.23) we obtain

n jA ji = niBi jBν

[
1− exp

(
−hPνi j

kBT

)]
. (B1.29)

This is a relation between the rate of spontaneous transition and that of photo-excitation. A simi-
lar relation also holds for the case in which level ‘ j’ is a free state. This gives a relation between
the spontaneous recombination cross-section, σr, and the photoionization cross-section, σpi:

na+1vσr(v)ne f (v)dv =
[

1− exp

(
− hPν

kBT

)]
nacσpi(ν)Nγ(ν)dν. (B1.30)
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Table B1.1. Data for some atomic transitions.

Species Transition λ ( Å) gi fik

HI−Lyα 1s−2p 1215.67 2 0.416
HI−Lyβ 1s−3p 1025.72 2 0.079
HI−Hα 2s−3p 6562.74 2 0.435
HI−Hα 2p−3s 6562.86 6 0.014
HI−Hα 2p−3d 6562.81 6 0.696
HI−Hβ 2s−4p 4861.29 2 0.103
HI−Hβ 2p−4s 4861.35 6 0.003
HI−Hβ 2p−4d 4861.33 6 0.122
HeI−Lyα 1s2 −1s2p 584.33 1 0.285
HeII−Lyα 1s−2p 303.78 2 0.416
CIV 1s22s−1s22p 1550.77 2 0.095
CIV 1s22s−1s22p 1548.20 2 0.190
OVI 1s22s−1s22p 1037.62 2 0.066
OVI 1s22s−1s22p 1031.93 2 0.133
MgII 2p63s−2p63p 2803.53 2 0.314
MgII 2p63s−2p63p 2796.35 2 0.629
Si IV 2p63s−2p63p 1402.77 2 0.260
Si IV 2p63s−2p63p 1393.75 2 0.524

The left-hand side is the electron-capturing (recombination) rate for an ion X at the (a + 1)th

ionization stage. It is proportional to the density of Xa+1, na+1, and to vσrne f (v)dv , the rate at
which an Xa+1 ion can capture an electron of velocity between v and v +dv . The right-hand side
is the photoionization rate for the ath ionization stage (with an extra exponential term that is due
to induced recombination). It is proportional to the number density of Xa and to cσpiNγ(ν)dν,
the rate at which an Xa ion absorbs a photon of frequency between ν and ν+ dν. Because of
energy conservation, we have

1
2

mev2 = hP (ν−νt) , (B1.31)

where νt is the threshold energy required to ionize an Xa ion, and so mev dv = hP dν. Under the
conditions of local thermodynamical equilibrium, the number densities na+1 and na are related
by the Saha equation:

na+1

na
ne =

2Ua+1(T )
Ua(T )

(
2πmekBT

h2
P

)3/2

exp

(
− hνt

kBT

)
. (B1.32)

Here Ua is the partition function of the ath ionization stage, equal to the sum ∑k gke−Ek/kB/T over
all possible energy levels of the ionization stage, with gk the statistical weight of level k, and Ek

the difference between the energy of level k and that of the ground state of the ionization stage.
As described by Rybicki & Lightman (1979), in many applications, the partition function Ua can
be approximated by the statistical weight, ga, of the ground state of the corresponding ioniza-
tion stage. Assuming that Nγ(ν) is given by Eq. (B1.24) and that electrons have a Maxwellian
velocity distribution

f (v) =
(

2
π

)1/2( me

kBT

)3/2

v2 exp

(
−mev2

2kBT

)
, (B1.33)

we obtain the Milne relation:

σr(v) =
ga

ga+1

(
hPν

mecv

)2

σpi(ν), (B1.34)
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where we have used ga to replace Ua. This is a relation between the recombination cross-section
at a given v and the photoionization cross-section at the corresponding ν, and so it is valid
independent of the assumption of thermodynamical equilibrium, although it is derived based on
thermodynamical equilibrium.

B1.3.2 Photoionization and Photo-excitation

Photoionization is the process in which an atom is ionized by the absorption of a photon. For
hydrogen, this is

H0 + γ → p+ e, (B1.35)

where H0 denotes a neutral hydrogen atom. The photoionization rate is proportional to the
number density of ionizing photons and to the photoionization cross-section. Thus, we can write

Γγ ,H =
∫ ∞

νt

cσpi(ν)Nγ(ν)dν, (B1.36)

where νt is the threshold frequency for ionization. Nγ(ν)dν in the above equation is the number
density of photons with frequencies in the range ν to ν+dν, and is related to the energy flux of
the radiation field, J(ν), by

Nγ(ν) =
4πJ(ν)

chPν
. (B1.37)

The photoionization cross-sections can be obtained from quantum electrodynamics by calcu-
lating the bound–free transition probability of an atom in a radiation field (see, e.g. Rybicki &
Lightman, 1979; Shu, 1991b). For hydrogenic atoms with nuclear charge Z at the nth excited
state, the result is

σpi(ν,n) =
nK0

Z2

[
νt(Z,n)
ν

]3

gbf(n,ν) for ν ≥ νt(Z,n), (B1.38)

while σpi(ν,n) = 0 for ν < νt(Z,n). Here νt(Z,n) = Z2νt(1,n) is the threshold frequency of
ionization, gbf(n,ν) is the bound–free Gaunt factor for the nth level (Karzas & Latter, 1961), and

K0 =
64

3
√

3

(
2πe2

hPc

)
πa2

0 = 7.91×10−18 cm2, (B1.39)

is the Krammers absorption cross-section at the Lyman edge of H0, with a0 ≡ h̄2
p/4π2meq2

e the
Bohr radius. Detailed calculations show that the typical lifetime of a hydrogenic atom against
photoionization is much longer than the lifetime of an exited state. Thus, to very good approxi-
mation, photoionization can be assumed to be from the ground state. With this assumption, the
photoionization cross-section can be written as

σpi(ν) =
K0

Z2

(νZ

ν

)3
g1(ν) (for ν ≥ νZ), (B1.40)

where νZ ≡ νt(Z,1). The bound–free g factors are close to unity at optical frequencies (e.g.
Karzas & Latter, 1961). Taking into account the ν dependence of g1, the photoionization cross-
section for hydrogenic atoms can be written as

σpi(ν) =
A0

Z2

(νZ

ν

)4 exp
[
4−4(tan−1 τ)/τ

]
1− exp [−2π/τ]

, (B1.41)

where A0 = 6.30×10−18 cm2 and τ ≡ [(ν/νZ)−1]1/2 (see Osterbrock, 1989). For many-electron
atoms, the photoionization cross-sections usually show large variations in very small frequency
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intervals at some threshold frequencies, but in many applications a smoothed-out representa-
tion is adequate. A useful approximation to the smoothed contribution of each threshold to the
photoionization cross-section is

σpi(ν) = at

[
β
(νt

ν

)s
+(1−β )

(νt

ν

)s+1
]

(ν > νt), (B1.42)

and the total cross-section is the sum over individual thresholds. A list of numerical values of νt,
at, β and s for some common atoms and ions can be found in Osterbrock (1989). For He0, the
values are νt/c = 1.983×105 cm−1, at = 7.83×10−18 cm2, β = 1.66, and s = 2.05.

In addition to photoionization, the absorption of a photon can also excite an atom (photo-
excitation). This is a bound–bound process, with a rate given by

Γi j,γ = Bi jBν =
∫
σi j(ν)cNγ(ν)dν, (B1.43)

where σi j is the absorption cross-section. For resonance absorption, σi j(ν) is peaked sharply at
the resonance frequency νi j, and so the cross-section is related to ai j by

ai j =
∫
σi j(ν)dν. (B1.44)

We can therefore write the absorption cross-section as

σi j(ν) = ai jφi j(ν) with
∫
φi j(ν)dν = 1, (B1.45)

where φi j(ν) describes the profile of the absorption line in ν-space. A more detailed discussion
about absorption line profiles is presented in Chapter 16.

B1.3.3 Recombination

Recombination is the process by which an ion recombines with an electron. For hydrogen ions
(i.e. protons), the process is

p+ e → H+ γ. (B1.46)

This is clearly a cooling process, as a photon is emitted. For a hydrogenic ion, the recombina-
tion cross-section to form an atom (or ion) at level n, σr(v ,n), is related to the corresponding
photoionization cross-section by the Milne relation (B1.34):

σr(v ,n) =
gn

gn+1

(
hPν

mecv

)2

σpi(ν,n), (B1.47)

where ν and v are related by mev2/2 = hP(ν−νn), and gn/gn+1 ≈ 2n2 for hydrogenic atoms. The
recombination coefficient for a given level n is the product of the capture cross-section and veloc-
ity, σr(v ,n)v , averaged over the velocity distribution f (v). For an optically thin gas where all
photons produced by recombination can escape without being absorbed, the total recombination
coefficient is the sum over n:

αA =
∞

∑
n=1

αn =
∞

∑
n=1

∫
σr(v ,n)v f (v)dv . (B1.48)

This is the Case A recombination coefficient, to distinguish it from the Case B recombination in
an optically thick gas. In Case B, recombinations to the ground level generate ionizing photons
that are absorbed by the gas, so that they do not contribute to the overall ionization state of the
gas. It is easy to see that the Case B recombination coefficient is αB ≈ αA −α1.
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For electrons in local thermal equilibrium, f (v) is the Maxwellian distribution function and
both αA and αB depend only on the electron temperature, T . Using the definition of αn and the
relation between σr and σpi, we can write

αn(T ) =
gn

gn+1

(
2πmekBT

h2
P

)−3/2 4π
c2

∫ ∞

νn

ν2σpi(ν,n)e−hP(ν−νn)/kBT dν. (B1.49)

The values of αA and αB can then be calculated using Eq. (B1.38). These values for H+ (Z = 1)
and other simple ions can be found in Spitzer (1978) and Osterbrock (1989), for example. In the
temperature range 102–108 K, the value of αA for H+ can be approximated by

αA(T ) = 4.0×10−13T−0.7
4

(
1+T 0.7

6

)−1
cm3 s−1, (B1.50)

where T4 ≡ T/104 K, and so on. This approximation is the same as that given by Black (1981)
for T ∼< 105 K, except that the last factor is included to enforce proper behavior at T > 105 K
(Cen, 1992). For hydrogenic ions with Z > 1, α(Z,T ) = Zα(1,T/Z2). For He+,

αA(T ) = 4.3×10−13T−0.6353
4 cm3 s−1 (B1.51)

(see Black, 1981).
For complex ions, dielectronic recombination is sometimes important. This is a recombination

process in which a free electron is captured by an ion and the excess energy of the recombination
is taken up by a second (ionic) electron which then also occupies an excited state. The doubly
excited ion subsequently relaxes either by auto-ionizing (to give back the original ion and a free
electron) or via radiative cascades. The coefficients for this kind of recombination are listed in
e.g. Nussbaumer & Storey (1983) and Osterbrock (1989). For He+, it can be approximated by

αd(T ) = 6.0×10−10T−1.5
5 e−4.7/T5

(
1+0.3e−0.94/T5

)
cm3 s−1. (B1.52)

B1.3.4 Collisional Ionization and Collisional Excitation

Collisional ionization is the process by which an atom (or ion) is ionized by the collision with
another particle. This is a cooling process because part of the kinetic energy is used for the
ionization. The most important process is the collision with an electron. For a hydrogen atom,
this process is

H0 + e → p+ e+ e. (B1.53)

The collision-induced ionization rate is proportional to the number density of colliding electrons,
ne, and the collisional cross-section, σci(v), which depends on the velocity v of the colliding
electron. Hence we can write the collisional rate as

Γe,H = ne〈σci(v)v〉 = ne

∫ ∞

0
σci(v)v f (v)dv , (B1.54)

where f (v) is the velocity distribution of electrons. For a given v the collisional cross-section,
σci(v), can be calculated from quantum mechanics. If f (v) is Maxwellian then Γe,H depends
only on the electron temperature and, for 104 K < T < 108 K, can be approximated by

Γe,H = Γ0

(
T
Tt

)1/2

exp

(
−Tt

T

)(
1+T 1/2

5

)−1
ne cm3 s−1, (B1.55)

where

Γ0 = 2.32×10−8, Tt ≡ hPνt(H)/kB = 157809.1K . (B1.56)
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Collisional ionization rates for He0 and He+ can be approximated by the same form, with

Γ0 = 1.27×10−8, Tt = 285335.4K (for He0), (B1.57)

Γ0 = 4.51×10−9, Tt = 631515.0K (for He+). (B1.58)

In addition to ionization, collisional processes can also excite atoms or ions (collisional exci-
tation). Cooling then occurs when the excited atoms make transitions back to their ground states.
The rate of excitation between two levels i and j by collisions with a given kind of particles (e.g.
electrons) can be written as

Γi j,e = neγi j,e, γi j,e =
∫ ∞

0
σi j,e(v)v f (v)dv , (B1.59)

where γi j,e is the collisional rate coefficient. The quantity σi j,e(v) is the collisional cross-section
for collisions with velocity v , which is often expressed in terms of the collision strength Ωi j,e:

σi j,e(v) =
π
gi

(
hP

2πmev

)2

Ωi j,e. (B1.60)

The values of Ωi j are listed in, e.g. Mendoza (1983).

B1.3.5 Bremsstrahlung

In an ionized gas, electrons can be accelerated and emit photons when colliding with ions. This
kind of emission is called bremsstrahlung. For a cosmic gas, the main process is the collision
between electrons and protons:

p+ e → p′ + e′ + γ. (B1.61)

The energy radiated from a plasma per unit time, per unit volume and per unit frequency interval
(i.e. the volume emissivity) can be written as

εff(ν) = nine

∫
P(v ,ν) f (v)dv , (B1.62)

where f (v) is the electron velocity distribution, and P(v ,ν) is the power radiated per unit fre-
quency due to the collision of an electron of velocity v with an ion. The form of P(v ,ν) can
be calculated directly from electrodynamics (e.g. Shu, 1991b; Rybicki & Lightman, 1979). For
thermal bremsstrahlung, where f (v) is Maxwellian, the emissivity due to collisions between
electrons and ions with charge number Z is

εff(ν) =
32π

3
Z2q6

e

m2
ec4

(
2πmec2

3kBT

)1/2

nineg(ν,T )exp

(
− hPν

kBT

)
≈ 6.8×10−42Z2 nine

T 1/2
8

g(ν,T )exp

(
− hPν

kBT

)
ergs−1cm3Hz−1, (B1.63)

where T8 ≡ T/108 K, and g(ν,T ) ∼ 1 is the Gaunt g factor. The inverse process is free–free
absorption, in which a photon is absorbed by an electron when it is accelerated by an ion. The
absorption opacity can be obtained by using Kirchhoff’s law, εff = 4π(ρκff)Bν :

ρκff(ν) =
4
3

Z2q6
e

m2
ec2hPν3

(
2πmec2

3kBT

)1/2

nineg(ν,T )
[

1− exp

(
− hPν

kBT

)]
. (B1.64)
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B1.3.6 Compton Scattering

Compton scattering is the process in which a free electron collides with a photon:

e+ γ → e′ + γ ′. (B1.65)

If the photon energy, hPν, is much smaller than mec2, the cross-section for this process is the
classical Thomson cross-section:

σT =
8π
3

(
q2

e

mec2

)2

≈ 6.65×10−25 cm2. (B1.66)

During Compton scattering, energy exchange can occur between electrons and photons. To see
this, consider a medium of non-relativistic electrons at temperature Te. When photons propagate
through such a medium, they will be scattered and Doppler-shifted by the electrons, and the
photon occupation number N (ν, t) changes with time according to the Kompaneets equation
(Kompaneets, 1957; Rybicki & Lightman, 1979):

∂N

∂ t
=
σTnehP

mec
1
ν2

∂
∂ν

{
ν4
[
N (N +1)+

kBTe

hP

∂N

∂ν

]}
. (B1.67)

Using the following dimensionless variables,

x =
hPν

kBTe
, dy =

kBTe

mec2σTnecdt, (B1.68)

the Kompaneets equation can be written in a more compact form,

∂N

∂y
=

1
x2

∂
∂x

{
x4
[
N (N +1)+

∂N

∂x

]}
. (B1.69)

The Compton y-parameter introduced here can be written as

y =
∫ t

t1

kBTe(t ′)
mec2 σTne(t ′)cdt ′, (B1.70)

which is proportional to the pressure of the electron gas, neTe. It can also be considered as
the product of the scattering optical depth,

∫
σnecdt, and a weighted average of the electron

temperature.
The number of photons per unit volume, nγ , is the integral of the occupation number, N , over

phase space:

nγ =
∫

N (x,y)x2 dx. (B1.71)

It can be easily verified from Eq. (B1.69) that dnγ/dt = 0, consistent with the fact that the photon
number is conserved during Compton scattering. A static solution of Eq. (B1.69) is

N (x) =
(
ex+x0 −1

)−1
, (B1.72)

where x0 is a constant. This solution is expected, because when the photon number is con-
served, the energy spectrum relaxes to a Bose–Einstein distribution at a finite chemical potential
(proportional to x0).

The energy density in the radiation is

uγ =
∫ ∞

0
N (x,y)x3 dx. (B1.73)

Multiplying Eq. (B1.69) by x3 and integrating over x we obtain

duγ
dy

= 4uγ −
∫

x4N (N +1)dx. (B1.74)
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If the radiation field is close to that of a blackbody with temperature T , then

N ≈ (ehPν/kBT −1)−1, and N (N +1) ≈− T
Te

∂N

∂x
. (B1.75)

In this case, the equation for uγ reduces to

1
uγ

duγ
dy

= 4
Te −T

Te
. (B1.76)

Thus, the radiation field gains energy from electrons if Te > T . For Te 	 T , the energy gain per
volume is

duγ
dt

= 4uγ
dy
dt

=
4kBTe

mec2 cσTnearT
4
γ , (B1.77)

where ar is the radiation constant.

B1.4 Radiative Cooling

(a) Atomic Cooling For an optically thin gas, the volume cooling rate due to bremsstrahlung
is obtained from the bremsstrahlung (free–free) emissivity given by Eq. (B1.63):

Cff =
∫
εff(ν)dν

≈ 1.4×10−23T 1/2
8

( ne

cm−3

)2
ergs−1cm−3, (B1.78)

where in the second expression we have assumed Z = 1 and ni ∼ ne, valid for a completely
ionized hydrogen gas. The total cooling rate is the sum over all species of ions.

The cooling rate due to recombination of an ionization level a+1 to form an ion of level a is

Ca(T ) =
ga

ga+1
nena+1

(
2πmekBT

h2
P

)−3/2 4π
c2

×
∫ ∞

νa

ν2σpi(ν,a)hP(ν−νa)exp

[
−hP(ν−νa)

kBT

]
dν, (B1.79)

which can be derived in the same way as Eq. (B1.49). The cooling rate arising from the collisional
excitation and de-excitation of a given kind of element X by a given type of particles Y (e.g.
electrons) can be written as

CX ,Y = nY nX ∑
b<a

(Ea −Eb) [xbγba(X ,Y )− xaγab(X ,Y )] , (B1.80)

where xa = na/nX (xb = nb/nX ) is the fractional population of X atoms at level a (b), Ea (Eb) is
the corresponding energy level, and γba and γab are the collisional excitation and de-excitation
rate coefficients, respectively. The number densities of atoms at different energy levels can be
obtained by solving the population equations,

∂na

∂ t
+∇ · (nav) =∑

Y
∑
b

nbΓba,Y −na∑
Y
∑
b

Γab,Y , (B1.81)

where Γab,Y denotes the rate for ions (of a given element) on level a to make a transition to level
b as a result of process Y (both collisional and photoelectric). Given the rates of transitions, the
population densities can be solved, and so the cooling rate can be calculated. Table B1.2 lists the
rates of the dominant cooling processes for hydrogen and helium. These formulae are adopted
from Black (1981), with some modifications given by Cen (1992).
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Table B1.2. H and He cooling rates.

Process Species Cooling rate/(ergs−1 cm−3)

collisional− H0 7.50×10−19e−118348/T (1+T 1/2
5 )−1nenH0

excitation He+ 5.54×10−17T−0.397e−473638/T (1+T 1/2
5 )−1nen+

He

collisional− H0 1.27×10−21T 1/2e−157809/T (1+T 1/2
5 )−1nenH0

ionization He0 9.38×10−22T 1/2e−285335/T (1+T 1/2
5 )−1nenHe0

He+ 4.95×10−22T 1/2e−631515/T (1+T 1/2
5 )−1nenHe+

recombination H+ 2.82×10−26T 0.3(1+3.54T6)−1nenH+

He+ 1.55×10−26T 0.3647nenHe+

He++ 1.49×10−25T 0.3(1+0.885T6)−1nenHe++

dielectronic− He+ 1.24×10−13T−1.5e−470000/T (1+0.3e−94000/T )nenHe+

recombination

free−free all ions 1.42×10−27gffT
1/2ne(nH+ +nHe+ +4nHe++)

The cooling rate of a cosmic gas (which is rich in hydrogen) is usually represented by a cooling
function defined as

Λ(T ) ≡ C

n2
H

, (B1.82)

where nH is the number density of hydrogen atoms (both neutral and ionized). So defined, Λ
is independent of gas density for an optically thin gas. Note that other normalizations, such as
C /n2

e , are also in use in the literature to define Λ. In order to calculate the cooling function
we need to know the abundances of different ions. This can be done by solving the ionization
equations, which are similar to Eq. (B1.81) except that the population densities are summed over
all energy levels of a given ion. For example, for gas containing only H and He and in ionization
equilibrium, the balance between collisional ionization and recombination gives:

Γe,H0nH0 ne = αH+nH+ne, (B1.83)

Γe,He0nHe0ne =
(
αHe+ +αHe+,d

)
nHe+ne, (B1.84)

Γe,He+nHe+ne +
(
αHe+ +αHe+,d

)
nHe+ne = αHe++nHe++ne +Γe,He0ne, (B1.85)

ne = nH+ +nHe+ +2nHe++ , (B1.86)

where Γe,a is the ionization rate of ion a due to a collision with an electron, and αa is the recom-
bination rate. αHe+,d is the dielectronic recombination rate of He+. The equations of these rates
are given in the previous section. Thus, for given T , nH and nHe, the equilibrium population den-
sities can all be solved. The equilibrium cooling function depends on both T and nHe/nH. The
Z = 0 curve in Fig. 8.1 shows the cooling function versus temperature for nHe/nH = 1/12.

The same calculation can also be performed for gas containing heavier elements. Sutherland &
Dopita (1993) have calculated the cooling functions for various metallicities. Their results for
Z = Z�, Z = Z�/10 and Z = Z�/100 are also shown in Fig. 8.1.

The cooling function obtained above assumes ionization equilibrium. For gas that is not
in ionization equilibrium, ion densities may differ from the equilibrium values, and the cool-
ing function has to be calculated using these non-equilibrium densities that are obtained from
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solving the time-dependent ionization equation (B1.81). As one can see from this equation,
ionization equilibrium can be achieved if the time scales for the radiative processes in con-
sideration are much shorter than the Hubble expansion time scale and the hydrodynamic time
scale.

(b) Molecular Cooling Molecules usually possess vibrational and rotational quantum states,
in addition to electronic levels. Vibrational states are due to the vibrations of the constituent
atoms relative to each other, whereas rotational states come from the quantization of the total
angular momentum. Normally, the energy involved in a vibrational/rotational transition is much
lower than that in an atomic transition, and so molecules can be vibrationally or rotationally
excited through a collision with an atom or with another molecule even in gas with relatively low
temperature. The gas can then cool as a result of the energy loss due to the de-excitation of the
excited molecules.

The simplest and most important molecule is H2, molecular hydrogen, which has a binding
energy of 4.48 eV. The vibrations of the two hydrogen atoms relative to each other can be consid-
ered as harmonic oscillators, and have 15 energy levels ranging from about 0.25 eV all the way to
the binding energy. For each vibrational level, there are different rotational states that correspond
to the quantization of the total angular momentum, J, with the alternate rotational states having
nuclear spins aligned (ortho) or antiparallel (para). Because H2 lacks a dipole moment, the vibra-
tional/rotational transitions are quadrupole in nature (i.e. the change in the angular momentum
quantum number is ΔJ = 2).

An H2 molecule can be rotationally or vibrationally excited by collisions with an H0 atom or
with another H2 molecule. The de-excitation can be either radiative, which amounts to energy
loss from the gas to photons, or collisional, in which case the thermal energy lost to the exci-
tation is returned to the gas and there is no net cooling. If the number density of colliding
particles (either H or H2) is very low, the cooling process dominates. In this case, since col-
lisional excitation is not frequent, hydrogen molecules spend most of their time in the ground
state or in the J = 1 rotational state (as its radiative decay to the ground state is forbidden), and
collisional excitation is almost always followed by a radiative decay before another collision
can occur. The volume cooling rate is therefore proportional to the square of the number den-
sity of H2, n(H2). In the high-density limit, on the other hand, collisions can occur before an
excited molecule decays radiatively. In this case, the distribution of molecules in various states
is expected to follow the Boltzmann distribution for the local thermal equilibrium (LTE), and the
volume cooling rate – due to the occasional radiative de-excitation – is now roughly proportional
to n(H2).

The calculation of H2 cooling is, in principle, straightforward. The number densities of H2

at different excitation levels are determined by the rates of excitation and de-excitation due to
collisions with H0 and H2, and the cooling rate is given by Eq. (B1.80) by summing over all
vibrational/rotational levels. The cooling function Λ, normalized by the total number density
n = n(H)+n(H2), is then given by

n2Λ= n(H2)n(H)∑
b<a

(Ea −Eb) [xbγba(H)− xaγab(H)]

+n(H2)n(H2)∑
b<a

(Ea −Eb) [xbγba(H2)− xaγab(H2)] , (B1.87)

where γab(H) and γba(H) are the collisional excitation and de-excitation coefficients for incident
H, while γab(H2) and γba(H2) are those for incident H2, and the sum ∑b<a is over all vibra-
tional/rotational levels. At T < 104 K, only rotational transitions within the lowest vibrational
levels contribute significantly, because the temperature is not high enough to excite H2 to high
vibrational levels. The H2 cooling function has been calculated by many authors (e.g. Lepp &
Shull, 1983; Hollenbach & McKee, 1979, 1989; Forrey et al., 1997; Galli & Palla, 1998).
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In order to calculate the cooling rate per unit volume (or per unit gas mass), we need to know
the number density of H2. In the absence of dust grains, the formation of H2 proceeds mainly by
the following reactions:

H0 + e → H− + γ, H− +H0 → H2 + e; (B1.88)

H+ +H0 → H2
+ + γ, H2

+ +H0 → H2 +H+. (B1.89)

These formation processes are counterbalanced by the following reactions that cause destructions
of H−, H2

+ and H2:

H− + γ → H0 + e, H− +H+ → 2H0, H2
+ + γ → H0 +H+, (B1.90)

H2 +H+ → H2
+ +H0, H2 + e → 2H0 + e, H2 + γ → H2

+ + e. (B1.91)

The rates of these reactions can be found in Abel et al. (1997) and Galli & Palla (1998), for
example. The number density of H2 in a gas can then be obtained by solving the ionization
equations (B1.16). The chemistry of other common molecules and their implications for gas
cooling can be found in Hollenbach & McKee (1979, 1989), for example.



Appendix C

Numerical Simulations

In the main text we have seen that galaxy formation involves many physical processes. In broad
terms these processes can be divided into three main categories: gravitational, gas-dynamical
and radiative. Although the physical principles governing most of these processes are well estab-
lished, the dynamical systems are often so complicated that it is generally difficult to obtain
analytical solutions. Thanks to the revolutionary development of powerful computers, it has
become possible to tackle some of these problems using numerical simulations. In a numeri-
cal simulation, the mass distribution is usually represented by particles or sampled on a grid,
and the motion of each mass element is traced numerically by taking into account its interac-
tions with other mass elements. The solutions would be exact if we were able to simulate the
motions of all individual atoms or elementary particles. Unfortunately this can never be achieved
since the systems of interest (galaxies) contain of the order of 1068 protons. In practice, there-
fore, the pseudo-particles or mass elements used to represent the mass distribution each have a
mass that is typically orders of magnitude larger than that of an actual atom. Such a representa-
tion is clearly an approximation, which may impose serious limitations on the reliability of the
simulations.

In general, numerical simulations of galaxy formation can be divided in two broad categories:
N-body simulations and hydrodynamical simulations. Given the importance of numerical sim-
ulations in modern astrophysics, this appendix briefly describes some of the basic numerical
methods used.

C1.1 N-Body Simulations

Suppose that we have a system of N collisionless particles. For simplicity, we assume that
each particle has the same mass m = 1. The state of this system at any time t is described by
the positions and velocities of all particles, (ri,ui) (i = 1,2, . . .,N). Since the particles inter-
act with each other only gravitationally, the motion of the ith particle in the system can be
written as

dri

dt
= ui, (C1.1)

dui

dt
= Fi = −∇φ |i, (C1.2)

where Fi is the force on a unit mass (i.e. the acceleration) at the position of the particle, and φ is
the gravitational potential which is determined by the mass density, ρ(r, t), through the Poisson
equation,

∇2φ = 4πGρ(r, t). (C1.3)

764
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In cosmological applications, where the background space is uniformly expanding with time, it
is convenient to use comoving units for the coordinates, r→ x = r/a (where a is the scale factor).
In terms of x and v ≡ dx/dt, the above equations become

dxi

dt
= vi, (C1.4)

dvi

dt
+2H(t)vi = − 1

a2∇xΦ|i, (C1.5)

where H(t) = ȧ/a, and Φ is the gravitational potential due to the density perturbations:

∇2
xΦ= 4πGa2 [ρ(x, t)−ρ(t)] . (C1.6)

As the descriptions with and without the expansion terms are very similar, we neglect the
expansion in our following description.

Since gravity is a long-range force, the force on a particle depends on the positions of all
other particles. The problem is then to solve a set of 2N coupled first-order ordinary differential
equations. Numerically, this can be done straightforwardly by integrating the equations forward
in finite time steps.

Suppose that at the nth time step, the time is tn and the distribution of particles is given by ri(tn),
ui(tn) where i = 1,2, . . .,N. Suppose that we can use the current position, velocity, acceleration
and time to determine a time step Δtn for the evolution so that the error introduced is within some
preset limit (we will discuss how to set such a limit in §C1.1.2). Using the equations of motion
(C1.1) and (C1.2), we can predict the velocities and positions at the next time

u′
i(tn+1/2) = ui(tn)+Fi(tn)Δtn/2, (C1.7)

r′i(tn+1/2) = ri(tn)+u(tn)Δtn/2, (C1.8)

where Fi(tn) is the force on a unit mass at the position of the ith particle at time tn. With these
new positions and velocities, we can calculate the new force on a unit mass at the position of the
ith particle:

Fi(tn+1/2) = F[u′
i(tn+1/2),r

′
i(tn+1/2), tn +Δt/2], (C1.9)

where we have included the possible dependence of the force on velocity and time, although
only the position is relevant if only gravitational interaction is involved. Finally, we can update
the velocities and positions as

ui(tn+1) = ui(tn)+Fi(tn+1/2)Δtn, (C1.10)

ri(tn+1) = ri(tn)+
Δtn
2

[ui(tn)+ui(tn+1)] , (C1.11)

tn+1 = tn +Δtn. (C1.12)

This kind of time integrator is called the ‘leap-frog scheme’.
Thus, if we have an efficient way to calculate the forces on all particles at each time step, the

system can be integrated forward in time numerically.
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C1.1.1 Force Calculations

(a) PP (Particle–Particle) Algorithm For a collisionless N-body system, the most straight-
forward way to calculate the gravitational force on a particle is by direct summation of
particle–particle (PP) interactions:

Fi = −∑
j �=i

Gm
ri − r j

|ri − r j|3 . (C1.13)

Since this calculation is a pairwise operation, the total time required to calculate all the forces
is proportional to N2, which makes it difficult to integrate systems with a particle number much
larger than about 104, even with present-day supercomputers.

(b) Tree Algorithm In order to run numerical simulations with large particle numbers (N 	
104), one has to resort to a different method for calculating the forces. One such method is
the tree method, in which particles are grouped together systematically according to their dis-
tances to the particle for which the force is to be calculated. The force from each group is then
replaced by its multipole expansion. Since the higher order terms in the multipole expansion die
off faster with distance, we need to keep only a smaller number of multipole components for
more distant groups while maintaining the force accuracy. Equivalently, if the number of multi-
pole components is kept fixed, more distant particles can be combined into larger groups without
compromising the accuracy.

For example, in the tree method proposed by Barnes & Hut (1986), the computational domain
is hierarchically partitioned into a sequence of cubes, where each cube contains eight siblings,
each with half the side-length of the parent cube. These cubes form the nodes of an oct-tree struc-
ture. The tree is constructed such that each node (cube) contains either exactly one particle or is
the progenitor for further nodes. In the latter case the node carries the monopole and quadrupole
moments of all the particles that lie inside its cube. A force computation then proceeds by walk-
ing the tree, and summing up appropriate force contributions from tree nodes. In the standard
Barnes and Hut tree walk, the multipole expansion of a node of size l is used only if r > l/ϑ ,
where r is the distance of the point of reference to the center-of-mass of the cell and ϑ is a pre-
scribed accuracy parameter. If a node fulfills this criterion, the tree walk along this branch can
be terminated, otherwise it is ‘opened’, and the walk is continued with all its siblings. It can be
shown that in this kind of tree algorithm, the computational time for a complete force evaluation
is of the order of N logN.

(c) PM (Particle–Mesh) Algorithm Another method to compute the force is to solve the
Poisson equation on a grid of meshes (e.g. Hockney & Eastwood, 1988). In this scheme, the com-
putational box (assumed to have size L) is divided up into a grid of M3 meshes with constant size
l = L/M. We denote the grid points by Xq = ql, where q = (q1,q1,q2) (q1,q2,q3 = 1,2, . . .,M).
Suppose that at some time step the particle positions are ri (i = 1,2, . . .,N). The PM algorithm
then computes the forces as follows:

(i) A mass is assigned to each grid point Xq according to the particle distribution as

ρ(q) =
m
L3

N

∑
i=1

W (ri −Xq), (C1.14)

where W is a kernel function, assumed to be normalized:
∫

W (r)d3r = 1. Note that ρ(q)
is a convolution of the particle distribution with the window function, and so its Fourier
transform is equal to the product of Wk (the Fourier transform of the window function)
and ρk (the Fourier transform of the mass distribution represented by the particles).
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(ii) The Poisson equation is solved on the grid. In Fourier space, the Poisson equation
becomes −k2φk = 4πGρk, where ρk can be obtained by the Fourier transformation of
ρ(q) deconvolved with the window function. If the computational box has a size much
larger than the scales of interest, the mass distribution can be assumed to be periodic
on the opposite surfaces of the box, and the Fourier transform of ρ(q) can be obtained
speedily using the fast Fourier transform (FFT) (e.g. Press et al., 1992). The gravitational
force on a unit mass at each grid point can then be obtained by the Fourier transform of
Fk = −iφkk.

(iii) The forces on the grid points are interpolated at the positions of the particles:

F(ri) =∑
q

W (ri −Xq)F(q), (C1.15)

where the summation is over a designated set of grid points close to ri (because W is
localized, as discussed below).

The choice of the kernel is non-trivial and can affect the numerical accuracy. The kernel should
be chosen such that the total momentum is conserved. It is easy to show that this is fulfilled if
the same kernel is used for both the density and the force, as is done in Eqs. (C1.14) and (C1.15).
The kernel should be sufficiently peaked so that the smoothing is not too heavy, but it should not
change too rapidly over a mesh because otherwise a slight error in the position of a particle in a
mesh would lead to a large error in the interpolation. One commonly used kernel has the form

W (r) =
1
πl3

⎧⎨⎩
3/4−R2 (0 ≤ R ≤ 1/2)
(3/2−R)2/2 (1/2 < R ≤ 3/2)
0 (otherwise),

(C1.16)

where R ≡ |r|/l. More examples can be found in Hockney & Eastwood (1988), for example.
It is evident that in the PM algorithm the total computational cost for force evaluations scales

linearly with N, and so a large number of particles can be used. However, the force resolution
is limited by the size of the mesh; a large number of meshes has to be used to achieve a high
accuracy. Consequently, the computational constraint comes mainly from memory instead of
CPU time.

(c) P3M (Particle–Particle–Particle–Mesh) Algorithm A widely used compromise between
the PP and PM algorithms is the P3M scheme. In this scheme, long-range force is computed
by PM while the force between particles with distance less then about 2l is computed directly
from PP. If the particles are not strongly clustered so that only a small number of particles have
distances smaller than 2l, the scheme reduces to PM. If, on the other hand, particles are strongly
clustered so that many particles have distances smaller than 2l, the scheme is effectively PP.
Thus, the simplest implementation of P3M with fixed mesh size becomes very time consuming
when particles become highly clustered. This drawback can be avoided with the use of adaptive
submeshes (see Couchman, 1991). In the adaptive P3M (AP3M) scheme, a finer grid is used
whenever many particles are found within a parent grid. The PP algorithm is applied only to
particles with distances smaller than a fixed number (e.g. two) times the finest grid, while the
PM algorithm is used otherwise.

C1.1.2 Issues Related to Numerical Accuracy

From the above description we see that the mass resolution, the force resolution and the choice
of time steps are critical factors controlling the overall accuracy and computational efficiency of
a simulation. Here we discuss these issues in more detail.
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(a) Mass and Force Resolutions An obvious limitation of using pseudo-particles with a finite
mass to sample the density field is that objects with masses below the mass resolution are not
represented in the simulation. Finite mass resolution also limits the ability to study the internal
structures (density profiles, shapes, substructures, etc.) of objects with masses not much larger
than the mass resolution. Typically one requires more than ∼ 1000 particles in order to have a
sufficiently reliable representation of the overall shape and density profile of a collapsed object;
reliably resolving substructures requires particle numbers that are several orders of magnitude
larger.

A more subtle effect of finite mass resolution concerns the computation of the gravitational
forces. In a simulation, dimensionless particles of infinite mass density are used to represent
three-dimensional mass elements of finite volume and finite density. The gravitational force
between two such mass elements is only well approximated by that between the two particles
representing them if their distance is large. Indeed, the gravitational force between two particles
diverges as their distance approaches zero, while the gravitational force between two extended
objects is always finite. Consequently, close encounters between simulation particles could lead
to large-angle scattering events that are unrealistic. To prevent this from happening, a force
softening has to be introduced. In a mesh-based algorithm, the mass of a sampling particle is
partitioned to grid points with a given smoothing kernel, and so the force is automatically soft-
ened on the scale of the mesh. In the PP algorithm, artificial force softening is usually used by
modifying Newton’s gravity between two particles, Gm2/r2, by something like Gm2/(r2 + ε2),
where ε is the gravitational softening length. The value of ε is usually specified in terms of
the mean interparticle separation (lp) in the simulation. The highest density contrast that can
be resolved is then roughly (lp/ε)3. In practice ε/lp is chosen to be in the range 1/50–1/20.
A choice of a much smaller ε is impractical, as it requires very small time steps to satisfy the
time step criterion described below.

(b) Time Step Criterion When integrating a function y = f (x) from xmin to xmax numerically,
it is common practice to represent the curve by the values of f (x) and its first derivatives at a
set of discrete points xn = xmin +nΔx (n = 1,2, . . . ,N), where Δx = (xmax − xmin)/N. In order to
obtain accurate results, Δx must be sufficiently small (i.e. N must be sufficiently large) so that
all high-order terms in the Taylor expansion of f (x) are much smaller than the first two terms.
A similar criterion is used to choose the time steps in numerical simulations.

The change of the position of a particle in a time step in a simulation is given by

Δr = r(tn+1)− r(tn) = u(tn)Δt +
1
2

F(tn+1/2)Δt2 + · · ·. (C1.17)

Similarly, the change in the specific kinetic energy is

Δε = u(tn) ·F(tn+1/2)Δt +
1
2

F(tn+1/2) ·F(tn+1/2)Δt2 + · · ·. (C1.18)

In order to have a reliable integration, the terms of second order in Δt should be smaller than the
first order terms. This suggests a time step criterion of the form

Δt = αtol
|u|
|F| , (C1.19)

where αtol is a dimensionless tolerance parameter. However, this criterion strongly breaks the
reversibility of the integration. A better choice may be

Δt = αtol
σ
|F| , (C1.20)

where σ is the typical velocity dispersion of particles at the position in question (see Springel
et al., 2001b).
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C1.1.3 Boundary Conditions

In cosmological applications one usually wishes to simulate either a ‘representative’ region of
the Universe or a particular system, e.g. a galaxy or a cluster of galaxies, that is embedded in a
dynamically active environment. In both cases appropriate modeling of the boundary conditions
is important, and the limitations imposed by the fact that the simulation can only be carried out
for a finite volume has to be taken into account.

When studying a typical region of the Universe, the usual choice is to apply periodic boundary
conditions on opposite faces of a rectangular (most often cubic) box. This avoids any artificial
boundaries and forces the mean density of the simulation to remain at the desired value. The
Fourier spectrum of a periodic universe is discrete and only wavenumbers, k = (2π/L)(i1, i2, i3),
where i1, i2 and i3 are integers, are allowed in a periodic cube. Often we are interested in effects
for which the influence of long wavelength modes is important (for example, the number density
of rich clusters and the large-separation behavior of the correlation function). The difference
between the discrete and continuous Fourier representations can then be quite significant. It is
therefore important to check the simulation results by calculating all statistics for an ensemble of
equivalent models and by comparing them against those of lower resolution simulations of larger
regions.

When simulating the formation of individual objects, such as galaxy halos or clusters, in a
cosmological density field, it is important to represent properly the tidal effects of surrounding
matter. This is usually done by sampling the large-scale density field outside the object being
studied in a periodic cubic box with particles which are much more massive than the particles
used to sample the object of interest and its neighborhood. Thus, the object being studied can be
resolved with many more particles than it is in a simulation using equal-mass particles in a box
large enough to properly represent the large-scale tidal effects. Unfortunately, this approach is
quite inefficient; even a very crude representation of the tidal effects requires most of the particles
to be outside the object. Tree algorithms discussed above allow a straightforward and efficient
solution to this problem. The matter which always remains outside the object of interest can
then be represented by relatively few ‘nodes’ of the tree whose internal structures need not be
computed.

C1.1.4 Initial Conditions

For most galaxy formation and large-scale structure problems, the initial conditions can be
split into two parts. The first is to set up a ‘uniform’ distribution of particles to represent
the unperturbed Universe. The second is to impose density perturbations with the desired
characteristics.

It is not trivial to set down a finite number of particles to represent a desired uniform mass
distribution. For example if N particles are distributed randomly in a box of side L, then the
fluctuation in density contrast for randomly placed spheres of radius R is given by the formula
for a Poisson process, 〈(

δM
M

)2
〉1/2

=
(

3L3

4πR3N

)−1/2

=
1√

N̄(R)
, (C1.21)

where N̄(R) is the mean number of particles in a sphere. The power spectrum of this ‘unper-
turbed’ universe is P(k) ∝ kn with n = 0, i.e. a ‘white noise’ spectrum. If a simulation is run
from such initial conditions, these fluctuations may grow rapidly into nonlinear objects even if
no other fluctuations are imposed.

The most widely used solution to this problem is to represent the unperturbed Universe by a
regular cubic grid of particles. This procedure works quite well. However, it introduces a strong



770 Numerical Simulations

characteristic length scale on small scales (the grid spacing) and it leads to strongly preferred
directions on all scales. These effects are particularly noticeable in the simulations of hot dark
matter cosmogonies where it is very important to suppress artificial small-scale noise since the
theory predicts that real small-scale fluctuations should have negligible amplitude. The regularity
of the grid may also affect the statistical properties of the nonlinear point distribution, particu-
larly those that emphasize low-density regions, since the remnant of the initial grid pattern is
almost always visible in such regions. While it is healthy to have a strong visual reminder of the
resolution limitations imposed by the finite number of particles, alternatives to the regular mesh
are valuable in allowing an evaluation of the significance of these limitations.

An extremely uniform initial particle load which has no preferred direction can be created by
the following trick (see White, 1996). Particles are placed at random within the computational
volume. The cosmological N-body integrator is then used to follow their motion, except that the
sign of the acceleration is reversed in the equations of motion. Peculiar gravitational forces then
become repulsive. If the simulation is evolved for many expansion factors, the particles settle
down to a glass-like configuration in which the force on each particle is very close to zero. This
state shows no discernible order or anisotropy on scales beyond a few interparticle separations.
If it is used as initial condition for the standard integrator without further perturbation, no small-
scale structure grows even for expansion factors as large as about 30.

Given a suitable ‘unperturbed’ particle distribution, any desired linear fluctuation distribution
can be generated quite easily using the Zel’dovich approximation. First the linear density field is
realized either in real space (as is simplest for simulating objects with well-defined symmetry)
or in Fourier space (as is simplest for simulating a Gaussian random field). Fourier techniques
can then be used to generate the perturbations in the gravitational potential, Φ(x), and so the dis-
placement field −b(t)∇Φ which appears in the Zel’dovich approximation (see §4.1.8). This can
be used to move particles from their unperturbed positions and to create a discrete realization of
the desired density field. Particle velocities can be set by applying linear theory either to the dis-
placements or to the accelerations implied by the Poisson solver used in the numerical integrator.
The latter scheme works better in marginally nonlinear regions (see Efstathiou et al., 1985).

Another trick that has often been used in studies of the formation of individual objects (e.g.
galaxy halos or rich galaxy clusters) is to set up initial realizations of Gaussian random fields that
satisfy certain constraints. For example, in the case of a rich cluster one might require that the
center of the simulation be a high (e.g. 3σ ) peak of the initial density field when smoothed with a
top hat window corresponding to a mass of 1015 M�. A very efficient technique for constructing
such constrained realizations has been developed by Hoffman & Ribak (1991).

C1.2 Hydrodynamical Simulations

C1.2.1 Smoothed-Particle Hydrodynamics (SPH)

Smoothed-particle hydrodynamics (SPH), which was independently developed by Lucy (1977)
and Gingold & Monaghan (1977), is one of the most popular techniques for solving the hydro-
dynamical equations for studies of galaxy formation. This technique is particle based, and it
follows the motion of individual mass elements (see Monaghan, 1992, for a review). Because of
this, it is convenient to write the hydrodynamical equations in the Lagrangian formulation (where
coordinates are comoving with the fluid element):

dρ
dt

+ρ∇ ·u = 0, (C1.22)

du
dt

= −∇P
ρ

−∇φ , (C1.23)
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dE

dt
= −P

ρ
∇ ·u− L (E ,ρ)

ρ
, (C1.24)

where L = C −H with H and C the heating and cooling rates per unit volume, respectively.
Note that the forms of these equations are different from those in the Eulerian formulation where
coordinates are fixed in space. The system is closed by the Poisson equation and an equation of
state which, for an ideal gas, is

P = (γ−1)ρE , (C1.25)

where γ is the adiabatic index.
The fundamental idea of SPH is to represent a fluid by a Monte Carlo sampling of its mass

elements using a set of N particles. Each particle is assigned with the mass of the fluid element
it represents, and in the Lagrangian formulation this mass is conserved. These particles can be
used to sample any field of the fluid, A, so that the field value at an arbitrary position r can be
approximated by

A(r) =
N

∑
j=1

m j
A j

ρ j
W (r− r j;h), (C1.26)

where W (r,h) is a smoothing kernel of radius h. In practice W (r,h) is chosen so that it equals 0
when r/h is larger than a constant η (typically of the order unity). Therefore, the summation is
over all neighbors that have |r− r j| ≤ ηh. A geometric search tree is usually employed for the
neighbor search (see e.g. Springel et al., 2001b). The spatial derivative of the smoothed field is

∇A(r) =
N

∑
j=1

m j
A j

ρ j
∇W (r− r j;h). (C1.27)

In this discrete representation, the equations for the changes of density, velocity and internal
energy of a particle (mass element) can be written in the following forms:

dρi

dt
=

N

∑
j=1

m j(ui −u j)∇iW (ri − r j;h), (C1.28)

dui

dt
= −

N

∑
j=1

m j

(
Pi

ρ2
i

+
Pj

ρ2
j

)
∇iW (ri − r j;h)−∇φ , (C1.29)

dEi

dt
=

1
2

N

∑
j=1

m j

(
Pi

ρ2
i

+
Pj

ρ2
j

)
(ui −u j) ·∇iW (ri − r j;h)− L

ρ
. (C1.30)

In these forms, the position, velocity, density and internal energy of SPH particles can be
integrated forward in time as in the N-body simulations (for example, using the leap-frog
scheme).

In SPH simulations the smoothing kernel W is usually taken to have the form

W (r,h) =
1
πh3

⎧⎨⎩
1−3R/2+3R3/4 (0 ≤ R ≤ 1)
(2−R)3/4 (1 < R ≤ 2)
0 (otherwise),

(C1.31)

where R ≡ r/h, although other forms may also be used (see Monaghan, 1992). The smoothing
radius h is chosen adaptively according to the local number density of SPH particles. For exam-
ple, one may choose the radius of the smoothing kernel such that it contains a fixed number of
particles. Another proposal is to calculate the value of h at the position of a given particle from

dhi

dt
= − hi

3ρi

dρi

dt
(C1.32)
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at each time step (Benz, 1990). The field value at the position of a particle i can then be
approximated by

Ai =∑
j
(m j/ρ j)A jW (ri j,h), (C1.33)

where one may either choose h = hi (the gather formulation) or h = h j (the scatter formulation).
In practice, two other choices are widely used: one symmetrizes the kernel, W = [W (ri j,hi)+
W (ri j,h j)]/2, and the other symmetrizes the smoothing radius, h = (hi +h j)/2.

As in N-body simulations, the time steps should be chosen small enough so that the (Δt)2 term
in the Taylor expansion of the position of a particle as a function of time is much smaller than
the Δt term. This criterion suggests a time step of the form given by Eq. (C1.20). Furthermore,
because the hydrodynamical equations also involve spatial derivatives, the integration scheme
also has to fulfill a condition of the form |v |Δt/Δr ≤ 1, which is called the Courant condition. In
SPH simulations, the Courant condition implies timesteps given by

Δti =
αChi

hi|(∇ ·u)i|+max(cs,i, |ui|) , (C1.34)

where cs,i is the sound speed at the position of the ith particle and αC is a dimensionless tolerance
parameter.

As a Lagrangian formulation of hydrodynamics, SPH can achieve high resolution in dense
regions, but it works poorly in low-density regions due to the small number of SPH particles
available to sample the density field. Furthermore, SPH particles may stream through each other
unphysically, causing unphysical oscillations around regions of converging gas flows, such as
shock fronts. In order to prevent this, artificial viscosity is usually introduced. However, this
may significantly broaden the structure of the interface. Another problem is that existing SPH
techniques are unable to resolve several important hydrodynamical instabilities such as the
Kelvin–Helmholtz and Rayleigh–Taylor instabilities (see Agertz et al., 2007, and references
therein). These problems can be better treated using an Eulerian formulation of hydrodynamics
as in the grid-based techniques discussed below.

C1.2.2 Grid-Based Algorithms

In Eulerian computational fluid dynamics, the standard approach is to divide space into a grid
of cells and store the cell-averaged values of conserved hydrodynamical quantities at all the grid
points. The hydrodynamical equations are then solved by computing the flux of mass, momentum
and energy across grid cell boundaries. Since differentiation is unstable in dealing with disconti-
nuities, such as shock fronts, one usually uses the integral form of the hydrodynamic equations
applied to a cell. Neglecting the source term, the Eulerian equation for a conserved quantity, q
[density ρ , momentum density ρui (i = 1,2,3), and the total energy density, ρ(E + u2/2)], can
formally be written as

∂q
∂ t

+∇ ·F = 0, (C1.35)

where F represents the corresponding flux density. The integral form of this equation applied to
a cubic cell labeled by l = (�1, �2, �3) is

∂q(l, t)
∂ t

+
3

∑
k=1

[Fk(�k +1/2, t)−Fk(�k −1/2, t)]
Δx

= 0, (C1.36)
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where Δx is the cell size, ‘�k ±1/2’ indicates that the flux is evaluated at the corresponding cell
interfaces, and

q(l, t) =
1

(Δx)3

∫
cell l

q(x, t)d3x (C1.37)

is the cell average of q. Once the fluxes at the cell interfaces are estimated from the stored
hydrodynamical quantities at a time t, Eq. (C1.36) can be used to predict q at the next time step:

q(l, t +Δt) = q(l, t)− Δt
Δx

3

∑
k=1

[Fk(�k +1/2, t)−Fk(�k −1/2, t)] . (C1.38)

The procedure can then be repeated to integrate q forward in time.
Different schemes have been proposed to obtain the fluxes at the cell interfaces. In what fol-

lows we use simple examples to demonstrate the basic ideas behind such schemes. For brevity,
we consider a one-dimensional problem. We denote the cell average of a fluid quantity, Q, in cell
� at time step n by Qn

� :

Qn
� =

1
Δx

∫ x�+1/2

x�−1/2

Q(x)dx. (C1.39)

The simplest way to estimate the values at the cell interfaces, Qn
�±1/2, is to use Qn

�±1/2 =
(Qn

�±1 + Qn
�)/2. Unfortunately this scheme is numerically unstable (see e.g. Trac & Pen, 2003).

In practice, one first constructs a piecewise polynomial interpolation function, Q(x), to approx-
imate Q(x). Once the functional form of Q is chosen, the coefficients of the interpolation for
a given cell � are determined by Qn

� and the cell-averaged values in neighboring cells. The
interpolation is usually required to reproduce the mean value in the cell, i.e. Q must satisfy
Qn

� = 1
Δx

∫ x�+1/2
x�−1/2 Q(x)dx. For example, in the widely used piecewise parabolic method (PPM)

proposed by Colella & Woodward (1984), the interpolation uses a parabolic function:

Q(α) = QL +α
[
ΔQ� +(1−α)Q6,�

]
, (C1.40)

where

α =
x− x�−1/2

x�+1/2 − x�−1/2
(0 ≤ α ≤ 1), (C1.41)

and QL, ΔQ� and Q6,� are interpolation coefficients. Denote the values of Q(x) at the two inter-
faces of cell � by QL,� = Q(x → x�−1/2) and QR,� = Q(x → x�+1/2), where x�−1/2 < x < x�+1/2.
It is then easy to show that

QL = QL,�, ΔQ� = QR,� −QL,�, Q6,� = 6
[
Qn

� − (QL,� +QR,�)/2
]
. (C1.42)

Thus, in the PPM the problem of interpolation is reduced to specifying QL,� and QR,�. One can use
interpolations of Qn

� together with the cell-averaged values in neighboring cells to obtain Q�±1/2,
the interpolated values at the two interfaces, and assume QL,� = Q�−1/2 and QR,� = Q�+1/2. For
example, in the method proposed by Colella & Woodward (1984), one defines a sum, S j+1/2 =
∑i≤ j Qn

i Δx, and considers it as a discrete function of x j+1/2. A quartic polynomial interpolation
of the points, (S�+k+1/2,x�+k+1/2) (k = 0,±1,±2), is then used to obtain S(x), and to calculate
Q�+1/2 = dS/dx|x�+1/2

. The formula so obtained is

Q�+1/2 =
1
2

(
Qn

� +Qn
�+1

)
+

1
6

(δQ� −δQ�+1) , (C1.43)

where δQ� = (Qn
�+1 −Qn

�−1)/2 is the average slope in the �th cell.
Unfortunately, high-order interpolation schemes may not work properly for sharp changes in

the solution domain, because it may produce spurious oscillations, making the solution unstable.
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In order to avoid this, one typically adopts a flux limiter (also referred to as slope limiter) to
limit the spatial derivatives to realistic values. For instance, in the PPM of Colella & Woodward
(1984), this is achieved by replacing the average slope, δQ�, in the above equation with

δmQ� =

⎧⎨⎩
min(|δQ�|,2|Qn

� −Qn
�−1|,2|Qn

� −Qn
�+1|)× sgn(δQ�)

if (Qn
�+1 −Qn

�)(Q
n
� −Qn

�−1) > 0;
0 otherwise.

(C1.44)

In general, the aim of using a flux limiter is to make the solution satisfy the total variation
diminishing (TVD) condition proposed by Harten (1983).

Once the interpolation coefficients are obtained, one can compute the average of the
interpolation function in a characteristic domain for each cell edge:

f Q
�+1/2,L =

1
y

∫ x�+1/2

x�+1/2−y
Q(x)dx; f Q

�+1/2,R =
1
y

∫ x�+1/2+y

x�+1/2

Q(x)dx, (C1.45)

where y is the size of the characteristic domain. For the PPM, it is easy to show that

f Q
�+1/2,L = QR,� − y

2Δx

[
ΔQ� −

(
1− 2y

3Δx

)
Q6,�

]
;

f Q
�+1/2,R = QR,�+1 +

y
2Δx

[
ΔQ�+1 +

(
1− 2y

3Δx

)
Q6,�+1

]
. (C1.46)

The (one-dimensional) difference equation corresponding to Eq. (C1.38) is then replaced by

qn+1
� = qn

� +
Δt
Δx

(
F̄�−1/2 − F̄�+1/2

)
, (C1.47)

where

F̄�−1/2 = f F
�−1/2,R(y); F̄�+1/2 = f F

�+1/2,L(y). (C1.48)

The value of y is usually chosen to be the characteristic scale swept out by sound waves within
one time step, i.e. y = cs,�Δt, with cs,� the sound speed in the cell in question.



Appendix D

Frequently Used Abbreviations

Symbol Definition

AGN active galactic nucleus/nuclei
AGB asymptotic giant branch
CDM cold dark matter
CMB cosmic microwave background
DLA damped Lyα absorber
EdS Einstein–de Sitter
EPS extended Press–Schechter
FIR far-infrared
FRW Friedmann–Robertson–Walker
FWHM full width at half maximum
GR general relativity
GMC giant molecular cloud
HSB high surface brightness
HST Hubble Space Telescope
ICM intracluster medium
IGM intergalactic medium
IMF initial mass function
ISM interstellar medium
LBG Lyman break galaxy
LMC Large Magellanic Cloud
LSB low surface brightness
MS main sequence
NFW Navarro–Frenk–White
RGB red giant branch
SDSS Sloan Digital Sky Survey
SED spectral energy distribution
SFH star-formation history
SFR star-formation rate
SFE star-formation efficiency
SMBH supermassive black hole
SMC Small Magellanic Cloud
SN supernova
SSFR specific star-formation rate
SSP single-age stellar population
TF Tully–Fisher
UV ultraviolet
WHIM warm-hot intergalactic medium
WIMP weakly interacting massive particle
WMAP Wilkinson Microwave Anisotropy Probe
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Appendix E

Useful Numbers

Constants

Gravitational constant G = 6.674×10−8 cm3 g−1 s−2

= 4.299×10−9 MpcM�−1(km/s)2

Planck constant hP = 6.626×10−27 cm2 gs−1

Speed of light c = 2.998×1010 cms−1

Boltzmann constant kB = 1.381×10−16 ergK−1

Proton mass mp = 1.673×10−24 g = 938.3MeV/c2

Neutron mass mn = 1.675×10−24 g = 939.6MeV/c2

Electron mass me = 9.109×10−28 g = 0.511MeV/c2

Electron charge e = −4.803×10−10esu
= −1.602×10−19C

Thomson cross-section σT = 6.652×10−25 cm2

Stefan–Boltzmann constant σSB = 5.67×10−5 ergcm−2 K−4 s−1

Radiation constant ar = 4σSB/c = 7.566×10−15 ergcm−3 K−4

Units:

Solar mass 1M� = 1.99×1033 g
Solar radius 1R� = 6.960×1010 cm
Solar luminosity (bolometric) 1L� = 3.827×1033 ergs−1

Astronomical unit 1AU = 1.496×1013 cm
Parsec 1pc = 3.086×1018 cm
Electron volt 1eV = 1.602×10−12 erg
Angstrom 1Å= 1×10−8 cm

Cosmological parameters

Hubble constant H0 = 100hkms−1 Mpc−1

Present Hubble time H−1
0 = 9.78h−1 Gyr

Present Hubble radius cH−1
0 = 2997.9h−1 Mpc

Present critical density ρcrit = 1.879×10−29h2 gcm−3

= 2.775×1011h−1 M�/(h−1 Mpc)3

Present photon density Ωγ ,0 = 2.488×10−5h−2
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Mészáros P., 1974, A&A, 37, 225
Meyer D. M., York D. G., 1987, ApJ, 315, L5
Mihalas D., 1978, Stellar Atmospheres. W. H. Freeman and Co., San Francisco
Mihos J. C., Hernquist L., 1996, ApJ, 464, 641
Miller B. W., Lotz J. M., Ferguson H. C., et al. 1998, ApJ, 508, L133
Miller C. J., Nichol R. C., Reichart D., et al. 2005, AJ, 130, 968
Miller G. E., Scalo J. M., 1979, ApJS, 41, 513
Milne G., 1935, Relativity, Gravitation and World Structure. Clarendon Press, Oxford
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Padoan P., Nordlund Å., 2002, ApJ, 576, 870
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4000Å break, 474
ΛCDM, 21, 201, 259, 682
β discrepancy, 412
κ mechanism, 468
σ8, 207
τCDM, 21
2dFGRS galaxy catalogue, 61

AB magnitude, 28
Abel integral, 277, 497
Abel transformation, 575
Abell clusters of galaxies, 67
Abell radius, 68, 410
absolute magnitude, 28
absorption

cross-section, 691
line profile, 691, 756
resonance, 691

absorption line systems, 88,
709, 714

CIV systems, 87, 740
MgII systems, 87, 739
OVI systems, 740
photoionization models of, 714

absorption lines
equivalent width of, 712
natural broadening of, 711
thermal broadening of, 710

abundance, 141
abundance ratios, 491
accretion disks, 624
accretion shock, 378, 381
acoustic peaks, 307, 310

heights of, 309
positions of, 309

acoustic waves, 167, 174, 307
action-angle variables, 238, 550
active galactic nuclei, 4, 60, 618, 619

and galaxy interactions, 564, 642
and star-forming galaxies, 632
broad-line region, 637
central engine of, 623
clustering of, 645
dark matter halos of, 645
demographics, 644
duty cycle, 646
emission lines of, 631
emission mechanisms of, 626
evolution of, 640, 644

feedback, 9, 612, 648, 664, 670, 676, 685, 687
mechanical, 650
radiative, 649

formation of, 640, 641, 646
fueling of, 641
luminosity function of, 644
narrow-line region, 637
obscuring torus, 637
supermassive black hole paradigm of, 61, 623
unified model of, 638

active galaxies, 4, 618
adiabatic baryon model, 198
adiabatic CDM model, 200
adiabatic contraction, 501, 508
adiabatic HDM model, 201
adiabatic index, 366, 748
adiabatic invariants, 502
adiabatic perturbations, 18, 166
affine connection, 742, 743, 745
affine parameter, 746
AGB, see asymptotic giant branch
age–metallicity degeneracy, 475, 536, 606
AGN, see active galactic nuclei
alpha elements, 460
ambipolar diffusion, 425, 431
Andromeda Galaxy, 72
angular correlation functions, 290
angular momentum

alignment of, 361
in disk galaxies, 502
of dark matter halos, 358

angular power spectrum, 292
angular-diameter distance, 111, 121

in gravitational lensing, 295
angular-momentum catastrophe, 409, 511
APM galaxy catalogue, 21, 61, 68
apparent magnitude, 28
arcs

caused by gravitational lensing, 297, 299
Arnold diffusion, 239
Arnold web, 239
assembly bias, 348, 678
asymptotic giant branch, 466

BzK galaxies, 80
BAO, see baryon acoustic oscillations
bar instability, 526
bars

driving secular evolution, 528
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in disk galaxies, 39, 52, 527
pattern speed of, 528

baryogenesis, 125
baryon acoustic oscillations, 317
baryon–radiation coupling, 189
baryon-to-photon ratio, 141

and abundances of light elements, 143
BCG, see brightest cluster galaxies
bending instability, 530, 615
bias

in sampling, 266
linear, 345, 346
nonlinear, 346, 349
of dark matter halos, 346
of density peaks, 325
of galaxies, 679
of progenitors, 612
scale dependence of, 346
stochastic, 346, 350

bias parameter, 207, 325, 680
binding energy

of nucleon, 457
Birkhoff’s theorem, 92
birthline of stars, 432
BL Lac objects, 622
black dwarfs, 459, 464
black holes, 467

demographics of, 584
radius of influence, 583, 639
Schwarzschild radius, 624, 639
supermassive, 9, 47, 61, 239,

582, 623
blast waves, 399

and supernova explosion, 401
self-similar model of, 399

blazars, 623, 638
blue bump, 626, 627
Bohr radius, 755
bolometric luminosity, 26
Boltzmann equation, 133

perturbations of, 186
Bondi accretion, 644, 648
Bonnor–Ebert mass, 420
bootstrap method

of error estimate, 286
Bose–Einstein species, 127
boson stars, 639
bottom-up scenario, 11, 257
bound–bound absorption

rate of, 756
bound–bound processes, 751
bound–free processes, 751
boxy ellipticals, 46, 576
bremsstrahlung, 8, 151, 758

emissivity of, 758
thermal, 758

brightest cluster galaxies, 68
brightness temperature, 627, 631
broad-line radio galaxies, 621
broad-line regions, 620, 637
brown dwarfs, 459, 464
buckling instability, see bending instability
bulge–disk decomposition, 51, 614
bulges, 3, 50, 509, 613

colors of, 51
formation of, 530, 614

pseudo-bulges, 12, 530, 615
with boxy-peanut shape, 51, 530

bulk motion, 270
of galaxies, 272

Butcher–Oemler effect, 69, 569, 609

cannibalism
galactic, 69, 570, 664, 676, 685

canonical momentum, 168
canonical transformation, 238
canonical variables, 237
carbon-deflagration model, 469, 488
Cauchy profile, see Lorentzian profile
caustics

in gravitational lensing, 295
cD galaxies, 68, 570
CDM, see cold dark matter
central galaxies, 653, 675

colors of, 670
luminosity function of, 665

central limit theorem, 205
Cepheids, 468

as distance indicator, 33
as standard candle, 121
luminosity–period relation of, 33

Chabrier initial mass function, 442
Chandrasekhar formula of dynamical friction, 556
Chandrasekhar mass, 467, 469
chaotic inflation model, 160
chaotic mixing, 250
chemical evolution, 12, 486

closed-box model of, 488, 539
models with inflow and outflow, 490
of disk galaxies, 538

chemical potential, 128
chemical yield, 486

of low-mass stars, 486
of massive stars, 487
of Type Ia supernovae, 488

circular frequency, 504, 517, 522
circular velocity, 499
CIV systems, 86, 740
close encounters, 231
closed orbits, 239
closed-box model, 488, 539
cluster abundance normalization, 335
clusters of galaxies, 67
β discrepancy, 412
β model, 410
Abell catalogue of, 67
biased distribution of, 347
cooling flows, 413
galaxy population of, 68
mass estimates of, 69
mass-to-light ratio of, 69
Sunyaev–Zel’dovich effect, 315
transformations in, 568
X-ray emission of, 69, 410
X-ray scaling relations, 412

CMB, see cosmic microwave background
CNO cycle, 459
CO-to-H2 conversion factor, 434, 438
COBE, 19, 90, 316
coeval population, 471
cold dark matter, 6, 20, 98, 200

bottom-up scenario, 257
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cold relic particles, 133
collision strength, 758
collisional cross-section, 757
collisional damping, see Silk damping
collisional excitation, 757
collisional ionization, 696, 757
collisionless Boltzmann equation, 232
collisionless dynamics, 230

direct and indirect collisions, 230
collisionless gas, 168
color excess, 479
color gradients

in disk galaxies, 51, 537
in elliptical galaxies, 610

color index, 29
color–magnitude relation, 64

of disk galaxies, 536
of elliptical galaxies, 606

comoving coordinates, 104
comoving distance, 105
comoving radius, 103
compact ellipticals, 59
compact groups, 71
Compton y-parameter, 315, 759
Compton cooling, 367

by CMB photons, 367
Compton heating, 650
Compton scattering, 150, 151, 751, 759

inverse, 630
Comptonization, 151
concentration index, 535
conditional luminosity function, 653, 663, 682
conduction flux, 749
conformal Newtonian gauge, 181, 184
conformal time, 105
continuity equation, 158, 163, 233, 366
contravariant index, 744
convective instability, 373

Schwarzschild criterion for, 374
convergent point method, 33
cooling, 8

by bremsstrahlung, 368, 760
due to collisional excitation, 368
due to collisional ionization, 368
due to Compton scattering, 367
due to recombination, 368
effect of photoionization, 369
molecular, 762
overcooling problem, 387, 409
radiative, 23, 367, 760

cooling flows, 413, 676
cooling function, 368, 386, 761

and photoionization heating, 370
of molecular hydrogen, 762

cooling radius, 387
cooling rate, 388, 760
cooling time, 14, 386
cooling wave, 385, 388
core radius, 26
corotation resonance, 528
correlation functions

connected part of, 264
in real space, 276, 277
in redshift space, 276
of velocity field, 270, 271
projected, 277

cosmic density field, 262
cluster-abundance normalization of, 335
Euler characteristic of, 323
genus of, 323
mass moments of, 266
reconstruction of, 271
sampling of, 264

cosmic density parameter, 115, 116
cosmic energy equation, 279
cosmic microwave background, 17, 21, 25, 89, 95,

213, 302
acoustic peaks, 307
and cosmological parameters, 316
anisotropy in, 19, 304
damping on small scales, 310
dipole, 102
Doppler effect, 306
energy density in, 115
gravitational waves, 213, 318
integrated Sachs–Wolfe effect, 307
interaction with intergalactic medium, 314
intrinsic perturbations, 305
origin of, 149
polarization of, 311, 316
potential perturbations, 305
re-ionization, 316, 694
Sachs–Wolfe effect, 304, 310
spectral distortions by hot gas, 314
temperature autocorrelation function, 303
temperature fluctuations in, 302
temperature power spectrum of, 91, 303
Thomson scattering, 311
velocity perturbations, 305

cosmic rays, 56, 649
cosmic shear, 84, 300, 302, 361
cosmic star-formation history, 80

origin of, 673
cosmic time, 103
cosmic variance, 259
cosmic virial theorem, 280
cosmic web, 82, 258
cosmological background radiation, 27
cosmological constant, 16, 113, 747

energy density in, 115
cosmological density field

realizations of, 258
specification of, 202

cosmological parameters, 94
constraints on, 316

cosmological phase transition, 156
cosmological principle, 6, 102
cosmology, 100

distances and volumes, 121
historical overview of, 16
horizons, 119
Hot Big Bang model of, 125
initial condition problem, 154
initial conditions of, 6
particle production, 124
perturbations, 162
problems of standard model, 152
relativistic, 112
standard model of, 6

COSMOS galaxy catalogue, 68
Coulomb logarithm, 231, 555
counter-rotating cores, 579
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counts-in-cells
analysis of, 288
distribution function of, 269, 288
moments of, 269, 288
shot noise, 270

Courant condition, 772
covariant derivative, 744
covariant index, 744
critical density, 94, 114, 116
critical lines

in gravitational lensing, 295
critical surface density

in gravitational lensing, 298
crossing time, 230
curvature perturbations, 166
curvature scalar, 742, 743

Dn-σ relation, 47, 271, 605
Damped Lyα systems, 86, 733
Γ function, 734
column density distribution of, 734
evolution of, 734
kinematics of, 738
metallicities of, 736

damping wings, 712
dark matter halos

subhalos, 568
dark age, 690
dark energy, 6, 318
dark matter, 6, 96
dark matter halos, 7, 23, 260, 319

and isothermal spheres, 352
angular momentum of, 358
assembly bias, 348
assembly time of, 340
biased distribution of, 345
circular velocity of, 352
clustering of, 319, 345
concentration parameter of, 353
density profiles of, 351
Einasto profile, 353
formation time of, 341
intrinsic properties of, 319
main progenitor histories of, 339
mass function of, 319, 326
merger rate of, 319, 342
merger tree of, 336
multiplicity function of, 328
NFW profile, 352, 373
progenitors of, 319, 336
shapes of, 354
spin parameter of, 358
subhalos, 319
substructure of, 355
survival time of, 343
virial radius of, 352
virial velocity of, 352

de Sitter universe, 118
de Vaucouleurs profile, see R1/4-law profile
decaying particles, 137, 139
deceleration parameter, 112, 116
decoupling

of matter and radiation, 148, 150
deformation tensor, 178
degenerate gas, 454
density cusp, 248

density peaks, 321
bias, 325
correlations of, 324
modulation by background, 323
number density of, 321
shapes of, 325

density perturbations
damping of, 190
evolution of, 191
from inflation, 209
from topological defects, 213
gauge-invariant approach, 181
moments of, 203, 268
Newtonian theory of, 162
origin of, 209
probability distribution function of, 203
reconstruction from velocity field, 271
relativistic theory of, 178
variance of, 267

direct collisions, 230
disk galaxies, 49, 495

and viscosity, 517
angular momentum of, 502, 515
bars in, 39, 52, 527
chemical evolution of, 538
circular velocity of, 498
color gradients in, 51, 537
color–magnitude relation of, 536
colors of, 51
formation of, 505

numerical simulations of, 511
gas content of, 53
kinematics of, 53
lop-sidedness, 51
massive halos of, 54
metallicity gradients in, 542
metallicity–luminosity relation of, 540
orbits in, 503
potential-density pairs of, 496
rings in, 529
scaling relations of, 512
spirals, see spiral arms
stellar halos of, 52
stellar populations of, 534
surface brightness profiles of, 49
vertical structure of, 51, 518
warps, 51
X-ray halos of, 416

disk heating
and thick disks, 520
due to gas clouds, 519
due to minor mergers, 519, 565
due to spiral arms, 519
rate of, 518, 568

disk instabilities, 521
bar mode, 526
bending instability, 530
dispersion relation for gaseous disk, 523
global stability, 521, 525
local stability, 521, 523
tight-winding approximation, 523
Toomre stability criterion, 525

disk models, 496
double exponential disk, 496
exponential spheroid, 497
Kalnajs disk, 527
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Maclaurin disk, 525
maximal disks, 500
thin exponential disk, 496

disk scale length, 50
disky ellipticals, 3, 46, 576
distance indicators, 33

Cepheids, 33
moving-cluster method, 33
redshifts, 34, 273
standard candles, 33
standard rulers, 33
trigonometric parallax, 32
Type Ia supernovae, 33, 122

distance modulus, 29
distant red galaxies, 79
distribution function

coarse grained, 249
fine grained, 249
of absorption line systems, 709
of decoupled particle species, 132
of Gaussian random field, 204
of particles, 127
of R1/4-law profile, 244

DLA, see damped Lyα systems
domain walls, 153
Doppler boosting factor, 636
Doppler effect, 30, 107

in cosmic microwave background, 306
Doppler parameter, 710, 717
double-Compton process, 151
dredge-up, 486
DRGs, see distant red galaxies
dry mergers, 564, 592, 596, 597
dust emission, 481
dust extinction, 478
dwarf ellipticals, 40, 57, 569, 613

formation of, 616
nucleated, 59

dwarf galaxies, 3, 40, 57
dwarf irregulars, 3, 57
dwarf spheroidals, 3, 40, 57, 71, 613
dynamical friction, 11, 357, 553, 565, 570, 676, 685

and mass loss, 558
Chandrasekhar formula, 556

validity of, 559
Coulomb logarithm, 555
time scale of, 557

dynamics of statistics, 278

E +A galaxies, see k +a galaxies
E correction, 476
early integrated Sachs–Wolfe effect, 307
Eddington limit, 625, 641
Eddington luminosity, 433, 624, 635, 640
Eddington time, 640
EdS universe, see Einstein–de Sitter universe
effective optical depth

from intervening clouds, 699
effective potential, 504
effective radius, 26, 42
effective yield, 490, 541
Einasto profile, 353
Einstein coefficients, 752, 753
Einstein field equation, 113, 747

perturbation of, 185
Einstein radius, 296

Einstein ring, 296
Einstein tensor, 747
Einstein universe, 118
Einstein–de Sitter universe, 117, 119
ellipsoidal collapse, 226

and Zel’dovich approximation, 227
elliptical galaxies, 2, 39, 41, 574

and feedback, 612
anti-hierarchical formation of, 612
boxy, 46, 576
color gradients in, 610
color–magnitude relation of, 606
colors of, 46
cusps and cores, 45, 576
Dn-σ relation, 605
disky, 3, 46, 576
dynamical modeling of, 579
dynamics of, 574
evidence for dark halos, 581
Faber–Jackson relation, 47, 605
fine structure of, 600
formation of, 587
frosting model, 608
fundamental plane of, 48, 602
gas content of, 49
isophote twisting, 42, 576
kinematic misalignment, 579
kinematic properties of, 46, 577
kinematically distinct cores, 579
Kormendy relation, 605
merger scenario, 590, 593, 604, 611
metallicity gradients in, 610
monolithic collapse, 588, 610
number density of, 594
observables of, 575
phase-space density constraints, 598
photometric properties of, 41, 576
shapes of, 45, 584
sizes of, 595
stellar populations of, 606
structure of, 574
surface brightness profiles of, 41
X-ray halos of, 414

ellipticals, see elliptical galaxies
emissivity, 751

from quasars, 697
from recombination, 701
from young galaxies, 699

encounters
close, 231
high speed, 545
prograde vs. retrograde, 551

energy equation, 366
energy–momentum tensor, 113, 746
entropy, 108, 129, 164, 456, 748, 749

and accretion shocks, 384
conservation law of, 130
in gravitational systems, 254

entropy density, 130
entropy equation, 389, 702, 749
entropy perturbations, 166, 192
environment dependence

of galaxy population, 674
epicycle approximation, 504
epicycle frequency, 423, 504, 522
epoch of matter–radiation equality, 115
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EPS formalism, see extended Press–Schechter formalism
equation of state, 163, 164, 234, 748

barotropic, 748
isentropic, 749
isothermal, 749
of stars, 453
of the Universe, 108
polytropic, 749

equations of motion
in Hamiltonian formalism, 237

equilibrium models
axisymmetric, 244
spherical, 240
triaxial, 247

equipartition, 553
equivalence principle, 101, 743, 744, 746
equivalent width, 712
ergodicity, 265
EROs, see extremely red objects
error estimate

bootstrap method, 286
jackknife method, 286

Euler equations, 163, 233, 366, 521, 750
evaporation

rate of, 397
event horizon, 119
evolutionary tracks of stars, 36, 463
excursion set

and the Press–Schechter formalism, 328
interpretation of, 331

exponential disks, 50
circular velocity of, 499
origin of, 515

extended Press–Schechter formalism, 321, 328, 684
interpretation of, 331

extinction law, 478, 479
for LMC, 480
for Milky Way, 480
for SMC, 480

extragalactic background light, 660
extremely red objects, 79

Faber–Jackson relation, 47, 605
faint blue galaxies

excess of, 75, 659
false vacuum, 158
feedback, 9, 492

as mass and energy sources, 493
from active galactic nuclei, 9, 612, 648, 664, 670, 676,

685, 687
from stellar winds, 492, 664
from supernova explosions, 9, 493, 664, 685, 687

Fermi acceleration, 627
Fermi–Dirac species, 127
fermion balls, 639
Field criterion for thermal instability, 395
filaments, 260
finger of God, 274
flatness problem, 152, 156
fluid equations, 366, 749

Lagrangian vs. Eulerian formulation, 770
perturbations of, 185

flux, 26, 27
flux decrement, 693
flux limiter, 774
forbidden lines, 620, 631

force softening, 768
four-momentum, 745
four-point correlation function

of density field, 264
Fourier transformation

convention of, 165
free–free absorption, 758
free–free emission, see bremsstrahlung
free–free processes, 751
free-fall time, 14, 252, 407, 420
free-streaming damping, 171
freeze-out

of stable particles, 133
Friedmann equations, 93, 113
Friedmann model, 16
Friedmann–Robertson–Walker cosmology, 113
friends-of-friends algorithm, 333
fundamental frequencies, 238
fundamental observer, 102, 163
fundamental plane

in κ space, 604, 613
of elliptical galaxies, 48, 602
tilt of, 603

G dwarf problem, 539
galactic winds, 9, 404, 406, 611
galaxies, 2, 37

active, 4, 618
at high redshift, 72, 683
centrals, 653, 675
chemical evolution of, 486
classification of, 38
color–magnitude relation of, 64
colors of, 4, 64, 670
early-types, 2, 39
environment dependence, 4, 65, 674
gas mass fractions of, 4
interactions, 544
late-types, 2, 39
luminosity function of, see luminosity function
mass–metallicity relation of, 65
morphological types, 2, 38
passive evolution of, 476
satellites, 653, 676
sizes of, 3, 63
statistical properties of, 61, 652
stellar mass function of, 656
transformations, 544

galaxy bias, 679
galaxy clustering, 283

angular correlation functions, 290
angular power spectrum, 292
counts-in-cells analysis, 288
evolution of, 278
in real and redshift space, 273
power spectrum analysis, 288
redshift space distortions, 273
shot noise, 289
three-point correlation function, 287
two-point correlation function, 287

galaxy counts, 73, 658
galaxy distribution

as a point process, 265
galaxy formation

and active galactic nuclei, 648
and dark matter halos, 23
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and supernova feedback, 406
historical overview of, 15
role of cooling, 23
time scales of, 14

galaxy harassment, 569, 617, 676
galaxy luminosity function, see luminosity function
galaxy stellar mass function, 656
galaxy–galaxy lensing, 85
GALEX, 536
gas accretion

cold mode, 391
hot mode, 391

gas consumption time, 425, 433
gaseous collapse

effect of dark matter, 383
self-similar model of, 379, 388

gaseous halos, 366
application of virial theorem, 374
around disk galaxies, 416
around elliptical galaxies, 414
collapse of, 379
convective instability of, 373
density profiles of, 371
evolution of, 398
formation of, 376
hydrodynamical instabilities of, 396
in numerical simulations, 408
observational tests, 410
radiative cooling in, 385
spherical collapse of, 384
thermal instability of, 393
within dark matter halos, 383

gauge conditions, 180
gauge freedom, 179
gauge transformation, 179, 182

versus general coordinate transformation, 179
gauge-invariant variables, 182, 184
Gaussian distribution, 266
Gaussian random field, 204, 266

distribution function of, 204
random phase of, 205

general coordinate transformation, 179, 742, 744
general relativity, 100, 741

Einstein field equation of, 747
Newtonian limit, 747

geodesic equation, 744
giant molecular clouds, 418

disruption of, 428
dynamical state of, 419
formation of, 422
magnetic fields in, 420, 425
mass distribution of, 419
turbulence in, 419, 423, 426

globular clusters, 121
bimodal color distribution of, 600
specific frequency of, 599, 616

GMC, see giant molecular clouds
graceful exit problem

of inflation, 159
grand unified theories, 153
gravitational capture, 545
gravitational clustering

in N-body simulations, 258
self-similar model, 280

gravitational collapse, 215
ellipsoidal, 226

of cosmic density field, 257
spherical, 215

gravitational instability, 7, 18, 167
and star formation, 422
and star-formation threshold, 438
in disks, 521

gravitational lensing, 70, 292
arcs, 297, 299
basic equations of, 292
by a point mass, 295
by elliptical objects, 299
by isothermal spheres, 298
caustics, 295
convergence, 294, 300, 301
critical lines, 295
critical surface density, 298
Einstein radius, 296
Einstein ring, 296
galaxy–galaxy lensing, 85
image distortions, 292
lens equation, 296
magnification, 295
microlensing, 97
multiple images, 296
shear, 294, 300
strong, 70
time delay, 295, 296
weak, 70, 84, 300

gravitational waves, 213, 318
groups of galaxies, 71

compact groups, 71
Gunn–Peterson effect, 85, 692
GUT, see grand unified theories

H-R diagram, see Hertzsprung–Russell diagram
half-light radius, see effective radius
halo assembly bias, see assembly bias
halo mass function, 319, 326
halo model, 362
halo occupation statistics, 663, 679, 682
Hamiltonian, 237

integrability, 238
Harrison–Zel’dovich spectrum, 19, 206
Hayashi track, 463
HCG, see Hickson compact groups
HDF, see Hubble Deep Field
HDM, see hot dark matter
heat capacity of gravitational system, 548
heat conduction, 397
heating

by accretion shocks, 378
by photoionization, 703
by shocks, 703
by supernova explosions, 403
due to photoionization, 369

Heaviside step function, 221
helium flash, 467
helium Lyman α forest, 722
Hernquist profile, 242
Hertzsprung–Russell diagram, 36, 463

asymptotic giant branch, 466
birthline, 432, 463
horizontal branch, 465
main sequence, 461

Hickson compact groups, 71
hierarchical clustering, 257, 260
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hierarchical formation, 11
Higgs mechanism, 157
high-order correlation functions

of a point process, 265
of density field, 264

high-order perturbation theory, 176, 282
high-redshift galaxies, 72, 683
high-speed encounters, 545
HII regions, 56, 477, 483

line luminosity, 478
recombination lines of, 477

Holmberg radius, 26
horizon, 119
horizon problem, 152, 155
horizontal branch, 465
Hot Big Bang, 117

chronology of, 125
cosmology, 17

hot dark matter, 20, 201
top-down scenario, 257

hot relic particles, 133
Hubble constant, 34, 93, 95, 106, 317

reduced, 34
Hubble Deep Field, 74
Hubble drag, 133, 167
Hubble law, 34
Hubble parameter, 105
Hubble sequence, 3, 39
Hubble time, 14
hydrodynamical simulations, 24, 408, 686

grid-based methods, 772
particle-based methods, 770
with radiative cooling, 409

hydrostatic equilibrium, 371, 582

ICM, see intracluster medium
ideal gas, 748
ideal gas law, 748
IGM, see intergalactic medium
IMF, see initial mass function
impact parameter, 230
impulse approximation, 546
indirect collisions, 230
inflation, 7, 17, 152

concept of, 154
density perturbations, 209
Gaussian perturbations, 209
graceful exit problem of, 159
gravitational waves, 212
isentropic perturbations, 209
models of, 158
perturbation amplitudes, 213
realization of, 156
scale-invariant perturbations, 209
slow-roll approximation, 157
tensor perturbations, 213
tilted power spectrum, 212

inflaton, 19, 157
infrared-submillimeter background, 662
initial condition problem

in cosmology, 154
initial mass function, 9, 417, 440

derivation from observation, 441
of Chabrier, 442
of Kroupa, 442
of Miller and Scalo, 441

of Salpeter, 441
of Scalo, 441
theoretical models of, 443
top heavy, 445, 448, 491
universality of, 440, 444

instability strip, 468
instantaneous recycling approximation, 489
integrals of motion, 237

classical, 238
isolating and non-isolating, 237

integrated Sachs–Wolfe effect, 307
intergalactic medium, 13, 85, 689

after recombination, 690
collisional ionization, 696
evolution of, 702
interaction with cosmic microwave background, 314
ionization evolution, 704
Lyα absorption, 692
Lyman-limit absorption, 694
mean optical depth of, 690, 693
photoionization, 695
photoionization heating, 703
residual ionization, 690
shock heating, 703

interstellar medium, 12
emission and absorption, 476
multi-phase state of, 393, 422, 688
thermal instability of, 393, 422

intracluster light, 68
intracluster medium, 69, 410
inverse Compton scattering, 630
invisible matter, see dark matter
involution, 237
ionization equations, 750
ionization fraction, 146, 150
ionizing background

attenuation by intervening clouds, 699
flux of, 697

IRAS galaxy survey, 273
iron-peak elements, 460
irregular galaxies, 39
irregular orbits, 239
isentropic initial conditions, 192
isentropic perturbations, 166

in two non-relativistic components, 173
ISM, see interstellar medium
isocurvature CDM model, 202
isocurvature initial conditions, 166, 192
isocurvature models, 310
isophotal radius, 26
isophote twisting, 42, 45, 576
isophotes, 26
isothermal perturbations, 18
isothermal sheet, 498, 518, 598
isothermal sphere, 242

modified, 242
singular, 242, 372, 499

ISW effect, see integrated Sachs–Wolfe effect

J3 integral, 263
jackknife method

of error estimate, 286
Jaffe profile, 242
JCMT, 79
Jeans criterion, 18, 253, 523
Jeans equations, 233
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Jeans instability, 167
Jeans length, 167, 253
Jeans mass, 167, 420
Jeans models, 241, 244

anisotropy parameter, 241, 580
of elliptical galaxies, 580

Jeans theorem, 240
strong, 240

jets, 621, 633
collimation of, 633
one-sided, 637
relativistic beaming, 636
superluminal motion, 635

k +a galaxies, 69
K correction, 475
Kalnajs disk, 527
KAM theorem, 239, 240
Kelvin–Helmholtz instability, 396, 772
Kelvin–Helmholtz time, 429
kinematic misalignment, 579
kinematically distinct cores, 579
kinetic energy tensor, 234
King model, 242
King profile, 372
King radius, 242, 598
Kirchhoff’s law, 758
Kompaneets equation, 314, 759
konus densities, 576
Kormendy relation, 605
Krammers absorption cross-section, 755
Kroupa initial mass function, 442
kurtosis, 269

LAE, see Lyα emitters
Lagrangian function, 237
Landau damping, 171, 253, 563, 566
Lane–Emden equation, 372
Large Magellanic Cloud, 71
large-scale structure, 81, 262
large-scale velocity field, 83, 270
Larmor’s formula, 627
last scattering surface, 89, 149, 303
late integrated Sachs–Wolfe effect, 307
latent heat, 159
Layzer–Irvine equation, 279
LBG, see Lyman-break galaxies
leap-frog integration scheme, 765
lens equation, 296
lenticular galaxies, 39
Lick indices, 474, 607
light elements

primordial abundances, 143, 144
Lindblad resonances

outer Lindblad resonance, 528
Lindblad resonances, 528

inner Lindblad resonance, 528
line-of-sight velocity distribution, 575
linear growth factor, 172
linear growth rate, 172
linear power spectrum

cluster-abundance normalization, 207
COBE normalization, 207
tilt of, 212

linear response theory, 560
LINERs, 620

Liouville’s theorem, 168
LIRG, see luminous infrared galaxies
LMC, see Large Magellanic Cloud
Local Group, 71
longitudinal gauge, see conformal Newtonian gauge
lookback time, 119
Lorentz factor, 627
Lorentzian profile, 711
LOSVD, see line-of-sight velocity distribution
low surface brightness galaxies, 500
luminosity distance, 111, 121
luminosity function, 3, 654

dependence on color, 657
dependence on environment, 658
dependence on morphology, 657
in clusters, 658
in the field, 658
redshift evolution of, 658
Schechter function, 62, 655

luminosity gap
in groups and clusters, 668

luminous infrared galaxies, 60
Lyα emitters, 78
Lyapunov exponent, 250
Lyman α forest, 86, 714

at low redshift, 721
clustering of, 720, 729
column density distribution of, 716, 728
Doppler parameter distribution of, 717
evolution of, 715
for helium, 722
in hierarchical models, 724
in hydrodynamical simulations, 731
line profiles, 727
metallicity of, 719
models of, 723
sizes of absorbers, 718

Lyman break, 474
Lyman-break galaxies, 77, 683
Lyman-limit systems, 86, 732

Mészáros effect, 176, 195
MACHO, see massive compact halo objects
Maclaurin disk, 525
magnetic buoyancy instability, see Parker instability
magnetic fields

and star formation, 425
in giant molecular clouds, 420
in molecular cores, 430
Parker instability, 424

magnetic monopoles, 153
magnification

by gravitational lensing, 295
magnitude-limited sample, 284

characteristic depth of, 291
main-sequence stars, 461

lifetimes of, 462
Malmquist bias, 61
mass moments, 266
mass segregation, 252
mass shell, 216
mass–anisotropy degeneracy, 580, 581
mass–metallicity relation, 65
massive compact halo objects, 97
massive stars

formation of, 432
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Mattig formula, 121
maximal disk model, 500
Maxwellian distribution, 754
MDM, see mixed dark matter
mechanical feedback, 650
merger rates, 601, 647

of dark matter halos, 342
merger trees, 336

binary tree, 337
N-branch method with accretion, 338
trees built from progenitor libraries, 338

mergers, 10, 22, 590
and active galactic nuclei, 564
and disk heating, 565
and starbursts, 564
criterion for, 561
demographics of, 563
dry vs. wet, 564, 592, 596, 597
major vs. minor, 564
of galaxies, 561
prograde vs. retrograde, 564
signatures of, 600

meridional plane, 244, 504
metal absorption line systems, 86, 738
metallicity, 12, 35, 489
metallicity gradients

in disk galaxies, 542
in elliptical galaxies, 610

metallicity–luminosity relation
of disk galaxies, 540

metals, 12
yield of, 489

metric, 741
in Newtonian limit, 747

metric perturbations, 192
MgII systems, 86, 739

connection to galaxies, 739
microlensing, 97
Milky Way, 55

bar of, 55
bulge of, 55
dark halo of, 57, 551
stellar halo of, 55
thick disk of, 55
thin disk of, 55

Miller–Scalo initial mass function, 441
Milne relation, 752, 754
Minkowski metric, 627, 742
missing baryons, 97
mixed dark matter, 21
mixed dark matter model, 202
mixing length theory, 456
modified Hubble profile, 242
modified isothermal sphere, 242
molecular clumps, 419
molecular cores, 419

collapse of, 429
role of magnetic fields, 430

molecular hydrogen, 762
destruction and formation of, 421, 763
self-shielding, 421, 436, 440, 447

moment of inertia tensor, 235
moments

of density field, 268
relation to correlation function, 269

momentum equations, 233

momentum-driven wind, 650
monolithic collapse, 22, 256, 588, 610
monopole problem, 153
morphology–density relation, 4, 12, 66,

658, 674
moving-cluster method, 33
multiplicity function

of dark matter halos, 328

N-body simulations, 24, 764
boundary conditions of, 769
initial conditions of, 769
mass and force resolution, 768
time step criterion, 768
tree algorithm, 766

narrow-line radio galaxies, 621
narrow-line regions, 620, 637
natural line broadening, 711
natural unit system, 125
neutrinos, 115, 124

as dark matter, 20, 136
decoupling of, 131, 140, 146
Dirac type vs. Majorana type, 136
energy density in, 115
free-streaming of, 171, 202
light, 171
massive, 136, 137, 201

neutron stars, 467
neutron-to-proton ratio, 142
neutrons

and abundances of light elements, 143
mean lifetime, 140

new inflation model, 160
Newton’s theorems, 232
NFW profile, 242, 352, 373

circular velocity of, 499
concentration parameter of, 353

Noether theorem, 237
non-Gaussian field, 205
χ2 model, 205
log-normal model, 205

non-Gaussianity
development of, 282

nuclear star clusters, 59
nucleosynthesis

bottleneck of, 142
primordial, 12, 139, 142

null geodesic, 104

oblate isotropic rotator, 245
obscuring torus, 637
observations

distance measurements, see distance indicators
photometry, 26
spectroscopy, 29

old inflation, 158
Oort constant, 439
opacity, 751

from bound–bound absorption, 455
from free–free absorption, 455
from Thomson scattering, 454
in stellar interiors, 451
Rosseland mean, 455

optical depth, 691, 692
optically violently variable quasars, 622
orbit-superposition method, see Schwarzschild models
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orbits, 236
box orbits, 248
circularity of, 558
classification of, 238
closed, 239
decay of, 556
eccentricity of, 557
elliptic, 561, 596
hyperbolic, 561, 596
in disk galaxies, 503
inner long-axis tubes, 248
irregular, 239
outer long-axis tubes, 248
parabolic, 561, 596
regular, 238
resonance, 238
short-axis tubes, 244, 248
stochastic, 239
theory of, 236

oscillator strength, 753
overcooling problem, 387, 409
OVI systems, 740
OVV, see optically violently variable quasars

PAHs, see polycyclic aromatic hydrocarbons
pair conservation equation, 279
pairwise peculiar velocity dispersion, 278, 280

of galaxies, 287
pancakes, 178, 259
Parker instability, 424
parsec

definition of, 32
particle decay, 137
particle horizon, 119
particle production

freeze-out, 133
in early Universe, 124
in thermal equilibrium, 127

particle–particle (PP) algorithm, 766
particle–particle–particle–mesh (P3M)

algorithm, 767
particle-mesh (PM) algorithm, 766
passive evolution, 472
peak formalism, 321

cloud-in-cloud problem, 326
modulation by background, 323

peak-background split, 324
peculiar galaxies, 3, 40
peculiar velocity, 34, 107, 163, 273
perfect sphere, 242
perfect spheroid, 247
period–luminosity relation

of Cepheids, 468
permitted lines, 631
perturbation amplitudes

and inflation, 213
perturbation power spectrum

amplitude of, 206
initial, 206
linear, 206
normalization of, 206
spectral index of, 206

perturbation theory, 521
high-order, 176, 282
high-order moments, 283
relativistic, 178

perturbations
classification of, 181
evolution of, 191
in entropy, 192
in metric, 192
modes of, 165
on a relativistic background, 175
origin of, 209
scalar modes, 182
stagnation of, 176
tensor modes, 182
vector modes, 182

phantom energy, 98
phase mixing, 249, 250, 563
phase transitions, 153
phase-space density

constraints from, 598
of collisionless particles, 168

phase-space distribution function, 232
photodissociation, 421
photo-excitation, 755
photoionization, 695, 714, 750, 755

cross-section of, 753, 755
photoionization heating, 649

of the IGM, 703
rate of, 369

photometric redshifts, 75
photometric systems, 28
piecewise parabolic method

(PPM), 773
Planck function, 753
planetary nebulae, 466
Plummer sphere, 242
Poisson bracket, 237
Poisson equation, 163, 232, 747
Poisson gauge, 181, 184
Poisson sampling

of density field, 264
polarization, 311

B mode, 313
E mode, 313
power spectrum of, 316

polycyclic aromatic hydrocarbons, 481
polytropic gas, 371
polytropic index, 371, 749
Population III stars, 446
post-main-sequence evolution, 464
post-starburst galaxies, see k+a galaxies
potential energy tensor, 234
power spectral index, 206
power spectrum, 208, 260

analysis, 288
of density field, 263
of density perturbations, 204
shape parameter of, 200

pp chain, 459
pre-main-sequence

evolution, 463
tracks, 432

Press–Schechter formalism, 19, 327
and excursion set, 328
applied to clusters, 334
extended, 321, 328
spherical versus ellipsoidal collapse, 331
tests of, 333

primary elements, 460, 491
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primordial abundance
of deuterium, 145
of helium-3, 145
of helium-4, 144
of light elements, 143, 144
of lithium-7, 145

primordial nucleosynthesis, 139, 142
model predictions for, 142
nuclear reactions in, 140

progenitor bias, 612
proper distance, 104
proper motion, 32
proper time, 104
proper volume, 123
protostellar cores, 419
protostellar outflows, 431
proximity effect, 701
pseudo-bulges, 12, 530, 615

QSO, see quasi-stellar objects
quantum fluctuations, 7
quark soup, 126
quasar absorption line systems, see absorption line

systems
quasars, 621

emissivity from, 697
host galaxies of, 642

quasi-stellar objects, 621
quasi-stellar radio sources, see quasars
quintessence, 98

R1/4 law profile, 43, 256
distribution function of, 244

radiation
specific intensity of, 750

radiation constant, 760
radiative cooling, 367, 760

in gaseous halos, 385
time scale of, 385

radiative feedback, 649
radiative processes, 751
radiative transfer, 750
radio galaxies, 620

double lobed structure of, 621
Fanaroff–Riley classes, 621, 648
flat spectrum sources, 621
hot spots, 621
steep spectrum sources, 621

radio lobes, 633
ram-pressure stripping, 12, 571, 616, 676
Rankine–Hugoniot jump conditions, 377, 378, 381
Rayleigh–Taylor instability, 396, 433, 772
re-ionization, 86, 318, 690

21cm tomography of, 707
effect on cosmic microwave background,

316, 694
epoch of, 705
sources, 696

real distance, 273
recombination, 756

Case A, 756
Case B, 756
coefficient of, 756
cross-section of, 756
dielectronic, 757
of early Universe, 126, 146, 167, 190, 690

reconstruction of density field
from velocity field, 271

red giant branch, 465
red supergiants, 466
reddening, 30
redshift, 4, 30, 93, 106

as distance indicator, 34, 273
photometric, 75

redshift space distortions, 83, 273
in correlation functions, 276

redshift surveys
1/Vmax weighting, 61
flux limited, 61
volume limited, 61

regular orbits, 238
reheating, 156
relativistic beaming, 636
relativistic cosmology, 112
relaxation

chaotic mixing, 250
definition of, 249
end state of, 254
in collisionless systems, 248
in N-body simulations, 256
Landau damping, 253
phase mixing, 249
violent, see violent relaxation

residual gauge modes, 183
resonance coupling, 528
resonant orbit, 238
reverberation mapping, 639
RGB, see red giant branch
Ricci tensor, 742, 743
Riemann–Christoffel curvature tensor, 742
Robertson–Walker metric, 104, 742
rotation curves, 53, 498

cusp–core degeneracy, 501
disk–halo degeneracy, 500
of disk galaxies, 32

rotation-curve decomposition, 500
Rydberg constant, 699

Sérsic index, 42, 584
Sérsic profile, 42, 51, 58, 257, 603
Sachs–Wolfe effect, 305, 310

integrated, 307
Saha equation, 146, 147, 754
Salpeter initial mass function, 441
satellite galaxies, 653, 676

colors of, 671
fraction of, 668
luminosity function of, 666

scale factor, 103, 104
scale-invariant perturbations

from inflation, 209
scale-invariant spectrum, 206
Scalo initial mass function, 441
Schechter function, 62, 655, 734
Schmidt law of star formation, 434
Schwarzschild criterion for convective instability, 374
Schwarzschild models, 580
Schwarzschild radius, 624, 639
SCUBA, 79

sources, 662
SDSS galaxy catalogue, 61
secondary elements, 460, 491
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secular evolution, 12, 528, 615
SED, see spectral energy distribution
selection function

of a galaxy sample, 283
self-absorption, 629
self-similar model of gaseous collapse, 379

with gas cooling, 388
semi-analytical models, 24, 684
semi-forbidden lines, 631
Seyfert galaxies, 619, 637
shear

in gravitational lensing, 294, 300
shear instability, 439
shear tensor, 294
shear viscosity

coefficient of, 750
shell crossing, 219
shock heating, 703
shocks

accretion shock, 378, 381
isothermal, 378
jump conditions for, 377
non-radiative, 376, 378

shot noise, 289
in counts-in-cells, 270

Silk damping, 18, 175, 190
similarity model

for spherical collapse, 220
scale-free solutions, 222

singular isothermal sphere, 242, 372, 499
skewness, 269
Small Magellanic Cloud, 71
SMBH, see supermassive black holes
SMC, see Small Magellanic Cloud
smoothed-particle hydrodynamics, 687, 770

smoothing kernel, 771
SN, see supernovae
solar abundance, 35
sonic radius, 651
sound horizon, 192
sound waves, see acoustic waves
space-like separation, 104
space-time metric, 742
specific heats, 748

ratio of, 748
specific intensity of radiation, 750
specific internal energy, 748
specific star-formation rate, 494, 535
spectral energy distribution, 25, 27, 29
spectral features, 474
spectral indices, 474
spectral synthesis modeling, 36, 471

including emission lines, 476
spectroscopic observations, 29
SPH, see smoothed-particle hydrodynamics
spherical collapse, 19, 215

collapse time, 217
critical overdensity for, 218, 219
effect of cosmological constant, 218
maximum expansion, 216
of gaseous halos, 384
similarity solutions of, 220
with cooling, 390
with shell crossing, 219

spin parameter, 358, 502
spin temperature, 707

spiral arms, 53, 531
and star formation, 424
as density waves, 532
driven by bars, 534
formation of, 531
material arms, 532
morphology of, 531
pitch angle of, 531
shape function of, 531
winding problem of, 532

spiral galaxies, 2, 39, 49, 495, 531
spirals, see spiral galaxies
spontaneous symmetry breaking, 153, 157
spontaneous transition, 752
stable clustering, 281
standard candles, 33
standard rulers, 33
star formation, 8

associated with flocculant spirals, 424
birthrate, 535
driven by galaxy interactions, 424
driven by spiral density waves, 424
empirical laws of, 433
quiescent, 9
regulation by shear, 439
self-regulation, 428
specific star-formation rate, 494, 535
spontaneous versus induced, 428
the Kennicutt–Schmidt law, 434
the role of turbulence, 426
the Schmidt law, 434
time scale of, 425

star-formation diagnostics, 482
far-infrared continuum, 484
forbidden lines, 484
nebular emission lines, 483
UV continuum, 482

star-formation efficiency, 425
star-formation threshold, 438
star-formation truncation, see star-formation threshold
starburst, 9, 60, 564

and mergers, 564
stars, 34

birth point, 432
birthline, 432, 463
effective temperature of, 451
evolutionary tracks of, 36, 463
formation of, 417, 429
luminosity classes, 35
luminosity of, 451
main sequence of, 36
Population I, 56
Population II, 56
Population III, 446
spectra of, 35
spectral classes, 35
variable, 468

steady-state cosmology, 102
stellar atmospheres, 451, 471
stellar evolution, 453

effect of convection, 456
gravitational time scale, 449
Hayashi track, 463
homologous model, 460
hydrodynamic time scale, 449
nuclear time scale, 450
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passive, 472
post-main-sequence, 464
pre-main-sequence, 463
scaling relations, 460
thermal time scale, 450

stellar halos, 52
stellar nuclei, see nuclear star clusters
stellar nucleosynthesis, 457
stellar population synthesis, 13, 470
stellar populations, 449

of disk galaxies, 534
of elliptical galaxies, 606

stellar spectra
empirical, 470
theoretical, 471

stellar structure, 449
assumption of hydrostatic equilibrium, 449
basic equations of, 450, 452
boundary conditions, 451, 452
energy generation rate, 451
equation of state, 453
evolution of, 453
opacity, 451, 454

stellar winds, 404
mechanical luminosity of, 404

stimulated transition, 752
stochastic orbits, 239
Strömgren sphere, 704
strangulation, 572, 672, 676
stress tensor, 169, 233
strings, 153
strong lensing, see gravitational lensing
structure formation problem, 153
sub-DLAs, 86, 733
subgiants, 465
subhalo mass function, 356

unevolved, 357, 568
submillimeter sources, 78
Sunyaev–Zel’dovich effect, 152

kinematic, 315
thermal, 315

super-Eddington accretion, 641
supercooling, 159
superluminal motion, 622, 635
supermassive black holes, 9, 47, 61, 239, 582, 623

demographics of, 47, 584
evidence for, 47, 582, 639
formation of, 640

supernova feedback, 9, 406, 664, 685, 687
supernova rate, 469
supernova remnants, 401

free-expansion phase, 402
Sedov phase, 402
snowplow phase, 403

supernovae
heating by, 403
progenitors of, 468
Type Ia, 16, 33, 122, 317, 469
Type II, 470

surface brightness, 4, 26, 112
dimming, 112

surface pressure, 234
synchronous gauge, 181, 183
synchrotron emission, 627
SZ effect, see Sunyaev–Zel’dovich effect

textures, 153
thermal conductivity

coefficient of, 750
thermal instability, 393, 422

Field criterion of, 395
thermalization, 151
thermodynamic equilibrium

in N-body systems, 553
thermodynamics

the first law of, 108
the second law of, 108

thermonuclear reactions, 458
CNO cycle, 459
pp chain, 459
triple-α process, 460

thick disks, 52, 496, 518, 520
Thomson cross-section, 148, 759
Thomson scattering, 148, 311, 694, 707
three-point correlation function

of density field, 264
of galaxies, 287

tidal force, 544
tidal approximation, 546
tidal interactions, 12, 545
tidal radius, 548
tidal shock, 546
tidal streams, 550
tidal stripping, 12, 548, 617, 676
tidal tails, 550, 590

formation in mergers, 551
tidal tensor, 228
tidal torques, 19

theory of, 359
tight-coupling limit, 189
tight-winding approximation, 523
time delay

in gravitational lensing, 295, 296
time-like separation, 104
Toomre stability criterion, 423, 525
top hat window function, 207
top-down scenario, 257
topological defects, 153, 205, 213

and density perturbations, 213
total variation diminishing (TVD) condition, 774
transfer functions

adiabatic baryon model, 198
adiabatic CDM model, 200
adiabatic HDM model, 201
isentropic, 198
isocurvature, 198
isocurvature CDM model, 202
linear, 196

transmission function, 479
transmission of Earth’s atmosphere, 25
tree algorithm, 766
triaxiality parameter, 355
trigonometric parallax, 32
triple-α process, 460
Tully–Fisher relation, 54, 271, 512, 685
tuning-fork diagram, see Hubble sequence
turbulence, 423

driving mechanisms, 427
in giant molecular clouds, 419, 423, 426
supersonic, 419, 426

two-body relaxation time, 231
two-photon process, 147



820 Index

two-point correlation function, 82, 260
as measure of excess of neighboring particles, 265
error estimates of, 286
estimators of, 284
integral constraint on, 263
J3 weighting, 285
of dark matter particles, 260
of density field, 262
of density perturbations, 203
of galaxies, 82, 284, 287
one-halo term, 363, 679
redshift evolution, 281
two-halo term, 363, 679

UBVRI photometric system, 28
UHURU, 69
ULIRG, see ultraluminous infrared galaxies
ultra compact dwarfs, 59
ultraluminous infrared galaxies, 60, 565
universe

age of, 119
flat, open, closed, 116

UV background radiation, 370
observations of, 701

UV drop-outs, 77

vacuum energy, 7
vacuum state, 153
variable stars, 468
variance

of density fluctuations, 267
of mass in windows, 268

velocity ellipsoid, 234
velocity tensor, 233
velocity–distance relation, 16
vertical frequency, 504
violent relaxation, 7, 11, 251, 351, 353, 563

time scale of, 252
virial density, 236
virial radius, 236

of dark matter halos, 352

virial temperature, 8, 374, 375
virial theorem, 234, 374, 526, 547

application to spherical collapse, 235
scalar form of, 235
tensor form of, 235

viscous disks, 517
viscous dissipation, 750
viscous stress tensor, 749
Vlasov equation, 168

moments of, 168
voids, 258, 260
Voigt profile, 87, 711
volume-limited sample, 284

warm dark matter, 20
warm-hot intergalactic medium, 97, 704, 740

and OVI systems, 740
WDM, see warm dark matter
weak lensing, see gravitational lensing
weakly interacting massive particles, 136
WHIM, see warm-hot intergalactic medium
white dwarfs, 467
WIMP, see weakly interacting massive particles
window function, 267

k space top-hat, 267
Gaussian, 267
top-hat, 267

WMAP, 19, 317
Wouthuysen–Field process, 708

X-ray cavities, 650
X-ray scaling relations

of clusters of galaxies, 412

yield, 489
effective, 490, 541

Zel’dovich approximation, 19, 177, 272,
359, 770

zero-age main sequence, 463
zero-point energy, 157
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