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Preface

The vast ocean of space is full of starry islands called galaxies. These objects, extraordinar-
ily beautiful and diverse in their own right, not only are the localities within which stars form
and evolve, but also act as the lighthouses that allow us to explore our Universe over cosmo-
logical scales. Understanding the majesty and variety of galaxies in a cosmological context is
therefore an important, yet daunting task. Particularly mind-boggling is the fact that, in the cur-
rent paradigm, galaxies only represent the tip of the iceberg in a Universe dominated by some
unknown ‘dark matter’ and an even more elusive form of ‘dark energy’.

How do galaxies come into existence in this dark Universe, and how do they evolve? What is
the relation of galaxies to the dark components? What shapes the properties of different galaxies?
How are different properties of galaxies correlated with each other and what physics underlies
these correlations? How do stars form and evolve in different galaxies? The quest for the answers
to these questions, among others, constitutes an important part of modern cosmology, the study of
the structure and evolution of the Universe as a whole, and drives the active and rapidly evolving
research field of extragalactic astronomy and astrophysics.

The aim of this book is to provide a self-contained description of the physical processes and
the astronomical observations which underlie our present understanding of the formation and
evolution of galaxies in a Universe dominated by dark matter and dark energy. Any book on
this subject must take into account that this is a rapidly developing field; there is a danger that
material may rapidly become outdated. We hope that this can be avoided if the book is appropri-
ately structured. Our premises are the following. In the first place, although observational data
are continually updated, forcing revision of the theoretical models used to interpret them, the
general principles involved in building such models do not change as rapidly. It is these prin-
ciples, rather than the details of specific observations or models, that are the main focus of this
book. Secondly, galaxies are complex systems, and the study of their formation and evolution is
an applied and synthetic science. The interest of the subject is precisely that there are so many
unsolved problems, and that the study of these problems requires techniques from many branches
of physics and astrophysics — the formation of stars, the origin and dispersal of the elements, the
link between galaxies and their central black holes, the nature of dark matter and dark energy,
the origin and evolution of cosmic structure, and the size and age of our Universe. A firm grasp
of the basic principles and the main outstanding issues across this full breadth of topics is needed
by anyone preparing to carry out her/his own research, and this we hope to provide.

These considerations dictated both our selection of material and our style of presentation.
Throughout the book, we emphasize the principles and the important issues rather than the details
of observational results and theoretical models. In particular, special attention is paid to bringing
out the physical connections between different parts of the problem, so that the reader will not
lose the big picture while working on details. To this end, we start in each chapter with an
introduction describing the material to be presented and its position in the overall scenario. In a
field as broad as galaxy formation and evolution, it is clearly impossible to include all relevant
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material. The selection of the material presented in this book is therefore unavoidably biased by
our prejudice, taste, and limited knowledge of the literature, and we apologize to anyone whose
important work is not properly covered.

This book can be divided into several parts according to the material contained. Chapter 1 is
an introduction, which sketches our current ideas about galaxies and their formation processes.
Chapter 2 is an overview of the observational facts related to galaxy formation and evolution.
Chapter 3 describes the cosmological framework within which galaxy formation and evolution
must be studied. Chapters 4-8 contain material about the nature and evolution of the cosmo-
logical density field, both in collisionless dark matter and in collisional gas. Chapters 9 and 10
deal with topics related to star formation and stellar evolution in galaxies. Chapters 11-15 are
concerned with the structure, formation, and evolution of individual galaxies and with the statis-
tical properties of the galaxy population, and Chapter 16 gives an overview of the intergalactic
medium. In addition, we provide appendixes to describe the general concepts of general relativity
(Appendix A), basic hydrodynamic and radiative processes (Appendix B), and some commonly
used techniques of N-body and hydrodynamical simulations (Appendix C).

The different parts are largely self-contained, and can be used separately for courses or sem-
inars on specific topics. Chapters 1 and 2 are particularly geared towards novices to the field of
extragalactic astronomy. Chapter 3, combined with parts of Chapters 4 and 5, could make up a
course on cosmology, while a more advanced course on structure formation might be constructed
around the material presented in Chapters 4-8. Chapter 2 and Chapters 11-15 contain material
suited for a course on galaxy formation. Chapters 9, 10 and 16 contain special topics related to
the formation and evolution of galaxies, and could be combined with Chapters 11-15 to form an
extended course on galaxy formation and evolution. They could also be used independently for
short courses on star formation and stellar evolution (Chapters 9 and 10), and on the intergalactic
medium (Chapter 16).

Throughout the book, we have adopted a number of abbreviations that are commonly used
by galaxy-formation practitioners. In order to avoid confusion, these abbreviations are listed in
Appendix D along with their definitions. Some important physical constants and units are listed
in Appendix E.

References are provided at the end of the book. Although long, the reference list is by no
means complete, and we apologize once more to anyone whose relevant papers are overlooked.
The number of references citing our own work clearly overrates our own contribution to the
field. This is again a consequence of our limited knowledge of the existing literature, which
is expanding at such a dramatic pace that it is impossible to cite all the relevant papers. The
references given are mainly intended to serve as a starting point for readers interested in a more
detailed literature study. We hope, by looking for the papers cited by our listed references, one
can find relevant papers published in the past, and by looking for the papers citing the listed
references, one can find relevant papers published later. Nowadays this is relatively easy to do
with the use of the search engines provided by The SAO/NASA Astrophysics Data System' and
the arXiv e-print server.”

We would not have been able to write this book without the help of many people. We benefit-
ted greatly from discussions with and comments by many of our colleagues, including E. Bell,
A. Berlind, G. Borner, A. Coil, J. Dalcanton, A. Dekel, M. Hahnelt, M. Heyer, W. Hu, Y. Jing,
N. Katz, R. Larson, M. Longair, M. Mac Low, C.-P. Ma, S. Mao, E. Neistein, A. Pasquali,
J. Peacock, M. Rees, H.-W. Rix, J. Sellwood, E. Sheldon, R. Sheth, R. Somerville, V. Springel,
R. Sunyaev, A. van der Wel, R. Wechsler, M. Weinberg, and X. Yang. We are also deeply indebted
to our many students and collaborators who made it possible for us to continue to publish

U http://adsabs.harvard.edu/abstract service.html
2 http:/arxiv.org/
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scientific papers while working on the book, and who gave us many new ideas and insights,
some of which are presented in this book.

Many thanks to the following people who provided us with figures and data used in the book:
M. Bartelmann, F. Bigiel, M. Boylan-Kolchin, S. Charlot, S. Courteau, J. Dalcanton, A. Dutton,
K. Gebhardt, A. Graham, P. Hewett, G. Kauffmann, Y. Lu, L. McArthur, A. Pasquali, R. Saglia,
S. Shen, Y. Wang, and X. Yang.

We thankfully acknowledge the (almost) inexhaustible amount of patience of the people at
Cambridge University Press, in particular our editor, Vince Higgs.

We also thank the following institutions for providing support and hospitality to us during
the writing of this book: the University of Massachusetts, Amherst; the Max-Planck Institute for
Astronomy, Heidelberg; the Max-Planck Institute for Astrophysics, Garching; the Swiss Federal
Institute of Technology, Ziirich; the University of Utah; Shanghai Observatory; the Aspen Center
for Physics; and the Kavli Institute of Theoretical Physics, Santa Barbara.

Last but not least we wish to thank our loved ones, whose continuous support has been abso-
lutely essential for the completion of this book. HM would like to thank his wife, Ling, and son,
Ye, for their support and understanding during the years when the book was drafted. FB grate-
fully acknowledges the love and support of Anna and Daka, and apologizes for the times they
felt neglected because of ‘the book’.

May 2009 Houjun Mo
Frank van den Bosch
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Introduction

This book is concerned with the physical processes related to the formation and evolution of
galaxies. Simply put, a galaxy is a dynamically bound system that consists of many stars. A
typical bright galaxy, such as our own Milky Way, contains a few times 10'0 stars and has a
diameter (~ 20kpc) that is several hundred times smaller than the mean separation between
bright galaxies. Since most of the visible stars in the Universe belong to a galaxy, the number
density of stars within a galaxy is about 107 times higher than the mean number density of
stars in the Universe as a whole. In this sense, galaxies are well-defined, astronomical identities.
They are also extraordinarily beautiful and diverse objects whose nature, structure and origin
have intrigued astronomers ever since the first galaxy images were taken in the mid-nineteenth
century.

The goal of this book is to show how physical principles can be used to understand the for-
mation and evolution of galaxies. Viewed as a physical process, galaxy formation and evolution
involve two different aspects: (i) initial and boundary conditions; and (ii) physical processes
which drive evolution. Thus, in very broad terms, our study will consist of the following parts:

e Cosmology: Since we are dealing with events on cosmological time and length scales, we
need to understand the space-time structure on large scales. One can think of the cosmological
framework as the stage on which galaxy formation and evolution take place.

e Initial conditions: These were set by physical processes in the early Universe which are
beyond our direct view, and which took place under conditions far different from those we
can reproduce in Earth-bound laboratories.

e Physical processes: As we will show in this book, the basic physics required to study galaxy
formation and evolution includes general relativity, hydrodynamics, dynamics of collision-
less systems, plasma physics, thermodynamics, electrodynamics, atomic, nuclear and particle
physics, and the theory of radiation processes.

In a sense, galaxy formation and evolution can therefore be thought of as an application of (rela-
tively) well-known physics with cosmological initial and boundary conditions. As in many other
branches of applied physics, the phenomena to be studied are diverse and interact in many differ-
ent ways. Furthermore, the physical processes involved in galaxy formation cover some 23 orders
of magnitude in physical size, from the scale of the Universe itself down to the scale of individual
stars, and about four orders of magnitude in time scales, from the age of the Universe to that of
the lifetime of individual, massive stars. Put together, it makes the formation and evolution of
galaxies a subject of great complexity.

From an empirical point of view, the study of galaxy formation and evolution is very different
from most other areas of experimental physics. This is due mainly to the fact that even the
shortest time scales involved are much longer than that of a human being. Consequently, we
cannot witness the actual evolution of individual galaxies. However, because the speed of light
is finite, looking at galaxies at larger distances from us is equivalent to looking at galaxies when
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the Universe was younger. Therefore, we may hope to infer how galaxies form and evolve by
comparing their properties, in a statistical sense, at different epochs. In addition, at each epoch
we can try to identify regularities and correspondences among the galaxy population. Although
galaxies span a wide range in masses, sizes, and morphologies, to the extent that no two galaxies
are alike, the structural parameters of galaxies also obey various scaling relations, some of which
are remarkably tight. These relations must hold important information regarding the physical
processes that underlie them, and any successful theory of galaxy formation has to be able to
explain their origin.

Galaxies are not only interesting in their own right, they also play a pivotal role in our study
of the structure and evolution of the Universe. They are bright, long-lived and abundant, and so
can be observed in large numbers over cosmological distances and time scales. This makes them
unique tracers of the evolution of the Universe as a whole, and detailed studies of their large
scale distribution can provide important constraints on cosmological parameters. In this book we
therefore also describe the large scale distribution of galaxies, and discuss how it can be used to
test cosmological models.

In Chapter 2 we start by describing the observational properties of stars, galaxies and the large
scale structure of the Universe as a whole. Chapters 3 through 10 describe the various physical
ingredients needed for a self-consistent model of galaxy formation, ranging from the cosmolog-
ical framework to the formation and evolution of individual stars. Finally, in Chapters 11-16 we
combine these physical ingredients to examine how galaxies form and evolve in a cosmological
context, using the observational data as constraints.

The purpose of this introductory chapter is to sketch our current ideas about galaxies and
their formation process, without going into any detail. After a brief overview of some observed
properties of galaxies, we list the various physical processes that play a role in galaxy formation
and outline how they are connected. We also give a brief historical overview of how our current
views of galaxy formation have been shaped.

1.1 The Diversity of the Galaxy Population

Galaxies are a diverse class of objects. This means that a large number of parameters is required
in order to characterize any given galaxy. One of the main goals of any theory of galaxy formation
is to explain the full probability distribution function of all these parameters. In particular, as we
will see in Chapter 2, many of these parameters are correlated with each other, a fact which any
successful theory of galaxy formation should also be able to reproduce.

Here we list briefly the most salient parameters that characterize a galaxy. This overview is
necessarily brief and certainly not complete. However, it serves to stress the diversity of the
galaxy population, and to highlight some of the most important observational aspects that galaxy
formation theories need to address. A more thorough description of the observational properties
of galaxies is given in Chapter 2.

(a) Morphology One of the most noticeable properties of the galaxy population is the existence
of two basic galaxy types: spirals and ellipticals. Elliptical galaxies are mildly flattened, ellip-
soidal systems that are mainly supported by the random motions of their stars. Spiral galaxies, on
the other hand, have highly flattened disks that are mainly supported by rotation. Consequently,
they are also often referred to as disk galaxies. The name ‘spiral’ comes from the fact that the gas
and stars in the disk often reveal a clear spiral pattern. Finally, for historical reasons, ellipticals
and spirals are also called early- and late-type galaxies, respectively.

Most galaxies, however, are neither a perfect ellipsoid nor a perfect disk, but rather a combi-
nation of both. When the disk is the dominant component, its ellipsoidal component is generally
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called the bulge. In the opposite case, of a large ellipsoidal system with a small disk, one typically
talks about a disky elliptical. One of the earliest classification schemes for galaxies, which is still
heavily used, is the Hubble sequence. Roughly speaking, the Hubble sequence is a sequence
in the admixture of the disk and ellipsoidal components in a galaxy, which ranges from early-
type ellipticals that are pure ellipsoids to late-type spirals that are pure disks. As we will see
in Chapter 2, the important aspect of the Hubble sequence is that many intrinsic properties of
galaxies, such as luminosity, color, and gas content, change systematically along this sequence.
In addition, disks and ellipsoids most likely have very different formation mechanisms. There-
fore, the morphology of a galaxy, or its location along the Hubble sequence, is directly related to
its formation history.

For completeness, we stress that not all galaxies fall in this spiral vs. elliptical classification.
The faintest galaxies, called dwarf galaxies, typically do not fall on the Hubble sequence. Dwarf
galaxies with significant amounts of gas and ongoing star formation typically have a very irreg-
ular structure, and are consequently called (dwarf) irregulars. Dwarf galaxies without gas and
young stars are often very diffuse, and are called dwarf spheroidals. In addition to these dwarf
galaxies, there is also a class of brighter galaxies whose morphology neither resembles a disk nor
a smooth ellipsoid. These are called peculiar galaxies and include, among others, galaxies with
double or multiple subcomponents linked by filamentary structure and highly distorted galax-
ies with extended tails. As we will see, they are usually associated with recent mergers or tidal
interactions. Although peculiar galaxies only constitute a small fraction of the entire galaxy pop-
ulation, their existence conveys important information about how galaxies may have changed
their morphologies during their evolutionary history.

(b) Luminosity and Stellar Mass Galaxies span a wide range in luminosity. The brightest
galaxies have luminosities of ~ 10'> L, where L, indicates the luminosity of the Sun. The exact
lower limit of the luminosity distribution is less well defined, and is subject to regular changes,
as fainter and fainter galaxies are constantly being discovered. In 2007 the faintest galaxy known
was a newly discovered dwarf spheroidal Willman I, with a total luminosity somewhat below
1000L.

Obviously, the total luminosity of a galaxy is related to its total number of stars, and thus to its
total stellar mass. However, the relation between luminosity and stellar mass reveals a significant
amount of scatter, because different galaxies have different stellar populations. As we will see in
Chapter 10, galaxies with a younger stellar population have a higher luminosity per unit stellar
mass than galaxies with an older stellar population.

An important statistic of the galaxy population is its luminosity probability distribution func-
tion, also known as the luminosity function. As we will see in Chapter 2, there are many more
faint galaxies than bright galaxies, so that the faint ones clearly dominate the number density.
However, in terms of the contribution to the total luminosity density, neither the faintest nor the
brightest galaxies dominate. Instead, it is the galaxies with a characteristic luminosity similar
to that of our Milky Way that contribute most to the total luminosity density in the present-day
Universe. This indicates that there is a characteristic scale in galaxy formation, which is accen-
tuated by the fact that most galaxies that are brighter than this characteristic scale are ellipticals,
while those that are fainter are mainly spirals (at the very faint end dwarf irregulars and dwarf
spheroidals dominate). Understanding the physical origin of this characteristic scale has turned
out to be one of the most challenging problems in contemporary galaxy formation modeling.

(c) Size and Surface Brightness As we will see in Chapter 2, galaxies do not have well-defined
boundaries. Consequently, several different definitions for the size of a galaxy can be found in
the literature. One measure often used is the radius enclosing a certain fraction (e.g. half) of the
total luminosity. In general, as one might expect, brighter galaxies are bigger. However, even for
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a fixed luminosity, there is a considerable scatter in sizes, or in surface brightness, defined as the
luminosity per unit area.

The size of a galaxy has an important physical meaning. In disk galaxies, which are rotation
supported, the sizes are a measure of their specific angular momenta (see Chapter 11). In the
case of elliptical galaxies, which are supported by random motions, the sizes are a measure
of the amount of dissipation during their formation (see Chapter 13). Therefore, the observed
distribution of galaxy sizes is an important constraint for galaxy formation models.

(d) Gas Mass Fraction Another useful parameter to describe galaxies is their cold gas mass
fraction, defined as foas = Mcold/[Mcold + M), With Mo and M, the masses of cold gas and
stars, respectively. This ratio expresses the efficiency with which cold gas has been turned into
stars. Typically, the gas mass fractions of ellipticals are negligibly small, while those of disk
galaxies increase systematically with decreasing surface brightness. Indeed, the lowest surface
brightness disk galaxies can have gas mass fractions in excess of 90 percent, in contrast to our
Milky Way which has feas ~ 0.1.

(e) Color Galaxies also come in different colors. The color of a galaxy reflects the ratio of
its luminosity in two photometric passbands. A galaxy is said to be red if its luminosity in the
redder passband is relatively high compared to that in the bluer passband. Ellipticals and dwarf
spheroidals generally have redder colors than spirals and dwarf irregulars. As we will see in
Chapter 10, the color of a galaxy is related to the characteristic age and metallicity of its stellar
population. In general, redder galaxies are either older or more metal rich (or both). Therefore, the
color of a galaxy holds important information regarding its stellar population. However, extinc-
tion by dust, either in the galaxy itself, or along the line-of-sight between the source and the
observer, also tends to make a galaxy appear red. As we will see, separating age, metallicity and
dust effects is one of the most daunting tasks in observational astronomy.

(f) Environment As we will see in §§2.5-2.7, galaxies are not randomly distributed throughout
space, but show a variety of structures. Some galaxies are located in high-density clusters con-
taining several hundreds of galaxies, some in smaller groups containing a few to tens of galaxies,
while yet others are distributed in low-density filamentary or sheet-like structures. Many of these
structures are gravitationally bound, and may have played an important role in the formation
and evolution of the galaxies. This is evident from the fact that elliptical galaxies seem to prefer
cluster environments, whereas spiral galaxies are mainly found in relative isolation (sometimes
called the field). As briefly discussed in §1.2.8 below, it is believed that this morphology—density
relation reflects enhanced dynamical interaction in denser environments, although we still lack a
detailed understanding of its origin.

(g) Nuclear Activity For the majority of galaxies, the observed light is consistent with what
we expect from a collection of stars and gas. However, a small fraction of all galaxies, called
active galaxies, show an additional non-stellar component in their spectral energy distribution.
As we will see in Chapter 14, this emission originates from a small region in the centers of these
galaxies, called the active galactic nucleus (AGN), and is associated with matter accretion onto a
supermassive black hole. According to the relative importance of such non-stellar emission, one
can separate active galaxies from normal (or non-active) galaxies.

(h) Redshift Because of the expansion of the Universe, an object that is farther away will have a
larger receding velocity, and thus a larger redshift. Since the light from high-redshift galaxies was
emitted when the Universe was younger, we can study galaxy evolution by observing the galaxy
population at different redshifts. In fact, in a statistical sense the high-redshift galaxies are the
progenitors of present-day galaxies, and any changes in the number density or intrinsic properties
of galaxies with redshift give us a direct window on the formation and evolution of the galaxy
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population. With modern, large telescopes we can now observe galaxies out to redshifts beyond
six, making it possible for us to probe the galaxy population back to a time when the Universe
was only about 10 percent of its current age.

1.2 Basic Elements of Galaxy Formation

Before diving into details, it is useful to have an overview of the basic theoretical framework
within which our current ideas about galaxy formation and evolution have been developed. In
this section we give a brief overview of the various physical processes that play a role dur-
ing the formation and evolution of galaxies. The goal is to provide the reader with a picture
of the relationships among the various aspects of galaxy formation to be addressed in greater
detail in the chapters to come. To guide the reader, Fig. 1.1 shows a flow chart of galaxy for-
mation, which illustrates how the various processes to be discussed below are intertwined. It
is important to stress, though, that this particular flow chart reflects our current, undoubtedly
incomplete view of galaxy formation. Future improvements in our understanding of galaxy for-
mation and evolution may add new links to the flow chart, or may render some of the links shown
obsolete.

cosmological initial and boundary conditions

[

| gravitational instability |

| dark halo (dark matter + gas)

arge angular
momentum?

dissipative | gaseous disk | hot halo
collapse; 7
starburst -
star formation

disk galaxy

yes/*\no
major merger?
no es es
gas rich? Y Y disk massive?

starburst,

| tidal tail | | AGN, tidal tail z:; ii:ﬁ'fv]:mty
i i AGN
spheroidal system | T
‘ central bulge
gas accretion?

elliptical | bulge/disk system | disk

Fig. 1.1. A logic flow chart for galaxy formation. In the standard scenario, the initial and boundary con-
ditions for galaxy formation are set by the cosmological framework. The paths leading to the formation of
various galaxies are shown along with the relevant physical processes. Note, however, that processes do
not separate as neatly as this figure suggests. For example, cold gas may not have the time to settle into a
gaseous disk before a major merger takes place.
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1.2.1 The Standard Model of Cosmology

Since galaxies are observed over cosmological length and time scales, the description of their
formation and evolution must involve cosmology, the study of the properties of space-time on
large scales. Modern cosmology is based upon the cosmological principle, the hypothesis that
the Universe is spatially homogeneous and isotropic, and Einstein’s theory of general relativity,
according to which the structure of space-time is determined by the mass distribution in the
Universe. As we will see in Chapter 3, these two assumptions together lead to a cosmology (the
standard model) that is completely specified by the curvature of the Universe, K, and the scale
factor, a(t), describing the change of the length scale of the Universe with time. One of the basic
tasks in cosmology is to determine the value of K and the form of a(¢) (hence the space-time
geometry of the Universe on large scales), and to show how observables are related to physical
quantities in such a universe.

Modern cosmology not only specifies the large-scale geometry of the Universe, but also has
the potential to predict its thermal history and matter content. Because the Universe is expanding
and filled with microwave photons at the present time, it must have been smaller, denser and
hotter at earlier times. The hot and dense medium in the early Universe provides conditions
under which various reactions among elementary particles, nuclei and atoms occur. Therefore,
the application of particle, nuclear and atomic physics to the thermal history of the Universe in
principle allows us to predict the abundances of all species of elementary particles, nuclei and
atoms at different epochs. Clearly, this is an important part of the problem to be addressed in this
book, because the formation of galaxies depends crucially on the matter/energy content of the
Universe.

In currently popular cosmologies we usually consider a universe consisting of three main com-
ponents. In addition to the ‘baryonic’ matter, the protons, neutrons and electrons' that make up
the visible Universe, astronomers have found various indications for the presence of dark matter
and dark energy (see Chapter 2 for a detailed discussion of the observational evidence). Although
the nature of both dark matter and dark energy is still unknown, we believe that they are respon-
sible for more than 95 percent of the energy density of the Universe. Different cosmological
models differ mainly in (i) the relative contributions of baryonic matter, dark matter, and dark
energy, and (ii) the nature of dark matter and dark energy. At the time of writing, the most pop-
ular model is the so-called ACDM model, a flat universe in which ~ 75 percent of the energy
density is due to a cosmological constant, ~ 21 percent is due to ‘cold’ dark matter (CDM),
and the remaining 4 percent is due to the baryonic matter out of which stars and galaxies are
made. Chapter 3 gives a detailed description of these various components, and describes how
they influence the expansion history of the Universe.

1.2.2 Initial Conditions

If the cosmological principle held perfectly and the distribution of matter in the Universe were
perfectly uniform and isotropic, there would be no structure formation. In order to explain the
presence of structure, in particular galaxies, we clearly need some deviations from perfect uni-
formity. Unfortunately, the standard cosmology does not in itself provide us with an explanation
for the origin of these perturbations. We have to go beyond it to search for an answer.

A classical, general relativistic description of cosmology is expected to break down at very
early times when the Universe is so dense that quantum effects are expected to be important. As
we will see in §3.6, the standard cosmology has a number of conceptual problems when applied
to the early Universe, and the solutions to these problems require an extension of the standard

' Although an electron is a lepton, and not a baryon, in cosmology it is standard practice to include electrons when
talking of baryonic matter
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cosmology to incorporate quantum processes. One generic consequence of such an extension
is the generation of density perturbations by quantum fluctuations at early times. It is believed
that these perturbations are responsible for the formation of the structures observed in today’s
Universe.

As we will see in §3.6, one particularly successful extension of the standard cosmology is the
inflationary theory, in which the Universe is assumed to have gone through a phase of rapid,
exponential expansion (called inflation) driven by the vacuum energy of one or more quantum
fields. In many, but not all, inflationary models, quantum fluctuations in this vacuum energy can
produce density perturbations with properties consistent with the observed large scale structure.
Inflation thus offers a promising explanation for the physical origin of the initial perturbations.
Unfortunately, our understanding of the very early Universe is still far from complete, and we are
currently unable to predict the initial conditions for structure formation entirely from first prin-
ciples. Consequently, even this part of galaxy formation theory is still partly phenomenological:
typically initial conditions are specified by a set of parameters that are constrained by observa-
tional data, such as the pattern of fluctuations in the microwave background or the present-day
abundance of galaxy clusters.

1.2.3 Gravitational Instability and Structure Formation

Having specified the initial conditions and the cosmological framework, one can compute how
small perturbations in the density field evolve. As we will see in Chapter 4, in an expand-
ing universe dominated by non-relativistic matter, perturbations grow with time. This is easy
to understand. A region whose initial density is slightly higher than the mean will attract its
surroundings slightly more strongly than average. Consequently, over-dense regions pull matter
towards them and become even more over-dense. On the other hand, under-dense regions become
even more rarefied as matter flows away from them. This amplification of density perturbations is
referred to as gravitational instability and plays an important role in modern theories of structure
formation. In a static universe, the amplification is a run-away process, and the density contrast
dp/p grows exponentially with time. In an expanding universe, however, the cosmic expansion
damps accretion flows, and the growth rate is usually a power law of time, §p/p < %, with
o > 0. As we will see in Chapter 4, the exact rate at which the perturbations grow depends on
the cosmological model.

At early times, when the perturbations are still in what we call the linear regime (0p/p < 1),
the physical size of an over-dense region increases with time due to the overall expansion of
the universe. Once the perturbation reaches over-density 0p/p ~ 1, it breaks away from the
expansion and starts to collapse. This moment of ‘turn-around’, when the physical size of
the perturbation is at its maximum, signals the transition from the mildly nonlinear regime to
the strongly nonlinear regime.

The outcome of the subsequent nonlinear, gravitational collapse depends on the matter con-
tent of the perturbation. If the perturbation consists of ordinary baryonic gas, the collapse creates
strong shocks that raise the entropy of the material. If radiative cooling is inefficient, the sys-
tem relaxes to hydrostatic equilibrium, with its self-gravity balanced by pressure gradients. If the
perturbation consists of collisionless matter (e.g. cold dark matter), no shocks develop, but the
system still relaxes to a quasi-equilibrium state with a more-or-less universal structure. This pro-
cess is called violent relaxation and will be discussed in Chapter 5. Nonlinear, quasi-equilibrium
dark matter objects are called dark matter halos. Their predicted structure has been thoroughly
explored using numerical simulations, and they play a pivotal role in modern theories of galaxy
formation. Chapter 7 therefore presents a detailed discussion of the structure and formation of
dark matter halos. As we shall see, halo density profiles, shapes, spins and internal substructure
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all depend very weakly on mass and on cosmology, but the abundance and characteristic density
of halos depend sensitively on both of these.

In cosmologies with both dark matter and baryonic matter, such as the currently favored CDM
models, each initial perturbation contains baryonic gas and collisionless dark matter in roughly
their universal proportions. When an object collapses, the dark matter relaxes violently to form a
dark matter halo, while the gas shocks to the virial temperature, Ty;; (see §8.2.3 for a definition)
and may settle into hydrostatic equilibrium in the potential well of the dark matter halo if cooling
is slow.

1.2.4 Gas Cooling

Cooling is a crucial ingredient of galaxy formation. Depending on temperature and density,
a variety of cooling processes can affect gas. In massive halos, where the virial temperature
T.ir > 107 K, gas is fully collisionally ionized and cools mainly through bremsstrahlung emission

from free electrons. In the temperature range 10*K < Ty < 10°K, a number of excitation and
de-excitation mechanisms can play a role. Electrons can recombine with ions, emitting a pho-
ton, or atoms (neutral or partially ionized) can be excited by a collision with another particle,
thereafter decaying radiatively to the ground state. Since different atomic species have different
excitation energies, the cooling rates depend strongly on the chemical composition of the gas.
In halos with Ty;; < 10*K, gas is predicted to be almost completely neutral. This strongly sup-
presses the cooling processes mentioned above. However, if heavy elements and/or molecules are
present, cooling is still possible through the collisional excitation/de-excitation of fine and hyper-
fine structure lines (for heavy elements) or rotational and/or vibrational lines (for molecules).
Finally, at high redshifts (z > 6), inverse Compton scattering of cosmic microwave background
photons by electrons in hot halo gas can also be an effective cooling channel. Chapter 8 will
discuss these cooling processes in more detail.

Except for inverse Compton scattering, all these cooling mechanisms involve two particles.
Consequently, cooling is generally more effective in higher density regions. After nonlinear grav-
itational collapse, the shocked gas in virialized halos may be dense enough for cooling to be
effective. If cooling times are short, the gas never comes to hydrostatic equilibrium, but rather
accretes directly onto the central protogalaxy. Even if cooling is slow enough for a hydrostatic
atmosphere to develop, it may still cause the denser inner regions of the atmosphere to lose pres-
sure support and to flow onto the central object. The net effect of cooling is thus that the baryonic
material segregates from the dark matter, and accumulates as dense, cold gas in a protogalaxy at
the center of the dark matter halo.

As we will see in Chapter 7, dark matter halos, as well as the baryonic material associated
with them, typically have a small amount of angular momentum. If this angular momentum is
conserved during cooling, the gas will spin up as it flows inwards, settling in a cold disk in
centrifugal equilibrium at the center of the halo. This is the standard paradigm for the formation
of disk galaxies, which we will discuss in detail in Chapter 11.

1.2.5 Star Formation

As the gas in a dark matter halo cools and flows inwards, its self-gravity will eventually dominate
over the gravity of the dark matter. Thereafter it collapses under its own gravity, and in the
presence of effective cooling, this collapse becomes catastrophic. Collapse increases the density
and temperature of the gas, which generally reduces the cooling time more rapidly than it reduces
the collapse time. During such runaway collapse the gas cloud may fragment into small, high-
density cores that may eventually form stars (see Chapter 9), thus giving rise to a visible galaxy.



1.2 Basic Elements of Galaxy Formation 9

Unfortunately, many details of these processes are still unclear. In particular, we are still unable
to predict the mass fraction of, and the time scale for, a self-gravitating cloud to be transformed
into stars. Another important and yet poorly understood issue is concerned with the mass dis-
tribution with which stars are formed, i.e. the initial mass function (IMF). As we will see in
Chapter 10, the evolution of a star, in particular its luminosity as function of time and its eventual
fate, is largely determined by its mass at birth. Predictions of observable quantities for model
galaxies thus require not only the birth rate of stars as a function of time, but also their IMF.
In principle, it should be possible to derive the IMF from first principles, but the theory of star
formation has not yet matured to this level. At present one has to assume an IMF ad hoc and
check its validity by comparing model predictions to observations.

Based on observations, we will often distinguish two modes of star formation: quiescent star
formation in rotationally supported gas disks, and starbursts. The latter are characterized by
much higher star-formation rates, and are typically confined to relatively small regions (often
the nucleus) of galaxies. Starbursts require the accumulation of large amounts of gas in a small
volume, and appear to be triggered by strong dynamical interactions or instabilities. These pro-
cesses will be discussed in more detail in §1.2.8 below and in Chapter 12. At the moment,
there are still many open questions related to these different modes of star formation. What
fraction of stars formed in the quiescent mode? Do both modes produce stellar populations
with the same IMF? How does the relative importance of starbursts scale with time? As we
will see, these and related questions play an important role in contemporary models of galaxy
formation.

1.2.6 Feedback Processes

When astronomers began to develop the first dynamical models for galaxy formation in a CDM
dominated universe, it immediately became clear that most baryonic material is predicted to
cool and form stars. This is because in these ‘hierarchical’ structure formation models, small
dense halos form at high redshift and cooling within them is predicted to be very efficient. This
disagrees badly with observations, which show that only a relatively small fraction of all baryons
are in cold gas or stars (see Chapter 2). Apparently, some physical process must either prevent
the gas from cooling, or reheat it after it has become cold.

Even the very first models suggested that the solution to this problem might lie in feedback
from supernovae, a class of exploding stars that can produce enormous amounts of energy (see
§10.5). The radiation and the blast waves from these supernovae may heat (or reheat) surrounding
gas, blowing it out of the galaxy in what is called a galactic wind. These processes are described
in more detail in §§8.6 and 10.5.

Another important feedback source for galaxy formation is provided by active galactic nuclei
(AGN)), the active accretion phase of supermassive black holes (SMBH) lurking at the centers of
almost all massive galaxies (see Chapter 14). This process releases vast amounts of energy — this
is why AGN are bright and can be seen out to large distances, which can be tapped by surrounding
gas. Although only a relatively small fraction of present-day galaxies contain an AGN, obser-
vations indicate that virtually all massive spheroids contain a nuclear SMBH (see Chapter 2).
Therefore, it is believed that virtually all galaxies with a significant spheroidal component have
gone through one or more AGN phases during their life.

Although it has become clear over the years that feedback processes play an important role
in galaxy formation, we are still far from understanding which processes dominate, and when
and how exactly they operate. Furthermore, to make accurate predictions for their effects, one
also needs to know how often they occur. For supernovae this requires a prior understanding of
the star-formation rates and the IMF. For AGN it requires understanding how, when and where
supermassive black holes form, and how they accrete mass.
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Fig. 1.2. A flow chart of the evolution of an individual galaxy. The galaxy is represented by the dashed box
which contains hot gas, cold gas, stars and a supermassive black hole (SMBH). Gas cooling converts hot gas
into cold gas, star formation converts cold gas into stars, and dying stars inject energy, metals and gas into
the gas components. In addition, the SMBH can accrete gas (both hot and cold) as well as stars, producing
AGN activity which can release vast amounts of energy which affect primarily the gaseous components of
the galaxy. Note that in general the box will not be closed: gas can be added to the system through accretion
from the intergalactic medium and can escape the galaxy through outflows driven by feedback from the
stars and/or the SMBH. Finally, a galaxy may merge or interact with another galaxy, causing a significant
boost or suppression of all these processes.

It should be clear from the above discussion that galaxy formation is a subject of great com-
plexity, involving many strongly intertwined processes. This is illustrated in Fig. 1.2, which
shows the relations between the four main baryonic components of a galaxy: hot gas, cold gas,
stars, and a supermassive black hole. Cooling, star formation, AGN accretion, and feedback
processes can all shift baryons from one of these components to another, thereby altering the
efficiency of all the processes. For example, increased cooling of hot gas will produce more
cold gas. This in turn will increases the star-formation rate, hence the supernova rate. The addi-
tional energy injection from supernovae can reheat cold gas, thereby suppressing further star
formation (negative feedback). On the other hand, supernova blast waves may also compress the
surrounding cold gas, so as to boost the star-formation rate (positive feedback). Understanding
these various feedback loops is one of the most important and intractable issues in contemporary
models for the formation and evolution of galaxies.

1.2.7 Mergers

So far we have considered what happens to a single, isolated system of dark matter, gas and
stars. However, galaxies and dark matter halos are not isolated. For example, as illustrated in
Fig. 1.2, systems can accrete new material (both dark and baryonic matter) from the intergalactic
medium, and can lose material through outflows driven by feedback from stars and/or AGN. In
addition, two (or more) systems may merge to form a new system with very different properties
from its progenitors. In the currently popular CDM cosmologies, the initial density fluctuations
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Fig. 1.3. A schematic merger tree, illustrating the merger history of a dark matter halo. It shows, at three
different epochs, the progenitor halos that at time 74 have merged to form a single halo. The size of each
circle represents the mass of the halo. Merger histories of dark matter halos play an important role in
hierarchical theories of galaxy formation.

have larger amplitudes on smaller scales. Consequently, dark matter halos grow hierarchically, in
the sense that larger halos are formed by the coalescence (merging) of smaller progenitors. Such
a formation process is usually called a hierarchical or ‘bottom-up’ scenario.

The formation history of a dark matter halo can be described by a ‘merger tree’ that traces
all its progenitors, as illustrated in Fig. 1.3. Such merger trees play an important role in modern
galaxy formation theory. Note, however, that illustrations such as Fig. 1.3 can be misleading. In
CDM models part of the growth of a massive halo is due to merging with a large number of much
smaller halos, and to a good approximation, such mergers can be thought of as smooth accretion.
When two similar mass dark matter halos merge, violent relaxation rapidly transforms the orbital
energy of the progenitors into the internal binding energy of the quasi-equilibrium remnant. Any
hot gas associated with the progenitors is shock-heated during the merger and settles back into
hydrostatic equilibrium in the new halo. If the progenitor halos contained central galaxies, the
galaxies also merge as part of the violent relaxation process, producing a new central galaxy in
the final system. Such a merger may be accompanied by strong star formation or AGN activity if
the merging galaxies contained significant amounts of cold gas. If two merging halos have very
different mass, the dynamical processes are less violent. The smaller system orbits within the
main halo for an extended period of time during which two processes compete to determine its
eventual fate. Dynamical friction transfers energy from its orbit to the main halo, causing it to
spiral inwards, while tidal effects remove mass from its outer regions and may eventually dissolve
it completely (see Chapter 12). Dynamical friction is more effective for more massive satellites,
but if the mass ratio of the initial halos is large enough, the smaller object (and any galaxy
associated with it) can maintain its identity for a long time. This is the process for the build-up of
clusters of galaxies: a cluster may be considered as a massive dark matter halo hosting a relatively
massive galaxy near its center and many satellites that have not yet dissolved or merged with the
central galaxy.
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As we will see in Chapters 12 and 13, numerical simulations show that the merger of two
galaxies of roughly equal mass produces an object reminiscent of an elliptical galaxy, and the
result is largely independent of whether the progenitors are spirals or ellipticals. Indeed, current
hierarchical models of galaxy formation assume that most, if not all, elliptical galaxies are merger
remnants. If gas cools onto this merger remnant with significant angular momentum, a new disk
may form, producing a disk—bulge system like that in an early-type spiral galaxy.

It should be obvious from the above discussion that mergers play a crucial role in galaxy
formation. Detailed descriptions of halo mergers and galaxy mergers are presented in Chapter 7
and Chapter 12, respectively.

1.2.8 Dynamical Evolution

When satellite galaxies orbit within dark matter halos, they experience tidal forces due to the
central galaxy, due to other satellite galaxies, and due to the potential of the halo itself. These
tidal interactions can remove dark matter, gas and stars from the galaxy, a process called tidal
stripping (see §12.2), and may also perturb its structure. In addition, if the halo contains a hot
gas component, any gas associated with the satellite galaxy will experience a drag force due to
the relative motion of the two fluids. If the drag force exceeds the restoring force due to the
satellite’s own gravity, its gas will be ablated, a process called ram-pressure stripping. These
dynamical processes are thought to play an important role in driving galaxy evolution within
clusters and groups of galaxies. In particular, they are thought to be partially responsible for the
observed environmental dependence of galaxy morphology (see Chapter 15).

Internal dynamical effects can also reshape galaxies. For example, a galaxy may form in a
configuration which becomes unstable at some later time. Large scale instabilities may then
redistribute mass and angular momentum within the galaxy, thereby changing its morphology. A
well-known and important example is the bar-instability within disk galaxies. As we shall see in
§11.5, a thin disk with too high a surface density is susceptible to a non-axisymmetric instability,
which produces a bar-like structure similar to that seen in barred spiral galaxies. These bars
may then buckle out of the disk to produce a central ellipsoidal component, a so-called ‘pseudo-
bulge’. Instabilities may also be triggered in otherwise stable galaxies by interactions. Thus, an
important question is whether the sizes and morphologies of galaxies were set at formation, or are
the result of later dynamical process (‘secular evolution’, as it is termed). Bulges are particularly
interesting in this context. They may be a remnant of the first stage of galaxy formation, or, as
mentioned in §1.2.7, may reflect an early merger which has grown a new disk, or may result from
buckling of a bar. It is likely that all these processes are important for at least some bulges.

1.2.9 Chemical Evolution

In astronomy, all chemical elements heavier than helium are collectively termed ‘metals’. The
mass fraction of a baryonic component (e.g. hot gas, cold gas, stars) in metals is then referred to
as its metallicity. As we will see in §3.4, the nuclear reactions during the first three minutes of the
Universe (the epoch of primordial nucleosynthesis) produced primarily hydrogen (~ 75%) and
helium (~ 25%), with a very small admixture of metals dominated by lithium. All other metals
in the Universe were formed at later times as a consequence of nuclear reactions in stars. When
stars expel mass in stellar winds, or in supernova explosions, they enrich the interstellar medium
(ISM) with newly synthesized metals.

Evolution of the chemical composition of the gas and stars in galaxies is important for several
reasons. First of all, the luminosity and color of a stellar population depend not only on its age
and IMF, but also on the metallicity of the stars (see Chapter 10). Secondly, the cooling efficiency
of gas depends strongly on its metallicity, in the sense that more metal-enriched gas cools faster



1.2 Basic Elements of Galaxy Formation 13

(see §8.1). Thirdly, small particles of heavy elements known as dust grains, which are mixed with
the interstellar gas in galaxies, can absorb significant amounts of the starlight and reradiate it in
infrared wavelengths. Depending on the amount of the dust in the ISM, which scales roughly
linearly with its metallicity (see §10.3.7), this interstellar extinction can significantly reduce the
brightness of a galaxy.

As we will see in Chapter 10, the mass and detailed chemical composition of the material
ejected by a stellar population as it evolves depend both on the IMF and on its initial metallicity.
In principle, observations of the metallicity and abundance ratios of a galaxy can therefore be
used to constrain its star-formation history and IMF. In practice, however, the interpretation of
the observations is complicated by the fact that galaxies can accrete new material of different
metallicity, that feedback processes can blow out gas, perhaps preferentially metals, and that
mergers can mix the chemical compositions of different systems.

1.2.10 Stellar Population Synthesis

The light we receive from a given galaxy is emitted by a large number of stars that may have
different masses, ages, and metallicities. In order to interpret the observed spectral energy dis-
tribution, we need to predict how each of these stars contributes to the total spectrum. Unlike
many of the ingredients in galaxy formation, the theory of stellar evolution, to be discussed in
Chapter 10, is reasonably well understood. This allows us to compute not only the evolution of
the luminosity, color and spectrum of a star of given initial mass and chemical composition, but
also the rates at which it ejects mass, energy and metals into the interstellar medium. If we know
the star-formation history (i.e. the star-formation rate as a function of time) and IMF of a galaxy,
we can then synthesize its spectrum at any given time by adding together the spectra of all the
stars, after evolving each to the time under consideration. In addition, this also yields the rates
at which mass, energy and metals are ejected into the interstellar medium, providing important
ingredients for modeling the chemical evolution of galaxies.

Most of the energy of a stellar population is emitted in the optical, or, if the stellar population
is very young (< 10Myr), in the ultraviolet (see §10.3). However, if the galaxy contains a lot of
dust, a significant fraction of this optical and UV light may get absorbed and re-emitted in the
infrared. Unfortunately, predicting the final emergent spectrum is extremely complicated. Not
only does it depend on the amount of the radiation absorbed, it also depends strongly on the
properties of the dust, such as its geometry, its chemical composition, and (the distribution of)
the sizes of the dust grains (see §10.3.7).

Finally, to complete the spectral energy distribution emitted by a galaxy, we also need to
add the contribution from a possible AGN. Chapter 14 discusses various emission mechanisms
associated with accreting SMBHs. Unfortunately, as we will see, we are still far from being able
to predict the detailed spectra for AGN.

1.2.11 The Intergalactic Medium

The intergalactic medium (IGM) is the baryonic material lying between galaxies. This is and
has always been the dominant baryonic component of the Universe and it is the material from
which galaxies form. Detailed studies of the IGM can therefore give insight into the properties
of the pregalactic matter before it condensed into galaxies. As illustrated in Fig. 1.2, galaxies
do not evolve as closed boxes, but can affect the properties of the IGM through exchanges of
mass, energy and heavy elements. The study of the IGM is thus an integral part of understanding
how galaxies form and evolve. As we will see in Chapter 16, the properties of the IGM can be
probed most effectively through the absorption it produces in the spectra of distant quasars (a
certain class of active galaxies; see Chapter 14). Since quasars are now observed out to redshifts
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beyond 6, their absorption line spectra can be used to study the properties of the IGM back to a
time when the Universe was only a few percent of its present age.

1.3 Time Scales

As discussed above, and as illustrated in Fig. 1.1, the formation of an individual galaxy in the
standard, hierarchical formation scenario involves the following processes: the collapse and viri-
alization of dark matter halos, the cooling and condensation of gas within the halo, and the
conversion of cold gas into stars and a central supermassive black hole. Evolving stars and AGN
eject energy, mass and heavy elements into the interstellar medium, thereby determining its struc-
ture and chemical composition and perhaps driving winds into the intergalactic medium. Finally,
galaxies can merge and interact, reshaping their morphology and triggering further starbursts and
AGN activity. In general, the properties of galaxies are determined by the competition among all
these processes, and a simple way to characterize the relative importance of these processes is to
use the time scales associated with them. Here we give a brief summary of the most important
time scales in this context.

o Hubble time: This is an estimate of the time scale on which the Universe as a whole evolves.
It is defined as the inverse of the Hubble constant (see §3.2), which specifies the current cosmic
expansion rate. It would be equal to the time since the Big Bang if the Universe had always
expanded at its current rate. Roughly speaking, this is the time scale on which substantial
evolution of the galaxy population is expected.

e Dynamical time: This is the time required to orbit across an equilibrium dynamical sys-
tem. For a system with mass M and radius R, we define it as f4y, = /37/16Gp, where
P =3M/47R3. This is related to the free-fall time, defined as the time required for a uniform,
pressure-free sphere to collapse to a point, as gy = fqyn/ V2.

e Cooling time: This time scale is the ratio between the thermal energy content and the energy
loss rate (through radiative or conductive cooling) for a gas component.

e Star-formation time: This time scale is the ratio of the cold gas content of a galaxy to its
star-formation rate. It is thus an indication of how long it would take for the galaxy to run out
of gas if the fuel for star formation is not replenished.

e Chemical enrichment time: This is a measure for the time scale on which the gas is enriched
in heavy elements. This enrichment time is generally different for different elements, depend-
ing on the lifetimes of the stars responsible for the bulk of the production of each element (see
§10.1).

e Merging time: This is the typical time that a halo or galaxy must wait before experiencing a
merger with an object of similar mass, and is directly related to the major merger frequency.

e Dynamical friction time: This is the time scale on which a satellite object in a large halo
loses its orbital energy and spirals to the center. As we will see in §12.3, this time scale is
proportional to Mgy /Minain, Where Mgy is the mass of the satellite object and M, is that of
the main halo. Thus, more massive galaxies will merge with the central galaxy in a halo more
quickly than smaller ones.

These time scales can provide guidelines for incorporating the underlying physical processes
in models of galaxy formation and evolution, as we describe in later chapters. In particu-
lar, comparing time scales can give useful insights. As an illustration, consider the following
examples:

e Processes whose time scale is longer than the Hubble time can usually be ignored. For exam-
ple, satellite galaxies with mass less than a few percent of their parent halo normally have
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dynamical friction times exceeding the Hubble time (see §12.3). Consequently, their orbits do
not decay significantly. This explains why clusters of galaxies have so many ‘satellite’ galax-
ies — the main halos are so much more massive than a typical galaxy that dynamical friction is
ineffective.

e If the cooling time is longer than the dynamical time, hot gas will typically be in hydrostatic
equilibrium. In the opposite case, however, the gas cools rapidly, losing pressure support,
and collapsing to the halo center on a free-fall time without establishing any hydrostatic
equilibrium.

o If the star formation time is comparable to the dynamical time, gas will turn into stars during
its initial collapse, a situation which may lead to the formation of something resembling an
elliptical galaxy. On the other hand, if the star formation time is much longer than the cooling
and dynamical times, the gas will settle into a centrifugally supported disk before forming
stars, thus producing a disk galaxy (see §1.4.5).

e If the relevant chemical evolution time is longer than the star-formation time, little metal
enrichment will occur during star formation and all stars will end up with the same, initial
metallicity. In the opposite case, the star-forming gas is continuously enriched, so that stars
formed at different times will have different metallicities and abundance patterns (see §10.4).

So far we have avoided one obvious question, namely, what is the time scale for galaxy for-
mation itself? Unfortunately, there is no single useful definition for such a time scale. Galaxy
formation is a process, not an event, and as we have seen, this process is an amalgam of many
different elements, each with its own time scale. If, for example, we are concerned with its stellar
population, we might define the formation time of a galaxy as the epoch when a fixed fraction
(e.g. 1% or 50%) of its stars had formed. If, on the other hand, we are concerned with its struc-
ture, we might want to define the galaxy’s formation time as the epoch when a fixed fraction
(e.g. 50% or 90%) of its mass was first assembled into a single object. These two ‘formation’
times can differ greatly for a given galaxy, and even their ordering can change from one galaxy
to another. Thus it is important to be precise about definition when talking about the formation
times of galaxies.

1.4 A Brief History of Galaxy Formation

The picture of galaxy formation sketched above is largely based on the hierarchical cold dark
matter model for structure formation, which has been the standard paradigm since the beginning
of the 1980s. In the following, we give an historical overview of the development of ideas and
concepts about galaxy formation up to the present time. This is not intended as a complete his-
torical account, but rather as a summary for young researchers of how our current ideas about
galaxy formation were developed. Readers interested in a more extensive historical review can
find some relevant material in the book The Cosmic Century: A History of Astrophysics and
Cosmology by Malcolm Longair (2006).

1.4.1 Galaxies as Extragalactic Objects

By the end of the nineteenth century, astronomers had discovered a large number of astronomical
objects that differ from stars in that they are fuzzy rather than point-like. These objects were
collectively referred to as ‘nebulae’. During the period 1771 to 1784 the French astronomer
Charles Messier cataloged more than 100 of these objects in order to avoid confusing them
with the comets he was searching for. Today the Messier numbers are still used to designate a
number of bright galaxies. For example, the Andromeda Galaxy is also known as M31, because
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it is the 31st nebula in Messier’s catalog. A more systematic search for nebulae was carried
out by the Herschels, and in 1864 John Herschel published his General Catalogue of Galaxies
which contains 5079 nebular objects. In 1888, Dreyer published an expanded version as his New
General Catalogue of Nebulae and Clusters of Stars. Together with its two supplementary Index
Catalogues, Dreyer’s catalogue contained about 15,000 objects. Today, NGC and IC numbers
are still widely used to refer to galaxies.

For many years after their discovery, the nature of the nebular objects was controversial. There
were two competing ideas: one assumed that all nebulae are objects within our Milky Way,
the other that some might be extragalactic objects, individual ‘island universes’ like the Milky
Way. In 1920 the National Academy of Sciences in Washington invited two leading astronomers,
Harlow Shapley and Heber Curtis, to debate this issue, an event which has passed into astro-
nomical folklore as ‘The Great Debate’. The controversy remained unresolved until 1925, when
Edwin Hubble used distances estimated from Cepheid variables to demonstrate conclusively
that some nebulae are extragalactic, individual galaxies comparable to our Milky Way in size
and luminosity. Hubble’s discovery marked the beginning of extragalactic astronomy. During
the 1930s, high-quality photographic images of galaxies enabled him to classify galaxies into a
broad sequence according to their morphology. Today Hubble’s sequence is still widely adopted
to classify galaxies.

Since Hubble’s time, astronomers have made tremendous progress in systematically searching
the skies for galaxies. At present deep CCD imaging and high-quality spectroscopy are available
for about a million galaxies.

1.4.2 Cosmology

Only four years after his discovery that galaxies truly are extragalactic, Hubble made his second
fundamental breakthrough: he showed that the recession velocities of galaxies are linearly related
to their distances (Hubble, 1929; see also Hubble & Humason 1931), thus demonstrating that
our Universe is expanding. This is undoubtedly the greatest single discovery in the history of
cosmology. It revolutionized our picture of the Universe we live in.

The construction of mathematical models for the Universe actually started somewhat earlier.
As soon as Albert Einstein completed his theory of general relativity in 1916, it was realized that
this theory allowed, for the first time, the construction of self-consistent models for the Universe
as a whole. Einstein himself was among the first to explore such solutions of his field equations.
To his dismay, he found that all solutions require the Universe either to expand or to contract, in
contrast with his belief at that time that the Universe should be static. In order to obtain a static
solution, he introduced a cosmological constant into his field equations. This additional constant
of gravity can oppose the standard gravitational attraction and so make possible a static (though
unstable) solution. In 1922 Alexander Friedmann published two papers exploring both static and
expanding solutions. These models are today known as Friedmann models, although this work
drew little attention until Georges Lemaitre independently rediscovered the same solutions in
1927.

An expanding universe is a natural consequence of general relativity, so it is not surprising
that Einstein considered his introduction of a cosmological constant as ‘the biggest blunder of
my life’ once he learned of Hubble’s discovery. History has many ironies, however. As we will
see later, the cosmological constant is now back with us. In 1998 two teams independently used
the distance—redshift relation of Type Ia supernovae to show that the expansion of the Universe is
accelerating at the present time. Within general relativity this requires an additional mass/energy
component with properties very similar to those of Einstein’s cosmological constant. Rather than
just counterbalancing the attractive effects of ‘normal’ gravity, the cosmological constant today
overwhelms them to drive an ever more rapid expansion.
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Since the Universe is expanding, it must have been denser and perhaps also hotter at earlier
times. In the late 1940s this prompted George Gamow to suggest that the chemical elements may
have been created by thermonuclear reactions in the early Universe, a process known as primor-
dial nucleosynthesis. Gamow’s model was not considered a success, because it was unable to
explain the existence of elements heavier than lithium due to the lack of stable elements with
atomic mass numbers 5 and 8. We now know that this was not a failure at all; all heavier ele-
ments are a result of nucleosynthesis within stars, as first shown convincingly by Fred Hoyle
and collaborators in the 1950s. For Gamow’s model to be correct, the Universe would have to
be hot as well as dense at early times, and Gamow realized that the residual heat should still
be visible in today’s Universe as a background of thermal radiation with a temperature of a few
degrees kelvin, thus with a peak at microwave wavelengths. This was a remarkable prediction
of the cosmic microwave background radiation (CMB), which was finally discovered in 1965.
The thermal history suggested by Gamow, in which the Universe expands from a dense and hot
initial state, was derisively referred to as the Hot Big Bang by Fred Hoyle, who preferred an
unchanging steady state cosmology. Hoyle’s cosmological theory was wrong, but his name for
the correct model has stuck.

The Hot Big Bang model developed gradually during the 1950s and 1960s. By 1964, it had
been noticed that the abundance of helium by mass is everywhere about one third that of hydro-
gen, a result which is difficult to explain by nucleosynthesis in stars. In 1964, Hoyle and Tayler
published calculations that demonstrated how the observed helium abundance could emerge
from the Hot Big Bang. Three years later, Wagoner et al. (1967) made detailed calculations
of a complete network of nuclear reactions, confirming the earlier result and suggesting that
the abundances of other light isotopes, such as helium-3, deuterium and lithium, could also be
explained by primordial nucleosynthesis. This success provided strong support for the Hot Big
Bang. The 1965 discovery of the cosmic microwave background showed it to be isotropic and
to have a temperature (2.7K) exactly in the range expected in the Hot Big Bang model (Penzias
& Wilson, 1965; Dicke et al., 1965). This firmly established the Hot Big Bang as the standard
model of cosmology, a status which it has kept up to the present day. Although there have been
changes over the years, these have affected only the exact matter/energy content of the model
and the exact values of its characteristic parameters.

Despite its success, during the 1960s and 1970s it was realized that the standard cosmology
had several serious shortcomings. Its structure implies that the different parts of the Universe
we see today were never in causal contact at early times (e.g. Misner, 1968). How then can
these regions have contrived to be so similar, as required by the isotropy of the CMB? A second
shortcoming is connected with the spatial flatness of the Universe (e.g. Dicke & Peebles, 1979).
It was known by the 1960s that the matter density in the Universe is not very different from the
critical density for closure, i.e. the density for which the spatial geometry of the Universe is flat.
However, in the standard model any tiny deviation from flatness in the early Universe is amplified
enormously by later evolution. Thus, extreme fine tuning of the initial curvature is required to
explain why so little curvature is observed today. A closely related formulation is to ask how our
Universe has managed to survive and to evolve for billions of years, when the time scales of all
physical processes in its earliest phases were measured in tiny fractions of a nanosecond. The
standard cosmology provides no explanations for these puzzles.

A conceptual breakthrough came in 1981 when Alan Guth proposed that the Universe may
have gone through an early period of exponential expansion (inflation) driven by the vacuum
energy of some quantum field. His original model had some problems and was revised in 1982
by Linde and by Albrecht & Steinhardt. In this scenario, the different parts of the Universe
we see today were indeed in causal contact before inflation took place, thereby allowing physi-
cal processes to establish homogeneity and isotropy. Inflation also solves the flatness/time-scale
problem, because the Universe expanded so much during inflation that its curvature radius grew
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to be much larger than the presently observable Universe. Thus, a generic prediction of the
inflation scenario is that today’s Universe should appear flat.

1.4.3 Structure Formation

(a) Gravitational Instability In the standard model of cosmology, structures form from small
initial perturbations in an otherwise homogeneous and isotropic universe. The idea that structures
can form via gravitational instability in this way originates from Jeans (1902), who showed that
the stability of a perturbation depends on the competition between gravity and pressure. Density
perturbations grow only if they are larger (heavier) than a characteristic length (mass) scale [now
referred to as the Jeans’ length (mass)] beyond which gravity is able to overcome the pressure
gradients. The application of this Jeans criterion to an expanding background was worked out
by, among others, Gamow & Teller (1939) and Lifshitz (1946), with the result that perturbation
growth is power-law in time, rather than exponential as for a static background.

(b) Initial Perturbations Most of the early models of structure formation assumed the Uni-
verse to contain two energy components, ordinary baryonic matter and radiation (CMB photons
and relativistic neutrinos). In the absence of any theory for the origin of perturbations, two dis-
tinct models were considered, usually referred to as adiabatic and isothermal initial conditions.
In adiabatic initial conditions all matter and radiation fields are perturbed in the same way, so
that the total density (or local curvature) varies, but the ratio of photons to baryons, for example,
is spatially invariant. Isothermal initial conditions, on the other hand, correspond to initial per-
turbations in the ratio of components, but with no associated spatial variation in the total density
or curvature.”

In the adiabatic case, the perturbations can be considered as applying to a single fluid with
a constant specific entropy as long as the radiation and matter remain tightly coupled. At such
times, the Jeans’ mass is very large and small-scale perturbations execute acoustic oscillations
driven by the pressure gradients associated with the density fluctuations. Silk (1968) showed that
towards the end of recombination, as radiation decouples from matter, small-scale oscillations
are damped by photon diffusion, a process now called Silk damping. Depending on the matter
density and the expansion rate of the Universe, the characteristic scale of Silk damping falls
in the range of 10'>~10'*M.,. After radiation/matter decoupling the Jeans’ mass drops precipi-
tously to ~ 109 M, and perturbations above this mass scale can start to grow,’ but there are no
perturbations left on the scale of galaxies at this time. Consequently, galaxies must form ‘top-
down’, via the collapse and fragmentation of perturbations larger than the damping scale, an idea
championed by Zel’dovich and colleagues.

In the case of isothermal initial conditions, the spatial variation in the ratio of baryons to
photons remains fixed before recombination because of the tight coupling between the two fluids.
The pressure is spatially uniform, so that there is no acoustic oscillation, and perturbations are
not influenced by Silk damping. If the initial perturbations include small-scale structure, this
survives until after the recombination epoch, when baryon fluctuations are no longer supported
by photon pressure and so can collapse. Structure can then form ‘bottom-up’ through hierarchical
clustering. This scenario of structure formation was originally proposed by Peebles (1965).

By the beginning of the 1970s, the linear evolution of both adiabatic and isothermal perturba-
tions had been worked out in great detail (e.g. Lifshitz, 1946; Silk, 1968; Peebles & Yu, 1970;
Sato, 1971; S. Weinberg, 1971). At that time, it was generally accepted that observed struc-
tures must have formed from finite amplitude perturbations which were somehow part of the

2 Note that the nomenclature ‘isothermal’, which is largely historical, is somewhat confusing; the term ‘isocurvature’
would be more appropriate.

3 Actually, as we will see in Chapter 4, depending on the gauge adopted, perturbations can also grow before they enter
the horizon.



1.4 A Brief History of Galaxy Formation 19

initial conditions set up at the Big Bang. Harrison (1970) and Zel’dovich (1972) independently
argued that only one scaling of the amplitude of initial fluctuations with their wavelength could
be consistent with the formation of galaxies from fluctuations imposed at very early times. Their
suggestion, now known as the Harrison—Zel’dovich initial fluctuation spectrum, has the property
that structure on every scale has the same dimensionless amplitude, corresponding to fluctuations
in the equivalent Newtonian gravitational potential, §®/c* ~ 1074,

In the early 1980s, immediately after the inflationary scenario was proposed, a number of
authors realized almost simultaneously that quantum fluctuations of the scalar field (called the
inflaton) that drives inflation can generate density perturbations with a spectrum that is close to
the Harrison—Zel’dovich form (Hawking, 1982; Guth & Pi, 1982; Starobinsky, 1982; Bardeen
et al., 1983). In the simplest models, inflation also predicts that the perturbations are adiabatic
and that the initial density field is Gaussian. When parameters take their natural values, however,
these models generically predict fluctuation amplitudes that are much too large, of order unity.
This apparent fine-tuning problem is still unresolved.

In 1992 anisotropy in the cosmic microwave background was detected convincingly for the
first time by the Cosmic Background Explorer (COBE) (Smoot et al., 1992). These anisotropies
provide an image of the structure present at the time of radiation/matter decoupling, ~400,000
years after the Big Bang. The resolved structures are all of very low amplitude and so can be
used to probe the properties of the initial density perturbations. In agreement with the inflationary
paradigm, the COBE maps were consistent with Gaussian initial perturbations with the Harrison—
Zel’dovich spectrum. The fluctuation amplitudes are comparable to those inferred by Harrison
and Zel’dovich. The COBE results have since been confirmed and dramatically refined by sub-
sequent observations, most notably by the Wilkinson Microwave Anisotropy Probe (WMAP)
(Bennett et al., 2003; Hinshaw et al., 2007). The agreement with simple inflationary predictions
remains excellent.

(c) Nonlinear Evolution In order to connect the initial perturbations to the nonlinear structures
we see today, one has to understand the outcome of nonlinear evolution. In 1970 Zel’dovich
published an analytical approximation (now referred to as the Zel’dovich approximation) which
describes the initial nonlinear collapse of a coherent perturbation of the cosmic density field.
This model shows that the collapse generically occurs first along one direction, producing a
sheet-like structure, often referred to as a ‘pancake’. Zel’dovich imagined further evolution to
take place via fragmentation of such pancakes. At about the same time, Gunn & Gott (1972)
developed a simple spherically symmetric model to describe the growth, turn-around (from the
general expansion), collapse and virialization of a perturbation. In particular, they showed that
dissipationless collapse results in a quasi-equilibrium system with a characteristic radius that is
about half the radius at turn-around. Although the nonlinear collapse described by the Zel’dovich
approximation is more realistic, since it does not assume any symmetry, the spherical collapse
model of Gunn & Gott has the virtue that it links the initial perturbation directly to the final quasi-
equilibrium state. By applying this model to a Gaussian initial density field, Press & Schechter
(1974) developed a very useful formalism (now referred to as Press—Schechter theory) that allows
one to estimate the mass function of collapsed objects (i.e. their abundance as a function of mass)
produced by hierarchical clustering.

Hoyle (1949) was the first to suggest that perturbations (and the associated protogalax-
ies) might gain angular momentum through the tidal torques from their neighbors. A linear
perturbation analysis of this process was first carried out correctly and in full generality by
Doroshkevich (1970), and was later tested with the help of numerical simulations (Peebles,
1971; Efstathiou & Jones, 1979). The study of Efstathiou and Jones showed that clumps formed
through gravitational collapse in a cosmological context typically acquire about 15% of the angu-
lar momentum needed for full rotational support. Better simulations in more recent years have
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shown that the correct value is closer to 10%. In the case of ‘top-down’ models, it was suggested
that objects could acquire angular momentum not only through gravitational torques as pancakes
fragment, but also via oblique shocks generated by their collapse (Doroshkevich, 1973).

1.4.4 The Emergence of the Cold Dark Matter Paradigm

The first evidence that the Universe may contain dark matter (undetected through electromag-
netic emission or absorption) can be traced back to 1933, when Zwicky studied the velocities
of galaxies in the Coma Cluster and concluded that the total mass required to hold the Cluster
together is about 400 times larger than the luminous mass in stars. In 1937 he reinforced this anal-
ysis and noted that galaxies associated with such large amounts of mass should be detectable as
gravitational lenses producing multiple images of background galaxies. These conclusions were
substantially correct, but remarkably it took more than 40 years for the existence of dark matter
to be generally accepted. The tide turned in the mid-1970s with papers by Ostriker et al. (1974)
and Einasto et al. (1974) extending Zwicky’s analysis and noting that massive halos are required
around our Milky Way and other nearby galaxies in order to explain the motions of their satellites.
These arguments were supported by continually improving 21 cm and optical measurements of
spiral galaxy rotation curves which showed no sign of the fall-off at large radius expected if
the visible stars and gas were the only mass in the system (Roberts & Rots, 1973; Rubin et al.,
1978, 1980). During the same period, numerous suggestions were made regarding the possible
nature of this dark matter component, ranging from baryonic objects such as brown dwarfs, white
dwarfs and black holes (e.g. White & Rees, 1978; Carr et al., 1984), to more exotic, elemen-
tary particles such as massive neutrinos (Gershtein & Zel’dovich, 1966; Cowsik & McClelland,
1972).

The suggestion that neutrinos might be the unseen mass was partly motivated by particle
physics. In the 1960s and 1970s, it was noticed that grand unified theories (GUTs) permit the
existence of massive neutrinos, and various attempts to measure neutrino masses in labora-
tory experiments were initiated. In the late 1970s, Lyubimov et al. (1980) and Reines et al.
(1980) announced the detection of a mass for the electron neutrino at a level of cosmological
interest (about 30 eV). Although the results were not conclusive, they caused a surge in stud-
ies investigating neutrinos as dark matter candidates (e.g. Bond et al., 1980; Sato & Takahara,
1980; Schramm & Steigman, 1981; Klinkhamer & Norman, 1981), and structure formation in a
neutrino-dominated universe was soon worked out in detail. Since neutrinos decouple from other
matter and radiation fields while still relativistic, their abundance is very similar to that of CMB
photons. Thus, they must have become non-relativistic at the time the Universe became matter-
dominated, implying thermal motions sufficient to smooth out all structure on scales smaller than
a few tens of Mpc. The first nonlinear structures are then Zel’dovich pancakes of this scale, which
must fragment to make smaller structures such as galaxies. Such a picture conflicts directly with
observation, however. An argument by Tremaine & Gunn (1979), based on the Pauli exclusion
principle, showed that individual galaxy halos could not be made of neutrinos with masses as
small as 30 eV, and simulations of structure formation in neutrino-dominated universes by White
et al. (1984) demonstrated that they could not produce galaxies without at the same time produc-
ing much stronger galaxy clustering than is observed. Together with the failure to confirm the
claimed neutrino mass measurements, these problems caused a precipitous decline in interest in
neutrino dark matter by the end of the 1980s.

In the early 1980s, alternative models were suggested, in which dark matter is a different kind
of weakly interacting massive particle. There were several motivations for this. The amount of
baryonic matter allowed by cosmic nucleosynthesis calculations is far too little to provide the
flat universe preferred by inflationary models, suggesting that non-baryonic dark matter may be
present. In addition, strengthening upper limits on temperature anisotropies in the CMB made it
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increasingly difficult to construct self-consistent, purely baryonic models for structure formation;
there is simply not enough time between the recombination epoch and the present day to grow the
structures we see in the nearby Universe from those present in the high-redshift photon—baryon
fluid. Finally, by the early 1980s, particle physics models based on the idea of supersymmetry
had provided a plethora of dark matter candidates, such as neutralinos, photinos and gravitinos,
that could dominate the mass density of the Universe. Because of their much larger mass, such
particles would initially have much smaller velocities than a 30 eV neutrino, and so they were
generically referred to as warm or cold dark matter (WDM or CDM, the former corresponding to
a particle mass of order 1 keV, the latter to much more massive particles) in contrast to neutrino-
like hot dark matter (HDM). The shortcomings of HDM motivated consideration of a variety of
such scenarios (e.g. Peebles, 1982; Blumenthal et al., 1982; Bond et al., 1982; Bond & Szalay,
1983).

Lower thermal velocities result in the survival of fluctuations of galactic scale (for WDM and
CDM) or below (for CDM). The particles decouple from the radiation field long before recombi-
nation, so perturbations in their density can grow at early times to be substantially larger than the
fluctuations visible in the CMB. After the baryons decouple from the radiation, they quickly fall
in these dark matter potential wells, causing structure formation to occur sufficiently fast to be
consistent with observed structure in today’s Universe. M. Davis et al. (1985) used simulations of
the CDM model to show that it could provide a good match to the observed clustering of galaxies
provided either the mass density of dark matter is well below the critical value, or (their preferred
model) that galaxies are biased tracers of the CDM density field, as expected if they form at the
centers of the deepest dark matter potential wells (e.g. Kaiser, 1984). By the mid-1980s, the
‘standard” CDM model, in which dark matter provides the critical density, Hubble’s constant has
avalue ~ 50kms~!Mpc~!, and the initial density field was Gaussian with a Harrison-Zel’dovich
spectrum, had established itself as the ‘best bet’ model for structure formation.

In the early 1990s, measurements of galaxy clustering, notably from the APM galaxy survey
(Maddox et al., 1990a; Efstathiou et al., 1990), showed that the standard CDM model predicts
less clustering on large scales than is observed. Several alternatives were proposed to remedy this.
One was a mixed dark matter (MDM) model, in which the universe is flat, with ~ 30% of the
cosmic mass density in HDM and ~ 70% in CDM and baryons. Another flat model assumed all
dark matter to be CDM, but adopted an enhanced radiation background in relativistic neutrinos
(TCDM). A third possibility was an open model, in which today’s Universe is dominated by CDM
and baryons, but has only about 30% of the critical density (OCDM). A final model assumed the
same amounts of CDM and baryons as OCDM but added a cosmological constant in order to
make the universe flat (ACDM).

Although all these models match observed galaxy clustering on large scales, it was soon real-
ized that galaxy formation occurs too late in the MDM and TCDM models, and that the open
model has problems in matching the perturbation amplitudes measured by COBE. ACDM then
became the default ‘concordance’ model, although it was not generally accepted until Garnavich
et al. (1998) and Perlmutter et al. (1999) used the distance—redshift relation of Type la super-
novae to show that the cosmic expansion is accelerating, and measurements of small-scale CMB
fluctuations showed that our Universe is flat (de Bernardis et al., 2000). It seems that the present-
day Universe is dominated by a dark energy component with properties very similar to those of
Einstein’s cosmological constant.

At the beginning of this century, a number of ground-based and balloon-borne experiments
measured CMB anisotropies, notably Boomerang (de Bernardis et al., 2000), MAXIMA (Hanany
et al., 2000), DASI (Halverson et al., 2002) and CBI (Sievers et al., 2003). They successfully
detected features, known as acoustic peaks, in the CMB power spectrum, and showed their wave-
lengths and amplitudes to be in perfect agreement with expectations for a ACDM cosmology. In
2003, the first year data from WMAP not only confirmed these results, but also allowed much
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more precise determinations of cosmological parameters. The values obtained were in remark-
ably good agreement with independent measurements; the baryon density matched that estimated
from cosmic nucleosynthesis, the Hubble constant matched that found by direct measurement,
the dark-energy density matched that inferred from Type Ia supernovae, and the implied large-
scale clustering in today’s Universe matched that measured using large galaxy surveys and weak
gravitational lensing (see Spergel et al., 2003, and references therein). Consequently, the ACDM
model has now established itself firmly as the standard paradigm for structure formation. With
further data from WMAP and from other sources, the parameters of this new paradigm are now
well constrained (Spergel et al., 2007; Komatsu et al., 2009).

1.4.5 Galaxy Formation

(a) Monolithic Collapse and Merging Although it was well established in the 1930s that
there are two basic types of galaxies, ellipticals and spirals, it would take some 30 years before
detailed models for their formation were proposed. In 1962, Eggen, Lynden-Bell & Sandage
considered a model in which galaxies form from the collapse of gas clouds, and suggested that
the difference between ellipticals and spirals reflects the rapidity of star formation during the
collapse. If most of the gas turns into stars as it falls in, the collapse is effectively dissipationless
and infall motions are converted into the random motion of stars, resulting in a system which
might resemble an elliptical galaxy. If, on the other hand, the cloud remains gaseous during
collapse, the gravitational energy can be effectively dissipated via shocks and radiative cooling.
In this case, the cloud will shrink until it is supported by angular momentum, leading to the
formation of a rotationally supported disk. Gott & Thuan (1976) took this picture one step further
and suggested that the amount of dissipation during collapse depends on the amplitude of the
initial perturbation. Based on the empirical fact that star-formation efficiency appears to scale
as p? (Schmidt, 1959), they argued that protogalaxies associated with the highest initial density
perturbations would complete star formation more rapidly as they collapse, and so might produce
an elliptical. On the other hand, protogalaxies associated with lower initial density perturbations
would form stars more slowly and so might make spirals.

Larson (1974a,b, 1975, 1976) carried out the first numerical simulations of galaxy formation,
showing how these ideas might work in detail. Starting from near-spherical rotating gas clouds,
he found that it is indeed the ratio of the star-formation time to the dissipation/cooling time which
determines whether the system turns into an elliptical or a spiral. He also noted the importance of
feedback effects during galaxy formation, arguing that in low-mass galaxies, supernovae would
drive winds that could remove most of the gas and heavy elements from a system before they
could turn into stars. He argued that this mechanism might explain the low surface brightnesses
and low metallicities of dwarf galaxies. However, he was unable to obtain the high observed
surface brightnesses of bright elliptical galaxies without requiring his gas clouds to be much
more slowly rotating than predicted by the tidal torque theory; otherwise they would spin up and
make a disk long before they became as compact as the observed galaxies. The absence of highly
flattened ellipticals and the fact that many bright ellipticals show little or no rotation (Bertola &
Capaccioli, 1975; Tllingworth, 1977) therefore posed a serious problem for this scenario. As we
now know, its main defect was that it left out the effects of the dark matter.

In a famous 1972 paper, Toomre & Toomre used simple numerical simulations to demon-
strate convincingly that some of the extraordinary structures seen in peculiar galaxies, such as
long tails, could be produced by tidal interactions between two normal spirals. Based on the
observed frequency of galaxies with such signatures of interactions, and on their estimate of the
time scale over which tidal tails might be visible, Toomre & Toomre (1972) argued that most
elliptical galaxies could be merger remnants. In an extreme version of this picture, all galax-
ies initially form as disks, while all ellipticals are produced by mergers between pre-existing
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galaxies. A virtue of this idea was that almost all known star formation occurs in disk gas. Early
simulations showed that the merging of two spheroids produces remnants with density profiles
that agree with observed ellipticals (e.g. White, 1978). The more relevant (but also the more dif-
ficult) simulations of mergers between disk galaxies were not carried out until the early 1980s
(Gerhard, 1981; Farouki & Shapiro, 1982; Negroponte & White, 1983; Barnes, 1988). These
again showed merger remnants to have properties similar to those of observed ellipticals.

Although the merging scenario fits nicely into a hierarchical formation scheme, where larger
structures grow by mergers of smaller ones, the extreme picture outlined above has some prob-
lems. Ostriker (1980) pointed out that observed giant ellipticals, which are dense and can have
velocity dispersions as high as ~ 300kms ™!, could not be formed by mergers of present-day spi-
rals, which are more diffuse and almost never have rotation velocities higher than 300kms .
As we will see below, this problem may be resolved by considering the dark halos of the
galaxies, and by recognizing that the high-redshift progenitors of ellipticals were more com-
pact than present-day spirals. The merging scenario remains a popular scenario for the formation
of (bright) elliptical galaxies.

(b) The Role of Radiative Cooling An important question for galaxy formation theory is why
galaxies with stellar masses larger than ~ 10'> M, are absent or extremely rare. In the adiabatic
model, this mass scale is close to the Silk damping scale and could plausibly set a lower limit to
galaxy masses. However, in the presence of dark matter Silk damping leaves no imprint on the
properties of galaxies, simply because the dark matter perturbations are not damped. Press &
Schechter (1974) showed that there is a characteristic mass also in the hierarchical model, corre-
sponding to the mass scale of the typical nonlinear object at the present time. However, this mass
scale is relatively large, and many objects with mass above 10'> M, are predicted, and indeed
are observed as virialized groups and clusters of galaxies. Apparently, the mass scale of galaxies
is not set by gravitational physics alone.

In the late 1970s, Silk (1977), Rees & Ostriker (1977) and Binney (1977) suggested that radia-
tive cooling might play an important role in limiting the mass of galaxies. They argued that
galaxies can form effectively only in systems where the cooling time is comparable to or shorter
than the collapse time, which leads to a characteristic scale of ~ 10'2M@, similar to the mass
scale of massive galaxies. They did not explain why a typical galaxy should form with a mass
near this limit, nor did they explicitly consider the effects of dark matter. Although radiative cool-
ing plays an important role in all current galaxy formation theories, it is still unclear if it alone
can explain the characteristic mass scale of galaxies, or whether various feedback processes must
also be invoked.

(¢) Galaxy Formation in Dark Matter Halos By the end of the 1970s, several lines of argu-
ment had led to the conclusion that dark matter must play an important role in galaxy formation.
In particular, observations of rotation curves of spiral galaxies indicated that these galaxies are
embedded in dark halos which are much more extended than the galaxies themselves. This moti-
vated White & Rees (1978) to propose a two-stage theory for galaxy formation: dark halos form
first through hierarchical clustering; the luminous content of galaxies then results from cooling
and condensation of gas within the potential wells provided by these dark halos. The mass func-
tion of galaxies was calculated by applying these ideas within the Press & Schechter model for
the growth of nonlinear structure. The model of White and Rees contains many of the basic ideas
of the modern theory of galaxy formation. They noticed that feedback is required to explain the
low overall efficiency of galaxy formation, and invoked Larson’s (1974a) model for supernova
feedback in dwarf galaxies to explain this. They also noted, but did not emphasize, that even
with strong feedback, their hierarchical model predicts a galaxy luminosity function with far too
many faint galaxies. This problem is alleviated but not solved by adopting CDM initial condi-
tions rather than the simple power-law initial conditions they adopted. In 1980, Fall & Efstathiou
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developed a model of disk formation in dark matter halos, incorporating the angular momentum
expected from tidal torques, and showed that many properties of observed disk galaxies can be
understood in this way.

Many of the basic elements of galaxy formation in the CDM scenario were already in place
in the early 1980s, and were summarized nicely by Efstathiou & Silk (1983) and in Blumenthal
et al. (1984). Blumenthal et al. invoked the idea of biased galaxy formation, suggesting that disk
galaxies may be associated with density peaks of typical heights in the CDM density field, while
giant ellipticals may be associated with higher density peaks. Efstathiou & Silk (1983) discussed
in some detail how the two-stage theory of White & Rees (1978) can solve some of the problems
in earlier models based on the collapse of gas clouds. In particular, they argued that, within an
extended halo, cooled gas can settle into a rotation-supported disk of the observed scale in a
fraction of the Hubble time, whereas without a dark matter halo it would take too long for a
perturbation to turn around and shrink to form a disk (see Chapter 11 for details). They also
argued that extended dark matter halos around galaxies make mergers of galaxies more likely, a
precondition for Toomre & Toomre’s (1972) merger scenario of elliptical galaxy formation to be
viable.

Since the early 1990s many studies have investigated the properties of CDM halos using both
analytical and N-body methods. Properties studied include the progenitor mass distributions
(Bond et al., 1991), merger histories (Lacey & Cole, 1993), spatial clustering (Mo & White,
1996), density profiles (Navarro et al., 1997), halo shapes (e.g. Jing & Suto, 2002), substructure
(e.g. Moore et al., 1998a; Klypin et al., 1999), and angular-momentum distributions (e.g. Warren
etal., 1992; Bullock et al., 2001a). These results have paved the way for more detailed models for
galaxy formation within the CDM paradigm. In particular, two complementary approaches have
been developed: semi-analytical models and hydrodynamical simulations. The semi-analytical
approach, originally developed by White & Frenk (1991) and subsequently refined in a num-
ber of studies (e.g. Kauffmann et al., 1993; Cole et al., 1994; Dalcanton et al., 1997; Mo et al.,
1998; Somerville & Primack, 1999), uses knowledge about the structure and assembly history
of CDM halos to model the gravitational potential wells within which galaxies form and evolve,
treating all the relevant physical processes (cooling, star formation, feedback, dynamical fric-
tion, etc.) in a semi-analytical fashion. The first three-dimensional, hydrodynamical simulations
of galaxy formation including dark matter were carried out by Katz in the beginning of the 1990s
(Katz & Gunn, 1991; Katz, 1992) and focused on the collapse of a homogeneous, uniformly
rotating sphere. The first simulation of galaxy formation by hierarchical clustering from proper
cosmological initial conditions was that of Navarro & Benz (1991), while the first simulation
of galaxy formation from CDM initial conditions was that of Navarro & White (1994). Since
then, numerical simulations of galaxy formation with increasing numerical resolution have been
carried out by many authors.

It is clear that the CDM scenario has become the preferred scenario for galaxy formation,
and we have made a great deal of progress in our quest towards understanding the structure and
formation of galaxies within it. However, as we will see later in this book, there are still many
important unsolved problems. It is precisely the existence of these outstanding problems that
makes galaxy formation such an interesting subject. It is our hope that this book will help you to
equip yourself for your own explorations in this area.
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Observational Facts

Observational astronomy has developed at an extremely rapid pace. Until the end of the 1940s
observational astronomy was limited to optical wavebands. Today we can observe the Universe
at virtually all wavelengths covering the electromagnetic spectrum, either from the ground or
from space. Together with the revolutionary growth in computer technology and with a dramatic
increase in the number of professional astronomers, this has led to a flood of new data. Clearly
it is impossible to provide a complete overview of all this information in a single chapter (or
even in a single book). Here we focus on a number of selected topics relevant to our forthcoming
discussion, and limit ourselves to a simple description of some of the available data. Discussion
regarding the interpretation and/or implication of the data is postponed to Chapters 11-16, where
we use the physical ingredients described in Chapters 3—10 to interpret the observational results
presented here. After a brief introduction of observational techniques, we present an overview of
some of the observational properties of stars, galaxies, clusters and groups, large scale structure,
the intergalactic medium, and the cosmic microwave background. We end with a brief discussion
of cosmological parameters and the matter/energy content of the Universe.

2.1 Astronomical Observations

Almost all information we can obtain about an astronomical object is derived from the radiation
we receive from it, or by the absorption it causes in the light of a background object. The radiation
from a source may be characterized by its spectral energy distribution (SED), f; dA, which is the
total energy of emitted photons with wavelengths in the range A to A +dA. Technology is now
available to detect electromagnetic radiation over an enormous energy range, from low frequency
radio waves to high energy gamma rays. However, from the Earth’s surface our ability to detect
celestial objects is seriously limited by the transparency of our atmosphere. Fig. 2.1 shows the
optical depth for photon transmission through the Earth’s atmosphere as a function of photon
wavelength, along with the wavelength ranges of some commonly used wavebands. Only a few
relatively clear windows exist in the optical, near-infrared and radio bands. In other parts of the
spectrum, in particular the far-infrared, ultraviolet, X-ray and gamma-ray regions, observations
can only be carried out by satellites or balloon-borne detectors.

Although only a very restricted range of frequencies penetrate our atmosphere, celestial objects
actually emit over the full range accessible to our instruments. This is illustrated in Fig.2.2, a
schematic representation of the average brightness of the sky as a function of wavelength as
seen from a vantage point well outside our own galaxy. With the very important exception of
the cosmic microwave background (CMB), which dominates the overall photon energy content
of the Universe, the dominant sources of radiation at all energies below the hard gamma-ray
regime are related to galaxies, their evolution, their clustering and their nuclei. At radio, far-
UV, X-ray and soft gamma-ray wavelengths the emission comes primarily from active galactic
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Fig. 2.1. The altitude above sea level at which a typical photon is absorbed as a function of the photon’s
wavelength. Only radio waves, optical light, the hardest y-ray, and infrared radiation in a few wavelength
windows can penetrate the atmosphere to reach sea level. Observations at all other wavebands have to be
carried out above the atmosphere.

nuclei. Galactic starlight dominates in the near-UV, optical and near-infrared, while dust emis-
sion from star-forming galaxies is responsible for most of the far-infrared emission. The hot
gas in galaxy clusters emits a significant but non-dominant fraction of the total X-ray back-
ground and is the only major source of emission from scales larger than an individual galaxy.
Such large structures can, however, be seen in absorption, for example in the light of distant
quasars.

2.1.1 Fluxes and Magnitudes

The image of an astronomical object reflects its surface brightness distribution. The surface
brightness is defined as the photon energy received by a unit area at the observer per unit time
from a unit solid angle in a specific direction. Thus if we denote the surface brightness by I,
its units are [I] = ergs~! cm~2sr~!. If we integrate the surface brightness over the entire image,
we obtain the flux of the object, f, which has units [f] = ergs~! cm~2. Integrating the flux over
a sphere centered on the object and with radius equal to the distance r from the object to the
observer, we obtain the bolometric luminosity of the object:

L=4nrf, 2.1

with [L] = ergs~!. For the Sun, L = 3.846 x 103 ergs .

The image size of an extended astronomical object is usually defined on the basis of its isopho-
tal contours (curves of constant surface brightness), and the characteristic radius of an isophotal
contour at some chosen surface brightness level is usually referred to as an isophotal radius of the
object. A well-known example is the Holmberg radius defined as the length of the semimajor axis
of the isophote corresponding to a surface brightness of 26.5magarcsec 2 in the B-band.Two
other commonly used size measures in optical astronomy are the core radius, defined as the
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Fig. 2.2. The energy density spectrum of cosmological background radiation as a function of wavelength.
The value of v1, measures the radiation power per decade of wavelength. This makes it clear that the cosmic
microwave background (CMB) contributes most to the overall background radiation, followed by the far-
(FIB) and near-infrared (NIB) backgrounds, the X-ray background (XRB) and the gamma-ray background
(GRB). [Courtesy of D. Scott; see Scott (2000)]

radius where the surface brightness is half of the central surface brightness, and the half-light
radius (also called the effective radius), defined as the characteristic radius that encloses half of
the total observed flux. For an object at a distance r, its physical size, D, is related to its angular
size, 0, by

D=r6. 2.2)

Note, though, that relations (2.1) and (2.2) are only valid for relatively small distances. As we
will see in Chapter 3, for objects at cosmological distances, r in Egs. (2.1) and (2.2) has to be
replaced by the luminosity distance and angular diameter distance, respectively.

(a) Wavebands and Bandwidths Photometric observations are generally carried out in some
chosen waveband. Thus, the observed flux from an object is related to its SED, f;, by

fy = / FuFx(WRO)T(A)dA. 2.3)

Here Fx (1) is the transmission of the filter that defines the waveband (denoted by X), T'(A ) repre-
sents the atmospheric transmission, and R(A ) represents the efficiency with which the telescope
plus instrument detects photons. In the following we will assume that fx has been corrected for
atmospheric absorption and telescope efficiency (the correction is normally done by calibrating
the data using standard objects with known f; ). In this case, the observed flux depends only on
the spectral energy distribution and the chosen filter. Astronomers have constructed a variety of
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Table 2.1. Filter characteristics of the UBVRI photometric system.

Band: U B Vv R 1 J H K L M
Aeff (nm): 365 445 551 658 806 1220 1630 2190 3450 4750
FWHM (nm): 66 94 88 138 149 213 307 390 472 460
My 561 548 483 442 408 364 332 328 325 -

Lo(10%2erg/s):  1.86 4.67 464 694 471 249 181 082 017 -

e 2 ©
s O o

o
0

Normalized passbands

0
2000 4000 6000 8000 104
Wavelength [A]

Fig. 2.3. The transmission characteristics of Johnson UBV and Kron Cousins R/ filter systems. [Based on
data published in Bessell (1990)]

photometric systems. A well-known example is the standard UBV system originally introduced
by Johnson. The filter functions for this system are shown in Fig. 2.3. In general, a filter function
can be characterized by an effective wavelength, A.g, and a characteristic bandwidth, usually
quoted as a full width at half maximum (FWHM). The FWHM is defined as |A; — A;|, with
Fx (A1) = Fx(A2) = half the peak value of Fx(A). Table 2.1 lists Aegr and the FWHM for the fil-
ters of the standard UBVRI photometric system. In this system, the FWHM are all of order 10%
or larger of the corresponding Aegr. Such ‘broad-band photometry” can be used to characterize the
overall shape of the spectral energy distribution of an object with high efficiency. Alternatively,
one can use ‘narrow-band photometry’ with much narrower filters to image objects in a particular
emission line or to study its detailed SED properties.

(b) Magnitude and Color For historical reasons, the flux of an astronomical object in the
optical band (and also in the near-infrared and near-ultraviolet bands) is usually quoted in terms
of apparent magnitude:

my = —2.5log(fx/fx0), (2.4)

where the flux zero-point fx o has traditionally been taken as the flux in the X band of the bright
star Vega. In recent years it has become more common to use ‘AB-magnitudes’, for which

fxo0=3.6308 x 10"%ergs'em?Hz ! / Fx(c/v)dv. (2.5)

Here v is the frequency and c is the speed of light. Similarly, the luminosities of objects (in
waveband X) are often quoted as an absolute magnitude: .#x = —2.5log(Ly) + Cx, where Cx
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is a zero-point. It is usually convenient to write Ly in units of the solar luminosity in the same
band, Loy. The values of Lxy in the standard UBVRI photometric system are listed in Table 2.1.
It then follows that

L
My = —2.5log ( 7 XX> + Moy, 2.6)

O
where .#.x is the absolute magnitude of the Sun in the waveband in consideration. Using
Eq. (2.1), we have

myx — My = 5log(r/ro), (2.7)

where rq is a fiducial distance at which my and .#x are defined to have the same value. Conven-
tionally, g is chosen to be 10 pc (1 pc = 1 parsec = 3.0856 x 10'® cm; see §2.1.3 for a definition).
According to this convention, the Vega absolute magnitudes of the Sun in the UBVRI photometric
system have the values listed in Table 2.1.

The quantity (my — .4 ) for an astronomical object is called its distance modulus. If we know
both my and .#x for an object, then Eq. (2.7) can be used to obtain its distance. Conversely, if
we know the distance to an object, a measurement of its apparent magnitude (or flux) can be used
to obtain its absolute magnitude (or luminosity).

Optical astronomers usually express surface brightness in terms of magnitudes per square
arcsecond. In such ‘units’, the surface brightness in a band X is denoted by px, and is related to
the surface brightness in physical units, Iy, according to
Ix

2) +21.572+ Moy. 2.8)

=251
Ux og ( Lo pe

Note that it is the flux, not the magnitude, that is additive. Thus in order to obtain the total
(apparent) magnitude from an image, one must first convert magnitude per unit area into flux per
unit area, integrate the flux over the entire image, and then convert the total flux back to a total
magnitude.

If observations are made for an object in more than one waveband, then the difference between
the magnitudes in any two different bands defines a color index (which corresponds to the slope
of the SED between the two wavebands). For example,

(B—=V)=mp—my = Mp— My (2.9)
is called the (B — V) color of the object.

2.1.2 Spectroscopy

From spectroscopic observations one obtains spectra for objects, i.e. their SEDs f; or f, defined
so that f dA and f, dv are the fluxes received in the elemental wavelength and frequency ranges
dA at A and dv at v. From the relation between wavelength and frequency, A = ¢/v, we then
have that

fo=2f/c and f =V’f,/c. (2.10)

At optical wavelengths, spectroscopy is typically performed by guiding the light from an object
to a spectrograph where it is dispersed according to wavelength. For example, in multi-object
fiber spectroscopy, individual objects are imaged onto the ends of optical fibers which take the
light to prism or optical grating where it is dispersed. The resulting spectra for each individual
fiber are then imaged on a detector. Such spectroscopy loses all information about the distri-
bution of each object’s light within the circular aperture represented by the end of the fiber.
In long-slit spectroscopy, on the other hand, the object of interest is imaged directly onto the
spectrograph slit, resulting in a separate spectrum from each point of the object falling on the
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slit. Finally, in an integral field unit (or IFU) the light from each point within the image of
an extended object is led to a different point on the slit (for example, by optical fibers) result-
ing in a three-dimensional data cube with two spatial dimensions and one dimension for the
wavelength.

At other wavelengths quite different techniques can be used to obtain spectral information. For
example, at infrared and radio wavelengths the incoming signal from a source may be Fourier
analyzed in time in order to obtain the power at each frequency, while at X-ray wavelengths the
energy of each incoming photon can be recorded and the energies of different photons can be
binned to obtain the spectrum.

Spectroscopic observations can give us a lot of information which photometric observations
cannot. A galaxy spectrum usually contains a slowly varying component called the continuum,
with localized features produced by emission and absorption lines (see Fig.2.12 below for some
examples). It is a superposition of the spectra of all the individual stars in the galaxy, modified
by emission and absorption from the gas and dust lying between the stars. From the ultraviolet
through the near-infrared the continuum is due primarily to bound—free transitions in the pho-
tospheres of the stars, in the mid- and far-infrared it is dominated by thermal emission from
dust grains, in the radio it is produced by diffuse relativistic and thermal electrons within the
galaxy, and in the X-ray it comes mainly from accretion of gas onto compact stellar remnants
or a central black hole. Emission and absorption lines are produced by bound-bound transitions
within atoms, ions and molecules, both in the outer photospheres of stars and in the interstellar
gas. By analyzing a spectrum, we may infer the relative importance of these various processes,
thereby understanding the physical properties of the galaxy. For example, the strength of a par-
ticular emission line depends on the abundance of the excited state that produces it, which in turn
depends not only on the abundance of the corresponding element but also on the temperature and
ionization state of the gas. Thus emission line strengths can be used to measure the temperature,
density and chemical composition of interstellar gas. Absorption lines, on the other hand, mainly
arise in the atmospheres of stars, and their relative strengths contain useful information regard-
ing the age and metallicity of the galaxy’s stellar population. Finally, interstellar dust gives rise
to continuum absorption with broad characteristic features. In addition, since dust extinction is
typically more efficient at shorter wavelengths, it also causes reddening, a change of the overall
slope of the continuum emission.

Spectroscopic observations have another important application. The intrinsic frequency of
photons produced by electron transitions between two energy levels E; and E, is vy = (E; —
E\)/hp, where hp is Planck’s constant, and we have assumed E; > E;. Now suppose that these
photons are produced by atoms moving with velocity v relative to the observer. Because of the
Doppler effect, the observed photon frequency will be (assuming v < ¢),

VT
Vobs = (1 - > V12, .11

c

where f is the unit vector of the emitting source relative to the observer. Thus, if the source
is receding from the observer, the observed frequency is redshifted, vons < vy2; conversely, if
the source is approaching the observer, the observed frequency is blueshifted, vops > V2. It is
convenient to define a redshift parameter to characterize the change in frequency,

_ V2

Vobs

~1. (2.12)

For the Doppler effect considered here, we have z = v-t/c. Clearly, by studying the properties
of spectral lines from an object, one may infer the kinematics of the emitting (or absorbing)
material.
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(b)

Av

Fig. 2.4. (a) An illustration of the broadening of a spectral line by the velocity dispersion of stars in a
stellar system. A telescope collects light from all stars within a cylinder through the stellar system. Each
star contributes a narrow spectral line with rest frequency v1,, which is Doppler shifted to a different
frequency v = vi3 + Av due to its motion along the line-of-sight. The superposition of many such line
profiles produces a broadened line, with the profile given by the convolution of the original stellar spectral
line and the velocity distribution of the stars in the cylinder. (b) An illustration of long-slit spectroscopy of
a thin rotating disk along the major axis of the image. In the plot, the rotation speed is assumed to depend

on the distance from the center as Vior(x) o< 1/x/(1+x2).

As an example, suppose that the emitting gas atoms in an object have random motions along
the line-of-sight drawn from a velocity distribution f(v)dv. The observed photons will then have
the following frequency distribution:

F(’/obs) dvghs = f(U)(C/Ulz) dVobs, (2.13)

where v is related to Vohs by v = (1 — Vobs/V12), and we have neglected the natural width
of atomic spectral lines. Thus, by observing F(tops) (the emission line profile in frequency
space), we can infer f(v). If the random motion is caused by thermal effects, we can infer
the temperature of the gas from the observed line profile. For a stellar system (e.g. an ellip-
tical galaxy) the observed spectral line is the convolution of the original stellar line profile
S(v) (which is a luminosity weighted sum of the spectra of all different stellar types that con-
tribute to the flux) with the line-of-sight velocity distribution of all the stars in the observational
aperture,

F(Vops) = /S[l/obs(l +0/0)] f(v)dv. (2.14)

Thus, each narrow, stellar spectral line is broadened by the line-of-sight velocity dispersion
of the stars that contribute to that line (see Fig. 2.4a). If we know the type of stars that domi-
nate the spectral lines in consideration, we can estimate S(v) and use the above relation to infer
the properties of f(v), such as the mean velocity, 7 = [vf(v)dv, and the velocity dispersion,
o =[[(v—1)"f(v)dv]"2.

Similarly, long-slit and IFU spectroscopy of extended objects can be used not only to study
random motions along each line-of-sight through the source, but also to study large-scale flows
in the source. An important example here is the rotation of galaxy disks. Suppose that the rotation
of a disk around its axis is specified by a rotation curve, V;ot(R), which gives the rotation velocity
as a function of distance to the disk center. Suppose further that the inclination angle between
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the rotation axis and the line-of-sight is i. If we put a long slit along the major axis of the image
of the disk, it is easy to show that the frequency shift along the slit is

S
Vabs(R) — w1 = iwm, 2.15)

where the + and — signs correspond to points on opposite sides of the disk center (see Fig. 2.4b).
Thus the rotation curve of the disk can be measured from its long-slit spectrum and from its
apparent shape (which allows the inclination angle to be estimated under the assumption that the
disk is intrinsically round).

2.1.3 Distance Measurements

A fundamental task in astronomy is the determination of the distances to astronomical objects.
As we have seen above, the direct observables from an astronomical object are its angular size
on the sky and its energy flux at the position of the observer. Distance is therefore required in
order to convert these observables into physical quantities. In this subsection we describe the
principles behind some of the most important methods for estimating astronomical distances.

(a) Trigonometric Parallax The principle on which this distance measure is based is very sim-
ple. We are all familiar with the following: when walking along one direction, nearby and distant
objects appear to change their orientation with respect to each other. If the walked distance b
is much smaller than the distance to an object d (assumed to be perpendicular to the direction
of motion), then the change of the orientation of the object relative to an object at infinity is
6 = b/d. Thus, by measuring b and 6 we can obtain the distance d. This is called the trigono-
metric parallax method, and can be used to measure distances to some relatively nearby stars.
In principle, this can be done by measuring the change of the position of a star relative to one
or more background objects (assumed to be at infinity) at two different locations. Unfortunately,
the baseline provided by the Earth’s diameter is so short that even the closest stars do not have a
measurable trigonometric parallax. Therefore, real measurements of stellar trigonometric paral-
lax have to make use of the baseline provided by the diameter of the Earth’s orbit around the Sun.
By measuring the trigonometric parallax, m;, which is half of the angular change in the position
of a star relative to the background as measured over a six month interval, we can obtain the
distance to the star as
A

" tan(m)’

where A = 1 AU = 1.49597870 x 10'3 cm is the length of the semimajor axis of the Earth’s orbit
around the Sun. The distance corresponding to a trigonometric parallax of 1 arcsec is defined as
1 parsec (or 1 pc). From the Earth the accuracy with which 7; can be measured is restricted by
atmospheric seeing, which causes a blurring of the images. This problem is circumvented when
using satellites. With the Hipparcos satellite reliable distances have been measured for nearby
stars with 7; > 103 arcsec, or with distances d < lkpc. The GAIA satellite, which is currently
scheduled for launch in 2012, will be able to measure parallaxes for stars with an accuracy of
~ 2 x 10~ arcsec, which will allow distance measurements to 10% accuracy for ~ 2 x 108
stars.

(2.16)

(b) Motion-Based Methods The principle of this distance measurement is also very simple.
We all know that the angle subtended by an object of diameter / at a distance d is 0 = [/d
(assuming [ < d). If we measure the angular diameters of the same object from two distances,
d; and ds, then the difference between them is AQ = [Ad/d*> = 0 Ad/d, where Ad = |d\ — d|
is assumed to be much smaller than both d; and d5, and d = (dldz)l/ 2 can be considered the
distance to the object. Thus, we can estimate d by measuring AO and Ad. For a star cluster
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consisting of many stars, the change of its distance over a time interval At is given by Ad = v,At,
where v, is the mean radial velocity of the cluster and can be measured from the shift of its
spectrum. If we can measure the change of the angular size of the cluster during the same time
interval, A@, then the distance to the cluster can be estimated from d = 6v,Ar/A6. This is called
the moving-cluster method.

Another distance measure is based on the angular motion of cluster stars caused by their veloc-
ity with respect to the Sun. If all stars in a star cluster had the same velocity, the extensions of
their proper motion vectors would converge to a single point on the celestial sphere (just like
the two parallel rails of a railway track appear to converge to a point at large distance). By mea-
suring the proper motions of the stars in a star cluster, this convergent point can be determined.
Because of the geometry, the line-of-sight from the observer to the convergent point is parallel
to the velocity vector of the star cluster. Hence, the angle, ¢, between the star cluster and its con-
vergent point, which can be measured, is the same as that between the proper motion vector and
its component along the line-of-sight between the observer and the star cluster. By measuring the
cluster’s radial velocity v, one can thus obtain the transverse velocity v, = v,tan¢. Comparing
v to the proper motion of the star cluster then yields its distance. This is called the convergent-
point method and can be used to estimate accurate distances of star clusters up to a few hundred
parsec.

(c) Standard Candles and Standard Rulers As shown by Egs. (2.1) and (2.2), the luminos-
ity and physical size of an object are related through the distance to its flux and angular size,
respectively. Since the flux and angular size are directly observable, we can estimate the distance
to an object if its luminosity or its physical size can be obtained in a distance-independent way.
Objects whose luminosities and physical sizes can be obtained in such a way are called standard
candles and standard rulers, respectively. These objects play an important role in astronomy, not
only because their distances can be determined, but more importantly, because they can serve as
distance indicators to calibrate the relation between distance and redshift, allowing the distances
to other objects to be determined from their redshifts, as we will see below.

One important class of objects in cosmic distance measurements is the Cepheid variable stars
(or Cepheids for short). These objects are observed to change their apparent magnitudes regu-
larly, with periods ranging from 2 to 150 days. The period is tightly correlated with the star’s
luminosity, such that

M = —a—DblogP, (2.17)

where P is the period of light variation in days, and a and b are two constants which can be deter-
mined using nearby Cepheids whose distances have been measured using another method. For
example, using the trigonometric parallaxes of Cepheids measured with the Hipparcos satellite,
Feast & Catchpole (1997) obtained the following relation between P and the absolute magnitude
in the V band: .#y = —1.43 —2.81log P, with a standard error in the zero-point of about 0.10
magnitudes (see Madore & Freedman, 1991, for more examples of such calibrations). Once the
luminosity—period relation is calibrated, and if it is universally valid, it can be applied to distant
Cepheids (whose distances cannot be obtained from trigonometric parallax or proper motion) to
obtain their distances from measurements of their variation periods. Since Cepheids are relatively
bright, with absolute magnitudes .#y ~ —3, telescopes with sufficiently high spatial resolution,
such as the Hubble Space Telescope (HST), allow Cepheid distances to be determined for objects
out to ~ 10Mpc.

Another important class of objects for distance measurements are Type Ia supernovae (SNIa),
which are exploding stars with well-calibrated light profiles. Since these objects can reach peak
luminosities up to ~ 10'L, (so that they can outshine an entire galaxy), they can be observed
out to cosmological distances of several thousand megaparsecs. Empirically it has been found
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that the peak luminosities of SNIa are remarkably similar (e.g. Branch & Tammann, 1992). In
fact, there is a small dispersion in peak luminosities, but this has been found to be correlated
with the rate at which the luminosity decays and so can be corrected (e.g. Phillips et al., 1999).
Thus, one can obtain the relative distances to Type Ia supernovae by measuring their light curves.
The absolute distances can then be obtained once the absolute values of the light curves of some
nearby Type la supernovae are calibrated using other (e.g. Cepheid) distances. As we will see in
§2.10.1, SNIa play an important role in constraining the large scale geometry of the Universe.

(d) Redshifts as Distances One of the most important discoveries in modern science was
Hubble’s (1929) observation that almost all galaxies appear to move away from us, and that
their recession velocities increase in direct proportion to their distances from us, v, o r. This
relation, called the Hubble law, is explained most naturally if the Universe as a whole is assumed
to be expanding. If the expansion is homogeneous and isotropic, then the distance between any
two objects comoving with the expanding background can be written as r(¢) = a(t)r(t') /a(t'),
where a(t) is a time-dependent scale factor of the Universe, describing the expansion. It then
follows that the relative separation velocity of the objects is

v,=F=H(t)r, where H(t)=a(t)/alr). (2.18)

This relation applied at the present time gives v, = Hyr, as observed by Hubble. Since the reces-
sion velocity of an object can be measured from its redshift z, the distance to the object simply
follows from r = cz/Hp (assuming v, < c¢). In practice, the object under consideration may
move relative to the background with some (gravitationally induced) peculiar velocity, tpec, SO
that its observed velocity is the sum of this peculiar velocity along the line-of-sight, vpec -, and
the velocity due to the Hubble expansion:

vy = Hor + Upec,r- (2.19)

In this case, the redshift is no longer a precise measurement of the distance, unless vpec,r << Hor.
Since for galaxies the typical value for vpe. is a few hundred kilometers per second, redshifts can
be used to approximate distances for cz > 1000kms~!.

In order to convert redshifts into distances, we need a value for the Hubble constant, Hy. This
can be obtained if the distances to some sufficiently distant objects can be measured indepen-
dently of their redshifts. As mentioned above, such objects are called distance indicators. For
many years, the value of the Hubble constant was very uncertain, with estimates ranging from
~50kms~! Mpc’1 to ~ 100kms ™! Mpc’1 (current constraints on Hy are discussed in §2.10.1).
To parameterize this uncertainty in Hy it has become customary to write

Hy = 100hkms ™' Mpc™!, (2.20)

and to express all quantities that depend on redshift-based distances in terms of the reduced
Hubble constant /. For example, distance determinations based on redshifts often contain a factor
of #~1, while luminosities based on these distances contain a factor 42, etc. If these factors are
not present, it means that a specific value for the Hubble constant has been assumed, or that the
distances were not based on measured redshifts.

2.2 Stars

As we will see in §2.3, the primary visible constituent of most galaxies is the combined light
from their stellar population. Clearly, in order to understand galaxy formation and evolution it
is important to know the main properties of stars. In Table 2.1 we list some of the photomet-
ric properties of the Sun. These, as well as the Sun’s mass and radius, M, = 2 x 10>} g and
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Table 2.2. Solar abundances in number relative to hydrogen.

Element: H He C N (0] Ne Mg Si Fe
(N/Ng) x 103 10° 9800 363 11.2 851 123 3.80 3.55 4.68

log (F,) + constants

100 1000 10 105
A [A]

Fig. 2.5. Spectra for stars of different spectral types. f; is the flux per angstrom, and an arbitrary constant
is added to each spectrum to avoid confusion. [Based on data kindly provided by S. Charlot]

Ro =7 x 10'%cm, are usually used as fiducial values when describing other stars. The abun-
dance by number of some of the chemical elements in the solar system is given in Table 2.2. The
fraction in mass of elements heavier than helium is referred to as the metallicity and is denoted
by Z, and our Sun has Z;, ~ 0.02. The relative abundances in a star are usually specified relative
to those in the Sun:

[A/B] = log [%} 7 (2.21)

where (n4/ng)s is the number density ratio between element A and element B in the star, and
(na/ng)e is the corresponding ratio for the Sun.

Since all stars, except a few nearby ones, are unresolved (i.e. they appear as point sources),
the only intrinsic properties that are directly observable are their luminosities, colors and spec-
tra. These vary widely (some examples of stellar spectra are shown in Fig.2.5) and form the
basis for their classification. The most often used classification scheme is the Morgan—Keenan
(MK) system, summarized in Tables 2.3 and 2.4. These spectral classes are further divided into
decimal subclasses [e.g. from BO (early) to B9 (late)], while luminosity classes are divided into
subclasses such as Ia, Ib, etc. The importance of this classification is that, although entirely based
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Table 2.3. MK spectral classes.

Class Temperature Spectral characteristics

(0] 28,000-50,000 K Hot stars with He II absorption; strong UV continuum

B 10,000-28,000 K He I absorption; H developing in later classes

A 7,500-10,000 K Strong H lines for A0, decreasing thereafter; Call increasing

F 6,000-7,500 K Call stronger; H lines weaker; metal lines developing

G 5,000-6,000 K Call strong; metal lines strong; H lines weaker

K 3,500-5,000 K Strong metal lines; CH and CN developing; weak blue continuum
M 2,500-3,500 K Very red; TiO bands developing strongly

Table 2.4. MK luminosity classes.

I Supergiants

I Bright giants

111 Normal giants

v Subgiants

\' Dwarfs (main-sequence stars)

on observable properties, it is closely related to the basic physical properties of stars. For exam-
ple, the luminosity classes are related to surface gravities, while the spectral classes are related
to surface temperatures (see e.g. Cox, 2000).

Fig. 2.6 shows the color—magnitude relation of a large number of stars for which accurate
distances are available (so that their absolute magnitudes can be determined). Such a diagram is
called a Hertzsprung—Russell diagram (abbreviated as H-R diagram), and features predominantly
in studies of stellar astrophysics. The MK spectral and luminosity classes are also indicated.
Clearly, stars are not uniformly distributed in the color—magnitude space, but lie in several well-
defined sequences. Most of the stars lie in the ‘main sequence’ (MS) which runs from the lower-
right to the upper-left. Such stars are called main-sequence stars and have MK luminosity class
V. The position of a star in this sequence is mainly determined by its mass. Above the main
sequence one finds the much rarer but brighter giants, making up the MK Iuminosity classes I to
IV, while the lower-left part of the H-R diagram is occupied by white dwarfs. The Sun, whose MK
type is G2V, lies in the main sequence with V-band absolute magnitude 4.8 and (atmospheric)
temperature 5780K.

As a star ages it moves off the MS and starts to traverse the H-R diagram. The location of
a star in the H-R diagram as function of time is called its evolutionary track which, again, is
determined mainly by its mass. An important property of a stellar population is therefore its
initial mass function (IMF), which specifies the abundance of stars as function of their initial
mass (i.e. the mass they have at the time when reach the MS shortly after their formation). For
a given IMF, and a given star-formation history, one can use the evolutionary tracks to predict
the abundance of stars in the H-R diagram. Since the spectrum of a star is directly related to
its position in the H-R diagram, this can be used to predict the spectrum of an entire galaxy, a
procedure which is called spectral synthesis modeling. Detailed calculations of stellar evolution
models (see Chapter 10) show that a star like our Sun has a MS lifetime of about 10 Gyr, and
that the MS lifetime scales with mass roughly as M3, i.e. more massive (brighter) stars spend
less time on the MS. This strong dependence of MS lifetime on mass has important observational
consequences, because it implies that the spectrum of a stellar system (a galaxy) depends on its
star-formation history. For a system where the current star-formation rate is high, so that many
young massive stars are still on the main sequence, the stellar spectrum is expected to have a
strong blue continuum produced by O and B stars. On the other hand, for a system where star
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Fig. 2.6. The color-magnitude diagram (i.e. the H-R diagram) of 22,000 stars from the Hipparcos Cata-
logue together with 1,000 low-luminosity stars (red and white dwarfs) from the Gliese Catalogue of Nearby
Stars. The MK spectral and luminosity classes are also indicated, as are the luminosities in solar units.
[Diagram from R. Powell, taken from Wikipedia]

formation has been terminated a long time ago, so that all massive stars have already evolved off
the MS, the spectrum (now dominated by red giants and the low-mass MS stars) is expected to
be red.

2.3 Galaxies

Galaxies, whose formation and evolution is the main topic of this book, are the building blocks
of the Universe. They not only are the cradles for the formation of stars and metals, but also
serve as beacons that allow us to probe the geometry of space-time. Yet it is easy to forget that it
was not until the 1920s, with Hubble’s identification of Cepheid variable stars in the Andromeda
Nebula, that most astronomers became convinced that the many ‘nebulous’ objects cataloged
by John Dreyer in his 1888 New General Catalogue of Nebulae and Clusters of Stars and the
two supplementary Index Catalogues are indeed galaxies. Hence, extragalactic astronomy is a
relatively new science. Nevertheless, as we will see, we have made tremendous progress: we
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Fig. 2.7. Examples of different types of galaxies. From left to right and top to bottom, NGC 4278 (E1),
NGC 3377 (E6), NGC 5866 (SO), NGC 175 (SBa), NGC 6814 (Sb), NGC 4565 (Sb, edge on), NGC 5364
(Sc), HoII (Irr I), NGC 520 (Irr IT). [All images are obtained from the NASA/IPAC Extragalactic Database
(NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under
contract with the National Aeronautics and Space Administration]

have surveyed the local population of galaxies in exquisite detail covering the entire range of
wavelengths, we have constructed redshift surveys with hundreds of thousands of galaxies to
probe the large scale structure of the Universe, and we have started to unveil the population of
galaxies at high redshifts, when the Universe was only a small fraction of its current age.

2.3.1 The Classification of Galaxies

Fig.2.7 shows a collage of images of different kinds of galaxies. Upon inspection, one finds
that some galaxies have smooth light profiles with elliptical isophotes, others have spiral arms
together with an elliptical-like central bulge, and still others have irregular or peculiar morpholo-
gies. Based on such features, Hubble ordered galaxies in a morphological sequence, which is
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Fig. 2.8. A schematic representation of the Hubble sequence of galaxy morphologies. [Courtesy of
R. Abraham; see Abraham (1998)]

now referred to as the Hubble sequence or Hubble tuning-fork diagram (see Fig. 2.8). Hubble’s
scheme classifies galaxies into four broad classes:

(i) Elliptical galaxies: These have smooth, almost elliptical isophotes and are divided into
subtypes EO, El, ..., E7, where the integer is the one closest to 10 (1 — b/a), with a and
b the lengths of the semimajor and semiminor axes.

(ii) Spiral galaxies: These have thin disks with spiral arm structures. They are divided into
two branches, barred spirals and normal spirals, according to whether or not a recogniz-
able bar-like structure is present in the central part of the galaxy. On each branch, galaxies
are further divided into three classes, a, b and c, according to the following three criteria:

o the fraction of the light in the central bulge;

e the tightness with which the spiral arms are wound;

o the degree to which the spiral arms are resolved into stars, HII regions and ordered dust
lanes.

These three criteria are correlated: spirals with a pronounced bulge component usually
also have tightly wound spiral arms with relatively faint HII regions, and are classified
as Sa. On the other hand, spirals with weak or absent bulges usually have open arms
and bright HII regions and are classified as Sc. When the three criteria give conflicting
indications, Hubble put most emphasis on the openness of the spiral arms.

(iii) Lenticular or SO galaxies: This class is intermediate between ellipticals and spirals. Like
ellipticals, lenticulars have a smooth light distribution with no spiral arms or HII regions.
Like spirals they have a thin disk and a bulge, but the bulge is more dominant than that in
a spiral galaxy. They may also have a central bar, in which case they are classified as SBO.

(iv) Irregular galaxies: These objects have neither a dominating bulge nor a rotationally sym-
metric disk and lack any obvious symmetry. Rather, their appearance is generally patchy,
dominated by a few HII regions. Hubble did not include this class in his original sequence
because he was uncertain whether it should be considered an extension of any of the other
classes. Nowadays irregulars are usually included as an extension to the spiral galaxies.

Ellipticals and lenticulars together are often referred to as early-type galaxies, while the spirals
and irregulars make up the class of late-type galaxies. Indeed, traversing the Hubble sequence
from the left to the right the morphologies are said to change from early- to late-type. Although
somewhat confusing, one often uses the terms ‘early-type spirals’ and ‘late-type spirals’ to refer
to galaxies at the left or right of the spiral sequence. We caution, though, that this historical
nomenclature has no direct physical basis: the reference to ‘early’ or ‘late’ should not be
interpreted as reflecting a property of the galaxy’s evolutionary state. Another largely historical
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Table 2.5. Galaxy morphological types.

Hubble E E-SO SO SO-Sa Sa Sab Sb Sb-c Sc ScIrr Irr
deV E SO~ SO SO™ Sa Sab Sb Sbc Scd Sdm Im
T -5 -3 -2 0 1 2 3 4 6 8 10

X XA XXXXX X
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Fig. 2.9. Fractional luminosity of the spheroidal bulge component in a galaxy as a function of morphologi-
cal type (based on the classification of de Vaucouleurs). Data points correspond to individual galaxies, and
the curve is a fit to the mean. Elliptical galaxies (Type = —5) are considered to be pure bulges. [Based on
data presented in Simien & de Vaucouleurs (1986)]

nomenclature, which can be confusing at times, is to refer to faint galaxies with .#p > —18 as
‘dwarf galaxies’. In particular, early-type dwarfs are often split into dwarf ellipticals (dE) and
dwarf spheroidals (dSph), although there is no clear distinction between these types — often the
term dwarf spheroidals is simply used to refer to early-type galaxies with .#p > —14.

Since Hubble, a variety of other classification schemes have been introduced. A commonly
used one is due to de Vaucouleurs (1974). He put spirals in the Hubble sequence into a finer
gradation by adding new types such as SOa, Sab, Sbc (and the corresponding barred types). After
finding that many of Hubble’s irregular galaxies in fact had weak spiral arms, de Vaucouleurs
also extended the spiral sequence to irregulars, adding types Scd, Sd, Sdm, Sm, Im and 10, in
order of decreasing regularity. (The m stands for ‘Magellanic’ since the Magellanic Clouds are
the prototypes of this kind of irregulars.) Furthermore, de Vaucouleurs used numbers between
—6 and 10 to represent morphological types (the de Vaucouleurs’ T types). Table 2.5 shows
the correspondence between de Vaucouleurs’ notations and Hubble’s notations — note that the
numerical 7' types do not distinguish between barred and unbarred galaxies. As shown in Fig. 2.9,
the morphology sequence according to de Vaucouleurs’ classification is primarily a sequence
in the importance of the bulge.

The Hubble classification and its revisions encompass the morphologies of the majority of
the observed galaxies in the local Universe. However, there are also galaxies with strange
appearances which defy Hubble’s classification. From their morphologies, these ‘peculiar’
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Fig. 2.10. The peculiar galaxy known as the Antennae, a system exhibiting prominent tidal tails (the left
inlet), a signature of a recent merger of two spiral galaxies. The close-up of the center reveals the presence
of large amounts of dust and many clusters of newly formed stars. [Courtesy of B. Whitmore, NASA, and
Space Telescope Science Institute]

galaxies all appear to have been strongly perturbed in the recent past and to be far from dynam-
ical equilibrium, indicating that they are undergoing a transformation. A good example is the
Antennae (Fig.2.10) where the tails are produced by the interaction of the two spiral galaxies,
NGC 4038 and NGC 4039, in the process of merging.

The classifications discussed so far are based only on morphology. Galaxies can also be clas-
sified according to other properties. For instance, they can be classified into bright and faint
according to luminosity, into high and low surface brightness according to surface brightness,
into red and blue according to color, into gas-rich and gas-poor according to gas content, into
quiescent and starburst according to their current level of star formation, and into normal and
active according to the presence of an active nucleus. All these properties can be measured obser-
vationally, although often with some difficulty. An important aspect of the Hubble sequence (and
its modifications) is that many of these properties change systematically along the sequence (see
Figs.2.11 and 2.12), indicating that it reflects a sequence in the basic physical properties of galax-
ies. However, we stress that the classification of galaxies is far less clear cut than that of stars,
whose classification has a sound basis in terms of the H-R diagram and the evolutionary tracks.

2.3.2 Elliptical Galaxies

Elliptical galaxies are characterized by smooth, elliptical surface brightness distributions, contain
little cold gas or dust, and have red photometric colors, characteristic of an old stellar pop-
ulation. In this section we briefly discuss some of the main, salient observational properties.
A more in-depth discussion, including an interpretation within the physical framework of galaxy
formation, is presented in Chapter 13.

(a) Surface Brightness Profiles The one-dimensional surface brightness profile, 7(R), of an
elliptical galaxy is usually defined as the surface brightness as a function of the isophotal
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Fig. 2.11. Galaxy properties along the Hubble morphological sequence based on the RC3-UGC sample.
Filled circles are medians, open ones are mean values. The bars bracket the 25 and 75 percentiles. Properties
plotted are Lg (blue luminosity in L), R»s (the radius in kpc of the 25magarcsec 2 isophote in the B-band),
M (total mass in solar units within a radius Rys/2), My (HI mass in solar units), Myy/Lp, Xt (total mass
surface density), Xy (HI mass surface density), and the B —V color. [Based on data presented in Roberts
& Haynes (1994)]

semimajor axis length R. If the position angle of the semimajor axis changes with radius, a
phenomenon called isophote twisting, then /(R) traces the surface brightness along a curve that
connects the intersections of each isophote with its own major axis.

The surface brightness profile of spheroidal galaxies is generally well fit by the Sérsic profile

(Sérsic, 1968), or R'/" profile,’
R 1/n
= Il.exp [—ﬂn{(R) —1}] , (2.22)
€

R 1/n

I(R) = Ipexp [—ﬁ,, (%)
€

where [j is the central surface brightness, n is the so-called Sérsic index which sets the concen-

tration of the profile, R, is the effective radius that encloses half of the total light, and I, = I(R.).

Surface brightness profiles are often expressed in terms of y o< —2.51log(7) (which has the units

of mag arcsec2), for which the Sérsic profile takes the form

R 1/n
1(R) = e +1.086 B, [(R) 1]. (2.23)

€

" A similar formula, but with R denoting 3-D rather than projected radius, was used by Einasto (1965) to describe the
stellar halo of the Milky Way.
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Fig. 2.12. Spectra of different types of galaxies from the ultraviolet to the near-infrared. From ellipticals
to late-type spirals, the blue continuum and emission lines become systematically stronger. For early-type
galaxies, which lack hot, young stars, most of the light emerges at the longest wavelengths, where one sees
absorption lines characteristic of cool K stars. In the blue, the spectrum of early-type galaxies show strong
H and K absorption lines of calcium and the G band, characteristic of solar type stars. Such galaxies emit
little light at wavelengths shorter than 4000 A and have no emission lines. In contrast, late-type galaxies
and starbursts emit most of their light in the blue and near-ultraviolet. This light is produced by hot young
stars, which also heat and ionize the interstellar medium giving rise to strong emission lines. [Based on data
kindly provided by S. Charlot]

The value for 3, follows from the definition of R, and is well approximated by 3, = 2n —0.324
(but only for n > 1). Note that Eq. (2.22) reduces to a simple exponential profile for n = 1. The
total luminosity of a spherical system with a Sérsic profile is
L=2n / IR)RAR = 221 4 o (2.24)
0 (ﬁn)Zn
with I'(x) the gamma function. Early photometry of the surface brightness profiles of normal
giant elliptical galaxies was well fit by a de Vaucouleurs profile, which is a Sérsic profile with
n=4(and 3, = 7.67) and is therefore also called a RY/ 4_profile. With higher accuracy photometry
and with measurements of higher and lower luminosity galaxies, it became clear that ellipticals
as a class are better fit by the more general Sérsic profile. In fact, the best-fit values for n have
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Fig. 2.13. Correlation between the Sérsic index, n, and the absolute magnitude in the B-band for a sample
of elliptical galaxies. The vertical dotted lines correspond to .#p = —18 and .#p = —20.5 and are shown
to facilitate a comparison with Fig. 2.14. [Data compiled and kindly made available by A. Graham (see
Graham & Guzman, 2003)]
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Fig. 2.14. The effective radius (left panel) and the average surface brightness within the effective radius
(right panel) of elliptical galaxies plotted against their absolute magnitude in the B-band. The vertical dotted
lines correspond to .#p = —18 and .#p = —20.5. [Data compiled and kindly made available by A. Graham
(see Graham & Guzman, 2003), combined with data taken from Bender et al. (1992)]

been found to be correlated with the luminosity and size of the galaxy: while at the faint end
dwarf ellipticals have best-fit values as low as n ~ 0.5, the brightest ellipticals can have Sérsic
indices n > 10 (see Fig. 2.13).

Instead of Iy or I, one often characterizes the surface brightness of an elliptical galaxy via the
average surface brightness within the effective radius, (I)e = L/ (27tR§), or, in magnitudes, ({)e.
Fig. 2.14 shows how R, and (u). are correlated with luminosity. At the bright end (#p < —18),
the sizes of elliptical galaxies increase strongly with luminosity. Consequently, the average sur-
face brightness actually decreases with increasing luminosity. At the faint end (. > —18),
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however, all ellipticals have roughly the same effective radius (R. ~ 1kpc), so that the average
surface brightness increases with increasing luminosity. Because of this apparent change-over in
properties, ellipticals with .#p > —18 are typically called ‘dwarf” ellipticals, in order to distin-
guish them from the ‘normal’ ellipticals (see §2.3.5). However, this alleged ‘dichotomy’ between
dwarf and normal ellipticals has recently been challenged. A number of studies have argued that
there is actually a smooth and continuous sequence of increasing surface brightness with increas-
ing luminosity, except for the very bright end (.#p < —20.5) where this trend is reversed (e.g.
Jerjen & Binggeli, 1997; Graham & Guzman, 2003).

The fact that the photometric properties of elliptical galaxies undergo a transition around
AMp ~ —20.5 is also evident from their central properties (in the inner few hundred parsec). High
spatial resolution imaging with the HST has revealed that the central surface brightness profiles
of elliptical galaxies are typically not well described by an inward extrapolation of the Sérsic pro-
files fit to their outer regions. Bright ellipticals with .#p < —20.5 typically have a deficit in I(R)
with respect to the best-fit Sérsic profile, while fainter ellipticals reveal excess surface bright-
ness. Based on the value of the central cusp slope y = dlogl/dlogr the population of ellipticals
has been split into ‘core’ (y < 0.3) and ‘power-law’ (y > 0.3) systems. The majority of bright
galaxies with .#Zp < —20.5 have cores, while power-law galaxies typically have .#p > —20.5
(Ferrarese et al., 1994; Lauer et al., 1995). Early results, based on relatively small samples, sug-
gested a bimodal distribution in ¥, with virtually no galaxies in the range 0.3 < v < 0.5. However,
subsequent studies have significantly weakened the evidence for a clear dichotomy, finding a
population of galaxies with intermediate properties (Rest et al., 2001; Ravindranath et al., 2001).
In fact, recent studies, using significantly larger samples, have argued for a smooth transition in
nuclear properties, with no evidence for any dichotomy (Ferrarese et al., 2006b; Coté et al., 2007;
see also §13.1.2).

(b) Isophotal Shapes The isophotes of elliptical galaxies are commonly fitted by ellipses and
characterized by their minor-to-major axis ratios b/a (or, equivalently, by their ellipticities € =
1 — b/a) and by their position angles. In general, the ellipticity may change across the system, in
which case the overall shape of an elliptical is usually defined by some characteristic ellipticity
(e.g. that of the isophote which encloses half the total light). In most cases, however, the variation
of & with radius is not large, so that the exact definition is of little consequence. For normal
elliptical galaxies the axis ratio lies in the range 0.3 < b/a < 1, corresponding to types EO to E7.
In addition to the ellipticity, the position angle of the isophotes may also change with radius, a
phenomenon called isophote twisting.

Detailed modeling of the surface brightness of elliptical galaxies shows that their isophotes are
generally not exactly elliptical. The deviations from perfect ellipses are conveniently quantified
by the Fourier coefficients of the function

oo

A(9) = Riso(¢) — Reil(9) =ao + Y, (ancosng + by sinng) (2.25)

n=1

where Ris,(9) is the radius of the isophote at angle ¢ and R (¢) is the radius of an ellipse at
the same angle (see Fig.2.15). Typically one considers the ellipse that best fits the isophote in
question, so that ag, ai, ap, by and b; are all consistent with zero within the errors. The deviations
from this best-fit isophote are then expressed by the higher-order Fourier coefficients a, and
b, with n > 3. Of particular importance are the values of the a4 coefficients, which indicate
whether the isophotes are ‘disky’ (a4 > 0) or ‘boxy’ (as < 0), as illustrated in Fig.2.15. The
diskiness of an isophote is defined as the dimensionless quantity, as/a, where a is the length
of the semimajor axis of the isophote’s best-fit ellipse. We caution that some authors use an
alternative method to specify the deviations of isophotes from pure ellipses. Instead of using
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DISKY

Fig. 2.15. An illustration of boxy and disky isophotes (solid curves). The dashed curves are the
corresponding best-fit ellipses.

isophote deviation from an ellipse, they quantify how the intensity fluctuates along the best-fit
ellipse:

1(¢) =I+ Y, (A,cosng + B,sinng), (2.26)
n=1
with I the intensity of the best-fit ellipse. The coefficients A, and B, are (approximately) related
to a, and b, according to

d/

— 2.2
Rl (2.27)

Ay =ay s n = by

ar
dR

where R = ay/1 — €, with ¢ the ellipticity of the best-fit ellipse.

The importance of the disky/boxy classification is that boxy and disky ellipticals turn out to
have systematically different properties. Boxy ellipticals are usually bright, rotate slowly, and
show stronger than average radio and X-ray emission, while disky ellipticals are fainter, have
significant rotation and show little or no radio and X-ray emission (e.g. Bender et al., 1989;
Pasquali et al., 2007). In addition, the diskiness is correlated with the nuclear properties as well;
disky ellipticals typically have steep cusps, while boxy ellipticals mainly harbor central cores
(e.g. Jaffe et al., 1994; Faber et al., 1997).

(c) Colors Elliptical galaxies in general have red colors, indicating that their stellar contents
are dominated by old, metal-rich stars (see §10.3). In addition, the colors are tightly correlated
with the luminosity such that brighter ellipticals are redder (Sandage & Visvanathan, 1978). As
we will see in §13.5, the slope and (small) scatter of this color-magnitude relation puts tight
constraints on the star-formation histories of elliptical galaxies. Ellipticals also display color
gradient. In general, the outskirt has a bluer color than the central region. Peletier et al. (1990)
obtained a mean logarithmic gradient of A(U — R)/Alogr = —0.20+£0.02 mag in U — R, and of
A(B—R)/Alogr = —0.09£0.02 mag in B — R, in good agreement with the results obtained by
Franx et al. (1989D).

(d) Kinematic Properties Giant ellipticals generally have low rotation velocities. Observa-
tionally, this may be characterized by the ratio of maximum line-of-sight streaming motion vy,
(relative to the mean velocity of the galaxy) to G, the average value of the line-of-sight velocity
dispersion interior to ~ Re /2. This ratio provides a measure of the relative importance of ordered
and random motions within the galaxy. For isotropic, oblate galaxies flattened by the centrifu-
gal force generated by rotation, vy, /0 &~ \/€/(1 — €), with € the ellipticity of the spheroid (see
§13.1.7). As shown in Fig.2.16a, for bright ellipticals, vy,/0 lies well below this prediction,
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Fig. 2.16. (a) The ratio vy, /G for ellipticals and bulges (with bulges marked by horizontal bars) versus ellip-
ticity. Open circles are for bright galaxies with .#p < 20.5, with upper limits marked by downward arrows;
solid circles are for early types with —20.5 < .#p < —18. The solid curve is the relation expected for an
oblate galaxy flattened by rotation. [Based on data published in Davies et al. (1983)] (b) The rotation param-
eter (v/0)* (defined as the ratio of vy /G to the value expected for an isotropic oblate spheroid flattened
purely by rotation) versus the average diskiness of the galaxy. [Based on data published in Kormendy &
Bender (1996)]

indicating that their flattening must be due to velocity anisotropy, rather than rotation. In con-
trast, ellipticals of intermediate luminosities (with absolute magnitude —20.5 < .#p < —18.0)
and spiral bulges have vy, /0 values consistent with rotational flattening. Fig.2.16b shows, as
noted above, that disky and boxy ellipticals have systematically different kinematics: while disky
ellipticals are consistent with rotational flattening, rotation in boxy ellipticals is dynamically
unimportant.

When the kinematic structure of elliptical galaxies is examined in more detail a wide range of
behavior is found. In most galaxies the line-of-sight velocity dispersion depends only weakly on
position and is constant or falls at large radii. Towards the center the dispersion may drop weakly,
remain flat, or rise quite sharply. The behavior of the mean line-of-sight streaming velocity is
even more diverse. While most galaxies show maximal streaming along the major axis, a sub-
stantial minority show more complex behavior. Some have non-zero streaming velocities along
the minor axis, and so it is impossible for them to be an oblate body rotating about its sym-
metry axis. Others have mean motions which change suddenly in size, in axis, or in sign in the
inner regions, the so-called kinematically decoupled cores. Such variations point to a variety of
formation histories for apparently similar galaxies.

At the very center of most nearby ellipticals (and also spiral and SO bulges) the velocity dis-
persion is observed to rise more strongly than can be understood as a result of the gravitational
effects of the observed stellar populations alone. It is now generally accepted that this rise sig-
nals the presence of a central supermassive black hole. Such a black hole appears to be present
in virtually every galaxy with a significant spheroidal component, and to have a mass which is
roughly 0.1% of the total stellar mass of the spheroid (Fig.2.17). A more detailed discussion of
supermassive black holes is presented in §13.1.4.

(e) Scaling Relations The kinematic and photometric properties of elliptical galaxies are cor-
related. In particular, ellipticals with a larger (central) velocity dispersion are both brighter,
known as the Faber—Jackson relation, and larger, known as the D,,-o relation (D, is the isophotal
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Fig. 2.17. The masses of central black holes in ellipticals and spiral bulges plotted against the absolute
magnitude (left) and velocity dispersion (right) of their host spheroids. [Adapted from Kormendy (2001)]
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Fig. 2.18. The fundamental plane of elliptical galaxies in the logR.-log 0p-(l)e space (0 is the central
velocity dispersion, and (lt) is the mean surface brightness within R, expressed in magnitudes per square
arcsecond). [Plot kindly provided by R. Saglia, based on data published in Saglia et al. (1997) and Wegner
et al. (1999)]

diameter within which the average, enclosed surface brightness is equal to a fixed value). Fur-
thermore, when plotted in the three-dimensional space spanned by log 6y, logR. and log(l)e,
elliptical galaxies are concentrated in a plane (see Fig. 2.18) known as the fundamental plane. In
mathematical form, this plane can be written as

logR. = alog oy + blog(I). + constant, (2.28)
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where (I). is the mean surface brightness within R. (not to be confused with I, which is the
surface brightness at R ). The values of a and b have been estimated in various photometric bands.
For example, Jgrgensen et al. (1996) obtained a = 1.24 £0.07, b = —0.82 £ 0.02 in the optical,
while Pahre et al. (1998) obtained a = 1.53 +0.08, b = —0.79 +0.03 in the near-infrared. More
recently, using 9,000 galaxies from the Sloan Digital Sky Survey (SDSS), Bernardi et al. (2003b)
found the best fitting plane to have a = 1.49+£0.05 and b = —0.75+0.01 in the SDSS r-band with
a rms of only 0.05. The Faber—Jackson and D,-¢ relations are both two-dimensional projections
of this fundamental plane. While the D,,-c projection is close to edge-on and so has relatively
little scatter, the Faber—Jackson projection is significantly tilted resulting in somewhat larger
scatter. These relations can not only be used to determine the distances to elliptical galaxies, but
are also important for constraining theories for their formation (see §13.4).

(f) Gas Content Although it was once believed that elliptical galaxies contain neither gas nor
dust, it has become clear over the years that they actually contain a significant amount of inter-
stellar medium which is quite different in character from that in spiral galaxies (e.g. Roberts et al.,
1991; Buson et al., 1993). Hot (~ 10" K) X-ray emitting gas usually dominates the interstellar
medium (ISM) in luminous ellipticals, where it can contribute up to ~ 10'° M, to the total mass
of the system. This hot gas is distributed in extended X-ray emitting atmospheres (Fabbiano,
1989; Mathews & Brighenti, 2003), and serves as an ideal tracer of the gravitational potential in
which the galaxy resides (see §8.2).

In addition, many ellipticals also contain small amounts of warm ionized (10*K) gas as well
as cold (< 100K) gas and dust. Typical masses are 10°~10* M, in ionized gas and 10°-10% M,
in the cold component. Contrary to the case for spirals, the amounts of dust and of atomic and
molecular gas are not correlated with the luminosity of the elliptical. In many cases, the dust
and/or ionized gas is located in the center of the galaxy in a small disk component, while other
ellipticals reveal more complex, filamentary or patchy dust morphologies (e.g. van Dokkum &
Franx, 1995; Tran et al., 2001). This gas and dust either results from accumulated mass loss from
stars within the galaxy or has been accreted from external systems. The latter is supported by the
fact that the dust and gas disks are often found to have kinematics decoupled from that of the
stellar body (e.g. Bertola et al., 1992).

2.3.3 Disk Galaxies

Disk galaxies have a far more complex morphology than ellipticals. They typically consist of a
thin, rotationally supported disk with spiral arms and often a bar, plus a central bulge component.
The latter can dominate the light of the galaxy in the earliest types and may be completely absent
in the latest types. The spiral structure is best seen in face-on systems and is defined primarily
by young stars, HII regions, molecular gas and dust absorption. Edge-on systems, on the other
hand, give a better handle on the vertical structure of the disk, which often reveals two separate
components: a thin disk and a thick disk. In addition, there are indications that disk galaxies
also contain a spheroidal, stellar halo, extending out to large radii. In this subsection we briefly
summarize the most important observational characteristics of disk galaxies. A more in-depth
discussion, including models for their formation, is presented in Chapter 11.

(a) Surface Brightness Profiles Fig.2.19 shows the surface brightness profiles of three disk
galaxies, as measured along their projected, major axes. A characteristic of these profiles is that
they typically reveal a range over which p(R) can be accurately fitted by a straight line. This
corresponds to an exponential surface brightness profile

L

I(R) = [ —R/R, Ih= —
(R) =Ipexp(—R/Rq), I TR

(2.29)
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Fig. 2.19. The surface brightness profiles of three disk galaxies plus their decomposition in an exponential
disk (solid line) and a Sérsic bulge (dot-dashed line). [Based on data published in MacArthur et al. (2003)
and kindly made available by L. MacArthur]
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Fig. 2.20. The effective radius (left panel) and the surface brightness at the effective radius (right panel) of
disk dominated galaxies plotted against their absolute magnitude in the B-band. [Based on data published
in Impey et al. (1996b)]

(i.e. a Sérsic profile with n = 1). Here R is the cylindrical radius, R4 is the exponential scale-
length, Iy is the central luminosity surface density, and L is the total luminosity. The effective
radius enclosing half of the total luminosity is R, ~ 1.67Ry. Following Freeman (1970) it has
become customary to associate this exponential surface brightness profile with the actual disk
component. The central regions of the majority of disk galaxies show an excess surface brightness
with respect to a simple inward extrapolation of this exponential profile. This is interpreted as a
contribution from the bulge component, and such interpretation is supported by images of edge-
on disk galaxies, which typically reveal a central, roughly spheroidal, component clearly thicker
than the disk itself (see e.g. NGC 4565 in Fig. 2.7). At large radii, the surface brightness profiles
often break to a much steeper (roughly exponential) profile (an example is UGC 927, shown in
Fig. 2.19). These breaks occur at radii R, = aRy with « in the range 2.5 to 4.5 (e.g. Pohlen et al.,
2000; de Grijs et al., 2001).

Fig.2.20 shows R. and L. as functions of the absolute magnitude for a large sample of disk
dominated galaxies (i.e. with a small or negligible bulge component). Clearly, as expected, more
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luminous galaxies tend to be larger, although there is large scatter, indicating that galaxies of a
given luminosity span a wide range in surface brightnesses. Note that, similar to ellipticals with
Ap > —20.5, more luminous disk galaxies on average have a higher surface brightness (see
Fig.2.14).

When decomposing the surface brightness profiles of disk galaxies into the contributions of
disk and bulge, one typically fits (t(R) with the sum of an exponential profile for the disk and a
Sérsic profile for the bulge. We caution, however, that these bulge—disk decompositions are far
from straightforward. Often the surface brightness profiles show clear deviations from a simple
sum of an exponential plus Sérsic profile (e.g. UGC 12527 in Fig. 2.19). In addition, seeing
tends to blur the central surface brightness distribution, which has to be corrected for, dust can
cause significant extinction, and bars and spiral arms represent clear deviations from perfect
axisymmetry. In addition, disks are often lop-sided (the centers of different isophotes are offset
from each other in one particular direction) and can even be warped (the disk is not planar, but
different disk radii are tilted with respect to each other). These difficulties can be partly overcome
by using the full two-dimensional information in the image, by using color information to correct
for dust, and by using kinematic information. Such studies require much detailed work and even
then ambiguities remain.

Despite these uncertainties, bulge—disk decompositions have been presented for large samples
of disk galaxies (e.g. de Jong, 1996a; Graham, 2001; MacArthur et al., 2003). These studies have
shown that more luminous bulges have a larger best-fit Sérsic index, similar to the relation found
for elliptical galaxies (Fig. 2.13): while the relatively massive bulges of early-type spirals have
surface brightness profiles with a best-fit Sérsic index n ~ 4, the surface brightness profiles of
bulges in late-type spirals are better fit with n < 1. In addition, the ratio between the effective
radius of the bulge and the disk scale length is found to be roughly independent of Hubble type,
with an average of (re/Ra) = 0.2240.09. The fact that the bulge-to-disk ratio increases from
late-type to early-type therefore indicates that brighter bulges have a higher surface brightness.

Although the majority of bulges have isophotes that are close to elliptical, a non-negligible
fraction of predominantly faint bulges in edge-on, late-type disk galaxies have isophotes that are
extremely boxy, or sometimes even have the shape of a peanut. As we will see in §11.5.4, these
peanut-shaped bulges are actually bars that have been thickened out of the disk plane.

(b) Colors In general, disk galaxies are bluer than elliptical galaxies of the same luminosity.
As discussed in §11.7, this is mainly owing to the fact that disk galaxies are still actively forming
stars (young stellar populations are blue). Similar to elliptical galaxies, more luminous disks are
redder, although the scatter in this color—-magnitude relation is much larger than that for elliptical
galaxies. Part of this scatter is simply due to inclination effects, with more inclined disks being
more extincted and hence redder, although the intrinsic scatter (corrected for dust extinction) is
still significantly larger than for ellipticals. In general, disk galaxies also reveal color gradients,
with the outer regions being bluer than the inner regions (e.g. de Jong, 1996b).

Although it is often considered standard lore that disks are blue and bulges are red, this is not
supported by actual data. Rather, the colors of bulges are in general very similar to, or at least
strongly correlated with, the central colors of their associated disks (e.g. de Jong, 1996a; Peletier
& Balcells, 1996; MacArthur et al., 2004). Consequently, bulges also span a wide range in
colors.

(c) Disk Vertical Structure Galaxy disks are not infinitesimally thin. Observations suggest
that the surface brightness distribution in the ‘vertical’ (z-) direction is largely independent of the
distance R from the disk center. The three-dimensional luminosity density of the disk is therefore
typically written in separable form as

v(R,z) = voexp(—R/Rq) f(2). (2.30)
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A general fitting function commonly used to describe the luminosity density of disks in the
z-direction is

fu(z) = sech®/" <n|z|> ; (2.31)
2z4

where n is a parameter controlling the shape of the profile near z = 0 and zg4 is called the scale
height of the disk. Note that all these profiles project to face-on surface brightness profiles given
by Eq. (2.29) with Iy = a,pzq, With a, a constant. Three values of n have been used extensively
in the literature:

sech®(z/2z4) a,=4 n=1

Jn(z) =4 sech(z/zq) ap=n n=2 (2.32)
exp(—|z|/za) an=2 n=-eco.

The sech?-form for n = 1 corresponds to a self-gravitating isothermal sheet. Although this model
has been used extensively in dynamical modeling of disk galaxies (see §11.1), it is generally
recognized that the models with n = 2 and n = < provide better fits to the observed surface
brightness profiles. Note that all f;,(z) decline exponentially at large |z|; they only differ near the
mid-plane, where larger values of n result in steeper profiles. Unfortunately, since dust is usually
concentrated near the mid-plane, it is difficult to accurately constrain n. The typical value of the
ratio between the vertical and radial scale lengths is zq/Rq ~ 0.1, albeit with considerable scatter.

Finally, it is found that most (if not all) disks have excess surface brightness, at large distances
from the mid-plane, that cannot be described by Eq. (2.31). This excess light is generally ascribed
to a separate ‘thick disk’ component, whose scale height is typically a factor of 3 larger than for
the ‘thin disk’. The radial scale lengths of thick disks, however, are remarkably similar to those
of their corresponding thin disks, with typical ratios of Rg tick / R thin in the range 1.0-1.5, while
the stellar mass ratios Mg ick/ Mg hin decrease from ~ 1 for low mass disks with Vi < 75km g1

to ~ 0.2 for massive disks with Vi > 150km s~ (Yoachim & Dalcanton, 2006).

(d) Stellar Halos The Milky Way contains a halo of old, metal-poor stars with a density dis-
tribution that falls off as a power law, p o< r~% (& ~ 3). In recent years, however, it has become
clear that the stellar halo reveals a large amount of substructure in the form of stellar streams (e.g.
Helmi et al., 1999; Yanny et al., 2003; Bell et al., 2008). These streams are associated with mater-
ial that has been tidally stripped from satellite galaxies and globular clusters (see §12.2), and in
some cases they can be unambiguously associated with their original stellar structure (e.g. Ibata
et al., 1994; Odenkirchen et al., 2002). Similar streams have also been detected in our neighbor
galaxy, M31 (Ferguson et al., 2002).

However, the detection of stellar halos in more distant galaxies, where the individual stars
cannot be resolved, has proven extremely difficult due to the extremely low surface brightnesses
involved (typically much lower than that of the sky). Nevertheless, using extremely deep imaging,
Sackett et al. (1994) detected a stellar halo around the edge-on spiral galaxy NGC 5907. Later and
deeper observations of this galaxy suggest that this extraplanar emission is once again associated
with a ring-like stream of stars (Zheng et al., 1999). By stacking the images of hundreds of edge-
on disk galaxies, Zibetti et al. (2004) were able to obtain statistical evidence for stellar halos
around these systems, suggesting that they are in fact rather common. On the other hand, recent
observations of the nearby late-type spiral M33 seem to exclude the presence of a significant
stellar halo in this galaxy (Ferguson et al., 2007). Currently the jury is still out as to what fraction
of (disk) galaxies contain a stellar halo, and as to what fraction of the halo stars are associated
with streams versus a smooth, spheroidal component.

(e) Bars and Spiral Arms More than half of all spirals show bar-like structures in their inner
regions. This fraction does not seem to depend significantly on the spiral type, and indeed SO
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galaxies are also often barred. Bars generally have isophotes which are more squarish than
ellipses and can be fit by the ‘generalized ellipse’ formula, (|x|/a)®+ (|y|/b)¢ = 1, where a,
b and c are constants and c is substantially larger than 2. Bars are, in general, quite elongated,
with axis ratios in their equatorial planes ranging from about 2.5 to 5. Since it is difficult to
observe bars in edge-on galaxies, their thickness is not well determined. However, since bars are
so common, some limits may be obtained from the apparent thickness of the central regions of
edge-on spirals. Such limits suggest that most bars are very flat, probably as flat as the disks
themselves, but the bulges complicate this line of argument and it is possible that some bulges
(for example, the peanut-shaped bulges) are directly related to bars (see §11.5.4).

Galaxy disks show a variety of spiral structure. ‘Grand-design’ systems have arms (most fre-
quently two) which can be traced over a wide range of radii and in many, but far from all, cases
are clearly related to a strong bar or to an interacting neighbor. ‘Flocculent’ systems, on the other
hand, contain many arm segments and have no obvious large-scale pattern. Spiral arms are clas-
sified as leading or trailing according to the sense in which the spiral winds (moving from center
to edge) relative to the rotation sense of the disk. Almost all spirals for which an unambiguous
determination can be made are trailing.

Spiral structure is less pronounced (though still present) in red light than in blue light. The
spiral structure is also clearly present in density maps of atomic and molecular gas and in maps
of dust obscuration. Since the blue light is dominated by massive and short-lived stars born in
dense molecular clouds, while the red light is dominated by older stars which make up the bulk of
the stellar mass of the disk, this suggests that spiral structure is not related to the star-formation
process alone, but affects the structure of all components of disks, a conclusion which is more
secure for grand-design than for flocculent spirals (see §11.6 for details).

(f) Gas Content Unlike elliptical galaxies which contain gas predominantly in a hot and highly
ionized state, the gas component in spiral galaxies is mainly in neutral hydrogen (HI) and molec-
ular hydrogen (H). Observations in the 21-cm lines of HI and in the mm-lines of CO have
produced maps of the distribution of these components in many nearby spirals (e.g. Young &
Scoville, 1991). The gas mass fraction increases from about 5% in massive, early-type spirals
(Sa/SBa) to as much as 80% in low mass, low surface brightness disk galaxies (McGaugh & de
Blok, 1997). In general, while the distribution of molecular gas typically traces that of the stars,
the distribution of HI is much more extended and can often be traced to several Holmberg radii.
Analysis of emission from HII regions in spirals provides the primary means for determining
their metal abundance (in this case the abundance of interstellar gas rather than of stars). Metal-
licity is found to decrease with radius. As a rule of thumb, the metal abundance decreases by
an order of magnitude for a hundred-fold decrease in surface density. The mean metallicity also
correlates with luminosity (or stellar mass), with the metal abundance increasing roughly as the
square root of stellar mass (see §2.4.4).

(g) Kinematics The stars and cold gas in galaxy disks move in the disk plane on roughly
circular orbits. Therefore, the kinematics of a disk are largely specified by its rotation curve
Viot (R), which expresses the rotation velocity as a function of galactocentric distance. Disk rota-
tion curves can be measured using a variety of techniques, most commonly optical long-slit or
IFU spectroscopy of HII region emission lines, or radio or millimeter interferometry of line emis-
sion from the cold gas. Since the HI gas is usually more extended than the ionized gas associated
with HII regions, rotation curves can be probed out to larger galactocentric radii using spatially
resolved 21-cm observations than using optical emission lines. Fig.2.21 shows two examples of
disk rotation curves. For massive galaxies these typically rise rapidly at small radii and then are
almost constant over most of the disk. In dwarf and lower surface brightness systems a slower
central rise is common. There is considerable variation from system to system, and features in
rotation curves are often associated with disk structures such as bars or spiral arms.
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Fig.2.21. The rotation curves of the Sc galaxy NGC 3198 (left) and the low surface brightness galaxy F568-
3 (right). The curve in the left panel shows the contribution from the disk mass assuming a mass-to-light
ratio of 3.8 My /L. [Based on data published in Begeman (1989) and Swaters et al. (2000)]

The rotation curve is a direct measure of the gravitational force within a disk. Assuming, for
simplicity, spherical symmetry, the total enclosed mass within radius r can be estimated from

M(r) =rV2,(r)/G. (2.33)

In the outer region, where V;o((7) is roughly a constant, this implies that M(r) o< r, so that the
enclosed mass of the galaxy (unlike its enclosed luminosity) does not appear to be converging.
For the rotation curve of NGC 3198 shown in Fig.2.21, the last measured point corresponds to
an enclosed mass of 1.5 x 10" M., about four times larger than the stellar mass. Clearly, the
asymptotic total mass could even be much larger than this. The fact that the observed rotation
curves of spiral galaxies are flat at the outskirts of their disks is evidence that they possess massive
halos of unseen, dark matter. This is confirmed by studies of the kinematics of satellite galaxies
and of gravitational lensing, both suggesting that the enclosed mass continues to increase roughly
with radius out to at least 10 times the Holmberg radius.

The kinematics of bulges are difficult to measure, mainly because of contamination by disk
light. Nevertheless, the existing data suggests that the majority are rotating rapidly (consistent
with their flattened shapes being due to the centrifugal forces), and in the same sense as their
disk components.

(h) Tully-Fisher Relation Although spiral galaxies show great diversity in luminosity, size,
rotation velocity and rotation-curve shape, they obey a well-defined scaling relation between
luminosity L and rotation velocity (usually taken as the maximum of the rotation curve well away
from the center, Vinax). This is known as the Tully—Fisher relation, an example of which is shown
in Fig. 2.22. The observed Tully—Fisher relation is usually expressed in the form L = AV,%, |
where A is the zero-point and ¢ is the slope. The observed value of « is between 2.5 and
4, and is larger in redder bands (e.g. Pierce & Tully, 1992). For a fixed V., the scatter in
luminosity is typically 20%. This tight relation can be used to estimate the distances to spiral
galaxies, using the principle described in §2.1.3(c). However, as we show in Chapter 11, the
Tully—Fisher relation is also important for our understanding of galaxy formation and evolu-
tion, as it defines a relation between dynamical mass (due to stars, gas, and dark matter) and
luminosity.
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Fig. 2.22. The Tully—Fisher relation in the /-band. Here W is the linewidth of the HI 21-cm line which
is roughly equal to twice the maximum rotation velocity, Vinax. [Adapted from Giovanelli et al. (1997) by
permission of AAS]

2.3.4 The Milky Way

We know much more about our own Galaxy, the Milky Way, than about most other galaxies,
simply because our position within it allows its stellar and gas content to be studied in consider-
able detail. This ‘internal perspective’ also brings disadvantages, however. For example, it was
not demonstrated until the 1920s and 30s that the relatively uniform brightness of the Milky Way
observed around the sky does not imply that we are close to the center of the system, but rather
is a consequence of obscuration of distant stars by dust. This complication, combined with the
problem of measuring distances, is the main reason why many of the Milky Way’s large scale
properties (e.g. its total luminosity, its radial structure, its rotation curve) are still substantially
more uncertain than those of some external galaxies.

Nevertheless, we believe that the Milky Way is a relatively normal spiral galaxy. Its main
baryonic component is the thin stellar disk, with a mass of ~ 5 x 10'° M., a radial scale length
of ~ 3.5kpc, a vertical scale height of ~ 0.3kpc, and an overall diameter of ~ 30kpc. The Sun
lies close to the mid-plane of the disk, about 8 kpc from the Galactic center, and rotates around
the center of the Milky Way with a rotation velocity of ~ 220kms~!. In addition to this thin disk
component, the Milky Way also contains a thick disk whose mass is 10-20% of that of the thin
disk. The vertical scale height of the thick disk is ~ 1kpc, but its radial scale length is remarkably
similar to that of the thin disk. The thick disk rotates slower than the thin disk, with a rotation
velocity at the solar radius of ~ 175kms™.

In addition to the thin and thick disks, the Milky Way also contains a bulge component with
a total mass of ~ 10'°M,, and a half-light radius of ~ 1kpc, as well as a stellar halo, whose
mass is only about 3% of that of the bulge despite its much larger radial extent. The stellar halo
has a radial number density distribution n(r) o< r~%, with 2 < o < 4, reaches out to at least
40kpc, and shows no sign of rotation (i.e. its structure is supported against gravity by random
rather than ordered motion). The structure and kinematics of the bulge are more complicated.
The near-infrared image of the Milky Way, obtained with the COBE satellite, shows a modest,
somewhat boxy bulge. As discussed in §11.5.4, it is believed that these boxy bulges are actually
bars. This bar-like nature of the Milky Way bulge is supported by the kinematics of atomic and
molecular gas in the inner few kiloparsecs (Binney et al., 1991), by microlensing measurements
of the bulge (Zhao et al., 1995), and by asymmetries in the number densities of various types of
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stars (Whitelock & Catchpole, 1992; Stanek et al., 1994; Sevenster, 1996). The very center of
the Milky Way is also known to harbor a supermassive black hole with a mass approximately
2 x 10°M.,. Its presence is unambiguously inferred from the radial velocities, proper motions
and accelerations of stars which pass within 100 astronomical units (1.5 x 10°cm) of the central
object (Genzel et al., 2000; Schodel et al., 2003; Ghez et al., 2005).

During World War II the German astronomer W. Baade was interned at Mount Wilson in
California, where he used the unusually dark skies produced by the blackout to study the stellar
populations of the Milky Way. He realized that the various components are differentiated not
only by their spatial distributions and their kinematics, but also by their age distributions and their
chemical compositions. He noted that the disk population (which he called Population I) contains
stars of all ages and with heavy element abundances ranging from about 0.2 to 1 times solar. The
spheroidal component (bulge plus halo), which he called Population II, contains predominantly
old stars and near the Sun its heavy element abundances are much lower than in the disk. More
recent work has shown that younger disk stars are more concentrated to the mid-plane than older
disk stars, that disk stars tend to be more metal-rich near the Galactic center than at large radii,
and that young disk stars tend to be somewhat more metal-rich than older ones. In addition,
it has become clear that the spheroidal component contains stars with a very wide range of
metal abundances. Although the majority are within a factor of 2 or 3 of the solar value, almost
the entire metal-rich part of the distribution lies in the bulge. At larger radii the stellar halo is
predominantly metal-poor with a metallicity distribution reaching down to very low values: the
current record holder has an iron content that is about 200,000 times smaller than that of the
Sun! Finally, the relative abundances of specific heavy elements (for example, Mg and Fe) differ
systematically between disk and spheroid. As we will see in Chapter 10, all these differences
indicate that the various components of the Milky Way have experienced very different star-
formation histories (see also §11.8).

The Milky Way also contains about 5 x 10° M, of cold gas, almost all of which is moving on
circular orbits close to the plane of the disk. The majority of this gas (~ 80%) is neutral, atomic
hydrogen (HI), which emits radio emission at 21 cm. The remaining ~ 20% the gas is in molec-
ular form and is most easily traced using millimeter-wave line emission from carbon monoxide
(CO). The HI has a scale height of ~ 150pc and a velocity dispersion of ~ 9kms~!. Between
4 and 17 kpc its surface density is roughly constant, declining rapidly at both smaller and larger
radii. The molecular gas is more centrally concentrated than the atomic gas, and mainly resides
in a ring-like distribution at ~ 4.5kpc from the center, and with a FWHM of ~ 2kpc. Its scale
height is only ~ 50 pc, while its velocity dispersion is ~ 7kms~!, somewhat smaller than that of
the atomic gas. The molecular gas is arranged in molecular cloud complexes with typical masses
in the range 10°-10" M, and typical densities of order 100 atoms per cm>. New stars are born
in clusters and associations embedded in the dense, dust-enshrouded cores of these molecular
clouds (see Chapter 9). If a star-forming region contains O and B stars, their UV radiation soon
creates an ionized bubble, an ‘HII region’, in the surrounding gas. Such regions produce strong
optical line emission which makes them easy to identify and to observe. Because of the (ongo-
ing) star formation, the ISM is enriched with heavy elements. In the solar neighborhood, the
metallicity of the ISM is close to that of the Sun, but it decreases by a factor of a few from the
center of the disk to its outer edge.

Three other diffuse components of the Milky Way are observed at levels which suggest that
they may significantly influence its evolution. Most of the volume of the Galaxy near the Sun is
occupied by hot gas at temperatures of about 10°K and densities around 10~* atoms per cm?.
This gas is thought to be heated by stellar winds and supernovae and contains much of the
energy density of the ISM. A similar energy density resides in relativistic protons and electrons
(cosmic rays) which are thought to have been accelerated primarily in supernova shocks. The
third component is the Galactic magnetic field which has a strength of a few uG, is ordered on
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large scales, and is thought to play a significant role in regulating star formation in molecular
clouds.

The final and dominant component of the Milky Way appears to be its dark halo. Although
the ‘dark matter’ out of which this halo is made has not been observed directly (except perhaps
for a small fraction in the form of compact objects, see §2.10.2), its presence is inferred from the
outer rotation curve of the Galaxy, from the high velocities of the most extreme local Population
II stars, from the kinematics of globular star clusters and dwarf galaxies in the stellar halo, and
from the infall speed of our giant neighbor, the Andromeda Nebula. The estimated total mass of
this unseen distribution of dark matter is about 10'> M, and it is thought to extend well beyond
100kpc from the Galactic center.

2.3.5 Dwarf Galaxies

For historical reasons, galaxies with .#p > —18 are often called dwarf galaxies (Sandage &
Binggeli, 1984). These galaxies span roughly six orders of magnitude in luminosity, although
the faint end is subject to regular changes as fainter and fainter galaxies are constantly being
discovered. The current record holder is Willman I, a dwarf spheroidal galaxy in the local group
with an estimated magnitude of .#y ~ —2.6 (Willman et al., 2005; Martin et al., 2007).

By number, dwarfs are the most abundant galaxies in the Universe, but they contain a relatively
small fraction of all stars. Their structure is quite diverse, and they do not fit easily into the Hubble
sequence. The clearest separation is between gas-rich systems with ongoing star formation — the
dwarf irregulars (dIrr) — and gas-poor systems with no young stars — the dwarf ellipticals (dE)
and dwarf spheroidals (dSph). Two examples of them are shown in Fig. 2.23.

Fig. 2.24 sketches the regions in the parameter space of effective radius and absolute mag-
nitude that are occupied by different types of galaxies. Spirals and dwarf irregulars cover
roughly four orders of magnitude in luminosity, almost two orders of magnitude in size, and
about three orders of magnitude in surface brightness. As their name suggests, dwarf irregu-
lars have highly irregular structures, often being dominated by one or a few bright HII regions.
Their gas content increases with decreasing mass and in extreme objects, such as blue com-
pact dwarfs, the so-called ‘extragalactic HII regions’, the HI extent can be many times larger
than the visible galaxy. The larger systems seem to approximate rotationally supported disks, but
the smallest systems show quite chaotic kinematics. The systems with regular rotation curves

Fig. 2.23. Images of two dwarf galaxies: the Large Magellanic Cloud (LMC, left panel), which is a
proto typical dwarf irregular, and the dwarf spheroidal Fornax (right panel). [Courtesy of NASA/IPAC
Extragalactic Database]
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Fig. 2.24. A sketch of the regions in the parameter space of effective radius and absolute magnitude (both in
the B-band) occupied by different types of galaxies. The spheroidal systems are split into ellipticals, dwarf
ellipticals (dE), compact ellipticals (cE), dwarf spheroidals (dSph), and ultra-compact dwarfs (UCD). The
dashed, vertical line corresponds to .#Zp = —18, and reflects the magnitude limit below which galaxies are
often classified as dwarfs. The diagonal lines are lines of constant surface brightness; galaxies roughly span
five orders of magnitude in surface brightness, from (ug)e ~ —18.5 to (ug)e ~ —30.5.

often appear to require substantial amounts of dark matter even within the visible regions of the
galaxy.

Dwarf ellipticals are gas-poor systems found primarily in groups and clusters of galaxies. Their
structure is regular, with luminosity profiles closer to exponential than to the de Vaucouleurs law
(see Fig. 2.13). In addition, they have lower metallicities than normal ellipticals, although they
seem to follow the same relation between metallicity and luminosity.

Dwarf spheroidals (dSphs) are faint objects of very low surface brightness, which have so
far only been identified unambiguously within the Local Group (see §2.5.2). Their structure is
relatively regular and they appear to contain no gas and no, or very few, young stars with ages less
than about 1 Gyr. However, several dSphs show unambiguous evidence for several distinct bursts
of star formation. Their typical sizes range from a few tens to several hundreds of parsec, while
their luminosities span almost five orders of magnitude. Their kinematics indicate dynamical
mass-to-light ratios that can be as large as several hundred times that of the Sun, which is usually
interpreted as implying a large dark matter content (Mateo, 1998; Gilmore et al., 2007). One of
the most luminous dSphs, the Sagittarius dwarf, currently lies only about 20 kpc from the center
of the Milky Way and is being torn apart by the Milky Way’s tidal forces.

The distinction between ‘dwarf’ and ‘regular’ galaxies had its origin in the observation that
ellipticals with .#p > —18 are not well described by the de Vaucouleurs R'/* law. Instead,
their surface brightness profiles were found to be closer to exponential (e.g. Faber & Lin, 1983;
Binggeli et al., 1984). This distinction was further strengthened by the work of Kormendy (1985)
who found that bright ellipticals have their surface brightness decrease with increasing luminos-
ity, while dEs have increasing surface brightness with increasing luminosity (see Fig. 2.14). This
gave rise to the concept of a clear dichotomy between dwarf and regular ellipticals. More recently,
however, it has been argued that this ‘dichotomy’, with a characteristic scale at .#p ~ —18, is an
artefact of sample selection and of the fact that the surface brightness profiles were fit with either
an R'/4 profile or an exponential. Fitting with the more general Sérsic profiles instead indicates
clearly that there is a smooth trend between the best-fit Sérsic index and absolute magnitude
(see Fig. 2.13) and an equally smooth trend between absolute magnitude and central surface
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brightness (see Graham & Guzman, 2003, and references therein). Hence, there seems to be no
clear distinction between dEs and ‘regular’ ellipticals. Neither is there a clear distinction between
dEs and dSphs; the latter simply make up the low luminosity extreme of the dEs, typically with
AMp > —14. Although we will adhere to the ‘historical’ nomenclature throughout this book, we
caution that there is no clear physical motivation for discriminating between dSphs, dEs, and
‘regular’ ellipticals (but see §13.6).

Fig. 2.24 also sketches the location in size—luminosity space occupied by a special class of
(dwarf) galaxies known as compact ellipticals (cEs). These are characterized by unusually high
surface brightness for their luminosity, although they do seem to form a smooth continuation
of the size—luminosity relation of ‘regular’ ellipticals. The prototypical example is M32, a com-
panion of the Andromeda Galaxy, M31. Compact ellipticals are very rare, and only a handful of
these systems are known. Some authors have argued that the bulges of (early-type) disk galaxies
occupy the same region in parameter space as the cEs, suggesting that these two types of objects
are somehow related (e.g. Bender et al., 1992). Finally, Drinkwater et al. (2003) have recently
identified a new class of (potential) galaxies, called ultra-compact dwarfs (UCDs). They typi-
cally have .#p ~ —11 and effective radii of 10-20 pc, giving them an average surface brightness
comparable to that of cEs. Their nature is still very uncertain. In particular, it is still unclear
whether they should be classified as galaxies, or whether they merely reflect the bright end of the
population of globular clusters. Alternatively, they may also be the remnant nuclei of disrupted
low surface brightness galaxies (see below).

2.3.6 Nuclear Star Clusters

In their landmark study of the Virgo Cluster, Binggeli et al. (1987) found that ~ 25% of the dEs
contain a massive star cluster at their centers (called the nucleus), which clearly stands out against
the low surface brightness of its host galaxy. Following this study it has become customary to
split the population of dEs into ‘nucleated’ and ‘non-nucleated’. Binggeli et al. (1987) did not
detect any nuclei in the more luminous ellipticals, although they cautioned that these might have
been missed in their photographic survey due to the high surface brightness of the underlying
galaxy. Indeed, more recent studies, capitalizing on the high spatial resolution afforded by the
HST, have found that as much as ~ 80% of all early-type galaxies with .# < —15 are nucleated
(e.g. Grant et al., 2005; Coté et al., 2006). In addition, HST imaging of late-type galaxies has
revealed that 50-70% of these systems also have compact stellar clusters near their photomet-
ric centers (e.g. Phillips et al., 1996; Boker et al., 2002). These show a remarkable similarity
in luminosity and size to those detected in early-type galaxies. However, the nuclear star clus-
ters in late-type galaxies seem to have younger stellar ages than their counterparts in early-type
galaxies (e.g. Walcher et al., 2005; C6té et al., 2006). Thus a large fraction of all galaxies, inde-
pendent of their morphology, environment or gas content, contain a nuclear star cluster at their
photometric center. The only exception seem to be the brightest ellipticals, with .#p < —20.5,
which seem to be devoid of nuclear star clusters. Note that this magnitude corresponds to the
transition from disky, power-law ellipticals to boxy, core ellipticals (see §2.3.2), supporting the
notion of a fundamental transition at this luminosity scale.

On average, nuclear star clusters are an order of magnitude more luminous than the peak of
the globular cluster luminosity function of their host galaxies, have stellar masses in the range
~ 10°~108 M., and typical radii of ~ 5pc. This makes nuclear star clusters the densest stellar
systems known (e.g. Geha et al., 2002; Walcher et al., 2005). In fact, they are not that dissimilar
to the ultra-compact dwarfs, suggesting a possible relation (e.g. Bekki et al., 2001).

As discussed in §2.3.2 (see also §13.1.4), the majority of bright spheroids (ellipticals and
bulges) seem to contain a supermassive black hole (SMBH) at their nucleus. The majority
of spheroids with secure SMBH detections have magnitudes in the range —22 < .#p < —18.
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Although it is unclear whether (the majority of) fainter spheroids also harbor SMBHs, cur-
rent data seems to support a view in which bright galaxies (.#p < —20) often, and perhaps
always, contain SMBHSs but not stellar nuclei, while at the faint end (.#p > —18) stellar nuclei
become the dominant feature. Intriguingly, Ferrarese et al. (2006a) have shown that stellar nuclei
and SMBHs obey a common scaling relation between their mass and that of their host galaxy,
with Mcvmo /Mgal = 0.018J_r8:8?‘2t (where CMO stands for central massive object), suggesting that
SMBHs and nuclear clusters share a common origin. This is somewhat clouded, though, by the
fact that nuclear star clusters and SMBHs are not mutually exclusive. The two best known cases
in which SMBHs and stellar nuclei coexist are M32 (Verolme et al., 2002) and the Milky Way
(Ghez et al., 2003; Schodel et al., 2003).

2.3.7 Starbursts

In normal galaxies like the Milky Way, the specific star-formation rates are typically of order
0.1Gyr !, which implies star-formation time scales (defined as the ratio between the total stellar
mass and the current star-formation rate) that are comparable to the age of the Universe. There
are, however, systems in which the (specific) star-formation rates are 10 or even 100 times higher,
with implied star-formation time scales as short as 10% years. These galaxies are referred to as
starbursts. The star-formation activity in such systems (at least in the most massive ones) is often
concentrated in small regions, with sizes typically about 1 kpc, much smaller than the disk sizes
in normal spiral galaxies.

Because of the large current star-formation rate, a starburst contains a large number of young
stars. Indeed, for blue starbursts where the star-formation regions are not obscured by dust, their
spectra generally have strong blue continuum produced by massive stars, and show strong emis-
sion lines from HII regions produced by the UV photons of O and B stars (see Fig.2.12). Since
the formation of stars is, in general, associated with the production of large amounts of dust,”
most of the strong starbursts are not observed directly via their strong UV emission. Rather, the
UV photons produced by the young stars are absorbed by dust and re-emitted in the far-infrared.
In extreme cases these starbursting galaxies emit the great majority of their light in the infrared,
giving rise to the population of infrared luminous galaxies (LIRGs) discovered in the 1980s with
the Infrared Astronomical Satellite (IRAS). A LIRG is defined as a galaxy with a far-infrared
luminosity exceeding 10'! L., (Soifer et al., 1984). If its far-infrared luminosity exceeds 10" L,
it is called an ultraluminous infrared galaxy (ULIRG).

The fact that starbursts are typically confined to a small region (usually the nucleus) of the star-
bursting galaxy, combined with their high star-formation rates, requires a large amount of cold
gas to be accumulated in a small region in a short time. The most efficient way of achieving this
is through mergers of gas-rich galaxies, where the interstellar media of the merging systems can
be strongly compressed and concentrated by tidal interactions (see §12.4.3). This scenario is sup-
ported by the observation that massive starbursts (in particular ULIRGs) are almost exclusively
found in strongly interacting systems with peculiar morphologies.

2.3.8 Active Galactic Nuclei

The centers of many galaxies contain small, dense and luminous components known as active
galactic nuclei (AGN). An AGN can be so bright that it outshines its entire host galaxy, and differs
from a normal stellar system in its emission properties. While normal stars emit radiation primar-
ily in a relatively narrow wavelength range between the near-infrared and the near-UV, AGN are
powerful emitters of non-thermal radiation covering the entire electromagnetic spectrum from the

2 Ttis believed that dust is formed in the atmospheres of evolved stars and in supernova explosions.
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radio to the gamma-ray regime. Furthermore, the spectra of many AGN contain strong emission
lines and so contrast with normal stellar spectra which are typically dominated by absorption
lines (except for galaxies with high specific star-formation rates). According to their emission
properties, AGN are divided into a variety of subclasses, including radio sources, Seyferts, liners,
blazars and quasars (see Chapter 14 for definitions).

Most of the emission from an AGN comes from a very small, typically unresolved region;
high-resolution observations of relatively nearby objects with HST or with radio interferometry
demonstrate the presence of compact emitting regions with sizes smaller than a few parsecs.
These small sizes are consistent with the fact that some AGN reveal strong variability on time
scales of only a few days, indicating that the emission must emanate from a region not much
larger than a few light-days across. The emission from these nuclei typically reveals a rela-
tively featureless power-law continuum at radio, optical and X-ray wavelengths, as well as broad
emission lines in the optical and X-ray bands. On somewhat larger scales, AGN often manifest
themselves in radio, optical and even X-ray jets, and in strong but narrow optical emission lines
from hot gas. The most natural explanation for the energetics of AGN, combined with their small
sizes, is that AGN are powered by the accretion of matter onto a supermassive black hole (SMBH)
with a mass of 10%~10° M.,. Such systems can be extremely efficient in converting gravitational
energy into radiation. As mentioned in §2.3.2, virtually all spheroidal galaxy components (i.e.
ellipticals and bulges) harbor a SMBH whose mass is tightly correlated with that of the spheroid,
suggesting that the formation of SMBHEs is tightly coupled to that of their host galaxies. Indeed,
the enormous energy output of AGN may have an important feedback effect on the formation
and evolution of galaxies. Given their importance for galaxy formation, Chapter 14 is entirely
devoted to AGN, including a more detailed overview of their observational properties.

2.4 Statistical Properties of the Galaxy Population

So far our description has focused on the properties of separate classes of galaxies. We now turn
our attention to statistics that describe the galaxy population as a whole, i.e. that describe how
galaxies are distributed with respect to these properties. As we will see in §§2.5 and 2.7, the
galaxy distribution is strongly clustered on scales up to ~ 10 Mpc, which implies that one needs
to probe a large volume in order to obtain a sample that is representative of the entire population.
Therefore, the statistical properties of the galaxy population are best addressed using large galaxy
redshift surveys. Currently the largest redshift surveys available are the two-degree Field Galaxy
Redshift Survey (2dFGRS; Colless et al., 2001a) and the Sloan Digital Sky Survey (SDSS; York
et al., 2000), both of which probe the galaxy distribution at a median redshift z ~ 0.1. The
2dFGRS has measured redshifts for ~ 220,000 galaxies over ~ 2000 square degrees down to
a limiting magnitude of b; ~ 19.45. The source catalogue for the survey is the APM galaxy cat-
alogue, which is based on Automated Plate Measuring machine (APM) scans of photographic
plates (Maddox et al., 1990b). The SDSS consists of a photometrically and astrometrically cali-
brated imaging survey covering more than a quarter of the sky in five broad optical bands (u, g,
r, i, 7) that were specially designed for the survey (Fukugita et al., 1996), plus a spectroscopic
survey of ~ 10° galaxies (r < 17.77) and ~ 10° quasars detected in the imaging survey.

The selection function of these and other surveys plays an important role in the observed sam-
ple properties. For example, most surveys select galaxies above a given flux limit (i.e. the survey
is complete down to a given apparent magnitude). Since intrinsically brighter galaxies will reach
the flux limit at larger distances, a flux limited survey is biased towards brighter galaxies. This
is called the Malmquist bias and needs to be corrected for when trying to infer the intrinsic
probability distribution of galaxies. There are two ways to do this. One is to construct a volume
limited sample, by only selecting galaxies brighter than a given absolute magnitude limit, Mjjp,,
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Table 2.6. Relative number densities of
galaxies in the local Universe.

Type of object Number density

Spirals 1
Lenticulars 0.1
Ellipticals 0.2
Irregulars 0.05
Dwart galaxies 10
Peculiar galaxies  0.05
Starbursts 0.1
Seyferts 1072
Radio galaxies 1074
QSOs 1073
Quasars 1077

and below a given redshift, zjj,, where zjiy, is the redshift at which a galaxy with absolute mag-
nitude M, has an apparent magnitude equal to the survey limit. Alternatively, one can weight
each galaxy by the inverse of Viyax, defined as the survey volume out to which the specific galaxy
in question could have been detected given the flux limit of the survey. The advantage of this
method over the construction of volume-limited samples is that one does not have to discard any
data. However, the disadvantage is that intrinsically faint galaxies can only be seen over a rela-
tively small volume (i.e. Vinax is small), so that they get very large weights. This tends to make
the measurements extremely noisy.

As a first example of a statistical description of the galaxy population, Table 2.4 lists the
number densities of the various classes of galaxies described in the previous section, relative to
that of spiral galaxies. Note, however, that these numbers are only intended as a rough description
of the galaxy population in the nearby Universe. The real galaxy population is extremely diverse,
and an accurate description of the galaxy number density is only possible for a well-defined
sample of galaxies.

2.4.1 Luminosity Function

Arguably one of the most fundamental properties of a galaxy is its luminosity (in some wave-
band). An important statistic of the galaxy distribution is therefore the luminosity function,
¢ (L)dL, which describes the number density of galaxies with luminosities in the range L+dL/2.
Fig.2.25 shows the luminosity function in the photometric b;-band obtained from the 2dFGRS.
At the faint end ¢ (L) seems to follow a power- law which truncates at the bright end, where the
number density falls roughly exponentially. A similar behavior is also seen in other wavebands,
so that the galaxy luminosity function is commonly fitted by a Schechter function (Schechter,

1976) of the form
L\* LY dL
LYdL=¢"* | — - —. 2.34
6(L)dL =6 (L) exp( L*)L* (234

Here L* is a characteristic luminosity, « is the faint-end slope, and ¢* is an overall normalization.
As shown in Fig. 2.25, this function fits the observed luminosity function over a wide range. From

the Schechter function, we can write the mean number density, ng, and the mean luminosity
density, .2, of galaxies in the Universe as

ngz/0m¢(L)dL:¢*F(a+l), (2.35)
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Fig. 2.25. The luminosity function of galaxies in the b;-band as obtained from the 2-degree Field Galaxy
Redshift Survey. [Based on data published in Norberg et al. (2002b)]

and

g= /wq)(L)LdL: O L'T (0 +2), (2.36)
0

where T'(x) is the gamma function. Note that ng diverges for oo < —1, while £ diverges for
o < —2. Observations from the near-UV to the near-infrared show that —2 < o« < —1, indicating
that the number density is dominated by faint galaxies while the luminosity density is dominated
by bright ones.

As we will see in Chapter 15, the luminosity function of galaxies depends not only on the
waveband, but also on the morphological type, the color, the redshift, and the environment of the
galaxy. One of the most challenging problems in galaxy formation is to explain the general shape
of the luminosity function and the dependence on other galaxy properties.

2.4.2 Size Distribution

Size is another fundamental property of a galaxy. As shown in Figs.2.14 and 2.20, galaxies of
a given luminosity may have very different sizes (and therefore surface brightnesses). Based on
a large sample of galaxies in the SDSS, Shen et al. (2003) found that the size distribution for
galaxies of a given luminosity L can roughly be described by a log-normal function,

P(R|L)dR =

_lnz(R/R)} % (2.37)

——eX ,
RV ZEGIHR p |: 261%11? R
where R is the median and Gy, the dispersion. Fig. 2.26 shows that R increases with galaxy lumi-

nosity roughly as a power law for both early-type and late-type galaxies, and that the dependence
is stronger for early types. The dispersion Oj,g, on the other hand, is similar for both early-type
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Fig. 2.26. The median (upper panel) and dispersion (lower panel) of the size distribution of galaxies in the
SDSS as function of their r-band magnitude. Results are shown separately for early-type (solid dots) and
late-type (open triangles) galaxies defined according to the Sérsic index n. [Kindly provided to us by S.
Shen, based on data published in Shen et al. (2003)]

and late-type galaxies, decreasing from ~ 0.5 for galaxies with M, > —20.5 to ~ 0.25 for brighter
galaxies.

2.4.3 Color Distribution

As shown in Fig. 2.5, massive stars emit a larger fraction of their total light at short wavelengths
than low-mass stars. Since more massive stars are in general shorter-lived, the color of a galaxy
carries important information about its star-formation history. However, the color of a star also
depends on its metallicity, in the sense that stars with higher metallicities are redder. In addition,
dust extinction is more efficient at bluer wavelengths, so that the color of a galaxy also contains
information regarding its chemical composition and dust content.

The left panel of Fig.2.27 shows the distribution of the !(g — r) colors of galaxies in the
SDSS, where the superscript indicates that the magnitudes have been converted to the same
rest-frame wavebands at z = 0.1. The most salient characteristic of this distribution is that it
is clearly bimodal, revealing a relatively narrow peak at the red end of the distribution plus a
significantly broader distribution at the blue end. To first order, this simply reflects that galaxies
come in two different classes: early-type galaxies, which have relatively old stellar populations
and are therefore red, and late-type galaxies, which have ongoing star formation in their disks
and are therefore blue. However, it is important to realize that this color—-morphology relation is
not perfect: a disk galaxy may be red due to extensive dust extinction, while an elliptical may be
blue if it had a small amount of star formation in the recent past.

The bimodality of the galaxy population is also evident from the color-magnitude relation,
plotted in the right-hand panel of Fig.2.27. This shows that the galaxy population is divided
into a red sequence and a blue sequence (also sometimes called the blue cloud). Two trends are
noteworthy. First of all, at the bright end the red sequence dominates, while at the faint end the
majority of the galaxies are blue. As we will see in Chapter 15, this is consistent with the fact
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Fig. 2.27. The probability density of galaxy colors (left) and the color—magnitude relation (right) of
~ 365,000 galaxies in the SDSS. Each galaxy has been weighted by 1/Vipax to correct for Malmquist
bias. Note the pronounced bimodality in the color distribution, and the presence of both a red sequence and
a blue sequence in the color—-magnitude relation.

that the bright (faint) end of the galaxy luminosity function is dominated by early-type (late-type)
galaxies. Secondly, within each sequence brighter galaxies appear to be redder. As we will see
in Chapters 11 and 13 this most likely reflects that the stellar populations in brighter galaxies are
both older and more metal rich, although it is still unclear which of these two effects dominates,
and to what extent dust plays a role.

2.4.4 The Mass—Metallicity Relation

Another important parameter to characterize a galaxy is its average metallicity, which reflects the
amount of gas that has been reprocessed by stars and exchanged with its surroundings. One can
distinguish two different metallicities for a given galaxy: the average metallicity of the stars and
that of the gas. Depending on the star-formation history and the amount of inflow and outflow,
these metallicities can be significantly different. Gas-phase metallicities can be measured from
the emission lines in a galaxy spectrum, while the metallicity of the stars can be obtained from the
absorption lines which originate in the atmospheres of the stars.

Fig.2.28 shows the relation between the gas-phase oxygen abundance and the stellar mass
of SDSS galaxies. The oxygen abundance is expressed as 12 +log[(O/H)], where O/H is the
abundance by number of oxygen relative to hydrogen. Since the measurement of gas-phase abun-
dances requires the presence of emission lines in the spectra, all these galaxies are still forming
stars, and the sample is therefore strongly biased towards late-type galaxies. Over about three
orders of magnitude in stellar mass the average gas-phase metallicity increases by an order of
magnitude. The relation is remarkably tight and reveals a clear flattening above a few times
10'9M.,. The average stellar metallicity follows a similar trend with stellar mass but with much
larger scatter at the low-mass end (Gallazzi et al., 2005). An interpretation of these results in
terms of the chemical evolution of galaxies is presented in Chapter 10.

2.4.5 Environment Dependence

As early as the 1930s it was realized that the morphological mix of galaxies depends on environ-
ment, with denser environments (e.g. clusters, see §2.5.1) hosting larger fractions of early-type
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Fig. 2.28. The relation between stellar mass, in units of solar masses, and the gas-phase oxygen abundance
for ~53,400 star-forming galaxies in the SDSS. For comparison, the Sun has 12 +log[(O/H)] = 8.69. The
large black points represent the median in bins of 0.1 dex in mass. The solid lines are the contours which
enclose 68% and 95% of the data. The gray line shows a polynomial fit to the data. The inset shows the
residuals of the fit. [Adapted from Tremonti et al. (2004) by permission of AAS]

galaxies (Hubble & Humason, 1931). This morphology—density relation was quantified more
accurately in a paper by Dressler (1980b), who studied the morphologies of galaxies in 55 clus-
ters and found that the fraction of spiral galaxies decreases from ~ 60% in the lowest density
regions to less than 10% in the highest density regions, while the elliptical fraction basically
reveals the opposite behavior (see Fig. 2.29). Note that the fraction of SO galaxies is significantly
higher in clusters than in the general field, although there is no strong trend of SO fraction with
density within clusters.

More recently, the availability of large galaxy redshift surveys has paved the way for far
more detailed studies into the environment dependence of galaxy properties. It is found that in
addition to a larger fraction of early-type morphologies, denser environments host galaxies that
are on average more massive, redder, more concentrated, less gas-rich, and have lower specific
star-formation rates (e.g. Kauffmann et al., 2004; Baldry et al., 2006; Weinmann et al., 2006b).
Interpreting these findings in terms of galaxy formation processes, however, is complicated by
the fact that various galaxy properties are strongly correlated even at a fixed environment. An
important outstanding question, therefore, is which relationship with environment is truly causal,
and which are just reflections of other correlations that are actually independent of environment
(see §15.5 for a more detailed discussion).
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Fig. 2.29. The morphology—density relation, which shows the fractions of galaxies of individual morpho-
logical types as functions of galaxy surface number density. The lower panel shows such relations for 55
clusters, while the upper panel shows the number of galaxies in each density bin. [After Dressler (1980a)]

2.5 Clusters and Groups of Galaxies

A significant fraction of the galaxies in the present-day Universe is collected into groups and
clusters in which the number density of galaxies is a few tens to a few hundred times higher
than the average. The densest and most populous of these aggregations are called galaxy clus-
ters, which typically contain more than 50 relatively bright galaxies in a volume only a few
megaparsecs across. The smaller, less populous aggregations are called ‘groups’, although there
is no well-defined distinction. Groups and clusters are the most massive, virialized objects in
the Universe, and they are important laboratories to study the evolution of the galaxy population.
Because of their high surface densities and large number of very luminous member galaxies, they
can be identified out to very large distances, making them also useful as cosmological probes.
In this section we summarize some of their most important properties, focusing in particular on
their populations of galaxies.

2.5.1 Clusters of Galaxies

In order to select clusters (or groups) of galaxies from the observed galaxy distribution, one needs
to adopt some selection criteria. In order for the selected clusters to be dynamically significant,
two selection criteria are usually set. One is that the selected system must have high enough
density, and the other is that the system must contain a sufficiently large number of galaxies.
According to these criteria, Abell (1958) selected 1,682 galaxy clusters from the Palomar Sky
Survey, which are now referred to as the Abell clusters. The two selection criteria set by Abell are

(i) Richness criterion: each cluster must have at least S0 member galaxies with apparent
magnitudes m < m3 + 2, where ms3 is the apparent magnitude of the third brightest mem-
ber. The richness of a cluster is defined to be the number of member galaxies with
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apparent magnitudes between m3 and m3 + 2. Rich Abell clusters are those with rich-
ness greater than 50, although Abell also listed poor clusters with richness in the range
from 30 to 50.

(i) Compactness criterion: only galaxies with distances to the cluster center smaller than
1.5 h’lMpc (the Abell radius) are selected as members. Given the richness criterion, the
compactness criterion is equivalent to a density criterion.

Abell also classified a cluster as regular if its galaxy distribution is more or less circularly sym-
metric and concentrated, otherwise as irregular. The two most well-studied clusters, because of
their proximity, are the Virgo Cluster and the Coma Cluster. The Virgo Cluster, which is the
rich cluster nearest to our Galaxy, is a very representative example. It lacks clear symmetry, and
reveals significant substructure, indicating that the dynamical relaxation on the largest scales is
not yet complete. The Coma Cluster, on the other hand, is a fairly rare species. It is extremely
massive, and is richer than 95% of all clusters catalogued by Abell. Furthermore, it appears
remarkably relaxed, with a highly concentrated and symmetric galaxy distribution with no sign
of significant subclustering.

The Abell catalogue was constructed using visual inspections of photographic sky plates. Since
its publication, this has been improved upon using special purpose scanning machines (such as
the APM at Cambridge and COSMOS at Edinburgh), which resulted in digitized versions of the
photographic plates allowing for a more objective identification of clusters (e.g. Lumsden et al.,
1992; Dalton et al., 1997). More recently, several cluster catalogues have been constructed from
large galaxy redshift surveys such as the 2dFGRS and the SDSS (e.g. Bahcall et al., 2003; Miller
et al., 2005; Koester et al., 2007). Based on all these catalogues it is now well established that the
number density of rich clusters is of the order of 1073 K3 Mpc’3, about 1000 times smaller than
that of L* galaxies.

(a) Galaxy Populations As we have seen in §2.4.5, clusters are in general rich in early-type
galaxies. The fraction of E4-SO galaxies is about 80% in regular clusters, and about 50% in
irregular clusters, compared to about 30% in the general field. This is generally interpreted as
evidence that galaxies undergo morphological transformations in dense (cluster) environments,
and various mechanisms have been suggested for such transformations (see §12.5).

The radial number density distribution of galaxies in clusters is well described by n(r) o<
1/[rY(r + r5)377], where ry is a scale radius and 7 is the logarithmic slope of the inner profile.
The value of y is typically ~ 1 and the scale radius is typically ~ 20% of the radius of the
cluster (e.g. van der Marel et al., 2000; Lin et al., 2004b). As we will see in Chapter 7 this
is very similar to the density distribution of dark matter halos, suggesting that within clusters
galaxies are a reasonably fair tracer of the mass distribution. There is, however, evidence for
some segregation by mass and morphology/color, with more massive, red, early-type galaxies
following a more concentrated number density distribution than less massive, blue, late-type
galaxies (e.g. Quintana, 1979; Carlberg et al., 1997; Adami et al., 1998; Yang et al., 2005b; van
den Bosch et al., 2008b).

Often the brightest cluster galaxy (BCG) has an extraordinarily diffuse and extended outer
envelope, in which case it is called a cD galaxy (where the ‘D’ stands for diffuse). They typi-
cally have best-fit Sérsic indices that are much larger than 4, and are often located at or near the
center of the cluster (because of this, it is a useful mnemonic to think of ‘cD’ as meaning ‘cen-
trally dominant’). cD galaxies are the most massive galaxies known, with stellar masses often
exceeding 10'> M, and their light can make up as much as ~ 30% of the entire visible light of
a rich cluster of galaxies. However, it is unclear whether the galaxy’s diffuse envelope should
be considered part of the galaxy or as ‘intracluster light’ (ICL), stars associated with the cluster
itself rather than with any particular galaxy. In a few cD galaxies the velocity dispersion appears
to rise strongly in the extended envelope, approaching a value similar to that of the cluster in
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which the galaxy is embedded. This supports the idea that these stars are more closely associated
with the cluster than with the galaxy (i.e. they are the cluster equivalent of the stellar halo in the
Milky Way). cD galaxies are believed to have grown through the accretion of multiple galaxies
in the cluster, a process called galactic cannibalism (see §12.5.2). Consistent with this, nearby
cDs frequently appear to have multiple nuclei (e.g. Schneider et al., 1983)

(b) The Butcher—Oemler Effect When studying the galaxy populations of clusters at inter-
mediate redshifts (0.3 < z < 0.5), Butcher & Oemler (1978) found a dramatic increase in the
fraction of blue galaxies compared to present-day clusters, which has become known as the
Butcher—Oemler effect. Although originally greeted with some skepticism (see Dressler, 1984,
for a review), this effect has been confirmed by numerous studies. In addition, morphological
studies, especially those with the HST, have shown that the Butcher—Oemler effect is associated
with an increase of the spiral fraction with increasing redshift, and that many of these spirals
show disturbed morphologies (e.g. Couch et al., 1994; Wirth et al., 1994).

In addition, spectroscopic data has revealed that a relatively large fraction of galaxies in
clusters at intermediate redshifts have strong Balmer lines in absorption and no emission lines
(Dressler & Gunn, 1983). This indicates that these galaxies were actively forming stars in the
past, but had their star formation quenched in the last 1-2 Gyr. Although they were originally
named ‘E+A’ galaxies, currently they are more often referred to as ‘k+a’ galaxies or as post-
starburst galaxies (since their spectra suggest that they must have experienced an elevated amount
of star formation prior to the quenching). Dressler et al. (1999) have shown that the fraction of
k+a galaxies in clusters at z ~ 0.5 is significantly larger than in the field at similar redshifts, and
that they have mostly spiral morphologies.

All these data clearly indicate that the population of galaxies in clusters is rapidly evolving
with redshift, most likely due to specific processes that operate in dense environments (see §12.5).

(c) Mass Estimates Galaxies are moving fast in clusters. For rich clusters, the typical line-of-
sight velocity dispersion, Oi,s, of cluster member galaxies is of the order of 1,000kms~!. If the
cluster has been relaxed to a static dynamical state, which is roughly true for regular clusters, one
can infer a dynamical mass estimate from the virial theorem (see §5.4.4) as

2
o/ R
M:A%d, (2.38)

where A is a pre-factor (of order unity) that depends on the density profile and on the exact
definition of the cluster radius R . Using this technique one obtains a characteristic mass of
~ 105~ M, for rich clusters of galaxies. Together with the typical value of the total luminosity
in a cluster, this implies a typical mass-to-light ratio for clusters,

(M/Lg)e ~ 350h(Ms /Lo ) 5. (2.39)

Hence, only a small fraction of the total gravitational mass of a cluster is associated with
galaxies.

Ever since the first detection by the UHURU satellite in the 1970s, it has become clear that
clusters are bright X-ray sources, with characteristic luminosities ranging from Ly ~ 10 to
~ 10¥ erg s~!. This X-ray emission is spatially extended, with detected sizes of ~ 1 Mpc, and so
it cannot originate from the individual member galaxies. Rather, the spectral energy distribution
of the X-ray emission suggests that the emission mechanism is thermal bremsstrahlung (see
§B1.3) from a hot plasma. The inferred temperatures of this intracluster medium (ICM) are in
the range 10’108 K, corresponding to a typical photon energy of 1-10keV, so that the gas is
expected to be fully ionized.
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Fig. 2.30. Hubble Space Telescope image of the cluster Abell 2218. The arcs and arclets around the center
of the cluster are images of background galaxies that are strongly distorted due to gravitational lensing.
[Courtesy of W. Couch, R. Ellis, NASA, and Space Telescope Science Institute]

For a fully ionized gas, the thermal bremsstrahlung emissivity, i.e. the emission power per unit
frequency per unit volume, is related to its density and temperature roughly as

hpv
2—1/2 P
gg(v) o< n”T —-— ). 2.40
(V) < exp< kBT) (2.40)
The quantity we observe from a cluster is the X-ray surface brightness, which is the integration
of the emissivity along the line-of-sight:’

Su(x,y) o< /Sff(t/;X,y,z) dz. (2.41)

If S, is measured as a function of v (i.e. photon energy), the temperature at a given projected
position (x,y) can be estimated from the shape of the spectrum. Note that this temperature is
an emissivity-weighted mean along the line-of-sight, if the temperature varies with z. Once the
temperature is known, the amplitude of the surface brightness can be used to estimate [n”dz
which, together with a density model, can be used to obtain the gas density distribution. Thus,
X-ray observations of clusters can be used to estimate the corresponding masses in hot gas.
These are found to fall in the range (10'3-10'*)2~>/2M., about 10 times as large as the total
stellar mass in member galaxies. Furthermore, as we will see in §8.2.1, if the X-ray gas is in
hydrostatic equilibrium with the cluster potential, so that the local pressure gradient is balanced
by the gravitational force, the observed temperature and density distribution of the gas can also
be used to estimate the fotal mass of the cluster.

Another method to measure the total mass of a cluster of galaxies is through gravitational
lensing. According to general relativity, the light from a background source is deflected when it
passes a mass concentration in the foreground, an effect called gravitational lensing. As discussed
in more detail in §6.6, gravitational lensing can have a number of effects: it can create multiple
images on the sky of the same background source, it can magnify the flux of the source, and it
can distort the shape of the background source. In particular, the image of a circular source is
distorted into an ellipse if the source is not close to the line-of-sight to the lens so that the lensing
effect is weak (weak lensing). Otherwise, if the source is close to the line-of-sight to the lens, the
image is stretched into an arc or an arclet (strong lensing).

3 Here we ignore redshifting and surface brightness dimming due to the expansion of the Universe; see §3.1.



2.5 Clusters and Groups of Galaxies 71

Both strong and weak lensing can be used to estimate the total gravitational mass of a cluster.
In the case of strong lensing, one uses giant arcs and arclets, which are the images of background
galaxies lensed by the gravitational field of the cluster (see Fig.2.30). The location of an arc in
a cluster provides a simple way to estimate the projected mass of the cluster within the circle
traced by the arc. Such analyses have been carried out for a number of clusters, and the total
masses thus obtained are in general consistent with those based on the internal kinematics, the
X-ray emission, or weak lensing. Typically the total cluster masses are found to be an order
of magnitude larger than the combined masses of stars and hot gas, indicating that clusters are
dominated by dark matter, as first pointed out by Fritz Zwicky in the 1930s.

2.5.2 Groups of Galaxies

By definition, groups are systems of galaxies with richness less than that of clusters, although
the dividing line between groups and clusters is quite arbitrary. Groups are selected by apply-
ing certain richness and compactness criteria to galaxy surveys, similar to what Abell used for
selecting clusters. Typically, groups selected from redshift surveys include systems with at least
three galaxies and with a number density enhancement of the order of 20 (e.g. Geller & Huchra,
1983; Nolthenius & White, 1987; Eke et al., 2004; Yang et al., 2005b; Berlind et al., 2006; Yang
et al., 2007). Groups so selected typically contain 3-30 L* galaxies, have a total B-band luminos-
ity in the range 10'%3-10'21~2L., have radii in the range (0.1 — 1)~ '"Mpc, and have typical
(line-of-sight) velocity dispersion of the order of 300kms~'. As for clusters, the total dynamical
mass of a group can be estimated from its size and velocity dispersion using the virial theorem
(2.38), and masses thus obtained roughly cover the range 10'2°-10'*42~! M,,,. Therefore, the typ-
ical mass-to-light ratio of galaxy groups is (M/Lg) ~ 100h(Mg /L )s, significantly lower than
that for clusters.

(a) Compact Groups A special class of groups are the so-called compact groups. Each of
these systems consists of only a few galaxies but with an extremely high density enhancement.
A catalogue of about 100 compact groups was constructed by Hickson (1982) from an analysis
of photographic plates. These Hickson Compact Groups (HCGs) typically consist of only four
or five galaxies and have a projected radius of only 50-100kpc. A large fraction (~ 40%) of
the galaxies in HCGs show evidence for interactions, and based on dynamical arguments, it
is expected that the HCGs are each in the process of merging to perhaps form a single bright
galaxy.

(b) The Local Group The galaxy group that has been studied in most detail is the Local Group,
of which the Milky Way and M31 are the two largest members. The Local Group is a loose
association of galaxies which fills an irregular region just over 1 Mpc across. Because we are
in it, we can probe the members of the Local Group down to much fainter magnitudes than
is possible in any other group. Table 2.7 lists the 30 brightest members of the Local Group,
while Fig. 2.31 shows their spatial distribution. Except for a few of the more distant objects, the
majority of the Local Group members can be assigned as satellites of either the Milky Way or
M31. The largest satellite of the Milky Way is the Large Magellanic Cloud (LMC). Its luminosity
is about one tenth of that of its host and it is currently actively forming stars. Together with its
smaller companion, the Small Magellanic Cloud (SMC), it follows a high angular momentum
orbit almost perpendicular to the Milky Way’s disk and currently lies about 50kpc from the
Galactic center. Both Magellanic Clouds have metallicities significantly lower than that of the
Milky Way. All the other satellites of our Galaxy are low mass, gas-free and metal-poor dwarf
spheroidals. The most massive of these are the Fornax and Sagittarius systems. The latter lies
only about 20kpc from the Galactic center and is in the process of being disrupted by the tidal
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Fig. 2.31. Schematic distribution of galaxies in the local group. [Courtesy of E. Grebel, see Grebel (1999)]

effects of its host. Several of the dwarf spheroidals contain stellar populations with a range of
ages, some being 10 times younger than typical Population II stars.

The Andromeda Nebula itself is similar to but more massive than the Milky Way, with a more
prominent bulge population and somewhat less active current star formation. Its largest satellite
is the bulge-less dwarf spiral M33, which is only slightly brighter than the LMC and is actively
forming stars. M31 also has two close dwarf elliptical companions, M32 and NGC 205, and
two similar satellites, NGC 147 and NGC 185, at somewhat larger distances. These galaxies are
denser and more luminous than dwarf spheroidals, but are also devoid of gas and young stars.
(NGC 205 actually has a small star-forming region in its nucleus.) Finally M31 has its own
retinue of dwarf spheroidal satellites.

The more distant members of the Local Group are primarily dwarf irregular galaxies with
active star formation, similar to but less luminous than the Magellanic Clouds. Throughout the
Local Group there is a very marked tendency for galaxies with a smaller stellar mass to have a
lower metallicity, with the smallest dwarfs having metallicities about one-tenth of the solar value
(Mateo, 1998).

2.6 Galaxies at High Redshifts

Since galaxies at higher redshifts are younger, a comparison of the (statistical) properties of
galaxies at different redshifts provides a direct window on their formation and evolution. How-
ever, a galaxy of given luminosity and size is both fainter and of lower surface brightness when
located at higher redshifts (see §3.1.6). Thus, if high-redshift galaxies have similar luminosities
and sizes as present-day galaxies, they would be extremely faint and of very low surface bright-
ness, making them very difficult to detect. Indeed, until the mid-1990s, the known high-redshift
galaxies with z > 1 were almost exclusively active galaxies, such as quasars, QSOs and radio
galaxies, simply because these were the only galaxies sufficiently bright to be observable with
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Table 2.7. Local Group members.

Name Type My L,b Distance (kpc)
Milky Way (Galaxy) Sbe —-20.6 0,0 8
LMC Irr —18.1 280,—33 49
SMC Irr —16.2  303,—44 58
Sagittarius dSph/E7 —14.0 6,—14 24
Fornax dSph/E3 —13.0 237,—-65 131
LeoI (DDO 74) dSph/E3  —12.0 226,49 270
Sculptor dSph/E3  —10.7 286,—84 78
LeoII (DDO 93) dSph/EO —10.2 220,67 230
Sextans dSph/E4  —10.0 243,42 90
Carina dSph/E4  —9.2 260,—22 87
Ursa Minor (DDO 199)  dSph/E5 —8.9 105,45 69
Draco (DDO 208) dSph/E3  —8.6 86,35 76
M31 (NGC224) Sb —=21.1  121,-22 725
M 33 (NGC 598) Sc —189 134,-31 795
IC10 Irr —-17.6 119,—03 1250
NGC 6822 (DDO209)  Iir —164 25,—18 540
M 32 (NGC221) dE2 —-164 121,-22 725
NGC 205 dE5 —-163 121,-21 725
NGC 185 dE3 —15.3 121,—14 620
IC 1613 (DDOB) Irr —149 130,—60 765
NGC 147 (DDO 3) dE4 —14.8 120,—14 589
WLM (DDO 221) Irr —14.0 76,—74 940
Pegasus (DDO 216) Irr —12.7 94,-43 759
Leo A Irr —11.7 196,52 692
AndI dSph/EO  —11.7 122,—-25 790
AndII dSph/E3  —11.7 129,—29 587
AndIII dSph/E6 —10.2 119,—26 790
Phoenix Irr —-9.9 272,—68 390
LGC3 Irr -9.7 126,—41 760
Tucana dSph/E5 —9.6 323,—48 900

the facilities available then. Thanks to a number of technological advancements in both tele-
scopes and detectors, we have made enormous progress, and today the galaxy population can be
probed out to z > 6.

The search for high-redshift galaxies usually starts with a photometric survey of galaxies in
multiple photometric bands down to very faint magnitude limits. Ideally, one would like to have
redshifts for all these galaxies and study the entire galaxy population at all different redshifts. In
reality, however, it is extremely time-consuming to obtain spectra of faint galaxies even with the
10-meter class telescopes available today. In order to make progress, different techniques have
been used, which basically fall in three categories: (i) forsake the use of spectra and only use
photometry either to analyze the number counts of galaxies down to very faint magnitudes or to
derive photometric redshifts; (ii) use broad-band color selection to identify target galaxies likely
to be at high redshift for follow-up spectroscopy; and (iii) use narrow-band photometry to find
objects with a strong emission line in a narrow redshift range. Here we give a brief overview of
these different techniques.

2.6.1 Galaxy Counts

In the absence of redshifts, some information about the evolution of the galaxy population can
be obtained from galaxy counts, .4/ (m), defined as the number of galaxies per unit apparent
magnitude (in a given waveband) per unit solid angle:
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d>N(m) = A (m)dmdo. (2.42)

Although the measurement of .4 (m) is relatively straightforward from any galaxy catalogue
with uniform photometry, interpreting the counts in terms of galaxy number density as a func-
tion of redshift is far from trivial. First of all, the waveband in which the apparent magnitudes are
measured corresponds to different rest-frame wavebands at different redshifts. To be able to test
for evolution in the galaxy population with redshift, this shift in waveband needs to be corrected
for. But such correction is not trivial to make, and can lead to large uncertainties (see §10.3.6).
Furthermore, both cosmology and evolution can affect .4 (m). In order to break this degen-
eracy, and to properly test for evolution, accurate constraints on cosmological parameters are
required.

Despite these difficulties, detailed analyses of galaxy counts have resulted in a clear detection
of evolution in the galaxy population. Fig. 2.32 shows the galaxy counts in four wavebands
obtained from a variety of surveys. The solid dots are obtained from the Hubble Deep Fields
(Ferguson et al., 2000) imaged to very faint magnitudes with the HST. The solid lines in Fig. 2.32
show the predictions for a realistic cosmology in which it is assumed that the galaxy population
does not evolve with redshift. A comparison with the observed counts shows that this model
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Fig. 2.32. Galaxy counts in the U, B, I and K bands obtained from the Hubble deep fields (solid symbols)
and a number of other ground-based surveys (other symbols). The solid lines show the predictions for
a realistic cosmology in which it is assumed that the galaxy population does not evolve with redshift.
[Adapted from Ferguson et al. (2000) by permission of ARAA]
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severely underpredicts the galaxy counts of faint galaxies, especially in the bluer wavebands.
The nature of this excess of faint blue galaxies will be discussed in §15.2.2.

2.6.2 Photometric Redshifts

Since spectroscopy relies on dispersing the light from an object according to wavelength, accu-
rate redshifts, which require sufficient signal-to-noise in individual emission and/or absorption
lines, can only be obtained for relatively bright objects. An alternative, although less reliable,
technique to measure redshifts relies on broad-band photometry. By measuring the flux of an
object in a relatively small number of wavebands, one obtains a very crude sampling of the
object’s SED. As we have seen, the SEDs of galaxies reveal a number of broad spectral features
(see Fig.2.12). An important example is the 4000 A break, which is due to a sudden change
in the opacity at this wavelength in the atmospheres of low mass stars, and therefore features
predominantly in galaxies with stellar population ages > 108 yr. Because of this 4000 A break
and other broad spectral features, the colors of a population of galaxies at a given redshift only
occupy a relatively small region of the full multi-dimensional color space. Since this region
changes as function of redshift, the broad-band colors of a galaxy can be used to estimate its
redshift.

In practice one proceeds as follows. For a given template spectrum, either from an observed
galaxy or computed using population synthesis models, one can determine the relative fluxes
expected in different wavebands for a given redshift. By comparing these expected fluxes with
the observed fluxes one can determine the best-fit redshift and the best-fit template spectrum
(which basically reflects the spectral type of the galaxy). The great advantage of this method is
that photometric redshifts can be measured much faster than their spectroscopic counterparts, and
that it can be extended to much fainter magnitudes. The obvious downside is that photometric
redshifts are far less reliable. While a spectroscopic redshift can easily be measured to a relative
error of less than 0.1%, photometric errors are typically of the order of 3—10%, depending on
which and how many wavebands are used. Furthermore, the error is strongly correlated with the
spectral type of the galaxy. It is typically much larger for star-forming galaxies, which lack a
pronounced 4000 A break, than for galaxies with an old stellar population.

A prime example of a photometric redshift survey, illustrating the strength of this technique,
is the COMBO-17 survey (Wolf et al., 2003), which comprises a sample of ~ 25,000 galaxies
with photometric redshifts obtained from photometry in 17 relatively narrow optical wavebands.
Because of the use of a relatively large number of filters, this survey was able to reach an aver-
age redshift accuracy of ~ 3%, sufficient to study various statistical properties of the galaxy
population as a function of redshift.

2.6.3 Galaxy Redshift Surveys at 7 ~ 1

In order to investigate the nature of the excess of faint blue galaxies detected with galaxy counts,
a number of redshift surveys out to z ~ 1 were carried out in the mid-1990s using 4-m class
telescopes, including the Canada—France Redshift Survey (CFRS; Lilly et al., 1995) and the
Autofib-LDSS survey (Ellis et al., 1996). These surveys, containing the order of 1,000 galaxies,
allowed a determination of galaxy luminosity functions (LFs) covering the entire redshift range
0 < z < 1. The results, although limited by small-number statistics, confirmed that the galaxy
population is evolving with redshift, in agreement with the results obtained from the galaxy
counts.

With the completion of a new class of 10-meter telescopes, such as the KECK and the VLT,
it became possible to construct much larger redshift samples at intermediate to high redshifts.
Currently the largest redshift survey at z ~ 1 is the DEEP2 Redshift Survey (Davis et al., 2003),
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Fig. 2.33. Luminosity functions measured in different redshift bins for ‘All’ galaxies (top row), ‘Blue’
galaxies (middle row), and ‘Red’ galaxies (bottom row). Different symbols correspond to results obtained
from different redshift surveys (DEEP1, DEEP2, COMBO-17 and VVDS, as indicated). The solid black
lines indicate Schechter functions fitted to the DEEP2 results. For comparison, the dashed gray lines show
the Schechter functions for local samples obtained from the SDSS. Overall the agreement between the
different surveys is very good. [Adapted from Faber et al. (2007) by permission of AAS]

which contains about 50,000 galaxies brighter than Rap ~ 24.1 in a total of ~ 3 square degrees in
the sky. The adopted color criteria ensure that the bulk of the galaxies selected for spectroscopy
have redshifts in the range 0.7 < z < 1.4. Results from DEEP2 show, among others, that the
color bimodality observed in the local Universe (see §2.4.3) is already present at z ~ 1 (Bell
et al., 2004; Willmer et al., 2006; Cooper et al., 2007). Together with COMBO-17, the DEEP2
survey has provided accurate measurements of the galaxy luminosity function, split according to
color, out to z ~ 1.2. As shown in Fig. 2.33, the different surveys yield results in excellent mutual
agreement. In particular, they show that the characteristic luminosity, L*, of the galaxy population
in the rest-frame B-band becomes fainter by ~ 1.3 mag from z = 1 to z = 0 for both the red and
blue populations. However, the number density of L* galaxies, ¢*, behaves very differently for
red and blue galaxies: while ¢* of blue galaxies has roughly remained constant since z = 1, that
of red galaxies has nearly quadrupled (Bell et al., 2004; Brown et al., 2007; Faber et al., 2007).
As we will see in §13.2, this puts important constraints on the formation history of elliptical
galaxies.

Another large redshift survey, which is being conducted at the time of writing, is the VIRMOS
VLT Deep Survey (VVDS; Le Fevre et al., 2005) which will ultimately acquire ~ 150,000 red-
shifts over ~ 4 square degrees in the sky. Contrary to DEEP2, the VVDS does not apply any
color selection; rather, spectroscopic candidates are purely selected on the basis of their appar-
ent magnitude in the /ag band. Consequently the redshift distribution of VVDS galaxies is very
broad: it peaks at z ~ 0.7, but has a long high-redshift tail extending all the way out to z ~ 5.
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The luminosity functions obtained from ~ 8,000 galaxies in the first data of the VVDS are in
excellent agreement with those obtained from DEEP2 and COMBO-17 (see Fig.2.33).

2.6.4 Lyman-Break Galaxies

As discussed above, broad features in the SEDs of galaxies allow for the determination of pho-
tometric redshifts, and for a very successful pre-selection of candidate galaxies at z ~ 1 for
follow-up spectroscopy. The same principle can also be used to select a special subset of galax-
ies at much higher redshifts. A star-forming galaxy has a SED roughly flat down to the Lyman
limit at A ~ 912A, beyond which there is a prominent break due to the spectra of the stellar
population (see the spectra of the O9 and BO stars in Fig. 2.5) and to intervening absorption. Phys-
ically this reflects the large ionization cross-section of neutral hydrogen. A galaxy revealing a
pronounced break at the Lyman limit is called a Lyman-break galaxy (LBG), and is characterized
by a relatively high star-formation rate.

For a LBG at z ~ 3, the Lyman break falls in between the U and B bands (see Fig. 2.34). There-
fore, by selecting those galaxies in a deep multi-color survey that are undetected (or extremely
faint) in the U band, but detected in the B and redder bands, one can select candidate star-
forming galaxies in the redshift range z = 2.5-3.5 (Steidel et al., 1996). Galaxies selected this
way are called UV drop-outs. Follow-up spectroscopy of large samples of UV drop-out candi-
dates has confirmed that this Lyman-break technique is very effective, with the vast majority of
the candidates being indeed star-forming galaxies at z ~ 3.

To date more than 1,000 LBGs with 2.5 < z < 3.5 have been spectroscopically confirmed. The
comoving number density of bright LBGs is estimated to be comparable to that of present-day
bright galaxies. However, contrary to typical bright galaxies at z ~ 0, which are mainly early-type
galaxies, LBGs are actively forming stars (note that they are effectively selected in the B band,
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Fig. 2.34. An illustration of how the ‘Lyman-break’ or ‘drop-out’ technique can be used to select star-
forming galaxies at redshifts z ~ 3. The spectrum of a typical star-forming galaxy has a break at the Lyman
limit (912 A), which is redshifted to a wavelength A ~ 4000 A if the galaxy is at z ~ 3. As a result, the galaxy
appears very faint (or may even be undetectable) in the U band, but bright in the redder bands. [Courtesy of
M. Dickinson; see Dickinson (1998)]
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corresponding to rest-frame UV at z ~ 3) with inferred star-formation rates in the range of a few
times 10My yr~! up to ~ 100M yr~!, depending on the uncertain amount of dust extinction
(Adelberger & Steidel, 2000).

The Lyman break (or drop-out) technique has also been applied to deep imaging surveys in
redder bands to select galaxies that drop out of the B band, V band and even the 7 band. If these
are indeed LBGs, their redshifts correspond to z ~ 4, z ~ 5, and z ~ 6, respectively. Deep imaging
surveys with the HST and ground-based telescopes have already produced large samples of these
drop-out galaxies. Unfortunately, most of these galaxies are too faint to follow-up spectroscopi-
cally, so that it is unclear to what extent these samples are contaminated by low redshift objects.
With this caveat in mind, the data have been used to probe the evolution of the galaxy luminosity
function (LF) in the rest-frame UV all the way from z ~ 0 (using data from the GALEX satellite)
to z ~ 6. Over the redshift range 4 < z < 6 this LF is found to have an extremely steep faint-end
slope, while the characteristic luminosity L}y is found to brighten significantly from z = 6 to
z=4 (Bouwens et al., 2007).

2.6.5 Lyx Emitters

In addition to the broad-band selection techniques mentioned above, one can also search for high-
redshift galaxies using narrow-band photometry. This technique has been used extensively to
search for Ly emitters (LAEs) at redshifts z > 3 for which the Ly emission line (A = 1216A)
appears in the optical.

Objects with strong Ly« are either QSOs or galaxies actively forming stars. However, since
the Ly flux is easily quenched by dust extinction, not all star-forming galaxies feature Lyo
emission. In fact, a large fraction of LBGs, although actively forming stars, lack an obvious Ly
emission line. Therefore, by selecting LAEs one is biased towards star-forming galaxies with
relatively little dust, or in which the dust has a special geometry so that part of the Ly flux can
leave the galaxy unextincted.

One can search for LAEs at a particular redshift, zj oAg, using a narrow-band filter centered on
a wavelength A = 1216 A x (1 +zpag) plus another, much broader filter centered on the same
A. The objects in question then show up as being particularly bright in the narrow-band fil-
ter in comparison to the broad-band image. A potential problem is that one might also select
emission-line galaxies at very different redshifts. For example, a galaxy with strong [OII] emis-
sion (A = 3727 A) would shift into the same narrow-band filter if the galaxy is at a redshift
Zjon = 0-33zp.ag — 0.67. To minimize this kind of contamination one generally only selects sys-
tems with a large equivalent width* in the emission line (> 150A), which excludes all but the
rarest [OII] emitters. Another method to check whether the object is indeed a LAE at zj Ag is to
use follow-up spectroscopy to see whether (i) there are any other emission lines visible that help
to determine the redshift, and (ii) the emission line is asymmetric, as expected for Lyo due to
preferential absorption in the blue wing of the line.

This technique can be used to search for high-redshift galaxies in several narrow redshift bins
ranging from z ~ 3 to z ~ 6.5, and at the time of writing ~ 100 LAEs covering this redshift
range have been spectroscopically confirmed. Since these systems are typically extremely faint,
the nature of these objects is still unclear.

2.6.6 Submillimeter Sources

Since the Lyman-break technique and Ly imaging select galaxies according to their rest-frame
UV light, they may miss dust-enshrouded star-forming galaxies, the high-redshift counterparts of

4 The equivalent width of an emission line, a measure for its strength, is defined as the width of the wavelength range
over which the continuum needs to be integrated to have the same flux as measured in the line (see §16.4.4).
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local starbursts. Most of the UV photons from young stars in such galaxies are absorbed by dust
and re-emitted in the far-infrared. Such galaxies can therefore be detected in the submillimeter
(sub-mm) band, which corresponds to rest-frame far-infrared at z ~ 3. Deep surveys in the sub-
mm bands only became possible in the mid-1990s with the commissioning of the Submillimeter
Common-User Bolometer Array (SCUBA; see Holland et al., 1999), operating at 450 um and
850 um, on the James Clerk Maxwell Telescope (JCMT). This led to the discovery of an unex-
pectedly large population of faint sub-mm sources (Smail et al., 1997). An extensive and difficult
observational campaign to identify the optical counterparts and measure their redshifts has shown
that the majority of these sources are indeed starburst galaxies at a median redshift of z ~ 2.5.
Some of the strong sub-mm sources with measured redshifts have inferred star-formation rates
as high as several 100M, yr~!, similar to those of ULIRGS at z ~ 0. Given the large number
density of SCUBA sources, and their inferred star-formation rates, the total number of stars
formed in these systems may well be larger than that formed in the Lyman-break galaxies at the
same redshift (Blain et al., 1999).

2.6.7 Extremely Red Objects and Distant Red Galaxies

Another important step forward in the exploration of the galaxy population at high redshift came
with the development of large format near-infrared (NIR) detectors. Deep, wide-field surveys
in the K band led to the discovery of a class of faint galaxies with extremely red optical-to-
NIR colors (R — K > 5). Follow-up spectroscopy has shown that these extremely red objects
(EROs) typically have redshifts in the range 0.7 < z < 1.5. There are two possible explanations
for their red colors: either they are galaxies dominated by old stellar populations with a pro-
nounced 4000 A break that has been shifted red-wards of the R-band filter, or they are starbursts
(or AGN) strongly reddened due to dust extinction. Spectroscopy of a sample of ~ 50 EROs
suggests that they are a roughly equal mix of both (Cimatti et al., 2002a).

Deep imaging in the NIR can also be used to search for the equivalent of ‘normal’ galaxies
at z > 2. As described above, the selections of LBGs, LAEs and sub-mm sources are strongly
biased towards systems with relatively high star-formation rates. Consequently, the population of
high-redshift galaxies picked out by these selections is very different from the typical, present-
day galaxies whose light is dominated by evolved stars. In order to select high-redshift galaxies
in a way similar to how ‘normal’ galaxies are selected at low redshift, one has to go to the
rest-frame optical, which corresponds to the NIR at z ~ 2-3. Using the InfraRed ExtraGalactic
Survey (FIRES; Labbé et al., 2003), Franx et al. (2003) identified a population of galaxies on the
basis of their red NIR color, J; — K > 2.3, where the K and J, filters are similar to the classical
J and K filters, but centered on somewhat shorter wavelengths. The galaxies so selected are
now referred to as distant red galaxies (DRGs). The color criterion efficiently isolates galaxies
with prominent Balmer or 4000A breaks at z > 2, and can therefore be used to select galaxies
with the oldest stellar populations at these redshifts. However, the NIR color criterion alone
also selects galaxies with significant current star formation, even dusty starbursts. The brightest
DRGs (K, < 20) are among the most massive galaxies at z > 2, with stellar masses > 10" Mo,
likely representing the progenitors of present-day massive ellipticals. As EROs, DRGs are largely
missed in UV-selected (e.g. LBG) samples. Yet, as shown by van Dokkum et al. (2006), among
the most massive population of galaxies in the redshift range 2 < z < 3, DRGs dominate over
LBGs both in number density and in stellar mass density.

Using photometry in the B, z, and K bands, Daddi et al. (2004) introduced a selection criterion
which allows one to recover the bulk of the galaxy population in the redshift range 1.4 <z < 2.5,
including both active star-forming galaxies as well as passively evolving galaxies, and to distin-
guish between the two classes. In particular, the color criterion BzK = (z— K)ag — (B —2)AB >
—0.2 is very efficient in selecting star-forming galaxies with 1.4 < z < 2.5, independently of
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their dust reddening, while the criteria BzK < —0.2 and (z — K)ap > 2.5 predominantly select
passively evolving galaxies in the same redshift interval. At z ~ 2 the BzK-selected star-forming
galaxies typically have higher reddening and higher star-formation rates than UV-selected galax-
ies. A comparison of BzK galaxies with DRGs in the same redshift range shows that many of the
DRGs are reddened starbursts rather than passively evolving galaxies.

2.6.8 The Cosmic Star-Formation History

The data on star-forming galaxies at different redshifts can in principle be used to map out the
production rate of stars in the Universe as a function of redshift. If we do not care where stars
form, the star-formation history of the Universe can be characterized by a global quantity, p.(z),
which is the total gas mass that is turned into stars per unit time per unit volume at redshift z.

In order to estimate p,(z) from observation, one requires estimates of the number density
of galaxies as a function of redshift and their (average) star-formation rates. In practice, one
observes the number density of galaxies as a function of luminosity in some waveband, and
estimates P, (z) from

pe(z) = / dM. M, / P(M,|L,2)¢(L,z)dL = / (M,)(L,z) ¢(L,z)dL, (2.43)

where P(M,|L,z)dM, is the probability for a galaxy with luminosity L (in a given band) at
redshift z to have a star-formation rate in the range (M, M, + M, ), and (M,)(L,z) is the mean
star-formation rate for galaxies with luminosity L at redshift z. The luminosity function ¢(L,z)
can be obtained from deep redshift surveys of galaxies, as summarized above. The transformation
from luminosity to star-formation rate depends on the rest-frame waveband used to measure
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Fig. 2.35. The global star-formation rate (in M yr~! Mpc—3) as a function of redshift. Different symbols
correspond to different rest-frame wavelength ranges used to infer the star-formation rates, as indicated.
[Based on the data compilation of Hopkins (2004)]
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the luminosity function, and typically involves many uncertainties (see §10.3.8 for a detailed
discussion).

Fig.2.35 shows a compilation of various measurements of the global star-formation rate at
different redshifts, obtained using different techniques. Although there is still considerable scat-
ter, and the data may be plagued by systematic errors due to uncertain extinction corrections, it
is now well established that the cosmic star-formation rate has dropped by roughly an order of
magnitude from z ~ 2 to the present. Integrating this cosmic star-formation history over time,
one can show that the star-forming populations observed to date are already sufficient to account
for the majority of stars observed at z ~ 0 (e.g. Dickinson et al., 2003).

2.7 Large-Scale Structure

An important property of the galaxy population is its overall spatial distribution. Since each
galaxy is associated with a large amount of mass, one might naively expect that the galaxy distri-
bution reflects the large-scale mass distribution in the Universe. On the other hand, if the process
of galaxy formation is highly stochastic, or galaxies only form in special, preferred environ-
ments, the relation between the galaxy distribution and the matter distribution may be far from
straightforward. Therefore, detailed studies of the spatial distribution of galaxies in principle can
convey information regarding both the overall matter distribution, which is strongly cosmology
dependent, and the physics of galaxy formation.

Fig.2.36 shows the distribution of more than 80,000 galaxies in the 2dFGRS, where the dis-
tances of the galaxies have been estimated from their redshifts. Clearly the distribution of galaxies
in space is not random, but shows a variety of structures. As we have already seen in §2.5, some
galaxies are located in high-density clusters containing several hundreds of galaxies, or in smaller
groups containing a few to tens of galaxies. The majority of all galaxies, however, are distributed
in low-density filamentary or sheet-like structures. These sheets and filaments surround large
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Fig. 2.36. The spatial distribution of ~ 80,000 galaxies in the 2dFGRS in a 4° slice projected onto the
redshift/right-ascension plane. Clearly galaxies are not distributed randomly, but are clumped together in
groups and clusters connected by large filaments that enclose regions largely devoid of galaxies. [Adapted
from Peacock (2002)]
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voids, which are regions with diameters up to ~ 100 Mpc that contain very few, or no, galaxies.
One of the challenges in studying the spatial distribution of galaxies is to properly quantify the
complexity of this ‘cosmic web’ of filaments, sheets and voids. In this section we consider the
galaxy distribution as a point set in space and study the spatial correlations among these points
in a statistical sense.

2.7.1 Two-Point Correlation Functions

One of the most important statistics used to characterize the spatial distribution of galaxies is the
two-point correlation function, defined as the excess number of galaxy pairs of a given separation,
r, relative to that expected for a random distribution:

DD(r) Ar
&)= RR(r)Ar (2.44)
Here DD(r) Ar is the number of galaxy pairs with separations in the range r+Ar/2, and RR(r) Ar
is the number that would be expected if galaxies were randomly distributed in space. Galaxies
are said to be positively correlated on scale r if £(r) > 0, to be anticorrelated if &(r) < 0, and
to be uncorrelated if &(r) = 0. Since it is relatively straightforward to measure, the two-point
correlation function of galaxies has been estimated from various samples. In many cases, red-
shifts are used as distances and the corresponding correlation function is called the correlation
function in redshift space. Because of peculiar velocities, this redshift-space correlation is differ-
ent from that in real space. The latter can be estimated from the projected two-point correlation
function, in which galaxy pairs are defined by their separations projected onto the plane perpen-
dicular to the line-of-sight so that it is not affected by using redshift as distance (see Chapter 6
for details). Fig.2.37 shows an example of the redshift-space correlation function and the corre-
sponding real-space correlation function. On scales smaller than about 10/~ Mpc the real-space
correlation function can well be described by a power law,’

E(r)=(r/ro)7, (2.45)

with y ~ 1.8 and with a correlation length o ~ 5h~!Mpc. This shows that galaxies are strongly
clustered on scales < 5h~'Mpc, and the clustering strength becomes weak on scales much
larger than ~ 10/~ 'Mpc. The exact values of ¥ and ry are found to depend significantly on
the properties of the galaxies. In particular the correlation length, ry, defined by & (ro) = 1, is
found to depend on both galaxy luminosity and color in the sense that brighter and redder galax-
ies are more strongly clustered than their fainter and bluer counterparts (e.g. Norberg et al., 2001,
2002a; Zehavi et al., 2005; Wang et al., 2008b).

One can apply exactly the same correlation function analysis to groups and clusters of galaxies.
This shows that their two-point correlation functions has a logarithmic slope, 7, that is similar
to that of galaxies, but a correlation length, ro, which increases strongly with the richness of the
systems in question, from about 54~ !Mpc for poor groups to about 20/~ Mpc for rich clusters
(e.g. Yang et al., 2005c¢).

Another way to describe the clustering strength of a certain population of objects is to calculate
the variance of the number counts within randomly placed spheres of given radius r:

1
(aV)? ;

M
oX(r) = (N; —7aV)>?, (2.46)
=1

> Note that, because of the definition of the two-point correlation function, & () has to become negative on large scales.
Therefore, a power law can only fit the data up to a finite scale.
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where 7 is the mean number density of objects, V = 471> /3,and N; (i =1,...,M) are the number
counts of objects in M randomly placed spheres. For optically selected galaxies with a luminosity
of the order of L* one finds that ¢ ~ 1 on a scale of » = 84~ 'Mpc and decreases to ¢ ~ 0.1 on
a scale of r = 304~ 'Mpc. This confirms that the galaxy distribution is strongly inhomogeneous
on scales of < 8~ 'Mpc, but starts to approach homogeneity on significantly larger scales.

Since galaxies, groups and clusters all contain large amounts of matter, we expect their spatial
distribution to be related to the mass distribution in the Universe to some degree. However, the
fact that different objects have different clustering strengths makes one wonder if any of them are
actually fair tracers of the matter distribution. The spatial distribution of luminous objects, such
as galaxies, groups and clusters, depends not only on the matter distribution in the Universe, but
also on how they form in the matter density field. Therefore, without a detailed understanding of
galaxy formation, it is unclear which, if any, population of galaxies accurately traces the matter
distribution. It is therefore very important to have independent means to probe the matter density
field.

One such probe is the velocity field of galaxies. The peculiar velocities of galaxies are gen-
erated by the gravitational field, and therefore contain useful information regarding the matter
distribution in the Universe. In the past, two different methods have been used to extract this
information from observations. One is to estimate the peculiar velocities of many galaxies by
measuring both their receding velocities (i.e. redshifts) and their distances. The peculiar veloci-
ties then follow from Eq. (2.19), which can then be used to trace out the matter distribution. Such
analyses not only yield constraints on the mean matter density in the Universe, but also on how
galaxies trace the mass distribution. Unfortunately, although galaxy redshifts are easy to mea-
sure, accurate distance measurements for a large sample of galaxies are very difficult to obtain,
severely impeding the applicability of this method. Another method, which is more statistical in
nature, extracts information about the peculiar velocities of galaxies from a comparison of the
real-space and redshift-space two-point correlation functions. This method is based on the fact
that an isotropic distribution in real space will appear anisotropic in redshift space due to the
presence of peculiar velocities. Such redshift-space distortions are the primary reason why the
redshift-space correlation function has a shape different from that of the real-space correlation
function (see Fig. 2.37). As described in detail in §6.3, by carefully modeling the redshift space
distortions one can obtain useful constraints on the matter distribution in the Universe.
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Fig. 2.37. The two-point correlation function of galaxies in redshift space (left) and real space (right). The
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2.7.2 Probing the Matter Field via Weak Lensing

A very promising way to probe the mass distribution in the Universe is through weak gravita-
tional lensing. Any light beam we observe from a distant source has been deflected and distorted
due to the gravitational tidal field along the line-of-sight. This cumulative gravitational lensing
effect due to the inhomogeneous mass distribution between source and observer is called cosmic
shear, and holds useful information about the statistical properties of the matter field. The great
advantage of this technique over the clustering analysis discussed above is that it does not have
to make assumptions about the relation between galaxies and matter.

Unless the beam passes very close to a particular overdensity (i.e. a galaxy or cluster), in which
case we are in the strong lensing regime, these distortions are extremely weak. Typical values
for the expected shear are of the order of one percent on angular scales of a few arcminutes,
which means that the distorted image of an intrinsically circular source has an ellipticity of 0.01.
Even if one could accurately measure such a small ellipticity, the observed ellipticity holds no
information without prior knowledge of the intrinsic ellipticity of the source, which is generally
unknown. Rather, one detects cosmic shear via the spatial correlations of image ellipticities.
The light beams from two distant sources that are close to each other on the sky have roughly
encountered the same large-scale structure along their lines-of-sight, and their distortions (i.e.
image ellipticities) are therefore expected to be correlated (both in magnitude and in orientation).
Such correlations have been observed (see Fig.2.38), and detailed modeling of these results
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Fig. 2.38. In the limit of weak lensing, the shear field at a position in the sky is proportional to the ellipticity
of the image of a circular source at that position. This plot shows the mean square of the shear field averaged
within circular regions of given radius, 6, obtained from various observations. The non-zero values of this
‘cosmic shear’ are due to gravitational lensing induced by the line-of-sight projected mass distribution in
the Universe. The solid curves are theoretical predictions (see §6.6) and are in good agreement with the
data. [Adapted from Refregier et al. (2002) by permission of AAS]
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shows that the variance of the matter density field on scales of 8 2~ Mpc is about 0.7-0.9 (e.g.
Van Waerbeke et al., 2001), slightly lower than that of the distribution of bright galaxies.

Since the matter distribution around a given galaxy or cluster will cause a distortion of its
background galaxies, weak lensing can also be used to probe the matter distributions around
galaxies and clusters. In the case of clusters, one can often detect a sufficient number of back-
ground galaxies to reliably measure the shear induced by its gravitational potential. Weak lensing
therefore offers a means of measuring the total gravitational mass of an individual (massive) clus-
ter. In the case of individual galaxies, however, one typically has only a few background galaxies
available. Consequently, the weak lensing signal is far too weak to detect around individual
galaxies. However, by stacking the images of many foreground galaxies (for example, according
to their luminosity), one obtains sufficient signal-to-noise to measure the shear, which reflects the
average mass distribution around the stacked galaxies. This technique is called galaxy—galaxy
lensing, and has been used to demonstrate that galaxies are surrounded by extended dark matter
halos with masses 10-100 times more massive than the galaxies themselves (e.g. Mandelbaum
et al., 2006b).

2.8 The Intergalactic Medium

The intergalactic medium (IGM) is the medium that permeates the space in between galaxies. In
the framework laid out in Chapter 1, galaxies form by the gravitational aggregation of gas in a
medium which was originally quite homogeneous. In this scenario, the study of the IGM is an
inseparable part of galaxy formation, because it provides us with the properties of the gas from
which galaxies form.

The properties of the IGM can be probed observationally by its emission and by its absorp-
tion of the light from background sources. If the medium is sufficiently dense and hot, it can
be observed in X-ray emission, as is the case for the intracluster medium described in §2.5.1.
However, in general the density of the IGM is too low to produce detectable emission, and its
properties have to be determined from absorption studies.

2.8.1 The Gunn—Peterson Test

Much information about the IGM has been obtained through its absorption of light from distant
quasars. Quasars are not only bright, so that they can be observed out to large distances, but also
have well-behaved continua, against which absorption can be analyzed relatively easily. One of
the most important tests of the presence of intergalactic neutral hydrogen was proposed by Gunn
& Peterson (1965). The Gunn—Peterson test makes use of the fact that the Lyo absorption of
neutral hydrogen at A, = 1216 A has a very large cross-section. When the ultraviolet continuum
of a distant quasar (assumed to have redshift zq) is shifted to 1216 A at some redshift z < zg,
the radiation would be absorbed at this redshift if there were even a small amount of neutral
hydrogen. Thus, if the Universe were filled with a diffuse distribution of neutral hydrogen, pho-
tons bluer than Ly would be significantly absorbed, causing a significant decrement of flux in
the observed quasar spectrum at wavelengths shorter than (14 zg)Ay. Using the hydrogen Lya
cross-section and the definition of optical depth (see Chapter 16 for details), one obtains that the
proper number density of HI atoms obeys

npi(z) ~2.42 x 10~ 1(z2)hH (z) /Hyem 3, (2.47)

where H(z) is Hubble’s constant at redshift z, and 7(z) is the absorption optical depth out to
z that can be determined from the flux decrements in quasar spectra. Observations show that
the Lyo absorption optical depth is much smaller than unity out to z < 6. The implied density
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of neutral hydrogen in the diffuse IGM is thus much lower than the mean gas density in the
Universe (which is about 1077 cm™3). This suggests that the IGM must be highly ionized at
redshifts z < 6.

As we will show in Chapter 3, the IGM is expected to be highly neutral after recombina-
tion, which occurs at a redshift z ~ 1000. Therefore, the fact that the IGM is highly ionized at
z ~ 6 indicates that the Universe must have undergone some phase transition, from being largely
neutral to being highly ionized, a process called re-ionization. It is generally believed that photo-
ionization due to energetic photons (with energies above the Lyman limit) are responsible for the
re-ionization. This requires the presence of effective emitters of UV photons at high redshifts.
Possible candidates include quasars, star-forming galaxies and the first generation of stars. But
to this date the actual ionizing sources have not yet been identified, nor is it clear at what red-
shift re-ionization occurred. The highest redshift quasars discovered to date, which are close to
z=06.5, show almost no detectable flux at wavelengths shorter than (14 z)A, (Fan et al., 2000).
Although this seems to suggest that the mass density of neutral hydrogen increases rapidly at
around this redshift, it is not straightforward to convert such flux decrements into an absorp-
tion optical depth or a neutral hydrogen fraction, mainly because any 7 > 1 can result in an
almost complete absorption of the flux. Therefore it is currently still unclear whether the Uni-
verse became (re-)ionized at a redshift just above 6 or at a significantly higher redshift. At the
time of writing, several facilities are being constructed that will attempt to detect 21cm line emis-
sion from neutral hydrogen at high redshifts. It is anticipated that these experiments will shed
important light on the detailed re-ionization history of the Universe, as we discuss in some detail
in §16.3.4.

2.8.2 Quasar Absorption Line Systems

Although the flux blueward of (1+4zq)A is not entirely absorbed, quasar spectra typically reveal
a large number of absorption lines in this wavelength range (see Fig. 2.39). These absorption lines
are believed to be produced by intergalactic clouds that happen to lie along the line-of-sight from
the observer to the quasar, and can be used to probe the properties of the IGM. Quasar absorption
line systems are grouped into several categories:

e Ly« forest: These are narrow lines produced by HI Lya absorption. They are numerous and
appear as a ‘forest’ of lines blueward of the Ly emission line of a quasar.
e Lyman-limit systems (LLS): These are systems with HI column densities Ny > 10" cm~2,

at which the absorbing clouds are optically thick to the Lyman-limit photons (912 A). These
systems appear as continuum breaks in quasar spectra at the redshifted wavelength (1 +z,) x
912 A, where z, is the redshift of the absorber.

e Damped Lyo systems (DLAs): These systems are produced by HI Ly absorption of gas
clouds with HI column densities, Ny > 2 x 102 cm~2. Because the Lyo absorption opti-
cal depth at such column densities is so large, the quasar continuum photons are completely
absorbed near the line center and the line profile is dominated by the damping wing due to the
natural (Lorentz) broadening of the absorption line. DLLAs with column densities in the range
10" ecm=2 < Ny < 2 x 10%°cm ™2 also exhibit damping wings, and are sometimes called sub-
DLAs (Péroux et al., 2002). They differ from the largely neutral DLAs in that they are still
significantly ionized.

e Metal absorption line systems: In addition to the hydrogen absorption line systems listed
above, QSO spectra also frequently show absorption lines due to metals. The best-known
examples are MglI systems and CIV systems, which are caused by the strong resonance-
line doublets MgIIAA2796,2800 and CIVAA 1548, 1550, respectively. Note that both doublets
have rest-frame wavelengths longer than Ao = 1216A. Consequently, they can appear on the
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Fig. 2.39. The spectrum of a QSO that reveals a large number of absorption lines due to the IGM. The
strongest peak at 5473 A is the emission line due to Ly at a rest-frame wavelength of 1216 A. The numerous
absorption lines at A < 5473 A make up the Ly forest which is due to Lyo: absorption of neutral hydrogen
clouds between the QSO and the Earth. The break at 4150 A is due to a Lyman-limit cloud which is optically
thick at the hydrogen Lyman edge (rest-frame wavelength of 912A). The relatively sparse lines to the
right of the Ly emission line are due to absorption by metal atoms associated with the absorbing clouds.
[Adapted from Songaila (1998) by permission of AAS]

red side of the Ly emission line of the QSO, which makes them easily identifiable because
of the absence of confusion from the Ly forest.

Note that a single absorber may be detected as more than one absorption system. For example,
an absorber at z, may be detected as a HI Lyo line at A = (1 +z,) x 1216 A, as a CIV system at
A = (1+4z,) x 1548 A, if it has a sufficiently large abundance of CIV ions, and as a Lyman-limit
system at A = (14 z,) x 912 A, if its HI column density is larger than ~ 10'7 cm~2.

In addition to the most common absorption systems listed above, other line systems are also
frequently identified in quasar spectra. These include low ionization lines of heavy elements,
such as CII, Mgl, Fell, etc., and the more highly ionized lines, such as SilV and NV. Highly
ionized lines such as OVI and OVII are also detected in the UV and/or X-ray spectra of quasars.
Since the ionization state of an absorbing cloud depends on its temperature, highly ionized lines,
such as OVI and OVII, in general signify the existence of hot (~ 10 K) gas, while low-ionization
lines, such as HI, CII and MgII, are more likely associated with relatively cold (~ 10*K) gas.

For a given quasar spectrum, absorption line systems are identified by decomposing the spec-
trum into individual lines with some assumed profiles (e.g. the Voigt profile, see §16.4.3). By
modeling each system in detail, one can in principle obtain its column density, b parameter
(defined as b = v/26, where o is the velocity dispersion of the absorbing gas), ionization state,
and temperature. If both hydrogen and metal systems are detected, one may also estimate the
metallicity of the absorbing gas. Table 2.8 lists the typical values of these quantities for the most
commonly detected absorption systems mentioned above.

The evolution of the number of absorption systems is described by the number of systems per
unit redshift, d.#"/dz, as a function of z. This relation is usually fitted by a power law d./"/dz o<
(142z)7, and the values of y for different systems are listed in Table 2.9. The distribution of
absorption line systems with respect to the HI column density is shown in Fig. 2.40. Over the
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Table 2.8. Properties of common absorption lines in quasar spectra.

System log(Nur/em™?)  b/(kms™")  Z/Zs  log(Nu/Nu)
Lyo forest 12.5 - 17 15 —40 <0.01 <=3
Lyman limit > 17 ~ 100 ~0.1 > =2
sub-DLA 19 —20.3 ~ 100 ~0.1 > —1
DLA >20.3 ~ 100 ~0.1 ~0
CIV >15.5 ~ 100 ~0.1 > -3
Mgll > 17 ~ 100 ~0.1 > -2

Table 2.9. Redshift evolution of quasar absorption line systems.

System zrange Y Reference

Lyo forest 20—-40 ~25 Kimetal (1997)

Lyo forest 00—-15 ~0.15 Weymann etal. (1998)

Lyman limit 03—-4.1 ~1.5 Stengler-Larrea et al. (1995)
Damped Lyoe 0.1 — 4.7 ~1.3 Storrie-Lombardi et al. (1996a)
CIv 1.3-34 ~—12 Sargentetal. (1988)

Mgll 02—-22 ~0.8 Steidel & Sargent (1992)

whole observed range, this distribution follows roughly a power law, d.#"/dNyj o< Nﬁlﬁ , with
B~ 1.5.

From the observed column density distribution, one can estimate the mean mass density of
neutral hydrogen that is locked up in quasar absorption line systems:

dz dNurdz

where dl/dz is the physical length per unit redshift at z (see §3.2.6). Given that d-4"/dNyy is a
power law with index ~ —1.5, pyy is dominated by systems with the highest Ny, i.e. by damped
Ly systems. Using the observed HI column density distribution, one infers that about 5% of the
baryonic material in the Universe is in the form of HI gas at z ~ 3 (e.g. Storrie-Lombardi et al.,
1996b). In order to estimate the total hydrogen mass density associated with quasar absorption
line systems, however, one must know the neutral fraction, Ny /Ny, as a function of Nyy. This
fraction depends on the ionization state of the IGM. Detailed modeling shows that the Ly forest
systems are highly ionized, and that the main contribution to the total (neutral plus ionized) gas
density comes from absorption systems with Ny ~ 10'*cm™2. The total gas mass density at
z ~ 3 thus inferred is comparable to the total baryon density in the Universe (e.g. Rauch et al.,
1997; Weinberg et al., 1997b).

Quasar absorption line systems with the highest HI column densities are expected to be gas
clouds in regions of high gas densities where galaxies and stars may form. It is therefore not
surprising that these systems contain metals. Observations of damped Lyo systems show that
they have typical metallicities about 1/10 of that of the Sun (e.g. Pettini et al., 1990; Kulkarni
et al., 2005), lower than that of the ISM in the Milky Way. This suggests that these systems may
be associated with the outer parts of galaxies, or with galaxies in which only a small fraction of
the gas has formed stars. More surprising is the finding that most, if not all, of the Ly« forest lines
also contain metals, although the metallicities are generally low, typically about 1/1000 to 1/100
of that of the Sun (e.g. Simcoe et al., 2004). There is some indication that the metallicity increases
with HI column density, but the trend is not strong. Since star formation requires relatively high
column densities of neutral hydrogen (see Chapter 9), the metals observed in absorption line

ar\ ! &2
pui(z) = <) mH/NHI dNui, (2.43)
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Fig. 2.40. The HI column density distribution of QSO absorption line systems. Here .% (Nyp) is defined
as the number of absorption lines per unit column density, per unit X (which is a quantity that is related
to redshift according to Eq. [16.92]). The solid line corresponds to % (Nyj) o< Nﬁll‘%, which fits the data
reasonably well over the full 10 orders of magnitude in column density. [Based on data published in Petitjean
et al. (1993) and E. M. Hu et al. (1995)]

systems with low HI column densities most likely originate from, and have been expelled by,
galaxies at relatively large distances.

2.9 The Cosmic Microwave Background

The cosmic microwave background (CMB) was discovered by Penzias and Wilson in 1965 when
they were commissioning a sensitive receiver at centimeter wavelengths in Bell Telephone Labo-
ratories. It was quickly found that this radiation background was highly isotropic on the sky and
has a spectrum close to that of a blackbody with a temperature of about 3 K. The existence of
such a radiation background was predicted by Gamow, based on his model of a Hot Big Bang
cosmology (see §1.4.2), and it therefore did not take long before the cosmological significance
of this discovery was realized (e.g. Dicke et al., 1965).

The observed properties of the CMB are most naturally explained in the standard model of cos-
mology. Since the early Universe was dense, hot and highly ionized, photons were absorbed and
re-emitted many times by electrons and ions and so a blackbody spectrum could be established
in the early Universe. As the Universe expanded and cooled and the density of ionized material
dropped, photons were scattered less and less often and eventually could propagate freely to the
observer from a last-scattering surface, inheriting the blackbody spectrum.

Because the CMB is so important for our understanding of the structure and evolution of the
Universe, there have been many attempts in the 1970s and 1980s to obtain more accurate mea-
surements of its spectrum. Since the atmospheric emission is quite close to the peak wavelength
of a 3K blackbody spectrum, most of these measurements were carried out using high-altitude
balloon experiments (for a discussion of early CMB experiments, see Partridge, 1995).
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A milestone in CMB experiments was the launch by NASA in November 1989 of the Cosmic
Background Explorer (COBE), a satellite devoted to accurate measurements of the CMB over the
entire sky. Observations with the Far InfraRed Absolute Spectrophotometer (FIRAS) on board
COBE showed that the CMB has a spectrum that is perfectly consistent with a blackbody spec-
trum, to exquisite accuracy, with a temperature 7 = 2.728 £ 0.002 K. As we will see in §3.5.4 the
lack of any detected distortions from a pure blackbody spectrum puts strong constraints on any
processes that may change the CMB spectrum after it was established in the early Universe.

Another important observational result from COBE is the detection, for the first time, of
anisotropy in the CMB. Observations with the Differential Microwave Radiometers (DMR) on
board COBE have shown that the CMB temperature distribution is highly isotropic over the sky,
confirming earlier observational results, but also revealed small temperature fluctuations (see
Fig.2.41). The observed temperature map contains a component of anisotropy on very large
angular scales, which is well described by a dipole distribution over the sky,

T(a) =Ty (1 + gcosa), (2.49)

where « is the angle of the line-of-sight relative to a specific direction. This component can be
explained as the Doppler effect caused by the motion of the Earth with a velocity v = 369 £+
3kms~! towards the direction (I,b) = (264.31° +0.20°,48.05° +0.10°) in Galactic coordinates

COBE DMR 53 GHz Maps WMAP

Linear scale from —200—200 K
41 GHz map

T=2728K

Combination maj

Fig. 2.41. Temperature maps of the CMB in galactic coordinates. The three panels on the left show the
temperature maps obtained by the DMR on board the COBE satellite [Courtesy of NASA Goddard Space
Flight Center]. The upper panel shows the near-uniformity of the CMB brightness; the middle panel is the
map after subtraction of the mean brightness, showing the dipole component due to our motion with respect
to the background; and the bottom panel shows the temperature fluctuations after subtraction of the dipole
component. Emission from the Milky Way is evident in the bottom image. The two right panels show the
temperature maps observed by WMAP from the first year of data [Courtesy of WMAP Science Team]; one
is from the 41 GHz channel and the other is a linear combination of five channels. Note that the large-scale
temperature fluctuations in the COBE map at the bottom are clearly seen in the WMAP maps, and that the
WMAP angular resolution (about 0.5°) is much higher than that of COBE (about 7°).
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(Lineweaver et al., 1996). Once this dipole component is subtracted, the map of the temperature
fluctuations looks like that shown in the lower left panel of Fig.2.41. In addition to emission
from the Milky Way, it reveals fluctuations in the CMB temperature with an amplitude of the
order of AT /T ~2 x 1075,

Since the angular resolution of the DMR is about 7°, COBE observations cannot reveal
anisotropy in the CMB on smaller angular scales. Following the detection by COBE, there
have been a large number of experiments to measure small-scale CMB anisotropies, and many
important results have come out in recent years. These include the results from balloon-borne
experiments such as Boomerang (de Bernardis et al., 2000) and Maxima (Hanany et al., 2000),
from ground-based interferometers such as the Degree Angular Scale Interferometer (DASI;
Halverson et al., 2002) and the Cosmic Background Imager (CBI; Mason et al., 2002), and
from an all-sky satellite experiment called the Wilkinson Microwave Anisotropy Probe (WMAP;
Bennett et al., 2003; Hinshaw et al., 2007). These experiments have provided us with extremely
detailed and accurate maps of the anisotropies in the CMB, such as that obtained by WMAP
shown in the right panels of Fig. 2.41.

In order to quantify the observed temperature fluctuations, a common practice is to expand the
map in spherical harmonics,

AT
T

T (¥ -T
(19v(p) = % = Zafmyf,m(ﬁvq))' (2.50)

lm

The angular power spectrum, defined as Cy = (|ag,|?)'/? (where (...) denotes averaging over m),
can be used to represent the amplitudes of temperature fluctuations on different angular scales.
Fig.2.42 shows the temperature power spectrum obtained by the WMAP satellite. As one can
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Fig. 2.42. The angular power spectrum, Cy, of the CMB temperature fluctuations in the WMAP full-sky
map. This shows the relative brightness of the ‘spots” in the CMB temperature map vs. the size of the spots.
The shape of this curve contains a wealth of information about the geometry and matter content of the
Universe. The curve is the model prediction for the best-fit ACDM cosmology. [Adapted from Hinshaw
et al. (2007) by permission of AAS]
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see, the observed C; as a function of ¢ shows complex features. These observational results are
extremely important for our understanding of the structure formation in the Universe. First of
all, the observed high degree of isotropy in the CMB gives strong support for the assumption of
the standard cosmology that the Universe is highly homogeneous and isotropic on large scales.
Second, the small temperature fluctuations observed in the CMB are believed to be caused by
the density perturbations at the time when the Universe became transparent to CMB photons.
These same density perturbations are thought to be responsible for the formation of structures
in the Universe. So the temperature fluctuations in the CMB may be used to infer the proper-
ties of the initial conditions for the formation of galaxies and other structures in the Universe.
Furthermore, the observations of CMB temperature fluctuations can also be used to constrain
cosmological parameters. As we will discuss in detail in Chapter 6, the peaks and valleys in
the angular power spectrum are caused by acoustic waves present at the last scattering surface
of the CMB photons. The heights (depths) and positions of these peaks (valleys) depend not
only on the density of baryonic matter, but also on the total mean density of the Universe, Hub-
ble’s constant and other cosmological parameters. Modeling the angular power spectrum of the
CMB temperature fluctuations can therefore provide constraints on all of these cosmological
parameters.

2.10 The Homogeneous and Isotropic Universe

As we will see in Chapter 3, the standard cosmological model is based on the ‘cosmological
principle’ according to which the Universe is homogeneous and isotropic on large scales. As we
have seen, observations of the CMB and of the large-scale spatial distribution of galaxies offer
strong support for this cosmological principle. Since according to Einstein’s general relativity
the space-time geometry of the Universe is determined by the matter distribution in the Universe,
this large-scale distribution of matter has important implications for the large-scale geometry of
space-time.

For a homogeneous and isotropic universe, its global properties (such as density and pressure)
at any time must be the same as those in any small volume. This allows one to study the global
properties of the Universe by examining the properties of a small volume within which Newto-
nian physics is valid. Consider a (small) spherical region of fixed mass M. Since the Universe is
homogeneous and isotropic, the radius R of the sphere should satisfy the Newtonian equation®

.. ‘M
R= f%. 2.51)

Note that, because of the homogeneity, there is no force due to pressure gradients and that only
the mass within the sphere is relevant for the motion of R. This follows directly from Birkhoff’s
theorem, according to which the gravitational acceleration at any radius in a spherically symmet-
ric system depends only on the mass within that radius. For a given M, the above equation can
be integrated once to give

1., GM

RP—Z-=E

3 = E, (2.52)

6 As we will see in Chapter 3, in general relativity it is the combination of energy density p and pressure P, p +3P/c?,
instead of p, that acts as the source of gravitational acceleration. Therefore, Eq. (2.51) is not formally valid, even
though Eq. (2.53), which derives from it, happens to be correct.
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where E is a constant, equal to the specific energy of the spherical shell. For simplicity, we write
R = a(t)Ry, where Ry is independent of 7. It then follows that

@ 8nGp  Kc?

a? 30 &2

(2.53)

where p is the mean density of the Universe and K = —2E /(cRy)?. Unless E = 0, which corre-
sponds to K = 0, we can always choose the value of Ry so that |K| = 1. So defined, K is called
the curvature signature, and takes the value +1, 0, or —1. With this normalization, the equation
for a is independent of M. As we will see in Chapter 3, Eq. (2.53) is identical to the Friedmann
equation based on general relativity. For a universe dominated by a non-relativistic fluid, this is
not surprising, as it follows directly from the assumption of homogeneity and isotropy. However,
as we will see in Chapter 3, it turns out that Eq. (2.53) also holds even if relativistic matter and/or
the energy density associated with the cosmological constant are included.

The quantity a(r) introduced above is called the scale factor, and describes the change of the
distance between any two points fixed in the cosmological background. If the distance between
a pair of points is /1 at time #;, then their distance at some later time #, is related to /; through
I, = Lia(ty)/a(t;). It then follows that at any time ¢ the velocity between any two (comoving)
points can be written as

[ = [a(t)/a(0)]L, (2.54)

where [ is the distance between the two points at time ¢. Thus, a > 0 corresponds to an expanding
universe, while @ < 0 corresponds to a shrinking universe; the universe is static only when a = 0.
The ratio d/a evaluated at the present time, fo, is called the Hubble constant,

Hy = ap/ao, (2.55)

where ag = a(ty), and the relation between velocity and distance, [ = Hol, is known as Hub-
ble’s expansion law. Another quantity that characterizes the expansion of the Universe is the
deceleration parameter, defined as

go = — 2090, (2.56)

a3
This quantity describes whether the expansion rate of the Universe is accelerating (gop < 0) or
decelerating (go > 0) at the present time.

Because of the expansion of the Universe, waves propagating in the Universe are stretched.
Thus, photons with a wavelength A emitted at an earlier time 7 will be observed at the present
time 7o with a wavelength Aops = Aag/a(t). Since ap > a(t) in an expanding universe, Aops > A
and so the wavelength of the photons is redshifted. The amount of redshift z between time ¢ and
to is given by

=2 . 2.57)

Note that a(¢) is a monotonically increasing function of 7 in an expanding universe, and so
redshift is uniquely related to time through the above equation. If an object has redshift z,
i.e. its observed spectrum is shifted to the red relative to its rest-frame (intrinsic) spectrum by
AA = Aobs — A = zA, then the photons we observe today from the object were actually emitted
at a time ¢ that is related to its redshift z by Eq. (2.57). Because of the constancy of the speed of
light, an object’s redshift can also be used to infer its distance.



94 Observational Facts

From Eq. (2.53) one can see that the value of K is determined by the mean density p,, at the
present time 7 and the value of Hubble’s constant. Indeed, if we define a critical density

3H}
Peritd = g (2.58)
and write the mean density in terms of the density parameter,
Q0 =P/ Perit,0; (2.59)

then K = Hga(z)(Qo —1).So K =—1,0and +1 corresponds to Qp < 1, =1 and > 1, respectively.
Before discussing the matter content of the Universe, it is illustrative to write the mean density
as a sum of several possible components:

(i) non-relativistic matter whose (rest-mass) energy density changes as py, o< a>;

(ii) relativistic matter (such as photons) whose energy density changes as p; o a~* (the
number density changes as > while energy is redshifted according to a~!);

(iii) vacuum energy, or the cosmological constant A, whose density py = ¢*A/87G is a
constant.

Thus,
Qo = Qo+ 0+ Q4 , (2.60)

and Eq. (2.53) can be written as
-\ 2
(Z) = H2EX(2), 2.61)

where

E(z) = [Qno+(1-Q0)(1+2)2+Qno(1+2) + Qro(1+2)*]

with z related to a(¢) by Eq. (2.57). In order to solve for a(r), we must know the value of Hy
and the energy (mass) content (Qu, 0, Qr0, Q4 0) at the present time. The deceleration parameter
defined in Eq. (2.56) is related to these parameters by
Qm,O
2
A particularly simple case is the Einstein—de Sitter model in which Q0 =1, €0 =Qp 0 =0
(and s0 go = 1/2). It is then easy to show that a(r) o< r>/3. Another interesting case is a flat model
in which Qp 0+ Qa0 =1 and ;¢ = 0. In this case, go = 3Qm /2 — 1, so that g9 < 0 (i.e. the
expansion is accelerating at the present time) if Q, o < 2/3.

(2.62)

90 = +Qr0— Q0. (2.63)

2.10.1 The Determination of Cosmological Parameters

As shown above, the geometry of the Universe in the standard model is specified by a set of cos-
mological parameters. The values of these cosmological parameters can therefore be estimated
by measuring the geometrical properties of the Universe. The starting point is to find two observ-
ables that are related to each other only through the geometrical properties of the Universe. The
most important example here is the redshift—distance relation. As we will see in Chapter 3, two
types of distances can be defined through observational quantities. One is the luminosity dis-
tance, dj, which relates the luminosity of an object, L, to its flux, f, according to L = 47tdf f.
The other is the angular-diameter distance, d4, which relates the physical size of an object, D,
to its angular size, 0, via D = d4 0. In general, the redshift—distance relation can formally be
written as

cz

d(z) = Ho

1+ F4(2;Qm0,2n0,--.)], (2.64)



2.10 The Homogeneous and Isotropic Universe 95

where d stands for either dp or d4, and by definition .%; < 1 for z < 1. For redshifts much
smaller than 1, the redshift—distance relation reduces to the Hubble expansion law ¢z = Hyd, and
so the Hubble constant Hy can be obtained by measuring the redshift and distance of an object
(ignoring, for the moment, that objects can have peculiar velocities). Redshifts are relatively easy
to obtain from the spectra of objects, and in §2.1.3 we have seen how to measure the distances
of a few classes of astronomical objects. The best estimate of the Hubble constant at the present
comes from Cepheids observed by the HST, and the result is

Hoy = 100hkms ™' Mpc™', with h=0.724+0.08 (2.65)

(Freedman et al., 2001).

In order to measure other cosmological parameters, one has to determine the nonlinear terms in
the redshift—distance relation, which typically requires objects at z > 1. For example, measuring
the light curves of Type Ia supernovae out to z ~ 1 has yielded the following constraints:

0.8Qn 0 — 0.6Q4 0~ —0.2+0.1 (2.66)

(e.g. Perlmutter et al., 1999). Using Eq. (2.63) and neglecting Q; o because it is small, the above
relation gives go ~ —0.33 —0.83Q, . Since Qp,, o > 0, we have gy < 0, i.e. the expansion of the
Universe is speeding up at the present time.

Important constraints on cosmological parameters can also be obtained from the angular
spectrum of the CMB temperature fluctuations. As shown in Fig.2.42, the observed angular
spectrum C; contains peaks and valleys, which are believed to be produced by acoustic waves
in the baryon—photon fluid at the time of photon—matter decoupling. As we will see in §6.7, the
heights/depths and positions of these peaks/valleys depend not only on the density of baryonic
matter in the Universe, but also on the total mean density, Hubble’s constant and other cosmo-
logical parameters. In particular, the position of the first peak is sensitive to the total density
parameter € (or the curvature K). Based on the observational results shown in Fig.2.42, one
obtains

Qo =1.0240.02; Quoh® =0.1440.02;
h=0.72+£0.05 Qpoh® =0.024+0.001, 2.67)

where Qo and €y ¢ are the density parameters of total matter and of baryonic matter, respec-
tively (Spergel et al., 2007). Note that this implies that the Universe has an almost flat geometry,
that matter accounts for only about a quarter of its total energy density, and that baryons account
for only ~ 17% of the matter.

2.10.2 The Mass and Energy Content of the Universe

There is a fundamental difficulty in directly observing the mass (or energy) densities in different
mass components: all that is gold does not glitter. There may well exist matter components with
significant mass density which give off no detectable radiation. The only interaction which all
components are guaranteed to exhibit is gravity, and thus gravitational effects must be studied
if the census is to be complete. The global gravitational effect is the curvature of space-time
which we discussed above. Independent information on the amount of gravitating mass can only
be derived from the study of the inhomogeneities in the Universe, even though such studies may
never lead to an unambiguous determination of the total matter content. After all, one can imagine
adding a smooth and invisible component to any amount of inhomogeneously distributed mass,
which would produce no detectable effect on the inhomogeneities.

The most intriguing result of such dynamical studies has been the demonstration that the total
mass in large-scale structures greatly exceeds the amount of material from which emission can be
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detected. This unidentified ‘dark matter’ (or ‘invisible matter’) is almost certainly the dominant
contribution to the total mass density . Its nature and origin remain one of the greatest
mysteries of contemporary astronomy.

(a) Relativistic Components One of the best observed relativistic components of the Universe
is the CMB radiation. From its blackbody spectrum and temperature, Tcmp = 2.73 K, it is easy
to estimate its energy density at the present time:

pro~47x 10 gem™, or Qy0=2.5x10"h"2. (2.68)

As we have seen in Fig. 2.2, the energy density of all other known photon backgrounds is much
smaller. The only other relativistic component which is almost certainly present, although not yet
directly detected, is a background of neutrinos. As we will see in Chapter 3, the energy density in
this component can be calculated directly from the standard model, and it is expected to be 0.68
times that of the CMB radiation. Since the total energy density of the Universe at the present
time is not much smaller than the critical density (see the last subsection), the contribution from
these relativistic components can safely be ignored at low redshift.

(b) Baryonic Components Stars are made up of baryonic matter, and so a lower limit on
the mass density of baryonic matter can be obtained by estimating the mass density of stars
in galaxies. The mean luminosity density of stars in galaxies can be obtained from the galaxy
luminosity function (see §2.4.1). In the B band, the best-fit Schechter function parameters are
ar—1.2,¢"~12x102h*Mpc™ and .#* ~ —20.05+ 5logh (corresponding to L* = 1.24 x
1019421, so that

L ~2x10%h L, Mpe 2. (2.69)

Dividing this into the critical density leads to a value for the mass per unit observed luminosity of
galaxies required for the Universe to have the critical density. This critical mass-to-light ratio is

M - M.
() = Perit  1500n (Q> . (2.70)
L B.crit L Lo B

Mass-to-light ratios for the visible parts of galaxies can be estimated by fitting their spectra with
appropriate models of stellar populations. The resulting mass-to-light ratios tend to be in the
range of 2 to 10(Mg /L ). Adopting M/L = 5(Mg /L) as a reasonable mean value, the global
density contribution of stars is

Q,0~0.00377" (2.71)

Thus, the visible parts of galaxies provide less than 1% of the critical density. In fact, combined
with the WMAP constraints on €2, o and the Hubble constant, we find that stars only account for
less than 10% of all baryons.

So where are the other 90% of the baryons? At low redshifts, the baryonic mass locked up
in cold gas (either atomic or molecular), and detected via either emission or absorption, only
accounts for a small fraction, Qgoq ~ 0.00054~! (Fukugita et al., 1998). A larger contribution
is due to the hot intracluster gas observed in rich galaxy clusters through their bremsstrahlung
emission at X-ray wavelengths (§2.5.1). From the number density of X-ray clusters and their
typical gas mass, one can estimate that the total amount of hot gas in clusters is about (Qpyr)ej ~
0.001673/2 (Fukugita et al., 1998). The total gas mass in groups of galaxies is uncertain. Based
on X-ray data, Fukugita et al. obtained (Qpy) group ™~ 0.003h73/2. However, the plasma in groups
is expected to be colder than that in clusters, which makes it more difficult to detect in X-ray
radiation. Therefore, the low X-ray emissivity from groups may also be due to low tempera-
tures rather than due to small amounts of plasma. Indeed, if we assume that the gas/total mass
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ratio in groups is comparable to that in clusters, then the total gas mass in groups could be
larger by a factor of two to three. Even then, the total baryonic mass detected in stars, cold
gas and hot gas only accounts for less than 50% of the total baryonic mass inferred from
the CMB.

The situation is very different at higher redshifts. As discussed in §2.8, the average density
of hydrogen inferred from quasar absorption systems at z ~ 3 is roughly equal to the total
baryon density as inferred from the CMB data. Hence, although we seem to have detected the
majority of all baryons at z ~ 3, at low redshifts roughly half of the expected baryonic mass
is unaccounted for observationally. One possibility is that the gas has been heated to tempera-
tures in the range 10°-10°K at which it is very difficult to detect. Indeed, recent observations
of OVI absorption line systems seem to support the idea that a significant fraction of the IGM
at low redshift is part of such a warm-hot intergalactic medium (WHIM), whose origin may be
associated with the formation of large-scale sheets and filaments in the matter distribution (see
Chapter 16).

An alternative explanation for the ‘missing baryons’ is that a large fraction of the gas detected
at z ~ 3 has turned into ‘invisible’ compact objects, such as brown dwarfs or black holes.
The problem, though, is that most of these objects are stellar remnants, and their formation
requires a star-formation rate between z = 3 and z = O that is significantly higher than nor-
mally assumed. Not only is this inconsistent with the observation of the global star-formation
history of the Universe (see §2.6.8), but it would also result in an over-production of metals.
This scenario thus seems unlikely. Nevertheless, some observational evidence, albeit contro-
versial, does exist for the presence of a population of compact objects in the dark halo of our
Milky Way. In 1986 Bohdan Paczyniski proposed to test for the presence of massive compact
halo objects (MACHOs) using gravitational lensing. Whenever a MACHO in our Milky Way
halo moves across the line-of-sight to a background star (for example, a star in the LMC),
it will magnify the flux of the background star, an effect called microlensing. Because of
the relative motion of source, lens and observer, this magnification is time-dependent, giving
rise to a characteristic light curve of the background source. In the early 1990s two collabo-
rations (MACHO and EROS) started campaigns to monitor millions of stars in the LMC for
a period of several years. This has resulted in the detection of about 20 events in total. The
analysis by the MACHO collaboration suggests that about 20% of the mass of the halo of
the Milky Way could consist of MACHOs with a characteristic mass of ~ 0.5Mg (Alcock
et al., 2000). The nature of these objects, however, is still unclear. Furthermore, these results
are inconsistent with those obtained by the EROS collaboration, which obtained an upper limit
for the halo mass fraction in MACHOs of 8%, and rule out MACHOs in the mass range
0.6 x 107" My, < M < 15M, as the primary occupants of the Milky Way halo (Tisserand et al.,
2007).

(c) Non-Baryonic Dark Matter As is evident from the CMB constraints given by Eq. (2.67)
on Q0 and o, baryons can only account for ~ 15-20% of the total matter content in the
Universe, and this is supported by a wide range of observations. As we will see in the following
chapters, constraints from a number of other measurements, such as cosmic shear, the abundance
of massive clusters, large-scale structure, and the peculiar velocity field of galaxies, all agree that
Qm, is of the order of 0.3. At the same time, the total baryonic matter density inferred from
CMB observations is in excellent agreement with independent constraints from nucleosynthesis
and the observed abundances of primordial elements. The inference is that the majority of the
matter in the Universe (75-80%) must be in some non-baryonic form.

One of the most challenging tasks for modern cosmology is to determine the nature and
origin of this dark matter component. Particle physics in principle allows for a variety of candi-
date particles, but without a direct detection it is and will be difficult to discriminate between
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the various candidates. One thing that is clear from observations is that the distribution of
dark matter is typically more extended than that of the luminous matter. As we have seen
above, the mass-to-light ratios increase from M /L ~ 30h(M /L), at a radius of about 304~ 'kpc
as inferred from the extended rotation curves of spiral galaxies, to M/L ~ 100h(M /L) at
the scale of a few hundred kpc, as inferred from the kinematics of galaxies in groups, to
M/L ~ 350h(M/L); in galaxy clusters, probing scales of the order of 1Mpc. This latter
value is comparable to that of the Universe as a whole, which follows from multiplying the
critical mass-to-light ratio given by Eq. (2.70) with Qp, o, and suggests that the content of clus-
ters, which are the largest virialized structures known, is representative of that of the entire
Universe.

All these observations support the idea that galaxies reside in extended halos of dark matter.
This in turn puts some constraints on the nature of the dark matter, namely that it has to be rel-
atively cold (i.e. it needs to have initial peculiar velocities that are much smaller than the typical
velocity dispersion within an individual galaxy). This coldness is required because otherwise
the dark matter would not be able to cluster on galactic scales to form the dark halos around
galaxies. Without a better understanding of the nature of the dark matter, we have to live with
the vague term, cold dark matter (or CDM), when talking about the main mass component of the
Universe.

(d) Dark Energy As we have seen above, the observed temperature fluctuations in the CMB
show that the Universe is nearly flat, implying that the mean energy density of the Universe
must be close to the critical density, p.i. However, studies of the kinematics of galaxies and of
large-scale structure in the Universe give a mean mass density that is only about 1/4 to 1/3 of
the critical density, in good agreement with the constraints on Qy, o from the CMB itself. This
suggests that the dominant component of the mass/energy content of the Universe must have
a homogenous distribution so that it affects the geometry of the Universe but does not follow
the structure in the baryonic and dark matter. An important clue about this dominant component
is provided by the observed redshift—distance relation of high-redshift Type la supernovae. As
shown in §2.10.1, this relation implies that the expansion of the Universe is speeding up at the
present time. Since all matter, both baryonic and non-baryonic, decelerates the expansion of the
Universe, the dominant component must be an energy component. It must also be extremely
dark, because otherwise it would have been observed.

The nature of this dark energy component is a complete mystery at the present time. As
far as its effect on the expansion of the Universe is concerned, it is similar to the cosmolog-
ical constant introduced by Einstein in his theory of general relativity to achieve a stationary
Universe (Einstein, 1917). The cosmological constant can be considered as an energy com-
ponent whose density does not change with time. As the Universe expands, it appears as if
more and more energy is created to fill the space. This strange property is due to its pecu-
liar equation of state that relates its pressure, P, to its energy density, p. In general, we may
write P = wpc?, and so w = 0 for a pressureless fluid and w = 1/3 for a radiation field (see
§3.1.5). For a dark energy component with constant energy density, w = —1, which means that
the fluid actually gains internal energy as it expands, and acts as a gravitational source with a
negative effective mass density (p +3P/c> = —2p < 0), causing the expansion of the Universe
to accelerate. In addition to the cosmological constant, dark energy may also be related to a
scalar field (with —1 < w < —1/3). Such a form of dark energy is called quintessence, which
differs from a cosmological constant in that it is dynamic, meaning that its density and equa-
tion of state can vary through both space and time. It has also been proposed that dark energy
has an equation of state parameter w < —1, in which case it is called phantom energy. Clearly,
a measurement of the value of w will allow us to discriminate between these different models.
Currently, the value of w is constrained by a number of observations to be within a relatively
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narrow range around —1 (e.g. Spergel et al., 2007), consistent with a cosmological constant, but
also with both quintessence and phantom energy. The next generation of galaxy redshift surveys
and Type Ia supernova searches aim to constrain the value of w to a few percent, in the hope
of learning more about the nature of this mysterious and dominant energy component of our
Universe.



3

Cosmological Background

Cosmology, the branch of science dealing with the origin, evolution and structure of the Universe
on large scales, is closely related to the study of galaxy formation and evolution. Cosmology
provides not only the space-time frame within which galaxy formation and evolution ought to
be described, but also the initial conditions for the formation of galaxies. Modern cosmology
is founded upon Einstein’s theory of general relativity (GR), according to which the space-time
structure of the Universe is determined by the matter distribution within it. This perspective on
space-time is very different from that in classical physics, where space-time is considered eternal
and absolute, independent of the existence of matter.

A complete description of GR is beyond the scope of this book. As a remedy, we provide a
brief summary of the basics of GR in Appendix A and we refer the reader to the references cited
there for details. It should be emphasized, however, that modern cosmology is a very simple
application of GR, so simple that even a reader with little knowledge of GR can still learn it.
This simplicity is owing to the simple form of the matter distribution in the Universe, which, as
we have seen in the last chapter, is observed to be approximately homogeneous and isotropic on
large scales. We do not yet have sufficient evidence to rule out inhomogeneity or anisotropy on
very large scales, but the assumption of homogeneity and isotropy is no doubt a good basis for
studying the observable Universe. If indeed the matter distribution in the Universe is completely
homogeneous and isotropic, as is the ansatz on which modern cosmology is based," GR would
imply that space itself must also be homogeneous and isotropic. Such a space is the simplest
among all possibilities. To see this more clearly, let us consider a two-dimensional space, i.e.
a surface. We all know that the properties of a general two-dimensional surface can be very
complicated. But if the surface is homogeneous and isotropic, we are immediately reminded of
an infinite plane and a sphere. These two surfaces differ in their overall curvature. The plane is
flat, while the sphere is said to have a positive curvature. In both cases the distance between any
two infinitesimally close points on the surface can be written as

a2 = & (drz +r2d192) G.1)
1 —Kr? ’ '
where K = 0 for a plane and K = 1 for a sphere. In the case of a plane, (r,%) are just the
polar coordinates and «a is a length scale (scale factor) relating the coordinate radius r to dis-
tance. To see that K = 1 corresponds to a sphere, we make the coordinate transformation
r=siny. In terms of (), ), the distance measure becomes dI* = a?(dy? + sin® y d®?), which
is clearly that of a sphere in terms of the spherical coordinates, with a being the radius of
the sphere. In this case, r is a spherical coordinate in the three-dimensional space in which
the two-dimensional surface is embedded; r is not a distance measure on the surface, but
! Although on relatively small scales the present-day Universe deviates strongly from homogeneity and isotropy, we will

see in Chapter 4 that these structures arise from small perturbations of an otherwise homogeneous and isotropic matter
distribution.
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rather a coordinate used to label positions on the surface. Actual distances have to be com-
puted from the metric (3.1). Only in the case with K = 0 is r both coordinate and distance
measure.

Mathematically it can be shown that there is another two-dimensional homogeneous and
isotropic surface for which K = —1. Changing r to sinhy, we can write the distance measure
on such a surface as d/> = a®(dy? + sinh? y d©¥?) , where the factor a is again a length scale relat-
ing coordinates to distance. This negatively curved, hyperbolic surface, which is locally similar
to the surface near a saddle point, is not very familiar to us because it cannot be embedded in
a three-dimensional Euclidean space. The existence of a low-dimensional ‘space’ which cannot
be embedded in a space of higher dimensionality is, however, not as strange as it might seem;
for example it is easy to envision that it is impossible to embed a hairspring (an intrinsically
one-dimensional object) into a plane.

These examples show that the description of a homogeneous and isotropic two-dimensional
surface is extremely simple. What we need to do is just to determine the value of K (1, 0, or
—1), which specifies the global geometry of the surface, and the scale factor a, which relates
coordinates to distances. In general, the scale factor a can change with time without violating the
requirement of homogeneity and isotropy, corresponding to a surface that is uniformly expanding
or contracting.

The above discussion can be extended to three-dimensional spaces. As we will see in §3.1,
a homogeneous and isotropic space is also completely determined by the curvature signature K
(again equal to 1 or 0 or —1), which determines the global geometry of the space, and the scale
factor a(t) as a function of time. Thus, as far as the space-time geometry is concerned, the task
of modern cosmology is simply to determine the value of K and the functional form of () from
the matter content of the Universe (see §3.2).

According to GR, the relationships among cosmological events are assumed to be governed
by the physical laws that we are familiar with, while the effects of gravity are included in the
properties of the space-time (i.e. in the transformations of reference frames). This equivalence
principle (that a local gravitational field can be transformed away by choosing an appropriate
frame of reference) allows one to derive physical equations in GR from their ordinary forms by
general coordinate transformations (see Appendix A). Hence, once the value of K and the func-
tional form of a(¢) are known, the relationships among cosmological events can be described in
terms of physical laws. Similarly, if we believe that physical laws are applicable on cosmological
scales, the predictions for these relationships will depend only on the space-time geometry, and
so observations of such relationships can be used to test cosmological models.

One of the most important observations in cosmology is that the Universe is expanding [i.e.
a(t) increases with time], which implies that it must have been smaller in the past. Together with
the observational fact that our Universe is filled with microwave photons, this time evolution
of the scale factor determines the thermal history of the Universe. Because the Universe was
denser in the past, it must also have been hotter. Since high density and temperature imply high
probabilities for particles to collide with each other with high energy, the early Universe is an
ideal place for the creation and transmutation of matter. As we will see in §3.3-§3.5, the applica-
tions of particle, nuclear and atomic physics to the thermal history of the early Universe lead to
important predictions for the current matter content of the Universe. Although many of these pre-
dictions are still uncertain, they provide the basis for calculating relations between the dominant
mass components of the Universe. Finally, in §3.6, we discuss some of the most fundamental
problems of the standard model and show how the ‘inflationary hypothesis’ may help to solve
them. Although this chapter gives a fairly detailed description of modern cosmology, readers
interested in more details are referred to the textbooks by Kolb & Turner (1990), Peebles (1993),
Peacock (1999), Coles & Lucchin (2002), Padmanabhan (2002), Borner (2003) and Weinberg
(2008).
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3.1 The Cosmological Principle and the Robertson—-Walker Metric

3.1.1 The Cosmological Principle and its Consequences

The cosmological principle is the hypothesis that, on sufficiently large scales, the Universe can
be considered spatially homogeneous and isotropic. While this may appear a reasonable extrap-
olation from current observations (see Chapter 2), it was originally proposed for quite different
reasons. As stated by Milne (1935), this hypothesis follows from the belief that ‘Not only the
laws of Nature, but also the events occurring in Nature, the world itself, must appear the same to
all observers.” In this sense, the cosmological principle can be thought of as a generalized Coper-
nican principle: our location in the Universe should be typical, and should not be distinguished in
any fundamental way from any other. The cosmological principle is, however, stronger than this
simple statement implies, since it also eliminates the possibility of a self-similar, fractal structure
on the largest scales. All points of such a structure are equivalent, but there are no scales on
which it approaches homogeneity. Milne’s statement is also incomplete, since it is possible to
have a universe which appears the same from each point but is anisotropic, as in Godel’s model
(Godel, 1949).

An even stronger hypothesis is the perfect cosmological principle of Bondi & Gold (1948)
and Hoyle (1948). This requires invariance not only under rotations and displacements in space,
but also under displacements in time. The Universe looks the same in all directions, from all
locations, and at all times. This hypothesis led to the steady state cosmology which requires
a continuous creation of matter to keep the mean matter density constant with time. However,
the discovery of the cosmic microwave background radiation, and in particular the demonstration
that it has a perfect blackbody spectrum, has proven an unsurmountable problem for this cosmol-
ogy. Additional evidence against the steady state cosmology comes from numerous detections
of evolution in the galaxy population. We therefore will not discuss this theory further in this
book.

What are the consequences of the cosmological principle for the geometric structure of the
Universe? To answer this question, we put the cosmological principle in a slightly different
form. The cosmological principle can also be stated as the existence of a fundamental observer
at each location, to whom the Universe appears isotropic. The concept of a fundamental observer
is required because two observers at the same point, but in relative motion, cannot both see
the surrounding Universe as isotropic. The fundamental observer thus defines a cosmologi-
cal ‘rest frame’ at each location in space. To better understand the meaning of a fundamental
observer, let us define the fundamental observer, or the cosmological rest frame, in our neigh-
borhood. As discussed in Chapter 2, galaxies in the Universe are strongly clustered on scales
< 10~~'Mpc, and have random motions of the order of 100 to 1,000kms~! with respect to
each other. It is thus unlikely that our own Galaxy defines a cosmological rest frame. On the
other hand, we expect the mean motion of galaxies within a radius much larger than 104~ Mpc
around us to be small with respect to the cosmological rest frame. In particular the cosmic
microwave background (CMB) should appear isotropic to such a frame. As shown in Chap-
ter 2, the CMB map given by the COBE satellite appears very isotropic around us, when the
dipole component is subtracted. The dipole in the CMB map is best explained by the motion of
the Local Group of galaxies relative to the CMB with a velocity (627 +22)kms~! (Lineweaver
et al., 1996). Thus, an observer in our neighborhood, traveling at the same speed relative to the
Local Group but in the opposite direction, should be close to a fundamental observer. If the
cosmological principle is correct, then the rest frame defined by the mean motion of galax-
ies within a large radius around us should converge to the one defined by the CMB. There
are indeed indications of such convergence in present observational data (e.g. Schmoldt et al.,
1999).
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Since the Universe is isotropic to a fundamental observer, the velocity field in her neighbor-
hood cannot have any preferred direction. The only allowed motion is therefore pure expansion
(or pure contraction),

v =H 6x, (3.2)

where dx and v are the position and velocity of a particle relative to the fundamental observer,
and H is a constant. Once some definition of distance is adopted, we can consider the set
of all observers, O/, which are equidistant from a given observer O at some given local time
of O. Because of the isotropy, all the observers O’ must measure the same local values of den-
sity, temperature, expansion rate, and other physical quantities. Furthermore, they must remain
equidistant from O at any later time recorded by the clock of O. Thus they can in principle syn-
chronize their clocks using a light signal from O, and once synchronized, the clocks must remain
so. Since the original fundamental observer O is arbitrary, this argument shows that there exists
a three-dimensional hypersurface in space-time, on which density, temperature, expansion rate,
and all other locally defined properties are uniform and evolve according to a universally agreed
time. Such a time is called the cosmic time. Since quantities such as the temperature of the CMB
and the mean density of the Universe are monotonic functions of cosmic expansion, the value of
these quantities can be used to label the cosmic time, as we will see below.

The isotropic and homogeneous three-dimensional hypersurfaces discussed above are maxi-
mally symmetric. As a result their metric can be written as

dr?

1—Kr?

di? =d*(1) + r2(d®? +sin® 0 do?)| . (3.3)
A proof of this can be found in Weinberg (1972). In this formula a(z) is a time-dependent scale
factor which relates the coordinate labels (r, ¥, @) of the fundamental observers to true physical
distances, and K is a constant which can take the values +1, 0, and — 1. The radial coordinate r is
dimensionless in Eq. (3.3). When physical distances are required, a length scale can be assigned
to the scale factor.

To understand better the geometric meanings of a(z) and K, consider an expanding or contract-
ing three-sphere (the three-dimensional analog of the two-dimensional surface of an expanding
or shrinking spherical balloon) whose radius is R(¢) = a(t)Ry at time ¢. The scale factor a(t)
therefore simply relates the radius of the three-sphere at time ¢ to its comoving radius, Ry, whose
value does not change as the sphere expands or contracts. (Thus the comoving radius is just
the true radius measured in units of the scale factor.) In Cartesian coordinates (x,y,z,w), this
three-surface is defined by

P4y +2+w? =d*(1)R3. (3.4)
With the change of coordinates from (x,y,z,w) to the polar coordinates (r, %, @):

x=a(t)rsindcos @
y=a(t)rsintvsing
)

z=a(t)rcos (3.5)
w=a(t) (R} —r?) 1/27
the line element in the four-dimensional Euclidean space is
di> = d® + dy? + d22 +dw?
= & (1) LA r2(d0? +sin® 9 dg?) | . (3.6)

l—rz/R%
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The curvature scalar of such a three-sphere is

6
= R () (3.7
(see Appendix A). Comparing Egs.(3.3) and (3.6) we immediately see that Eq.(3.3) with
K = +1 is the metric of a three-sphere with comoving radius Ry = 1, and with the true radius at
time ¢ given by the value of a(t). This three-sphere has a finite volume V = 27%a(¢), and the
dimensionless radial coordinate r € [0, 1].

For K = 0, metric (3.3) is the same as that given by Eq. (3.6) with Ry — oo, and so it describes
a Euclidean flat space with infinite volume. In this case the scale factor a(r) describes the change
of the length scale due to the uniform expansion (or contraction) of the space.

Metric (3.3) with K = —1 can be obtained by the replacement Ry — i in Eq. (3.6). The same
replacement in Eq. (3.7) shows that such a metric describes a negatively curved three-surface with
curvature radius set by a(z). Such a three-surface cannot be embedded in a four-dimensional
Euclidean space, but can be embedded in a four-dimensional Minkowski space with line ele-
ment d/*> = dw? — dx?> — dy? — dz%. In this space, the negatively curved three-surface with
curvature radius a(t) can be written as x> + y? +z> — w? = a?(t). Thus, the metric (3.3) with
K = —1 describes a hyperbolic three-surface, with unit comoving curvature radius, embedded
in a four-dimensional Minkowski space. Such a three-surface has no boundaries and has infinite
volume.

3.1.2 Robertson—Walker Metric

Since the isotropic and homogeneous three-dimensional surfaces described above are the space-
like hypersurfaces corresponding to a constant cosmic time #, the four-metric of the space-time
can be written as

ds? = 2d? —di?

dr?

1—Kr?

= 2> — (1) + 2 (d0? +sin® 9de?) | | (3.8)
with c the speed of light. This is the Robertson—Walker metric. As in special relativity, the space-
time interval, ds, is real for two events with a time-like separation, is zero for two events on the
same light path (null geodesic), and is imaginary for two events with a space-like separation.
As before, the coordinates (r, 9, @), which label fundamental observers, are called comoving
coordinates, and the function a(#) is the cosmic scale factor. If we define the proper time of an
observer as the one recorded by the clock at rest with the observer, then the cosmic time ¢ is
the proper time of all fundamental observers. A proper distance / can be defined for any two
fundamental observers at any given cosmic time ¢: [ = [d/. Without losing generality we can
assume one of the observers to be at the origin r = 0 and the other at (r;,9,@). The proper
distance can then be written as

dr _

- a(t)/orl e =), (3.9)

where
sin”lr (K=41)
x(r)=< r (K=0) (3.10)
sinh~'r (K=—1).
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The y in the above equations is called the comoving distance between the two fundamental
observers; it is the proper distance / measured in units of the scale factor. It is often useful to
change the time variable from proper time ¢ to a conformal time,

tedt

In terms of y and 7 the Robertson—Walker metric can be written in another useful form:
ds? = a®(7) [de? —dy? — fR(x)(d0* +sin® 9 de?)] (3.12)

where
siny (K=+41)
k() =r=3 x (K=0) (3.13)
sinhy (K=-1).

This form of the metric is especially useful to gain insight into the causal properties of space-time.

It is instructive to look at the metric on a hypersurface with constant ¢. In the K = +1 case
the spatial part of the metric is dI> = a?(7)(dy? + sin? y d©¥?), which is just the metric of a two-
dimensional sphere in terms of the ‘polar angle’ ) and the ‘azimuthal angle’ ¥ (see Fig.3.1). We
see that y is the (comoving) geodesic distance, because it measures the length of the shortest path
(arc) connecting two points on the hypersurface, while the radial coordinate r is not a distance
measure on the surface. This conclusion is also true for the case of K = —1. Only for a flat space
(K = 0) where r = y, is the radial coordinate r also a geodesic distance.

The Hubble parameter, H (r), at a cosmic time ¢ is defined to be the rate of change of the proper
distance / between any two fundamental observers at time ¢ in units of /: d//dt = H(¢)l. It then
follows from Eq. (3.9) that

Fig. 3.1. The ¢ = constant section of a Robertson—-Walker metric with K = 1, showing the geometric
meanings of various coordinates.
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a(r)
H(t) = —= 3.14
0= (3.14)
where an over-dot denotes the derivative with respect to . The Hubble parameter at the present
time is called the Hubble constant, and is denoted by Hj. Quantities that depend on the value of

Hj are often expressed in terms of
Hy
100kms—!Mpc~! "

h

(3.15)

The time dependence of the scale factor a(t) is determined by general relativity and the equa-
tion of state appropriate for the matter content of the Universe. This will be discussed in §3.2.
However, some kinematic properties of an isotropic and homogeneous universe can already be
inferred from the form of the metric [either Eq. (3.8) or Eq. (3.12)] without specifying the form
of a(t). Such discussion is useful, because it is based only on the cosmological principle, and is
valid even if general relativity fails on cosmological scales or if our knowledge about the mat-
ter content of the Universe is incomplete. In the following four subsections, we examine these
‘kinematic’ properties of the Robertson—Walker metric.

3.1.3 Redshift

Almost all observations about astronomical objects are made through light signals. It is therefore
important to understand how photons propagate in a homogeneous and isotropic universe. With-
out losing generality, consider a light signal propagating to the origin along a radial direction
(d¥ = do = 0). Since photons travel along null geodesics on which ds = 0, their trajectories can
be written as

dr=dy (3.16)

[see Eq.(3.12)]. Thus, if a wave crest is emitted at the time 7. from a fundamental observer
(e, Ve, Qe ), then the time 7y when it reaches the origin is given by

T(to) — 7(te) = x(re) — x(0) = x (re)- 3.17)

Since the comoving distance ) () between the fundamental observer and the origin does not
change with time, a successive wave crest emitted at a later time 7, + 01, reaches the origin at a
time 7y + Oty given by

T(to + 619) — T(te + O6te) = x(re). (3.18)
Combining Eqgs. (3.17) and (3.18) gives
T(to + O619) — T(fo) = T(te + Ote) — T(2e) . 3.19)
In real applications 8. < f. and 67y < fo, and so we can use the definition of 7 to obtain
Ot ot
0 T (3.20)

a(t)) ~ alte)’
Thus the period of the wave, and hence its wavelength, increases (or its frequency decreases) in
proportion to the scale factor:

A{)_Ve

Ao ve 8ty alto)
Ae vy Ote  alte)

Defining the relative change of wavelength by a redshift parameter, z = (19 — Ae )/ Ae, we have

L= @ _ a(t())
=% a(te).

. (3.21)

1+

(3.22)
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If the light wave is emitted from the transitions of a given kind of atoms between two energy lev-
els E| and E;, and if these atoms are at rest with respect to the fundamental observer (re, Oe, Qe )
at time f., then ve. = |E| — E»|/hp (wWhere hp is Planck’s constant). Eq. (3.21) then describes the
relation between the observed wavelength and the rest-frame wavelength which can be deter-
mined by the observer in his local laboratory. In an expanding universe a(zp) > a(f.) so that z > 0
and spectral features are shifted redwards (redshift). On the other hand, in a contracting universe
a(ty) < afte), so that z < 0 and spectral features are shifted bluewards (blueshift). As we have
seen in Chapter 2, distant galaxies in the Universe are all observed to show redshifted spectra,
indicating that the Universe is expanding.

3.1.4 Peculiar Velocities

As we will see later in Chapter 4, small perturbations in the background energy density dis-
tribution cause the growth of structures, which in turn induce velocities that deviate from pure
expansion. These velocities with respect to the cosmological rest frame of fundamental observers
are called peculiar velocities.

The proper velocity of a particle with respect to a fundamental observer at the origin is defined
as v = dl/dt, with [(z) the proper distance between the particle and observer. Using Eq. (3.9) we
can write this as

U(t) :d(t)X(t)"’a(t)jC(t) = Uexp 1+ VUpec (3.23)

where vexp = H(t)I(t) is the velocity component due to the universal expansion, and vpe is the
peculiar velocity.

Let 0 be a fundamental observer at the same location as a particle & which has a peculiar
velocity vpec With respect to ;. Since locally the geometry at & is that of a Minkowski space,
0 will observe the light from &7 with a Doppler redshift

1+ vpee /€
1+ Zpee = | . 3.24
+Zpec 1— 'Upec/c ( )

But what is the redshift of &2 observed by a fundamental observer ¢, located at a proper distance
611, from ¢'1? For simplicity we assume that the peculiar velocity of &2 is along the geodesic
connecting @1 and ¢,. Using the definition of redshift in Eq. (3.22) we can write for the observed
redshift

A A

A Ap Ay
where Ap is the wavelength emitted by &2, and A; and A, are the wavelengths observed by
0 and 05, respectively. The physical correspondence of the second equality is a simple relay
station at ¢ that passes the information from & on to ;. The first factor on the right-hand side

of Eq. (3.25) is simply the Doppler redshift of Eq. (3.24), while the second factor corresponds to
the cosmological redshift z.os of &, and thus also of &. Therefore

1 4 zZobs = (3.25)

1+ 2Zobs = (1+Zpec)(1+zcos)a (3.26)

which shows that the observed redshift of any object consists of a contribution due to the univer-
sal expansion and one due to its peculiar velocity along the line-of-sight. In the non-relativistic
case we can approximate Eq. (3.24) with zpec = pec /¢, so that Eq. (3.26) reduces to

K
Zobs = Zcos + %(1 +Zcos) . (327)
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Thus, for a cluster of galaxies at redshift z, the (peculiar) velocity dispersion of galaxies, o, is
related to the observed dispersion in redshifts, c,, as

Oy (3.28)

0: 1 et

Next let us consider the motion of a non-relativistic particle &2 in a homogeneous and isotropic
universe. Consider once again the fundamental observers & and 05, and let & pass ¢ at time
11 with a peculiar velocity v; in the direction of &,. If &7 moves freely to &, what is the peculiar
velocity of &2 when it passes 0, at time #,? To answer this question, focus first on the velocity
of & att =1, with respect to ¢;. This velocity consists of two components: a peculiar velocity
vy as well as a velocity vexp = H (12)811> due to the universal expansion. Since & has not been
accelerated with respect to &1, the sum of these two velocities has to be equal to vy, such that
from the perspective of & the line-of-sight velocity of 2 has not changed. Therefore

a(t)
a(tr)

Using Taylor expansion we can write, to first order in 0t = t, — t1, the proper distance between
O and O, as dljp = v 0t. Substitution in Eq. (3.29) and integration then yields

a(t)

Sv=wm—u =— ol>. (3.29)

m = | (3.30)
Therefore, the peculiar velocity of a free, non-relativistic particle decreases as the inverse of the
scale factor:

Vpec(t) o< a” (1) (3.31)

Since the momentum p of a non-relativistic particle is proportional to its peculiar velocity,
Eq. (3.31) also implies that p(t) =< a~'(¢). Note that for a photon with zero rest mass pc = E =
hpv. As is evident from Eq. (3.21) v o< a™ !, so that the decay law p e a~! holds for photons as
well as for massive particles.

3.1.5 Thermodynamics and the Equation of State

The homogeneous and isotropic properties of the expanding Universe also allow an analysis of its
thermodynamic properties. Let us consider a uniform, perfect gas contained in a (small) comov-
ing volume V o @*(¢) which expands with the Universe. Since the Universe is homogeneous and
isotropic, there should not be any net heat flow across the boundaries of V. This implies that we
can consider V as an adiabatic system, and since V can be chosen arbitrarily small, no GR is
required to describe its thermodynamic properties.

According to the first law of thermodynamics, the increase in internal energy, dU, is equal to
the heat, dQ, transferred into the system plus the work, dW, done on the system: dU = dQ +dW.
The second law of thermodynamics is related to the entropy S, and states that dS = dQ/T, with
T the temperature. For our adiabatically expanding volume V we therefore have

dU+PdV =0; d§S=0, (3.32)

with P the pressure. This shows that the entropy per unit comoving volume is conserved, and that
the expansion of the Universe causes a decrease or increase of its internal energy depending on
whether P > 0 or P < 0.

In order to be able to apply the first law to both relativistic and non-relativistic fluids, we
write the internal energy, U, in terms of the energy density pc?. In principle there may be many
different sources contributing to the energy density of the Universe: matter (both non-relativistic
and relativistic), radiation, vacuum energy, scalar fields, etc. As we shall see later in this chapter,
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the Universe transited from a radiation dominated phase early on to a matter dominated phase
at later stages. In addition, the Universe may have become dominated by vacuum energy in the
recent past. In what follows we therefore focus on these three energy components only, so that
the total energy density may be written as

40
%T“ + Pracc?. (3.33)

pc2 = pmc2 + pmé€+
Here py, is the matter density, and € the internal energy per unity mass (€ = %kBT /m for
a monatomic ideal gas, with kg Boltzmann’s constant). The first two terms of Eq.(3.33)
therefore express the energy density due to non-relativistic matter, split in a contribution of
rest-mass energy and internal energy. The third term indicates the energy density of the radi-
ation, with osg the Stefan-Boltzmann constant.” Finally, pyacc? is the energy density of the
vacuum.
In terms of the energy density, the first law of thermodynamics for our adiabatically expanding
volume can now be written as

Vdp+(p+P/c*)dV =0. (3.34)
Using that V o< ¢?, and differentiating with respect to a we obtain

d P/c?

P+3<p+ /e )0. (3.35)

da a

For a given equation of state, P(p), this equation gives the density and pressure as functions of
a. It is common practice to introduce the equation of state parameter w and to write

P=wpc?. (3.36)
If w is time-independent, then substitution of Eq. (3.36) into Eq. (3.35) gives
p o< a3 (3.37)

To describe the evolution of p, P, and T during the matter dominated phase, we approximate
the Universe as an ideal gas, for which PV = Nkg T, with N the number of atoms of the gas. For
a monatomic gas consisting of particles of mass m we have py, = mN/V, so that

kT 5

Note that since py, # p, this does not imply that w = kgT /mc?. To determine the true equation
of state parameter, it is useful to write the equation of state as function of the adiabatic index y
(for a monatomic gas y =5/3):

P = (y=1)(p — pm)c”. (3.39)

Note that Eq. (3.39) makes it explicit that, in the non-relativistic limit, the rest-mass energy does
not contribute to the pressure of the gas. Combining Eqs. (3.38)—(3.39) we can write the pressure
in the form of Eq. (3.36) with

ke T 1 kgT\ ™!
=w(l)=—7F |1+ —— . 3.40

w=w(T) mcz<+}/—lmcz> (340)
Since kT < mc? we immediately see that w(7T) < 1. A non-relativistic gas is thus well approx-

imated by a fluid of zero pressure (w = 0), often referred to as a dust fluid. Since p o< a 301w g

2 Since the Universe is homogeneous and isotropic, the radiation fluid is in thermal equilibrium, and its energy density
follows from integrating the Planck function corresponding to a blackbody of temperature 7.
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Table 3.1. Thermodynamics of a
homogeneous and isotropic universe.

Dominant component wop P T
matter 0 a3 a3 -2
radiation 13 a* a* a!
vacuum energy -1 a a’

dust fluid has py, =< a3, as expected. To obtain the relation between T and a we use kinetic the-
ory which relates the gas temperature to the peculiar motions of the gas particles: kg Ty, o< m<112>.
Since v o< a~ ! [see Eq. (3.31)], we have that T}, o< a?. Finally, using Eq. (3.38) we find that
Py o< a>. This rapid decrease of pressure with the scale factor indicates that the Universe quickly
approaches a dust fluid once it becomes matter dominated.

At early times the Universe is radiation dominated. To investigate how p, P and T scale with
a during this period, we approximate the fluid as an ultra-relativistic radiation fluid for which
w = 1/3. This implies that p, < a~*, which is consistent with the fact that the number density
of photons scales as a3, while the energy per photon, E = hpv, scales as a~! [see Eq. (3.21)].
From the equation of state we obtain that P, o< a~*, while the scaling relation for the temperature,
T, < !, follows from the fact that for radiation p o< T* [see Eq. (3.33)]. As aresult, a blackbody
radiation field remains blackbody with a temperature decreasing as a~'. This is an important
result which explains how the cosmic microwave background radiation maintains its blackbody
form as the Universe expands.

Finally, if the energy density is dominated by vacuum energy, it only depends on the energy
difference between the true and false vacua and so is independent of a. It then follows from
Eq. (3.35) that

Py = _pvaCC2 , (3.41)

i.e. w = —1. This equation of state can be understood as follows: in order to keep a constant
energy density pyac as the Universe expands, the pressure P, must be negative so that the PdV
work in Eq.(3.32) is a positive contribution to the total internal energy in a given comoving
volume as it expands.

Although the above relations are derived from the application of thermodynamics to a small
volume in the Universe, they are applicable to the Universe as a whole, because the Universe is
assumed to be homogeneous and isotropic. These relations are important, because they allow us
to obtain the mean density, temperature and pressure of the Universe at any redshift from their
values at the present time. Table 3.1 summarizes how energy density, pressure, and temperature
evolve with the scale factor a for different dominating components of the energy density. Before
we continue, it is important to emphasize that these scaling relations only hold while the equa-
tion of state remains constant. In the early Universe, however, the adiabatic cooling due to the
expansion of the Universe may cause various particle species to change from relativistic to non-
relativistic. During these transitions, the true scaling relations follow from an application of the
entropy conservation law (see § 3.3).

3.1.6 Angular-Diameter and Luminosity Distances

The comoving distance ) and the proper distance a(r)y from a source are not directly observ-
able, because the light from a distant source observed at the present time was emitted at an earlier
time. In this subsection we consider two other distances that can be measured directly from astro-
nomical observations. Consider an object of size D and intrinsic luminosity L at some distance
d. The observable properties of such an object are the angular size ¥ subtended by the object,
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and the flux F. These allow us to define the angular-diameter distance, da, and the luminosity
distance, dr,, according to

D
O == 3.42
dx (3.42)
and
L
_ 5. (3.43)
4drd;

In a static space, da = di. = d, consistent with our everyday experience. However, when cosmic
distances are concerned in an expanding Universe, da, dr,, and d may all have different values,
as we will see in the following.

To obtain an expression for dp in a Robertson—Walker metric, we recall that the proper size D
can be considered as the proper distance between two light signals, sent from two points with the
same radial coordinate r. at a given cosmic time 7., and reaching the origin at the time #y. Thus,
the value of D is just the integral of d/ in Eq. (3.8) over the transverse direction:

aore
D= do = e 3.44
aere/ Y 1 _'_2797 ( )
where ag = a(fo) and a. = a(f.). It then follows from Eq. (3.42) that
aor
da = 11; = dere. (3.45)

To get an expression for dy, we consider a proper area, <7, which is at the origin (the position of
the observer) and subtends a solid angle, , at the object. By definition of the angular-diameter
distance dja, such a solid angle at the origin corresponds to a proper area cod/i at the position
of the object. If the universe were static, this area would, by symmetry arguments, be equal
to .o/. Because of expansion, however, the proper area at the origin subtended by a fixed solid
angle at a given object is stretched by a factor in proportion to the square of the scale factor,
and so

o = wdi (ap/ac)? = (apr.)*o. (3.46)
Without losing generality, we can assume that the object emits monochromatic radiation with
rest-frame frequency .. The number of photons emitted from the object into the solid angle w
within a time interval 61, is Lot.w/(4mhpr,). If the same number of photons pass through the
area </ in a time interval 01y, we have
Lét.w _F Oty
471'/’1131/,3 o hpl/o

(3.47)

where v is the observed frequency of the photons at the origin. It then follows from Eqs. (3.21)
and (3.46) that

2
o L |ae L
F=——|—| =———. 3.48

4 of [ao] Arfagre (14 2)]? (3:48)
The luminosity distance defined in Eq. (3.43) can thus be written as

dy, = apre(1+72). (3.49)

Since we observe the object using photons, the quantity agr. in the expressions of dp, and
dy is related to the redshift z by Eqgs. (3.17) and (3.22). This relation can be obtained once the
dynamical equations have been solved to specify a(¢). Although we will address the dynamical

3 In the case of a flat universe (K = 0), apr. is equal to the proper distance between object and observer at the time of
observation.
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behavior of a(r) in detail in §3.2, we can make a simple approximation by using the first few
terms of its Taylor expansion:

1
a(t) = ap l+Ho(t—t0)—quHg(t—to)2+... , (3.50)
where
go = — 20 (3.51)
)

is known as the deceleration parameter. Using Eq. (3.17), the power series can be manipulated
to give

c 1
aoremﬁo zf§z2(1+qo)+... . (3.52)

Inserting this into Egs. (3.44) and (3.48), we can obtain D as a function of ¥ and z, and L as
a function of F and z, respectively. Thus, for given values of Hy and gq, the proper size D
(or the intrinsic luminosity L) of an object can be obtained by measuring its redshift z and
its angular size ¥ (or its flux F). Similarly, if the proper sizes (or intrinsic luminosities) of
a set of objects are known, one can estimate the values of Hy and gp by measuring ¥ (or
F) as a function of redshift. Although this way of using Eq. (3.52) to interpret observational
data is common practice, it is valid only for z < 1. It is therefore preferable to use the exact
equations for agr as function of z (derived in the next section) rather than this small-z approxima-
tion. Nevertheless, the present values of Hy and gg are often used to characterize cosmological
models.

Finally, Eqgs. (3.44) and (3.48) can be combined to give the apparent surface brightness of an
object,

F L .

S= e ~wpr T

(3.53)

|

Unlike dp and dy, the apparent surface brightness S is independent of the relationship between
apre and ze, and so is independent of the dynamical evolution of a(¢). This arises because
Eq. (3.53) depends only on the local thermodynamics of the radiation field, and follows, in
fact, directly from S o< 7. For given L and D, the apparent surface brightness decreases
with redshift as (1 +z)~*, which is usually referred to as cosmological surface brightness
dimming.

3.2 Relativistic Cosmology

In general relativity, the geometric properties of space-time are determined by the distribution of
matter/energy. The standard model of cosmology arises from the application of general relativity
to the very special class of matter/energy distributions implied by the cosmological principle, i.e.
homogeneous and isotropic distributions. As we have seen above, the geometric properties of
a homogeneous and isotropic universe are described by the Robertson—Walker metric which, in
turn, is specified by the scale factor a(z) and the curvature signature K. The task of this section
is to obtain an expression for a(t) and the value of K for any given homogeneous and isotropic
matter/energy content.
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3.2.1 Friedmann Equation

In the standard model of cosmology, the geometry of space-time is determined by the mat-
ter/energy content of the Universe through the Einstein field equation (see Appendix A):

1 8nG

Here Ry, is the Ricci tensor, describing the local curvature of space-time, R is the curvature
scalar, gy, is the metric, THY is the energy—momentum tensor of the matter content of the Uni-
verse, and A is the cosmological constant, which was introduced by Einstein to obtain a static
universe. Contracting Eq. (3.54) with g"” yields the trace of the field equation,

8nG

R+4n=-""T, (3.55)
C

where T = T* . This allows the field equation to be written in the form

8nG 1
Ruu +guuA = CT (T;u/ - 2guuT> . (3.56)

For a uniform ideal fluid,
TH = (p+ P/ UHUY — g"vP, (3.57)

with pc? the energy density, P the pressure, and U* = cdx* /ds the four velocity of the fluid. In
a homogeneous and isotropic universe, the density and pressure depend only on the cosmic time,
and the four-velocity is U* = (¢,0,0,0) (i.e. no peculiar motion is allowed). This implies that
TH, = diag(pc?, —P,—P,—P) and T = pc* — 3P.

For a homogeneous and isotropic universe, gy, is given by the Robertson—Walker metric,
which allows the Ricci tensor Ry, and curvature scalar R to be expressed in terms of the scale
factor a(z) and the curvature signature K (see Appendix A). Inserting the results into Eq. (3.56),
and using the energy—momentum tensor of a perfect fluid given in Eq. (3.57), one obtains

i 4nG P\ A
o= 3 — 3.58
a 3 (P * cz> 3 (358)
for the time-time component, and
a a Kc P 5
for the space-space components. It then follows from substituting Eq. (3.58) into Eq. (3.59) that
-\ 2 2 2
a 8nG Kc“  Ac
- =—p-——+—. 3.60
(a ) 3 P2t (3:60)

As one sees from Egs. (3.58)—(3.60), the cosmological constant can be considered as an energy
component with ‘mass’ density py = Ac? /871G and pressure Py = —pac?. Indeed, the term of
Einstein’s cosmological constant in Eq. (3.54) can be included as an energy—momentum tensor,
Tyv = (¢*A/87G) gy, on the right-hand side of the field equation.

Eq. (3.60) is the Friedmann equation, and a cosmology that obeys it is called a Friedmann—
Robertson—Walker (FRW) cosmology. Together with Eq.(3.35), an equation of state, and an
initial condition, it determines the time dependence of a, p, P, and other properties of the
Universe.

It is interesting to note that one can derive the Friedmann equation (without the cosmological
constant term) for a matter dominated universe purely from Newtonian gravity (see §2.10). This
follows from the assumption that the Universe is homogeneous and isotropic so that the global
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properties of the Universe can be represented by those in a small region where Newtonian physics
applies. The Newtonian derivation, however, does not contain the pressure term, 3P/ ¢, in the
equation for the acceleration, which can be considered a relativistic correction. As is evident
from Eq. (3.58), in general relativity this pressure term acts as a source of gravity.

The density which appears in Eq. (3.60) can be made up of various components. At the moment
we distinguish a non-relativistic matter component, a radiation component, and a possible vac-
uum energy (cosmological constant) component. We denote their energy densities (written in
terms of mass densities) at the present time fo by pm,0, Pr,0 and py o, respectively. As the Uni-
verse expands, these quantities scale with a in different ways, as described in §3.1.5. We can then
write the Friedmann equation as

2

-\ 2
a\® .. 8nG ap\3 ap\ 4 Kc
(a> =H) =5~ [pm,o (%) +p0(2) +pro| =5 @G6D

where ag = a(ty).* Using the fact that the Universe is in its expanding phase at the present time
(i.e. Hy = ap/ap > 0), we can examine the behavior of a(r) in various cases, even without solving
the Friedmann equation explicitly.

If A>0andif K =0 or K =—1, the right-hand side of Eq. (3.61) is always larger than zero,
and a(t) always increases with 7. If K = +1 and A = 0, the right-hand side of Eq. (3.61) becomes
zero in the future as the scale factor increases until the curvature term, K/ az, is as large as the sum
of the matter and radiation terms. Thereafter a(r) decreases with ¢, and the Universe contracts
until a = 0. If K = +1 and A > 0, the situation is similar to that with K = +1 and A = 0, provided
that the A term in Eq. (3.61) is smaller than the matter plus radiation terms at the present time.
If the A term is sufficiently large at the present time, there may have been a minimum value of
a at some previous epoch. This corresponds to a time when the right-hand side of Eq. (3.61) is
equal to zero, and an initially contracting universe ‘bounced’ on its vacuum energy density and
started to re-expand. As one can see from Eq. (3.61), this re-expansion will continue forever. For
positive A a static (but unstable) solution is also possible — Einstein’s original static model —
as are solutions which asymptotically approach this model in the infinite future or infinite past.
Finally, if A < 0, the expansion will eventually halt and be followed by recollapse, giving a
history qualitatively similar to that of a K = +1, A = 0 universe.

3.2.2 The Densities at the Present Time

To solve Eq. (3.61), we need to know K and the various densities at the present time, pm 0, pr,0 and
Pa,0- Here we summarize constraints on these quantities based on observational and theoretical
considerations.

The total rest mass density of non-relativistic matter in the Universe is conventionally
expressed as

Pm,0 = Qm 0Perit0 & 1.88 x 10 Qp oh* gem ™, (3.62)
where, for reasons that will soon become clear, the density
3H?(1)

8nG

is known as the critical density at time ¢. The subscript ‘0’ denotes the values at the present time.
The dimensionless quantity, Qp, o, is the present cosmic density parameter for non-relativistic

Perit(t) = (3.63)

4 Note, however, that Eq. (3.61) only applies if there is no transformation from one density component to another. If
such transformation occurs, the time dependence of the equation of state must be taken into account.
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matter, and 4 is defined in Eq. (3.15). As discussed in §2.10, current observational constraints
suggest

Qno=027+£0.05; h=0.72£0.05. (3.64)

The current density in the relativistic component appears to be dominated by the cosmic
microwave background which is, to high accuracy, a blackbody at temperature 7}, = 2.73 K. Thus,
using py = 40sB T4 / 3 with ogp the Stefan-Boltzmann constant, we have

pro=47x10 % gem™  or  Qy0 = pyo/Perito 2 2.5x 10 k2. (3.65)

In addition, if the three species of neutrinos and their antiparticles are all massless (or relativistic
at the present time), they will have a temperature 7, = (4/ 11)1/ 3Ty (see §3.3). Because each
neutrino has only one spin state (while a photon has two) and because neutrinos are fermions
(and so for a given temperature the statistical weight of each degree of freedom is only 7/8
of that for photons; see §3.3 for details), the energy density in neutrinos at the present time is
3% (7/8) x (4/11)*?3 times that of the CMB photons. This brings the total energy density in the
relativistic component to

Pro~7.8x 107 gem™ or Qox42x107h72. (3.66)

Combining Egs. (3.62) and (3.66) shows that the ratio of the energy densities in the non-
relativistic and relativistic components varies with redshift as

P 2.4 % 10*Qm ol (1+2)7", (3.67)

pr
where we have used that py, o« @~ and p; o< a=* (see Table 3.1). Thus, provided the Universe did
not bounce in the recent past due to a large cosmological constant, it has been matter dominated
and effectively pressure-free since the epoch of matter/radiation equality defined by p; = pp, i.e.
since the redshift given by

1+ 2eq 2.4 % 10*Qp 0h” . (3.68)

To constrain the present day energy density provided by the cosmological constant, we use the
Friedmann equation (3.61), which we rewrite as

811G Kc?
TpA’O == Hg[] — Qm’() - QLO] + 7 . (369)
0

As discussed in §2.9, observations of the microwave background show that our Universe is almost
flat and that the current density in non-relativistic matter is significant [see Eq.(3.64)]. This
excludes the possibility of a bounce in the recent past due to a large cosmological constant. Such
an expansion history is also excluded by the observation of objects out to redshifts beyond 6, so
we will not consider such cosmological models any further. Setting K = 0 in Eq. (3.69) we obtain

PA0 = Perito(] = Qo — o) ie. Qro=1—-Qmno—Qrp. (3.70)

Data from WMAP combined with other observations give 4 o ~ 0.75£0.02 (Spergel et al.,
2007).

3.2.3 Explicit Solutions of the Friedmann Equation

(a) The Evolution of Cosmological Quantities Taking ¢ = 1y, the Friedmann equation can be

rewritten as

Kc?
22

Hjag

Qxo=— =1-9Q, 3.71)
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where

Qo= Qo+ 20+ Q0 (3.72)

is the total density parameter at the present time. As is immediately evident from Eq. (3.71), the
curvature of space-time depends on the matter density of the Universe. In particular, Q is less
than 1 for a negatively curved, open universe, is equal to 1 for a flat universe, and is bigger than 1
for a positively curved, closed universe. The terminology ‘open’ and ‘closed’ only has a logical
meaning for a A = 0 universe; open (and flat) universes expand forever, while closed universes
recollapse in the future. For non-zero A, however, open and flat universes can recollapse and
closed universes can expand forever, depending on the values of the various density parameters
(see discussion at the end of §3.2.1). Since € is just the total energy density of the Universe
in units of Perit,, it follows that perio defines a critical density for closure. Note that Eq. (3.71)
defines the scale factor ag at the present time:

c K
ap = AN a1 (3.73)
which goes to infinity as €y approaches 1 from either side. This follows from our definition of
the coordinate r in Eqgs. (3.3) and (3.8). Since ag is only a scale factor, its value does not have
physical meaning and so can be set to any positive value. A choice for the value of ag corresponds
to a choice in the definition of the coordinate r. In fact, physical distances are all related to ag
through the combination agr, which is well behaved near ) = 1 and independent of the choice
of ay. It is common practice to adopt ag = 1.

Substituting Eq. (3.71) into Eq. (3.61) gives

MQEC)@=%HA (3.74)
where
E(2) = [Quo+ (1 - Q0) (142 + Quo(1+2)° +Quo(1+2)1]2. (3.75)
Defining the cosmic density parameters at cosmic time ¢ as
p(t)
Q1) = , (3.76)
( ) pcrit(t)
we have
Q0 Qmo(1+2)* Qo(142)*
QA(z) = 575 = Q) = 3.77
A (Z) E2 (Z) m(Z) E2 (Z) T (Z) E2 (Z) ( )

Thus, once H, Qj, Qn and Q, are known at the present time, Egs. (3.74)—(3.77) can be used
to obtain their values at any given redshift. It is also clear from Eqgs. (3.61) and (3.71) that the
geometry of a FRW universe is completely determined by the values of Hy, Q4 0, 2mo and
Q0. Since ;g < Qo (see §3.2.2), the deceleration parameter, g, defined in Eq. (3.51) can be
written as

q0 = Q2m0/2—Qp 0, (3.78)

where we have used Eq. (3.58) with P = 0, as appropriate for a matter dominated universe.
Finally, using Eq. (3.71) and the definition of E(z), we can write down the redshift evolution
of the total density parameter
(1+2)?

Q@—hﬂ%—wfmy. (3.79)
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Aslong as Qp, o or Qo are non-zero, Q(z) always approaches unity at high redshifts, independent
of the present day values of Hy, Qx o, Qm o and €, o. Therefore, every FRW universe with non-
zero matter or radiation content must have started out with a total density parameter very close
to unity. As we will see in §3.6, this results in the so-called flatness problem.

(b) Radiation Dominated Epoch In the absence of a contracting phase in the past, the right-
hand side of Eq. (3.61) is dominated by the radiation term at z >> zeq. In this case, integration of

Eq.(3.61) yields

1/4

a4 _ (m}) 12 (3.80)
ap 3

Using that p; o< a?, Pm < a3 and T, < a~! (see Table 3.1), this gives the following rough
scalings for the early Universe:

T kgT p 174 pm 17 14z {L}*l/z
100K 1MeV 107 gecm—3 lgem—3 1010 Is '

(3.81)

These relations are approximately correct for 0 < ¢ < 10'%s, or z > 103. The arbitrarily high
temperatures and densities which are achieved at sufficiently early times have given this standard
cosmological model its generic name, the Hot Big Bang.

(¢) Matter Dominated Epoch and Q; o =0 At redshift z < zeq, the radiation content of the
Universe has little effect on its global dynamics, and assuming A = 0, Eq. (3.61) reduces to

N\ 2 3 Ke? 2
4) =g |eno (2) - (2)]. (3.82)
a “Na Hyag \ a
For K = 0 the solution is particularly simple:
3 2/3
“_ (Hot) | (3.83)
a 2
This is the solution for an Einstein—de Sitter (EdS) universe. For K = —1, the solution can be
expressed in parametric form:
a 1 Qmp 1 Qm_’()

=—-——>"—(coshdd—1); Hot==

— sinhd — 1), 3.84
ap 2 (1—Qmyo) ) ( )

2 (1 *Qm,0)3/2 (

where © goes from 0 to eo. At early epochs, a o< t2/3, which follows directly from the fact that

the curvature term in Eq. (3.82) can be neglected when a is sufficiently small. At later epochs

when ¥ > 1 and sinh?® = cosh ¥ so that a < ¢, the universe enters a phase of free expansion,
unretarded by gravity.

The corresponding parametric solution for a K = +1 universe is

a 1 Qm70 1 Qm,O

& _ 2 m0 4 - Hetf = - "m0
a 2(Qm,0—1)< cos); ot Z(Qm_0—1)3/2(

where 0 < ¢ < 27x. Such models reach a maximum size, am,x, at a time, fy,x, given by

¥ —sind), (3.85)

Amax Qo T Qmo
=—F——; Hytpax==——"""—"-. 3.86
ap Qm,O —1 0Fmax 2 (Qm,o _ 1)3/2 ( )

This maximum expansion is followed by recollapse to a singularity. At early epochs, a o< 23,
for the same reason as that for the K = —1 case.

Note that Hyto depends only on p, ¢ in these models. Since the normalization time, #y, can be
chosen arbitrarily, it is easy to see that H ()¢ depends only on Qp, (7).
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(d) Flat (Qn 0+ Q40 = 1) Models at z < z,q In this case Eq. (3.61) can be written as

2 3
<Z) —H? [Qm,o(‘g’) +QA70]. (3.87)

When the matter term is negligible, the model is called a de Sitter universe for which the solution
of Eq. (3.87) is particularly simple:

L = exp[Ho(t —10)] (3.88)
ao

and the universe expands exponentially without an initial singularity. For 0 < Qp, o < 1, using
the fact that Hy = d/a > 0, Eq. (3.87) can be easily solved to give

u Qo 137 3 in 2/3
%:(QAO) sinh iQA{OHOz : (3.89)

. o . . . 1/2
At early epochs, a o< 1*/3 as in an Einstein—de Sitter universe; when 7 is large, a o exp(Q A{ oHot)
so that the universe approximates the de Sitter model. '

(e) Open and Closed Models with Q5 o # 0 atz < zeq The Friedmann equation in this case is

N 2 2
a ap\3 Kc° rap\?
8) = # |omo () -5 () 9ol (3.90)
a a Hjag \ a
This equation can be cast into a dimensionless form:
1 /de)* 1
— =) =-—x+A1:% 3.91
3 ( dn) L TRt Ax (3.91)
where x =a/ag, N = \/Qmo/2Hot, A = Qp 0/Qm, and K = Kcz/(Hga%Qm’o). The evolution of
x can thus be discussed in terms of the Newtonian motion of a particle with total energy € = —x

in a potential ¢ (x) = —1/x — Ax%.

When A4 < 0, the potential ¢ (x) monotonically increases from 0 to o so that x is confined, and
all solutions evolve from an initial singularity into a final singularity.

When A > 0, the potential ¢ (x) is always negative, and x can go to infinity if € > 0 or K = —1.
Hence an open universe with Q4 ¢ > 0 expands from an initial singularity forever. If A > 0 and
K = +1, the potential ¢ (x) has a maximum, @mayx = —(274/4)'/3, at x = xpax = 1/(24)"/3. In
this case, if the total energy € > Qmax, i.€.

4 c? }
A>A = 77 {Hga(z)gmp} , (3.92)
the universe still expands forever, starting from an initial singularity. If, however, € < @max or
A < A, then there is the possibility that the universe contracts from large radii to a minimum
radius, amin, given by ¢ (amin/ap) = €, and expands thereafter to infinity. This happens if the
universe starts with a radius a > agxmax. If the universe starts with an initial singularity, then it
will evolve into a final singularity, giving a situation similar to that of a closed universe without
cosmological constant.

If A >0 and K = +1, a special situation occurs when € = @n,x or A = A.. In this case, there
is a static solution with a constant radius ag = ag/(2A.)'/?. Such a model is called the “Einstein
universe’. If the universe expands from an initial singularity, or contracts from a large radius, it
will coast asymptotically towards the radius ag. If the universe expands from an initial radius
larger than ag, it will do so forever.
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3.2.4 Horizons

A light ray emitted by an event (7., ) reaches an observer at the origin at time, 7y, given by

-1/2
_ [focdt  [%da 8nGp(a)a® !
2(re) = / = / ; {3@ - , (3.93)

with p = pm + pr + pa. The second equality follows from substituting df = da/a and using the
Friedmann equation (3.60). If the ¢ (or @) integral converges, as t. — 0, to a value y, = x (),
then there may exist particles (fundamental observers) for which y(r) > y, and from which no
communication can have reached the origin by time #y. Such particles (or values of r) are said
to lie beyond the particle horizon of the origin at time #y. From the form of the last integral in
Eq. (3.93) it is clear that convergence requires pa® — oo as a — 0. Thus particle horizons exist
in a universe which is matter or radiation dominated at the earliest times, but do not exist in a
universe which was initially dominated by vacuum energy density. As #( increases, X, becomes
bigger, all particle horizons expand, and signals can be received from more and more distant
particles.

If the ¢ integral in Eq. (3.93) converges as fy — oo (or as f( approaches the recollapse time for
a universe with a finite lifetime), there may exist events which the observer at the origin will
never see, and which therefore can never influence him/her by any physical means. Such events
are said to lie beyond the event horizon of this observer. Event horizons exist in closed models
and in models that are vacuum dominated at late times, but do not exist in flat or open universes
with zero cosmological constant. In the latter case, therefore, any event will eventually be able
to influence every fundamental observer in the Universe.

The existence of particle horizons in the Big Bang model has important implications, because
it means that many parts of the presently observable Universe may not have been in causal contact
at early times. This gives rise to certain difficulties, as we will see in §3.6.

3.2.5 The Age of the Universe

In currently viable models the Universe has been expanding since the Big Bang, so that a > 0
holds over its entire history. The age of the Universe at redshift z can then be obtained from
Eqgs. (3.22) and (3.74):

o a@) da 1 (= dz

where E(z) is given by Eq. (3.75). With this, the lookback time at redshift z, defined as 1) —#(z),
can also be obtained. For a given set of cosmological parameters, 7(z) can be calculated easily
from Eq.(3.94) by numerical integration. In some special cases, the integration can even be
carried out analytically.

In the radiation dominated epoch (i.e. at z > z¢q), the solution of the Friedmann equation is
given by Eq. (3.80), and the age of the Universe is

1 -2
1(z) ~ (sz) 5. (3.95)

In the matter dominated epoch (z < zeq), we can neglect the radiation term in E(z). It can then
be shown that for an EdS universe (i.e. for Q0 = 1 and Q4 o = 0),

2
1z)=—=(1+2) 2~ Z(142)2x 108 " yr. (3.96)
Ho 3 3
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For an open universe with Q o =0 and Qy = Q0 < 1,

1 Q 24/ (1 —Q0)(Q 1 Qoz—Qp+2
1(z) = — 0 VI-Q0)(Qzt ) o <°Z 0F ) (3.97)
Ho 2(1 —Qp)3/? Qo(1+2z) Qoz+ Qo
For a closed universe with Qx o = 0 and Qo = Q0 > 1,
1 Qo 2/(Qo—1)(Qoz+ 1) . <90z90+2)
t(z) = — - +cos _ 3.98
@) Ho 2(Qo—1)3/2 [ Qo(1+72) Qoz+Q G99
Finally, for a flat universe with Qp 0+ Qa0 = 1,
1 2 Qo1 -3 Qo(l —=34+Q
() = o In VOr0(1+2) 3+ /Qao(1+2) 3 +Qmo (3.99)
H() 3\/91\70 \/Qm,O
In all these cases, the behavior at z > 1 is
2 512 -3/2
t(z)~ —Q 1 . 3.100
(z) 3Hg im0 (I+2) (3.100)

Fig. 3.2 shows the product of the Hubble parameter, 4, defined by Eq. (3.15), and the lookback
time, 7o —7(z), as a function of (14 z) for models with Q4 o = 0, and for flat models with a

15 T T T T | T T T T T T T TT T TTTTTT[TTTTTTTTIT[TTITTITTITITIT|TIaT

a) Q,=0 .

10 = —

h(t,—t) [Gyr]

- b) Q,+0,=1 -

10 —

h(t,—t) [Gyr]

O | | | | | N I I IIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIT

1 2 4 6 8 10
1+2z

Fig. 3.2. The lookback time as a function of redshift for (a) models with Q4 o =0 and Qp, o = 0.1, 0.3, 0.5,
1, 2 (from top down); and (b) flat models (2, o +Q4 o = 1) with Qp, 0 = 0.1, 0.3, 0.5, 1 (from top down).
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cosmological constant (2,0 + 40 = 1). It is clear that for given i and Qp, ¢, the age of the
Universe is larger in models with a cosmological constant. By definition, the age of the Universe
at the present time should be larger than that of the oldest objects it contains. The oldest objects
whose ages can be determined reliably are a class of star clusters called globular clusters, which
have ages ranging up to 13Gyr (e.g. Carretta et al., 2000). This requires 4 < 0.5 for an EdS
universe, and /2 < 0.7 for a flat universe with Qp, 0 = 0.3 and Q5 o = 0.7.

3.2.6 Cosmological Distances and Volumes

As defined in §3.1.6, the luminosity distance, di, and the angular-diameter distance, dp, are
related to the redshift, z, and the comoving coordinate, r, by

1/2
L D aopr
d,=|-— = 1 ; dy=—= . 3.101
) (w) ar(1+2);  da=15 =2 (3.101)
In order to write d, and d in terms of observable quantities, we need to express the unobservable
coordinate r as a function of z. To do this, recall that r(z) is the comoving coordinate of a light
signal (an event) that originates at cosmic time ¢ and reaches us at the origin at the present time
to. It then follows from Eq. (3.17) that the comoving distance corresponding to r is

a0 da

1) = ()~ v(0) =c [ " (3.102)

a(r) aa’

where we have used the definition of the conformal time in Eq. (3.11) and the fact that dt = da/a.
Using Eq. (3.74) and the fact that a(z) = ao/(1 + z) this can be rewritten as

c < dz
= —_—, 3.103
X0 =g | E o (3.103)
where E(z) is given by Eq. (3.75). Using Egs. (3.10) and (3.13), this gives
c < dz
r= — [ . 3.104
f [Hoa()/o E(Z)} ( )

Note that r is the angular-diameter distance in comoving units. In general Eq. (3.103) can be
integrated numerically for a given set of cosmological parameters. When z < zeq and 4 9 = 0,
a closed expression can be derived for all three values of K,

20 Qoz+(2-Q) [1 - (Qoz+ 1)!/2]
Hy Q3 (1+7z) ’

which is known as Mattig’s formula (Mattig, 1958). For a flat (2,0 + €240 = 1) universe r = %,
so that for z < zeq

aor (3.105)

apr = i/z dz . (3.106)
Hy Jo [QA,O + Qm7()(l + Z)3] 1/2

Luminosity (or angular-diameter) distances can be measured directly for objects of known
intrinsic luminosity (or proper size). Such objects are known as ‘standard candles’ (or ‘standard
rulers’). Since the relation of redshift to these distances depends on cosmological parameters, in
particular on Hy, Qp, ¢ and Q, o, measuring the redshift of properly calibrated standard candles
(or standard rulers) can provide estimates of these parameters.

One of the most reliable and historically most important standard candles is a class of pulsating
stars known as Cepheids, for which the pulsation period is tightly correlated with their mean
intrinsic luminosity (see §2.1.3). Using the HST, Cepheids have been measured out to distances
of about 10Mpc. At such distances, the dy -z relation is still linear, di. ~ cz/Hp, so interesting
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Fig. 3.3. The upper panel shows distance modulus, (m — .#) = 5log(dy,/10pc), against redshift for Type
Ia supernovae for which the light curve shape has been used to estimate their absolute magnitudes (data
points). The predicted relations for three cosmological models are indicated by dashed (Qp, o = 1, 24 o = 0),
dotted (2,0 = 0.2, Q4 o = 0) and solid (2, 0 = 0.28, Q4 o = 0.72) curves. The lower panel shows the
difference between the distance modulus and the prediction for the (Qm,0 = 0.2, Q4 o = 0) model. [Adapted
from Riess et al. (1998) by permission of AAS]

constraints can be obtained only for the Hubble constant. The current best estimate is Hy =
(724+8)kms~'Mpc~! (e.g. Freedman et al., 2001).

In order to measure other cosmological parameters we must go to sufficiently large distances so
that nonlinear terms in the distance—redshift relation are important, i.e. to z > 1. In Chapter 2 we
have seen that Type Ia supernovae can be used as standard candles and that they have now been
observed out to z ~ 1. In Fig.3.3 the observed luminosity distance—redshift relation for Type
Ia supernovae is compared with the predictions of a number of cosmological models. Detailed
analyses of these data give the following constraint:

0.8Qm0 —0.6Q4 0~ —0.240.1 (3.107)

(Perlmutter et al., 1999).
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The proper-distance element at time 7 is d/ = a(r)dy. Using Eq. (3.103) we have

d ¢ 1 1

dz  Hy(1+z2)E(z)’
This gives the proper distance per unit redshift at redshift z. Suppose that there is a population of
objects with proper number density 1(z) = ng(z) (14 z)* (so that ng is a constant if the number of
the objects is conserved) and with average proper cross-section ¢ (z). The number of intersections
between such objects and a sightline in a unit redshift interval around z is

dy di c (1+2)?

(3.108)

=no(z)(1+2)°c no(z)o(z) — 3.109
=1+ 0 g =m0 g g (3.109)
The ‘optical depth’ for the intersection of objects up to redshift z is therefore
z c [* (1+2)?
7) = dJVz:—/n 2)o(z dz. 3.110
)= [ ar@= g [ @0 G (3.110)

These quantities are relevant for the discussion of QSO absorption line systems (see Chapter 16).
In this case ng(z) is the comoving number density, ¢(z) is the average absorption cross-section
of absorbers, and d.#"/dz is just the expected number of absorption systems per unit redshift.
Another application of Egs.(3.109) and (3.110) concerns the interpretation of the observed
number of gravitational lensing events caused by foreground objects. In this case, no(z) is the
comoving number density of lenses, and o(z) is the average lensing cross-section. A third appli-
cation is to the scattering of the microwave background by ionized intergalactic gas. Here, 6 (z)
is the Thomson cross-section and ny(z) is the comoving number density of free electrons.

Consider next the proper volume element at a redshift z. The proper-length element in the
radial direction is again a(f)dy, and the proper distance subtended by an angle element d? is
a(t)rdv. The proper-volume element at redshift z corresponding to a solid angle dw = d©¥? and
a depth dz is thus

< dz laor(z)]* do
Hy (1+2)E(z) (14z)? ~’

where r(z) is related to z by Eq. (3.104). Using Eq. (3.111), the total, proper volume out to redshift
z1is

d*V, = a* (1) dy do = (3.111)

r(z) 12 4.7
Vy(2) = 4ma’ (¢) rdr

Jo V1-Kr?
211 ) (sin!r=rV/T=7) (K =+1)
_ 47r 3 P (K=0) (3.112)
27ra ( r? —sinh™ ) (K=-1).

We can also use Eq. (3.111) to compute the total number of objects per unit volume. Assuming
the proper number density of objects at redshift z to be n(z) = ng(z)(1 +z)*, the predicted count
of objects per unit redshift and per unit solid angle is
d>N d*v, ¢ laor(z)]?
dzdo n(z )dzdw @) g Hy E(z)
Thus, if the z dependence of ng is known, one can use Eq. (3.113) to put constraints on cosmolog-
ical parameters by simply counting objects (e.g. galaxies) as a function of z (see Loh & Spillar
(1986) for a discussion).
Another important quantity in cosmology is the comoving distance between any two observed
objects in the Robertson—Walker metric. Suppose that these two objects (labeled & and &) are

(3.113)
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at redshifts z; and z;, and are separated by an angle o on the sky. Their comoving distances from
an observer at the origin are given by Eq. (3.102), and we denote them by y; and y», respectively.
As shown in §3.1.2, for K = +1 the comoving distance, ¥, between ] and &, is equal to the
distance on the unit sphere between two points with polar angles )| and y» and with azimuthal
angles differing by ¢. Thus

COS Y12 = COS Y1 COS X2 + sin Y| Sin 2 coS X . (3.114)
The corresponding equation for K = —1 is
cosh 12 = cosh yj cosh y, — sinh )y sinh y» cos o, (3.115)
and for K =01is
X2 = Xi + 25 — 2x1X2c08 0t (3.116)

Finally, consider the case in which « is zero (or very small). In this case, the angular-diameter
distance from & to 0, can be written as

da12 = . (3.117)
where
ri2 = fx(x12) = fk (2 — x1) = r(z2)y/ 1 = Kr*(z1) = r(z1)y/ 1 = Kr?(z2). (3.118)
For the Q4 o = 0 case this gives
dA’n:ﬁm@—g(ﬁ-fhﬂz)—m(Z—Qo—FQom) (3.119)

Hy Q(1+2)%(1+z1)

(Refsdal, 1966). Note that |da 12| # |da 21|, and that, as required, Eq. (3.119) reduces to Mattig’s
formula for z; = 0. Eq. (3.119) plays an important role in gravitational lensing, where z; and 2
are the redshifts of the lens and the source, respectively (see §6.6).

3.3 The Production and Survival of Particles

An important feature of the standard cosmology is that the temperature of the Universe was
arbitrarily high at the beginning of the Big Bang [see Eq. (3.81)] and has decreased continuously
as the Universe expanded to its present state. As we have seen in §3.1.5, the thermal history
of the Universe follows from a simple application of thermodynamics to a small patch of the
homogeneous and isotropic Universe. In this section we show that this thermal history, together
with particle, nuclear and atomic physics, allows a detailed prediction of the matter content of
the Universe at each epoch. The reason for this is simple: when the temperature of the Universe
was higher than the rest mass of a kind of charged particles, the photon energy is high enough
to create these particles and their antiparticles. This, in turn, could give rise to other kinds of
particles. For example, when the temperature of the Universe was higher than the rest mass
of an electron, i.e. kgT > mec? ~ 0.511MeV (corresponding to T ~ 5.8 x 10° K), electrons and
positrons could be generated via pair production, Y+ ¥ <> e +¢, and electronic neutrinos could be
produced via neutral current reactions, such as e +¢ < 1, + V.. When the density of the Universe
was sufficiently high, the creation and annihilation of (e,€) pairs, and the Compton scattering
between (e,€) and photons, could establish a thermal equilibrium among these particles, while
the neutrinos established such an equilibrium via their neutral current coupling to the electrons.
Consequently, the Universe was filled with a hot plasma that included 7, e, €, v, and 7., all in
thermal equilibrium at the same temperature.
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In order to maintain thermodynamic equilibrium the frequency of interactions among the var-
ious particle species involved needs to be sufficiently high. The interaction rate is I' = n(vo),
where n is the number density of particles, v is their relative velocity, and ¢ is the interaction
cross-section (which usually depends on v). As the Universe expands and the temperature drops,
this rate in general decreases. When it becomes smaller than the expansion rate of the Universe,
given by the Hubble parameter, H(t), the particles ‘decouple’ from the photon fluid, and, as
long as the particles are stable, their comoving number density ‘freezes-out’ at its current value.
Except for possible particle species created out of thermal equilibrium (e.g. axions), and for par-
ticles that have been created more recently in high-energy processes, all elementary particles in
the present-day Universe are thermal relics that have decoupled from the photon fluid at some
time in the past.

In what follows we first present a brief outline of the chronology of the early Universe, and
then discuss the production and survival of particles during a number of important epochs. Since
the early Universe was dominated by relativistic particles, Eq. (3.81) can be used to relate tem-
perature T (or energy kg7) to the cosmic time. As this section is concerned with high energy
physics, we will use the natural unit system in which the speed of light ¢, Boltzmann’s constant
kg, and Planck’s constant i = hp /27 are all set to 1. In cgs units [c] = cms™!, [#] = gem? 57!,
and [kg] = g cm? s72 K~ !. Therefore, making these constants dimensionless implies that

[energy] = [mass] = [temperature] = [time] ! = [length] !, (3.120)

and all physical quantities can be expressed in one unit, usually mass or energy. However,
they can also be expressed in one of the other units using the following conversion fac-
tors: 1MeV = 1.602 x 10 %erg = 1.161 x 10'°K = 1.783 x 10727 g = 5.068 x 101%cm~! =
1.519 x 10?'s~!. Whenever needed, the ‘missing’ powers of c, kg, and 7 in equations can be
reinserted straightforwardly from a simple dimensional analysis.

3.3.1 The Chronology of the Hot Big Bang

Since our understanding of particle physics is only robust below energies of ~ 1GeV (~ 103 K),
the physics of the very early Universe (# < 107%5) is still very uncertain. In popular, although
speculative, extensions of the standard model for particle physics, this era is characterized by
a number of symmetry-breaking phase transitions. Particle physicists have developed a number
of models which suggest the existence of many exotic particles as a result of these symmetry
breakings, and it is a popular idea that the elusive dark matter consists of one or more of such
particle species. However, it should be kept in mind that the theories predicting the existence
of these exotic particles are not well established and that there is not yet any convincing, direct
experimental evidence for their existence.

For the purpose of the discussion here, the two most important events that (probably) took
place during this early period after the Big Bang are inflation and baryogenesis. Inflation is
a period of exponential expansion that resulted from a phase transition associated with some
unknown scalar field. Inflation is invoked to solve several important problems for the standard
Hot Big Bang cosmology, and is described in detail in §3.6. Baryogenesis is a mechanism that
is needed to explain the observed asymmetry between baryons and antibaryons: one does not
observe a significant abundance of antibaryons. If they were there, their continuous annihilation
with baryons would produce a much greater gamma-ray background than observed, unless they
are spatially segregated from the baryons, which is extremely contrived. Apparently, the Universe
has a non-zero baryon number. If baryon number is conserved, this asymmetry between baryons
and antibaryons must have originated at very early times through a process called baryogenesis.
The details of this process are still poorly understood, and will not be discussed in this book (see
Kolb & Turner, 1990).
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In what follows we give a brief overview of some of the most important events that took place
in the early Universe after it had cooled down to a temperature of ~ 10'3 K. At this point in time,
the temperature of the Universe was still higher than the binding energy of hadrons (baryons and
mesons). Quarks were not yet bound into hadronic states. Instead, the matter in the Universe was
in a form referred to as quark soup, which consists of quarks, leptons and photons.

e AtT ~3x 102K (t ~ 107 s), corresponding to an energy of 200-300MeV, the quark—hadron
phase transition occurs, confining quarks into hadrons. If the phase transition was strongly
first order, it may have induced significant inhomogeneities in the baryon-to-photon ratio, and
affected the later formation of elements, a topic discussed further in §3.4. Once the transition
was complete, the Universe was filled with a hot plasma consisting of three types of (rela-
tivistic) pions (7", 7™, 77:0), (non-relativistic) nucleons (protons, p, and neutrons, n), charged
leptons (e, €, U, ; the T and T have already annihilated), their associated neutrinos (Ve, Ve,
Yy, Uy), and photons, all in thermal equilibrium. In addition, the Universe comprises several
decoupled species, such as the tau-neutrinos (v; and v;) — their coupling has to be through
their reactions with 7 and 7, and possible exotic particles that make up the (non-baryonic)
dark matter.

o AtT ~ 102K (t ~ 10~*s) the (n*, ™) pairs annihilate while the neutral pions 7 decay into
photons. From this point on the nucleons (and a small abundance of their antiparticles which
escaped annihilation) are the only hadronic species left. At around the same time, the muons
start to annihilate, and their number density becomes negligibly small as 7 drops to about
10" K. At this time, vy, and Uy, also decouple from the hot plasma, and expand freely with the
Universe.

e When T drops below 10'!' K, the number of neutrons becomes smaller than that of protons by
a factor of about exp(—Am/T), where Am ~ 1.3MeV is the mass difference between a neutron
and a proton. This asymmetry in the numbers of n and p continues to grow until the reaction
rate between neutrons and protons becomes negligible.

e AtT ~5x 10°K (¢ ~ 4s), the annihilations of (e,€) pairs begins. As the number density of
(e,€) pairs drops, v, and 7, decouple from the hot plasma. Since the (e,€) annihilations heat
the photons but not the decoupled neutrinos, the neutrinos expand freely with a temperature
that is lower than that of the photons. Because of the reduction in the number of (e,€) pairs
and the cooling of v, and ., reactions such as n+ 1, <= p+e and n+& < p+ U, are no longer
effective. Consequently, the n/p ratio freezes out at a value of about exp(—Am/T) ~ 1/10.
Note that this ratio does not change much due to beta decay of the neutrons, because the
half-time of the decay (about 10 minutes) is much longer than the age of the Universe at this
time.

e At T ~ 10°K (¢ ~ few minutes), nucleosynthesis starts, synthesizing protons and neutrons
to produce D, He and a few other elements. Since the temperature is still too high for the
formation of neutral atoms, all these elements are highly ionized. Consequently, the Universe
is now filled with freely expanding neutrinos (and possibly exotic particles) and a plasma of
electrons and highly ionized atoms (mainly protons and He™ ). However, as the temperature
continues to decrease, electrons start to combine with the ions to produce neutral atoms.

e At T ~ 4000K (t ~ 2 x 107 yr) roughly 50% of the baryonic matter is in the form of neutral
atoms. This point in time is often called the time of recombination. Because of the resulting
drop in the number density of free electrons, the Universe suddenly becomes transparent to
photons. These photons are observed today as the cosmic microwave background. From this
point on, photons, neutrinos, H, He and other atoms all expand freely with the Universe. At
around the same time, the energy density in relativistic particles has become smaller than
that in the rest mass of non-relativistic matter, and the Universe enters the matter dominated
epoch.
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Once the processes involved are known from particle, nuclear and atomic physics, it is in
principle straightforward to calculate the matter content at different epochs summarized above.
A detailed treatment of such calculations is beyond the scope of this book, and can be found
in Borner (2003) and Kolb & Turner (1990), for example. In what follows, we present a
brief discussion about the basic principles involved and their applications to some important
examples.

3.3.2 Particles in Thermal Equilibrium

As discussed above, at any given epoch, some particles are in thermal equilibrium with the hot
plasma, some in free expansion with the Universe, and others are in transition between the two
states. The number density n, energy density p, and pressure P of a given particle species can
be written in terms of its distribution function f(x,p,¢). Since the Universe is homogeneous and

isotropic f(x,p,t) = f(p,t), with p =

—an [ f(p.r) P dp. (3.121)

47r/E 1) p*dp, (3.122)
= 12

—an [ 2 st (PP, (3.123)

where the energy E is related to the momentum p as E(p) = (p* +m?)'/2. Eq. (3.123) fol-
lows from kinetic theory, according to which the pressure is related to momentum and velocity
as P = _%n(pv). Using the components of the four-momentum, we have v = pc?/E, so that
P =n(p*c*/3E).

For a particle species in thermal equilibrium

—1
F(p,0)dp = (2i)3 {exp {E(;)(t) “] j:l} Fp, (3.124)
where U is the chemical potential of the species, and 7T (¢) is its temperature at time 7. The signa-
ture, £, takes the positive sign for Fermi—Dirac species and the negative sign for Bose—Einstein
species. The factor 1/(27)? is due to Heisenberg’s uncertainty principle, which states that no
particle can be localized in a phase-space volume smaller than the fundamental element (277:)3
(recall that we use i = ¢ = kg = 1), and g is the spin-degeneracy factor (neutrinos have g = 1,
photons and charged leptons have g = 2, and quarks have g = 6).
Substituting Eq. (3.124) in Eqgs. (3.121)—(3.123) yields

g [~ (E?—m?)'2EdE

"0 =50 | expl(E— ) T] 21 (3.125)
pog = £ [7(E2—m?) PE*E (3.126)
4T 2n2 Jy expl(E—u)/T]+1° '
o  (F2_,2Y3)2
Peq:iz/ (E”—m)""dE (3.127)
612 Jm exp[(E—u)/T]£1
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Let us consider two special cases. In the non-relativistic limit, i.e. when 7' < m, the number
density, the energy density and pressure are the same for both Bose—Einstein and Fermi—Dirac
species, and can be written in the following analytic forms:

3/2
neq:g<"2i) H=m)/T (3.128)
peq=nm, P =nT. (3.129)

For a relativistic (T > m and E = p), non-degenerate (it < T') gas, the corresponding analytical
expressions are

— [§(3)/ ”2] gT? (Bose—FEinstein)
T { (3/4) [((3)/7%] ¢T3 (Fermi-Dirac), (3.130)
— (”2/ 30) gT* (Bose—FEinstein)
Pea _{ (7/8) (72/30) gT*  (Fermi-Dirac). (3.131)
Peq = Peq/3, (3.132)

where §(3) ~ 1.2021... is the Riemann zeta function of 3.

In general, in order to use Eqs. (3.125)—(3.127) to calculate the density and pressure, one needs
to know the chemical potential p. The principle for determining the chemical potential of a
species is that chemical potential is an additive quantity which is conserved during a ‘chem-
ical’ reaction (e.g. Landau & Lifshitz, 1959). Thus, if species ‘i’ takes part in a reaction like
i+ j > k+1, then u; + u; = g + 1. The values of the chemical potentials therefore depend on
the various conservation laws under which the various reactions take place. For example, since
the number of photons is not a conserved quantity for a thermodynamic system, the chemical
potential of photons must be zero. This is consistent with the fact that photons at thermal equilib-
rium have the Planck distribution. It then follows that the chemical potential for a particle is the
negative of that for its antiparticle (because particle—antiparticle pairs can be annihilated to pho-
tons). Put differently, the difference in the number density of particles and antiparticles depends
only on the chemical potential. Similar to electric charge, particle reactions are thought to gen-
erally conserve baryon number (which explains the long lifetime of the proton, of > 103* years)
and lepton number. Since the number densities of baryons and leptons are found to be (or, in the
case of leptons, believed to be) much smaller than the number density of photons, the chemical
potential of all species may be set to zero to good approximation in computing the mean energy
density and pressure in the early Universe.

There is one caveat, however. Since the chemical potential of a particle is the negative of that of
its antiparticle, it follows from Eq. (3.121) that, for fermions, their difference in number densities

is given by
3
__ 8T | > (M) (u )3
—ii="— | = . 3.133

non= s { T + T ( )
When the Universe cools to temperatures below the rest mass of the particles, all particle—
antiparticle pairs will be annihilated’ leaving only this small excess, which is zero when p = 0.
Therefore, the fact that we do have non-zero baryon and lepton number densities in the Uni-
verse today implies that i cannot have been strictly zero at all times. In the early Universe, some
physics must have occurred that did not conserve baryon number or lepton number, and that
resulted in the present-day number densities of protons and electrons. The actual physics of this

> In principle, because of the expansion of the Universe, tiny fractions of particles and antiparticles may survive, but
their number densities are negligibly small.
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baryon- and lepton-genesis are poorly understood, and will not be discussed further in this book.
Detailed descriptions can be found in Kolb & Turner (1990).

With all chemical potentials set to zero, it is evident from Eqgs. (3.125) and (3.130) that the
number density of non-relativistic particles is suppressed exponentially with respect to that of
relativistic species. This reflects the coupling to the photon fluid. When T >> m the photons
have sufficient energy to create a thermal background number density of particle—antiparticle
pairs. However, when 7" < m only an exponential tail of the photon distribution function has
sufficient energy for pair creation, causing a similar suppression of their number density. Conse-
quently, particles in thermal equilibrium with the photon gas can only contribute significantly to
the energy density and pressure when they are relativistic. Thus, to good accuracy, we can write
the total energy density, number density and pressure of the Universe, in the radiation dominated
era, as

n 4 ¢(3) 3
p(T) = %g*T , n(T)= ca gnI”, P(T)=p(T)/3, (3.134)
with
4 4
T; 7 T;
g= 2 & (> - Y @ (> : (3.135)
i€Boson T 8 i€Fermion T
3 3
T; 3 T;
Gn= 2, & (> += Y g (> . (3.136)
i€Boson T 4 i€Fermion r

Note that we have included the possibility that the temperature of a species 7; may be different
from that of the radiation background 7'. The values of g. and g , at a given time can be calcu-
lated once the existing relativistic species are identified. For example, at 7 < 1 MeV, the only
relativistic species are photons at temperature 7 and three species of neutrinos and their antipar-
ticles (all assumed to be massless) at temperature 7, = (4/ 11)1/ 3T (as we will see in §3.3.3).
Therefore g. = gy+ (7/8)(3 x 2 x g,)(T,,/T)* ~ 3.36. At higher T (earlier times) more species
are relativistic, so that the degeneracy factors are larger. Fig. 3.4 shows g, as a function of T
obtained from the standard model of particle physics. It increases from 3.36 at the present-day
temperature of 2.73K to 106.75 at T > 300GeV.

3.3.3 Entropy

An important thermodynamic quantity for describing the early Universe is the entropy S =
S(V,T). If we continue to ignore the chemical potential, the second law of thermodynamics,
as applied to a comoving volume V o< @3 (1), states that

(EWJ):%{MpUHﬂ+HTNVL (3.137)

where p is the equilibrium energy density of the gas.
Alternatively, we can write the differential of S in terms of its general form

as as

dS(V,T) = =——=dV + ——=dT. 3.138
V.T) = 55dV+ 57 (3.138)

Using Eq. (3.137) to identify the two partial derivatives, the integrability condition,

9%s 9%
—_— = 3.139
9TV — avaT’ (3-139)
yields
dpP T)+P(T

_ w ) (3.140)

dr — T
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Fig. 3.4. The statistical weights g, and g, s as functions of temperature, T, in the standard SU (3) x SU (2) x
U (1) model of particle physics.

Inserting this in Eq. (3.137) we obtain

Y [p(T)+ P(T))dT, (3.141)

as(v.7) = Zd{lp(T) + PTV} — 7

which may be integrated to show that, up to an additive constant, the entropy density, s(T) =
S(V,T)/V, is given by

s(T) = w. (3.142)

It is easy to show with the use of Egs. (3.35) and (3.140) that

ds d(sa?)

3.143
da da ’ ( )

which is the ‘entropy conservation law’, owing to the adiabaticity of the universal expansion (see
§3.1.5).

Using Eqgs. (3.131) and (3.132) the entropy density for non-degenerate, relativistic particles in
thermal equilibrium is

The entropy density of non-relativistic particles in thermal equilibrium with the photon fluid can
be expressed in terms of the entropy density of photons, s,(7'), as

seq(T) _ 3 p(T) P
sy(T) 4 py(T) (1 * p) ' G199
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Since p < py,6 the contribution of non-relativistic particles to the total entropy density is neg-
ligible. To good accuracy, therefore, the total entropy density of the Universe is obtained by
summing over all relativistic species:

2m?

s(T) = Hg*,sﬂ (3.146)

with

3 3

T; 7 T;

Ges= D & <T’> tg 2 & <T1> . (3.147)
i€Boson i€Fermion

Combining Eq. (3.146) with the entropy conservation law we see that g“T3a3 is a conserved
quantity, so that

e T T ca . (3.148)

Therefore, as long as g, remains constant, 7" o< a1, consistent with the thermodynamic deriva-

tion in §3.1.5. However, as the Universe cools, every now and then particle species become
non-relativistic and stop contributing (significantly) to the entropy density of the Universe. Their
entropy is transferred to the remaining relativistic particle species, causing T to decrease some-
what slower. An interesting application of this is the decoupling of light neutrinos. Although
neutrinos do not couple directly to the photons, they can maintain thermal equilibrium via weak
reactions such as e + € < v, + Ve, etc. At a freeze-out temperature of 7y ~ 1 MeV the interac-
tion rate for these reactions drops below the expansion rate of the Universe, and the neutrinos
decouple from the photon fluid. From this point on, their temperature will decrease strictly as
T, o< a~ !, while the photon temperature, Ty, obeys Eq. (3.148). Since the neutrinos are relativis-
tic both before and after decoupling, their freeze-out leaves g, ; invariant. Consequently, despite
being decoupled, the temperature of the neutrinos remains exactly the same as that of the pho-
tons. This changes a little time later, when the temperature has dropped to T ~ 0.51 MeV and
electrons start to annihilate and freeze-out from the photon fluid. The entropy released in this
process is given to the photons, but not to the decoupled neutrinos (who conserve their entropy
density separately). Consequently, after electron annihilation, 7; > T,,. Their ratio follows from
the entropy conservation law, according to

Ty,after N Ty,after N |:g *,5 (Tbefore) :| 1/3
8x.s (Tafter) '

= (3.149)

Tl/,aﬂer Ty,before
where we have used that 7}, after = Ty pefore = Ty,pefore- Before electron annihilation, the relativistic
species in the Universe are photons, electrons, positrons, and three flavors of neutrinos with
their antiparticles, all at the same temperature. Therefore, g, s(Thefore) = &y + (7/8)(ge + 8e +
3¢y +3g5) =2+ (7/8)(2+2+3+43) = 43/4. After electron annihilation, g, (Tifier) = gy +
(7/8)(3gv + 3gv) (Ty after/ Ty’after)gj. Substitution of these degeneracy parameters into Eq. (3.149)

yields
4 1/3
Tl/,after = (11) Ty,after . (3.150)

It is thus expected that the present-day Universe contains a relic neutrino background with a
temperature of 7, o ~ 0.71 x 2.73K = 1.95K. This difference in the temperature of the two rel-

ativistic species (neutrinos and photons) is also apparent from Fig.3.4. At T > 0.5MeV, g, ((T)
is identical to g., indicating that all relativistic particle species have a common temperature. At

6 The rest-mass density of particles should not be included as part of the equilibrium energy density of the gas, because
there is no creation or annihilation of particles.
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lower temperatures, however, electron annihilation has increased T, with respect to 7, causing
an offset of g, ¢ with respect to g..

3.3.4 Distribution Functions of Decoupled Particle Species

In §3.3.2 we discussed the distribution functions of particles in thermal equilibrium. We now
turn our attention to species that have dropped out of thermal equilibrium, and have decoupled
from the hot plasma. If particle species i decoupled at a time #;, where the subscript ‘f” stands
for ‘freeze-out’, its temperature is approximately equal to the photon temperature at that time,
i.e. T = T; = T,(tr). After decoupling, the mean interaction rate of the particle drops below the
expansion rate, and the particle basically moves on a geodesic. As we have seen in §3.1.4, the
momentum of the particle then scales as p o< a1, which is valid for both relativistic and non-
relativistic species. Since the relative momenta are conserved, the actual distribution function at
t > ty can be written as

a(t)
S(p,t —f(l),tf> . (3.151)
®1) =P
In other words, the form of the distribution function is ‘frozen-in’ the moment the particles
decouple from the hot plasma.
If a species is still relativistic after decoupling, we have E = p, so that

—1
f(p.t)dp = (2i)3 {exp L’ff;’((:f))] j:l} &p. (3.152)

Thus, the distribution function of a decoupled, relativistic species is self-similar to that of a
relativistic species in thermal equilibrium, but with a temperature

T= Tf@. (3.153)

a(r)
Note that this differs from the temperature scaling of species still in thermal equilibrium, which
is instead given by Eq.(3.148). As we discussed in §3.3.3 this explains why the present-day
temperature of the neutrino background is lower than that of the CMB.
If the species is already non-relativistic when it decouples, its energy is given by E = m +
p?/2m. Since for non-relativistic species we can ignore the +1 term, the distribution function is
given by

2
f(p,0)dp = %exp [—;n}] exp [—2‘:”] d’p (3.154)
with
2
T=T; [c;((t;))} . (3.155)

Note that Eq. (3.154) is a Maxwell-Boltzmann distribution, and that the temperature scales as
expected from kinetic theory (see §3.1.5).

As is immediately evident from substituting Eq. (3.151) in Eq. (3.121), the number density of
decoupled particles (both relativistic and non-relativistic) is given by

\13
n(t) = [Z((t:))} neq(tf) (3.156)
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so that n o< a3, as expected. For relativistic species, we can contrast this number density against

that of the photons:

n(t) e (TN [a(t)]’  geir 82s(T)
nﬂﬂ2(T> LOJ 2 5T e

with g = g for bosons and ger = (3/4)g for fermions, where we have used that the pho-
ton temperature, 7, scales as in Eq.(3.148). This illustrates that the number density of any
relic background of relativistic particles is comparable to the number density of photons. Note
that Eq. (3.156) remains valid even if the particles become non-relativistic some time after
decoupling.

3.3.5 The Freeze-Out of Stable Particles

Having discussed the distribution functions of particles before and after decoupling, we now turn
to discuss the actual process by which a species decouples (‘freezes out’) from the hot plasma. We
first consider cases where the particles involved are stable (i.e. their half-time of decay is much
longer than the age of the Universe), and derive their relic abundances. We distinguish between
‘hot’ relics, which correspond to species that decouple in the relativistic regime, and ‘cold’ relics,
whose decoupling takes place when the particles have already become non-relativistic.

The evolution of the particle number density is governed by the Boltzmann equation, which,
for a given species ‘i’, can be written as

dfi

“_ail, (3.158)

where C;[f] (called the collisional term) describes the change of the distribution function of
species ‘i’ due to the interactions with other species. Since the Universe is homogeneous and
isotropic, f; depends only on the cosmic time, #, and the value of the momentum, p o< a! (). It
then follows from Eq. (3.158) that

i
ot

where H = d/a is the Hubble parameter. Integrating both sides of Eq. (3.159) over momentum
space, and using the definition of n;, we obtain

dn; " 3

5+3H(r)n,-=/ci[f]d p. (3.160)
Here the second term on the left-hand side (often called the Hubble drag term) describes the
dilution of the number density due to the expansion of the Universe, while the right-hand side
describes the change in number density due to interactions. Note that in the limit C;[f] — O the
number density scales as n; o< a3, as expected.

In general, the collisional term C;[f] depends on f; and on the distribution functions of all other
species that interact with ‘7’. If the cross-sections of all these interactions are known (from rele-
vant physics), we can obtain the functional form of C;[f]. Species that do not have any channel
to interact with ‘i* collisionally can still affect the distribution function of ‘i’ via their contribu-
tions to the general expansion of the Universe. Thus, the evolution of the matter content of the
Universe is described by a coupled set of Boltzmann equations for all important species in the
Universe, which can in principle be solved once the initial conditions are given.

For illustration, consider a case in which species ‘i’ takes part only in the following two-body
interactions:

af;
H(t)p£ =Gilf], (3.159)

itjeatb. (3.161)
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If the production and destruction rates of ‘i due to this reaction are ¢t (7") and (T), respectively,
then Eq. (3.160) can be written as

dn,-
dr

The meaning of this equation is clear: particles of species ‘i’ are destroyed due to their reactions
with species ‘j’, and are created due to the reactions between species ‘a’ and ‘b’. A similar
equation can be written for ‘j’. Subtracting these two equations gives (n; —n j)a3 = constant.
Now suppose that ‘@’ and ‘b’ are in thermal equilibrium with the general hot plasma, so that their
distribution functions are given by Eq. (3.124) with T, = T, = T, while ‘i’ and ‘j’ are coupled to
the hot plasma through their reactions with ‘a’ and ‘b’. We define an equilibrium density for ‘/’,
Njeq> and an equilibrium density for ‘j’, 1 ¢q, 0 that

B(T)njeqnjeq = (T )nany, . (3.163)

+3H(t)n; = o(T )ngny — B(T)nin; . (3.162)

Thus defined, n; ¢q and n; ¢4 are just the number densities of ‘i’ and ‘;” under the assumption that
they are in thermal equilibrium with the hot plasma. Consider the case in which ‘;j” and ‘b’ are
the antiparticles of ‘i’ and ‘a’, respectively. As long as the chemical potential of ‘i’ is small, the
number densities of ‘> and ‘;j” will be virtually identical [see Eq. (3.133)]. In what follows we

therefore set n; = n;, but note that the discussion is easily extended to cases where n; # n; by

3

using that (n; —n j)a = constant. With these definitions, we can write the rate equation (3.162) as

dn,'
E+3H(t)ni:ﬁ(T)(nieq—n%). (3.164)
Since the entropy density s is proportional to a~> (see §3.3.3), it is convenient to define both n;
and 7; ¢q in units of s:
V=l Y= (3.165)
s ’ s

Using ds/dt = —3H's, Eq. (3.164) becomes

dy;

dr

If we now introduce the dimensionless variable, x = m; /T, and use the fact that, in the radiation
dominated era, f o< g o< T2 (ort = fmXx2, where 7, is the cosmic time when x = 1), the rate
equation can be written in the following form:

x A% T (%
Yi,eqa__H(x) [<E,eq> _1‘| ’ (3.167)

= ﬁ(T)S(T)(Yi,zeq_Yiz)' (3.166)

where T'(x) = 7 ¢q(x)B(x) and H = (2)~" = (2tx?)~" (which follows from a o< ¢'/2).

Given a particle species’ rest mass m; and its interaction cross-section (7)) = (ov)(T), ther-
mally averaged over all reactions in which ‘i° partakes, the rate equation (3.167) can be solved
for ¥;(x) numerically. The initial conditions follow from the fact that for x < 1 the solution is
given by Y; = Y; ¢q. Fig. 3.5 shows the solutions of ¥; thus obtained for different values of B [here
assumed to be constant, (T) = By]. A larger interaction cross-section (larger f3p) implies that
the species can maintain thermal equilibrium for a longer time. As long as 3 is such that decou-
pling occurs in the relativistic regime (x < 1), the final freeze-out abundance will be comparable
to that of the photons [see Eq. (3.157)], and depend very little on the exact value of f3y. For suffi-
ciently large B, the particles remain in thermal equilibrium well into the non-relativistic regime
(x > 1), causing an exponential suppression of their final freeze-out abundance. In this regime
the relic abundances are extremely sensitive to 8, and thus to the exact epoch of decoupling.
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Fig. 3.5. The solution of Eq.(3.167) assuming a constant annihilation cross-section; f = By (dashed
curves). The solid curve shows the equilibrium abundance.

In what follows we present a simple, but relatively accurate, estimate of the relic abundances of
various particle species. Rather than solving Eq. (3.167), which needs to be done numerically or
by other approximate methods, we make the assumption that freeze-out occurs at a temperature
Tt, corresponding to x¢, when I'/H = 1, and that the relic abundance is simply given by ¥;(x —
o) = Y] eq(xr). Using Egs. (3.128) and (3.130) for n; ¢q, and Eq. (3.146) for s, we have

_ [ (45803)/21)[gien/-s(x)]  (x<<)
Fieal®) = { (90/2) ) g g2 35 1), (3109

where g; ot = g; for bosons and g; i = (3/4)g; for fermions. The freeze-out temperature follows
from I"(xg) = n; eq(x¢) B (x¢) = H(x¢). From Eq. (3.61) we have that in the radiation dominated era
H?(t) = (8nG/3)p;(t). Substitution of Eq. (3.134) then gives

_(mimp\2  [4m3g.(x)
H(x)_( . )\/ . (3.169)

where mp; = G~'/2 is the Planck mass in the natural units used here. Our definition of freeze-out
then yields

_ [A58() it

nl 2 8x,s (x¢)

~1/20 _ [ 45 & . 1 1
xp e 39,76 \/mmplm,ﬁ(xf) (xg>1). (3.170)

Note that since x; appears on both sides of these equations, they typically need to be solved
numerically.

Let us first consider the case of hot relics that have remained relativistic to the present day, i.e.
their rest mass m; < Ty = 2.4 x 10~*eV. Its energy density follows from Eq. (3.131), which can

Xg mpym; B(xg)  (xp << 1)
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be written in terms of the photon energy density, as is done in Eq. (3.157) for the number density.
Expressing this energy density in terms of the critical density for closure, we obtain

Q‘th — gi,eff |:g*,s(x) :|4/3Q th. (3171)
b 2 g*.s(xf) "

Since gy 5(x) < g« s(x¢), and since Qyﬁohz =2.5x 107 [see Eq. (3.65)], we immediately see that
a relic particle that is still relativistic today (e.g. zero mass neutrinos) contributes negligibly to
the total energy density of the Universe at the present time.

Next we consider the case of weakly interacting massive particles, usually called WIMPs.
Examples of WIMPs are massive neutrinos and stable, light supersymmetric particles. Note that
WIMPs can be either hot or cold, depending on whether xf < 1 or xy > 1. The present-day
mass density of massive relics is p; o = m;Y; eq(Xt)s0, With so the present-day value of the entropy
density. After electron annihilation, g, s =24 (7/8) x 3 x2x 1 x (4/11) = 3.91. Substituting
this in Eq. (3.146) and using Ty = 2.73K gives so = 2,906cm 3. For hot relics, we then obtain

Qioh? ~ 7.64 x 102 [ Bioff } (ﬂ) . (3.172)
' Grs(xe) | \eV

This abundance depends only very weakly on the exact moment of freeze-out, x¢, reflecting the

fact that ¥;(x) is virtually constant for x < 1. Since Qo> < 1, we obtain a cosmological bound

to the mass of hot relics,

(3.173)

m; < 13.1eV [g*‘(xf)} .

8i eff

For massive neutrinos, g.(x;) = 43/4 and g = 6/4 (assuming g; = 2 to account for
antiparticles), the limit is m; < 93.8eV.

Finally we examine cold WIMPs, which are considered to be candidates for the cold dark
matter. Solving Eq. (3.170) for e, and substituting the result in Eq. (3.168) gives

() = 45 x et B (o)~
Ytﬁeq()—\/;m[ ol B(xp)] (3.174)

Using the present-day entropy density sg we obtain a density parameter for cold relics:

-1
Qi oh? ~ 0.86—— [ B(xr) 2] . (3.175)
' gus(xr) [1019GeV

Contrary to the case of hot relics, Qi,oh2 now depends strongly on the interaction cross-section,
owing to the exponential decrease of Y ¢q(x) in the non-relativistic regime. As an example, con-
sider a (hypothetical) stable neutrino species with m; > 1 MeV but less than mz ~ 100GeV (the
mass of the Z boson). Because of its large mass, x; > 1 and its relic abundance follows from
Eq. (3.175). For neutrinos, the annihilation rate can be approximately written as

2 _
B(x) ~ EGIZ:m,-zx b (3.176)

with Gp the Fermi coupling constant, and ¢, a constant depending on the type of neutrinos
(‘Dirac’ or ‘Majorana’). The value of b is determined by the details of the annihilation processes
involved, but is typically of the order unity. Substituting Eq. (3.176) in Eq. (3.175) yields

3.95 Xt [m,- }—2
o g*7s(xf) GeV

Qi 0k ~ (3.177)
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For Dirac-type neutrinos ¢y ~ 5 and b = 0 (Kolb & Turner, 1990). Taking g; = 2 (to also account
for the antiparticles) and g, ~ 60 at around the time of freeze-out, and solving Eq. (3.170) for
Xr gives

Xt~ 17.8 4 3In(m;/ GeV), (3.178)
so that
. -2 m;
Q. ol ~ 1. 2( i ) [1 171 ( i )} 17
0 82 (G +0.17In (& (3.179)

The cosmological bound, Qoh2 < 1, to the mass of massive neutrinos is thus
m; > 1.4GeV. (3.180)

Note that £; o decreases with increasing particle mass. This reflects the fact that the annihilation
cross-section in Eq. (3.176) increases as miz, so that more massive species can stay in thermal
equilibrium longer, resulting in a lower freeze-out abundance. The cross-section will not continue
to grow as ml2 indefinitely, however. For particles with m; > mz ~ 100GeV the cross-section
actually decreases with particle mass as m;z. Using the same argument as above and inserting

the appropriate numbers, we find

m \2
Qi.ohzz(ﬁ> . (3.181)

Therefore, the cosmological bound to the mass of such species is
m; < 3TeV. (3.182)

Fig. 3.6 summarizes the relation between the WIMP mass (assumed to interact as a Dirac-type
neutrino) and its relic contribution to the cosmological density parameter. At myimp < MeV the
WIMPs produce ‘hot’ relics for which Qwimph2 o< mwimp.7 At particle masses above ~ 1 MeV,
decoupling occurs in the non-relativistic regime, resulting in ‘cold’ relics for which Qwimph2 oc
V;fmp. Finally, for particle masses above that of the Z boson (myimp > 100GeV) the scaling
changes to Qwimphz oc m%vimp.
mological density parameter (0.1 < Qoh? < 1.0), we find that there are only three narrow mass
ranges of WIMPs allowed, at ~ 30eV, ~ 2GeV and ~ 2TeV (see Fig. 3.6). Note, however, that
these constraints are only valid under the assumption that the WIMPs have the same interaction
cross-sections as neutrinos. Since the nature of the dark matter particles is still unknown, there are
large uncertainties regarding the possible interaction cross-sections. Consequently, the observa-
tional constraints on Qyh” currently only constrain the combination of interaction cross-section
and WIMP mass, and large ranges of WIMP masses are still allowed.

m

Combining these results with observational constraints on the cos-

3.3.6 Decaying Particles

So far we have discussed the freeze-out of stable particles (those with a lifetime much larger
than the age of the Universe) and their cosmological consequences. For unstable particles, the
situation is different. In particular, if massive particles decay into photons and other relativistic
particles, they will release energy into the Universe, and depending on how effectively this energy
is thermalized, the decay may produce a radiation background, increasing the entropy of the
Universe. Consider a heavy particle, ‘%’, with mass mj, and with a mean lifetime 7, which decays

7 When their mass is this low, one normally would not speak of WIMPs, but of weakly interacting particles instead. For
brevity, we also refer to these particles as WIMPs in Fig. 3.6.
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Fig. 3.6. Cosmological constraints on the mass of weakly interactive dark matter particles under the
assumption that they interact as a Dirac-type neutrino. The solid curve shows the predicted cosmologi-
cal density parameter of the WIMPs as a function of WIMP mass, while the shaded area roughly brackets
the observed range of the cosmological density parameter. The mass ranges in which the particles make up
‘hot” and ‘cold’ dark matter are indicated.

into light particles while it is non-relativistic. The number of decay events per proper volume at
any time ¢ is ny,(t) /7, with ny,(r) given by

dnh
dt

where, as an example, we assume that ‘A’ takes part in the reaction 2+ j <= a+ b in addition to
the decay. Without implicitly solving Eq. (3.183), we can directly infer the evolution of ny(z) at
two extremes. At early time when the reaction rate (~ fn;) is higher than both the decay rate
(1/13,) and the expansion rate (H), the species ‘A’ has the equilibrium abundance, and basically
behaves as stable particles. At later times, when the right-hand side of Eq. (3.183) is dominated
by decay, it is easy to show that

+3H(t)nh = a(T)nanbfﬁ(T)nhnjfnh/Th, (3.183)

-3
a(r)
n(t) =) | L] exp(-1/3).
a (t D )
where tp is the time when the decay becomes more important than other reactions. If the rest mass
of the decaying particles is thermalized, then the entropy density per unit comoving volume (see

§3.1.5) increases with time as

(3.184)

d (nhmha3) B pha3 g

ds =— 3.185
T T 7, ( )
where p;, = myny,. Using Egs. (3.134) and (3.146), we have
ds 3 dr
L _28&md (3.186)

S _4g*75 Pr Th’
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where p; is the total energy density in relativistic particles. The entropy of the Universe can
therefore be increased significantly if p,(7,) > pr(73), i.e. if the Universe is dominated by species
‘h> at the time of decay. Since pj, o< a~> while p; o a~*, we can define a time of equality for
species ‘h’ by pr(feq,n) = Ph(teq,n), and express the relative increase in p; due to the decay of ‘A’
in terms of the ratio of ., to the decay time 7,:

pr pe(m)  altegn)

Apr  pu(m)  alm) ( T )2/3, (3.187)
teq.h .

Therefore, any species with a decay time feq 4 < T < fo can have caused a significant increase
of pr. Such an increase can have profound impacts on the evolution of the Universe. If it occurs
before radiation—matter equality it may cause a delay in the time 7.y when the Universe eventually
becomes dominated by matter. Since perturbations cannot grow before the Universe becomes
matter dominated, as we will see in the next chapter, such a particle decay can have a significant
impact on the development of large-scale structure. An increase in p; also causes the Universe
to expand faster in the period 7, <t < feq, affecting the production of other particle species
during that era. For example, as we will see in the next section, the abundance of helium can be
significantly affected if the decay occurs before primordial nucleosynthesis.

If the decay product contains photons, there are additional stringent limits on the mass and
lifetime of the decaying particle. If the lifetime were comparable to the present age of the Uni-
verse, we would observe a strong radiation background in X-ray and gamma-ray produced by
the decay. The lack of such background requires that either 7, > 7o (i.e. the particle is almost
stable) or that the decay occurs at a time when the Universe is still opaque to high-energy pho-
tons (so that they can be down-graded by scattering with matter). Another stringent constraint
comes from the fact that the observed CMB has a blackbody spectrum to a very high degree of
accuracy. This requires the decay occur at a time when high-energy photons can be effectively
thermalized (see §3.5).

3.4 Primordial Nucleosynthesis

We all know that the Universe contains not only hydrogen (whose nuclei are single protons) but
also heavier elements like helium, lithium, etc. An important question is therefore how these
heavier elements were synthesized. Since nuclear reactions are known to be taking place in
stars — for example, the luminosity of the Sun is powered mainly by the burning of hydrogen
into helium — one possibility is that all heavier elements are synthesized in stars. However, the
observed mass fraction of helium is roughly a constant everywhere in the Universe, suggesting
that most of the helium is in fact primordial. In this section we examine how nucleosynthesis
proceeds in the early Universe.

3.4.1 Initial Conditions

All nuclei are built up of protons and neutrons. Before we explore the nuclear reactions that syn-
thesize deuterium, helium, lithium, etc., we therefore examine the abundances of their building
blocks. Protons and neutrons have a very comparable rest mass of ~ 940MeV, which implies that
they become non-relativistic at very early times (f ~ 10~%s, 7 ~ 103 K). Down to a temperature
of ~ 0.8 MeV they maintain thermal equilibrium through weak interactions like

pte—n+v., n+e—p+r;. (3.188)



140 Cosmological Background

In thermal equilibrium, their number densities follow from Eq. (3.128):

T\3/2 B
Mnp = (m;; ) exp {—m"’PT“ P} (3.189)

where we have used that both protons and neutrons have two helicity states (g, = g, = 2). Writing
the mass difference as Q = m, —m;, = 1.294MeV, and using that m, / myp =~ 1, we obtain the ratio
between the number densities of protons and neutrons in thermal equilibrium:

LI G O Rl U WU
np—exp( T+ T >~exp< T)’ (3.190)

where Uy — [y = Ue — Uy ~ 0 (see §3.3). When T > 1010K the reactions (3.188) go equally fast
in both directions and there are as many protons as neutrons. When the temperature decreases
towards ~ 1 MeV, however, the number density of neutrons starts to drop with respect to that of
protons, because neutron is slightly more massive. If thermal equilibrium were to be maintained,
the ratio would continue to decrease to very small values. However, as we have seen in §3.3.3,
at about the same temperature of ~ 1 MeV, neutrinos start to decouple. Therefore, the rate of
the weak reactions (3.188) is no longer fast enough to establish thermal equilibrium against the
expansion rate of the Universe, and the ratio n,/n, will eventually ‘freeze out’ at a value of
~ exp(—1.294/0.8) ~ 0.2. However, neutrons are unstable to beta decay,

n—pt+e+re, (3.191)

so that even after freeze-out the neutron-to-proton ratio continuous to decrease. If we define the
neutron abundance as

Np
X, = 3.192
= (3.192)
then it evolves due to the neutron decay as
t
Xn o< exp {—] , (3.193)
Tn

where 7, = (887 +2) s is the mean lifetime of neutrons. The main reason that the present-day
Universe contains a large abundance of neutrons is that, shortly before the Universe reaches
an age t = T,, most neutrons have already ended up in helium nuclei (which stabilizes them
against beta decay due to Pauli’s exclusion principle) through the process of nucleosynthesis to
be described below.

3.4.2 Nuclear Reactions

Nuclei can form in abundant amounts as soon as the temperature of the Universe has cooled down
to temperatures corresponding to their binding energy, and the number densities of protons and
neutrons are sufficiently high. For a (non-relativistic) species with mass number A and charge
number Z [such a species will be called A(Z), and contains Z protons and A — Z neutrons], the
equilibrium number density can be obtained from Eq. (3.128):

7N\ 32 -
na = ga <n12/:'c) exp (mAT“A> . (3.194)

The chemical potential L4 is related to those of protons and neutrons as

Lia = Zp + (A —Z) (3.195)
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which allows us to rewrite Eq. (3.194) as
=er (%0) en () fon ()] [ee ()] oo

Writing exp(up/T) and exp(u,/T) in terms of the proton and neutron mass densities given by
Eq. (3.189), respectively, and defining the nucleon mass my = ma /A = my, ~ m,, we obtain

_ g (T A=)/ Ba
na = A npmy, r exp T ) (3.197)
where
Ba =Zmp+ (A —Z)my —mp (3.198)

is the binding energy of the species A(Z). Next we define the ‘mass fraction’ or ‘abundance’ of
nucleus A as
A
X, =2 (3.199)
Ny

Here ny, = ny +np + X;Aina; is the number density of baryons in the Universe, with the sum-
mation over all nuclear species so that }; X4 ; = 1. Substituting Eq. (3.197) in Eq.(3.199) we
obtain

A—1
_8A 52 4¢(3) ZoA—z. a1 (MN)3(1-4)/2 Ba
Xa =524 [m XZxA % (7) exp (=) - (3.200)

where 1 = n,/ny is the present-day baryon-to-photon ratio. Since ny = [2¢(3)/m*]T? [see
Eq.(3.130)], and Ty = 2.73 K, we have

N =np/ny ~2.72 x 1078Qy oh?, (3.201)

where €y is the present-day baryon density in terms of the critical density for closure.
Eq. (3.200) reveals that species A(Z), with A > 1, can only be produced in appreciable amounts
once the temperature has dropped to a value T given by

|Ba|
(A—1) [|Inn|+ 3In(mn/T)]

The binding energies of the lightest nuclei, such as deuterium and helium, are all of the order of
a few MeV, corresponding to a temperatures of a few x 10'°K. However, because of the small
number of baryons per photon (1010 <nNg 1072, or, in other words, the high entropy per
baryon, their synthesis has to wait until the Universe has cooled down to temperatures of the
order of (1 — 3) x 10°K.

At such low temperatures, however, the number densities of protons and neutrons are already
much too low to form heavy elements by direct many-body reactions, such as 2n -+2p — “He.
Therefore, nucleosynthesis must proceed through a chain of two-body reactions. The dominant
reactions in this chain are:

Ta ~

(3.202)

p(n,y)D (3.203)

D(n,y)°H, D(D,p)*H (3.204)

D(p,7)*He, D(D,n)*He, *H(p,n)*He, *H(,eV.) He (3.205)
*H (p,y)*He, *H(D,n)*He, *He(n,y)*He, *He(D,p)*He, (3.206)
23He (,2p)*He, "Li(p, )2*He (3.207)

“He °H,y) "Li, “He (*He,y)"Be, "Be(e,v.) Li. (3.208)
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Here the notation X (a,b)Y indicates a reaction of the form X +a — Y + b. Since the cross-
sections for almost all these reactions are accurately known, the reaction network can be
integrated numerically to compute the final abundances of all elements.

Note that the reaction network does not produce any elements heavier than lithium. This is a
consequence of the fact that there are no stable nuclei with atomic weight 5 or 8. Since direct
many-body reactions at earlier epoch are very inefficient in producing heavy elements, we can
conclude that elements heavier than lithium are not produced by primordial nucleosynthesis.
Indeed, as we will see in Chapter 10, heavy elements can be synthesized in stars where the
density of helium is so high that a short-lived 8Be, formed through 4He-*He collisions, can
quickly capture another “He to form a stable carbon nucleus (!>C), thus allowing further nuclear
reactions to proceed.

Inspection of the reaction network of primordial nucleosynthesis given above reveals that it
can only proceed if the first step, the production of deuterium, is sufficiently efficient. Since
deuterium has the lowest binding energy of all nuclei in the network, its production serves as a
‘bottleneck’ to get nucleosynthesis started. The production of deuterium through p(n,y)D has a
rate per free neutron given by

= (4.55x10"cm’s ")n,

3
T _
~ 2.9 x 10*X,Qy oh* <1010K) s7h, (3.209)

which is much larger than the expansion rate H ~ (T /10'°K)?s~!. Therefore, for temperatures
T>5x 108 K, deuterium nuclei are always produced with the equilibrium abundance:

-3/2 2.22MeV
Xp = 16.4nX XN (@> exp <Te> .

- (3.210)

From this we see that large amounts of deuterium are only produced once the temperature drops
to Tp ~ 10°K [see also Eq. (3.202)]. This occurs when the Universe is about 100 seconds old,
and signals the onset of primordial nucleosynthesis. The subsequent reaction chain proceeds
very quickly, because at T ~ Tp all nuclei heavier than deuterium can possess high equilibrium
abundances. However, nuclei heavier than helium are still rare because of the instability of nuclei
with A =5 and A = 8, and because the temperature is already too low to effectively overcome the
large Coulomb barrier in reactions like “He(*H,7)’Li and “He(*He, y)’Be. As a result, almost
all free neutrons existing at the onset of nucleosynthesis will be bound into *He, the most tightly
bound species with A < 5. The mass fraction of “He can therefore be approximately written as
4(ny/2) 2(nn/np)p

Y =Xy & - , 3211
“He nn+np, 14 (ng/np)p ( )

where (n,/np)p is the neutron-to-proton ratio at 7 = Tp.

3.4.3 Model Predictions

Once the relevant reactions are specified and their cross-sections are given, the nucleosynthe-
sis reaction network can be integrated forwards from the initial conditions at early times to
make detailed predictions for the abundances of all species. This was first done with a com-
plete network by Wagoner et al. (1967), and subsequent work using updated cross-sections and
modernized computer codes (e.g. Wagoner, 1973; Walker et al., 1991; Cyburt et al., 2008) has
modified their conclusions rather little. Detailed calculations show that the bulk of nucleosyn-
thesis occurs at t =~ 300s (T ~ 0.8 x 10°K = 0.07MeV), in agreement with the qualitative
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Fig. 3.7. Primordial abundances of light elements as a function of the baryon-to-photon ratio, 1. The
line thicknesses in each panel reflect the remaining theoretical uncertainties, while the vertical shaded
band shows the range of 1 consistent with the WMAP measurements of fluctuations in the microwave
background. [Courtesy of R. Cyburt; see Cyburt et al. (2008)]

arguments given above. At this point in time, the neutron-to-proton ratio n,/n, is about 1/7.
Using Eq. (3.211) this implies a final abundance of primordial “He of

Yy = Xag ~ 1/4. (3.212)

Observations of the mass fraction of helium everywhere and always give values of about 24%,
which would be very difficult to understand if such an abundance were not primordial. This
prediction (3.212) is therefore considered a great success of the standard Big Bang model.

The primordial abundances predicted by an updated version of the code of Wagoner et al.
(1967) are shown in Fig.3.7. Note that the abundances of deuterium and 3He are about three
orders of magnitude below that of 4He, while that of "Li is nine orders of magnitude smaller; all
other nuclei are expected to be much less abundant. The predicted abundances of light elements
depend on three parameters: the baryon-to-photon ratio, 17, the mean lifetime of the neutron, T,,
and g.(T ~ IOIOK), which measures the number of degrees of freedom of effectively massless
particles at the relevant temperature 7" ~ 10'9K [see Eq. (3.135)]. Given the discussion earlier
in this section, we can understand the sensitivity of the abundances to all these parameters.

As 7 increases (|Inn| decreases), nucleosynthesis of D, *He and 3H starts slightly earlier
[see Eq.(3.202)]. As a result, the synthesis of “He commences at an earlier epoch when the
depletion of neutrons by beta decay is less significant, and so more neutrons are bound into
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4He. This explains why the “He abundance increases with 7). Since the age of the Universe
at temperature 7p is smaller than 7,, the neutron-to-proton ratio decreases only slowly at the
time when nucleosynthesis begins. Therefore, the 11-dependence of the “He abundance is weak.
However, since the burning rates of D and *He are proportional to their equilibrium abundances,
which increase with 1 as X5 o< n4~! [see Eq. (3.200)], a larger baryon-to-photon ratio results in
a smaller abundance of these two nuclei. The more complex behavior of the “Li abundance is
a result of competition between the formation and destruction reactions in the network. Direct
formation dominates at small 77, and formation via ’Be dominates at large 7).

The neutron mean lifetime affects the predicted helium abundance by influencing the num-
ber density of neutrons at the onset of nucleosynthesis. An increase of 7, leads to an increase
in the number of neutrons and so to an increase in Y,. In the relevant range of 1, AY, ~
2 x 107*(At,/15), implying that the uncertainty in Y, arising from that of 7, is quite small.

Finally, substituting Eq. (3.134) in Eq. (3.80), and using that p, o< a~*, one finds

45 \V*
t:<167t3Gg> T72. (3.213)

Since H = (2¢)!, the expansion rate H o \V8x T2. Consequently, an increase of g, leads to a
faster expansion rate for given 7. This raises the temperature at which the reaction rates equal
the expansion rate, thus increasing the neutron-to-photon ratio at ‘freeze-out’. Consequently, the
predicted “He abundance increases with increasing g.. In the relevant range of 1, AY, ~0.01Ag,.
Therefore, the abundance of primordial helium provides a stringent constraint on the number of
relativistic species at 7 > 10°K. The standard model of primordial nucleosynthesis assumes
these species to be photons and three species of massless neutrinos.

3.4.4 Observational Results

The predictions of primordial nucleosynthesis are of vital importance in the standard cosmology,
and therefore much effort has been devoted to the observational determination of the primor-
dial abundances of the light elements. Such determination can be used not only to constrain
the number of relativistic species at the time of nucleosynthesis, but also to constrain 17 and
so the number density of baryons in the Universe through Eq. (3.201). Unfortunately, precise
determination of the primordial abundances is far from trivial. They usually rely on the emis-
sion or absorption of gas clouds due to the ions of the element in consideration. Turning this
into an abundance often requires careful modeling of the properties of the observed cloud. An
even greater problem comes from the fact that the material we observe today may have been
processed through stars, so that (often uncertain) corrections have to be applied in order to derive
a ‘primordial’ abundance. In the following we give a brief summary of the present observational
situation.

e Helium-4: Because the abundance of helium is large, it is relatively easy to determine. Most
measurements are made from HII clouds where the gas is highly ionized, and the abundance
of both helium and hydrogen can be inferred from the strengths of their recombination lines.
Since *He is also synthesized in stars, some of the observed “He may not be primordial. In
order to reduce this contamination, it is desirable to use metal-poor clouds, as stars which
produce the “He contamination also produce metals. Observations have been made for clouds
with different metalicities, and an extrapolation to zero metalicity gives ¥, = 0.24£0.01 (e.g.
Fields & Olive, 1998). From Fig. 3.7 we see that this observational result requires n = (1.2 —
8) x 1019, Since the predicted Y, depends only weakly on 1, extremely precise measurements
are needed to give a more stringent constraint.
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e Deuterium: Because of its strong dependence on 1], the measurement of the primordial deu-
terium abundance is crucial in determining €2y 9. Accurate determinations of the deuterium
abundance have been obtained from UV absorption measurements in the local interstel-
lar medium (ISM). The deuterium-to-hydrogen ratio (in mass) is found to be [D/H]ism ~
1.6 x 1073 (e.g. Linsky et al., 1995). Since deuterium is weakly bound, it is easy to destroy but
hard to produce in stars. Therefore, this observed ISM value represents a lower limit on the pri-
mordial abundance. An alternative estimate of the deuterium abundance can be obtained from
the absorption strength in Lyman-a clouds along the line-of-sight to quasars at high redshift.
Since these high-redshift clouds are metal poor and perhaps not yet severely contaminated by
stars, the deuterium abundance thus derived may actually be close to the primordial one. The
observational data are still relatively sparse. The values of [D/H] obtained originally ranged
from ~ 2.4 x 1073 (Tytler et al., 1996) to ~ 2 x 10~* (Webb et al., 1997) but now seem to
have settled at 2.82 +0.53 x 107> (Pettini et al., 2008). This agrees well with the value of 1
inferred from WMAP data on microwave background fluctuations.

e Helium-3: The abundance of 3He has been measured both in the solar system (using mete-
orites and the solar wind) and in HII regions (based on the strength of the 3He* hyperfine
line, the equivalent of the 21 cm hyperfine line of neutral hydrogen). The abundance inferred
from HII regions is [*He/H] = (1.3 — 3.0) x 1073 (e.g. Gloeckler & Geiss, 1996). A similar
abundance, [*'He/H] = (1.44+0.4) x 107>, is obtained from the oldest meteorites, the carbona-
ceous chondrites. Since these meteorites are believed to have formed at about the same time
as the solar system, the observed abundance may be representative of pre-solar material. The
abundance of *He in the solar wind has been determined by analyzing gas-rich meteorites and
lunar soil. Because D is burned to *He during the Sun’s approach towards the main sequence,
the observed *He in the solar system may be a good measure of the pre-solar sum (D + 3He).
All the measurements are consistent with [(D +3He)/H] ~ (4.140.6) x 107>. Although He
can be reduced by stellar burning, it is much more difficult to destroy than deuterium and the
reduction factor is no more than a factor of 2. The measurements in the solar system therefore
give an upper limit on the primordial abundance of [(D +*He)/ H], < 104, corresponding to
alower limit of 7 >3 x 10710,

e Lithium-7: Estimates of the ’Li abundance come from stellar atmospheres. Since "Li is
quite fragile, it can be depleted by circulation through the centers of stars. The observa-
tional estimates therefore vary from one stellar population to another. Since mass circulation
(convection) does not go as deep in metal-poor stars as in metal-rich ones, it is desirable
to use metal-poor stars where the depletion of Li from the atmosphere is expected to be
smaller. There have been attempts to observe 'Li lines in the atmospheres of old stars with
very low metalicity (e.g. Spite & Spite, 1982), from which the primordial ’Li abundance was
originally inferred to be ["Li/H], ~ (1.1£0.4) x 10719, More recent attempts paying close
attention to systematics give values in the range 1.0 to 1.5 x 107'° (Asplund et al., 2006).
From Fig. 3.7 we see that this abundance is inconsistent by a factor of about 4 with the value
['Li/H]p, = 5.24£0.7 x 10~ '% inferred from the five-year WMAP data on fluctuations in the
microwave background.

At the present time, Big Bang nucleosynthesis is essentially a parameter-free theory. Improve-
ments in experimental determinations of the neutron lifetime have shrunk the uncertainties so that
they are no longer significant for this problem; the standard model of particle physics is now suf-
ficiently constrained by accelerator experiments that the number of light particle species present
at nucleosynthesis cannot differ significantly from the standard value; and WMAP measurements
of the power spectrum of the cosmic microwave background lead to a photon-to-baryon ratio esti-
mate, 1 = 6.2340.17 x 10719 (see §2.10.1). With these parameters the theory gives quite precise
predictions for all the light element abundances. These agree with observational estimates of the
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observed abundance of “He and D, where the first is only weakly constraining because of its
logarithmic dependence on parameters, but the second can be considered a major success. The
situation with *He is too complex for a meaningful comparison to be possible, and the results
for "Li appear to disagree with observation. While this discrepancy may still reflect observa-
tional difficulties in inferring the primordial abundance of "Li, it may also be an indicator of
unexpected physics in the early Universe. Notice that independent of inferences from microwave
background observations, the baryon density required for successful primordial nucleosynthesis
is much too small to be consistent with the large amounts of dark matter required to bind groups
and clusters of galaxies, thus providing an independent argument in favor of non-baryonic dark
matter (see §2.5).

3.5 Recombination and Decoupling

Immediately after primordial nucleosynthesis (when 7' ~ 0.1 MeV ~ 10° K) the Universe consists
mainly of the following particles: hydrogen nuclei (i.e. protons), “He nuclei, electrons, photons,
and decoupled neutrinos. Since the temperature is already lower than m. = 0.51 MeV, baryons
and electrons can all be considered non-relativistic. All the particles (except the decoupled neu-
trinos) interact through electromagnetic processes, such as free—free interactions among charged
particles, Compton scattering between charged particles and photons, and the recombinations®
of ions with electrons to form atoms. In this section, we examine these processes in connection
to several important cosmological events at T < 10° K.

3.5.1 Recombination

As soon as the temperature of the Universe drops below ~ 13.6eV, electrons and protons start to
combine to form hydrogen atoms. Here we examine how this ‘recombination’ process proceeds.
In addition, we compute the fractions of electrons and protons that remain unbound after recom-
bination, namely the ‘freeze-out’ abundances of free electrons and protons. For simplicity, we
ignore all elements heavier than hydrogen.

Let us start from an early enough time when recombination and ionization can maintain equi-
librium among the reacting particles. The number densities of electrons, protons, and hydrogen
atoms are then all given by Eq. (3.128) with i = e, p or H. As we will see below, the tempera-
tures of all three species are identical to that of the photons, so that 7; = 7. Since the chemical
potentials are related by uy = U, + Ue, we can write the equilibrium density of H as the Saha

equation:
~3/2
gH meT By
_ ) ! 3214
NH,eq (gpge) Np.eqlle,eq ( o ) eXP( T > ; ( )

where By = myp, +me —my = 13.6eV is the binding energy of a hydrogen atom, and we have
used (my/ mp)3/ 2 ~ 1 in the prefactor. Expressing the particle number densities in terms of the
baryon number density, n, = np + ny, and the ionization fraction, X, = ne /ny = np /ny, then
yields

1 —Xeeq 32 me\ —3/2 Bu
i R el —_< — 215
X2, p ¢B)n ( T ) expl = | (3.215)

8 Note that the term ‘recombination’ is somewhat unfortunate, as this will be the first time in the history of the Universe
that the electrons combine with nuclei to form atoms.
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where we have used that g = g, = 2, gu = 4, and ny, = nny. This is the Saha equation for the
ionization fraction in thermal equilibrium, which holds as long as the reaction rate p+e < H is
larger than the expansion rate.

Assuming for the moment that thermal equilibrium holds, we can use Eq.(3.215) to com-
pute the temperature, Trec, and redshift, z.c, of recombination. For example, if we define
recombination as the epoch at which X, = 0.1, we obtain that

0l exp (13.6/6rec) = 3.2 x 1017 (@ k%), (3.216)
where
0=(T/leV) =~ (1+2z)/4250. (3.217)
Taking logarithms and iterating once we get an approximate solution for O.:
Opc ~3.084 —0.0735In (Qp oh?) | (3.218)
which corresponds to a redshift given by
(1+ zrec) & 1367 [1 —0.024In (Qbﬁohz)} - (3.219)

Assuming Qbﬁohz =0.02, we get Tiec = 0.3eV and zzec =~ 1,300. Note that T, < By, which is a
reflection of the high entropy per baryon (i.e. the small value of 7n7); since there are many times
more photons than baryons, there can still be sufficient photons with spr > 13.6eV in the Wien
tail of the blackbody spectrum to keep the majority of the hydrogen atoms ionized, even when
the temperature has dropped below the ionization value.

As the Universe expands and the number densities of electrons and protons decrease, the rate
at which recombination and ionization can proceed may become smaller than the expansion rate.
The assumption of equilibrium will then no longer be valid. In order to examine in detail how
recombination proceeds, we need to understand the main reactions involved. In a normal cloud of
ionized hydrogen (HII cloud), recombination occurs mainly via two processes: (i) direct recom-
bination to the ground state, and (ii) the capture of an electron to an excited state which then
cascades to the ground level. In the first case, a Lyman continuum photon (with energy larger
than 13.6eV) is produced, while in the second case one of the recombination photons must have
an energy higher than or equal to that of Lya. If the cloud is optically thin, all recombination
photons can escape and do not contribute to further ionization. In the case of cosmological recom-
bination, however, recombination photons will be absorbed again because they cannot escape
from the Universe. In fact, the direct capture of electrons to the ground state does not contribute
to the net recombination, because the resulting photon is energetic enough to ionize another
hydrogen atom from its ground state. The normal cascade process is also ineffective, because
the Lyman series photons produced can excite hydrogen atoms from their ground states, so that
multiple absorptions lead to re-ionization. Therefore, recombination in the early Universe must
have proceeded by different means.

There are two main channels by which cosmological recombination can proceed. One is the
two-photon decay from the metastable 25 level to the ground state (15). In this process two pho-
tons must be emitted in order to conserve both energy and angular momentum, and it is possible
that the energies of the emitted photons fall below the ionization threshold. This process is forbid-
den to first order and so it has a slow rate: I'2y ~ 8.23 s~!. The second process is the elimination
of Ly photons by cosmological redshift. Once redshifted to a lower energy, the Ly photons
produced in the cascade will no longer be able to excite hydrogen atoms from their ground state.
The details of these recombination processes have been worked out by several authors (Peebles,
1968; Zel’dovich et al., 1968; Peebles, 1993). They show that, of the two processes discussed,
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Fig. 3.8. The ionization fraction as a function of redshift, z. The curve marked Xe ¢q shows the redshift evo-
lution of the equilibrium ionization fraction, while the one marked X, shows the actual ionization fraction
for a cosmology with Qm,oh2 =1and prhz =0.01.

the two-photon emission dominates, and that the ionization fraction drops from approximately
unity at z > 2000, to a ‘freeze-out’ value of

J/Q
X.~12%x107° <“‘°> (3.220)

Qpoh

at z < 200. An example of the evolution of X, with redshift is shown in Fig. 3.8.

3.5.2 Decoupling and the Origin of the CMB

Charged particles and photons interact with each other via Thomson scattering. The rate at which
a photon collides with an electron is I't = n.orc, where

2 2

op = o8 < e > ~6.65 x 10725 cm? (3.221)
3 \mec?

is the Thomson cross-section, with g. the charge of an electron. In what follows we only con-

sider this scattering between electrons and photons, since the interaction rate with ions is much

lower. Substituting the electron number density with ne = X.1ny, and using the Saha equation to

compute X, in the limit X, < 1, we obtain

Tr = 1.01 (Qp0h?)' > 094 exp (—6.8/6) s (3.222)
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In order to estimate at what redshift the photons decouple from the matter, we compare this
interaction rate with the expansion rate. At z >> 1, we can use Eq. (3.74) to write

3.8 x 107139257 ! for 7 >
(T):{ ° (for 2 > Zeg) (3.223)

9.0 % 10713 (Q 0h?) 7 632571 (for z < zeq),

where z¢ is the redshift at which the Universe becomes matter dominated, and we have used g, =
3.36 in calculating the energy density of relativistic species. Equating Eqs. (3.222) and (3.223)
with the assumption that decoupling occurs as z < zeq, We obtain the decoupling temperature:

B0 A2 3.927 4 0.074In (Qp 0/ Qum o) - (3.224)
Taking Qp ¢/Qmo = 0.1 we get
Tgee ©0.26eV; (14 zgec) ~ 1,100. (3.225)

As expected, the decoupling of matter and radiation occurs shortly after the number density of
free electrons has suddenly decreased due to recombination.

A somewhat more accurate derivation of the redshift of decoupling can be obtained by defining
an optical depth of Thomson scattering from an observer at z = 0 to a surface at a redshift z:

z dr

T(z) = / neor—dz. (3.226)
0 dz

Using the solution of X (z) shown in Fig. 3.8, rather than the equilibrium ionization fraction used

in the previous estimate, one finds to good approximation

7(z) = 0.37(z/1,000)'*% . (3.227)

The probability that a photon was last scattered in the redshift interval z & dz/2 can be
approximated as

dr z \ 3% 2\ 142
P(z)=e¢"" & ~5.26%x 1073 (1 000> exp [—0.37 (1 000) ] . (3.228)

This distribution peaks sharply at z ~ 1,067 and has a width Az ~ 80 (e.g. Jones & Wyse, 1985).
This represents the last scattering surface of photons, which is the surface probed by the cosmic
microwave background (CMB) radiation. Similar to the photosphere of the Sun, it acts as a kind
of photon barrier. No information carried by photons originating from z > 1100 can reach the
Earth, as the photons involved will be scattered many times.

As discussed in §2.9, one of the most important properties of the observed CMB is that its
spectrum is very close to that of a blackbody. This implies that the emission must have originated
when the Universe was highly opaque. In the standard cosmology, such an epoch is expected
because photons and other particles are tightly coupled at z > 10%. However, the CMB photons
have been scattered many times by electrons and ions between their redshift of origin and the
last scattering surface. An important question therefore is whether the background radiation can
retain a blackbody spectrum during this process. The answer is yes and the reason is, as we
show below, that the high entropy content of the Universe can keep the gas particles at the same
temperature as that of the photons. In this case, there is no net energy transfer between the
photons and electrons, ensuring that the radiation field remains blackbody. Furthermore, although
the finite thickness of the last scattering surface (Az ~ 80) implies a spread in photon temperatures
at their last scattering event, this does not lead to observable distortions in the CMB temperature
spectrum. The reason is that the higher initial temperature of a photon that decoupled somewhat
earlier is exactly compensated by the larger redshift it experiences before reaching the observer.
Thus, the blackbody nature of the CMB is naturally explained in the standard cosmology. In
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what follows we examine more closely the temperature evolution of matter and radiation from
the epoch of electron—positron annihilation to that of decoupling.

3.5.3 Compton Scattering

By far the most dominant electromagnetic interaction during the era of decoupling is the
Coulomb interaction, which is sufficiently strong to maintain thermal equilibrium among var-
ious matter components. In the absence of any interactions between matter and radiation, the
temperature of the former would decrease as Ty, o< a~2, while the photon temperature Ty o< a”!
(see Table 3.1). However, as we have seen above, photons and electrons interact with each other
via Compton scattering. As long as T. > T, there will be a net energy transfer from the elec-
trons to the photons, and vice versa. The mean free path is [, = 1 /(neor) for the photons, and
le = 1/(nyor) for electrons. Their ratio can be expressed in terms of the ionization fraction
Xe = ne/nyp as

I
£ =Xen =272 x 107 3(XQp oh?) . (3.229)

l}’
Since X, < 1, we have [, < [,. This shows that it is much easier for photons to change the energy
distribution of the electrons than the other way around. This is, once again, a consequence of the
high entropy per baryon, or, put differently, of the fact that the heat capacity of the radiation is
many orders of magnitude larger than that of the electrons. Therefore, as long as the Compton
interaction rate is sufficiently large compared to the expansion rate, the matter temperature will
follow that of the photons.
To compute the redshift at which the matter temperature will finally decouple from that of the
radiation, we proceed as follows. The average energy transfer per Compton collision is

4 rv\2 T,
AE:,(E) th:4<"B e)‘gy, (3.230)

3\c¢ Mec? ny

where we have used that the average electron energy is %mevz = %klﬂg and that the mean energy
of the photons is hp = &, /ny with €, the photon energy density (see §B1.3.6). The rate at which
the energy density of the matter, &y, changes due to Compton interactions with the radiation
field is
dem
dr

kT
= nenyOrcAE = 4n.Orey < B "') . (3.231)
MeC
This allows us to define the Compton rate at which electrons can adjust their energy density to
that of the photons as
1 dSm —6 XC 4 1
Iye=———=89x10 — |0 ; 3.232

T e dr <Xe+1 ° (3:232)
where we have used that &, = %nkB T, with n = ne +ny,, and €, = (40sp/ c)T;1 . Comparing this to
the expansion rate given by Eq. (3.223), we find that decoupling of matter from radiation occurs
at a redshift

B Xe =2/5 o 1/5
1+z=6.8 <Xe 1 ) (Qmph ) . (3.233)

As we have seen above, before the onset of the first ionizing sources, the residual ionization
fraction at z < 200 is X, ~ IO’SQIIH/% (Qpoh) (see Fig.3.8). Substituting this in Eq. (3.233),
and adopting Qbyohz = 0.02, yields a redshift, z ~ 150, at which the temperatures of matter and

radiation decouple. This is a much lower redshift than the redshift of decoupling defined by an
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optical depth of unity for Compton scattering . This reflects the small values of 17 and X,, which
ensure that there are about 3 x 10'2(Qy, 0h%)!/? photons for every free electron. The electron
temperature can remain coupled to that of the photons even if only a tiny fraction of photons are
scattered by the electrons.

3.5.4 Energy Thermalization

In addition to I'y_. defined above, we can also define the rate at which Compton scattering can
adjust the photon energy density to that of the electrons:
1 de
Tey=——2=13x10"" (X.Qyoh*) 6*s7", (3.234)
g dt
where we have used that in thermal equilibrium |de,/df| = |dey/dr|. This is equal to the
expansion rate in Eq. (3.223) at a redshift

—1)2

1+2=72x10% (X.Qyoh?) (3.235)

At z > 2,000, X; = 1 to good approximation. Using prhz = 0.02 we thus find that Compton

scattering can significantly modify the energy distribution of the photon fluid at z > 5 x 10*.
Since Compton scattering (e +y — e+ ¥) does not change the number of photons, this process
alone cannot lead to a Planck distribution. However, since the photon fluid starts out in thermal
equilibrium with the matter, it will remain properly thermalized (i.e. the Compton scattering does
not lead to any net energy transfer between matter and radiation). On the other hand, one might
envision scenarios in which physical processes (e.g. turbulence, black hole evaporation, decay
of heavy unstable leptons) heat the electrons to a temperature above that of the photons. If this
occurs at z > 5 x 10*, Compton scattering is sufficiently efficient that photons experience multiple
scattering events, which bring them into thermal equilibrium with the electrons. Since there is
no change in the photon number, such scattering results in a modification of the photon energy
distribution from a Planck distribution to a Bose—Einstein distribution with a negative chemical
potential (1 < 0). Such a distortion is usually referred to as a p-distortion. In the absence of
any photon-producing processes, an increase of the electron temperature therefore leads to a
Comptonization of the CMB, which is observable as a p-distortion of its spectrum.

Two examples of photon producing processes, which may thermalize the injected energy and
bring the photon energy distribution back to that of a blackbody, are bremsstrahlung (also called
free—free emission) and the double-photon Compton process (e + 7y — e +27). In a medium with
relatively high photon density, such as that in the radiation dominated era, double Compton
emission is the dominant photon producing process and its rate is higher than the expansion rate

of the Universe at
Qyoh?\ v\ %
6 20,0 _r
7>2.0x10 ( 0.02 > (1 2) , (3.236)

where Y}, is the helium abundance in mass (e.g. Danese & de Zotti, 1982). Thus, any energy input
into the radiation field at z > 2 x 10 can be effectively thermalized into a blackbody distribution.
If the energy ejection occurs at z < 5 x 10* the Compton rate is insufficient to establish a new
thermal equilibrium. Therefore, only energy injection in the redshift range 5 x 10* < z <2 x 10°
can lead to a p-distortion in the CMB. Detailed observations with the COBE satellite have
established that the CMB has a blackbody spectrum to very high accuracy; the correspond-
ing limit on the chemical potential is || < 9 x 10~ (Fixsen et al., 1996). Apparently, there
have not been any major energy ejections into the baryonic gas in the above mentioned redshift
interval.



152 Cosmological Background

Because multiple Compton scattering becomes rare at z < 5 X 10%, any energy input into
the electron distribution no longer drives the photon field towards a Bose—Einstein distribution
to produce a p-distortion. However, single Compton scattering of low-energy photons in the
Rayleigh—Jeans tail of the CMB can still cause those photons to gain energy. Although this does
not bring the photons in thermal equilibrium with the electrons, it does result in a distortion of
the photon energy distribution. This kind of distortion is called y-distortion, because it is propor-
tional to the Compton y-parameter defined in §B1.3.6. Such distortions can be produced by the
hot intracluster medium, which is called the Sunyaev—Zel’dovich (SZ) effect, and is discussed in
detail in §6.7.4.

3.6 Inflation

So far we have seen that the standard relativistic cosmology provides a very successful frame-
work for interpreting observations. There are, however, a number of problems that cannot be
solved within the standard framework. Here we summarize some of these problems and show
how an ‘inflationary hypothesis’ can help to solve them.

3.6.1 The Problems of the Standard Model

(a) The Horizon Problem As shown in §3.2.4, the comoving radius of the particle horizon for
a fundamental observer, &, at the origin at cosmic time  is

t cdt
o= /0 ) (3.237)
For a universe which did not have a contracting phase in its history, radiation was the dominant
component of the cosmic energy density at z > zq, and the scale factor a(r) o< 1/2 . In this case y,
has a finite value, so that there must be fundamental observers (denoted by &) whose comoving
distances to & are larger than y;,. No physical processes at any ¢’ could have influenced & by
time ¢. To get a rough idea of the size of the particle horizon at the time of decoupling, assume for
simplicity an Einstein—de Sitter universe (Qm o = 1), and ignore for the moment that the Universe
was radiation dominated at z > zeq. It then follows from Eqgs. (3.74)—(3.75) that

xn(z) = 6,000h 'Mpe (1+2)~"/2. (3.238)

At the time of decoupling, which occurs at a redshift of ~ 1,100 (see §3.5), the comoving radius
of the particle horizon is ~ 1804~ 'Mpc. The comoving distance from us to the last scattering
surface is ~ 5,820~ ' Mpc, so that the particle horizon at decoupling subtends an angle of about
1.8 degrees on the sky. This implies that many regions that we observe on the CMB sky have not
been in causal contact. Yet, as discussed in §2.9, once measurements are corrected to the frame
of the fundamental observer at the position of the Sun, the temperature of the CMB radiation is
the same in all directions to an accuracy of better than one part in 10°. The problem is how all
these causally disconnected regions can have extremely similar temperatures. This problem is
known as the horizon problem of the standard model.

(b) The Flatness Problem This problem concerns the processes which determine the density,
age, and size of the Universe at the present time. In the standard model, these properties are
assumed to ‘arise’ as initial conditions at the Planck time, when the Universe emerged from the
quantum gravity epoch. The problem arises if Q = Qy, + Qp + Q; differs mildly from unity at
the present time, because such a universe requires extreme ‘fine-tuning’ of € at the Planck time.
A simple way to illustrate the situation is to focus on the quantity, Q' — 1, which measures the
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fractional deviation of the total density from the critical density. Using the Friedmann equation,
we can write that

3Kc?
Qa) '—-1=——— 3.239
(@) 8nGp(a)a? ( )
which is proportional to a” at z > Zeq and to a at z < zeq. Therefore, in the standard model,
Q' -1 Ty (T’
Pll 1o (eq) ~10790 (3.240)
Q,' =1 Teq \Tp

where subscripts ‘eq’ and ‘PI’ denote the values at the time of radiation/matter equality, feq ~
10* yr (corresponding to a temperature Teq ~ 10*K), and the Planck time, tp = (hG/ 05)1/ 2~
107435 (corresponding to a temperature Tpj ~ 102K), respectively. This demonstrates that Qpy is
about 60 orders of magnitude closer to unity than €. For example, if 2 = 0.1 today, it must have
been 1 — 107 at the Planck time, which clearly constitutes a fine-tuning problem. A ‘trivial’
way out of this problem is to postulate that € is exactly equal to unity, in which case it has
been exactly unity throughout the history of the Universe. However, this cannot be considered a
proper solution unless it has a proper physical explanation. This problem is known as the flatness
problem.

(c) Monopole Problem In the early stages of the Hot Big Bang, particle energies are well above
the threshold at which grand unification (GUT) is expected to occur (TgyT ~ 101-10" GeV).
As the temperature drops through this threshold, a phase transition associated with spontaneous
symmetry breaking (SSB) can occur. One speaks of SSB when the fundamental equations of
a system possesses a symmetry which the ground state does not have. For example, one may
have a situation in which the Lagrangian density is invariant under a gauge transformation, while
the vacuum state, the state of the least energy, does not possess this symmetry. SSB plays a
crucial role in quantum field theory, where it provides a mechanism for assigning masses to the
gauge bosons without destroying the gauge invariance. As we will see below, SSB also plays an
important role in inflation.

Depending on the properties of the symmetry breaking, the phase transition can produce topo-
logical defects, such as magnetic monopoles, strings, domain walls or textures (see Vilenkin &
Shellard (1994) for a detailed description). In the case of the GUT phase transition, one expects
the formation of magnetic monopoles with a density of about one per horizon volume at that
epoch. The mass of each monopole is expected to be of the order of the energy scale in consid-
eration, i.e. m ~ Tgyr. This predicts a present-day energy density in magnetic monopoles of

3 4
TGUT T() TGUT
~ ~ 3.241
Pmono,0 féUT ( Tour ) ( 1011 GGV) Py0, ( )

where T and py ¢ are the temperature and energy density of the cosmic microwave background at
the present time, and we have used Eq. (3.81) to relate Gyt to Tgur. With Q9 ~ 2.5 % 103h2
and Tgur ~ 103 GeV, we see that monopoles are expected to completely dominate the present
matter density with Qp ~ 5 X 10!, in fatal conflict with observations. Since monopoles are
expected to arise in almost any GUT, there is a monopole problem in the standard cosmology.

(d) Structure Formation Problem This problem concerns the origin of the large-scale struc-
ture in the Universe. The observed structures such as the clusters of galaxies have an amplitude
which may be characterized by their dimensionless binding energy per unit mass, & /c? ~ 107>,
Such structures are coherent over a mass of about 10> M., (corresponding to ~ 10Mpc in
comoving size) and are presumed to have grown via gravitational instability from small initial
perturbations. Since both the mass and binding energy of a perturbation are approximately con-
served during gravitational evolution, the perturbation must have been generated while its entire
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mass was within the particle horizon (i.e. when ), > 10Mpc), in order to explain its coherence.
This requires that the perturbations associated with present-day clusters be generated at z < 10°.
Since the standard scenario of structure formation via gravitational instability does not include
any processes which could produce the binding energy of clusters at such low redshift, the origin
of large, coherent density perturbations constitutes another problem for the standard cosmology.

It should be pointed out, however, that this particular problem is not fully generic for the
standard cosmology. In particular, the problem may be avoided if we abandon the assumption
that structures form via gravitational instability. For example, density perturbations with large
amplitudes may be generated in the early Universe within patches of the horizon size at the
time of generation. If these perturbations collapse and form objects which can eject energy to
large distances, structures of much larger scales may form out of the perturbations created by
these ejecta. Such non-gravitational models for the formation of large-scale structure have, for
example, been considered by Ostriker & Cowie (1981). However, as we will see later in the book,
the large-scale structure observed in the Universe is best explained by gravitational instability,
implying that the structure formation problem must be considered seriously.

(e) Initial Condition Problem It should be pointed out that the problems mentioned above do
not falsify the standard cosmology in any way. All of these problems can be incorporated into the
standard cosmology as initial conditions, even though the standard cosmology does not explain
them. In this sense, standard cosmology only provides a consistent theory to explain the state of
the observable Universe with some assumed initial conditions, but does not explain their origin.

For many years it was believed that the initial conditions for standard cosmology would arise
from quantum cosmology (a quantum treatment of space-time) at very early times when the
Universe was so small that classical cosmology is no longer valid. Unfortunately, such theory
is still highly incomplete and no reliable predictions can be presented. However, the situation
changed dramatically in the early 1980s when it was realized that a new concept, called inflation,
can solve all the aforementioned problems within the classical theory of space-time. Inflation
basically provides an explanation for the initial conditions, and it operates at an energy scale that
is much lower than the Planck scale, so that gravity can be treated classically. In what follows
we present a brief overview of cosmological inflation, and illustrate how it solves the problems
mentioned here. A more detailed treatment of this topic can be found in Kolb & Turner (1990)
and Liddle & Lyth (2000).

3.6.2 The Concept of Inflation

As discussed above, the horizon problem arises because the comoving radius of the particle
horizon of a fundamental observer (at time 7),

1/2

* det’ add [8nGp(a')d? N
= [ & _ [Pl ontpla)ar g 3.242
1= e JA a,{ b , (3.242)

is finite in the standard model, where p(a) o< a=* as a — 0. To get rid of this problem, j; must
diverge, making the radius of the particle horizon infinite. From Eq. (3.242) one sees that this
requires p(a) o< a—P with B < 2 as a — 0. Inserting this a-dependence of p into the first law of
thermodynamics, Eq. (3.35), one obtains

4

p+3P/c? <0, (3.243)

which, in Eq. (3.58), gives a > 0. Such a phase of accelerated expansion is called inflation, and
arises when the Universe is dominated by an energy component whose equation of state satisfies
Eq. (3.243).
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Fig. 3.9. A sketch of the light-cone structure in an inflationary universe. The cosmic time flows from bottom
up (with the Big Bang labeled by O) and the horizontal axis marks the comoving radius, y, of the light cone.
In the absence of inflation, the forward light cone (the dashed lines) would be smaller than our past light
cone, yp, at the last scattering surface (corresponding to ¢ = #5), resulting in the causality problem discussed
in §3.6.1. With a period of inflation (from #; to f.), however, the forward light cone can be (much) larger
than the past light cone at #i5 (i.e. x> xp)-

An example of such an energy component is vacuum energy, whose equation of state is
P = —pyacc?. In this case, the solution of the Friedmann equation corresponds to an exponentially
expanding universe,

ac< e where H=/81Gpyy/3 (3.244)

(see §3.2.3). Fig. 3.9 illustrates how such an inflationary period can solve the horizon problem.
Suppose that inflation begins at some very early time # and ends at some later time f.. The
period of inflation is therefore Ar = t. — #;. During inflation, the forward light cone expands
exponentially, whereas the past light cone of an observer at the present time #( is not affected by
the exponential expansion for ¢ > .. Therefore, if At is sufficiently long, the size of the forward
light cone on the last scattering surface of the CMB photons, x;(fs), can be larger than the size of
the past light cone, xp(#). Since 11 < fo, the size of the past light cone is y,(nis) = ftﬁ’ dt/a(t) =
319. The size of the forward light cone at s is x¢ (1) ~ [ dt fa(r) = (1/H)[e"* —1]a~" (te). The
condition that x¢(#s) > xp(#s) therefore requires

1 1 T.
MY > 3Ha(te)to ~ alte) ~ 10%

€
te \/ l + Zeq TO '
where the final value is for 7, ~ 10'*GeV (roughly the GUT energy scale) and Ty ~ 10713 GeV
(the temperature of the CMB). Thus, in order to solve the horizon problem, an inflationary
period of

(3.245)

At > 60H ! (3.246)

is required, corresponding to 60 e-foldings in the scale factor.
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Inflation can also solve the flatness problem. To see this we use Eq. (3.79) to write

Q )1 a()]’ 52
= 10 3.247

Q)1 law] 0 0240
where we have inserted the number of e-foldings implied by Eq. (3.245). Therefore, even when
Q(#;) deviates substantially from unity, at the end of inflation Q(z.) ~ 1 to very high accuracy. If
we assume that inflation ends at about the GUT time (i.e. 7o ~ 10! GeV), then the present-day
value of Q is related to that at the beginning of inflation according to

Q) -1 Q)1 Q') —1 (T (T
Q) -1 Q()—1 Q)1 <10 <To) (Teq> ~1. (3.248)

Thus the same number of e-foldings needed to solve the horizon problem also solves the flatness
problem. Since the value of Q at the present time depends very sensitively on the number of
e-foldings, unless it is exactly unity, extreme fine-tuning is required to give Q # 1. In this sense,
inflation predicts that the Universe is spatially flat, with Q, o +Q4 o = 1. This can be under-
stood as follows. Because of inflation the curvature radius (measured in physical scale) increases
exponentially, and the observed piece of space in the past light cone looks essentially flat after
inflation even if it had a large curvature before.

If monopoles are produced before inflation, their number density will be diluted exponen-
tially during inflation. At the end of inflation, the number density would be reduced by a factor

~ (et )3 ~ 1078, making the contribution of monopoles to the cosmic density completely
negligible. Thus, inflation also solves the monopole problem discussed in §3.6.1.

Finally, inflation also provides a mechanism to explain why structures like clusters can form in
a causal way. Because of inflation, small-scale structures present before and during inflation can
be blown up exponentially. Thus, the different parts of a perturbation responsible for a cluster
and a larger-scale structure, although not in causal contact after inflation, were actually in causal
contact before or during inflation. It is therefore possible to have causality if the perturbations
responsible for the formation of clusters were generated before or during inflation. In fact, infla-
tion not only allows such perturbations to exist, but also provides a mechanism to generate them,
as we will discuss in detail in §4.5.1.

3.6.3 Realization of Inflation

The above discussion shows that inflation can solve many problems (or, more appropriately,
puzzles) regarding the initial conditions of the Big Bang cosmology, as long as it operates for
a sufficiently long time. All that is needed is a dominant energy component with an equation
of state obeying Eq. (3.243). As already mentioned, the cosmological constant is an example of
such a component. However, it cannot serve to describe inflation for the simple reason that it
will never stop. By definition, A is a constant, and once it dominates the energy density of the
Universe it will continue to do so eternally. A successful inflation model, however, needs to stop
after some time, and it needs to end in a particular way. After all, at the end of inflation the
matter and radiation density of the Universe will be virtually zero, so will be its temperature: the
Universe is basically a vacuum. We thus need a mechanism, called reheating, which at the end of
inflation creates matter and radiation. In other words, at the end of inflation the Universe needs to
undergo a cosmological phase transition. The temperature at the end of this phase transition has
to be sufficiently low so that during the subsequent evolution no new phase transition can create
large quantities of magnetic monopoles. Otherwise we are back to where we started. In addition,
the temperature needs to be sufficiently high so that the process of baryogenesis can still operate.

It was Guth (1981) who first realized that all these requirements can be realized in a natural
way with scalar fields. These quantum fields, which describe scalar (spin-0) particles, play an
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important role in quantum field theory. Their dominant role is to cause spontaneous symmetry
breaking (SSB) via the Higgs mechanism. These so-called Higgs fields have a non-zero vacuum
expectation value. As a result, the interactions of the fermion and boson fields with the Higgs field
give a finite potential energy to the fermions and bosons, which is expressed as an effective mass.
Before the symmetry is broken, the Higgs field has a zero expectation value, and the fermions
and bosons are massless. In what follows we show that under certain conditions, a similar scalar
field can also cause inflation. The key point here is that the zero-point energy (vacuum energy)
of such fields can mimic a cosmological constant. A scalar field that causes inflation is generally
called an inflaton.
The Lagrangian density of a scalar field ¢(x,7) is

& = %%W“wvw), (3.249)

where V(@) is the potential of the field. Different inflationary models, i.e. different inflatons,
correspond to different choices for V(¢). The energy—momentum tensor of the inflaton is
T =9t @d" o — g L. (3.250)

If the inhomogeneity in ¢ is small, this T*" has the form of a perfect fluid, Eq. (3.57), with
energy density and pressure given by

-2 2 2
_ 9> (Vo) _ ¢ (Vo)
pP="5 + 5 +V(p) and P= 5 2 V(p), (3.251)

where ¢ = (d¢/dt), and V is the derivative with respect to the comoving coordinates x. We
therefore have

-2

p+3P=2[p*~V(p)], (3.252)
and the condition for inflation becomes
P <V(p), (3.253)

which is called the slow-roll approximation. Note that in this case p = V(¢), and for inflation to
happen V(@) thus needs to be sufficiently large to dominate the total energy density. As soon as
inflation operates it drives the curvature to zero so that the Friedmann equation (3.60) becomes

H:\/Sﬂ:GV((p)/3:L\/@, (3.254)
mpi 3
where mp; = (fic/G)'/? is the Planck mass and we have used 7i = ¢ = 1.

Since the scale factor a increases exponentially during inflation, the spatial derivative term
V@/ain p and P rapidly becomes negligible, provided V is large enough for inflation to start in
the first place. Therefore any spatial inhomogeneities can be neglected and, under the slow-roll
approximation, one obtains P = —p, an equation of state similar to that for the cosmological
constant.

To translate the slow-roll requirement into a requirement for the shape of the potential, V (¢),
which is the ‘free parameter’ in the construction of inflation models, we need to look at the
dynamics of a scalar field. The classical equation of motion is obtained by writing down the
action

S— /f\/?gd“x, (3.255)

where g is the determinant of the metric tensor g;,,. The Euler-Lagrange equation, which follows
from the least-action principle, 65 = 0, then yields

¢+3HQ+dV/dep =0, (3.256)
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where we have ignored any spatial inhomogeneity (V¢ = 0). Equivalently, Eq. (3.256) follows
from conservation of the energy—momentum tensor (T#.,, = 0), or from substituting Eq. (3.251)
in the continuity equation for a FRW cosmology, p = —3H(p + P) [see Eq.(3.35)]. Note that
Eq. (3.256) is similar to the equation of motion of a ball moving under the influence of a potential
V in the presence of friction (the Hubble drag) proportional to 3H. Using that ¢ ~ ¢ /¢, so that
¢ ~ @/t* ~ ¢* /@, the slow-roll approximation implies that ¢ < V(¢)/@ ~ dV /d¢. Therefore,
the first term in Eq. (3.256) is negligible, and

3HQ+dV/dp =0. (3.257)

This equation expresses that the acceleration due to the gradient in the potential is balanced
by the Hubble drag due to the expansion. This together with Eq. (3.253) leads to the following
slow-roll condition:

~1, (3.258)

2 .
_ my (dV/dQ\T _ my 3HG)? _ , (3H)?
16w v l6r V2 Py

where we have used the Friedmann equation (3.254). Similarly, since (d2V / d(pz) JV ~
(dV/de)/(@V) ~ (dV /dp)*/V?, we have

nN=—_-—--——<1. (3.259)

Conditions (3.258) and (3.259) indicate the intuitively obvious, namely that for the slow-roll
condition to be satisfied the potential needs to be very flat. Any scalar field that obeys these two
constraints will cause an inflationary phase, whose duration increases with the flatness of V (¢).

As emphasized above, inflation is only successful if it can also stop and reheat the Universe.
Below we illustrate how this comes about with scalar fields using three specific examples. In
each of these the end of inflation and the reheating mechanism are somewhat different.

3.6.4 Models of Inflation

(a) Old Inflation The ‘old inflation” model, proposed by Guth (1981), is based on a scalar
field which initially gets trapped in a false vacuum at ¢ = 0 and which at some point undergoes
spontaneous symmetry breaking to its true vacuum state via a first order phase transition. The
prototype of such a potential has the form

1 1 1
V((P):Z(P4—§(a+[3)|<p|3+§a[3(p2+vo, (3.260)

where Vo = o*(a —2f)/12 > 0 and o > 28 > 0. The field is assumed to be in thermal
equilibrium with a radiation field at temperature 7', and so the effective potential of the field is

1~
Ver(9) =V () + 547797 (3.261)

according to finite-temperature field theory (e.g. Brandenberger, 1995), where Aisa coupling
constant. Fig. 3.10 a shows Vg (@) at different temperatures. When the temperature is high, the
effective potential has a single minimum at ¢ = 0. As the temperature decreases, two other
minima develop. This occurs at a critical temperature T, = (ot — B)/(24'/2). For T < T, the
three minima are at @ = 0,+c, and the values of the potential at these points are Vo(0) = Vj
and Vg (£o) = 0. Thus, the vacua at @ = +a represent two true vacua of the field, while the
one at ¢ = 0 is called a false vacuum state. When 7" > T; the expectation value of the inflaton
is @ = 0. At this stage no inflation occurs simply because the energy density of the radiation still
exceeds that of the inflaton. When the temperature drops below T, the field gets trapped in the
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a) V()

T>>T,

b) V(@)

T>>T,

0 2

Fig. 3.10. Two examples of effective scalar potentials, at three different temperatures, that can lead to infla-
tion. In example (a) ¢ experiences a first-order phase transition, characteristic of the old inflation models,
while in (b) the phase transition is of second order.

false vacuum at ¢ = 0, and the system is said to undergo supercooling. At this point, the slow-
roll condition is satisfied, and p ~ V(¢ = 0) is dominated by the energy density of the inflaton.
Consequently, @(x) acts like a cosmological constant, the Universe enters a de Sitter phase with
a Friedmann equation of the form (3.254), and the Universe expands exponentially. The epoch of
inflation only ends when thermal fluctuations or quantum tunneling moves ¢ across the barrier so
that it can proceed towards its true vacuum. This transition is a spontaneous symmetry breaking,
and since the field value changes discontinuously, it is of first order. During the transition the
energy V(¢ = 0) associated with the inflaton field, the so-called latent heat, is rapidly liberated
and can be used for reheating. If the system stays in the false vacuum sufficiently long, the
Universe can be inflated by a sufficiently large number of e-foldings. It thus appears that this
model fulfills all requirements.

However, it was realized that this model has a ‘graceful exit’ problem (Guth, 1981; Guth &
Weinberg, 1981). Because the transition is of first order, it proceeds through the nucleation of
bubbles of the true vacuum in a surrounding sea of false vacuum. These bubbles must grow in
a causal way, and so their sizes at the end of inflation cannot be larger than the horizon size at
that time, which is much smaller than our past light cone. In addition, the latent heat needed
for reheating is stored in the kinetic energy of the nucleated bubbles, and reheating only occurs
when this kinetic energy is thermalized via bubble collisions. Thus, unless bubbles can collide
and homogenize in the Hubble radius, the model will predict too large inhomogeneities to match
the observed isotropy of the CMB and too little reheating. However, since the space between
the bubbles is filled with exponentially expanding false vacuum, while the volume of a bubble
expands only with a low power of time, percolation and homogenization of bubbles can never
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happen. Instead, inflation continues indefinitely, and the bubbles of true vacuum have only a
small volume filling factor at any time. The volume filling factor can be increased by increasing
the nucleation rate of true-vacuum bubbles, but this would require a high tunneling rate, making
the inflation period too short.

(b) New Inflation Because of the ‘graceful exit’ problem, a modified scenario has been pro-
posed by Linde (1982) and Albrecht & Steinhardt (1982). The prototype potential in this scenario
has the form

Vip)= il (9*—a?)’, (3.262)

and the effective potential V(@) is plotted in Fig.3.10b for different temperatures. At high
temperature, the effective potential has a single minimum at ¢ = 0, but when the temperature
drops below a critical value, T, = (A /A)'/2, the minimum at ¢ = 0 disappears (and becomes a
local maxima) while two new minima develop. As in old inflation, the scalar field is confined to
the neighborhood of ¢(x) = 0 by the thermal force at T > T, when the Universe is dominated by
radiation. As the temperature drops to 7' ~ T, (when the vacuum energy of ¢ begins to dominate
over radiation), the field configuration at ¢(x) = 0 becomes unstable and it evolves towards
¢ = £0 as the temperature decreases. The change from ¢ = 0 to ¢ = +0 is smooth everywhere,
and so the spontaneous symmetry breaking occurs via a second-order phase transition. As long
as the evolution obeys the slow-roll requirements derived above, inflation will occur. When ¢
approaches o (or —0), the field rolls rapidly towards the minimum (because of the large potential
gradient). Since this violates the slow-roll requirement, it signals the end of inflation. The inflaton
¢ subsequently oscillates around the minimum with a frequency @ given by w? = (d*V /d@?)s =
Ao, If the field is coupled to the radiation field, these oscillations will be damped by the decay
of ¢ into photons and other particles, and the Universe is reheated to a temperature 7 ~  ~ Tj,
with T; the temperature at the onset of inflation. The Universe then enters the radiation dominated
era of the ordinary FRW cosmology.

The spatial fluctuations in @(x) are expected to be correlated over some microphysical scale
and, as a result, the field is homogeneous within domains with sizes typically of the correlation
length. Since the correlated domains are established before the onset of inflation, any domain
boundaries are inflated outside the present Hubble radius and the inflation in a domain stops
when |@| ~ ¢. Since our Universe is thus contained within a single domain, there is no ‘graceful
exit’ problem in this model. Hence the new inflation model is an improvement over the old one.
Unfortunately it also has problems. In order to obtain inflation, we must have d*V /d@* < V /m3,
[see Eq. (3.259)] which, for V = ((p2 — 62)2 /4, requires ¢ >> mp). This is obviously an unnatural
condition, since mp is the highest energy scale expected in particle physics. There is also a more
general problem. In order to ensure a large-enough number of e-foldings, the initial value of ¢
must satisfy |¢;| < 0. However, since the thermal fluctuations of @ at the initial time (when
T = T;) are expected to be of the order A ~'/4T; ~ [V(0)/A]'/* ~ o, fine-tuning is needed to get
the required initial condition, |¢;| < ©.

(c) Chaotic Inflation Chaotic inflation was proposed to give a more natural explanation for the
initial conditions leading to inflation (Linde, 1986). Unlike in the old and new inflation models,
no phase transition is involved here so that no initial thermal bath is required. In this model, one
starts with a simple potential, e.g. V(@) = m¢? /2, and inflation simply arises because of the slow
motion of ¢ from some initial value, ¢;, towards the potential minimum. At any given point X,
the initial field configuration is assumed to be set by some chaotic processes. The values of ¢ are
expected to be the same within regions with a size set by the correlation length. Inflation only
occurs in those regions where the conditions needed for inflation are attained; the other regions
simply never inflate. Chaotic inflation therefore predicts that the Universe is locally homoge-
neous, but globally inhomogeneous. In a region where inflation persists for a sufficiently long
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period, the boundary of this region can be blown out of the current particle horizon, leaving a
universe in which the initial inhomogeneities generated by the chaotic processes have no observ-
able consequences. In this scenario our Universe is assumed to have emerged from one of such
regions.

In order to solve the horizon and flatness problems, the number of e-foldings must be N > 60.
Using the slow-roll approximation, we can write the number of e-foldings between #; and . (the
times when inflation starts and terminates) as

N=[“Ha Y A 3.263

4 : m12>1 /(Pi |dV/d(p| ¢ e )
For a smooth potential such as V(@) = m>¢?/2, |dV /dg| ~ V /¢ and so N ~ (¢;/mp|)* (assum-
ing that @. < ). It then follows that ¢; > mp is needed to have successful inflation. If inflation
starts near the Planck time, the fluctuations in V are about mf{,l, and for the potential in consid-
eration m < mpy is required. It is unclear if such a small mass scale can be achieved in a Planck
time, because the most natural mass scale at this time is mp;. Indeed, if inflation happened at the
Planck time, it may not be really possible to construct a realistic inflation model without a proper
understanding of quantum gravity. In this sense, our initial hope that inflation models would
solve some of the problems in the standard model within the classical space-time framework is
not realized.

The schemes and problems discussed above are typical of many other inflation models sug-
gested. At the present time, it is fair to say that, although the concept of inflation can help to solve
several outstanding problems in standard cosmology, a truly successful model is still lacking.



4

Cosmological Perturbations

In the standard model of cosmology described in the previous chapter, the Universe is assumed
to be highly homogeneous at early times. The structures observed today, such as galaxies and the
clusters of galaxies, are assumed to have grown from small initial density perturbations due to
the action of gravity. In this scenario, structure formation in the Universe involves the following
two aspects: (i) the properties and origin of the initial density perturbations, and (ii) the time
evolution of the cosmological perturbations in an expanding Universe.

In this chapter we examine the origin of cosmological perturbations and their evolution in the
regime where the amplitudes of the perturbations are small. We begin in §4.1 with a description
of Newtonian perturbation theory in the linear regime. This applies to structures with sizes much
smaller than the horizon size, so that causality can be considered instantaneous, and with a den-
sity contrast relative to the background much smaller than unity. The relativistic theory of small
perturbations is dealt with in §4.2. This is an extension of the Newtonian perturbation theory, and
is required when considering perturbations larger than the horizon size or when the matter con-
tent of the perturbations cannot be treated as a non-relativistic fluid. For a Universe with a given
matter content, the theories presented in these two sections allow one to trace the time evolution
of the cosmological perturbations in the linear regime. The nonlinear evolution will be discussed
in Chapter 5.

If we decompose the cosmological perturbations into Fourier modes, we will find that some
modes are amplified during the linear evolution while others are damped. The evolution there-
fore acts as a filter of the primordial density perturbations generated at some time in the early
Universe. In §4.3 we show that the results of the evolution at a later time are most conveniently
represented by a linear transfer function which describes the change in the perturbation ampli-
tude as a function of the Fourier mode. The importance of the linear transfer function is that,
once the perturbation spectrum (i.e. the perturbation amplitude as a function of Fourier mode)
is set at some time in the early Universe, it allows us to calculate the linear perturbation power
spectrum at any later times. In §4.4 we describe how to characterize the statistical properties of
the cosmological perturbations. As we will see, if the density perturbations have a Gaussian dis-
tribution, then the density field is completely specified by the power spectrum. Finally, in §4.5,
we briefly discuss the origin of cosmological perturbations.

4.1 Newtonian Theory of Small Perturbations

4.1.1 Ideal Fluid

Consider the Newtonian theory for the evolution of the density p and velocity u of a non-
relativistic fluid under the influence of a gravitational field with potential ¢. The fluid description
is valid as long as the mean free path of the particles in consideration is much smaller than the
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scales of interest (see §B1.2). This applies to a baryonic gas, in which the frequent collisions
among the particles can establish local thermal equilibrium. The fluid description is also valid
for a pressureless dust (i.e. for collisionless dark matter), as long as the local velocity dispersion
of the dark matter particles is sufficiently small that particle diffusion can be neglected on the
scales of interest (see §4.1.4).

The time evolution of a fluid is given by the equation of continuity (which describes mass
conservation), the Euler equations (the equations of motion) and the Poisson equation (describing
the gravitational field):

Dp

Dr +pVy-u=0 (continuity), 4.1)

Du V.P

B — V¢ (Euler), (4.2)
V2¢ =4nGp (Poisson), (4.3)

where r is the proper coordinate, d/dt is the partial derivative for fixed r, and

D 9

is the convective time derivative that describes the time derivative as a quantity moves with the
fluid. Note that Egs. (4.1)—(4.3) describe five relations for six unknowns (p, uy, uy, u, P, and ¢).
Therefore, in order to close the set of equations, they need to be supplemented by the equation
of state to specify the fluid pressure P (see below).

To discuss the time evolution of the perturbations in an expanding Friedmann—Robertson—
Walker (FRW) universe, it is best to use the comoving coordinates x defined as

r=af(t)x. (4.5)
The proper velocity, u = r, at a point X can then be written as
u=ada(t)x+v, Vv=uax, (4.6)

where an overdot denotes derivative with respect to 7, and v is the peculiar velocity describing
the motion of the fluid element relative to the fundamental observer (the one comoving with the
background) at x. With (x,7) replacing (r,7) as the space-time coordinates, the time and spatial
derivatives transform as

1 d Jd a
Vr—>;VX; E_)E_EX'V"' 4.7)
Expressing the density p in terms of the density perturbation contrast against the background,
p(x,1) =p (1) [1+6(x,1)], (4.8)
and using the fact that p o< a—3, one can write Eqs. (4.1)—(4.3) in comoving coordinates as
as 1
LV 148V =0 4.9
o5 Ve l(1+8)v] =0, “9)
av a 1 Vo vp
—+-v+-(v-V)y=———- — —— 4.10
8t+av+a(v v a ap(l1+8)’ (4.10)
V20 = 4nGpa*s, @ = ¢ +aix*/2, (4.11)

where V = Vy, and d /9t is now for fixed x. For a given cosmology [which specifies a(f)], and a
given equation of state, the above set of equations can in principle be solved.
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The above description, based on the assumption that the matter content of the Universe is
a non-relativistic fluid, can be extended to cases where the Universe contains a smooth back-
ground of relativistic particles (photons and neutrinos) or vacuum energy (e.g. the cosmological
constant). In such a case, both the continuity and Euler equations for a Newtonian fluid have
the same forms as Eqgs. (4.1) and (4.2), but the gravitational potential ¢ should include the con-
tributions from these additional energy components. This can be done by replacing the Poisson
equation (4.3) by

V7o =4nG (p+pe+py), (4.12)

where p; and p, are the effective gravitational mass densities of the relativistic background and
the vacuum, respectively. As we have seen in §3.2.1, both the energy density and pressure of a
relativistic fluid act as sources of the gravitational acceleration, and in general the source term is
p =p+3P/c*. Thus, p; = p; + 3P /c* = 2p;, and py = py + 3P, /c*> = —2p,. These terms are
exactly the same as those in the equation for g [see Eq. (3.58)], and are therefore subtracted from
the potential perturbation, ®, defined in Eq. (4.11). Thus, the density perturbation & (defined
against the mean density of the non-relativistic fluid, rather than the total mean density), the
peculiar velocity v, and the potential perturbation @ still obey Egs. (4.9)—(4.11). The effect of
adding a smooth component is only to change the general expansion of the background, i.e. to
change the form of a().

The equation of state of the fluid is determined by the thermodynamic process that the fluid
undergoes. In special cases where the pressure of the fluid depends only on the density p, the set
of fluid equations is completed with the equation of state, P = P(p). More generally, however,
we can write the equation of state as

P=P(p.S), 4.13)

where S is the specific entropy. Since this introduces a new quantity, we need an extra equation in
order to complete the set of equations. From the definition, dS = dQ/T (where dQ is the amount
of heat added to a fluid element with unit mass), we get

p4s_ A%

d  p

(4.14)

where 7 and € are the heating and cooling rates per unit volume, respectively. As described in
Chapter 8, the forms of .7 and ¥ are determined by physical processes such as radiative emis-
sion and absorption, and can be obtained from physical principles. If the evolution is adiabatic,
then dS/dr = 0.

For an ideal non-relativistic monatomic gas, the first law of thermodynamics applied to a unit

mass is
Tde(3P> + Pd <1> (4.15)
2p p

Using P = (p/umyp)kgT, with u the mean molecular weight in units of the proton mass m,, to
substitute the temperature yields

2 pmp

1 4.1
3 7 SdInS. (4.16)

dInP = gdlnp +

and thus

Po p*exp (i‘;’:" ) 4.17)
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From this we have

ve 1 <8P> <8P>
P p|\dp/s s/,
2
=c2Vs+ g(l +8)TVS, (4.18)
where
ap) 172
= | = (4.19)
<8p s
is the adiabatic sound speed. Thus, the Euler equation (4.10) can be written as
ov a 1 Vo 2 Vs 2T
—+-v+—(v- = —=———-—Vs. 4.2
8t+av+a(v V)Y a a(14+98) 3a S (4:20)

In special cases where both 6 and v are small so that the nonlinear terms in Egs. (4.9) and
(4.10) can be neglected, we get the following set of linear differential equations:

00 1
9 1y, _ 421
5w TaVY 0, (4.21)
. 2 =
v o, VO ags My 4.22)
Jdt  a a a 3a

where T is the temperature of the background, and c; is the sound speed evaluated using the
background quantities. Operating V x on both sides of Eq. (4.22) gives

Vxvea (4.23)

Thus, in the linear regime, the curl of the peculiar velocity field dies off with the expansion and
can be neglected at late times. This basically expresses the conservation of angular momentum in
an expanding universe. Note that since the source terms in Eq. (4.22) are all gradients of scalars,
which are curl-free, there is no source for vorticity, at least not in the linear, Newtonian regime
considered here.

Differentiating Eq. (4.21) once with respect to ¢ and using Eqs. (4.11) and (4.22) we obtain

2 . 2 T
‘Z—jmg%‘f :4nGﬁ5+%V26+§§ZV2S. (4.24)
The second term on the left-hand side is the Hubble drag term, which tends to suppress pertur-
bation growth due to the expansion of the Universe. The first term on the right-hand side is the
gravitational term, which causes perturbations to grow via gravitational instability. The last two
terms on the right-hand side are both pressure terms: the V2§ term is due to the spatial variations
in density, while the V25 term is caused by the spatial variations of specific entropy.

In the linear regime, the equations governing the evolution of the perturbations are all linear
in perturbation quantities. It is then useful to expand the perturbation fields in some suitably
chosen mode functions. If the curvature of the Universe can be neglected, as is the case when the
Universe is flat or when the scales of interest are much smaller than the horizon size, the mode
functions can be chosen to be plane waves and the perturbation fields can be represented by their
Fourier transforms. For example, for d(x,¢) we can write

o(x,t) = %&((t) exp(ik-x); &(1) = %/5(x,t) exp(—ik -x) d’x, (4.25)

where Vj is the volume of a large box on which the perturbations are assumed to be periodic.
This convention of Fourier transformation is used throughout this book. Since we will always
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write the perturbation fields in terms of the comoving coordinates x, the wavevectors k are also
in comoving units.

We can obtain the evolution equation for each of the individual modes, d(#) and Sk (7), corre-
sponding to 6(x,#) and S(x,t), by Fourier transforming Eq. (4.24). Using the fact that V can be
replaced by ik and V> by —k? in the Fourier transformation, we obtain

d? & a déy K*c?
— +2-
a taar {

} S — = szsk (4.26)

In addition, the Fourier transformed Poisson equation is
— k2D = 4nGpa’ &, 4.27)

where @y is the Fourier transform of the perturbed gravitational potential field. Finally, since the
velocity field can be considered curl-free, we can write v as the gradient of a velocity potential:
v =V, and so vk = ik%. It then follows from the Fourier transformation of Eq. (4.21) that

iak déy

=gt (4.28)

4.1.2 Isentropic and Isocurvature Initial Conditions

As one can see from Eq. (4.24), both the density perturbation, J, and the entropy perturbation,
Sk, act as sources for the evolution of the density fluctuations. Entropy perturbations correspond
to spatial variations in pressure and can generate density fluctuations through adiabatic expan-
sion and compression. Therefore, there are two distinct initial perturbations that can seed density
fluctuations: isentropic perturbations, for which the initial perturbation is in the density (&; # 0)
but not in the specific entropy (8S; = 0), and isocurvature perturbations, for which & = 0 but
0S; # 0. In general, both isentropic and isocurvature perturbations may be present in the ini-
tial conditions. Since perturbations in the space-time metric are associated with perturbations in
the energy density, isentropic perturbations correspond to perturbations in space-time curvature,
while isocurvature perturbations do not. Because of this, isentropic perturbations are also called
curvature perturbations, in contrast to isocurvature perturbations.

Note that ‘isentropic’ and ‘isocurvature’ are nomenclature used to indicate the nature of initial
perturbations rather than the properties of the evolution. Even if the initial perturbation is isen-
tropic, entropy fluctuations can still be generated through non-adiabatic processes. In cosmology,
one sometimes uses ‘adiabatic perturbations’ to refer to isentropic initial conditions combined
with adiabatic evolution. Strictly speaking, however, the term ‘adiabatic’ should be used to spec-
ify the evolutionary process, while ‘isentropic’ should be used to indicate the nature of the spatial
fluctuations.

As we will see later in this chapter, isentropic initial perturbations are naturally predicted
by inflationary models, whereas isocurvature initial conditions may be generated in the early
Universe as spatial variations in the abundance ratios (e.g. the photon/baryon ratio) while keeping
the total energy density uniform in space.

4.1.3 Gravitational Instability

For isentropic initial perturbations with adiabatic evolution, one can set k>Sx = 0. If we ignore
for the moment the expansion of the Universe, then Eq. (4.26) becomes

&3
dr?

22
= -0’8 with o= s

—47Gp. (4.29)
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This defines a characteristic proper length, the Jeans length,
(4.30)

which expresses the distance a sound wave can travel in a gravitational free-fall time #y ~
(Gp)’l/z. For A < A5 (k > ky) we have > > 0 and the solution of Eq.(4.29), given by
Ok (t) = exp (Liwr), corresponds to a sound wave (also called acoustic wave), that propagates
with the sound speed. If 1 > A; (k < ky), then @* < 0. In this case, the pressure can no longer
support the gravity and the solution of Eq. (4.29) represents a non-propagating, stationary wave
with an amplitude that either increases (growing mode) or decreases (decaying mode) with time
exponentially. This growing mode reflects the gravitational instability, or Jeans instability. If the
expansion is taken into account, the Hubble drag modifies these solutions: it causes a slow damp-
ing of the acoustic waves when A < A;, while the growth of the unstable modes in the case with
A > Ay is slowed down (see §4.1.6).

It is clear from the above that only perturbations with k < ky can grow. After recombination,
when baryonic matter decouples from radiation (i.e. at z < zgec ~ 1,100), the relevant sound speed
can be approximated as that of a non-relativistic monatomic gas:

1/2
e = <5kBT) , 431)

3m,

where my, is the proton mass. The comoving Jeans length is then
Az~ 0.01(Qy0h%)~"/* Mpc. (4.32)

If we define the mass corresponding to a wavelength A as the mass within a sphere of radius 1 /2,
the corresponding Jeans mass is

M= %pmpaf ~ 1.5 x 10°(Qy k%) /2 M. (4.33)

Thus, shortly after recombination the Jeans mass is comparable to that of a globular cluster.
Before recombination, however, electrons and photons are tightly coupled via Compton scat-

tering. In this case, baryons and photons act like a single fluid with p = pp +pr and P = P, =

% prc? (see §3.1.5). For an adiabatic process, the energy densities p, and p; change due to adi-

abatic compression or contraction of volume elements as py o< v-1and Pr o< y—4/ 3 and so the

adiabatic sound speed is

-1/2

- F’Jb(x) (4.34)

“T V34,0

Unfortunately, since the content of the fluid is not non-relativistic, the Newtonian treatment
considered above is no longer a good approximation. Nevertheless, for an order-of-magnitude
analysis, we may still use Eq.(4.30) to define a Jeans length. At the time when matter and
radiation have equal energy density, which is just prior to recombination, the Jeans mass is

My~ 1.2 x 10'9(Qy 0h?) > My, (4.35)

Thus, isentropic baryonic perturbations with scale sizes smaller than that of a supercluster can-
not grow before recombination. At recombination, however, the Jeans mass rapidly decreases
by about 10 orders of magnitude, to the scale of globular clusters, and all perturbations of
intermediate scales can start to grow after recombination.

To see how isocurvature perturbations seed gravitational instability, let us consider a case
where the evolution is adiabatic so that Sk is independent of time. If we denote the two general
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solutions for the homogeneous equation corresponding to Eq. (4.26) (i.e. with the Sk term set to
zero) by &, (the growing mode) and J_ (the decaying mode), it can be shown that

5,6.—6.8, =Ca 2, (4.36)

where C is a constant. One can then show that the special solution to Eq. (4.26) is

5&50@) = —%kzsk

1 t
X {5+(k,t) T(t)6_(k,t')dt' — & (k,t) T(t/)5+(k,t/)dt/] , (437
ti 4
where the amplitudes of §; and O_ are chosen so that C = 1. Hence, the general solution to
Eq. (4.26) can be written as &(f) = §°(t) + A6 (k,t) +A_8_(k,t), where A, and A_ are
constants to be determined by initial conditions. For isocurvature initial conditions, Ay =A_ =0,
and so 8 (t) = §{*°(¢). Thus, isocurvature initial conditions induce both growing and decaying
modes of density perturbations. At late times, when the decaying mode can be neglected, these
density perturbations evolve in exactly the same way as in the isentropic case.

4.1.4 Collisionless Gas

The fluid approximation discussed above is valid only when the mean free path of particles is
much smaller than the spatial scale of the perturbations in consideration. In other cases where the
collisions between particles are rare and the mean free path is large, the evolution of perturbations
is specified by the particle distribution function f(x, p,7), which gives the number of particles per
unit volume in phase space:

dN = f(x,p,1)d’xd’p. (4.38)

Here p; = 0.2 /dx' is the canonical momentum conjugate to the comoving coordinates x'. To
obtain p, we use the Lagrangian of a particle with mass m in an expanding universe:

1
& = Sm(ax +ax)? —mo(x,1), (4.39)
which can be transformed into
1
L= 5ma%eZ — m® (4.40)

by a canonical transformation . — . — dX /dt with X = madx?/2. Tt then follows that the
canonical momentum and the equation of motion are
0¥ d
pzxzmazy'(:mav and d—I::
According to Liouville’s theorem, the phase-space density f of a collisionless gas is a constant
along each particle trajectory and therefore obeys the Vlasov equation:
af 1 af
o 5 VFf—mVD. 2L =
ot * ma2? fom op
This equation is just a result of conservation of particle number: the rate of change in particle
number in a unit phase-space volume is equal to the net flux of particles across its surface.
Although the full Vlasov equation is difficult to solve, one can obtain useful insights by con-
sidering the p moments (or the velocity moments) of f. Generally, the average value of a quantity
Q in the neighborhood of x is

—mV. (4.41)

0. (4.42)

0 =0 =, [ordp, 443)
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where
n=n(x)= /fd3p =pa’ [1+8(x)] /m (4.44)

is the comoving number density of particles at x, and for simplicity we assume the density of
the Universe to be dominated by the species of collisionless particles in question. Multiplying
Eq. (4.42) by Q and integrating over p we get

1 a0
— — V- Vo. =0 4.45
S0+ 5V - nlopl] - mave- (52 ) o (445)
where we have assumed f = 0 for p — oo so that the surface terms equal zero. Setting Q = m in
Eq. (4.45) and using Eq. (4.44) gives

a6 1 d
a1+ a2 gy 1wl =0 (446

which is just a result of mass conservation. This is equivalent to the continuity equation for a non-
relativistic fluid given by Eq. (4.9), but with v replaced by the mean streaming motion (v). Note
that (v) is the average velocity of particles in the neighborhood of x and can be much smaller
than the typical velocity of individual particles.

The equation of motion can be obtained by setting Q = v;:

d a 1+60D 1
> [(1+6)(v)]+ ;(1 +6)(u) = T o fza—xj [(1+6)(vv;)]. (4.47)

Multiplying the continuity equation (4.46) with (v;) and subtracting the result from Eq. (4.47)
yields the collisionless equivalent of the Euler equations in an expanding universe:

o), Ay 190 1
Jt Nt 2 Vox, ~ adx a(1+5);(’97,-[

(1+8)07] (4.48)

where we have defined
o7 = (vv;) — () (vj). (4.49)

A comparison with Eq. (4.10) shows that pGl%», called the stress tensor, plays the role of pressure.
In principle, one can set Q = v;v; and obtain the dynamical equation for (v;v;) which, in turn,
will depend on the third velocity moment. As a result, the complete dynamics is given by an
infinite number of equations of velocity moments. In practice, we can truncate the hierarchy
by making some assumptions. If the velocity stress O'izj is small, so that the right-hand side of
Eq. (4.48) is dominated by the gravitational term, then to first order in § (note that (v) ~ 0 in the
linear regime), Egs. (4.46) and (4.48) can be combined to give
9’8 _adé
o7 +2 Py =4nGp4. (4.50)
This equation is the same as Eq. (4.24) with ¢, = 0. Thus, on scales where the velocity stress
is negligible, a collisionless gas can be treated as an ideal fluid with zero pressure. In general,
however, the velocity dispersion of a collisionless gas is not negligible, and the particles can
stream away from one place to another (see §4.1.5 below), making the fluid treatment invalid.
In the general case, therefore, one needs to consider the evolution of the full distribution func-
tion (or, equivalently, the full infinite hierarchy of moment equations). Here we will solve the full
Vlasov equation using perturbation theory. Without losing generality we can write

f=fo+ 1, (4.51)
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where fj is the unperturbed distribution function and fj is the perturbation. Note that fj is inde-
pendent of x in a homogeneous and isotropic background. The comoving number density of
particles at X is n = [ fd’p, and so the mass density at x is

p(x) = 2% [ xp)d'p =p() [ 28+ 5051 (452)
where ng = [ fpd®p is the mean number density of particles (in comoving units), and
m
= / Adp (4.53)

is the density contrast with respect to the background. The gravitational potential ® due to the
density perturbation is given by the Poisson equation (4.11). For a homogeneous and isotropic
background, fy depends only on the magnitude of p and, since @ is a first-order perturbation, the
unperturbed distribution function f obeys

afo\
<&t>q —0, (4.54)

where ¢ = (3; pl-z)l/ 2 is the magnitude of p. [Note that p is reserved to denote (—g'/ p,'pj)l/ 2,

which is equal to g/a in a flat universe.] As we have seen in §3.3.2, the unperturbed particle
~1
distribution function has the form f; o {eE/ keT(a) 4 1} , where E = p?2m o< ¢* /a* < ¢*T (a)

for non-relativistic particles, and E = p «< g/a =< qT (a) for relativistic particles. We thus see that
fo is independent of a for fixed ¢ (or fixed |p|), instead of for fixed p.
To first order in the perturbation quantities, the equation for f; is

afi 1 afo
or, in terms of Fourier transforms,
afk ik-p dfo
S p.8) = (k90 ) ), 456)
where d€ = dr /a®. This equation can be written in the form
o [fkexp<lk pé)} =ma (lk fo> d)kexp<lk.p§>. (4.57)
ER m

Integrating both sides from some initial time &; to &, we get

b8 = b G)exp | -2 g -5
+mik- (‘9?) éfd&’az(&’m(&’)exp [—ﬂ‘nf’(é—é’)]. (4.58)

Since the gravitational potential @ depends on f; through the Poisson equation, Eq. (4.58) is an
integral equation for fx and can be solved iteratively. The first term on the right-hand side of
Eq. (4.58) is a kinematic term due to the propagation of the initial condition, while the second
term describes the dynamical evolution of the perturbation due to gravitational interaction.
Inserting Eq. (4.58) into Eq. (4.53), it is straightforward to show that the dynamical part of J
is given by
mk?

5k(§) = pa3 .

é(é ENa* (& Px(ENY [k(E—E')/m], (4.59)
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where ¢ is the Fourier transform of fj:

Y(s) = ' / ' d*pfo(p)e P*. (4.60)

Since fj depends only on g (the amplitude of p), the angular part of the integration over p can be
carried out, giving

m2 &
8(6) =2 [ a0 (E-E). @61
where
K(E-E&)= /0 ) dgqfo(q)sin [k"(ém_ﬁ} . (4.62)

4.1.5 Free-Streaming Damping

If (k-p/m) > &, i.e. (a/k) < vt, the phase of the dynamical part in Eq. (4.58) changes so rapidly
with &’ that the integration over &’ makes little contribution, implying that the perturbation can-
not grow with time. For the same reason, the contribution of the kinematic term to the density
perturbation, which is proportional to the integration of this term over p, is close to zero because
the integrand oscillates rapidly with p. The initial perturbation is therefore damped. What hap-
pens physically is that, because of their large random velocities and collisionless nature, particles
originally in the crests can move to the troughs and vice versa, leading to damping of the density
perturbations. This effect, owing to the random motions of the collisionless particles, is called
free-streaming damping and is similar to Landau damping in a plasma (see §5.5.4). The proper
length scale below which free-streaming damping becomes important is of the order v¢, where ¢
is the age of the Universe, and v is the typical particle velocity at . More precisely, we define the
free-streaming length as the comoving distance traveled by a particle before time #, which can be
written as

!/
Aty = / o) G (4.63)
Jo a(t")

If the particle becomes non-relativistic at #,,;, then the peculiar velocity is v ~ ¢ at t < t,, and
voca Vattr >ty We will assume the Universe to be radiation dominated before fyy, i.€. tnr < feqs
as is almost always true in real applications. Using a(z) < M2 atr < feq (see §3.2.3), one finds

that, at matter—radiation equality,

2o = 2 11 (g )] (4.64)

Anr

For light neutrinos, the time at which the particles become non-relativistic is given by
3kp Ty (tar) =~ myc®. With T, = (4/11)!/3T, (see §3.3.3) this implies that (1 + zr) ~ 6 x
10*(m,, /30eV). Using Eqs. (3.68) and (3.80) we then obtain

my, \—!
~31 ( ) Mpc, 4.65
A 306V pc (4.65)
which corresponds to a free-streaming mass
T~ 43 s(_Mv \7?
My = £ Pmold =13 % 10! (ﬁ) M., (4.66)

where we have used that Q, 4> = 0.32(m,,/30eV) (see §3.3.5). Thus, if the Universe is dominated
by light neutrinos, all perturbations with masses smaller than that of a massive cluster are damped
out in the linear regime, and the first objects to form are superclusters.
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4.1.6 Specific Solutions

(a) Pressureless Fluid For isentropic perturbations in a pressureless fluid (or when k < kj),
Eq. (4.26) reduces to
d? & a ddy
222 —4nGp 4.67
a2 T2 g = AnGPmb, (4.67)

where p,, is the mean density of the fluid. It can be easily shown that if §;(¢) and &,(r) are two
solutions then

861 — 618y 0<a 2. (4.68)

This is even true if the pressure term is included. Thus, if one solution of Eq. (4.67) is known, the
other one can be obtained by solving this first-order differential equation. To solve Eq. (4.67), we
recall that the Hubble constant, H(¢) = d/a, obeys

d7H+H2:_4ﬂ7G
dr 3

(see §3.2.1). Since p,, > a3 and p, = constant, differentiating the above equation once with
respect to ¢ gives

(Pm—2P,) (4.69)

&*H  _adH
— +2-— =4nGp H. 4.70
a TCaa oPm (4.70)
Thus, both & () and H(r) obey the same equation. Since H (¢) decreases with 7 [see Eq. (3.74)],
5 = H(t) (4.71)

represents the decaying mode of §(¢). By directly substituting the solution into Eq. (4.68), one
finds that the growing mode can be written as

! dr’ = (1+7)
o ocHt/iocH / d7, 4.72
- o H (1) o0 a?(r")H3(1") @) . E3Z) ¢ 472)
where E(z) is given by Eq. (3.75).
For an Einstein—de Sitter universe,
8,0t §_ocH(t)oct™!, 4.73)

which can be obtained directly by solving Eq.(4.67) with a(t) o< /3. For an open universe
with zero cosmological constant (2,0 < 1, Q4 o = 0), the growing mode can be written in the
following closed form:

3 3(1+x)/2

§peclt 4= —1n (14+x)/2—x'72], (4.74)

where x = (Qr;,lo —1)/(1+z). This growing mode has the asymptotic behavior that &, o<

(1+z)"'asx— 0and §; — 1 as x — oo. In general, the growing mode can be obtained from
Eq. (4.72) numerically. A good approximation has been found by Carroll et al. (1992):

8 o< D(z) o< g(2)/(1 +2), (4.75)
where

—1
8(2) = 5 Qm(2) {9‘37(1) —Qp(2) + [1+Qu(z)/2][1 + QA(Z)/m]} , (4.76)

N W

with Qy,(z) and Q4 (z) given by Eq. (3.77). Fig. 4.1 shows the linear growth rate D(z). Note that
linear perturbations grow faster in an Einstein—de Sitter (EdS) universe than in a universe with
Q0 < 1. Physically this is due to the fact that in open universes, or in universes with a non-zero

—~
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Fig. 4.1. The linear growth rates in cosmological models with Qy, ¢ = 0.1, 0.2, 0.3, 0.5 and 1. The left
panel assumes Q4 o = 0 while the right panel assumes Qp, o + €24 o = 1. The rates are all normalized so
that D(z=0) = 1.

cosmological constant, the expansion rate is larger than in an EdS universe, and the perturbation
growth is reduced because of the enhanced Hubble drag.

It is also useful to look at the linear evolution of the potential perturbations during the matter
dominated regime. From the Poisson equation (4.27) we have that @ «< a’D(a)p,,(a) < D(a)/a.
In an EdS universe where D(a) o< a, the potentials do not evolve (they are frozen in). In an open
universe, or in a flat universe with a cosmological constant, however, the linear growth rate is
suppressed and the potentials decay as the universe expands.

Inserting the growing mode of § in Eq. (4.28), we have

'k
Vi = ;C—zHa&( F(Qm), 4.77)
where
. d]nD(z)
F@n) = =g o (4.78)

To a good approximation f(Qp) ~ Q%6 (Peebles, 1980). Thus, for a fixed matter power spec-
trum, a cosmology with a larger mean density produces larger peculiar velocities. Note also that
larger scale perturbations (smaller k) cause larger peculiar velocities than smaller perturbations
of the same magnitude. Thus, if we could somehow measure both the large scale (linear) den-
sity field and the peculiar velocity field (i.e. the deviations from the smooth Hubble flow), then
Eq. (4.77) would allow us to measure the mean density of the Universe. We will return to this in
Chapter 6.

(b) Perturbations in Two Non-Relativistic Components Next we consider isentropic per-
turbations in a fluid consisting of two non-relativistic components, one with and one without
pressure. An interesting example is the evolution of density perturbations in baryons induced by
a pressureless (cold) dark matter component. For simplicity, we assume the mean density of the
Universe to be dominated by the dark matter. In this case, the density perturbations in baryons,
Jp, obeys the following equation (in Fourier space):
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poa
7—#2;*4— a3 5b:4nGa736dma (4.79)

where 4, the density perturbations in the dark matter, obey Eq. (4 67), and py > Py o 1s the
mean matter density at the present time. In the special case where c¢2a = constant (namely for a
polytropic fluid with P o< p*/3) and a(r) o t*/3 (i.e. for an EdS universe), a special solution of
this equation is

Oum(k,1) L k%:3“2H2.

k7t = T 50

(4.80)

On large scales (k < kj) the baryonic perturbations closely follow the dark matter perturbations
(0p — 8am); this simply reflects that baryons are like a collisionless fluid when its pressure can be
neglected. On small scales (k >> kj), however, the baryonic pressure cannot be neglected, causing
baryon oscillations (i.e. acoustic waves, see below) that slowly damp due to the expansion of
the Universe (&, — 0). Although Eq. (4.80) is only a solution of Eq.(4.79) when the baryon
component is a polytropic fluid with adiabatic index y = 4/3, it can be shown that the general
behavior is very similar for other values of 7.

The general solution of the homogeneous equation corresponding to Eq. (4.79), for which
the right-hand side is equal to zero, is & o< 1~ (1#8)/0 with & = [I — 12(k/ky)?]"/2. Since 1 —
12(k/k;)* < 1, these two solutions correspond to modes which are either decaying or oscillating
with time. Thus, in the absence of perturbations in the dark matter (8gqy, = 0), there is no growing
mode for &y, simply because there is no source term (remember that we are assuming that pgp, >
Pp)- The only source term for &, in this case is dqm, and the corresponding growing mode is given
by Eq. (4.80).

(c) Acoustic Waves Consider once again the case of isentropic perturbations in a fluid consist-
ing of dark matter (with zero pressure) and baryons. As above, we assume that the mean density
of the Universe is dominated by the dark matter. If the time scale of interest is much shorter than
the Hubble time we can neglect the expansion and Eq. (4.26) reduces to
d26b k2 s k2
=—— . 4.81

Note that this differs from the case discussed in §4.1.3 in that the perturbations in the baryons are
not self-gravitating; the gravitational source term is due to the perturbations in the dark matter.

Eq. (4.81) is the equation of motion for a forced oscillator. If the potential ®4p, (K, ) is constant
over the time of interest, the solution can be written as

() = |84(0) + 24 costhean) + - TR O)sinhean) - P @)

where we have introduced a new time variable 11 = ¢/a. Thus, & (k,#) oscillates around a zero-
point, —®yn(k,7)/c2, with a frequency @ = kcs, and with amplitude and phase set by the
initial conditions & (0) = & (k,0) and d&,/dn (0) = dd,/dn (k,0). Using the continuity equation
(4.28), we can also obtain the time evolution of the corresponding velocity perturbations:

ik do, icsk ik doy,

W)= s o = [30)+ T sinthen) + 25

—(0) cos(kesn). (4.83)

Note that there is a phase difference of 7/2 between the velocity and density perturbations,
characteristic of a longitudinal (acoustic) wave.

Acoustic waves also play a role during the pre-recombination era. As shown in §3.5, photons
and baryons are tightly coupled before recombination and can be considered as a single fluid
with a sound speed given by Eq. (4.34). In this case the acoustic waves are driven by the photon
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pressure, and for a given mode, the oscillation frequency, amplitude and zero-point all depend
on the density ratio between baryons and photons through the sound speed cs. As we will show
in Chapter 6, the acoustic waves in the photon—baryon fluid at the epoch of decoupling give rise
to oscillations in the power spectrum of the cosmic microwave background. The amplitudes and
separations between peaks (or valleys) of these oscillations can thus be used to constrain the
baryon density of the Universe.

(d) Collisional Damping Although photons and baryons are tightly coupled to each other by
Compton scattering before recombination, the coupling is imperfect in the sense that the photon
mean-free path, A = (orn.) !, is not zero. Consequently, photons can diffuse from high-density
to low-density regions, thereby damping the perturbations in the photon distribution. Since the
acoustic waves in the pre-recombination era are driven by photon pressure, this photon diffusion
also leads to damping of the acoustic oscillations in the baryonic fluid. This damping mechanism
is known as Silk damping.

The scale on which Silk damping is important depends on the typical distance a photon can
diffuse in a Hubble time. To estimate this distance (which we denote by Aq), consider the motion
of a photon to be a random walk with a mean ‘step length’ A. The mean number of ‘steps’ a
photon takes over a time ¢ is therefore N = ¢/ A. It then follows from kinetic theory that

Aa=(N/3)V2EA = (ct/30mme)" 2. (4.84)

At recombination (z ~ zyec ~ 1,100), this defines a Silk damping mass scale
T _ _
My = gpm,oag ~2.8x10"(Qp 0/Qm0) > (Qmoh?) ~/* M, (4.85)

where we have used an ionization fraction of X, = 0.1 (see §3.5) and we have assumed that
the Universe is dominated by matter at z = zy.. Note that this is only a rough estimate; more
accurate estimates yield a damping mass that is about an order of magnitude larger (see §4.2.5).
The perturbations in the baryon—photon fluid with masses below My are expected to be damped
exponentially during the pre-recombination era. This may have an important impact on galaxy
formation. Consider for example a baryonic Einstein—de Sitter cosmology (20 = Qo = 1).
Then Silk damping will erase all perturbations with masses smaller than ~ 10'3 M. The only
way in which galaxies (which have baryonic masses < 10! M) can form in such a cosmology
is through the fragmentation of non-damped structures with masses larger than ~ 1013 M. As
we will see later, this requires initial perturbations in the baryon component that are too large to
match the observed temperature fluctuations in the cosmic microwave background.

This problem can be circumvented if the matter component of the Universe is dominated by
non-baryonic, cold dark matter. Since cold dark matter is pressureless, it does not experience Silk
damping. Furthermore, because it decouples when already non-relativistic, cold dark matter does
not experience any significant amount of free-streaming either. Thus, at the end of recombination,
when the small-scale perturbations in the baryons have been damped away, the perturbations in
the dark matter component are still present. Since the baryons basically have become a pressure-
less fluid after recombination, they rapidly fall into the potential wells associated with these dark
matter perturbations. Consequently, in the presence of a significant amount of (cold) dark matter,
Silk damping is basically irrelevant for galaxy formation. The damped baryonic perturbations
can be ‘recreated’ at the end of recombination, as is expressed by Eq. (4.80).

(e) Perturbations on a Relativistic Background In the presence of a uniform relativistic back-
ground, the perturbations in the non-relativistic component (assumed to be pressureless) obey
Eq. (4.67), while the scale factor a is given by

a\> 8nG _  _
(£) =% mntp. (+56)
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where p,, = a3 is the mean density in the non-relativistic component, p, = a~* is that in the
relativistic background, and for simplicity we assume an Einstein—de Sitter universe. Defining a
new time variable, { = p,, /P, = a/aeq, the equation of motion for d can be written as

d26k+ (2+3¢) d& 3 &

4.87
a2 "0 A 2T+ g (87
The two solutions of this equation are
Oy o<1+ %C, (4.88)
5 o (1+3§)1n a+9211 —3(1+0)'? (4.89)
- 2 (1+8)12—1 ' '

This shows that perturbations in the non-relativistic component cannot grow (&, = constant)
if the relativistic component dominates the energy density. As long as { < 1, the Hubble drag
therefore causes a stagnation of perturbation growth, known as the Mészaros effect (Mészaros,
1974). As is evident from Eq. (4.88), once the Universe becomes dominated by non-relativistic
matter, 04 o< a, in agreement with Eq. (4.73).

4.1.7 Higher-Order Perturbation Theory

When deriving Eq. (4.24) we only used the linearized versions of the continuity equation (4.21)
and the Euler equation (4.22). In what followed we have therefore only considered perturbations
to linear order. However, some important new insights can be obtained by using a higher order
description.
Multiplying Eq. (4.9) by v and Eq. (4.10) by (1 + &), adding and then taking the divergence

gives

9?6  _ads VP |1 1 9° P

7t =52 +;V~(1+6)V<b+;%m[(l+6)v '], (4.90)

which is equivalent to Eq. (4.24), but now without linearization. For simplicity, we consider only
pressureless gas. In this case, the above equation in Fourier space can be written as

d2 8 a déy _

2——— =4 A —C 491
a2 + o nGp o + , 4.91)
where ) )
k-k k- -(k—K)
o =2nGp z(‘; [ 7 kK] } S Ok (4.92)
1 kv’
—_ 1 . _ —ik-x d3 4
%Vu/(+5)(a>e N (4.93)
and the Euler equation (3.8) (with P = 0) can be written as
d
AL 47:0%5.( L) (4.94)
dt a
with )
E=—3 (K i) vie- (4.95)

ak,

It is clear from these equations that different Fourier modes are coupled, something that is
absent in the first-order perturbation theory. However, it is also evident from these equations
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that these higher-order terms are negligibly small in the limit 0 < 1. Mode coupling therefore
only becomes important when 6 ~ 1.

In general, the nonlinear equations (4.91)—(4.95) are difficult to solve. However, in the quasi-
linear regime, where 0 < 1, one can use high-order perturbation theory. One therefore expands
the density contrast (and the peculiar velocity) in a perturbation series like

8(x,1) =8W(x,1)+ 8P (x,0)+ 8 (x,1) +..., (4.96)

where 8(!) is the linear solution and §*) = @[(8(1))] is the £™-order term obtained by inserting
the lower-order solutions into the nonlinear terms, <7, ¢ and E. In principle, such a procedure
is straightforward, although the calculations can be rather tedious. We refer the reader to Peebles
(1980) for a discussion on the second-order term, and to Bernardeau (1994) for some higher-order
solutions.

4.1.8 The Zel’dovich Approximation

Given that all fluctuations were small at early times, it is reasonable to assume that at more
recent epochs only the growing mode has a significant amplitude. Under this assumption, the
linear evolution of density perturbations reduces to the very simple form

§(x,a) = D(a)&(x), 4.97)

where §(x) is the density perturbation at some initial time #;, and D(a) is normalized such that
D(a;) = 1. Thus the density field grows self-similarly with time. The same is also true both for the
gravitational acceleration and the peculiar velocity. This is easily seen by substituting Eq. (4.97)
into the Poisson equation (4.11). The scaling of the result with the expansion factor then implies
that
D(x,a) = M(ID- (x) where V>®; =41Gp,a°6;

a)=——@; i = P’ Gi(X). (4.98)
In an Einstein—de Sitter universe, where D o< q, this equation implies that ® is independent of a.
Thus, the linearized Euler equation, v+ (d/a)v = —V®/a, can be integrated for fixed x to give

v= Vo / D (4.99)
a a

Because, by definition, D(a) satisfies the fluctuation growth equation, 5+ (2a/a)é = 4nGp,, 9,
so that [(D/a)dt = D/4n Gp ,a, Eq. (4.99) can be written as
D 1 D
Vv=—_—>VPj(x) = ———— -V, 4.100
4n Gp,,a® i(x) 4nGp,,a D ( )
which shows that the peculiar velocity is proportional to the current gravitational acceleration.
Since v = ax, integrating the above equation once again and to the first order of the perturbations,
so that V®;(x) can be replaced by V®;(x;) (with x; the initial position of the mass element at x),
we obtain
D
XZXi—&Vq)i(Xi). (4101)
4nGp,,a’
This formulation of linear perturbation theory, which is applicable to a pressureless fluid, is due
to Zel’dovich (1970). It is a Lagrangian description in that it specifies the growth of structure
by giving the displacement x — x; and the peculiar velocity v of each mass element in terms of
the initial position x;. Zel’dovich suggested that this formulation could be used to extrapolate
the evolution of structures into the regime where the displacements are no longer small (i.e. up
to 0 ~ 1). This procedure is known as the Zel’dovich approximation. Egs. (4.100) and (4.101)
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show that it is a kinematic approximation; particle trajectories are straight lines, with the distance
traveled proportional to D. The corresponding density field is, by mass conservation, simply the
Jacobian of the mapping x; — x. Thus,

~1
ox = : , (4.102)
Ix; (1=AMD)(1—A2D)(1 —A3D)
where A; > A > A3 are the three eigenvalues of the deformation tensor d;di (®;/ 471:Gﬁma3). In
the linear case, where ;D < 1, 8(x) = D(a) (A1 + A2+ A3) = D(a)6i(x), as expected. Zel’dovich
proposed that Eq. (4.102) applies even for A;D(a) ~ 1. In this case, the density will become
infinite at a time when A;D(a) = 1. The first nonlinear structures to form will then be two-
dimensional sheets, often called ‘pancakes’.

Clearly, the Zel’dovich approximation will not be valid after the formation of pancakes, when
shell crossing will occur. In reality, particles falling into pancakes will oscillate in the gravita-
tional potential, rather than move out along the directions of their initial velocities as predicted
by the approximation. This difficulty can be overcome to some degree in an improved scheme
where particles are assumed to stick together at shell crossing. This adhesion model is described
in considerable detail by Shandarin & Zel’dovich (1989).

1+06=

4.2 Relativistic Theory of Small Perturbations

The Newtonian perturbation theory of small perturbations described above applies if (i) the
length scales of the perturbations are much smaller than the horizon size at the time in ques-
tion (so that causality can be considered instantaneous), and (ii) the matter content can be treated
as a non-relativistic fluid. If perturbations were created at an early time ¢;, then all perturbations
with scale sizes A > ct; would, at some time in the past, have failed to fulfill the first condition.
The second condition is not fulfilled for perturbations in relativistic particles, such as photons
and (massless) neutrinos.

In principle, a relativistic treatment of the evolution of small perturbations is straightforward.
The perturbations in the space-time metric are related to the density perturbation field through
Einstein’s field equation, [§G]y, = (87G/c*)[8T] ., while the evolution of the perturbations
in the matter content follows from the conservation of energy—-momentum: 7%¥., = 0. For a
perfect, non-relativistic fluid the energy—momentum conservation law translates into a set of
simple fluid equations. In general, however, the fluid description is not appropriate and one has
to resort to the Boltzmann equation to describe the evolution of the full distribution functions in
phase space. The energy—momentum tensor can be related to this distribution function via a set
of moment equations. Thus, the Einstein field equations, combined with the energy—momentum
conservation law, basically are all that is needed to evolve cosmological perturbations in general
relativity. However, as we discuss below, the interpretation of fluctuations on scales larger than
the horizon size can sometimes cause confusion, because of the freedom in choosing coordinate
systems in general relativity.

Since the treatment here is quite tedious, the reader may want to skip this section on a first
reading and directly proceed to the next section where the results are summarized in terms of
linear transfer functions. Although some derivations there may depend on the material presented
in this section, the final forms of the linear transfer functions are sufficient for many of our
later discussions. Readers seeking an even more detailed description than what is given here are
referred to the references in the text and to the textbooks by Liddle & Lyth (2000) and Dodelson
(2003).

Throughout this section, we use the symbol 0 to indicate the density perturbation field, and

[6A] to refer to A(x) — A. We use the conformal time T = [ ¢df/a as our time coordinate, and



4.2 Relativistic Theory of Small Perturbations 179

we distinguish between A’ = dA/dt and A = dA/dr. The Kronecker symbol is written in three
different forms, 6';, &; and 6'/. The summation rule is implied whenever there is a pair of
repeated indices in a term. Finally, we set ¢ = 1 unless otherwise stated.

4.2.1 Gauge Freedom

To understand the meaning of gauge freedom, let us consider perturbations on a flat background
space-time. If we choose a coordinate system so that the metric of the background space-time
has the form

ds” = g, ¥ A = @ (1) (d” - §;d' '), (4.103)

then the coordinates have explicit physical meaning: a(7)(8;;dx'dx/)!/? is the proper distance,
and a(7)d7 is the cosmic time. The importance of a background space-time in perturbation the-
ory is that all perturbations are defined with respect to the background. For example, the density
perturbation of a fluid is defined as 8(x,7) = [p(x,T) —p(7)] /p(7), where the density p(x, T) is
the mass per unit proper volume as measured by an observer comoving with the fluid element at x
at time 7, while p(7) is the mean density at this time. Thus, perturbations are defined by compar-
ing quantities in the physical space-time with those in a fictitious background, and a (one-to-one)
correspondence between points in these two space-times has to be chosen in order to define
perturbation quantities. Unfortunately, the choice of such correspondence (gauge choice) is not
unique, because general coordinate transformations on the perturbed space-time can change the
correspondence even for a given background space-time. As a result, different gauge choices
will typically yield different values for the same perturbation quantities (such as 6). In addi-
tion, a perturbation quantity may be constant in one gauge, but increase or decrease with time in
another.
Because of curvature perturbations, the metric of the space-time becomes

v =y + 880, (4.104)

where [§g],, is the metric perturbation relative to the background. Since one is allowed to
change coordinate systems in general relativity, one can use another set of coordinates to label the
same space-time. Suppose that the new coordinates ¥ are related to x* through an infinitesimal
transformation:

= =4 EH (x), (4.105)
where £H is small. The transformation of a quantity Q of the kind
0(x) — O(x) (4.106)

under the coordinate transformation (4.105) is called a gauge transformation. Note that a gauge
transformation is different from a general coordinate transformation Q(x) — Q(%). In a gauge
transformation, Q and Q are both calculated at the same coordinate value corresponding to two
different space-time points, while in a general coordinate transformation both Q and x are trans-
formed so that we are dealing with the values of a quantity at the same space-time point observed
in the two systems.

From Eq. (4.105) we have

o gk ot Jen
— SH —SH
o~ vt g () and oo =68, =5

(x)+ O(E?), (4.107)
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and so to first order in £ the gauge transformations for scalars (S), vectors (V) and rank-2 tensors
(T) are
S(x) — S(x) = S(x) — E*S
Vi (%) = Vi (x) = Va (%) = Va8 * = Va £ s (4.108)
Tuw(x) = T (%) = Tpo (%) = Tuv.a&* = Tua&® ), — Taw&”
where Q , = dQ/dx*. The partial derivatives can all be replaced by covariant differentiations
to the first order of &£, and so S, Vu and Tﬂ,, are still scalars, vectors and tensors, respectively.

Applying these equations to the density (which is a scalar by definition), the four-velocity U* =
dx* /ds (U,U* = Uu U" = 1), and the metric tensor, we have

p(x):m1+5(x)}—§“w, and s0 S(x):s(x)—’;/go; (4.109)
UO(X)ZUO(X)+2(9¢§O+%&O, U"(x):U"(x)+éarfi; (4.110)

200(x) = goo(x) —2ad'§’ —2a%9,&°,

Goi(x) = goi(x) +a? ;& — a?9;E°, 4.111)

g”ij(x) = gl-j(x) +2aa'5,‘j<§0 +a2(8i§f + 8j§‘),
where a prime denotes derivative with respect to the conformal time 7. The transformed metric
is still a valid solution of the Einstein equation for a new energy—momentum tensor TW. Thus in
the new coordinate system, it looks as if extra perturbations (the terms containing £#) have been
introduced. We know that these extra ‘deviations’ are not physical, because they are just a result
of using inhomogeneous coordinates. For example, the extra term in the density perturbation in
Eq. (4.109) arises because we transform to a time coordinate T + £°(x) but define the density
contrast & relative to the mean background density at the time 7. The problem is how to get rid
of these spurious perturbations.

Since the spurious perturbations arise from the freedom in gauge transformations (i.e. the
gauge freedom), one may impose some gauge conditions on the coordinate system (i.e. on
the form of the metric) to try to eliminate the freedom. Of course, one should impose as
many gauge conditions as there are degrees of gauge freedom. Since the gauge transformation,
M — 5 = x* 4+ EH(x), contains four arbitrary fields, & (x), in general one should impose four
independent gauge conditions on the metric. In other words, of the 10 fields associated with the
metric perturbation [6g],, (Which is symmetric), only six are physical.

There are different ways of imposing the gauge conditions (i.e. in choosing the space-time
coordinate systems). This freedom can sometimes be exploited to simplify the particular problem
at hand (just as one sometimes prefers to use spherical rather than Cartesian coordinates). There
are, however, two further problems related to a gauge choice. The first is the existence of residual
gauge freedom. As we will see below, even when four gauge conditions are imposed, not all
gauge freedom is necessarily eliminated. For example, even if we choose the metric to have the
form Eq. (4.103) (which is, of course, only valid for a flat space-time), there is still the freedom
in choosing the origin and length scale of the coordinates. In this simple case, the residual gauge
freedom is trivial, but in general it may appear in more complicated forms and must be taken
into account. Obviously, we prefer a gauge in which this residual gauge freedom is easy to deal
with. In general, we can single out the gauge part (gauge mode) in a perturbation quantity by
studying its response to the residual gauge freedom; the part that can be transformed away is the
gauge mode and should be discarded. The second problem is related to the interpretation of the
perturbation quantities. Unless it is gauge-invariant, a perturbation quantity can reveal different
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behavior in different gauges. This is not a problem of principle, because each observable is
defined only relative to a coordinate system specified by the corresponding measurement. For
example, the density and pressure of a fluid at a given point are defined as those measured by
an observer comoving with the fluid element at that point, while quantities like the temperature
anisotropy in the CMB may be defined to be that measured by an observer to whom the expansion
of the Universe appears isotropic. Once defined, these observables should be independent of
gauge. However, an observable may not correspond to a single perturbation quantity in a given
gauge; it may be a combination of several quantities.

The above discussion suggests the following approach for dealing with the gauge freedom:
(i) choose a specific gauge and evolve all perturbation quantities in this gauge; (ii) eliminate
all residual gauge modes; and (iii) interpret the perturbation quantities in terms of physical
observables. This approach was taken by Lifshitz (1946) in his classical paper on cosmological
perturbations. Alternatively, one can form gauge-invariant variables from linear combinations of
the perturbation quantities and study the evolution of these variables in any convenient gauge.
Being gauge-invariant, the results of the evolution can be interpreted in any given coordinate
system. Such a gauge-invariant approach is discussed in considerable detail in Bardeen (1980).

In what follows, we first describe some specific examples of gauge choices. These are the
synchronous gauge, first used by Lifshitz (1946) and subsequently adopted by many others (e.g.
Landau & Lifshitz, 1975; Peebles & Yu, 1970; Peebles, 1980), the Poisson gauge, advocated by
Bombelli et al. (1991) and Bertschinger (1996), and which has the advantage that the residual
gauge freedom is simple, and finally the conformal Newtonian gauge (Mukhanov et al., 1992),
which is a special case of the Poisson gauge with the advantage that it significantly simplifies the
equations and the corresponding interpretation.

4.2.2 Classification of Perturbations
Before describing specific examples of gauge choices, we first discuss some mathematical
properties of perturbations. In its most general form, the perturbed metric can be written as

ds? = a?(7) {(1+2¥)d7* — 2w;drdx’ — [(1 - 2®)§;; + Hy;] dx' dn/ } . (4.112)

Note that for simplicity we have assumed the background to be flat; in general §;; in Eq. (4.112)
should be replaced by the spatial part of a Robertson—Walker metric. The perturbation quantities
w; are the components of a vector in the three-dimensional space, so that we can write w = wiel,
with €’ a unit directional vector. Similarly, H;; are the components of a traceless tensor (i.e.
8" H;; = 0) in the three-dimensional space, H = H; e’ @ e/.

It is convenient to decompose w and H into longitudinal and transverse parts that are, respec-
tively, parallel and perpendicular to the gradient (or to the wavevector k in Fourier space). For
example, we can write

w=wl+wt (4.113)
so that
Vxwl=0, V.wi=o0. (4.114)
Being curl-free, wll can be written as the gradient of a scalar potential:
wl=vy. (4.115)
Similarly, we can write

H=Hl 4 HE £ HT, (4.116)
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where HI has both components parallel to the gradient, HT has both components perpendicular
to the gradient, and H' has one component parallel and one component perpendicular to the
gradient. It is straightforward to show that

eijk(?j&lHl‘,‘( =0, (9,-9jH,-§ =0, 8,H5 =0, 4.117)

where g is the three-dimensional Levi-Civita tensor. With these relations, we can write Hl‘]|

in terms of the derivatives of a scalar field 77, and Hﬁ in terms of the derivatives of a vector
field 777

H,'j‘ = (aiaj — ;a,vz) A Hy = 05— 0,7 (with 9, =0). (4.118)

Thus, the metric perturbations are decomposed into parts of three different types: the scalar
modes, ¥ and @ (both are scalars), and wl-‘ and Hllj‘ (both are spatial derivatives of scalar fields);
the vector modes, wi (the transverse vector) and Hl# (which is the gradient of a vector field);
and the tensor modes, HE The importance of decomposing metric perturbations into these
different modes is that they represent distinct physical phenomena. The scalar mode is con-
nected to the gravitational potential, the vector mode to gravito-magnetism, and the tensor mode
to gravitational radiation. In turn they describe density perturbations, vorticity perturbations, and
gravitational waves, respectively. Furthermore, in the linear regime, the scalar, vector, and tensor
modes evolve independently.

If we decompose the spatial part of the infinitesimal coordinate transformation (4.105) into
longitudinal and transverse parts and rewrite the transformation as

Tof=1+a(x); x =i =x+9Bx)+e(x) (where die! =0), (4.119)
then the gauge transformations of the perturbation quantities are
T a/ = 1 2 a/
Y=Y¥-9,a——a, CD:<D+§V B+ —a, (4.120)
a a
ol =wll 4+ 9, (0 -2 =l o
Wi =w; +0i(c—0def), Wi =wi — g, 4.121)
I:IJ}:HJJ‘ (88 ’JV2>ﬁ — (digj+ 0j&) ., 15]3:1-15 (4.122)

As one can see, the scalar part of the transformation (c, ) only affects the scalar modes, the
vector part (€) only affects the vector modes, while the tensor mode is gauge-invariant. For the
density and velocity perturbations, the transformations are

7/

5= 6—;06 6=0+0.V*B, (0 =ad,U/=0v/). (4.123)

From these transformations, it can be shown that the following quantities (written in terms of
Fourier transforms) are gauge-invariant:

, d ., 1d

Oy =Y+W +gW—7% —5—%, (4.124)
d k2 1d

Oy =0+ L ”//+ %—7ﬁ%ﬂ (4.125)

=~

sg:5+% (“//é%”’) egzef%%’. (4.126)
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In fact, these are the gauge-invariant potential, density and velocity perturbations defined by
Bardeen (1980), and these gauge-invariant quantities are the perturbations defined from the point
of view of the conformal Newtonian gauge, as we will see below. Another useful gauge-invariant
combination is

E=g— 5’3{2 0,65+ 2 (7/ 0/i%) 4.127)

which, as we will see below, is the density perturbatlon in the synchronous gauge.

4.2.3 Specific Examples of Gauge Choices

(a) Synchronous Gauge The synchronous gauge, first used by Lifshitz (1946), assumes that
the perturbed metric has the form

ds? = gy dt dx” = @ (1) [de? — (8 + hyj) dx'dx’] . (4.128)

The synchronous gauge therefore imposes the following four restrictions on the coordinate
system:

[6gloo = [0g]oj =0, orequivalently, ¥ =w;=0. (4.129)

The construction of such a coordinate system for a given space-time is discussed in Landau &
Lifshitz (1975, §97) and Peebles (1980, §81). In such a construction, one starts with an initial
spacelike hypersurface on which each point is assigned a clock and a set of spatial coordinates.
The clocks are synchronized on the initial spacelike hypersurface and move in free fall. The
space-time coordinates assigned to an event are the three spatial coordinates initially assigned to
the clock that happens to be at the location of the event and the time recorded by this clock.

Mathematically, we can transform an arbitrary metric (4.112) into the synchronous gauge
(which will be taken to be the #-system). The condition P = 0 leads to

/!

afa+a;a:l11, (4.130)
which can be solved to give
aa:d(x)—i—/a‘}‘dr, (4.131)
with 27 (x) an arbitrary function of x. The condition w; = 0 gives
wi+di(oe — 9 ) — dr& =0. (4.132)
Separated into longitudinal and transverse parts, this equation gives
ﬁ:/(a+W)dr+%(x), gi:/w#dr+cfi(x), (4.133)

where Z(x) (an arbitrary scalar) and &;(x) (an arbitrary transverse vector) depend only on x.
Notice that adding a purely time-dependent function to 3 is irrelevant, since the transformation
depends only on d;3. Clearly, the synchronous gauge does not fix the coordinate system com-
pletely: we still have the freedom of choosing the forms of </ (x), #(x) and &;(x). Using the
gauge transformations given in Egs. (4.120)—(4.123) it is easy to show that these residual gauge
modes appear in perturbation quantities (in Fourier space) as the terms containing ./ and 4 in
the following expressions:

S-S, 0-Kd/a, (4.134)

/
he (% ZkZ/% o2 4L (4.135)
@ a a?
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where we have separated the scalar mode of the metric perturbation, /;;, into a trace part and a
traceless part,

kik kik; 1
hij = /’{th+( ;{2] —36,-,> 61, (4.136)

which defines the quantities / and 11. These gauge modes arise from the freedom in defining the
initial spacelike hypersurface of simultaneity and from assigning the initial spatial coordinates
on this hypersurface.

(b) Poisson Gauge In the Poisson gauge (with coordinates denoted by ), the following four
conditions are imposed on the metric:

ow; =0, JH;;=0. (4.137)

Thus, the transformation from an arbitrary coordinate system (x*) to the Poisson gauge must
satisfy the conditions

4
owi+ V3o —0:B) =0, OH;— §V2(9jﬁ ~ V% =0. (4.138)
In terms of the decompositions of w; and H;;, these conditions imply
01 H H
a:—W—I—TT+M(r), B="3+B(), &=Ai+6(x), (4.139)

where <7 (1), Z(7) and &;(t) are arbitrary functions of the conformal time 7. Therefore, the
Poisson gauge also contains residual gauge freedom (arising from the arbitrariness in <7 and &;;
A is irrelevant since the gauge transformation involves only 0;3). However, this residual freedom
is trivial: a uniform change of o in space is equivalent to the change of time and length units,
while a uniform change of ¢&; is equivalent to a shift of the coordinate system.

(c) Conformal Newtonian Gauge A special case of the Poisson gauge is that with w; = 0 and
H;; = 0. In this case the metric reduces to

ds? = a*(7) [(1+2¥)dr? — (1 —2®)§;dx’ dx’] . (4.140)

This metric has a form similar to that in the Newtonian limit of gravity (see Appendix A1.5) and
is called the conformal Newtonian gauge or longitudinal gauge (Mukhanov et al., 1992). One
advantage of this gauge is that the metric tensor g, is diagonal, which significantly simplifies
the calculations. However, since it imposes more conditions than there are gauge freedoms, the
conformal Newtonian gauge is a restrictive gauge which eliminates physical perturbations. In
fact, this gauge only permits scalar perturbations, and is invalid when vector and tensor perturba-
tions are concerned. However, because of its very simple form, the conformal Newtonian gauge
is extremely useful for dealing with scalar perturbations. As one can see from Eq. (4.140), the
perturbation ¥ causes time dilation, while the perturbation @ corresponds to an isotropic stretch-
ing of space. With w; and H;; all set to zero in Egs. (4.124)—(4.126), we see that the perturbations
in this gauge are directly related to the gauge-invariant variables: ¥ = @4, ® = —®y, § = &
and 0 = 0;. Finally, in terms of the perturbation quantities defined in the synchronous gauge, the
perturbations in the conformal Newtonian gauge can be written (in Fourier space) as:

/

, a
v-o'+%a, o-n-%o (4.141)

=~

Beon = Bugn + ('15%, [6Pleon = [8Plogn + @P,  Oeon = Ouyn + K213, (4.142)

where @ = (1’ +61")/(2k?).
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4.2.4 Basic Equations

Given that different gauge choices are physically equivalent, we can choose any convenient
gauge to describe the evolution of perturbation quantities. In what follows, we derive and solve
the dynamical equations in the conformal Newtonian gauge. This gauge has the advantage that
the metric is very simple, but is valid only for scalar perturbations. However, it can be easily
generalized to include vector and tensor perturbations (e.g. Bertschinger, 1996).

(a) Perturbed Einstein Equation As discussed in Chapter 3, the properties of space-time are
determined by the energy content through the Einstein field equation:

Guy = 8nGTyy, (4.143)
where the energy—momentum tensor satisfies the conservation law,
™., =0 (4.144)

(see Appendix A). For the metric given by Eq. (4.140), it is not difficult to work out the linearized
Einstein field equation (see §A1.1). The time-time, longitudinal time-space, trace space-space,
and longitudinal traceless space-space parts of the Einstein equations give the following four
linear equations in k-space:

2 3d ,, d 2 0
P+ — (@ + =¥ ) = —4nGa*[8T]°,, (4.145)
a a
/
K (cb’+ “\P) = 4nGa*(p +P)6, (4.146)
a
, d o, , 24" a? K ar _ , ST
K*(® — W) = 8nGa’PII, (4.148)
where
_ 3 . — 3 Tkk; 1 1
(p+P)6 = —ik;[6T°;, Pli=2 [;{2’—3%} {T’j—g)alelZ] (4.149)

Note that there are more equations than variables, which reflects the fact that the Einstein field
equation has local conservation laws already built in.

(b) Fluid Equations For a single ideal fluid with density p and pressure P, the energy—
momentum tensor is

™" = (p+P)UMU" —g""P, (4.150)

where U* = dx* /ds is the four-velocity. In this case, the perturbations of T#, are related to the
perturbations in p, P and v/ = aU/ by:

671°% =P8, [8T)°;=—p(1+w)v/, [8T];=—[8P]&';, (4.151)

where
w=P/p. (4.152)

In this case, Egs. (4.145) and (4.146) can be combined to give
K® = —4nGa’pe, (4.153)
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where
3a/ 2
8:5—7(1+w)9/k (4.154)

is the gauge-invariant density perturbation defined in Eq. (4.127). Note that Eq. (4.153) has the
same form as the Poisson equation (4.11).

To linear order, the time and spatial components of the conservation law (4.144) give,
respectively, the following two equations for the density and velocity perturbations of the fluid:

/
8 +(1+w)(0-30") = 37“ (w—c3)8, (4.155)
, d w V2[5P] .
0"+ (1=3w)0+ 9+ﬁ(l+w)—klluo. (4.156)

Once the equation of state, w, is specified, Egs. (4.155) and (4.156) can be solved together with
the perturbed Einstein equations.

(c) Boltzmann Equation The fluid approximation described above is valid for an ideal fluid,
but is inadequate for some important applications. For example, to describe the evolution of per-
turbations in photons and neutrinos, or to describe the interactions between photons and baryons,
we need to specify the evolution of the full distribution function, f(x,p,7), which gives the
number density of particles in phase-space:

dN = f(x,p,7)d*xd’p. (4.157)

As in classical statistical mechanics, the phase space is described by the three positions x’ and
their conjugate momenta p;. Note that f is a scalar and is invariant under canonical transfor-
mation. Note also that the geodesic equation of a free particle can be derived from the action
principle through a Lagrangian ¥ = m(gwx“x”)l/ 2 where m is the mass of the particle (e.g.
Peebles, 1980). It is then easy to prove that the conjugate momentum p; = 9.%/dx" is just the
spatial part of the four-momentum with lower indices (i.e. p; = mU;, where U; = dx;/ds), and so
it obeys the geodesic equation

dp 1dg
0P _ 19508 o B
at 2o PP

where p® = mU° (see Appendix A). The energy-momentum tensor corresponding to the
distribution function f is

(4.158)

v — [ 4P 550 (“B 2 ph p¥ 4.159
Ner: 8 papg—m” ) p p°f, (4.159)

with §(P)(x) the Dirac delta-function.

Although the distribution function is defined by x' and the conjugate momenta p;, it is useful
to write the distribution function in terms of the momenta (P') and energy (E) defined in a local
Minkowski space. Note that the index of P! is lowered by &; jand so P, = P!. Since by definition

E2=P24m?,  where P=(5;PP))"*, (4.160)

and since gy, p* p¥ = m?,

we see that P, and E are related to p* by
P=P =a(l-®)p', E=a(1+%¥)p’=(1-¥)po/a. (4.161)
In practice, it is more convenient to work with another set of energy—momentum variables:

gi=aP;, and E,=aL. (4.162)
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It then follows that
E2 2 22 h 2_§lg.q: 4.163
g =4 +a'm”, where ¢°=0"qiq;. (4.163)

Because P o< a™ !, g; so defined has the property that ¢ is independent of a for uniform expansion.
Moreover, we shall write ¢; in terms of ¢ and its direction cosines:

q; = qvj, where 8yy; = 1. (4.164)

Thus, we will label phase space by (x',q,¥;,7) instead of (x', p;, 7). Note that this is not a canon-
ical transformation (since ¢g; is not the momentum conjugate to x/) and that we do not transform
f. Hence d*>xd’q is not the phase-space volume element and fd3xd>q is not the particle number.

For particles that are collisionless the phase-space density is conserved, i.e. df /dt = 0. How-
ever, in general, a collisional term (which describes the change of the distribution function due
to collisions) should be included in the conservation law: df/dt = (df/dT)c. In terms of the
variables (x', g, Yj,T), this conservation law can be written as

af A& af dgdf dpof [of
8r+dr&x’+draq+d18y, at) .’

P (4.165)
This is just the Boltzmann equation, but in non-canonical variables. Since f is independent of ¥;,
and 7; is independent of 7, for a uniform and isotropic background, the last term on the left-hand
side of this equation is of second order in the perturbed quantities and can be neglected in a
first-order treatment. To complete the derivation we need to express dx! / dt and dg/dt in terms
of (x',q,7j,7) to first order in the perturbation quantities. By definition p’ = mU’ = p°dx /dz. It
then follows that, to first order in ® and ¥,

dxi pi
dr ~ p0

= L1+vra)y, (4.166)
Eq

where 7 = 5% 7;. Using the geodesic equation for pg, Eq. (4.158), it is straightforward to show
that, to the first order in ® and W,

d
d—q = 4. ®— E, /o (4.167)
To study the perturbation of the distribution function, we write
f=f+fi, (4.168)

where fj is the unperturbed distribution function and f; is the perturbation. The unperturbed
distribution function is the Fermi—Dirac distribution for fermions (4 sign) and the Bose—Einstein
distribution for bosons (— sign):

1
exp(q/kBTo) +1’
where Ty = aT is the temperature of the particles at the present time. Note that f; is independent

of a for fixed ¢. To first order in the perturbed quantities, the Boltzmann equation (4.165), with
dx'/dt and dg/dt given above, yields the following equation for f; (in Fourier space):

L 9900y _ (A
fl+lk.qul 4aql}lq_(ar>c’ (4.170)

folg) = (4.169)

where

¥y = —4[@' —ik(E;/q)u'¥], and p=k-q/|q|K|. 4.171)
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In terms of f}, the contributions of the species to the source terms in the Einstein equations can
be written as

1% == [ dadoE, (fo+ 1),
0 L7,

T i:—aj/q dgdwgyifi, (4.172)
i 1 2 Ny

Tj:*aj/q dqdw?q(foffl),

where o is the solid angle of q.
Multiplying both sides of Eq. (4.170) by exp(ikutg/E,) and integrating it from an initial time
T; to some later time 7, one finds

st o [ 120 ()] g,

where y = q7/E,. It is clear from this expression that perturbations in the distribution function
of a species can be produced (with a retarded time given by the exponential terms) by both
gravitational and collisional interactions. Since ‘¥, depends on f; through the Einstein equations,
and (d f1/0T). may also depend on f}, Eq. (4.173) is an integral equation for f] and can be solved
iteratively for given g, k and u. Note that this solution reduces to Eq. (4.58) in the Newtonian
limit.
For photons (E, = q), it is convenient to consider the brightness perturbation,
q9fo To dfo
st =5 (108) " < (B28) (@.174)

instead of the distribution function. Note that, for a Planck distribution, the brightness perturba-
tion is related to the temperature perturbation as

AT
A=40, where ©O= T (4.175)
It then follows from Eq. (4.170) that
A
AN +ikuA+¥, = () . (4.176)
at ).

As we have done for f; in Eq. (4.173), we can write

. T ) ,
A(T) :A(Ti)efzku(rfri) +/ l:\Pq_ (8A> :| e~ ku(t=7) 4/ 4.177)
T aT clt

This equation can be solved iteratively together with the perturbed Einstein equations, once the
form of the collisional term is known.
Alternatively, one can expand the p-dependence of A(k,q, it,7) in Legendre polynomials:

=

Ak g, 1) = 3 (=) (204 1) Ag(k,q,1) o (). (4.178)
(=0

Substituting this into Eq. (4.176), using the orthonormality and recursion relation of £, and
with the collisional term omitted for the sake of brevity, we obtain

4
8 = 56y+4ol>’, (4.179)
, K

6, = (&~ 207) + K2, (4.180)
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8 3k

A, =—06,—=A 4.181
2 159)/ 5 A% (4.181)
k
ANy =—"[tA)_| — HA > 4.182
y i+1) WA — (L4 1)Ary1] (£2>3), (4.182)
where we have used the relations
1 /! 1 /1. 4
AO—E[IAdu—5y, Al _E[leudu_ﬁey. (4.183)

With this expansion, the Boltzmann equation (4.176) is transformed into an infinite hierarchy of
coupled equations. However, since Ay decreases rapidly with ¢ for ¢ > k7, sufficiently accurate
solutions can be obtained for each k by truncating the hierarchy at £y« > kT.

4.2.5 Coupling between Baryons and Radiation

Because dark matter particles are expected to have become non-interacting at very early
times, non-gravitational interactions are expected to be important only for baryonic matter
and photons. An important example is the coupling between baryons and photons during the
pre-recombination era.

As discussed in §3.5, before recombination photons and baryons are tightly coupled via
Compton scattering. The linearized collisional term for Compton scattering is

(gA) = ornea (8, +4ve-q—A), (4.184)
T C

where ot is the Thomson cross-section, 7. is the electron density, v. is the peculiar velocity
of electrons in proper units, § = q/|q|, and for simplicity we have neglected the polarization
dependence of the scattering (see §6.7.3). Note that v, is parallel to k for a curl-free velocity field,
and so Ve - q = —(i6y/k) 1. Therefore, the Boltzmann equation for photons including Compton
scattering can be written as

A +ikuA+Y¥, = ornea (8, — 4in 6, [k — A) . (4.185)

The equation of motion for the baryonic matter (assumed to have negligible pressure) is
, _
4
e,;+‘ieb = PP + §%a6ﬂle (Gy—Ob), (4.186)
a b

where the right-hand side describes the momentum transfer from the photons to the baryons. The
density perturbation in the baryonic component obeys

5+ 6, =3, (4.187)

To complete the description, we need to supplement these equations with the equations for
the metric perturbations, Eqs. (4.145)—(4.148). In order to integrate the above set of perturbation
equations through recombination, one also needs to know how 7. changes with time. This can
be done by solving the set of ionization equations described in §3.5. In general, the full set of
equations has to be solved through numerical calculations (e.g. Bond & Efstathiou, 1984; Ma &
Bertschinger, 1995). In what follows, we examine the behavior of the system in some limiting
cases.

(a) Tight-Coupling Limit If baryons and photons are tightly coupled, i.e. the mean free time
between collisions, 7. = 1/(0rne) =~ atc, is much smaller than the age of the Universe ¢, we can
solve the perturbed quantities such as A in powers of 7. /7. For example, to solve for A we write
Eq. (4.185) as

A=X—1 (N +ikuA+¥,), where X =58 —4iu6y/k. (4.188)
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Iterating once we get

AmX -1 (X +ikuX +¥,+...). (4.189)
Integrating both sides over u, and using Egs. (4.183) and (4.187), one obtains
5 =2 (39" -6, = fal; (4.190)
r3 37 '

which has the solution 8y = 48, /3 + constant. Thus, the entropy fluctuation

8 = %sy—éb, (4.191)

which is gauge-invariant according to Eq. (4.123), is independent of time. That is, the evolution
is adiabatic in the tight-coupling limit. If the initial perturbation is isentropic, so that s = 0 (i.e.
O, = 30y/4), it will remain so during the subsequent evolution in this limit.

(b) Damping of Small-Scale Perturbations during Recombination Before recombination,
baryons and photons are tightly coupled and they act like a single fluid. In this case, perturba-
tions with scale sizes smaller than the Jeans length oscillate like acoustic waves with amplitudes
that are declining slightly due to the Hubble expansion (see §4.1.3). However, because T is not
exactly zero this coupling is not perfect. This imperfect coupling becomes more and more sig-
nificant as the Universe approaches the recombination epoch, when the number density of free
electrons starts to drop rapidly with time. Consequently, the photons can diffuse from high to low
density regions, leading to Silk damping of small-scale perturbations.

To show this, consider a plane-wave perturbation with wavelength A = 27a/k < ct during the
pre-recombination era. Since the wavelength is much smaller than the Jeans length Ay ~ ct, we
can neglect the effect of gravity. Furthermore, since baryons and photons are still tightly coupled
during the pre-recombination era, we have that 7. < 7. For simplicity, we will also neglect the
expansion of the Universe and set '’ = 0, which is a valid approximation as long as the damping
time scale is shorter than the expansion time scale. With all these assumptions and iterating
Eq. (4.188) twice we obtain

A=X — 1 (X' +ikuX) + 72 (X" + 2ikuX’ — k*pu*X) . (4.192)

Integrating both sides over u gives

_7eb + X (49b K*5y) . (4.193)
Multiplying both sides of Eq. (4.192) by u and 1ntegrating over [L we obtain
4 K? 2k? 4k?
6b~& {Gé+57+rc( eg’s’ebﬂ (4.194)
Pyl 3 3
where we have used Eq. (4.186) with @’ = 0. Egs. (4.193) and (4.194) can be solved to give
Oy o< By < exp(—T1), (4.195)
where
ik k1. 6 1 3P,
T =+— l-—+—= R=1 4.196
\/3R+ 6 ( 5R+R2)’ +4ﬁ ( )

The first term in .7 describes an acoustic oscillation, while the second term, which vanishes in
the perfect coupling limit (7. — 0), describes the effect of Silk damping.
The damping becomes significant for Re(.7 1) > 1. This defines a characteristic wavenumber

kg = /6/(71:) so that all modes with k > k4 are expected to suffer significant damping. Note
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that for these modes the damping time scale is shorter than the expansion time scale, and so
our assumption that @’ = 0 is justified. The comoving damping scale corresponding to kq at the
redshift of decoupling is

1 S Qoo P X\ T Ttz
Mg~ — ~5.7 (Qm.oh? —=20 = Mpc, 4.197
™ (Qm oh") <Qm7o) 0.1 1100 pe (.197)

and the corresponding damping mass is

- 0 =3/2 £y N\ 32 /1 —15/4
w2710 0n0?) " (g2) () T (TRE) e
m, .

where X, is the ionization fraction at z = zq4... Note that this damping mass is about an order
of magnitude larger than that obtained in §4.1.6(d) from a simple argument based on pho-
ton diffusion. The implications of Silk damping for structure formation have been discussed
in §4.1.6 (d).

4.2.6 Perturbation Evolution

Once the initial conditions are specified, the equations described in §4.2.4 can be used to compute
the evolution of perturbations in the linear regime. In general, the problem is complicated and
numerical computations are required to find accurate solutions. In what follows, we describe
several analytical solutions based on various approximations.

Although any realistic analysis of cosmological perturbations must take into account that the
Universe contains several mass (energy) components, useful insight can be gained by consid-
ering a model in which the Universe is assumed to contain only radiation and dark matter. We
assume that the dark matter is a collisionless fluid that has decoupled from the hot plasma when
already non-relativistic (i.e. we assume the dark matter to be ‘cold’; see §3.3.5). We also assume
that the radiation is an ideal fluid, which is a valid treatment before recombination when the
photons are tightly coupled to the baryonic component. The baryonic matter density, however, is
here assumed to be negligible compared to that of the dark matter. Finally we assume the Uni-
verse to be flat, which is a valid assumption at sufficiently early times when the curvature and
cosmological constant terms in the Friedmann equation can be neglected.

With all these assumptions, the fluid equations (4.155)—(4.156) describing the perturba-
tions are

/
8+ Ogm =3P, O+ Oy = KD, (4.199)
a
520, — 40, 0 26, K0 4.200
yt 3Oy =4, O — Koy =10 (4.200)
Note that for an ideal fluid the stress tensor PIT = 0 and therefore, using Eq. (4.148), we have that

Y = ®. The metric perturbations are related to &gy, 5y, O4m and 0, through the three perturbed
Einstein equations (4.145)—(4.147). The first and third equations can be written as

3 / / - o
D+ 7" (cb’ + ‘;cb) = —47Ga® (D g Oam + P0y). (4.201)
3 / 24" 72 arG

and the combination of the first and second equations gives

RO = —4nGd> (ﬁdmedm +p yey) , (4.203)
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where &, and &y are defined according to Eq. (4.154). Note that the metric perturbations are
described by a single function, @, and so only one of these equations is needed to solve the fluid
equations. However, as we will see below, it is sometimes more convenient to use one equation
than another.

As all the equations are linear in the perturbation quantities, their evolution can be analyzed in
terms of any linear combination. Since we distinguish isentropic and isocurvature perturbations,
two quantities that are particularly important for our later discussion are the metric perturbation
@ and the entropy perturbation

Sny _ 8nam

8 = =26, b, (4.204)

ny Ndm
where the second equation follows from ngy, o< Pgm and ny o< T3 o< p;/ * So defined, Js is zero
if ny/n4m = constant. Using the equations given above, one can show that these two quantities
obey the following two equations:

1 1\ d k2 1 S

— '+ (1l+—= | D+~ — |O=—: 4.205

32 +<+£)a +(3+4Cﬁ> e ( )
I o, a / k2§ L o4 0
— - — 28 = =-C%kM o 4.206
303 65 + a 6s+ 4 55 6C Te 5 ( )

where 7, is a characteristic, conformal time at around the time of matter—radiation equality, fq,

1 leq df
= N/ Y, (4.207)
HO vV Qdm,O(l +Zeq) 0 a
and we have used Eq. (3.100). The sound speed is given by
i\ 12 12
P 1 3
and
P, a T 7\2
— Fdm
=Hfdm _ ~ (=) . (4.209)
¢ Py Qg Te <2Tg)

Eq. (4.205) can be derived by replacing dsm in Eq. (4.201) with (3/4)8, — 0s, eliminating the
term ﬁy6y with the use of Eq.(4.202), and using the equations for the scale factor a. One
way to derive Eq.(4.206) is to use & = (3/4)8; — 04, = Oum — 0y and & = 63, — 0 =
—(d'/a)Bym — (1/4)k*8,. These two relations, together with the definition of &, give & =
—4[8¢ + (d'/a)8¢) /K> and egm = —3(8§ +k*8s/3) /k>. Eq. (4.205) then follows from inserting
these expressions for &, and &g, into Eq. (4.203).

In addition to 7., there is another important time scale in the evolution of ® and dg, namely
the time when the perturbations enter the sound horizon. The corresponding conformal time is
7, = 0/ (kcs). In what follows we discuss the solutions of the evolution equations in various time
regimes defined by 7, and 7.

(a) Initial Conditions In order to connect the perturbation evolution to be described below
to the initial conditions of perturbations, let us first examine the solutions of Egs. (4.205) and
(4.206) in the early radiation dominated era when { = 7/7, < 1, a = T and ¢ = 1/3. In this case,
we can neglect the terms @ /(4¢72) and 8s/(2¢12) because 1/({1?) < 1/7%, and so Eq. (4.205)
reduces to

/! 4 / k2
O+ D=0, (4.210)
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Defining u = ®7, we can convert the above equation into u” + (2/7)u’ + (k*/3 —2/7*)u = 0,
which is the spherical Bessel equation of order 1 with solutions j; (k7/+/3), the spherical Bessel
function, and n; (kt/+/3), the spherical Neumann function. Since the latter solution diverges for
7 — 0, it should be discarded on the basis of initial conditions. Thus, the relevant solution of
Eq. (4.210) is

ok, 7) = (sinot — wtcoswt)A(K), (4.211)

3
(07)?
where ® = k/+/3, and A(K) is the integration constant chosen so that ®(k, T — 0) = A(Kk).

In the early radiation dominated era, Eq. (4.206) reduces to

8+ 6¢/71=0, (4.212)

which has as solutions &g = constant and 8 = In7. The second solution should be discarded
because it diverges as T — 0, and so the relevant solution is

8s(k,7) = I(k), (4.213)

where I(k) is time-independent.

Thus, the initial conditions for the metric and entropy perturbations are described by the two
functions, A(k) and /(k), with /(k) = 0 specifying isentropic initial conditions, and A(k) =0
specifying isocurvature initial conditions. In general both isentropic and isocurvature modes may
exist in the initial perturbations. The relative importance of the two modes depends on how the
initial perturbations are generated.

In order to see how isocurvature initial conditions generate curvature perturbations, we need to
solve Eq. (4.205) including the source term 8s/(2{2), with the initial condition A(k) = 0. In the
radiation dominated era considered here, we can replace Js in the source term by I(k), because
the source term is already a higher order term in 7/7, compared to the @ and @’ terms. Similarly,
we can replace ® in ®/(4{1?) by A(k) = 0. Thus the equation to be solved is Eq. (4.210) with a
source term, I(K)/(2¢ t2), on the right-hand side. The particular solution of this equation is

T 1 (07)?
ok, 1) = % @1 + >
which can be obtained straightforwardly using Green’s function method. For 7 — 0, this solution
gives ®(k,7) ~ (1/8)(7/7.)I(k), which shows that isocurvature initial conditions can give rise
to significant metric perturbations at the time when the Universe becomes matter dominated.

Similarly, the generation of entropy perturbations by isentropic initial conditions can be ana-
lyzed by studying the particular solution of Eq.(4.212) with a source term, (1/6){*k*7,A(K).
The particular solution of this equation, again obtained through Green’s function method, is

—(cosot+ wtsinwr) | I(k), (4.214)

1
Os(k,7) =9 [lnwr—&—%— Ci(ot)+ E(cos 0T — 1)} A(k), (4.215)
where € = 0.5772... is the Euler constant, and
Y cost—1
G®:%+M%/C%t dr (4.216)
0

is the cosine integral. This solution scales as (k7)*A(k) for kT — 0, which shows that the isen-
tropic initial conditions can give rise to a significant mode of entropy perturbation at a time when
the horizon size T becomes comparable to the size of the mode, 1/k. As we will see below,
once a perturbation in the radiation component approaches the horizon, the pressure gradient in
the perturbation causes it to decay. Since the same perturbation mode in the matter component
remains roughly constant in the radiation dominated regime due to the Mészaros effect, entropy
fluctuations are produced.
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(b) Super-Horizon Evolution of Isentropic Perturbations At sufficiently early times, all
modes of perturbations are super-horizon in the sense that their wavelengths are much larger than
the horizon size so that kT — 0. In such limit, ds remains constant according to Eq. (4.206). Thus,
for isentropic initial conditions, &g remains zero throughout the super-horizon evolution. Setting
8s = 0 and neglecting the term containing k? in Eq. (4.205), and using { defined in Eq. (4.209)
to replace 7 as the time variable, we can cast Eq. (4.205) into the following form:

diq)Jr 2182 548+ 32 d£>+ ) B

dgz - 20(6+1)(3E+4)df - L(E+1D(BE+4)
An analytical solution of this equation was found by Kodama & Sasaki (1984). In terms of the
new variable, u = ®¢3/+/ + 1, the above equation can be converted into

NI
a2 |& 1+4¢  3¢+4)dg
which can be integrated to give du/d{ = C;§2(3¢ +4)/(1 + {)*/? with C| a constant. The
general solution for @ is therefore

\ /1 £y2(3 4 V1

®=C + y+ dy+G +6 (4.219)
y)3/2 &3

where C; is another constant. It can then be shown that the solution for ® with the initial condition

Dk, — 0) = A(k) is

D(k,7) = Al(O o [16\/1 FC4+903 120280 - 16} (4.220)
In the radiation dominated era when { < 1, this solution reduces to ® = A(k), the same as
that given by Eq. (4.211) in the same limit. Once the Universe becomes matter dominated so that
£ > 1, the above solution gives ® — (9/10)A (k). Hence, for perturbations that enter the horizon
after the epoch of matter-radiation equality, i.e. for k7, < 1, their amplitudes are reduced by a
factor of 1/10 through the epoch of radiation-matter equality.

4.217)

=0, (4.218)

(c) Sub-Horizon Evolution of Isentropic Perturbations Consider the case in which a mode
enters the horizon at a time when the Universe is dominated by radiation so that { = 7/7, < 1 and
POy >> P4 am- In this limit, the evolution of isentropic perturbations is given by Eq. (4.211). In
the limit k7 > 1 (i.e. for perturbations well inside the horizon), the solution given by Eq. (4.211)
reduces to
cosmT
ok, 7) =-3——FA(k). 4.221
(1) = =30 5 A (221)
In the same limit, Eq. (4.201) reduces to the Poisson equation k>® = 747rGa25757. Inserting
Eq. (4.221) into this Poisson equation gives
K
Oy~ ———>— ~6A(k oT. 4.222
Y 4 717G azﬁy ( ) Cos ( )
This represents acoustic waves in the photon—baryon plasma. In this limit, Newtonian perturba-
tion theory applies, and it is thus not surprising that the results are similar to those obtained in
§4.1.6(c). Because of the radiation pressure, 6, oscillates with roughly constant amplitude, caus-
ing the potential to oscillate and to decay as 2. Using the above solution for 0y and the solution
(4.215) for dg, we have

Sam = %5y7 85~ —9A(K) [In(w1) +%€ —1/2], (4.223)

where we have used the fact that Ci(w7) ~ 0 in the limit k7 > 1.
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The solutions discussed above are obtained with the assumption that ﬁy5y > P4 Odm- Since
4m increases with time while 8y oscillates with a constant amplitude, and since p, decreases with
time faster than p,,, the above assumption may not be valid at the later stages of the radiation
dominated era. In order to study the evolution of &gy, in this regime, we can combine the two
equations in Eq. (4.199) to obtain

/ /
S+ %55,“ = 30" + %Cb’ D~ KD, 4.224)
where the last step follows from k7 > 1. In the limit k7 > 1, Eq. (4.201) reduces to the Poisson
equation K>® = —4xGa® (Py0y + Pdm0dm). Substituting this in the above equation leads to an
equation for 8y, that is exactly the same as that in Newtonian perturbation theory. Thus, if the
mean density of the Universe is dominated by radiation but ﬁy&, < PgmOm, the growing mode
solution is that given by Eq. (4.88), and the growth of perturbations in the matter component is
stagnated due to the Mészaros effect.

Once the Universe becomes matter dominated, sub-horizon perturbations evolve with time
according to the Newtonian theory described in §4.1: &gy o< D(a) and @ o< D(a)/a. Note that
in an Einstein—de Sitter universe, where D(a) = a, the potentials are frozen in at their values
at around the time of matter—radiation equality. If the expansion of the Universe at late times
becomes dominated by the curvature term, or by a cosmological constant, the growth rate slows

down causing the potential to decay.

(d) Super-Horizon Evolution of Isocurvature Perturbations Since ds remains constant dur-
ing super-horizon evolution according to Eq. (4.206), we can set Js to be its initial value, I(k),
throughout this era of evolution. Replacing Js by I(k) in Eq. (4.205) and neglecting the term
containing k* (because kT < 1), we obtain

/ 3¢ 3¢
O +3(1+2) L S = 25 [(K). 4225

It is easy to see that this equation has the particular solution ® = 2/(k), but this solution does not
satisfy the isocurvature initial condition, ®(k,7 — 0) = 0. The solution that satisfies this initial
condition can be obtained by a linear combination of the particular solution with the general solu-
tion of the homogeneous equation. The latter is given by Eq. (4.219). It is then straightforward to

show that the solution we are seeking is
x\ x> 4+6x+10
= (7) T k), 4226
5/ (x+2)3 (k) ( )

where x = 7/(271,).
During the early radiation dominated era when 7/7, < 1, the above solution reduces to

1 T (w71)?
Ok, 7)=-I(k)— |1 — 4.227
) =100 1= 1520, @227)
where we have kept the first non-zero term in 7. Inserting this and &g = %5,, — 84m = I(K) into
Eq. (4.201) gives

1 7 3 7

8y~ EI(k) {1 — 18(m)z} ¢, Sum~ —I(K) (1 - g) - —Cl(k)(a)r)z. (4.228)
Using the first equation in Eq.(4.200) we see that the (w7)? terms in Oy and 84y, are due to
0y, i.e. to the pressure gradient in the radiation component. Initially these terms are negligibly
small. Since { o< a o< T the above solutions imply that the density perturbations in the dark matter
component decrease, while those in the radiation field increase with time. However, once a mode
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starts to approach the horizon size (k7 < 1) the (w7)? terms can no longer be neglected. In fact,
the pressure gradient reduces the growth rate of 6,, adding a growing term to Ogm. This effect
becomes important when @7 ~ 1, and ultimately causes a reversal in the decay of Ogp,.

In the matter dominated era (7/7, >> 1), solution (4.226) gives

1

D= gl(k). (4.229)
Inserting this solution and 8 = (3/4) 8y — Ogm = I(k) into Eq. (4.201), and using the fact that the
k? term can be neglected for super-horizon evolution and that Py < Py in the matter dominated

era, we obtain
2
Odm = —2® = —gl(k), oy = -I(k). (4.230)
(e) Sub-Horizon Evolution of Isocurvature Perturbations In the early radiation dominated
era when 7/7, < 1, the evolution of ® with isocurvature initial conditions is given by Eq. (4.214).

In the limit k7 > 1, i.e. for perturbations well inside the horizon, we have

I(k) /ot .
D~ (5 —sinwr)C. 4231
(007 \ 2 sinot) § ( )
In the same limit, Eq. (4.201) reduces to the Poisson equation k*® = —41Ga* (D, 8y + P gy Oam ) -
Since 85 = I(k) according to Eq. (4.213), the above solution for @ gives

100C, b~ {

Thus, the potential, which builds up during horizon crossing, subsequently decays again. This is
similar to the isentropic case, and is due to the fact that perturbation growth is inhibited during
the radiation dominated era. The solution of &, represents an acoustic wave with an amplitude
of 2I(k)/(wt,) < I(k). Note that the isocurvature modes correspond to the sine part of the
acoustic solutions (4.82); they thus have a phase difference of /2 with respect to the acoustic
waves associated with the isentropic modes (4.222). The dark matter perturbations gy ~ —1(k),
as long as § < 1, because of the Mészéros effect described in §4.1.6(e). Note that, unlike in the
isentropic case, there is no logarithmic growth before the onset of the Mészaros effect in the
isocurvature case, because here p 4, 0qm is always larger than ﬁyﬁy in the radiation dominated
era. Once the Universe becomes matter dominated, sub-horizon perturbations evolve with time
according to the Newtonian theory described in §4.1.

3sinwT
2 ot

2sin®wT

8, ~ CI(k) —2(07)*® ~ ¢— 1} I(K). (4.232)

4.3 Linear Transfer Functions

In the last two sections we have seen how perturbations in the metric and the density field evolve
with time. We now address the relation between the initial conditions and the density pertur-
bations that we observe in the post-recombination Universe. A convenient way to describe this
relation is through a linear transfer function, T (k), which relates the amplitudes of sub-horizon
Fourier modes in the post-recombination era to the initial conditions. Different definitions have
been used for the transfer function in the literature. We define the linear transfer function for
isentropic and isocurvature perturbations as
D(z) a(tm)
DO (k,t) = Bk)T (k,tm) a(t) D(tm)’
where D(t) is the linear growth factor in the post-recombination era (see §4.1.6), and f,,, is a time
when the Universe is already matter dominated but the cosmological constant and curvature

(4.233)
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are still negligible, i.e. the Universe is in the Einstein—de Sitter (EdS) phase. The function
B (k) specifies the initial conditions, and is equal to A(k) and I(k) for isentropic and isocur-
vature initial conditions, respectively. A constant .# is included in the definition to normalize
the transfer function. As shown in §4.2.6, for isentropic perturbations that enter the horizon in
the matter dominated era, the amplitudes of the metric perturbations are ® = (9/10)A(k) at
horizon-crossing and remain so in the Einstein—de Sitter phase. We thus choose .# = 9/10 for
isentropic initial conditions so that 7 (k) is normalized for long-wavelength models. Similarly,
since @ = (1/5)I(k) for isocurvature perturbations that enter the horizon in the matter-dominated
era, we set .# = 1/5 for isocurvature perturbations.

Note that for an Einstein—de Sitter universe D(¢) = a(t), and so a(tm)/D(tm) = 1 in Eq. (4.233)
and the transfer function is independent of #,,. For all models of interest, the redshift correspond-
ing to ty, Zm, can be chosen to be < 10, so that almost all modes of interest have already entered
the horizon at z > z, and Eq. (4.233) conveniently separates the evolution into an early EdS
phase and a later phase represented by the k-independent linear growth factor. In a flat universe
where A dominates at late time, Eq. (4.233) is well defined also for modes that enter the horizon
after z,,, because ®(k, 1) evolves with time as D(¢)/a(t) even for super-horizon modes. However,
for an open or a closed universe, Eq. (4.233) is not valid for perturbation modes that have scales
comparable or larger than the curvature radius of the universe, because the plane waves are no
longer the normal modes of such space (e.g. Lyth & Woszczyna, 1995).

The post-recombination density perturbations are related to the metric perturbation through
the Poisson equation:

KD (k,1)
=———= 4.234
8kt) =~ Garm (4.234)
2 X,
=—= k“B (k)T (k)D(t). 4.235
S PRTDE) (4.235)
Thus, the power spectrum in the density perturbations can be written as
P(k,1) = (|8(k, 1)) = B(K)T*(k)D* (1), (4.236)
where
4 %, )
P(k) = - —F=—K k 4.237
)= ey KB W) (4.237)

may be considered as the initial power spectrum of density perturbations. Thus, once the transfer
function is known, one can calculate the post-recombination power spectrum from the initial
conditions.

The linear transfer function can be calculated using the definition

T(k) = d)(k,tm).

H B (k)
There are basically two kinds of effects that can affect T'(k) during linear evolution. The first is
due to the damping processes, such as Silk damping for the baryons and free-streaming damping
for (collisionless) dark matter, which reduce the small-scale perturbations relative to large-scale
ones. The second is due to the fact that sub-horizon perturbations grow differently during the
radiation and matter dominated eras. Before considering more realistic models, we first show how
this second effect introduces a characteristic scale in the linear transfer function. For simplicity,
we assume that the Universe contains only radiation and a dark matter component for which free
streaming can be neglected. We start by defining the characteristic wavenumber

2
keq = Ti o< QO olh?, (4.239)

eq

(4.238)
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where Teq & Cfeq/aeq is the conformal time at matter—radiation equality. The length scale corre-
sponding to keq characterizes the horizon size (in comoving units) at the time of matter—radiation
equality.

Based on the results obtained in the previous section, the linear evolution of ® is character-
ized by the following properties: (i) long wavelength modes (k < keq) that enter the horizon
in the matter dominated era have constant amplitudes, ® ~ (9/10)A(k) at ¢ < tp; (ii) since
short-wavelength density perturbations with k > keq grow logarithmically with time during
the radiation dominated era according to Eq. (4.223), and since the metric perturbations remain
constant over the time interval foq <t < #;,, we have that

D(k,t) ~ @k, teq) ~ (27/2)HiQum ok *A(k)[In(kTeq) — 0.47) /alteq) ;

(iii) at 7 > t;, sub-horizon density perturbations grow with time as &jy < D(¢) and so @ o
D(t)/a(t). Note that the growth in (iii) is independent of k and so does not affect the transfer
function. It then follows that the post-recombination transfer function for isentropic perturbations
has the properties

=1 for (k/keg) < 1
T { Culkfhg) 10 (k ) for (k) > 1 (4.240)

where Cy4 is a constant. Thus, the transition of the Universe from being radiation dominated
to being matter dominated introduces a characteristic scale in the linear transfer function for
isentropic perturbations.

For the isocurvature modes, the evolution of ® has the following properties: (i) long wave-
length modes (k < keq) entering the horizon in the matter dominated era have constant amplitudes
D~ %I (k) at t < ty; (ii) short-wavelength density perturbations with k > keq remain constant,
Ogm ~ I(k), in the radiation dominated era, so ®(k,1) ~ D(k,teq) ~ %H(%Qmﬁok_zl (k)/a(teq) at
feq < 1 < ty; (iii) sub-horizon perturbations evolve as ® o< D(r)/a(t) at t > t,. The situation
is thus similar to that in the isentropic case except that the dark matter perturbations do not
grow (not even logarithmically) during radiation domination. Therefore the post-recombination
transfer function for isocurvature perturbations has the properties

1 for (k/keq) < 1

T(k):{ Cilk/keq)™2  for (k/keq) > 1, (4.241)

where C is a constant. Detailed calculations show that C; is smaller than C4ln(k/ keq) for modes
with k/keq > 1.

The above discussion illustrates how the horizon scale at matter—radiation equality introduces
a characteristic scale in the transfer function, and thus in the power spectrum at ¢ > f.q. We now
turn to more realistic models. After discussing a pure baryonic model (without dark matter), we
turn to various dark matter models. In particular, we distinguish between hot dark matter (HDM)
and cold dark matter (CDM) models that differ in the extent to which free streaming operates.

4.3.1 Adiabatic Baryon Models

Consider a universe consisting of baryons, photons and relativistic (effectively massless) neutri-
nos. In addition to the horizon effect described above, two additional processes play a role here.
Before recombination the Jeans length is

Ay =cs\/m/Gp ~ 6ct, (4.242)

where we have used that ¢; ~ ¢/v/3 [see Eq.(4.34)], p ~ peri¢ and H(t) = a/a = (21)7\.
Comparing this to the proper size of the particle horizon,
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Fig. 4.2. The transfer functions for adiabatic perturbations calculated with the CMBFAST code (Seljak &
Zaldarriaga, 1996): Results are shown for a purely baryonic model [the dotted parts of the curve indicate
negative values of 7' (k)], for a CDM model, a HDM model, and a so-called mixed dark matter (MDM)
model, consisting of 30% HDM and 70% CDM.

! edr
A =a % —at =2t (4.243)
0

(see §3.2.4), we see that all sub-horizon perturbations are smaller than the Jeans length. There-
fore, as soon as an adiabatic baryon perturbation enters the horizon, it starts to oscillate due to
the large pressure of the photon—baryon fluid. These oscillations continue until recombination,
after which the perturbations start to grow via gravitational instability. However, this only applies
for fluctuations with sizes larger than the Silk damping scale; fluctuations on smaller scales will
have damped out before recombination.

Detailed calculations of the transfer function for adiabatic baryon models (i.e. models with
isentropic initial perturbations in the baryons and photons that evolve adiabatically) have been
carried out by Peebles (1981). An example of the post-recombination transfer function is shown
in Fig. 4.2, along with several other transfer functions to be discussed below. On scales k > keq the
transfer function drops rapidly due to the horizon effect and due to Silk damping. The oscillations
on these scales in the post-recombination transfer function reflect the phases at recombination of
the perturbations that have not been entirely damped. The deep troughs (between the solid and
dotted peaks) reflect the scales on which this phase happens to be such that §, = 0, and are
separated by Ak ~ a(trec)/ (Cstrec) ~ O.3(Qb70h2)Mpc_l.

Because of Silk damping, structure formation models based on isentropic, baryonic pertur-
bations require large initial fluctuations in order to be able to form structures with masses
comparable to the damping scale (M ~ My ~ 10'*M,,). As we will see in Chapter 5, nonlinear
structures form when their corresponding perturbations have grown to 8y, ~ 1. Since 0y grows
with arate o (14z) in an EdS universe (or slower if Qo < 1) during the matter dominated era, this
implies amplitudes of the order of & > 1073 at z ~ zgec. In the case of isentropic perturbations,
the temperature fluctuations in the photon field are related to the density fluctuations as

Y (4.244)
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Thus, if clusters and superclusters (with masses > 10'*M.)) formed out of isentropic bary-
onic perturbations, the expected temperature fluctuations in the cosmic microwave background
(CMB) on angular scales of a few arcminutes would be of the order of 67 /T > 1073. This is
much larger than what has been observed (see §2.9), providing strong evidence against this class
of models.

4.3.2 Adiabatic Cold Dark Matter Models

It is possible that the Universe is dominated by weakly interacting massive particles (WIMPs)
with masses in the range 1GeV < m < 3 Tev, or by particles which are produced without thermal
velocities (see §3.3.5). Models in which the dark matter is made up of these kind of particles
are called cold dark matter (CDM) models. Since the velocity stress tensor of the corresponding
particles is negligible, free streaming does not play a role in these models, at least not on the
scales of interest for galaxy formation. The behavior of the linear transfer function of isentropic
(or ‘adiabatic”) CDM models is therefore given by Eq. (4.240). Detailed calculations of the linear
transfer function for adiabatic CDM models have been carried out by many authors (e.g. Peebles,
1982; Bond & Efstathiou, 1984; Bardeen et al., 1986). One example is shown in Fig. 4.2. In the
limit that Q;, ) < Qp, 0, the linear transfer function is well fitted by

In(1 +2.34 B
T (k)= W [143.89g+ (16.19)* + (5.469)> + (6.719)*] /*, (4.245)
where
_ (k> and T =Qnoh (4.246)
=1 hMpc ™! - o '

(Bardeen et al., 1986). Note that I is a shape parameter characterizing the horizon scale at fq.

A realistic CDM model also needs to include baryons, the substance out of which galaxies
are made. The presence of a non-negligible baryonic matter component influences the transfer
function. Increasing the baryonic mass fraction largely leaves the shape of 7'(k) intact, but it
causes a reduction of the shape parameter, which is well approximated by

I = Quohexp [—Qb,o(l +V2h /Qm,o)} (4.247)

(Sugiyama, 1995). However, if the baryonic mass fraction becomes sufficiently large, the trans-
fer function starts to develop oscillations (due to baryon acoustic fluctuations) and the fitting
functions (4.245) and (4.247) are no longer appropriate. In this case one has to resort to more
sophisticated fitting functions such as those of Eisenstein & Hu (1998). The baryon acoustic
oscillations (BAO) in the transfer function produces oscillatory features in the matter power
spectrum. The typical scale of the oscillations is that of the sound horizon at decoupling, which
is about 150(Qp ¢h*/0.02)~'Mpc in comoving units. Such features have indeed been observed
in the galaxy distribution on large scales (e.g. Percival et al., 2007).

As we have seen, the baryonic perturbations cannot grow until after decoupling, and experi-
ence Silk damping. In the absence of dark matter, this results in problems as it predicts CMB
temperature fluctuations of the order 10~ or larger in order to form galaxies. The addition of
cold dark matter helps in two respects. First of all, the dark matter perturbations can already start
to grow after radiation—matter equality. This means that by the time of decoupling the dark matter
density perturbations have already grown by a factor ~ 20(Qy, oh?) with respect to the perturba-
tions in the photon—baryon fluid (or even a little bit more if one takes into account that isentropic
dark matter perturbations can grow logarithmically during the radiation dominated era). Sec-
ondly, after decoupling the baryons simply collapse gravitationally into the CDM perturbations,
so that Silk damping no longer plays a vital role.
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Adiabatic CDM models with a scale-invariant initial power spectrum, P, « k, have proven
remarkably successful in explaining the large-scale structure of the Universe (e.g. Blumenthal
et al., 1984; Davis et al., 1985). They also provide a framework for galaxy formation that seems
to be largely consistent with the data. Detailed analyses show that I" ~ 0.2 is required in order for
the predicted mass distribution to match the observed two-point correlation function of galaxies
on large scales. Since current observational constraints suggest that z ~ 0.7 (see §2.10.1), the
implied value of Qy, is ~ 0.3. If the Universe is flat, as suggested by inflationary models, the rest
of the energy density, about 70% of the critical density, has to be in another energy component,
such as the cosmological constant A. Currently, many studies are investigating the so-called
ACDM models, in which Qb,O ~ 004, QCDM,O ~ 0.26 and QA,O =1- Qb,O — QCDM.,O ~0.7.

4.3.3 Adiabatic Hot Dark Matter Models

If neutrinos have masses in the range 10 < m, < 100eV they can dominate the matter den-
sity of the Universe (see §3.3). In particular, if only a single species is massive then Qu,ohz =
0.32(m,, /30eV). Since massive neutrinos decouple from the hot plasma in the relativistic regime
(see §3.3.5), models in which the dark matter consists of massive neutrinos with masses in the
aforementioned range are called hot dark matter (HDM) models. The evolution of neutrino per-
turbations in such a HDM cosmogony is given by the Boltzmann equation (4.170), which can
be solved by iterating the formal solution (4.173). Fig. 4.3 shows the evolution of adiabatic neu-
trino perturbations on different scales. The massive neutrinos become non-relativistic at a time
when 3kgT, = m,c?, i.e. at a redshift z,, = 57300(m, /30eV). At z>> z,;, they move with a
speed v ~ ¢, while at 7 < z,; they are slowed down by the expansion as v o< a~! (see §4.1.6).
Thus, neutrino perturbations which enter the horizon at z > z,, are significantly damped by free-
streaming, while large-scale perturbations which enter the horizon at z < z;,; are not. As a result,
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Fig. 4.3. The evolution for adiabatic neutrino perturbations with various k/k,. The scale factor is nor-
malized to be unity at a redshift z = zy, = 57,300(m,, /30eV). [Adapted from Bond & Szalay (1983) by
permission of AAS]
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the present-day transfer function shows a sharp decline at the high-k end (see Fig. 4.2). To good
approximation, the transfer function can be written as

T (k) =exp(—3.99—2.1¢%), where gq=k/k,, (4.248)

and 27 /k, = 31(m, /30eV)~! Mpc is the characteristic scale of free-streaming damping.

The free-streaming scale corresponds to a mass Mg ~ 1.3 X 10]4(Qu7oh2)’2, and perturba-
tions with smaller masses are damped. As a result, the first objects to form in HDM models
are pancakes (§4.1.8) with masses M ~ My, and smaller objects can only form through the
subsequent fragmentation of these pancakes. In order to allow for sufficient time for this frag-
mentation process to produce galaxies, a large fraction of mass must have already collapsed
into pancakes at an earlier epoch (say z > 1). Numerical simulations by White et al. (1983),
however, show that this implies a large-scale clustering strength which is much larger than
observed.

In order to allow density perturbations on scales smaller than the free-streaming scale, a mixed
dark matter (MDM) model, in which Qupm o ~ 0.3 and Qcpm,o ~ 0.7, has been considered (e.g.
Ma, 1996). The linear transfer function of such a model is shown in Fig. 4.2.

4.3.4 Isocurvature Cold Dark Matter Models

The evolution of isocurvature perturbations in CDM models has been discussed in some detail in
§4.2.6, and the properties of the post-recombination transfer function of the CDM component are
summarized in Eq. (4.241). Detailed computations of the linear transfer function for isocurvature
CDM models are given by Efstathiou & Bond (1986), for example. In the limit that Qo <
Qq and for three species of massless neutrinos, the linear transfer function is found to be well
approximated by

124) ~1/124
T(k):{1+[15.0q+(0.9q)3/2+(5.6q)2] } , (4.249)

where ¢ has the same definition as in Eq. (4.246).

The main difference of this model with respect to the adiabatic CDM models described earlier
is that the dark matter fluctuations here cannot grow during the radiation dominated era due
to the Mészaros effect, whereas they grow logarithmically in the adiabatic case. Consequently,
isocurvature CDM models have somewhat less power on small scales than the corresponding
adiabatic CDM models with the same large-scale power.

4.4 Statistical Properties

In the preceding sections we have examined the time evolution of individual Fourier modes of the
density perturbation field d(x,7) = p(x,t)/p(¢) — 1. In the linear regime these different modes
evolve independently and the amplitudes of a given Fourier mode at different times are simply
related by the linear transfer function and the linear growth rate. In this section we describe
how to characterize the statistical properties of the cosmological perturbations. Such a statistical
description is needed in order to be able to relate theory to observation.

4.4.1 General Discussion

How can one specify a cosmic density field? In principle, one can do this by specifying the den-
sity perturbation 8(x) at every point in space (or, equivalently, to specify J for all k). However,
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this is impractical since there is an infinite number of field values (or Fourier modes) to be spec-
ified. This is also unnecessary, because we consider the mass density field in the Universe as one
realization of a random process and seek a description of the cosmic density field only in a statis-
tical sense. In this case, one aims to specify the random process that generates the cosmic density
field, rather than the specific realization of the density field itself. The situation is quite similar
to that in statistical mechanics: to describe the properties of a gas we do not seek to trace the
positions and velocities of individual molecules but, instead, we are interested in the statistical
properties given by some distribution functions.

In analogy, the statistical properties of a random perturbation field (at some given time) are
specified if the probability for any particular realization of J(x) is known. To see this more
clearly, let us divide the Universe into # infinitesimal cells which are centered at x1, X3, ..., X.
The random perturbation field §(x) is then characterized by the probability distribution function,

P (01,02,...,0,) d01dS, ... do,, (4.250)

which gives the probability that the field § has values in the range 6; to §; + d; at positions x;
(i=1,2,...,n). This distribution function is completely determined if we know all of its moments
(8016260 E/5f15§2...55n P81,8,...,8,)d8,d6,... 46, 4.251)

where /; are non-negative integers. Since the cosmological principle requires all positions and
directions in the Universe to be equivalent, the cosmological density field must be statistically
homogeneous and isotropic. This implies that all the moments are invariant under spatial trans-
lation and rotation. The first moment (8(x)) = 0, which follows directly from the definition of
the perturbation field. The variance of the perturbation field is 6> = (§2(x)), which, because of
ergodicity, is independent of x. Another important moment is

E(x) =(818), with x=[x—xaf, (4.252)

which is called the two-point correlation function. Note that &(0) = o2 and that &(x) only
depends on the distance between x; and Xj.
A density perturbation field J(x) can also be represented by its Fourier transform:

O = Viu/5(x) exp (—ik-x) d°x, (4.253)

where V, = Lﬁ is the volume of a large box on which the perturbation field is assumed periodic,
and k = (27/Ly) (i, iy, i;) (where iy, iy, i, are integers). Note that & are complex quantities, and
we therefore write

8 = Ak + By = | 8] exp(igy). (4.254)

Thus, the statistical properties of 8 [and hence of & (x)] can also be obtained from the distribution
function,

P Ok, Okys- - -5 Ok,) |0k, || O, |- .- [k, | dx, ey, ...y, , (4.255)

which gives the probability that the modes J; have amplitudes in the range |, | to |k, | +d| ;|
and phases in the range @y, to @k, +dgy;.

Similar to Z2,, the distribution function 2, is determined if all of its moments are known. In
particular, the second moment,

P(k) = Vo {|&|*) = Vu (86-xk) , (4.256)
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is the power spectrum of the perturbation field. Inserting Eq. (4.253) into the above equation and
using the definition of &(r), we have

. o ink
k) = / E(x)e *Xdx = 4n /0 £(r) S‘errzdr. (4.257)
The inverse relation is
1 1 1 bl sinkr
§0)= / PO Pk = 5 /0 PO~ R (4.258)

We thus see that the two-point correlation function is the Fourier transform of the power
spectrum, and vice versa.

4.4.2 Gaussian Random Fields

It is clear from the above discussion that it is quite difficult to specify a general random field,
because it involves the determination of an infinite number of moments. Fortunately, the initial
density field in the Universe is found to be well approximated by a homogeneous and isotropic
Gaussian random field which, as we show below, is completely determined, in a statistical sense,
by its power spectrum or its two-point correlation function.

A random field d(x) is said to be Gaussian if the distribution of the field values, (61, 62, ..., ),
at an arbitrary set of n points is an n-variate Gaussian:

exp(—2)
[(zn)ndet(//z)]lﬂ

P(81,8,...,8,) = 9=— 25( ) I (4.259)

where Z;; = <5,~6j> is the covariance matrix. For a homogeneous and isotropic field, all the
multivariate Gaussian distribution functions are invariant under spatial translation and rotation,
and so are completely determined by the two-point correlation function & (x). In particular, the
one-point distribution function of the field itself is

1 5

where 62 = £(0) is the variance of the density perturbation field.

Any linear combination of Gaussian variates also has a Gaussian distribution. This allows us
to obtain the distribution function for the Fourier transforms, 8 = Ak + iBx, which, after all, are
linear combinations of &(x). Since &(x) is real, we have that 6 = d_k and thus Ax = A_x and
By = —B_x. This implies that we only need Fourier modes with k in the upper half-space to fully
specify 6(x). It is then straightforward to prove that, for k in the upper half-space,

1
(Axdw) = (BiB) = 5 Vi P(k)SLY):  (AkBi) =0, (4.261)
where
1 [
Sl =17 / KXy (4.262)
u

is the Kronecker delta function. As a result, the multivariate distribution functions of Ax and B
are factorized according to k, each factor being a Gaussian:

1 o
[V 'P(k)]'/2 °xp [_ Va 'P(k)

where oy stands for either Ax or By. Thus, for a Gaussian random field, different Fourier modes
are mutually independent, and so are the real and imaginary parts of individual modes. This, in

ﬂk(ak) doy = :| dOCk, (4.263)
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turn, implies that the phases @ of different modes are mutually independent, and have a random
distribution over the interval between 0 and 27. In fact, in terms of |Jk| and @, the distribution
function for each mode can be written as

(4.264)

2 d d
%<|6k|,<pk>d|ak|d<pk:e)<p{_ |5 ]I5k 8] dox

2V lP(k) ] Vi tP(k) 2

Note that the power spectrum P(k), which is related to the two-point correlation function & (r)
by Eq. (4.257), is the only function needed to completely specify a Gaussian random field (in a
statistical sense). Note also that, during linear evolution, different Fourier modes evolve indepen-
dently and so Eq.(4.261) always holds. It is then easy to see that a Gaussian perturbation field
remains Gaussian in the linear regime.

Gaussian random fields are thus particularly easy to handle. The important question, of
course, is whether the initial density field is Gaussian or not. At the moment, there are at
least three reasons to prefer a Gaussian field to a non-Gaussian one. First of all, as discussed
in §4.5, a Gaussian perturbation field arises naturally from quantum fluctuations during infla-
tion. Since a Gaussian field remains Gaussian during linear evolution, the generic prediction
of inflationary models is thus that §(x) in the linear regime follows Gaussian statistics. Sec-
ondly, according to the central limit theorem, the distribution of the sum of a large number
of independent variates approaches a Gaussian distribution without regard to the distribution
functions of the individual variates. The initial density perturbation field §(x) is a sum over a
large number of Fourier modes, and so the central limit theorem guarantees a Gaussian distri-
bution, as long as the phases of the Fourier modes are independent of each other. And thirdly,
there is currently no convincing observational evidence to suggest that the linear density field is
non-Gaussian.

4.4.3 Simple Non-Gaussian Models

Although there are clear theoretical and practical reasons to prefer Gaussian random fields, it is
important to keep an open mind and not to exclude the possibility that the initial, linear density
field has non-Gaussian statistics. For example, it is possible that some topological defects might
be produced during some phase transitions in the early Universe. These defects are regions of
trapped energy and could therefore act as seeds for structure formation. The density perturbation
fields in defect models are generally non-Gaussian, as we briefly discuss in §4.5.

As mentioned above, a non-Gaussian density field is generally difficult to describe. However,
if a non-Gaussian field is a simple transformation of an underlying Gaussian field, it is still easy
to handle because in this case we only need to specify the transformation of the underlying
Gaussian field. Along this line, a few simple non-Gaussian models have been proposed. One
example is the x> model, for which §(x) is defined via a Gaussian field &g (x) as

8 (x) = 8G(x) — 05, (4.265)

where 64 = (63). and the subtraction of 0§ ensures that (§,) = 0. Another simple example is
the log-normal model, defined as

Sin(x) = exp [85(x) — 0 /2] — 1 (4.266)

(Coles & Jones, 1991). In both cases, all the moments of §(x) can be written in terms of the
moments of g (x), and so §(x) is completely specified by the power spectrum of dg (or the two-
point correlation function &g). For example, the two-point correlation functions corresponding
to Egs. (4.265) and (4.266) are &, (r) = 2E&(r) and & n = exp(&g) — 1, respectively.
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4.4.4 Linear Perturbation Spectrum

As discussed above, the power spectrum P(k) is an important quantity characterizing a random
field. In fact it is the only quantity required to specify a homogeneous and isotropic Gaussian
random field. As we have seen in §4.3, because different Fourier modes evolve independently of
each other in the linear regime, the linear power spectrum at any given time can be simply related
to the initial power spectrum via the linear transfer function. We now take a more detailed look
at the initial power spectrum.

(a) The Initial Power Spectrum In the absence of a complete theory for the origin of the
density perturbations, the initial (untransferred) perturbation spectrum is commonly assumed to
be a power law,

P(k) o< K", (4.267)
where n is usually called the spectral index. As we will show in §4.5, the power spectra predicted

by inflation models generally have this form.
It is often useful to define the dimensionless quantity,

2 — 1 3
N (k) = 5 5K P(k), (4.268)

which expresses the contribution to the variance by the power in a unit logarithmic interval of k.
In terms of A?(k) we have that

A (k) o< k3H7, (4.269)
The corresponding quantity for the gravitational potential is
1
A (k) = ﬁk3P¢(k) o k™*A2 (k) o< K1, (4.270)

which is independent of k for n = 1. Thus, for the special case of n = 1, which is called the
Harrison—Zel’dovich spectrum or scale-invariant spectrum, the gravitational potential is finite
on both large and small scales. This is clearly desirable, because divergence of the gravita-
tional potential on small or large scales would lead to perturbations on these scales that are too
large.

As we will see in §4.5, in inflation models the metric (potential) perturbations are generated
by quantum fluctuations during inflation. At the end of inflation, all perturbations become super-
horizon because of the huge amount of expansion caused by inflation. Since metric perturbations
remain roughly constant during super-horizon evolution, the amplitude of a metric perturbation at
the time when it re-enters the horizon should be approximately the same as the initial amplitude.
Thus, the amplitude of A%I,(k) evaluated at the time of horizon re-entry is proportional to k",
which is independent of k for a scale-invariant spectrum.

(b) The Amplitude of the Linear Power Spectrum So far we have only discussed the shape of
the linear power spectrum. To completely specify P(k), we also need to fix its overall amplitude.
Because we do not yet have a refined theory for the origin of the cosmological perturbations,
the amplitude of P(k) is not predicted a priori but rather has to be fixed by observations. Even
for inflation models, where we can make detailed predictions for the shape of the initial power
spectrum, the current theory has virtually no p