
Chapter 5

Rotation Curves

5.1 Circular Velocities and Rotation Curves

The circular velocity vcirc is the velocity that a star in a galaxy must have to maintain
a circular orbit at a specified distance from the centre, on the assumption that the
gravitational potential is symmetric about the centre of the orbit. In the case of the
disc of a spiral galaxy (which has an axisymmetric potential), the circular velocity is
the orbital velocity of a star moving in a circular path in the plane of the disc. If
the absolute value of the acceleration is g, for circular velocity we have g = v2

circ/R
where R is the radius of the orbit (with R a constant for the circular orbit). Therefore,
∂Φ/∂R = v2

circ/R, assuming symmetry.
The rotation curve is the function vcirc(R) for a galaxy. If vcirc(R) can be measured

over a range of R, it will provide very important information about the gravitational
potential. This in turn gives fundamental information about the mass distribution in
the galaxy, including dark matter.

We can go further in cases of spherical symmetry. Spherical symmetry means that
the gravitational acceleration at a distance R from the centre of the galaxy is simply
GM(R)/R2, where M(R) is the mass interior to the radius R. In this case,

v2
circ

R
=

GM(R)

R2
and therefore, vcirc =

√

GM(R)

R
. (5.1)

If we can assume spherical symmetry, we can estimate the mass inside a radial
distance R by inverting Equation 5.1 to give

M(R) =
v2

circR

G
, (5.2)

and can do so as a function of radius. This is a very powerful result which is capable
of telling us important information about mass distribution in galaxies, provided that
we have spherical symmetry. However, we must use a more sophisticated analysis for
the general case where we do not have spherical symmetry. The more general case of
axisymmetry is considered in Section 5.3.

5.2 Observations

Gas and young stars in the disc of a spiral galaxy will move on nearly circular orbits
(especially if the potential is truly axisymmetric). Therefore if the bulk rotational
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velocity vrot of gas or young stars can be measured, it provides v2
circ = R ∂Φ/∂R.

Old stars should be avoided: old stars have a greater velocity dispersion around their
mean orbital motion and their bulk rotational velocity will be slightly smaller than
the circular velocity.

Spectroscopic radial velocities can be used to determine the rotational velocities of
spiral galaxies provided that the galaxies are inclined to the line of sight. The analysis
is impossible for face-on spiral discs, but inclined spirals can be used readily. The
velocity vrot is related to the velocity component vl along the line of sight (corrected
for the bulk motion of the galaxy) by vl = vrot cos i where i is the inclination angle of
the disc of the galaxy to the line of sight (defined so that i = 90◦ for a face-on disc).
Placing a spectroscopic slit along the major axis of the elongated image of the disc on
the sky provides the rotation curve from optical observations. Radio observations of
the 21 cm line of neutral hydrogen at a number of positions on the disc of the galaxy
can also provide rotation curves, and often to larger radii than optical ones.

For example, in our Galaxy the circular velocity at the solar distance from the
Galactic Centre is 220 km s−1 (i.e. at R0 = 8.0 kpc from the centre).

When people first starting measuring rotation curves (c. 1970), it quickly became
clear that the mass in disc galaxies does not follow the visible mass. It was found
that disc galaxies generically have rotation curves that are fairly flat to as far out as
they could be measured (out to several scale lengths). This is very different to the
behaviour that would be expected were the visible mass – the mass of the stars and
gas – the only matter in the galaxies. This is interpreted as strong evidence for the
existence of dark matter in galaxies.

The simplest interpretation of a flat rotation curve is that based on the assumption
the dark matter is spheroidally distributed in a ‘dark halo’. For a spherical distribution
of mass, vcirc =constant implies that the enclosed mass M(r) ∝ r, and so ρ(r) ∝ 1/r2.

Rotation curves determined from optical spectra are generally limited to ' few
scale lengths (assuming an exponential density profile). These do provide important
evidence of flat rotation curves. However, 21cm radio observations can be followed out
to significantly greater distances from the centres of spiral galaxies, using the emission
from the atomic hydrogen gas. These H I observations provide powerful evidence of
a constant circular velocity with radius, out to radial distances where the density of
stars has declined to very low levels, providing strong evidence for the existence of
extensive dark matter haloes.

As yet it is not clear exactly how far dark matter haloes extend. Neither is there a
good estimate of the total mass of any disc galaxy. This is what makes disc rotation
curves very important.

5.3 Theoretical Interpretation

However, one needs to be careful about interpreting flat rotation curves. The existence
of dark matter haloes is a very important subject and caution is appropriate before
accepting evidence that has profound significance to our understanding of matter in
the Universe. For this reason, attempts were made to model observed rotation curves
using as little mass in the dark matter haloes as possible. These ‘maximal disc models’
attempted to fit the observed data by assuming that the stars in the galactic discs had
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Figure 5.1: The spiral galaxy NGC 2841 and its H I 21cm radio rotation curve.
The figure on the left presents an optical (blue light) image of the galaxy, while
that on the right gives the rotation curve in the form of the circular velocity
plotted against radial distance. The optical image covers the same area of the
galaxy as the radio observations: the 21 cm radio emission from the atomic
hydrogen gas is detected over a much larger area than the galaxy covers in the
optical image. [The optical image was created using Digitized Sky Survey II
blue data from the Palomar Observatory Sky Survey. The rotation curve was
plotted using data by A. Bosma (Astron. J., 86, 1791, 1981) taken from S. M.
Kent (AJ, 93, 816, 1987).]

as much mass as could still be consistent with our understanding of stellar populations.
They still, however, required a contribution from a dark matter halo at large radii when
H I observations were taken into account.

Importantly, the maximum contribution to the rotation curve from an e−R/R0 disc
is not (as we might naively expect) at around R0 from the centre but at around 2.5R0.
Adding the effect of a bulge can easily give a fairly flat rotation curve to 4R0 without
a dark halo. To be confident about the dark halo, one needs to have the rotation curve
for & 5R0. In practice, that means H I measurements: optical rotation curves do not
go out far enough to say anything conclusive about dark haloes.

The rest of this section is a more detailed working out of the previous paragraph.
It follows an elegant derivation and explanation due to A. J. Kalnajs.

Consider an axisymmetric disc galaxy. Consider the rotation curve produced by
the disc matter only (at this stage we shall not consider the contribution from the
bulge or from the dark matter halo). This analysis will use a cylindrical coordinate
system (R, φ, z) with R = 0 at the centre of the galaxy, and the disc centred around
z = 0. Let the surface mass density of the disc be Σ(R).

The gravitational potential in the plane of the disc at the point (R, φ, 0) is

Φ(R) = − G

∫ ∞

0

R′ Σ(R′) dR′

∫ 2π

0

dφ
√

R2 +R′2 − 2RR′ cosφ
, (5.3)

found by integrating the contribution from volume elements over the whole disc. To
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make this tractable, let us first define a function L(u) so that

L(u) ≡ 1

2π

∫ 2π

0

dφ
√

1 + u2 − 2u cosφ
. (5.4)

(The function within the integral can be expanded into terms called Laplace coeffi-
cients, which are explained in many old celestial mechanics books.)
This can be expanded as

L(u) = 1 +
u2

4
+

9

64
u4 +

25

256
u6 +

1225

16384
u8 + O(u10) for u < 1 , (5.5)

either by expressing it as Laplace coefficients (which uses Legendre polynomials) or
using a binomial expansion of the function in u, and then integrating each term in the
expansion. The integration over φ in Equation 5.3 can be expressed in terms of L(u)
as

∫ 2π

0

dφ
√

R2 +R′2 − 2RR′ cos φ
=

2π

R
L
(

R′

R

)

for R′ < R

=
2π

R′
L
(

R
R′

)

for R′ > R , (5.6)

because the expansion of L(u) assumed that u < 1.
Splitting the integration in Equation 5.3 into two parts (for R′ = 0 to R, and for
R′ = R to ∞) and substituting for L(R′/R) and L(R/R′), we obtain,

Φ(R) = − 2πG

∫ R

0

R′

R
Σ(R′) L

(

R′

R

)

dR′ − 2πG

∫ ∞

R

Σ(R′) L
(

R
R′

)

dR′ . (5.7)

Consider a star in a circular orbit in the disc at radius R, having a velocity v. The
radial component of the acceleration is

v2

R
=

∂Φ

∂R
,

and hence

v2(R) = R
∂Φ

∂R

= − 2πGR
d

dR

∫ R

0

R′

R
Σ(R′) L

(

R′

R

)

dR′ − 2πGR
d

dR

∫ ∞

R

Σ(R′) L
(

R
R′

)

dR′

on substituting for Φ from Equation 5.7. These two differentials of integrals can be
simplified by using a result known as Leibniz’s Integral Rule, or Leibniz’s Theorem for
the differential of an integral. This states for a function f of two variables,

d

dc

∫ b(c)

a(c)

f(x, c) dx =

∫ b(c)

a(c)

∂

∂c
f(x, c) dx + f(b, c)

db

dc
− f(a, c)

da

dc
. (5.8)

This gives

d

dR

∫ R

0

R′

R
Σ(R′) L

(

R′

R

)

dR′ =

∫ R

0

∂

∂R

[

R′

R
L
(

R′

R

)

]

Σ(R′) dR′ + Σ(R)L(1)

and
d

dR

∫ R

0

Σ(R′) L
(

R
R′

)

dR′ =

∫ ∞

R

∂

∂R

[

L
(

R
R′

)

]

Σ(R′) dR′ − Σ(R)L(1) .
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Therefore we get

v2(R) = − 2πGR

∫ R

0

d

dR

(

R′

R
L
(

R′

R

)

)

Σ(R′) dR′ − 2πGR

∫ ∞

R

Σ(R′)
d

dR
L
(

R
R′

)

dR′

But,

d

dR

(

R′

R
L
(

R′

R

)

)

= − R′

R2
L
(

R′

R

)

+
R′

R

d

dR
L
(

R′

R

)

from the product rule

= − R′

R2
L
(

R′

R

)

+
R′

R

dL
(

R′

R

)

d(R′/R)

d(R′/R)

dR
from the chain rule

= − R′

R2
L
(

R′

R

)

− R′2

R3
L′
(

R′

R

)

writing L′(u) ≡ dL(u)
du

.

∴ v2 = + 2πG

∫ R

0

[

R′

R
L
(

R′

R

)

+
(

R′

R

)2
L′
(

R′

R

)

]

Σ(R′) dR′

− 2πG

∫ ∞

R

(

R
R′

)

L′
(

R
R′

)

Σ(R′) dR′ . (5.9)

This can be quite messy and it can abbreviated as

v2(R) = 2πG

∫ ∞

0

K
(

R
R′

)

Σ(R′) dR′ , (5.10)

where the function K
(

R
R′

)

represents the function over both R′ = 0 to R and R′ = R
to ∞ domains.
Changing variables to x ≡ lnR, y ≡ lnR′, we can write this as a convolution

v2(R) = 2πG

∫ ∞

−∞

K(ex−y)R′ Σ(R′) dy . (5.11)

The kernel K(R/R′) is in Figure 5.2.
Figure 5.3 shows RΣ(R) and v2 for an exponential disc, but the general shapes are

not very sensitive to whether Σ(R) is precisely exponential. The important qualitative
fact is that whatever RΣ(R) does, v2 does roughly the same, but expanded by a factor
of ' e.

The distinctive shape of the v2 (lnR) curve for realistic discs makes it very easy
to recognise non-disc mass. Figure 5.4, following Kalnajs, shows the rotation curves
you get by adding either a bulge or a dark halo. (Actually this figure fakes the
bulge/halo contribution by adding a smaller/larger disc; but if you properly add spher-
ical mass distributions for disc/halo, the result is very similar.) Kalnajs’s point is that
a bulge+disc rotation curve has a similar shape to a disc+halo rotation curve – only
the scale is different. So when examining a flat(-ish) rotation curve, you must ask
what the disc scale radius is.
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5.4 Representing Dark Matter Distributions

The dark matter within spiral galaxies does not appear to be confined to the discs and
it is probably distributed approximately spheroidally. A popular density profile that
has been adopted for modelling dark matter haloes has the form

ρ(r) =
ρ0

1 + (r/a)2
, (5.12)

where r is the radial distance from the centre of the galaxy, ρ0 is the central dark
matter density, and a is a constant. This form does reproduce the observed rotation
curves of spiral galaxies adequately: it gives a circular velocity that is vcirc = 0 at
R = 0, that rises rapidly with the radial distance in the plane of the disc R, and then
becomes flat (vcirc =constant) for R � a. This profile, however, has the problem that
its mass is infinite. Therefore a more practical functional form might seem to be

ρ(r) =
ρ0

1 + (r/a)n
, (5.13)

where a and n are constants, with n > 3 giving a finite mass. However, n > 3 would
no longer give flat rotation curves. Therefore a better option might be to change
Equation 5.12 by incorporating an extra component that truncates it at very large
radii.

Some numerical N -body simulations of galaxy formation have predicted that dark
matter haloes will have density profiles of the form

ρ(r) =
k

r (a + r)2
, (5.14)

where a and k are constants. This is known as the Navarro-Frenk-White profile after
the scientists who first described it. It fits the densities of collections of particles
representing dark matters haloes in numerical simulations, and does so adequately
over broad ranges in masses and sizes. It is therefore often used to represent the dark
matter haloes of galaxies and also of clusters of galaxies.

The profiles above are spherical: the density depends only on the radial distance
r from the centre. These functional forms for ρ can be modified to allow for flattened
systems.
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Figure 5.2: The kernel K(R/R′). Observe that the R > R′ part tends to have higher
absolute value than the R < R′ part.

Figure 5.3: The effect of an exponential disc. The dashed curve is RΣ(R) for an
exponential disc with Σ ∝ e−R and the solid curve is v2(R). Note that R is measured
in disc scale lengths, but the vertical scales are arbitrary.
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Figure 5.4: Plots of v2 against lnR (upper panel) or v against R (lower panel). For
one curve in each panel, a second exponential disc with mass and scale radius both
scaled down by e2 ' 7.39 has been added (to mimic a bulge); for the other curve a
second exponential disc with mass and scale radius both scaled up by e2 ' 7.39 has
been added (to mimic a dark halo).
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