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25 Lecture 25: Galaxies: Analytic Models

“Science is simply common sense at its best that is, rigidly accurate in observation, and merciless
to fallacy in logic.”

Thomas Henry Huxley

The Big Picture: Last time we showed that individual stellar encounters are unimportant in the
dynamics of the galaxy, which justifies the mean-field approximation and the use of the collision-
less Boltzmann equation. Today we derive the collisionless Boltzmann equation in the context of
galaxies, formulate the self-consistent problem and outline a few analytic approaches to solving it.

The study of galactic systems — the dynamics, kinematics, morphology — is a major tool in
comprehending some of the key issues in astrophysics relating to the origin, evolution and structure
of the Universe.

In modeling of galactic systems, we move from the simplest approximations to galaxy shapes
(spherical — 1 dof) to more general (axisymmetric — 2 dof; and triaxial — 3 dof). However, we
first must establish which equations govern the dynamics of galactic systems.

The Collisionless Boltzmann Equation

Earlier, we have demonstrated that in galaxies the stellar encounters are unimportant; in other
words, the mean-free path between collisions is considerably (orders of magnitude!) longer than the
age of the Universe. This justifies the collisionless approximation and the use of the collisionless

Boltzmann equation (also known as the Vlasov equation).
Imagine a large number of stars moving under the influence of a smooth potential Φ(x, t). At

any time t, a full description of the state of any collisionless system is given by specifying the number
of stars f(x,v, t)d3xd3v having positions in the small volume d3x centered on x and velocities in
the small range d3v centered on v. The quantity f(x,v, t) is called the distribution function or
phase-space density of the system. Clearly f ≥ 0 everywhere.

If we know the initial coordinates and velocities of every star, Newton’s laws enable us to
evaluate their positions and velocities at any later time. Thus, given f(x,v, t0), it should be
possible to calculate f(x,v, t) for any t using only the information that is contained in f(x,v, t0).
Now, consider the flow of points in phase space that arises as stars move along their orbits. The
coordinates in phase-space are

(x,v) ≡ w ≡ (w1, ..., w6), (513)

so that the velocity of this flow can be written as

ẇ = (ẋ, v̇) = (ẋ,−∇Φ), (514)

where we have used from the Hamiltonian formulation v̇ = −∇Φ.
A characteristic of the flow described by ẇ is that it conserves stars: in the absence of encounters

stars do not jump from one point in phase-space to another, but rather drift smoothly through
space. Therefore, the density of stars f(w, t) satisfies a continuity equation analogous to that
satisfied by the density ρ(x, t) of the ordinary fluid flow:

∂f

∂t
+

6
∑

i=1

∂(fẇi)

dwi
= 0. (515)
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The physical content of this equation can be seen by integrating it over some volume of phase
space. The first term then describes the rate at which the collection of stars inside this volume is
increasing, while an application of the divergence theorem shows that the second term describes
the rate at which stars flow out of this volume.

The flow described by ẇ is very special, because it has the property that

6
∑

i=1

∂ẇi

dwi
=

3
∑

j=1

∂vj

dxj
+

∂v̇j

dvj
=

3
∑

j=1

− ∂

dvj

(

∂Φ

dxj

)

= 0. (516)

Here (∂vj/∂xj) = 0 because vi and xi are independent coordinates of phase-space, and the last
step follows because ∇Φ does not depend on velocities. If we use eq. (516) to simplify eq. (515),
we obtain the collisionless Boltzmann equation (also known as the Vlasov equation):

∂f

∂t
+

6
∑

i=1

∂(fẇi)

∂wi
= 0

∂f

∂t
+

6
∑

i=1

(

f
∂ẇi

∂wi
+ ẇi

∂f

∂wi

)

= 0

∂f

∂t
+

3
∑

i=1

(

ẋi
∂f

∂xi
+ v̇i

∂f

∂vi

)

= 0

∂f

∂t
+

3
∑

i=1

(

vi
∂f

∂xi
− ∂Φ

∂xi

∂f

∂vi

)

= 0 (517)

or, in vector notation
∂f

∂t
+ v · ∇f −∇Φ · ∂f

∂v
= 0. (518)

Equation (518) is the fundamental equation of stellar dynamics.
The meaning of the collisionless Boltzmann equation can be clarified by extending to six diver-

sions the concept of the convective derivative. We define

df

dt
≡ ∂f

∂t
+

6
∑

i=1

ẇi
∂f

∂wi
. (519)

df/dt represents the rate of change of density of phase points as seen by an observer who moves
through phase-space with a star at velocity ẇ. The collisionless Boltzmann equation is then simply

df

dt
= 0. (520)

In words, the flow of stellar phase points through phase-space is incompressible; the phase-space
density f around the phase point of a given star always remains the same.

The Self-Consistent Problem

The collisionless Boltzmann equation does not provide the closed system of equation. In order
to have a closed system of equation, we must have as many equations as we have quantities. Here,
it means that we must relate Φ and f . The Poisson equation

∆Φ(x, t) = 4πGρ(x, t) (521)
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relates the mass-density ρ(x, t) to the distribution function f(x,v, t). Finally, the potential Φ(x, t)
and density ρ(x, t) are related as

ρ(x, t) =

∫

f(x,v, t)d3v, (522)

which provides the link Φ ↔ ρ ↔ f , and closes the system of equations. Solving the system of
equations:

∂f

∂t
+ v · ∇f − ∇Φ · ∂f

∂v
= 0,

ρ(x, t) =

∫

f(x,v, t)d3v,

∆Φ(x, t) = 4πGρ(x, t) (523)

simultaneously is called the self-consistent problem.

Integrals of Motion and Jeans Theorem

An integral of motion I(x,v) is any function of the phase-space coordinates (x,v) that is
constant along any orbit:

I[x(t1),v(t1)] = I[x(t2),v(t2)], (524)

or
d

dt
I[x(t1),v(t1)] = 0 =

∂I

∂x

∂x

∂t
+

∂I

∂v

∂v

∂t
= v

∂I

∂x
−∇Φ

∂I

∂v
, (525)

which satisfies the collisionless Boltzmann equation. This leads to the following theorems.

Jeans theorem. Any steady-state solution of the collisionless Boltzmann equation depends on the

phase-space coordinates only through integrals of motion in the galactic potential, and any function

of the integrals yields a steady-state solution of the collisionless Boltzmann equation.

Strong Jeans theorem. The DF of a steady-state galaxy in which almost all orbits are regular

with incommensurate frequencies may be presumed to be a function only of the three independent

isolating integrals.

In other words, the Jeans theorem tells us that if I1,..., I5 are five independent integrals of
motion in a given potential, then any DFs of the forms f(I1), f(I1, I2), ..., f(I1, ..., I5) are solutions
of the collisionless Boltzmann equation. The strong Jeans theorem tells us that if the potential
is regular (integrable), for all practical purposes any time-independent galaxy may be represented
by a solution of the form f(I1, I2, I3), where I1, I2 and I3 are any three independent integrals of
motion.

For example, in a spherical system (1 dof), the DF is a function of energy: f(E); in an (in-
tegrable) axisymmetric system (2 dof), the DF is a function of energy and a z-component of the
angular momentum f(E,Lz); and in a (integrable) triaxial systems (3 dof), the DF is a function of
energy and two more integrals of motion: f(E, I2, I3). In general, integrals of motion I2 and I3 are
not known, except in very special cases (of limited physical importance). For equilibrium models
df/dt = 0, so the energy is conserved, and therefore an integral of motion.

So, how does one construct DFs for galactic models?

Analytic Solutions to the Self-Consistent Problem
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The DFs for galactic models can be obtained analytically only for a few special cases. These
special cases are important phenomenologically and pedagogically, as they offer a “peek” into the
dynamics of galaxies. However, their physical relevance is limited, because they represent either
simple 1 dof models (spheres), or density distributions which give poor fits to the observed profiles.

From f to ρ.
As a simple spherical model (1 dof), one can start with the predefined DF f(E) and compute
the corresponding ρ. This is the most straightforward method. The drawback of this approach,
however, is that the properties of the resulting density distribution are not adjustable to fit the
observed profiles.

We start with an assumed form of the DF f , integrate to obtain ρ, and solve the Poisson
equation to get the corresponding Φ.

Define relative potential and relative energy, respectively:

Ψ ≡ −Φ + Φ0,

ǫ ≡ −E + Φ0 = Ψ − 1

2
v2, (526)

and assume the DF of the following form:

f(ǫ) =

{

Fǫn−3/2 ǫ > 0,
0 ǫ ≤ 0,

(527)

where F is a constant. Then the mass-density is computed by integrating over velocities [see
eq. (522)]:

ρ(x) =

∫ ∞

0
f(ǫ)d3v =

∫ ∞

0
f

(

Ψ − 1

2
4πv2

)

v2dv = 4πF

∫

√
2Ψ

0

(

Ψ − 1

2
v2

)n−3/2

v2dv, (528)

where we have used d3v = 4πv2. After introducing the variable θ, such that v2 = 2Ψ cos2 θ, we
obtain

ρ(x) = 4πF

∫ π/2

0
Ψn−3/2

(

1 − cos2 θ
)n−3/2 (

2Ψ cos2 θ
)

(√
2Ψ sin θdθ

)

=

= 8
√

2πFΨn

∫ π/2

0
sin2n−2 θ cos2 θdθ

= 8
√

2πFΨn

[

∫ π/2

0
sin2n−2 θdθ −

∫ π/2

0
sin2n θdθ

]

=⇒ ρ(x) = cnΨn, (529)

where

cn =
(2π)3/2

(

n − 3
2

)

!

n!
F. (530)

For cn to be finite, n > 1/2.
We now solve the Poisson equation by substituting the eqs. (526) and (529) into the eq. (521)

expressed in spherical coordinates:

1

r2

d

dr

(

r2 dΦ

dr

)

= 4πGρ

− 1

r2

d

dr

(

r2 dΨ

dr

)

= 4πGcnΨn. (531)
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Now let

s ≡ r

b
,

ϕ ≡ Ψ

Ψ0
,

b ≡ 1
√

4πGΨn−1
0 cn

. (532)

Then we arrive at
1

s2

d

ds

(

s2 dϕ

ds

)

=

{

−ϕn ϕ > 0,
0 ϕ ≤ 0,

(533)

which is the Lane-Emden equation for polytropes! Again, this second-order ODE is to be solved
with the initial conditions:

1. ϕ(0) = 1 by definition;

2. dϕ
ds

∣

∣

∣

s=0
= 0: no gravitational force at the center.

Table 8: Properties of the solutions to the Lane-Emden equation [γ = (n + 1)/n].

Lane-Emden index n radius mass polytropic index γ

1 ≤ n < 5 finite finite 6/5 < γ ≤ ∞
5 ≤ n < ∞ infinite finite 1 < γ ≤ 6/5

n = ∞ infinite infinite γ = 1

One of the popular early simple models for the DF in a spherical galaxy is the solution to the
Lane-Emden equation with n = 5. It is called the Plummer model:

f(ǫ) = Fǫ7/2,

Φ(r) = − GM√
r2 + b2

,

ρ(r) =
3Mb2

4π (r2 + b2)5/2
. (534)

From ρ to f .
Another simple spherical model (1 dof) is obtained by starting with the predefined density ρ(r)
and compute the corresponding DF f(E).

We first invert the integral for ρ in terms of f , in order to get f in terms of ρ:

ρ(r) =

∫

√
2Ψ(r)

0
f(ǫ)4πv2dv ǫ = Ψ(r) − 1

2
v2, dǫ = −vdv

ρ(Ψ) = 2π
√

2

∫ Ψ

ǫ=0
f(ǫ)

√
Ψ − ǫ dǫ

dρ(Ψ)

dΨ
= 4π

√
2

∫ Ψ

ǫ=0

f(ǫ)√
Ψ − ǫ

dǫ (535)
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Figure 43: Region of integration for the integral in the eq. (536).

The last line represents the Abel integral equation, which can be solved explicitly. Multiply both
sides by 1√

ǫ0−Ψ
and integrate with respect to Ψ from 0 to ǫ0:

∫ ǫ0

0

ρ′(Ψ)√
ǫ0 − Ψ

dΨ = 2π
√

2

∫ ǫ0

0

dΨ√
ǫ0 − Ψ

∫ Ψ

0

f(ǫ)√
Ψ − ǫ

dǫ

= 2π
√

2

∫ ǫ0

0
f(ǫ)dǫ

∫ ǫ0

ǫ

dΨ
√

(ǫ0 − Ψ) (Ψ − ǫ)
. (536)

After setting Ψ = ǫ + (ǫ0 − ǫ) sin2 χ, the inner integral becomes

∫ π/2

0

2(ǫ0 − ǫ) sin χ cos χ
√

(ǫ0 − ǫ) cos2 χ(ǫ0 − ǫ) sin2 χ
dχ = 2

π

2
= π, (537)

so the integral in eq. (536) becomes

∫ ǫ0

0
f(ǫ)dǫ =

1

2
√

2π2

∫ ǫ0

0

ρ′(Ψ)√
ǫ0 − Ψ

dΨ,

=⇒ f(ǫ0) =
1

2
√

2π2

d

dǫ0

∫ ǫ0

0

ρ′(Ψ)√
ǫ0 − Ψ

dΨ. (538)

Now integrate the integral in the eq. (538) by parts:

∫ ǫ0

0

ρ′(Ψ)√
ǫ0 − Ψ

dΨ =
[

ρ′(Ψ)
(

−2
√

ǫ0 − Ψ
)]ǫ0

0
−

∫ ǫ0

0
ρ′′(Ψ)

(

−2
√

ǫ0 − Ψ
)

dΨ

= 2ρ′(0)
√

ǫ0 + 2

∫ ǫ0

0
ρ′′(Ψ)

√

ǫ0 − ΨdΨ, (539)
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so

f(ǫ0) =
1

2
√

2π2

[

ρ′(0)
√

ǫ0
+

∫ ǫ0

0

ρ′′(Ψ)√
ǫ0 − Ψ

dΨ

]

(540)

Equations (538) and (540) are two variants of Eddington’s formula.
We now apply Eddington’s formula [top line of eq. (538)] to the density used in the approach

“from f to ρ” ρ(r) = cnΨn:

∫ ǫ0

0
f(ǫ)dǫ =

ncn

2
√

2π2

∫ ǫ0

0

Ψn−1

√
ǫ0 − Ψ

dΨ Set t ≡ Ψ

ǫ0

=
ncn

2
√

2π2

∫ 1

0

tn−1ǫn
0√

ǫ0

√
1 − t

dt

=
ncn

2
√

2π2
ǫ
n−1/2
0 β

(

n,
1

2

)

=
ncn

2
√

2π2

Γ(n)Γ
(

1
2

)

Γ
(

n + 1
2

) ǫ
n−1/2
0 (541)

because Γ
(

1
2

)

=
√

π. [Recall Γ(n) = (n − 1)!]. Now differentiate to get

f(ǫ0) =
ncn

2
√

2π2

(

n − 1

2

)

(n − 1)!
√

π
(

n − 1
2

)

!
ǫ
n−3/2
0 =

n!cn

(2π)3/2
(

n − 3
2

)

!
ǫ
n−3/2
0 = Fǫ

n−3/2
0 . (542)

Therefore, we recover the DF used in the approach “from f to ρ”, as we should.

Separable (Stäckel) potentials.
Separable (Stäckel) potentials are a spacial family of 3D potentials for which the equations of
motion separate — and are explicitly known — in ellipsoidal coordinates (λ, µ, ν), defined as the
roots of the equation:

x2

τ + α
+

y2

τ + β
+

z2

τ + γ
= 1, (543)

where (x, y, z) are Cartesian coordinates and α, β and γ are constants determining the triaxial
shape of the model. We adopt a convention 0 ≤ −γ ≤ ν ≤ −β ≤ µ ≤ −α ≤ λ.

All three integrals of motion have an analytic representation, as well as the density, potential
and the DFs. Orbits in these potentials are combinations of oscillations and rotations in ellipsoidal
coordinates. They are either tubes (along short and long axes) or boxes.

Whereas the separable potentials are not a very good fit to the observed galaxy density profiles
(and are therefore of limited use in practice), they provide us with insight into the dynamics of
triaxial systems: the orbits in other, physically more faithful integrable potentials, are generally of
the same type as in separable potentials. For more on separable potentials, see the seminal paper
by de Zeeuw (1985): http://adsabs.harvard.edu/abs/1985MNRAS.216..273D
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