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ABSTRACT
It is widely believed that globular clusters evolve over many two-body relaxation times to-
ward a state of energy equipartition, so that velocity dispersion scales with stellar mass as
σ ∝ m−η with η = 0.5. We show here that this is incorrect, using a suite of direct N-body
simulations with a variety of realistic IMFs and initial conditions. No simulated system ever
reaches a state close to equipartition. Near the center, theluminous main-sequence stars reach
a maximumηmax ≈ 0.15± 0.03. At large times, all radial bins convergence on an asymptotic
valueη∞ ≈ 0.08± 0.02. The development of this “partial equipartition” is strikingly similar
across our simulations, despite the range of different initial conditions employed. Compact
remnants tend to have higherη than main-sequence stars (but stillη < 0.5), due to their
steeper (evolved) mass function. The presence of an intermediate-mass black hole (IMBH)
decreasesη, consistent with our previous findings of a quenching of masssegregation under
these conditions. All these results can be understood as a consequence of the Spitzer instabil-
ity for two-component systems, extended by Vishniac to a continuous mass spectrum. Mass
segregation (the tendency of heavier stars to sink toward the core) has often been studied
observationally, but energy equipartition has not. Due to the advent of high-quality proper
motion datasets from the Hubble Space Telescope, it is now possible to measureη for real
clusters. Detailed data-model comparisons open up a new observational window on globu-
lar cluster dynamics and evolution. A first comparison of oursimulations to observations of
Omega Cen yields good agreement, supporting the view that globular clusters are not gener-
ally in energy equipartition. Modeling techniques that assume equipartition by construction
(e.g., multi-mass Michie-King models) are approximate at best.

Key words: stellar dynamics — globular clusters: general — methods: n-body simulations

1 INTRODUCTION

Gravitational encounters within stellar systems in virialequilib-
rium, such as globular clusters, drive evolution over the two-body
relaxation timescale. The evolution is toward a thermal velocity dis-
tribution, in which stars of different mass have the same energy
(Spitzer 1987). This thermalization also induces mass segregation.
As the system evolves toward energy equipartition, high mass stars
lose energy, decrease their velocity dispersion and tend tosink to-
ward the central regions. The opposite happens for low mass stars,
which gain kinetic energy, tend to migrate toward the outer parts of
the system, and preferentially escape the system in the presence of
a tidal field.

As first pointed out by Spitzer (1969), not all self-gravitating
systems can attain complete energy equipartition, i.e., a mass-
dependent velocity dispersion scaling asσ(m) ∝ m−0.5. For ex-
ample, in a simple two-component model with light and heavy stars
of massesm1 andm2, respectively, equipartition is possible only if
the mass fraction in heavy particles is smaller than a critical value:

⋆ E-mail addresses: trentiast.cam.ac.uk

M2/M1 . 0.16(m1/m2)
3/2, whereM1 and M2 are the total

masses in stars of massm1 andm2, respectively (Spitzer 1969).
With too many massive particles, no equipartition is possible, and
the heavy particles tend to become a self-gravitating system, pro-
ducing a deep core collapse while continuing to transfer energy to
the lighter stars.

Subsequent research has refined our knowledge of the con-
ditions required to establish energy equipartition. This was stud-
ied for two-component systems using a variety of numerical meth-
ods, including pioneering work by Spitzer & Hart (1971) and
Inagaki & Wiyanto (1984) with Fokker-Planck and Monte Carlo
schemes, followed by more realistic simulations both with aMonte
Carlo code (Watters et al. 2000; Fregeau et al. 2002) and withdi-
rect N-body integration (Khalisi et al. 2007). Vishniac (1978) gen-
eralized the analytical Spitzer instability analysis to include a con-
tinuous mass spectrum. He showed that clusters with realistic mass
functions, such those of the Salpeter (1955) form, areunable
to attain energy equipartition. With a complementary approach
based on multi-component King distribution function modeling,
Kondrat’ev & Ozernoy (1982) showed that even if a system attains
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2 Trenti & van der Marel

equipartition in the energy phase space, the mass-dependent kine-
matics does not necessarily scale asσ(m) ∝ m−0.5.

Much of the theoretical interest in equipartition has focused
on how energy exchange affects the process and time scale of core
collapse in globular clusters. Both analytically and numerically,
it has been established that the core collapse timescale in atwo-
component model is inversely proportional to the ratio of the heavy
to light particle masses (e.g., Portegies-Zwart & McMillan2000;
Khalisi et al. 2007). This has the important consequence that young
star clusters can undergo a runaway central collapse of massive
stars within the first few million years after their formation, pos-
sibly providing a pathway to the formation of intermediate-mass
black holes (IMBHs) (Portgies-Zwart et al. 2004).

One of the directly observable consequences of the drive to-
wards energy equipartition is spatial mass segregation. Insimula-
tions, the amount of mass segregation reaches a steady-state con-
figuration within a few initial relaxation times (Gill et al.2008).
The presence of an IMBH, or of a stellar-mass black hole binary, in
the core of a stellar cluster reduces the amount of mass segregation
that develops (Baumgardt et al. 2004; Trenti et al. 2007; Gill et al.
2008; Umbreit & Rasio 2012).

Mass segregation has been measured in several globular clus-
ters using high-quality Hubble Space Telescope (HST) data.This
only requires observations of stellar positions and luminosities (on
the main sequence, luminosity correlates with mass). Such obser-
vations have confirmed the qualitative picture that massivestars
are preferentially found in the core (de Marchi & Paresce 1994;
Andreuzzi et al. 2000; Paust et al. 2010). However, interpretation
of such data requires detailed dynamical models. These are of-
ten constructedassuming energy equipartition for all components
through Michie-King models (e.g., Gunn & Griffin 1979; Meylan
1988; de Marchi et al. 2000). The accuracy of this is unclear,given
the theoretical results described above which indicate that globular
clusters may not generally be in energy equipartition.

A preferred approach is to compare data directly to the re-
sults of numerical simulations. Detailed, data-model comparisons
for globular clusters such as NGC2298 and M10 have shown a re-
markable quantitative agreement with the mass segregationpredic-
tions from N-body simulations (Pasquato et al. 2009; Beccari et al.
2010; Umbreit & Rasio 2012)1. However, such comparisons are
challenging to carry out for general datasets. It not only requires de-
tailed numerical simulations, but the simulations must also be “ob-
served” to mimic the magnitude limits, completeness and crowding
effects in the data. These observational effects generallyvary with
radial distance within a system, and between systems.

Mass segregation provides only anindirect measure of en-
ergy equipartition: stellar energies can only be estimatedstatisti-
cally from stellar positions, and this requires assumed knowledge
about the dynamical state and gravitational potential of the system.
It has not been possible historically to measureσ(m) in globu-
lar clustersdirectly from knowledge of individual stellar velocities.
Line-of-sight velocities of stars can be measured from spectra, but
those are difficult to obtain for faint stars below the main-sequence
turn-off. Stars in globular clusters with measured line-of-sight ve-
locities are therefore generally giant stars. These stars all have very
similar mass (because stellar evolution proceeds rapidly after the

1 Note that these N-body models are to some degree approximate: They
either have a smaller number of particles compared to stars for direct N-
body integration (Pasquato et al. 2009; Beccari et al. 2010), or resort to a
Monte Carlo treatment of particle orbits (Umbreit & Rasio 2012).

main-sequence turn-off), making it impossible to determine how
the velocity dispersionσ in a cluster depends on stellar massm.

This situation is now changing due to the advent of HST stud-
ies of stellarproper motions in globular clusters, which can quan-
tify the kinematics of the stars as function of their position along the
main sequence (i.e., their mass). Anderson & van der Marel (2010)
presented measurements for more than 100,000 stars in the central
region of Omega Cen, findingσ ∝ m−0.2. Proper motion cata-
logs for some two dozen additional clusters are under constructions
(Bellini et al. 2013). This opens up a new observational window
into the dynamics of globular clusters.

To understand and exploit these new data there is a need for
new analysis of models to predict in detail the mass- and spatially-
dependent kinematics of globular clusters as a function of initial
conditions and evolutionary state. With new data and new analy-
sis in hand, there is the potential to validate our understanding of
globular cluster structure and evolution at a new level. Moreover,
knowledge of theσ(m) relation may constrain structural parame-
ters that are difficult to assess otherwise, such as the possible pres-
ence of a central IMBH.

The goal of this paper is to make the first step towards mod-
eling mass-dependent kinematics in the era of detailed proper mo-
tions measurements. We analyze a sample of realistic directN-body
simulations of star cluster evolution, and we also use the models to
interpret the specific observational results obtained for Omega Cen
(after rescaling model relaxation times to the one of Omega Cen
to account for the larger number of stars compared to the particles
we can simulate). The structure of the paper is as follows. InSec-
tion 2 we introduce the numerical simulations that we have carried
out, and we describe how we analyze simulation snapshots to con-
structσ(m). The results of our analysis are presented in Section 3.
We compare the model predictions to Omega Cen observations in
Section 4, and find excellent consistency between models andob-
servations. We summarize our key findings and conclude with an
outlook for future studies in Section 5.

2 N-BODY MODELS

2.1 Setup and Methodology

We analyze the stellar dynamics in the direct N-body simulations
previously carried out by Trenti et al. (2010) to investigate the evo-
lution of structural parameters in star clusters. For full details on
the code and the simulation setup we refer to that paper (and previ-
ous investigations in the same framework by Trenti, Heggie &Hut
2007, Gill et al. 2008, and Pasquato et al. 2009). To summarize, we
follow the dynamical evolution of simulated star clusters using the
NBODY6 code (Aarseth 2003), which guarantees an exact treat-
ment of multiple interactions between stars by employing special
regularization techniques, without resorting to the introduction of
softening. The dynamics of the system are thus followed withex-
tremely high accuracy, at the price of a using lower number ofpar-
ticles compared to more approximate methods (e.g., Monte Carlo
codes).

We simulate systems withN = 32768 to N = 65536 parti-
cles, with an initial mass function constructed to reproduce the long
term evolution of star clusters that are& 10 Gyr old. As described
in Trenti et al. (2010), we start from either a Salpeter (1955) or a
Miller & Scalo (1979) initial mass function and then apply anin-
stantaneous step of stellar evolution with the Hurley et al.(2000)
evolutionary tracks to obtain a main-sequence turnoff at0.8 M⊙.

c© 2013 RAS, MNRAS000, 1–12
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Table 1. Summary of N-body simulations and energy equipartition results

N f IMF W0 thalf/trh(0) tmax/trh(0) ηmax η∞
(1) (2) (3) (4) (5) (6) (7) (8)

65536 0.00 MS 3 1.0 7.2 0.124± 0.019 0.072 ± 0.022
65536 0.02 MS 3 1.5 4.7 0.124± 0.024 0.063 ± 0.026
65536 0.055 MS 3 1.1 4.9 0.119± 0.018 0.075 ± 0.016
65536∗ 0.00 MS 5 0.9 3.4 0.144± 0.006 0.085 ± 0.006
65536 0.02 MS 5 1.0 3.9 0.141± 0.008 0.084 ± 0.008
65536 0.00 Sal 7 1.3 6.2 0.150± 0.004 0.098 ± 0.012
32768 0.00 MS 7 0.6 2.9 0.150± 0.008 0.094 ± 0.006
32768 0.00 MS 7 0.5 2.4 0.159± 0.007 0.078 ± 0.011
32768 0.00 MS 7 0.6 2.8 0.158± 0.008 0.086 ± 0.009
32768 0.01 MS 7 0.6 2.7 0.156± 0.007 0.086 ± 0.011
32768 0.03 MS 7 0.5 2.8 0.134± 0.008 0.088 ± 0.007
32768 0.05 MS 7 0.5 2.3 0.137± 0.009 0.076 ± 0.016
32768 0.10 MS 7 0.5 2.1 0.127± 0.008 0.069 ± 0.007
32768 0.00 Sa 7 0.8 4.9 0.151± 0.007 0.090 ± 0.011
32768† 0.00 MS 7 0.5 2.2 0.180± 0.011 0.085 ± 0.012
32768† 0.00 Sa 7 0.5 2.6 0.181± 0.010 0.101 ± 0.009
32769‡ 0.00 MS 7 0.8 4.4 0.120± 0.010 0.097 ± 0.007
32768§ 0.00 MS 3 1.6 6.3 0.146± 0.008 0.084 ± 0.011

N-body simulations of star clusters in a tidal field with selfconsistent King model initial condi-
tions. Column (1): number of particlesN . Column (2): binary fractionf . Column (3): initial mass
function used (Sa: Salpeter power law; MS: Miller & Scalo). Column (4): initial concentration
of the density profile (King indexW0); Columns (5)–(8): equipartition results for single main-
sequence stars, quantified as described in Section 3.1.2; Column (5): timethalf to reach half of the
maximum equipartition; Column (6): timetmax to reach the maximum equipartition; Column (7):
maximum equipartitionηmax reached, whereσ(m) ∝ m−η . Column (8): late-time asymptotic
equipartitionη∞ of the system as a whole. Columns (5)–(7) pertain to the innermost10% of the
stars as seen in projection, while column (8) pertains to thesystem as a whole.

Table notes.∗: canonical simulation discussed in Section 3.1;†: 30% NS/BH retention;‡:
mIMBH = 0.01mcluster; §: rt = 6.28 [compact initial conditions where the Roche lobe is
under-filled by a factor 2].

Stars in the range0.8 M⊙ 6 m < 8.0 M⊙ become white dwarfs
(with final masss prescribed by Hurley et al. 2000), more massive
stars up to25 M⊙ become neutron stars, while above25 M⊙ we
form black holes in the5 − 10 M⊙ mass range. Our standard as-
sumption is to retain100% of the dark remnants without assign-
ing them velocity kicks, but we explore a lower retention fraction
(30%) of neutron stars and stellar mass black holes in two runs.
During the simulation, only gravitational interactions are consid-
ered and stars are not evolved further. This simplified approach is
ideal to highlight the effects of gravitational forces on the long-term
evolution of star clusters and the drive toward energy equipartition,
without the added complication of disentangling dynamics from
energy injection induced by stellar evolution (through loss of mass
with negative energy). Stellar evolution affects star cluster struc-
ture significantly only during the first few hundred Myr (e.g.see
Hurley 2007; Mackey et al. 2008), so in our analysis we are only
neglecting steady, low levels of mass loss induced by stellar evolu-
tion at late times. These should not impact significantly thedynam-
ics, and indeed comparison between models with and without stel-
lar evolution does not show significant differences with respect to
predictions for mass segregation (see Figure 2 in Gill et al.2008).
Based on that comparison, we expect that our approach provides
an approximate, yet accurate description of the current evolution of
globular clusters.

The initial conditions in the position and velocity space are
drawn from a King distribution function (King 1966), with scaled

central potentialW0 = 3, 5, 7. Initially, all particles of massm
are drawn from the same velocity distribution, hence at any given
radiusσ(m) is constant. Our runs include a primordial binary frac-
tion f = Nb/(Ns +Nb) ranging between 0 and 0.1, withNs and
Nb being the number of singles and binaries respectively. All bina-
ries are “hard” in the Heggie (1975) classification (i.e., semi-axis
typically smaller than∼ 10 AU for a typical globular cluster with
central velocity dispersion of10 km/s). One of ourN = 32768
runs contains a central IMBH, with the BH mass set at1 % of the
total cluster mass. Table 1 gives an overview of all the simulations
performed and analyzed.

The simulated star clusters are tidally limited and particles ex-
perience a tidal force from a point-like parent galaxy, assuming that
the cluster is in circular orbit at a distance selected so that the tidal
radius is self-consistently defined by the King density profile, and
all models fill their tidal radius initially (except for one compact
simulation listed in Table 1). Hence, models have differenttidal
field strengths for differentW0 values (see Trenti, Heggie & Hut
2007 and Trenti et al. 2010 for a full definition of the tidal field
equations).

The simulations are run fort & 15 trh(0), wheretrh(0) is
the initial half-mass relaxation time, but they are stoppedearlier
when80% or more of the initial mass in the system has been lost
due to evaporation of stars. In the natural (dimensionless)N-body
units defined by Heggie & Mathieu (1986) the relaxation time can

c© 2013 RAS, MNRAS000, 1–12



4 Trenti & van der Marel

by written as:

trh =
0.138Nr

3/2
h

log(0.11N)
, (1)

whererh ≈ 1 is the half-mass radius and the time unit approx-
imately corresponds to the orbital period of a particle atrh. In
N-body units,trh(0) = 497.7 for the canonical simulation high-
lighted in Table 1 (N = 65536; f = 0; W0 = 5; Miller & Scalo
IMF). For simplicity, all our time-dependent results are expressed
in units of this relaxation time, since this is the relevant timescale
for development of energy equipartition and thermodynamicequi-
librium.

2.2 Structural Evolution

We refer to Trenti et al. (2010) for a detailed discussion of the evo-
lution of the cluster structural parameters. To summarize,after a
few relaxation times, all clusters tend to evolve toward a quasi-
universal core-halo structure with a central concentration (mea-
sured either as the core to half mass radius ratiorc/rh or as core
to tidal radius ratiorc/rt) which is independent of its value at the
beginning of the run. The long-term equilibrium value for the con-
centration is defined uniquely by the efficiency of the central energy
production due to dynamical processes: runs with only single parti-
cles undergo a marked core collapse and have higher concentration,
while in runs with primordial binaries the core collapse is halted at
lower central densities because of efficient energy input bythree
body encounters. The run with an IMBH has the largest core at late
times. Once the long termrc/rh ratio has been established, the sys-
tem undergoes a self-similar expansion at fixed concentration, until
the majority of the stars have been lost by tidal evaporation, or the
mechanism of central energy production is depleted (for example
because of disruption of all primordial binaries).

This classical picture for the dynamical evolution of a
globular cluster is clearly present when one considers three-
dimensional, mass-based definitions of the core and half-mass ra-
dius (Trenti, Heggie & Hut 2007; Fregeau & Rasio 2007). The situ-
ation becomes more complicated when simulations are instead “ob-
served”, namely when only two-dimensional, light-based defini-
tions for structural parameters are constructed (Trenti etal. 2010).
For example, it is then possible that clusters without primordial bi-
naries still show a large core at late times if the core is dominated by
heavier dark remnants (neutron stars and stellar mass blackholes;
Morscher et al. 2013).

2.3 Analysis of Stellar Dynamics

Our analysis here differs from that in Trenti et al. (2010) inthat we
now consider the stellar dynamics in the simulations. Simulation
snapshots with particle positions and velocities were saved every
10 dimensionless time units, yielding several tens of snapshots per
relaxation time. For each snapshot, at timet, we binned the par-
ticles to derive the velocity dispersionσ(m,r, t) as a function of
mass and projected radius. Mass binning was carried out in inter-
vals of0.1 M⊙. Two-dimensional (projected) radial bins were de-
fined by Lagrangian radii, each containing 10% of the particles in
the snapshot.

We took the following steps to minimize noise from low parti-
cle numbers. First, for a given projection of the particle positions in
two dimensions, we measured the velocity dispersion along each of
the three independent cartesian coordinates, and then rescaled the

results to two-dimensional projection by averaging in quadrature
and rescaling to two-dimensions. This procedure is equivalent to
measuring three-dimensional velocity dispersions, and then rescal-
ing the results to two dimensions with a multiplying factor

√

2/3,
and has been done as a way to reduce shot noise in our results.2 Sec-
ond, we created projections for the radial distribution of the stars
along three orthogonal directions and averaged them. And third,
we averaged together 30 independent neighboring time snapshots.
These steps allow us to achieve an effective number of particle ve-
locities in our analyses that for ourN = 65536 runs is comparable
to the number of stars in a massive globular cluster like Omega
Cen.

We determined the functional dependences ofσ(m,r, t) sep-
arately for single main-sequence stars, binary stars, and compact
remnants (white dwarfs, neutron stars and stellar mass black holes)
in the simulations. For comparison to observational results, we
focus in the following primarily on the results for single main-
sequence stars. In reality, some stars in observational catalogs may
be unresolved binaries. However, we found that our main results
described below did not change significantly if binary starsin the
simulations were included in the single-star analyses (i.e., treating
each binary of totalluminosity L as a single star of that luminosity).

3 EQUIPARTITION RESULTS

3.1 Canonical Simulation

We describe first the results for a “canonical” simulation: amodel
with N = 65536 stars, a Miller & Scalo initial mass function
(IMF), no primordial binaries, and a King concentration parameter
W0 = 5 (see Table 1). This model has a moderate initial concen-
tration and external tidal field strength. As discussed in Trenti et al.
(2010), the structural evolution of this cluster is fairly proto-typical.
Starting from an initial concentrationc = − log10(rt/rc) ∼ 1, it
undergoes core-collapse in aboutt ∼ 7trh(0). At this stage, its ob-
served concentration (based on the core radius observed from the
surface brightness profile) has reached a quasi-equilibrium value
c ∼ 1.7. The three-dimensional concentration is instead higher
(c & 2.5) as the 3D core contracted to reach densities suffi-
cient to produce a few binaries through three body encounters.
At t & 7trh(0), the system continues to evolve with self-similar
density and surface-brightness profiles, progressively losing mass
as a result of the external tidal field until complete dissolution at
t ∼ 16trh(0).

3.1.1 Mass Dependence of Kinematics

Figure 1 showsσ(m), determined as described in Section 2.3,
for the innermost radial Lagrangian bin (10% enclosed mass) at
t = 5.1 trh(0). This is during the initial core contraction as the sys-
tem is on its way toward core collapse. Red points pertain to single
stars along the main sequence, while blue points pertain to compact
remnants which are generally heavier. Single stars are found up to
the turnoff mass of0.8M⊙, while the lightest compact objects have
masses of∼ 0.55 M⊙.

2 This procedure implicitly assumes isotropy in the three-dimensional ve-
locity distribution, as expected for a collisionally relaxed stellar system. We
did verify that our results do not change (except for somewhat increased
noise) if we compute two-dimensional velocity dispersionsdirectly.

c© 2013 RAS, MNRAS000, 1–12
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Figure 1. Velocity dispersionσ as a function of particle massm around
time t = 5.1trh(0) for particles at the center of the system (two-
dimensional projected radiusr < 0.78 rc) in our canonicalN -body sim-
ulation (theN = 65536 run withW0 = 5, a Miller & Scalo (1979) IMF,
and no primordial binaries). The red points with errorbars are for single
main sequence stars, while the blue points are for compact remnants. Lines
show the best fitting power-law relationσ(m) ∝ m−η for each set of ob-
jects, withη = 0.14 for single main sequence stars andη = 0.34 for
compact remnants.

The main sequence stars and the compact remnants have com-
parable dispersions over the mass range where both types of objects
exist,0.55 . m . 0.8 M⊙. However, when the full range is con-
sidered over which each object type is found, the compact remnants
have a significantly steeperσ(m) relation than the main-sequence
stars (approximatelym−0.34 vs. m−0.14, respectively). Neither
type of object achieves energy equipartition, but the heavier com-
pact objects are closer to it than the lighter main-sequencestars.
This behavior is qualitatively consistent with the stability analysis
presented by Vishniac (1978), given that the remnants have asig-
nificantly steeper mass function than the main-sequence stars (see
Figure 2). This makes it easier for the population in the0.7−2 M⊙

mass range to thermalize. The steep mass function for remnants is
due to the significant mass loss experienced by massive starsbefore
they become remnants, and is relatively insensitive to the adopted
IMF. The generic shape ofσ(m) in Figure 1 is therefore typical for
all our simulations.

The relationσ(m) in Figure 1 shows what appears to be a
break centered aroundm ≈ 0.7 M⊙, with some additional cur-
vature towards lower masses. Figure 2 shows thatm ≈ 0.7 M⊙

is also the mass at which the density of main-sequence stars is
equal to the density of the remnants, so this might provide some
clues to the origin of the break3. The Vishniac (1978) analysis sug-
gests that more energy equipartition is possible for a sub-population

3 This is obtained considering all particles in the system. Ingeneral the
distributions change with radius because main sequence stars and remnants
have different mass-segregation profiles. However, the intersection point of
the two curves does not depend on radius, since by definition particles at the

Figure 2. Mass function for the particles of anN -body run (including, e.g.,
our canonical simulation) starting from a Miller & Scalo 1979 IMF, evolved
to a turn-off mass of0.8 M⊙. The red histogram represents main-sequence
stars, and the blue one compact remnants. Approximate power-law fits are
show as dashed curves, which have slopesm−1.2 andm−5.3, respectively.
Since the mass function for remnants is much steeper, it is easier for them
to approach energy equipartition (see Figure 1).

within a given mass range, when the lighter counterparts aremuch
more abundant. So thermalization is more likely for objectsabove
0.7 M⊙, as there are plenty of lower mass particles along a steep
mass function (m−5.3). By contrast, the lowest mass remnants and
the main sequence stars below0.7 M⊙ are less able to thermal-
ize efficiently, because the mass function is only increasing mildly
(m−1.2). In conclusion, this might explain the break in Figure 1.

Figure 1 shows that theσ(m) relations for single main-
sequence stars and compact remnants separately, are both reason-
ably well fit by a power law of the formσ(m) ∝ m−η. The
compact remnants are only of theoretical interest as they are not
directly observable. In the following, we therefore focus our atten-
tion only on the main sequence stars, which can be observed. Using
theσ(m,r, t) profiles constructed as described in Section 2.3, we
fit for each radial Lagrangian binr and at each timet the mass-
dependent kinematics assuming a power lawσ(m) ∝ m−η over
the mass range0.2 6 m/M⊙ 6 0.7. Hereη is a free parameter,
with η = 0 corresponding to absence of equipartition (velocity dis-
persion independent of mass),0 < η < 0.5 corresponding to par-
tial equipartition, andη = 0.5 corresponding to complete equipar-
tition. The quantityη is a well-defined fit-parameter that can be
compared across models, even when theσ(m) relation shows some
residual curvature, as e.g. in Figure 1.

3.1.2 Radial and Time Dependence of Equipartition

The degree of energy equipartition as a function of time,η(t), is
shown for different Lagrangian radii in the canonical simulation in

intersection point of the two curves have the same mass in both samples, and
hence the same mass segregation profile.

c© 2013 RAS, MNRAS000, 1–12



6 Trenti & van der Marel

Figure 3. Time evolution of the energy equipartition indicatorη (the power-
law slope in the relation between velocity dispersion and mass,σ ∝ m−η)
for single main sequence stars in our canonicalN -body simulation. Data
points with error bars were determined directly from the simulation snap-
shots, as described in Sections 2.3 and 3.1.1. Solid curves are fits of the
form given by equation (2). Red refers to the innermost10% of the main
sequence stars in projection; blue refers to three projected annuli contain-
ing 10% of the particles each, and ending at30%, 50% and70% of the
enclosed particle number; green refers to the outer Lagrangian bin at90%
of the enclosed particle number. The time along the abscissais expressed
in units of the initial half-mass relaxation timetrh(0). These results for the
canonical simulation are representative of the general behavior of ourN -
body simulations. The inner region of the system reaches a higher degree
of equipartition within a few relaxation times than the outer regions. An in-
crease inη takes longer to develop at large radii. However, at later times,
the whole system converges toward a common value ofη. Arrows indicate
the characteristic times defined in Section 3.1.2. Completeenergy equipar-
tition (η = 0.5) is never attained, confirming previous investigations based
on stability analysis.

Figure 3. At t = 0, the system starts (by construction) with no
equipartition at all. As time progresses, there is a relatively rapid
linear rise inη(t) for the inner Lagrangian radii. This is followed
by a flattening toward a maximum value aroundη ≈ 0.15 that is
reached after a few initial half-mass relaxation times. Subsequently,
the value ofη drops slowly4. For the outer Lagrangian radii, the
value ofη(t) evolves on a longer timescale, reflecting the longer
relaxation time in the outskirts of the system. Forall radii there is
convergence to a value aroundη ≈ 0.10 at late times. However, be-
cause of the slower development of equipartition, the outerregions
do not first “overshoot” this value by reaching a maximum at early
times, as seen for the inner Lagrangian radii.

To describe the time evolution of equipartition empirically, we
adopted a fit function of the form:

ηfit(t, r) = ηc(r)× fa[t/tc(r)], (2)

4 This drop inη is likely due to formation of binaries in the core. These
provide heating that acts to reduce mass segregation and theapproach to
equipartition.

where

fa[x] = x× (1 + x2)[a(r)−1]/2. (3)

Heretc(r) andηc(r) are a characteristic time and a characteristic
η value, both of which depend on radius. The parametera(r) also
depends on radius and defines the exact shape of the functionfa.
Upon varyingtc, ηc anda for each radial bin to optimize the fit,
this empirical formula generally provides an adequate description
of the time dependence of equipartition in the simulations.For the
canonical simulation, this is illustrated by the solid curves in Fig-
ure 3.

To compare the results of different simulations, it proved
convenient to extract the following quantities, which capture the
essence of the time evolution of equipartition. The quantities were
determined for all simulations from the empirical fits of theform
given by equation 2, rather than from the individual simulation
snapshot datapoints, because the latter are available onlyat discrete
times.

• ηmax: the maximumη that is reached in the central region,
defined here as the innermost Lagrangian radius (inner 10% ofthe
projected mass).

• tmax: the time at which the central region achievesη = ηmax.

• thalf : the time at which the central region achievesη =
0.5ηmax. This value is defined more robustly thantmax, sinceη(t)
tends to flatten near its maximum.

• t∞: the late timet > tmax at which theη values for all La-
grangian radii are most similar (defined as minimum dispersion in
η).

• η∞: the value ofη at t = t∞ averaged over all Lagrangian
bins. This represents approximately the long-term asymptotic value
of η for the system as a whole.

We list these quantities in Table 1 for all simulations. We omit
t∞ since it is not very robustly determined, lacks a clear physi-
cal meaning, and may depend on the (arbitrary) time at which the
simulation is ended. Sinceη(t) is roughly flat at large times,η∞ by
contrast is defined more robustly.

For the canonical simulation,thalf = 0.9trh(0), tmax =
3.4trh(0), andt∞ = 12.5trh(0). These times are indicated with
arrows in Figure 3. Half of the maximum equipartition develops
rather quickly in the central region of the system, while themaxi-
mum value is reached only around half-way to core-collapse.The
maximum equipartition is characterized byηmax = 0.144±0.006,
and the long-term asymptotic value isη∞ = 0.085 ± 0.006.

The analysis discussed above was carried out using pro-
jected radii, which are the only observable quantities. Theresults
show that the canonical simulation never attains complete energy
equipartition. However, at early times the particles in theprojected
core are closer to complete equipartition than what is foundfor
all particles at late times. So it expected that stars in thethree-
dimensional core might achieve an even higher degree of equipar-
tition at early times. We analyzedη also for the three dimensional
core, and found that this is indeed the case. However the effect
is very modest, and the three-dimensional core is only marginally
closer to equipartition (by∆η ≈ 0.05 at t = tmax). Therefore, no
region in the simulation is attaining complete energy equipartition,
in full agreement with the analytical stability analysis ofVishniac
(1978).

c© 2013 RAS, MNRAS000, 1–12



No Energy Equipartition in Globular Clusters 7

Figure 4. Scatter plot of equipartition results, showingηmax vs. thalf for
all of the N -body simulations. The velocity dispersion of single main-
sequence stars scales asσ ∝ m−η , and the quantityηmax is the maxi-
mum power-law slopeη for the innermost10% radial Lagrangian bin in
projection. The quantitythalf is the time at which this radial bin reaches
η = 0.5ηmax. Simulations withN = 32k particles are shown in red, and
those withN = 64k particles in blue. The initial rise inη(t) is approxi-
mately linear, so all simulations have essentially achieved a near-maximum
equipartition in their cores aftert & 3 trh(0).

3.2 Dependence on Model Parameters

3.2.1 Sample Statistics

We have found that the analysis of energy equipartition across our
sample ofN -body simulations shows a surprisingly uniform and
consistent picture. All the runs behave to first approximation like
the canonical run discussed in Section 3.1. Figures 4 and 5 show
scatter-plot representations the results forthalf , tmax, ηmax and
η∞ for all of the simulations. The uncertainties inηmax andη∞
are generally small,∆η . 0.01, and are smaller than the scatter
between different simulations.

The value ofηmax varies fromηmax = 0.12 achieved by
the run with a central IMBH and by a run with low concentration
(W0 = 3) and primordial binaries (f = 0.055) to ηmax = 0.18
for the runs with a low retention fraction of neutron stars and stel-
lar mass black holes. Runs with a higher fraction of primordial
binaries develop less equipartition than their similar counterparts
with single stars only, although the effect is overall modest (e.g.
from ηmax = 0.159 to ηmax = 0.127 going from f = 0 to
f = 0.1 for the series of runs withN = 32768 particles,W0 = 7
and a Miller & Scalo (1979) IMF). Comparing runs with a Salpeter
(1955) versus Miller & Scalo (1979) IMF does not show any sig-
nificant difference (we are neglecting stellar evolution which could
change somewhat this conclusion, but we discuss in Section 2.1
how we expect such impact to be modest at most). Table 1 also
shows that lower initial concentrationW0 generally yields slightly
lowerηmax. As discussed in Section 3.2.2 below, this is most likely
due to the different tidal field strength assumed in simulations with
differentW0, rather than due to the concentration itself.

Figure 5. Scatter plot of equipartition results, showingη∞ vs. tmax for
all of the N -body simulations. The velocity dispersion of single main-
sequence stars scales asσ ∝ m−η , and the quantityη∞ is the asymp-
totic power-law slope toward which the system as a whole converges at
late times. The quantitytmax is the time at which the innermost10%
radial Lagrangian bin in projection achieves its maximum value ηmax.
Simulations withN = 32k particles are shown in red, and those with
N = 64k particles in blue. The quantityη∞ has a near-universal value of
0.08 ± 0.02 across all simulations, and is very far from complete equipar-
tition (η = 0.5).

The long-term asymptotic valueη∞ is even more uniform
across the sample of simulations than isηmax. Its value ranges from
η∞ = 0.063 to η∞ = 0.101. The sensitivity ofη∞ to model pa-
rameters is qualitatively similar to that forηmax, and there is a mild
correlation between the two quantities across the sample. ASpear-
man rank correlation test gives a correlationr = 0.36, which is
significant at greater than90% confidence for our sample of 18
simulations. Since some of the mechanisms that drive the suppres-
sion of the equipartition are most active in the core rather than in the
whole system, such as the presence of an IMBH, it is not surprising
to observe only a modest correlation.

The timescale needed to approach maximum equipartition, as
measured by eitherthalf or tmax, varies more between simula-
tions. The value ofthalf/trh(0) ranges from approximately0.5–
1.6. The initial rise inη(t) is approximately linear, so this im-
plies that aftert & 3 trh(0) all systems have essentially achieved
a near-maximum equipartition in their cores. The actual values
of tmax/trh(0) show considerable variation though, ranging from
2.1–7.2. This is because theη(t) profile beyond the maximum is
often nearly flat for the innermost Lagrangian bin, so thattmax is
not robustly determined. An example of this is provided in Fig-
ure 6, which is similar to our canonical simulation in Section 3.1,
but pertains to an initial King concentration indexW0 = 7.

Figure 4 shows that the runs withN = 65536 particles tend
to have longerthalf/trh(0) than those withN = 32768. However,
this may be due to small systematic errors in the determination of
thalf . Figure 6 shows that the steep initial rise inη(t) in the inner
Lagrangian bin is not always well reproduced by the fit of the func-
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Figure 6. Time evolution of the energy equipartition indicatorη (the power-
law slope in the relation between velocity dispersion and mass,σ ∝ m−η)
for single main sequence stars in a simulation withN = 65536 particles,
W0 = 7, a Salpeter (1955) IMF, and no primordial binaries. The overall
evolution is similar to that for the canonical simulation (see Figure 3, which
uses the same layout and color-coding). However, the present simulation
shows “energy divergence” in the outer parts at early times,with evolution
towardη < 0 (i.e., high-mass stars have higher velocity dispersion than
low-mass stars). This transient behavior is possibly related to ejection of
particles from the core into the outer parts of the system because of the
dynamical interactions (see Section 3.3). This simulationalso shows that
the best-fit function of the form given by equation (2) may underestimate a
very rapid rise inη(t) at early times, yielding a value ofthalf that is biased
high.

tional form in equation (2). The values ofηmax, η∞ andtmax do not
show any clear trends with particle number. This suggests that our
simulations have sufficientN to determine real physical trends (as
opposed to numerical artifacts, transients, or shot-noisedominated
features), and that any dependence onN is properly accounted for
by expressing time scales in units oftrh(0).

The equipartition timescalesthalf andtmax do not show ob-
vious correlations with other parameters or with the model initial
conditions. There is a hint of negative correlation betweenthalf and
ηmax (Figure 4), but we are hesitant to attach much significance to
this, given the possibility of small systematic errors in the determi-
nation ofthalf . No obvious correlation is present betweentmax and
η∞ (Figure 5).

3.2.2 Interpretation

The maximum equipartition valueηmax correlates with model ini-
tial conditions in a way that can be understood based on the phys-
ical insights, stability analyses, and mass segregation research dis-
cussed in Section 1.

It has been shown previously that the presence of an IMBH
suppresses mass segregation. So the effect is naturally to reduce
the amount of energy equipartition, measured byη, as well. Fig-
ure 7 shows theη(t, r) profiles for our simulation with an IMBH.
These can be compared to the results in Figure 6 for a similar model

Figure 7. Time evolution of the energy equipartition indicatorη (the power-
law slope in the relation between velocity dispersion and mass,σ ∝ m−η)
for single main sequence stars in a simulation with a centralIMBH, N =
32769 particles,W0 = 7, a Miller & Scalo (1979) IMF, and no primordial
binaries. The overall evolution is similar to that for the corresponding sim-
ulation without a central IMBH (see Figure 6, which uses the same layout
and color-coding). However, the IMBH suppresses the amountof equipar-
tition that is achieved (see Section 3.2.2), yielding somewhat lowerη, espe-
cially for the innermost radial Lagrangian bin. This simulation also shows
the same “energy divergence” towardη < 0 in the outer parts at early times
as in Figure 6.

(with twice the number of particles) without an IMBH. The inclu-
sion of an IMBH yields a modest reduction inηmax. We attribute
this to the fact that the IMBH generally has at least one particle
tightly bound to it (often a compact remnant). This binary system
scatters single main sequence stars out of the core, independently
of their mass (as these third bodies have masses much smallerthan
the IMBH binary). This partially counters the natural tendency for
more massive main-sequence stars to segregate into the coreand
have a lower velocity dispersion compared to lighter counterparts.

Primordial binaries also act toward suppressing mass segrega-
tion, with a qualitatively similar mechanism. So it is not surpris-
ingly that we generally find a decrease inηmax with increasingf
(see Table 1). And stellar mass black holes tend to form BH-BH
binaries, which also act in a similar way. Hence, it is not surprising
that our two simulations with alow retention fraction of neutron
stars and BHs, yield the highest values ofηmax (i.e., achieving the
most equipartition in their central region).

Finally, we find that runs with a steeper IMF yield similar
ηmax but marginally higherη∞. This is consistent with the anal-
ysis of Vishniac (1978). With a steeper IMF, heavy particlescan
transfer their kinetic energy more efficiently to their lighter coun-
terparts, since those are more numerous. Hence, more equipartition
can be reached.

The theoretical expectation is that the initial concentration
of the system should not play a significant role in determining
ηmax. This is because after several relaxation times the system
has evolved toward a quasi-equilibrium state with a universal con-
centration, independently from where it started from (Trenti et al.
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2010). As mentioned in Section 3.2.1, our results taken at face value
do not confirm this. We find lowerηmax in simulations started with
lower W0. However, this is most likely because of the effects of
the tidal field on the kinematics of the system. The concentration in
the initial conditions of most of our simulations is self-consistently
associated with the assumed tidal field strength. Instead, our simu-
lation starting from low initial concentrationW0 = 3, but with an
under-filled tidal Roche lobe, yields similarηmax as a simulation
starting withW0 = 7. So we conclude tentatively that concentra-
tion does not affect equipartition, while a strong tidal field has a
mild effect of suppressing the maximumη.

3.3 Energy Divergence

The expectation based on generic thermodynamic arguments is that
clusters evolve toward energy equipartition (even if they may never
reach complete equipartition). So if one stars from a state with
η = 0 (velocity dispersion independent of massm), one expects
evolution toward a state in which high-mass stars have lowerveloc-
ity dispersions than low-mass stars (i.e.,η > 0). Interestingly, we
have found a few instances in our simulations where this doesnot
hold true. Instead, there is what one might call “energy divergence”,
where part of system evolves toward a state where high-mass stars
havehigher velocity dispersions than low-mass stars (i.e.,η < 0).

We find such energy divergence only in some of our simula-
tions, and only for the outer∼ 20 − 30% of the particles during
the first few initial half-mass relaxation times. Theη(t, r) profiles
shown in both Figures 6 and 7 provide examples of this. The en-
ergy divergence appears transient, and it develops over thesame
timescale over which maximum energy equipartition develops in
the core. Because of this, we interpret the energy divergence as a
result of dynamical interactions in the core. These interactions eject
to the outer regions of the system particles that have partially ther-
malized at a higher velocity dispersion, and that tend to be heavier
than those native in the outer regions because of central mass seg-
regation.

Support for this scenario comes from the fact that the two sim-
ulations that clearly show this feature are the IMBH run (Figure 7)
and a run that forms a BH-BH binary and starts from a high core
density (W0 = 7; Figure 6). In both cases, it is expected that main-
sequence stars in the core are scattered out nearly independently
of their mass (Gill et al. 2008). After several half-mass relaxation
times, this transient disappears once partial equipartition has time
to develop in the outer regions as well.

We also findη < 0 in some of our simulations at very late
times, when the system has lost more than80% of its mass. How-
ever, this may very well be because very few main-sequence stars
are remaining, so that the measurement ofη suffers from signif-
icant numerical noise. We therefore do not attach much physical
significance to those instances of energy divergence.

4 APPLICATION TO OMEGA CEN

With the advent of HST proper motion studies of the internal kine-
matics in globular clusters (see Section 1), it is now becoming pos-
sible to actuallymeasure the amount of equipartition in globular
clusters. With the models presented in this paper, this opens up
the possibility of detailed data-model comparisons. As a first ap-
plication, we consider here the case of the galactic globular cluster
Omega Cen (NGC 5139).

Figure 8. Data-model comparison of energy equipartition in Omega Cen.
The time evolution ofη (the power-law slope in the relation between veloc-
ity dispersion and mass,σ ∝ m−η) is shown as in Figures 3, 6 and 7. Data
points show the results from theN -body simulation snapshots for the inner-
most10% of the main sequence stars in projection. AllN -body simulations
are included, and are generally shown in red; the simulationthat includes
an IMBH is shown in blue, and the simulation that is similar tothat but
without the IMBH is shown in magenta. The observedη for Omega Cen
is plotted with error bars in green at the current dynamical age t/trh(0).
Overall, there is excellent consistency between simulations and observa-
tions, supporting the view that globular clusters are not generally in energy
equipartition.

Anderson & van der Marel (2010) determined a proper mo-
tion catalog for the core of Omega Cen from ACS/WFC data with a
4-year time baseline. The relation betweenσ andm for stars along
the main sequence withm = 0.5–0.8M⊙ is shown in their Fig-
ure 25c. They showed that a power-lawσ = m−η with η ≈ 0.2
describes the data reasonably well. This implies that OmegaCen
is between the extremes of no equipartition and complete equipar-
tition. This is qualitatively similar to what we find generically in
ourN -body simulations. It is also consistent with earlier work by
Anderson (2002), which showed that there is mass segregation in
Omega Cen, but not as much as predicted by multi-mass Michie-
King models that assume complete equipartition.

Andrea Bellini (priv. comm. 2013) refined the proper mo-
tion catalog of Anderson & van der Marel (2010) in the context
of an ongoing HST Archival study of two dozen globular clus-
ters (Bellini et al. 2013). He added more recent WFC3/UVIS data
in many filters. This increases the time-baseline of the Omega
Cen data to 8 years, and reduces all proper motion errors cor-
respondingly. For the same sample of stars as in the “central
field” of Anderson & van der Marel (2010), including stars down
to m ≈ 0.3M⊙ but using improved proper motions, he finds that
η = 0.16 ± 0.05. This is the value that we will adopt here for our
data-model comparison. The error bar includes the contributions
of both random and systematic errors. Random errors are obtained
from a least-squares fit to theσ(m) data, with propagation of the
random uncertainties for individual mass bins. Systematicerrors re-
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flect, e.g., variations in best-fitη values depending on exactly which
WFC3/UVIS filters are included in the construction of the catalog.

For a quantitative data-model comparison, we need to estimate
the dynamical age of Omega Cen. McLaughlin & van der Marel
(2005) showed that the surface brightness is well fitted by a King
model withW0 = 6.2+0.2

−0.1, c = 1.31+0.05
−0.03 , rc = 141.′′2+6.′′5

−12.′′69,
and LV,tot = 10.06.10±0.02 . van der Marel & Anderson (2010)
derived from a dynamical model for the spatially resolved kine-
matics a distanceD = 4.7 ± 0.06 kpc and mass-to-light ratio
M/LV = 2.64 ± 0.03 in solar units. From these values we in-
fer using equation (1) a relaxation timetrh = 109.96 yr at the
half-light radiusrh = 6.8 pc. For an assumed age of13 Gyr, this
implies t = 1.43 trh. Note that our rescaling of the simulation
results to the relaxation time age of Omega Cen can be done be-
cause we are neglecting stellar evolution. Otherwise, rescaling the
dynamical times would have modified the physical age of the stars,
changing the dynamics (for example by having a different turn-off
mass).

For comparison to our simulations, we need to know the age
in units of theinitial half-mass relaxation timetrh(0), and not the
current half-mass relaxation timetrh. Because of a combination of
tidal evaporation of particles and contraction/expansionof the sys-
tem, there is not a well defined relation between current and initial
relaxation time. In the case of a system similar to Omega Cen,it is
possible thattrh(t) is either larger or smaller thantrh(0), primar-
ily depending on the retention fraction of stellar mass black holes
(and on the presence/absence of a central IMBH), and on the ini-
tial concentration of the system. If either stellar mass black holes
or an IMBH are present in the system, then likely there has been
expansion of the half-light radius fueled by energy generation in
the core of the system, which impliestrh(t) > trh(0). On the
other hand, if Omega Cen lacks massive dark remnants, it is pos-
sible that its half-light radius has undergone contractionsince the
cluster formation. Conservatively, we assign an uncertainty of 35%
to the dynamic age of the system:t = (1.43 ± 0.5) trh(0). This
uncertainty includes both contributions propagated from the cur-
rent model parameters that describe Omega Cen, and from the sys-
tematic unknowns on the composition and expansion/contraction
history of the cluster.

To compare the observed amount of energy equipartition in
the central field of Anderson & van der Marel (2010) to the simu-
lations, we use the simulated Lagrangian bin that contains the inner
10% of the particles in projection. When the simulation is scaled to
the size of Omega Cen, these particles have a similar median pro-
jected radius as the observed field.5 The comparison between the
measuredη for Omega Cen and the predictions ofall of theN -body
simulations is shown in Figure 8.6

Given the dynamical age of Omega Cen, the simulations pre-
dict η to be in the range0.07–0.15. The measuredη = 0.16±0.05
falls within this range. So overall, there is excellent consistency be-
tween simulations and observations. The simulation with anIMBH
predicts a slightly lowerη than observed, while the simulation
with the same initial conditions but no IMBH fits better. How-

5 This comparison does not account for all the details of the observations
and of the cluster. For example, the field observed for propermotions is
not a circle. Omega Cen is elongated and rotating, unlike thesimulated
clusters. And finally, the mass function in our simulations was not tailored
to fit specific observations of Omega Cen.
6 Most of our simulations have initial concentrationW0 = 5 or 7, which
is close to the current valueW0 = 6.2+0.2

−0.1 for Omega Cen.

ever, a broader suite of simulations with IMBHs would be needed
to place any quantitative constraints on the possible presence of
an IMBH in Omega Cen (a topic that continues to be debated,
e.g., Noyola et al. (2010),van der Marel & Anderson (2010)).With
more sophisticated future analyses, smaller observational uncer-
tainties, or larger samples of clusters, it may become possible to
use observedη values to discriminate between different clusters
models.

5 DISCUSSION AND CONCLUSIONS

It is widely believed, and commonly taught, that a globular cluster
evolves, given a sufficiently long time, toward a state in which its
stars are in energy equipartition (at least near the center,where the
relaxation times are shortest). If the mean kinetic energy〈 1

2
mv2〉

becomes independent of massm due to two-body relaxation (i.e.,
collisions), the velocity dispersionσ ≡ 〈v2〉0.5 scales asσ ∝
m−0.5. Some popular multi-mass dynamical models for globular
clusters, the so-called Michie-King models, have this scaling built
in by assumption (Gunn & Griffin 1979) and have been used in sev-
eral studies (e.g. in recent years: Paust et al. 2010; Beccari et al.
2010; Maccarone & Peacock 2011; Sollima et al. 2012).

We have shown here that this paradigm isincorrect, using
direct N-body simulations which are free of any assumption re-
garding energy equipartion. The luminous stars in a globular that
has evolved for a long time converge towardσ ∝ m−η, with
η∞ ≈ 0.08 ± 0.02 independent of position in the cluster. In this
state, the velocity dispersion is nearly independent of mass. The in-
ner regions can reach values up toηmax ≈ 0.2 after several initial
half-mass relaxation times. Either way, the luminous starsin glob-
ular clusters with realistic IMFs always remain far from complete
equipartition.

The physical mechanism that explains why some systems
cannot attain energy equipartition, namely the Spitzer (1969) in-
stability for a two-component system, has been know for a long
time. Also, Vishniac (1978) showed that for a continuous mass
function of the Salpeter form, energy equipartition is not attain-
able. However, the implications of these results have gotten lit-
tle attention in the literature. This is probably because previous
investigations focused solely on the stability of systems with re-
spect to energy equipartition (e.g., Spitzer 1969; Vishniac 1978;
Kondrat’ev & Ozernoy 1982) or the implied mass segregation.
The latter is a consequence of energy equipartition but depends
on other things as well (e.g. Khalisi et al. 2007; Gill et al. 2008;
Pasquato et al. 2009).

No previous theoretical study appears to have addressed the
dynamical evolution of realistic star cluster models with aspecific
focus on mass-dependent kinematics, to determine exactly how
close or far one expects systems to be from energy equipartition.
We therefore made this the topic of the present paper. This analysis
is particularly timely, because with the advent of HST proper mo-
tion studies, it has now become possible to actually measurethe re-
lation betweenσ andm in real clusters (Anderson & van der Marel
2010). Measurements of this relation for main-sequence stars in
some two-dozen clusters are forthcoming (Bellini et al. 2013). This
opens up a whole new discovery space. Detailed data-model com-
parisons of mass-dependent kinematics have the potential to shed
new light on globular cluster dynamics and on their evolution.

We analyzed the stellar dynamics in the direct N-body simu-
lations previously carried out by Trenti et al. (2010). We quantified
the relation betweenσ andm, as function of time and position in
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the cluster, for realistic IMFs and initial conditions. We find that
this relation is well-fit by a power-law of the formσ ∝ m−η, both
for single main-sequence stars and for compact remnants. Com-
pact remnants tend to have higherη than main-sequence stars (but
still η < 0.5), due to their steeper (evolved) mass function. In
the present paper we have focused mostly on the main-sequence
stars, which are actually observable. Our main conclusionsfrom
this analysis are as follows:

(1) The value ofη generally increases linearly in the first few ini-
tial half-mass relaxation times (trh(0)). The increase is faster for
Lagrangian bins closer to the center, where relaxation times are
shorter. The central bin (containing the inner 10% of the stars as
seen in projection) reaches a maximumηmax ≈ 0.15 ± 0.03.
The increase to this value is mostly completed byt ≈ 3trh(0).
At large times, all radial bins convergence on an asymptoticvalue
η∞ ≈ 0.08± 0.02.

(2) No simulated system ever reaches a state close to complete
equipartition withη = 0.5. Even our most favorable conditions
for equipartition to develop in the core, that is a steep IMF and low
retention fraction of remnants, still yield onlyηmax . 0.19. Also,
restricting the analysis to particles at the center of the system in a
three dimensional, rather than projected, sense does not change our
conclusions (although this does yield a slight increase∆η ≈ 0.05).

(3) Partial energy equipartition develops in an overall strikingly
similar way across all our numerical experiments, despite the va-
riety of initial conditions employed (compare, e.g., Figures 3, 6,
and 7). The maximum and asymptoticη values do not differ much
between runs (e.g., see Table 1 and Figs. 4 and 5). Some trendsare
present depending on IMF and the content of compact remnants
and binaries, and those trends can be understood based on simple
physical arguments (see Section 3.2.2).

(4) The simulation with a central IMBH has the least amount of
equipartition (as measured byηmax) among the sample of initial
conditions considered. This result is consistent with the suppres-
sion of mass segregation that we have observed in simulations with
a central IMBH (Trenti et al. 2007; Gill et al. 2008; Pasquatoet al.
2009). Further investigations with a larger sample of runs (espe-
cially with an IMBH) are required to fully characterize the gen-
erality of this result. Either way, this does suggest a new method
for constraining the possible presence of an IMBH in a globular
cluster, namely through the slopeη of theσ–m relation.7 This is
completely independent from methods based on the radial velocity
dispersion profileσ(r) (e.g. van der Marel & Anderson 2010), but
can be pursued with similar (proper motion) datasets.

(5) Any existing results derived from dynamical modeling that as-
sumed complete energy equipartition by construction may beaf-
fected by unknown biases that will need to be carefully evaluated.
For example, past studies have often relied on multi-mass Michie-
King models (e.g., de Marchi et al. 2000; Beccari et al. 2010), and
the underlying equipartition assumption of such models does not
appear to be correct. It would be worthwhile for future studies to

7 Searching for an equipartition signature from an IMBH in thecluster
core has the potential to provide a diagnostic at earlier times in the life of a
system than does mass segregation, since mass segregation is a consequence
of equipartition. In fact,t & 5 trh(0) is required to discriminate systems
with or without an IMBH from mass segregation (Gill et al. 2008), while
potentially a signature inη can be seen already att & 2 trh(0).

quantify any biases that might be introduced, or to modify the un-
derlying model assumption toσ ∝ m−η with η 6= 0.5.

(6) Comparison of our simulations to a measurement ofη from
HST proper motions in the core of Omega Cen yields good agree-
ment. This supports the view that globular clusters are not generally
in energy equipartition.
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