Cluster modelling

Just as a self-gravitating collection of objects.

Collisions

Do we have to worry about collisions?

Globular clusters look densest, so obtain a rough estimate of collision timescale for them.

 $\rho_0 \sim 8 \times 10^3 \ {\rm M}_{\odot} \ {\rm pc}^{-3}.$

 $M_* \sim 0.8 \, {\rm M}_{\odot}$.

 $\Rightarrow n_0 \sim 10^4 \text{ pc}^{-3}$ is the star number density.

We have $\sigma_r \sim 7 \text{ km s}^{-1}$ as the typical 1D speed of a star, so the 3D speed is $\sim \sqrt{3} \times \sigma_r \ (= \sqrt{\sigma_x^2 + \sigma_y^2 + \sigma_z^2}) \sim 10 \text{ km s}^{-1}$.

Since $M_* \propto R_*$ (see Fluids, or Stars, course notes), have $R_* \sim 0.8 R_{\odot}$.

For a collision, need the volume $\pi (2R_*)^2 \sigma t_{\text{coll}}$ to contain one star, i.e.

$$n_0 = 1/\left(\pi (2R_*)^2 \sigma t_{\rm coll}\right) \tag{1}$$

or

$$t_{\rm coll} = 1/\left(4\pi R_*^2 \sigma n_0\right) \tag{2}$$

Putting in the numbers gives $t_{\rm coll} \sim 5 \times 10^{22}$ s $\sim 2 \times 10^{15}$ yr. So direct collisions between stars are rare, but if you have $\sim 10^6$ stars then

So direct collisions between stars are rare, but if you have $\sim 10^{\circ}$ stars then there is a collision every 2×10^{9} years, so they <u>do</u> happen. So, for now, ignore collisions, and we are left with stars orbiting in the potential from all the other stars in the system.

Model requirements

Have a gravitational potential well $\Phi(\mathbf{r})$, approximately smooth if the number of particles >> 1. Conventionally take $\Phi(\infty) = 0$.

Stars orbit in the potential well, with time per orbit (for a globular cluster) $\sim 2R_h/\sigma \sim 10^6$ years << age.

Stars give rise to $\Phi(\mathbf{r})$ by their mass, so for this potential in a steady state could average each star over its orbit to get $\rho(\mathbf{r})$.

The key problem is therefore self-consistently building a model which fills in the terms:

$$\Phi(\mathbf{r}) \to \text{ stellar orbits} \to \rho(\mathbf{r}) \to \Phi(\mathbf{r})$$
 (3)

Note that in most observed cases we only have $v_{\text{line of sight}}(R)$, so it is even harder to model real systems.

Self-consistent = orbits & stellar mass give ρ , which leads to Φ , which supports the orbits used to construct ρ .

Basics

Use: Newtons laws of motion Newtonian gravity [General Relativity not needed, since $\bar{v} \sim 10 - 10^3 \text{ km s}^{-1}$ is $<< c = 3 \times 10^5 \text{ km s}^{-1}$ and $\frac{GM}{rc^2} \sim 2 \times 10^{-9}$ (globular cluster) << 1.] The gravitational force per unit mass acting on a body due to a mass M at

the origin is

$$\mathbf{f} = -\frac{GM}{r^2}\hat{\mathbf{r}} = -\frac{GM}{r^3}\mathbf{r}$$
(4)

We can write this in terms of a potential Φ , using

$$\nabla\left(\frac{1}{r}\right) = \hat{\mathbf{r}}\frac{\partial}{\partial r}\left(\frac{1}{\mathbf{r}\cdot\mathbf{r}}\right)^{\frac{1}{2}} (+0\times\hat{\theta}+0\times\hat{\phi})$$
$$= -\frac{1}{2}\hat{\mathbf{r}}\left(\frac{1}{\mathbf{r}\cdot\mathbf{r}}\right)^{\frac{3}{2}}2\mathbf{r}\cdot\hat{\mathbf{r}}$$
$$= -\frac{1}{r^{2}}\hat{\mathbf{r}}$$
(5)

 So

$$\mathbf{f} = -\nabla\Phi \tag{6}$$

where Φ is a scalar,

$$\Phi = \Phi(r) = -\frac{GM}{r} \tag{7}$$

Hence the potential due to a point mass M at $\mathbf{r} = \mathbf{r}_1$ is

$$\Phi(\mathbf{r}) = -\frac{GM}{|\mathbf{r} - \mathbf{r}_1|} \tag{8}$$

Orbits

Particle of constant mass m at position \mathbf{r} subject to a force \mathbf{F} . Newton's law:

$$\frac{d}{dt}\left(m\dot{\mathbf{r}}\right) = \mathbf{F} \tag{9}$$

i.e.

$$m\ddot{\mathbf{r}} = \mathbf{F} \tag{10}$$

If **F** is due to a gravitational potential $\Phi(\mathbf{r})$, then

$$\mathbf{F} = m\mathbf{f} = -m\nabla\Phi \tag{11}$$

The angular momentum about the origin is $\mathbf{H} = \mathbf{r}_{\wedge}(m\dot{\mathbf{r}})$. Then

$$\frac{d\mathbf{H}}{dt} = \mathbf{r}_{\wedge}(m\ddot{\mathbf{r}}) + m\dot{\mathbf{r}}_{\wedge}\dot{\mathbf{r}}
= \mathbf{r}_{\wedge}\mathbf{F}
\equiv \mathbf{G}$$
(12)

where \mathbf{G} is the torque about the origin.

The kinetic energy

$$T = \frac{1}{2}m\dot{\mathbf{r}}\cdot\dot{\mathbf{r}} \tag{13}$$

$$\frac{dT}{dt} = m\dot{\mathbf{r}} \cdot \ddot{\mathbf{r}} = \mathbf{F} \cdot \dot{\mathbf{r}}$$
(14)

If $\mathbf{F} = -m\nabla\Phi$, then

$$\frac{dT}{dt} = -m\dot{\mathbf{r}}\cdot\nabla\Phi(\mathbf{r}) \tag{15}$$

But if Φ is independent of t, the rate of change of Φ along an orbit is

$$\frac{d}{dt}\Phi(\mathbf{r}) = \nabla\Phi\cdot\dot{\mathbf{r}})\tag{16}$$

(from the chain rule).

Hence

$$\frac{dT}{dt} = -m\frac{d}{dt}\Phi(\mathbf{r}) \tag{17}$$

$$\Rightarrow m \frac{d}{dt} \left(\frac{1}{2} \dot{\mathbf{r}} \cdot \dot{\mathbf{r}} + \Phi(\mathbf{r}) \right) = 0 \tag{18}$$

$$\Rightarrow E = \frac{1}{2}\dot{\mathbf{r}}\cdot\dot{\mathbf{r}} + \Phi(\mathbf{r}) \tag{19}$$

is constant for a given orbit.

Orbits in spherical potentials

 $\Phi(\mathbf{r}) = \Phi(|\mathbf{r}|) = \Phi(r)$, so $\mathbf{f} = -\nabla \Phi = -\hat{\mathbf{r}} \frac{d\Phi}{dr}$. The orbital angular momentum $\mathbf{H} = m\mathbf{r} \wedge \dot{\mathbf{r}}$, and

$$\frac{d\mathbf{H}}{dt} = \mathbf{r}_{\wedge} m \mathbf{f} = -m \frac{d\Phi}{dr} \mathbf{r}_{\wedge} \hat{\mathbf{r}} = 0.$$
(20)

So the angular momentum per unit mass $\mathbf{h} = \mathbf{H}/m = \mathbf{r} \wedge \dot{\mathbf{r}}$ is a constant vector, and is perpendicular to \mathbf{r} and $\dot{\mathbf{r}}$

 \Rightarrow the particle stays in a plane through the origin which is perpendicular to ${\bf h}.$

[If you want this in more detail - $\mathbf{r} \perp \mathbf{h}$, $\mathbf{r} + \delta \mathbf{r} = \mathbf{r} + \dot{\mathbf{r}} \delta t \perp \mathbf{h}$ since both \mathbf{r} and $\dot{\mathbf{r}} \perp \mathbf{h}$, so particle remains in the plane.]

Thus the problem becomes a two-dimensional one to calculate the orbit use 2-D cylindrical coordinates (R, ϕ, z) at z = 0, or spherical polars (r, θ, ϕ) with $\theta = \frac{\pi}{2}$.

So, in 2D, use (R, ϕ) and (r, ϕ) interchangeably.

Equation of motion in two dimensions

The equation of motion in two dimensions can be written in radial angular terms, using $\mathbf{r} = r\hat{\mathbf{r}} = r\hat{\mathbf{e}}_r + 0\hat{\mathbf{e}}_{\phi}$, so $\mathbf{r} = (r, 0)$. We know that

$$\frac{d}{dt}\hat{\mathbf{e}}_r = \dot{\phi}\hat{\mathbf{e}}_\phi \tag{21}$$

and

$$\frac{d}{dt}\hat{\mathbf{e}}_{\phi} = -\dot{\phi}\hat{\mathbf{e}}_r \tag{22}$$

[To see this:

In time $\delta t \ \hat{\mathbf{e}}_r \to \hat{\mathbf{e}}_r + \delta \phi \hat{\mathbf{e}}_{\phi}$, and hence the first result above, and in the same time interval $\hat{\mathbf{e}}_{\phi} \to \hat{\mathbf{e}}_{\phi} - \delta \phi \hat{\mathbf{e}}_r$, which gives the second.] Hence

$$\dot{\mathbf{r}} = \dot{r}\hat{\mathbf{e}}_r + r\dot{\phi}\hat{\mathbf{e}}_\phi \tag{23}$$

[or $\dot{\mathbf{r}} = \mathbf{v} = (\dot{r}, r\dot{\phi})$] and so

$$\begin{aligned} \ddot{\mathbf{r}} &= \ddot{r}\hat{\mathbf{e}}_r + \dot{r}\dot{\phi}\hat{\mathbf{e}}_\phi + \dot{r}\dot{\phi}\hat{\mathbf{e}}_\phi + r\ddot{\phi}\hat{\mathbf{e}}_\phi - r\dot{\phi}^2\hat{\mathbf{e}}_r \\ &= (\ddot{r} - r\dot{\phi}^2)\hat{\mathbf{e}}_r + \frac{1}{r}\frac{d}{dt}\left(r^2\dot{\phi}\right)\hat{\mathbf{e}}_\phi \\ &= \mathbf{a} = [\ddot{r} - r\dot{\phi}^2, \frac{1}{r}\frac{d}{dt}\left(r^2\dot{\phi}\right)] \end{aligned}$$

$$(24)$$

In general $\mathbf{f} = (f_r, f_{\phi})$, and then $f_r = \ddot{r} - r\dot{\phi}^2$, where the second term is the centrifugal force, since we are in a rotating frame, and the torque $rf_{\phi} = \frac{d}{dt} \left(r^2 \dot{\phi} \right) (= \mathbf{r}_{\wedge} \mathbf{f})$.

In a spherical potential $f_{\phi} = 0$, so $r^2 \dot{\phi}$ is constant.

Path of the orbit

To determine the shape of the orbit we need to remove t from the equations and find $r(\phi)$. It is simplest to set u = 1/r, and then from $r^2 \dot{\phi} = h$ obtain

$$\dot{\phi} = hu^2 \tag{25}$$

Then

$$\dot{r} = -\frac{1}{u^2}\dot{u} = -\frac{1}{u^2}\frac{du}{d\phi}\dot{\phi} = -h\frac{du}{d\phi}$$
(26)

and

$$\ddot{r} = -h\frac{d^2u}{d\phi^2}\dot{\phi} = -h^2u^2\frac{d^2u}{d\phi^2}.$$
(27)

So the radial equation of motion

$$\ddot{r} - r\dot{\phi}^2 = f_r$$

becomes

$$-h^2 u^2 \frac{d^2 u}{d\phi^2} - \frac{1}{u} h^2 u^4 = f_r \tag{28}$$

$$\Rightarrow \frac{d^2u}{d\phi^2} + u = -\frac{f_r}{h^2 u^2} \tag{29}$$

Since f_r is just a function of r (or u) this is an equation for $u(\phi)$, i.e. $r(\phi)$ - the <u>path</u> of the orbit. Note that it does not give r(t), or $\phi(t)$ - you need one of the other equations for those.

If we take $f_r = -\frac{GM}{r^2} = -GMu^2$, then

$$\frac{d^2u}{d\phi^2} + u = GM/h^2 \tag{30}$$

(which is something you will have seen in the Relativity course).

The solution to this equation is

$$\frac{\ell}{r} = \ell u = 1 + e \cos(\phi - \phi_0) \tag{31}$$

which you can verify simply by putting it in the differential equation. Then

$$-\frac{e\cos(\phi - \phi_0)}{\ell} + \frac{1 + e\cos(\phi - \phi_0)}{\ell} = \frac{GM}{h^2}$$

so $\ell = h^2/GM$ and e and ϕ_0 are constants of integration.

Note that if e < 1 then 1/r is never zero, so r is bounded in the range $\frac{\ell}{1+e} < r < \frac{\ell}{1-e}$. Also, in all cases the orbit is symmetric about $\phi = \phi_0$, so we take $\phi_0 = 0$ as defining the reference line for the angle ϕ . ℓ is the distance

from the origin for $\phi = \pm \frac{\pi}{2}$ (with ϕ measured relative to ϕ_0).

We can use different parameters. Knowing that the point of closest approach (perihelion for a planet in orbit around the sun, periastron for something about a star) is at $\ell/(1 + e)$ when $\phi = 0$ and the aphelion (or whatever) is at $\ell/(1 - e)$ when $\phi = \pi$, we can set the distance between these two points (= major axis of the orbit)=2a. Then

$$\frac{\ell}{1+e} + \frac{\ell}{1-e} = 2a \Rightarrow \ell(1-e) + \ell(1+e) = 2a(1-e^2)$$
(32)

$$\Rightarrow \ell = a(1 - e^2) \tag{33}$$

 $\Rightarrow r_P = a(1-e)$ is the perihelion distance from the gravitating mass at the origin, and $r_a = a(1+e)$ is the aphelion distance. The distance of the sun from the midpoint is ae, and the angular momentum $h^2 = GM\ell = GMa(1-e^2)$. We can transform to Cartesian (x, y) setting $x = r \cos \phi + ae$ and $y = r \sin \phi$ so the origin is at the midpoint of the major axis. Then fairly uninstructive algebra gives the standard Cartesian equation for an ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \tag{34}$$

where b is the length of the minor axis, $b^2 = a^2(1 - e^2)$.

Energy per unit mass

The energy per unit mass

$$E = \frac{1}{2}\dot{\mathbf{r}}\cdot\dot{\mathbf{r}} + \Phi(\mathbf{r}) = \frac{1}{2}\dot{r}^2 + \frac{1}{2}r^2\dot{\phi}^2 - \frac{GM}{r}$$
(35)

This is constant along the orbit, so we can evaluate it anywhere convenient - e.g. at perihelion where $\dot{r} = 0$. Then $\dot{\phi} = \frac{h}{r_P^2}$ and so

$$E = \frac{1}{2} \frac{GMa(1-e^2)}{a^2(1-e)^2} - \frac{GM}{a(1-e)}$$

= $\frac{GM}{a} \left[\frac{1}{2} \left(\frac{1+e}{1-e} \right) - \frac{1}{1-e} \right]$
= $-\frac{GM}{2a}$ (36)

This is < 0 for a bound orbit, and is depends only on the semi-major axis a (and not e).

Kepler's Laws

... deduced from observations, and explained by Newtonian theory of gravity.

1 Orbits are ellipses with the sun at a focus.

2 Planets sweep out equal areas in equal time

$$\delta A = \frac{1}{2}r^2\delta\phi \quad \left[=\frac{1}{2}r(r\delta\phi)\right] \tag{37}$$

$$\frac{dA}{dt} = \frac{1}{2}r^2\dot{\phi} = \frac{h}{2} = \text{constant}$$
(38)

 \Rightarrow Kepler's second law is a consequence of a central force, since this is why h is a constant.

3 (Period)² \propto (size of orbit)³

In one period T, the area swept out is $A = \frac{1}{2}hT = \left(\int_0^\infty \frac{dA}{dt}dt\right)$ But A = area of ellipse = $\pi ab = \pi a^2 \sqrt{1 - e^2}$

$$A = \int_0^{2\pi} d\phi \int_0^r r dr$$
$$= \int_0^{2\pi} \frac{1}{2} r^2 d\phi$$
$$= \frac{\ell^2}{2} \int_0^{2\pi} \frac{d\phi}{(1 + e\cos\phi)^2}$$

Have

$$\int_0^{\pi} \frac{dx}{(a+b\cos x)^2} = \frac{\pi}{a^2 - b^2} \frac{a}{\sqrt{a^2 - b^2}}$$

 \mathbf{SO}

$$A = 2\frac{\ell^2}{2}\frac{\pi}{1-e^2}\frac{1}{\sqrt{1-e^2}}$$

Since $\ell = a(1 - e^2)$ this implies

$$A = \pi a^2 \sqrt{1 - e^2}$$

and since $b = a\sqrt{1 - e^2}$,

 $A = \pi a b$

]

Therefore

$$T = \frac{2\pi a^2 \sqrt{1 - e^2}}{h}$$
$$= \frac{2\pi a^2 \sqrt{1 - e^2}}{\sqrt{GMa(1 - e^2)}}$$
[since $h^2 = GMa(1 - e^2)$]
$$T = 2\pi \sqrt{\frac{a^3}{GM}}$$
$$\Rightarrow T^2 \propto a^3$$

(39)

where in this case M is the mass of the sun. Note: Since $E = -\frac{GM}{2a}$, the period $T = \frac{2\pi GM}{(-2E)^{\frac{3}{2}}}$.

Unbound orbits

 $\frac{\ell}{r} = 1 + e \cos \phi$ with $e \ge 1$.

If e > 1 then $1 + e \cos \phi = 0$ has solutions ϕ_{∞} where $r = \infty$.

$$\rightarrow \cos \phi_{\infty} = -1/e$$

Then $-\phi_{\infty} \leq \phi \leq \phi_{\infty}$, and, since $\cos \phi_{\infty}$ is negative, $\frac{\pi}{2} < \phi_{\infty} < \pi$.

The orbit is a hyperbola. If e = 1 then the particle just gets to infinity at $\phi = \pm \pi$ - it is a parabola.

Energies for these unbound orbits:

$$E = \frac{1}{2}\dot{r}^2 + \frac{1}{2}\frac{h^2}{r^2} - \frac{GM}{r}$$

as $r \to \infty \ E \to \frac{1}{2}\dot{r}^2$. Recall

$$\frac{\ell}{r} = 1 + e\cos\phi$$

 $\frac{d}{dt}$ of this \Rightarrow

$$-\frac{\ell}{r^2}\dot{r} = -e\sin\phi\ \dot{\phi}$$

and since $h = r^2 \dot{\phi}$

$$\dot{r} = \frac{eh}{\ell} \sin \phi$$

As $r \to \infty \cos \phi \to -1/e$

$$E \to \frac{1}{2}\dot{r}^2 = \frac{1}{2}\frac{e^2h^2}{\ell^2}\left(1 - \frac{1}{e^2}\right) = \frac{GM}{2\ell}(e^2 - 1)$$

(recalling that $h^2 = GM\ell$) Thus E > 0 if e > 1 and for parabolic orbits (e = 1) E = 0.

Escape velocity

We have seen that in a fixed potential $\Phi(\mathbf{r})$ a particle has constant energy $E = \frac{1}{2}\dot{\mathbf{r}}^2 + \Phi(\mathbf{r})$ along an orbit. If we adopt the usual convention and take $\Phi(\mathbf{r}) \to 0$ as $|\mathbf{r}| \to \infty$, then if at some point \mathbf{r}_0 the particle has velocity \mathbf{v}_0 such that

$$\frac{1}{2}\mathbf{v}_0^2 + \Phi(\mathbf{r}_0) > 0$$

then it is <u>able</u> to reach infinity. So at each point \mathbf{r}_0 we can define an escape velocity $v_{\rm esc}$ such that

$$v_{\rm esc} = \sqrt{-2\Phi(\mathbf{r}_0)}$$

The escape velocity from the sun

$$v_{\rm esc} = \left(\frac{2GM_{\odot}}{r_0}\right)^{\frac{1}{2}}$$

= 42.2 $\left(\frac{r_0}{\rm a.u.}\right)^{-\frac{1}{2}}$ km s⁻¹

Note: The circular velocity v_{circ} is such that $-r\dot{\phi}^2 = -\frac{GM}{r^2}$

$$\dot{r\phi} = v_{\rm circ} = \sqrt{\frac{GM_{\odot}}{r_0}} = 29.8 \left(\frac{r_0}{\rm a.u.}\right)^{-\frac{1}{2}} \text{ km s}^{-1}$$

 $(= 2\pi \text{ a.u./yr}).$

 $v_{\rm esc} = \sqrt{2}v_{\rm circ}$ for a point mass source of the gravitational potential.