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Star Formation 101

©Adison-Wesley 2004

1T 372
Jeans Fragmentation M, = L(ZL)?
10K, 2.33amu, ny =2 x 10°cm™2 — 2M .,

H0K, 2.33amu, ny = 200cm=> — 700M -

leads to Accretion Disks

+ Jets to get rid of angular momentum
Why does this fail on large scales? (Hiearchical “initial conditions,” plus tf~tcross~tjeans.)
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Mon. Not. R. astr. Soc. (1973) 161, 133-143.

dN / dlog Mass

A SIMPLE PROBABILISTIC THEORY OF FRAGMENTATION

{ T973MNRAS 181,

Richard B. Larson

(Received 1972 October 5)

SUMMARY

A simple model for the fragmentation process in a collapsing interstellar

cloud is developed, which is based on the assumption that the successive

O 'I 'I O 'I O ( stages of the fragmentation process can be treated as random events. The

‘ : ‘ resulting stellar mass spectrum predicted by the model, defined in terms of

the amount of mass per unit logarithmic mass interval, is approximately a

MaSS (Msun) gaussian function, in agreement with the empirical initial stellar mass

spectrum. Some possible ways of accounting for differences in the initial mass
spectrum between different stellar systems are also discussed.

Alves, Lombardi & Lada 2007
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X=XadyVy Chandra (PMS census, hot gas)
FUSE, GALEX (hot young stars, spectra, accretion measures)

optical HST + much glass-on-ground! (nebular imaging,
spectroscopy of stars & gas, extinction mapping, B-field maps,
stellar & jet motions)

near-IR primarily glass-on-ground (imaging & spectroscopy
“through” dust, extinction mapping, B-field maps, AO disks,
stellar & jet motions)

mid-IR Spitzer, WISE (dust imaging, young star SEDs, star
formation rates)

far-IR IRAS, Spitzer, Herschel, SOFIA (dust imaging, SEDs,
dust properties)

sub-mm Herschel, SMA, ALMA (gas kinematics & properties, dust
imaging (including disks), young source counting)

INIM FCRAO, Mopra, CfA mini, ALMA, CARMA, IRAM 30-m, PdB: (gas

kinematics & properties, young source counting, large-scale gas
distribution, B-field via Zeeman and polarimetry)

GBT, VLA, JVLA, VLBA, Effelsberg (gas kinematics &
properties, maser motions, B-field via Zeeman and polarimetry)
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But, we can (almost) observe...

time scales >> human lifetime

three spatial dimensions
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S0...

we count things -« > “statistics”

we make up stories <« > “Bayesian statistics”
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Click here to see all papers in this table,
together in an ADS Private library

measuring galactic star formation rate
detection of HI in ISM

detection of CO in ISM

temperature mapping

CO as proxy for column density
“infrared dark clouds”

optical/near-IR extinction mapping
magnetic field strength

magnetic field morphology

spatial & kinematic structure of clouds
bipolar outflows

spherical shells

“Cloudshine” (scattered light mapping)
young source/star censuses (multi-[¥])
long(er), skinni(er) filaments in dark clouds
astrochemistry, depletion

“Clump Mass Functions” (CMF)
dominance of clusters

evolutionary sequences (outflows)
motion of “cores”

photon-dominated regions

(ultra) compact HIl Regions

“NH3” cores (starfull, starless)

core kinematics (rotation)

core kinematics (infall)

core density profiles

filament/core kinematics (coherence)
adaptive optics, multiplicity

(3D) motions of masers & young stars
“hot” cores in massive-star forming regions
SED-based “disk” evolution models
interferometer “disks”, disk holes (lower-mass)
prevalence of disks

accretion(?) “disks”around massive stars
VELLOs--First Cores

Pre-Stellar IMF (Luminosity-->Mass)

grain growth, reddening laws, ices
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1 1977 Black & Dalgarno
0.5 1989 Wood & Churchwell
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0.1 1993 Goodman et al.
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sample modern reference

2010 Robitaille & Whitney
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2005 Schnee et al.

2009 Goodman et al.
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2001 Alves, Lada & Lada

2010 Crutcher et al.

2011 Chapman et al.

2008 Goldsmith et al.

2010 Arce et al.

2011 Arce et al.

2006 Foster & Goodman

2009 Evans et al.

2010 André et al.

2012 Fontani et al.

2007 Alves, Lombardi & Lada

2009 Gutermuth et al.

2006 Arce & Sargent
2010 Kirk et al.

2009 Visser, Van Dischoeck & Black
2009 Urquhart et al.
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2012 Tobin et al.
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2011 Pineda et al.
2010 Pineda et al.
2012 King et al.

0.01 1968 Lesh

0.01 1988 Keto, Ho & Haschick
0.005 1987 Adams, Lada & Shu
0.005 1991 Beckwith & Sargent
0.005 1990 Beckwith et al.
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0.0001 2005 Kauffmann et al.

1E-08 2002 Muench et al.
1E-18 1977 Cohen

2012 Rygl et al.

2009 Zhang et al.
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2012 Foster et al.

learn more
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1969 Larson
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2012 Nielbock et al.
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1981MNRAS.194.

Mon. Not. R, astr. Soc. (1981) 194, 809—826

Turbulence and star formation in molecular clouds

Richard B. Larson vae University Observatory, Box 6666, New Haven,
Connecticut 06511, USA

Received 1980 July 7; in original form 1980 May 7

Summary. Data for many molecular clouds and condensations show that the
internal velocity dispersion of each region is well correlated with its size and
mass, and these correlations are approximately of power-law form. The
dependence of velocity dispersion on region size is similar to the Kolmogoroff
law for subsonic turbulence, suggesting that the observed motions are all part
of a common hierarchy of interstellar turbulent motions. The regions studied
are mostly gravitationally bound and in approximate virial equilibrium.
However, they cannot have formed by simple gravitational collapse, and it
appears likely that molecular clouds and their substructures have been created
at least partly by processes of supersonic hydrodynamics. The hierarchy of
subcondensations may terminate with objects so small that their internal
motions are no longer supersonic; this predicts a minimum protostellar
mass of the order of a few tenths of a solar mass. Massive ‘protostellar’
clumps always have supersonic internal motions and will therefore develop
complex internal structures, probably leading to the formation of many
pre-stellar condensation nuclei that grow by accretion to produce the final
stellar mass spectrum. Molecular clouds must be transient structures, and are
probably dispersed after not much more than 107 yr.

1 Introduction

There is much evidence that stars form in the interiors of dense, gravitationally bound
molecular clouds, but little is yet known about the detailed internal structure and dynamics
of such clouds, or about the processes by which stars form in them. This lack of direct
information has allowed theorists considerable scope for calculating idealized models for the
collapse and fragmentation of gas clouds, starting with simple assumed initial conditions (see
the reviews by Larson 1977a; Woodward 1978; Bodenheimer & Black 1978). Much of this
work has been motivated by the ‘gravitational instability’ picture of star formation
elaborated by Jeans (1929), Hoyle (1953) and Hunter (1967), whereby diffuse clouds that
are initially nearly uniform collapse and fragment into a hierarchy of successively smaller
condensations as the density rises and the Jeans mass decreases.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System
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More recently, 0.38 has become ~0.5. Larson liked 0.38 because Kolmogorov (incompressible)
turbulence would give 0.33.A higher value is consistent with compressible (e.g.“Burger’s” turbulence.)
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~[00% Correct, Eut Details have
Taken 30 Years (so far)

Summary. Data for many molecular clouds and condensations show that the
~ internal velocity dispersion of each region is well correlated with its size and
mass, and these correlations are approximately of power-law form. The
dependence of velocity dispersion on region size is similar to the Kolmogoroff
law for subsonic turbulence, suggesting that the observed motions are all part
~ of a common hierarchy of interstellar turbulent motions. The regions studied
are

How Source/governors of the supesonic motions?
appe magnetic fields, outflows/winds, SNe, galaxy-scale effects

at least paruy vy processes UL SUPEISUILIC Ty UTOUYTIAIIICS. 111€ THETAICHY Ul
subcondensations may terminate with objects so small that their internal
motions are no longer supersonic; this predicts a minimum protostellar
mass of the order of a few tenths of a solar mass. Massive ‘protostellar’
clumps always have supersonic internal motions and will therefore develop
complex internal structures, probably leading to the formation of many
pre-stellar condensation nuclei that grow by accretion to produce the final

- stellar mass spectrum. Molecular clouds must be transient structures, and are
probably dispersed after not much more than 107 yr.
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Images + Spectra
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Images + Spectra
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Figure 2. Three-dimensional rendering of the molecular gas in BS (i.e., Are
VI in Figure 1), using 3D Slicer. The gray (green) isosurface model shows th

12CO emission in position—position-velocity space. The small circles show thes e
locations of identified high-velocity points (with the color in the online version
representing whether the point is blue- or red-shifted).

Arce et al. 2010, 2011; simulation
from Offner et al. 2011
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Fic. 1.—Gallery of '>CO (1-0) outflows. Blue (red) contours show the blueshified (redshified) emission from the outflow lobes of the sources in our sample,
integrated over the velocity ranges given in Table 4. Top, Class 0 objects; middle, Class 1 objects; bottom, Class Il objects. A cross marks the position of the protostar
given by the millimeter continuum emission peak. In each map, the synthesized beam is in the lower left corner. A scale equivalentto 10,000 AU at the assumed distance
of each source is also given. The dashed line with arrowheads in each panel represents the presumed outflow axis. The values of the first contour and the subsequent
contour steps for the blue (red) lobe of each outflow are given inside brackets in units of Jy km s, at the lower left (right) corner of each panel.
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ABSTRACT o i

We present the detection of a dust continuum source at 3 mm (CARMA): § 107¢
and '2CO (2-1) emission (SMA) toward the L.1451-mm dense core. Tt & ol
. . . . L) -

and an outflow where no point source at mid-infrared wavelengths is dete — = |
dense core bolometric luminosity of 0.05 L is obtained. By modeling t| < 44l

and the continuum interferometric visibilities simultaneously, we confirm i
to explain the observations. This modeling also shows that the datacanb 107}

stellar object (YSO) and a disk, or by a dense core with a central first hydrc e A
not able to decide between these two models, which produce similar fits. 0 91 10 100 _ 1000 10000
redshifted and blueshifted emission suggesting the presence of a slow anc A (um)

to what is usually found toward YSOs but in agreement with prediction fr( Figure 9. Summary of best fit of the broadband SED and dust continuum
visibilities for three different models: starless isothermal dense core in red,

the beSt Candldate’ SO far, fOI' an FHSC’ an ObJCCt that has been 1dent.1ﬁed dense core with a YSO and disk at the center in blue, and dense core with a

Whatever the true nature of the central object in L1451-mm, this core pre¢ central FHSC in green. The data are shown in black. The top panel shows the
visibilities in filled circles. The bottom panel shows the broadband SED for

earliest phases of low-mass star formation. L1451-mm, where the upper limits are shown by triangles, measurements are
p shown by filled black circles, and the best model fits are shown by the solid

Key words: ISM: clouds — ISM: individual objects (L1451, Perseus) — I curves.

low-mass
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(A color version of this figure is available in the online journal.)
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Figure 8. Temperature (left) and B (right) map for CB244 derived from the Bayesian estimates. The red hashed region in the center of the images corresponds to the
protostar, which we exclude from our analysis, and the gray circle in the lower left corner illustrates the size of the SPIRE 500 m beam. Overplotted are contours
of constant column density, corresponding to N(H) = 10%, 5 x 102, 102!, 5 x 10%!, 10?2, and 2 x 10%> cm~2. The coolest and most dense region corresponds to
the prestellar core, with the temperature decreasing toward its center. The f-map traces the column density map very well, with the values of B decreasing toward the
central, more dense regions.

(A color version of this figure is available in the online journal.)

Kelly, Shetty, et al. 2012
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Figure 6. Left panel shows the distribution of 8 and T for CB244 from minimizing x2 (black open circles) and the random draw from the posterior distribution
under our hierarchical Bayesian model (red triangles). The inset provides a close-up of the density of the distribution, while the right panel shows a close-up of the
hierarchical Bayesian values. As expected, the x>-based estimates display an anti-correlation. However, the Bayesian estimates show a weak positive correlation, and
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Figure 7. Measured fluxes (blue stars) for the pixel with the highest estimated column density in the prestellar core (right), a pixel with average Herschel S/N similar
to the median value (center), and the pixel with average Herschel S/N = 5 (left), which defines the lower limit of our S/N cut for the %2 estimates. The 100 um flux
measurement is missing from the left panel because its value is negative. The best-fit graybody SEDs derived from the x2 estimates are shown with a dashed black
line, while the red regions contain 95% of the posterior probability for the graybody SEDs derived from our hierarchical Bayesian method. The measured fluxes are
compared with the values that are predicted from our Bayesian model (black circles), with the error bars containing 95% of the posterior probability on the measured
SED. The fluxes and their error bars predicted from our Bayesian model differ from the model graybody SEDs in that they also include the effects of the calibration
error and noise, and thus it is the green circles that should be compared with the measured data and not the red region. The actual measured values of the flux fall
within the range expected from our Bayesian model, and therefore our model is consistent with the measured data.

(A color version of this figure is available in the online journal.)



S}OQCtV A Bayesian analysis of Zeeman measurements of B in ISM
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Figure 1. Set of diffuse cloud and molecular cloud Zeeman measurements of the magnitude of the line-of-sight component B, of the magnetic vector B and their 1o
uncertainties, plotted against n(H) = n(H1) or 2n(H;) for H1 and molecular clouds, respectively. Different symbols denote the nature of the cloud and source of the
measurement: H1 diffuse clouds, filled circles (Heiles & Troland 2004); dark clouds, open circles (Troland & Crutcher 2008); dark clouds, open squares (Crutcher
et al. 1999), molecular clouds, filled squares (Crutcher et al. 1999); and molecular clouds, stars (Falgarone et al. 2008). Note that Zeeman measurements give the
direction of the line-of-sight component as well as the magnitude. By convention, positive B; denote fields pointing away from the observer and vice versa. Only the

magnitudes | B, | are plotted. The solid line segments show the most probable model from the comprehensive analysis, Section 6. Also shown (plotted as dotted line
segments) are the ranges given by acceptable alternative model parameters to indicate on the B, plane the uncertainty in the model.

Crutcher et al. 2010
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Ophiuchus

Cha II Classes

Perseus Classes

Lupus Classes Serpens Classes

Ophiuchus Classes All Clouds

g

The derived lifetime for the Class I phase is 0.54 Myr, considerably longer
than some estimates. Similarly, the lifetime for the Class O SED class, 0.16
Myr, with the notable exception of the Ophiuchus cloud, is longer than early
estimates. If photometry is corrected for estimated extinction before
calculating class indicators, the lifetimes drop to 0.44 Myr for Class I and to
0.10 for Class 0. These lifetimes assume a continuous flow through the Class
IT phase and should be considered median lifetimes or half-lives. Star
formation is highly concentrated to regions of high extinction, and the
youngest objects are very strongly associated with dense cores. The great
majority (90%) of young stars lie within loose clusters with at least 35

members and a stellar density of 1 Mo pc—3.

R —
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1981MNRAS.194.

Mon. Not. R, astr. Soc. (1981) 194, 809—826

Turbulence and star formation in molecular clouds

Richard B. Larson vae University Observatory, Box 6666, New Haven,
Connecticut 06511, USA

Received 1980 July 7; in original form 1980 May 7

Summary. Data for many molecular clouds and condensations show that the
internal velocity dispersion of each region is well correlated with its size and
mass, and these correlations are approximately of power-law form. The
dependence of velocity dispersion on region size is similar to the Kolmogoroff
law for subsonic turbulence, suggesting that the observed motions are all part
of a common hierarchy of interstellar turbulent motions. The regions studied
are mostly gravitationally bound and in approximate virial equilibrium.
However, they cannot have formed by simple gravitational collapse, and it
appears likely that molecular clouds and their substructures have been created
at least partly by processes of supersonic hydrodynamics. The hierarchy of
subcondensations may terminate with objects so small that their internal
motions are no longer supersonic; this predicts a minimum protostellar
mass of the order of a few tenths of a solar mass. Massive ‘protostellar’
clumps always have supersonic internal motions and will therefore develop
complex internal structures, probably leading to the formation of many
pre-stellar condensation nuclei that grow by accretion to produce the final
stellar mass spectrum. Molecular clouds must be transient structures, and are
probably dispersed after not much more than 107 yr.

1 Introduction

There is much evidence that stars form in the interiors of dense, gravitationally bound
molecular clouds, but little is yet known about the detailed internal structure and dynamics
of such clouds, or about the processes by which stars form in them. This lack of direct
information has allowed theorists considerable scope for calculating idealized models for the
collapse and fragmentation of gas clouds, starting with simple assumed initial conditions (see
the reviews by Larson 1977a; Woodward 1978; Bodenheimer & Black 1978). Much of this
work has been motivated by the ‘gravitational instability’ picture of star formation
elaborated by Jeans (1929), Hoyle (1953) and Hunter (1967), whereby diffuse clouds that
are initially nearly uniform collapse and fragment into a hierarchy of successively smaller
condensations as the density rises and the Jeans mass decreases.

© Royal Astronomical Society * Provided by the NASA Astrophysics Data System
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~Virial Equilibrium: Gravity Balanced by “Turbulent” Support

The dashed line in this figure is not fitted to
the points, but represents the relation
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‘Yigure 4. The virial ratio 2GM/o? L plotted versus region size I for the same regions shown in Figs 1 and
‘. The dashed line represents equation (4), and is derived from equations (1) and (2).

for exact virial equilibrium, 2GM/R2s2=1 , and points above would be on horizontal line
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Figure 5. The average density, defined as the density of a sphere of mass M and diameter L, of all the

regions shown in Figs 1 and 3 plotted versus region size L. The dashed line represents equation (§), and
is derived from equations (1) and (2).

For n~R*, and s~R%5,and 2GM/R2s2=1 (virial equilibrium)
any one relation follows automatically from the other two
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S0, roughly speaking, Larson’s “Suggestions” show that a
turbulent-like nature for the line width-size relation, plus virial
equilibrium, gives the observed density-size relation.
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Thus, the precision at which L3 is recovered will be high when
the dispersion of PDF means is small compared to the disper-
sion in areas. In summary, the conditions sufficient for a sample
of mass and area measurements to follow L3 with low scatter
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Figure 4. The connection between the column density PDF and mass—area relationship for the data presented in LAL10. Left: the column density PDF for
each cloud. Right: the mean column density of pixels with extinctions higher than the threshold defined by the solid line on the left-hand plot, as a function of
the cloud area. Bottom: the mass—area relationship.

Beaumont et al. 2012; cf. Lombardi, Alves & Lada 2010
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COHERENCE IN DENSE CORES. II. THE TRANSITION TO COHERENCE

ALyssa A. GoODMAN'
Harvard University Department of Astronomy, Cambridge, MA 02138, agoodman @ cfa harvard.edu
JosePH A. BARRANCO
Astronomy Department, University of California, Berkeley, Berkeley, CA 94720, barranco@ uchast.berkeley.edu
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ABSTRACT

After studying how line width depends on spatial scale in low-mass star-forming regions, we propose
that “dense cores™ (Myers & Benson 1983) represent an inner scale of a self-similar process that charac-
terizes larger scale molecular clouds.

In the process of coming to this conclusion, we define four distinct types of line width-size relation
(Av =« R™), which have power-law slopes a,, a,, a4, and a,, as follows: Type 1-—multitracer, multicloud
intercomparison; Type 2-single-tracer, multicloud intercomparison; Type 3-—multitracer study of a
single cloud; and Type 4single-tracer study of a single cloud. Type 1 studies (of which Larson 1981 is
the seminal example) are compendia of Type 3 studies which illustrate the range of variation in the line
width-size relation from one region to another.

Using new measurements of the OH and C'*0O emission emanating from the environs of several of the
dense cores studied in NH, by Barranco & Goodman (1998; Paper I), we show that line width increases
with size outside the cores with a, ~ 0.2. On scales larger than those traced by C**O or OH, '*CO and
13CO observations indicate that a, increases to ~0.5 (Heyer & Schloerb 1997). By contrast, within the
half-power contour of the NH, emission from the cores, line width is virtually constant, with a, ~ 0. We
interpret the correlation between increasing density and decreasing Type 4 power-law slope as a
“transition to coherence.” Our data indicate that the radius R_,, at which the gas becomes coherent (ie.,
a, —+0) is of order 0.1 pc in regions forming primarily low-mass stars. The value of the nonthermal line
width at which “coherence ” is established is always less than but still of order of the thermal line width
of H,. Thus coherent cores are similar to, but not exactly the same as, isothermal balls of gas.

Two other results bolster our proposal that a transition to coherence takes place at ~0.1 pe. First, the
OH, C'0, and NH, maps show that the dependence of column density on size is much steeper
(N oc R ") inside R_., than outside of it (¥ oc R™%%), which implies that the volume filling factor of
coherent cores is much larger than in their surroundings. Second, Larson (1995) has recently found a
break in the power law characterizing the clustering of stars in Taurus at 0.04 pc, just inside of R_,.
Larson and we interpret this break in slope as the point at which stellar clustering properties change
from being determined by the (fractal) gas distribution (on scales greater than 0.04 pc) to being deter-
mined by fragmentation processes within coherent cores (on scales less than 0.04 pc).

We speculate that the transition to coherence takes place when a dissipation threshold for the MHD
turbulence that characterizes the larger scale medium is crossed at the critical inner scale R_,. We
suggest that the most likely explanation for this threshold is the marked decline in the coupling of the
magnetic field to gas motions due to a decreased ion/neutral ratio in dense, high filling factor gas.

Subject headings: ISM: clouds — ISM: kinematics and dynamics — ISM: structure — line: profiles

“Coherent Cores,” proposed in 1998
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ABSTRACT

After studying how line width depends on spatial scale in low-mass star-forming regions, we propose
that “dense cores” (Myers & Benson 1983) represent an inner scale of a self-similar process that charac-
terizes larger scale molecular clouds.

In the process of coming to this conclusion, we define four distinct types of line width-size relation
(Av =« R™), which have power-law slopes a,, a,, a4, and a,, as follows: Type 1-—multitracer, multicloud
intercomparison; Type 2--single-tracer, multicloud intercomparison; Type 3-multitracer study of a
single cloud; and Type 4single-tracer study of a single cloud. Type 1 studies (of which Larson 1981 is
the seminal example) are compendia of Type 3 studies which illustrate the range of variation in the line
width-size relation from one region to another.

Using new measurements of the OH and C'*O emission emanating from the environs of several of the
dense cores studied in NH, by Barranco & Goodman (1998; Paper I), we show that line width increases
with size outside the cores with a, ~ 0.2. On scales larger than those traced by C'*O or OH, *CO and
13CO observations indicate that a, increases to ~0.5 (Heyer & Schloerb 1997). By contrast, within the
half-power contour of the NH, emission from the cores, line width is virtually constant, with a, ~ 0. We
interpret the correlation between increasing density and decreasing Type 4 power-law slope as a
“transition to coherence.” Our data indicate that the radius R_, at which the gas becomes coherent (ie.,
a, —0) is of order 0.1 pc in regions forming primarily low-mass stars. The value of the nonthermal line
width at which “coherence ™ is established is always less than but still of order of the thermal line width
of H,. Thus coherent cores are similar to, but not exactly the same as, isothermal balls of gas.

Two other results bolster our proposal that a transition to coherence takes place at ~0.1 pc. First, the
OH, C'™0, and NH, maps show that the dependence of column density on size is much steeper
(N oc R ") inside R_., than outside of it (¥ oc R™%%), which implies that the volume filling factor of
coherent cores is much larger than in their surroundings. Second, Larson (1995) has recently found a
break in the power law characterizing the clustering of stars in Taurus at 0.04 pc, just inside of R_;.
Larson and we interpret this break in slope as the point at which stellar clustering properties change
from being determined by the (fractal) gas distribution (on scales greater than 0.04 pc) to being deter-
mined by fragmentation processes within coherent cores (on scales less than 0.04 pc).

We speculate that the transition to coherence takes place when a dissipation threshold for the MHD
turbulence that characterizes the larger scale medium is crossed at the critical inner scale R_,. We
suggest that the most likely explanation for this threshold is the marked decline in the coupling of the
magnetic field to gas motions due to a decreased ion/neutral ratio in dense, high filling factor gas.
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s there a transition to a “therma
Does gravity matter more there?
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p-p-v structure of the B5 region in Perseus
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STRONG Evidence for Coherence in Dense Cores

greyscale shows NH3 velocity dispersion,

arrows show gradient in dispersion
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Fragmentation in Coherent Cores?!
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Figure 1. Left panel: integrated intensity map of BS in NH3 (1,1) obtained with GBT. Gray contours show the 0.15 and 0.3 Kkms™! level in NH3 (1,1) integrated
intensity. The orange contours show the region in the GBT data where the non-thermal velocity dispersion is subsonic. The young star, BS-IRS1, is shown by the star
in both panels. The outflow direction is shown by the arrows. The blue contour shows the area observed with the EVLA and the red box shows the area shown in the
right panel. Right panel: integrated intensity map of B5 in NH3 (1,1) obtained combining the EVLA and GBT data. Black contour shows the 50 mJy beam ™' kms™"
level in NH3 (1,1) integrated intensity. The yellow box shows the region used in Figure 4. The northemn starless condensation is shown by the dashed circle.

Pineda et al. 2011
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Star Formation, According to Larson (4017?)
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Changes of Heart, rather than in Physics...
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What forces matter most on what scales?
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My best guess...

Gravity matters plenty in making GMCs.

Turbulent fragmentation (~no gravity
necessary) is a good bet on intermediate
scales (where density distribution is
lognormal).

Gravity matters again on small scales, in
clusters and coherent cores, and Jeans
fragmentation applies here.

Magnetic fields slow things down, a little.

Goodman et al. 2009a,b
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