
ar
X

iv
:1

20
9.

43
71

v1
  [

as
tr

o-
ph

.C
O

] 
 1

9 
Se

p 
20

12
Invited Spotlight Article for IRSN Astronomy and Astrophysics

Preprint typeset using LATEX style emulateapj v. 5/2/11

IMPLICATIONS AND APPLICATIONS OF KINEMATIC GALAXY SCALING RELATIONS

Dennis Zaritsky

Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721
Invited Spotlight Article for IRSN Astronomy and Astrophysics

ABSTRACT

Galaxy scaling relations, which describe a connection between ostensibly unrelated physical charac-
teristics of galaxies, testify to an underlying order in galaxy formation that requires understanding. I
review the development of a scaling relation that 1) unites the well-known Fundamental Plane (FP)
relation of giant elliptical galaxies and Tully-Fisher (TF) relation of disk galaxies, 2) fits low mass
spheroidal galaxies, including the ultra-faint satellites of our Galaxy, 3) explains the apparent shift of
lenticular (S0) galaxies relative to both FP or TF, 3) describes all stellar dynamical systems, including
systems with no dark matter (stellar clusters), 4) associates explicitly the numerical coefficients that
account for the apparent “tilt” of the FP away from the direct expectation drawn from the virial
theorem with systematic variations in the total mass-to-light ratio of galaxies within the half-light
radius, 5) connects with independent results that demonstrate the robustness of mass estimators when
applied at the half-light radius, and 6) results in smaller scatter for disk galaxies than the TF relation.
The relation develops naturally from the virial theorem, but implies the existence of additional galaxy
formation physics that must now be a focus of galaxy formation studies. More pragmatically, the
relation provides a lynchpin that can be used to measure distances and galaxy masses. I review two
applications: 1) the cross-calibration of distance measurement methods, and 2) the determination of
mass-to-light ratios of simple stellar populations as a function of age, and implications of the latter
for the stellar initial mass function.

1. INTRODUCTION

To develop an understanding of any set of objects, we
first classify them in the expectation that this will help
us uncover the rules that describe the set. For stars, this
systematic approach led to stellar classification, eventu-
ally to the Hertzprung-Russell diagram, and finally to
theories of stellar structure and nuclear burning that
comprise one of astronomy’s fundamental successes of
the previous century. For galaxies, this approach has
been less successful in uncovering simple intuitive guid-
ing principles. In part, this failure was due to the ab-
sence of a comprehensive description of galaxy structure
akin to that available for stars. Theories of galaxy for-
mation, currently represented mostly by numerical sim-
ulations (for example see Springel et al. 2005), are left
to describe a loosely tied set of observables that include
galaxy luminosity functions, clustering properties, color
distributions, and star formation rates for ensembles of
systems, rather than the specific characteristics of any
individual galaxy. As such, even if these models success-
fully reproduce the existing ensemble observations, our
understanding of galaxies would be quite different in na-
ture than our understanding of stars.
What does this long-running failure to identify sim-

ple rules of galactic structure signify? Perhaps it re-
flects a greater underlying complexity to galaxies than
to stars. Perhaps the formation and evolution of galax-
ies is so strongly sensitive to different variables that each
galaxy is an entirely distinct entity and we will never
find a simple description of galaxy structure that is both
broadly applicable and sufficiently precise for individual
galaxies. Seen in this light, it becomes clear that the
search for the unifying principles of galactic structure is
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in essence an attempt to determine the degree to which
simple, intuitive guiding principles for galaxy formation
can accurately describe real galaxies at a non-trivial level
of detail. At its core, this is an argument between the
potential value of an analytic description of galaxy for-
mation vs. the need for numerical simulations.
In this article, I describe recent work that has demon-

strated that there is indeed an underlying simple order to
stellar systems of all types and masses beyond that which
we can currently explain. The observed low scatter about
this empirical relationship, which ties together the basic
measurable properties of galaxies, attests to the presence
of underlying rules. Perhaps the low scatter arises from
a galaxy formation version of the central limit theorem
or, perhaps, it points to a more intuitively meaningful
connection between the way stars form and are packed
within dark matter potentials. I frame the discussion of
the relationship in terms of assumptions and refinements
to the virial theorem as applied to galaxies to clarify the
additional constraints and information provided by the
empirical findings. I will show how this new scaling re-
lation helps address a number of open questions, includ-
ing some regarding the nature of S0 and low luminosity
galaxies, while at the same time being applicable to all of
the galaxies that were well described by the Fundamen-
tal Plane (FP) and Tully-Fisher (TF) relations. After
describing this scaling relationship, which is referred to
as the Fundamental Manifold (FM), in reference to its
antecedent the FP, I proceed to describe ways in which
it can be exploited to measure other quantities of core
astrophysical interest, distances and galaxy masses.
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2. A LOGICAL PATH TO GALAXY SCALING RELATIONS

Over time, a disjoint set of rules regarding
galaxy structure, generally referred to as scaling re-
lations, have been identified (for some examples see
Faber & Jackson 1976; Kormendy 1985; Burstein et al.
1997; Khosroshahi et al. 2000; Graham 2002). The two
such relations that are in most common use, and include
measurements of the internal kinematics of galaxies, are
the Tully-Fisher relationship (TF; Tully & Fisher 1977)
and the Fundamental Plane (FP; Djorgovski & Davis
1987; Dressler et al. 1987). Quantitatively, however,
these are somewhat arcane parameterizations, with non-
integer coefficients that are derived empirically and de-
pend on observational details such as filter passbands (for
example see Pizagno et al. 2007). Qualitatively, these
differ from one another in that they apply to restricted,
non-overlapping sets of galaxy types and are functions of
different measured quantities. These relations are there-
fore at best partial answers in our quest for a compre-
hensive description of galactic structure. As usual, with
the benefit of hindsight, one can rework a clearer narra-
tive. We now trace a straightforward, contiguous path
to the FP and TF that will explain certain features of
those relationships, and to the unification of those re-
lationships into one proposed as being applicable to all
stellar systems (Zaritsky et al. 2006a, 2008).

2.1. Starting From the Virial Theorem

It is a common misconception that the scaling rela-
tions are simply rephrased versions of the virial theorem.
Although their origin lies with that theorem, their exis-
tence implies additional, non-trivial, physical constraints
on the nature of galaxy formation. This assertion is clar-
ified by expressing the virial theorem in a form reminis-
cent of the FP:

log r0 = 2 logV0 − log I0 − logΥ0 + logA0 − logB0 −C0,
(1)

where the subscript 0 indicates quantities measured at
a selected radius, r0: V0 is a measure of the internal
motions within that radius (typically either the circular
velocity, velocity dispersion, or some combination), I0
is the surface brightness within r0, Υ0 is the mass-to-
light ratio of the matter within r0, A0 and B0 are co-
efficients arising from the integration of the kinetic and
potential energy terms in the virial theorem (setting, for
example,

∫∞

0
v2r2dr ≡ AV 2), and finally C0 is an inte-

gration constant. In principle, r0 should be selected to
encompass the entire system because the virial theorem
applies to the system as a whole. However, in practice,
because galaxies have no well-defined edges and the low
surface brightnesses of their outskirts make measuring
these quantities difficult, r0 is selected to be a compro-
mise radius, such as that which encompasses half the
light of the system, rh. This is the first step away from
the formal (physically correct) application of the virial
theorem.
Additional assumptions and simplifications are neces-

sary to apply Eq. 1 to real systems. Because A, B,
C, and Υ can vary from system to system, and also for
different enclosed radii within the same system, there
is no a priori assurance that Equation 1 defines a sim-
ple, limited distribution of galaxies within the (r0,I0,V0)
space, aka a scaling relation. In other words, solutions

of Equation 1 exist for any combination of (r0,I0,V0) if
Υ0, A0, B0, and C0 are unconstrained, and yet galaxies
do not populate the entire (r0, I0, V0)-space. The more
confined the distribution of galaxies within this space,
the more restrictive the constraints on the models. The
value of a scaling relation is that it quantifies the degree
to which nature is limiting combinations of these param-
eters, and, by implication, underlying additional physics
that we have yet to appreciate that lies beyond the virial
theorem. If galaxies are found only in limited combina-
tions of r0, I0, and V0, then it must also be true that only
certain combinations of A0, B0, C0 and Υ0 are allowed.
Why?

2.2. A Key Simplification

I now take a slight detour in our quest for a comprehen-
sive scaling relation by considering an important result
regarding the measurement of galaxy masses. The virial
theorem, and hence Equation 1 in a slightly different
guise, is also the primary pathway to galaxy mass de-
terminations because it can be used to measure Υ. The
difficulty that underlies all such discussions (for examples
see, Page 1952; Bahcall & Tremaine 1981; Heisler et al.
1985; Erickson et al. 1987; Little & Tremaine 1987;
Zaritsky & White 1994) is evident from our expression of
the virial theorem in Equation 1, namely the unknown
numerical values of A, B, and C, hereafter referred to
as the virial coefficients. For simple geometries these
coefficients can be evaluated analytically, for example
the gravitational potential energy for a uniform density
sphere is 3GM2/5R, leading to B = 3G/5 in this par-
ticular example. However, in reality these coefficients
are particularly troublesome because we have no way to
calculate them without having a full knowledge of the
gravitational potential and the tracer particle distribu-
tion function and no guarantee that whatever values we
adopt remain at least roughly constant from system to
system.
In the face of such ignorance, one usually adopts

the simplest possibility — that these values are the
same from galaxy to galaxy — and then proceeds to
use simple modeling or back-of-the-envelope arguments
to obtain numerical values that are inserted into the
analogs of Eq. 1 (often referred to as mass estimators:
Bahcall & Tremaine 1981; Zaritsky & White 1994). In
certain cases, additional data, such as measurements of
the higher order moments of the line of sight velocity
distribution, constrain the orbits of the tracer particles
(Smith & Gray 1976; Dejonghe 1987; Merrifield & Kent
1990), providing independent information on the virial
coefficiencts. These approaches typically center on
the application of the Jeans equation (for example see
Merrifield & Kent 1990) or Schwarschild modeling (for
a few examples see Vandervoort 1984; Statler 1987;
Cretton et al. 1999) to help in the interpretation of the
data, but both require data that is far superior than what
is typically available. Nevertheless, such studies provide
critical tests for any less sophisticated method, assuming
that such methods are not inherently doomed by system
to system variations in the values of the virial coefficients.
The key prerequisite to the use of mass estimators is es-
tablishing that variations in the virial coefficients are not
the dominant source of uncertainty.
Walker et al. (2009) and Wolf et al. (2010) demon-
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strated, using a range of dynamical models for spheroidal
galaxies, that the enclosed mass at the half light radius,
Mh, as estimated from easily measured observables (size,
luminosity, and velocity dispersion), is robust to the un-
known details of the internal kinematics and structure
of the stellar system (robust to ∼ 10% or 0.05 dex,
Wolf et al. 2010). Those studies were motivated by the
desire to measure accurate and precise masses for low
mass stellar systems as tests of hierarchical structure for-
mation models and dark matter halo profiles1. However,
in the language of Equation 1, those studies show that
the virial coefficients are materially identical from sys-
tem to system — if one applies the equation at the half-
light radius, rh. Correspondingly, they also show that
if one attempts to use analogs of Eq. 1 for quantities
measured at radii other than rh one will realize more
scatter in the mass estimates. This work demonstrates
that the success of the FP, and the extended scaling re-
lation we discuss here, lies in large part to a fortuitous
choice of rh as the scaling relation’s fiducial radius. The
value of the Walker et al. (2009) and Wolf et al. (2010)
work, in the context of the current discussion, is that it
codified what had generally been assumed without much
supporting evidence and also highlighted when and how
the assumption breaks down.
Using the results of that work, I calculate a numerical

value for the combined quantity logAh − logBh − Ch

in Equation 1. Walker et al. (2009) find that Mh =
580rhσ

2
v , where the mass is in solar masses, rh is in pc,

and σv is the line of sight velocity dispersion2 in km s−1.
Rewriting this expression in a form similar to Eq. 1 by
defining Ih ≡ Lh/πr

2
h and converting units, results in

log rh = 2 logσv − log Ih − logΥh − 0.73 (2)

comparing Eqns. 1 and 2 highlights the obvious simi-
larity and leads us to associate σv with V for spheroidal
galaxies and conclude that logAh− logBh−Ch = −0.73.
The derived value of the combined virial coefficients in
Equation 2 can be tested by comparing mass estimates
within rh obtained using the more robust methods (Jeans
or Schwarschild modeling and/or gravitational lensing
model (Bolton et al. 2008)) to those obtained by apply-
ing Equation 2 to get Υh and then multiplying by the
luminosity Lh. Following that approach, Zaritsky et al.
(2008) independently (prior to the Walker et al. (2009)
study) found a combined value of the virial coefficients
of −0.75, in what turned out to be excellent agreement
with Equation 2. Confirmation that the combined virial
coefficients are roughly the same from system to system
comes form the low scatter about Equation 2 of real sys-
tems with independently determined values of Υh (see
Zaritsky et al. 2008).

1 Wolf et al. (2010) argue further that the true half-mass ra-
dius, rather than the projected half-mass radius works best, while
Walker et al. (2009) present an analysis in projected space. The
two results are consistent and we opt to use the Walker et al. (2009)
result which involves projecting models rather than deprojecting
the observations.

2 We explicitly add the subscript v to σ to specify that it rep-
resents a velocity dispersion. However, in cases where we want
to highlight some other aspect of σ, for example that it is mea-
sured within the half-light radius, rh, we will drop the subscript
v and replace it with the subscript h, as in σh. Nevertheless, σ
always refers to the line-of-sight velocity dispersion if it carries any
subscript.

Once the system-to-system stability of the virial coeffi-
cients is confirmed and accepted, the last remaining un-
known in Eq. 2 is Υh. Observationally, the scatter about
the Fundamental Manifold (FM) is limited to ∼ 0.1 dex,
and is even smaller for subsamples of galaxies drawn
from the individual studies that comprise the heteroge-
nous dataset in that work (Zaritsky et al. 2008). How-
ever, even if the scatter were zero, it would still be the
case mathematically, that any combination of (rh, σh, Ih)
would be allowed by Equation 2 if Υh is unconstrained3.
The existence of a scaling relation, where galaxies popu-
late a very limited region of (rh, σh, Ih)-space also implies
that Υh is constrained.
For dark matter free systems, the structure is now en-

tirely defined if one evaluates Υh using simple stellar pop-
ulation models. Because most of the stellar clusters for
which the set of (rh, σh, Ih) exist are old (> 10 Gyr), they
should have nearly the same value of Υh (even if they
are all of the same age, variations in Υh will exist due
to chemical abundance variations and dynamical evolu-
tion). With Υh set to a constant, Equation 2 describes a
plane in the log rh − log σh − log Ih-space. Indeed, Milky
Way globular clusters not only fall onto a plane, they
fall onto a line (Pasquiato & Bertin 2008; Zaritsky et al.
2011), which suggests even further constraints on their
structure, specifically an underlying relationship between
two of the three measured parameters that removes an
additional degree of freedom4.

2.3. Onward to the Fundamental Plane

Giant elliptical galaxies empirically obey the FP, which
has the form

log rh = β log σv − γ log Ih + δ, (3)

where β, γ, and δ are numerical coefficients. This rela-
tionship lacks the troublesome Υh that is included in Eq.
2. Within the framework of Eq. 2, the validity of the FP
therefore requires that Υh ∝ σ2−β

v I1+γ
h , for those galax-

ies that occupy the FP. One particular published fit to
the FP, rh ∝ σ1.2±0.07

v I−0.82±0.02
h from Cappellari et al.

(2006), therefore implies that 2 − β = 0.8 ± 0.07 and
1+ γ = −0.18± 0.02, or expressed in another form, that
Υh ∝ σ0.8

v I−0.18
h for the giant elliptical galaxies that sat-

isfy the FP. Although alternative fits of the FP exist
using different samples of ellipticals that are often ob-
served in different filter pass bands (for examples see
Jørgensen et al. 1996; Bernardi et al. 2003), they differ
in detail rather than in spirit. All of these relations im-
plicitly require that the mass-to-light ratio have power-
law dependence on σv and Ih.
The relationship between the total mass-to-light ra-

tio and the structural properties of galaxies must arise
from physics that dictates how luminous baryons settle
into dark matter potential wells. As such, it is crit-
ical to understand if this relationship holds for more

3 The only obvious physical constraint on Υh is the lower limit
defined by the mass-to-light ratio of a purely stellar population.

4 Qualitatively such constraints are not difficult to imagine. For
example, a cluster with extremely low surface density might not
have been able to form simply because the cloud from which it
would have formed from would have been tidally disrupted. Nev-
ertheless, the quantitative constraint on formation models provided
by Eq. 2 could be quite challenging and informative
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Figure 1. Υ in the B-band for local galaxies from
van der Marel & van Dokkum (2007) using a Jeans equation anal-
ysis. Here we take V = σv and have plotted all 62 of their systems.
The dotted line represents an estimate of Υ for a purely stellar pop-
ulation. The solid line represents the expectation based on the σv

dependence inferred from the Cappellari et al. (2006) FP.

than giant elliptical galaxies. Using direct measure-
ments of Υh from Jeans modeling (Figure 1; data from
van der Marel & van Dokkum 2007) we see both that the
power law relationship between Υh and σv holds for giant
ellipticals consistent with the slope inferred above, 0.8,
as it must due to their obeying the FP, and that it breaks
down for low σv ellipticals. It is not surprising that the
power-law description breaks down for low σv because
extrapolating the power law leads to unphysical values
of Υh that are smaller than those of a dark-matter-free
stellar population (the dotted line in the Figure). On the
basis of these data, the FP is manifestly only valid for
galaxies above a threshold σv ∼ 100 km sec−1. The full
relationship between Υh and (σv, Ih) must therefore be
more complex than a power-law. In addition to the flat-
tening at low σv seen in Figure 1, there is also evidence
for a turnover, or deviations from the FP, at large values
of σv (Zaritsky et al. 2008; Bernardi et al. 2011).
The FP is not an all-inclusive scaling relation, even

considering only spheroidal galaxies. The relationship
between Υh and σv must be of higher complexity that
presumed in the FP (Zaritsky et al. 2008; Tollerud et al.
2011). The FP applies only where a power law descrip-
tion is an acceptable approximation to this more com-
plicated relationship. Although the simple power-law
description of Υh fails, this failure is not a conceptual
problem because there was never any physical motiva-
tion for such straightforward behavior. However, Υh can
be described as a function of σv even when σv is < 100
km sec−1 if one is will to consider a more complex ana-
lytic description for the structure of galaxies.

2.4. Incrementally Adding Rotation

Even ignoring the galaxies with low σv in Fig 1,
the FP is only valid for galaxies whose stellar dis-
tribution is dynamically supported by stellar random
motions. We must therefore search for a description
that is more broadly applicable than the FP. In cer-

Figure 2. Deviation from the FP as a function of vr/σv for
two galaxy samples, ellipticals from van der Marel & van Dokkum
(2007) (filled red) and S0’s from Bedregal et al. (2006) (open blue).
As vr/σv increases the deviations become systematic and negative,
indicating some dependence on vr is needed in the scaling relation.
The interpretation of this trend is that the FP is not accounting for
the dynamical support provided by rotation and that this omission
causes larger deviations as the rotational support becomes more
important.

tain early-type galaxies, lenticulars in particular, but
also lower luminosity spheroidals (Davies et al 1983;
Bender 1990), rotation provides an important additional
source of dynamical support. This support is evident
in the classic diagram comparing the ratio of the ro-
tational velocity, vr, to the velocity dispersion, vr/σv,
vs. ellipticity (Davies et al 1983), but also becomes
evident when plotting the deviation from the FP (us-
ing the parameterization rh ∝ σ1.2±0.07

v I−0.82±0.02
h from

Cappellari et al. (2006)) vs. vr/σv using data for el-
lipticals (van der Marel & van Dokkum 2007) and S0’s
(Bedregal et al. 2006) in Figure 2.
As galaxies become more rotationally supported, the

use of only σv to measure their dynamical support
leads to a systematic deviation from the FP. Therefore,
a natural extension of the FP invokes a combination
of σv and vr, referred to here as V , to describe this
support. The commonly suggested combination is ex-
pressed as V =

√

v2r/α+ σ2
v , where α is a parameter

that is determined by the internal structure of the sys-
tem. Unfortunately, the existing data are insufficient to
discriminate between choices of α suggested previously
(Burstein et al. 1997; Weiner et al. 2006; Kassin et al.
2007; Zaritsky et al. 2008). A standard choice is α = 2,
although α = 3 is also acceptable (Weiner et al. 2006)
and Zaritsky et al. (2008) fit the data to argue for α =
2.68. The allowed range in values of α is related to the
unknown nature of the gravitational potential and the
tracer particle distribution function. Within an isother-
mal potential, if the orbits are isotropic, then α = 2,
while for other potentials and orbital anisotropies the
value of α 6= 2. Here, we will simply adopt α = 2. Al-
though the value of α is critical for certain applications,
such as determining whether subtle variations in the
value of Υh exists between ellipticals and S0’s, it is not
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so for the discussion here. In general, for pressure sup-
ported systems V reduces to σv, which is what we used
in our discussion of giant ellipticals, and for purely rota-
tionally supported galaxies V reduces to vr/

√
α, which

is what we will use for late type galaxies and then only
affects the normalization of the late-types relative to the
early types on the FM. We now proceed to discuss the
inclusion of late-type galaxies in this context5.
It is evident from Figure 2 that some of the scatter

in the FP, even among ellipticals, comes from neglect-
ing rotational support and that studies that use the FP
to search for stellar population differences among early-
types, for example those searching for differences among
galaxies in different environments, could face systematic
errors if the degree of rotational support differs in sys-
tematic ways. This issues could even trickle down to the
interpretation of studies that do not use the FP, but use
σv as an indication of mass (Zhu et al. 2010).

2.5. Onward to and Beyond the Tully-Fisher
Relationship

Unlike the FP, the TF does not involve a radial scale
and it has resisted improvement (i.e. a reduction in
scatter) via the addition of other structural parameters
(Aaronson & Mould 1983). The lack of scale dependence
is a bit puzzling in that one would expect a galaxy that
is physically twice as large as another, but with the same
rotation velocity, to have twice as much mass and hence
twice the luminosity. As such, the existence of the TF
implies that the larger galaxy must have a commensu-
rate lower surface brightness (so that it does not have a
higher total luminosity) — and that this tradeoff must
be nearly balanced to avoid the expected scale depen-
dence. Some hints of a radial dependence are appearing
with larger datasets and better data. While these stud-
ies suggest that this balance is not exact (Courteau et al.
2007; Saintonge & Spekkens 2011), we again see that the
existence of scaling relations requires that the process
of galaxy formation results in systematic packing of the
luminous baryons. For disks, analytic formation mod-
els have long advocated a connection between the spe-
cific angular momentum of the baryons and surface den-
sity or disk size (Fall & Efstathiou 1980; Dalcanton et al.
1997), which goes part of the way to explaining this bal-
ance. Furthermore, systematic behavior between rota-
tion curves and dark matter halos has been identified
(Salucci et al. 2007), which demonstrates the existence
of connections between the formation of the entire galaxy
and the properties of the inner, observable component.
Because we seek a universal scaling relation, I avoid

the TF for now and assert that Eq. 2, inclusive of the
combined kinematic support from vr and σv, should ap-
ply to late type galaxies. I therefore rewrite the FP as an
expression for the luminosity, L, for comparison to TF,
again using the Cappellari et al. (2006) parameterization
of the FP,

L = 1.2 logV + 0.18 log Ih + rh + Constant (4)

5 In principle, one can determine the value of α by requiring
agreement between early and late type galaxies for a single value
of the constant in Eq. 2. However, in practice because of the
dichotomy between FP and TF studies, the samples of early and
late type galaxies have been observed and analyzed differently and
small differences in photometric systems or analysis technique are
sufficient to explain the offsets found.

Figure 3. Predictions of galaxy luminosity from TF and our re-
written FP for disk galaxies. We compare the predicted luminosi-
ties (x-axis) to measured luminosities using the galaxies Hubble
distance (y-axis) for galaxies from the Pizagno et al. (2007) study
using their best-fit TF relationship (left panel) to and that using
our re-expression of the Cappellari et al. (2006) FP relation and
the use of the V parameter (right panel). The scatter is evidently
smaller in the right panel (0.75 in the left one, 0.47 in the right),
showing that including a radial scale, as is done in the FM, adds
significant information.

In Figure 3, I compare the predictions of L from the TF
(i.e. using the circular velocity and the best fit TF re-
lation presented by Pizagno et al. 2007) and from the
rewritten FP (Equation 4) with the luminosities inferred
using distances calculated from their recessional veloci-
ties for disk galaxies with V > 100 km sec−1 (because the
FP applies only to such galaxies). I use the Pizagno et al.
(2007) study because it is one of the few TF samples that
includes measurements of rh. The scatter is visibly lower
in the re-written FP relation than in the TF relation
(0.47 vs. 0.75), demonstrating that the FM parameter-
ization is at least as good as the best-fit TF. Previous
studies that searched for a scale dependence may have
had a difficult time finding one because they either used
different radii than rh, such as the disk scale length or an
isophotal radius, or faced additional noise from not using
the rotational velocity at or near rh. Although for disk
galaxies, with their mostly circular orbits, one can argue
that M ∝ rv2r should be a fairly good approximation re-
gardless of which of the standard fiducial radii (disk scale,
isophotal, half light) is chosen (see Yegorova & Salucci
2007, for empirical support for this claim), the only one
of these radii that has a direct connection to the total
luminosity is the half light radius.
To see how the TF is a subset of the relationships al-

lowed by Eq. 2, I begin with the TF relation

L = Avδr , (5)

where A and δ are constants, rewrite the expression using
the definition of Ih, and rearrange it to be in the form of
Eq. 1,

log rh = δ log vr − log Ih + Constant. (6)

Again there is a strong similarity to Eq. 2 and the
validity of both equations for giant spiral galaxies sug-
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gests that V = vr and that Υh ∝ v2−δ
r for these spi-

rals. Because empirically δ ∼ 3 − 4 (Pizagno et al.
2007; Courteau et al. 2007), Υh decreases as vr increases.
Therefore, it is wrong to accept that the TF applies in
general because, like the FP, it too faces a fundamental
conceptual flaw if extended beyond the class of galaxy
from which it was derived. The FP predicts unphysi-
cal values of Υh for low σv systems. The TF predicts
unphysical values of Υh for high vr galaxies. Therefore,
just as in the case of the FP, some curvature in the rela-
tion is necessary for disk galaxies. Suggestions of nonlin-
earity in the TF relation have existed for over 20 years
(Mould et al. 1989; Persic & Salucci 1991). Neither the
FP nor TF hold across all galaxy masses, and a more
complex relation is needed between Υh and V .

2.6. Closure on a Universal Galaxy Kinematic Scaling
Relation

Returning to Equation 1, we see that the three ingre-
dients involved in arriving at a universal galaxy scaling
relation are 1) the virial theorem, 2) the robustness of
mass estimates at the half light radius, which affirms
that the virial coefficients are relatively independent of
the detailed structure and kinematics of each galaxy, and
3) the relationship between Υh and the directly mea-
surable structure parameters (rh, Vh, Ih). The first is a
natural expectation for collapsed systems, particularly
since rh ≪ rvirial. The second has been demonstrated
by Walker et al. (2009) and Wolf et al. (2010) but has
been evident in the low empirical scatter of the scaling
relations for decades. The last remains perhaps the most
mysterious because it involves a connection between the
efficiency of star formation and the packing of those stars
within dark matter halos of galaxies. Understanding this
behavior is particularly challenging given that the val-
ues of Υh for galaxies vary between values of ∼ 1 and
∼ 1000. This behavior lies at the core of understanding
galaxy formation.
The classic scaling relations, FP and TF, implicitly

adopt a power-law scaling between Υh and the observ-
ables. This description fails as we proceed to either low
(Figure 1) or high σv galaxies. The power-law assump-
tion must be abandoned. A more complicated manifold
relates the observables to Υh and was named the Funda-
mental Manifold (Zaritsky et al. 2006a) in reference to
its antecedent the FP. In the interest of completeness,
I present one specific parameterization of that surface
from Zaritsky et al. (2011)

Υh=1.49− 0.32 logVh − 0.83 log Ih + 0.24 log2 Vh +

0.12 log2 Ih − 0.02 logVh log Ih. (7)

However, because there is yet no set of homogeneous data
that includes internal kinematics and spans all galaxy
types and luminosities, the derivation of this surface re-
mains preliminary and varies quantitatively depending
on what sample is used. Additionally, there is no phys-
ical motivation for why the surface has any particular
functional form. As such, larger samples that cover the
full parameter space are critically needed. Should sub-
sequent investigations define a completely different func-
tional form for Υh, that finding would not invalidate any
of the discussion presented so far other than Equation 7.
Similar curvature is seen in the behavior of Υ in

efforts to match the halo and stellar mass functions
(van den Bosch et al. 2003; Yang et al. 2005) and lens-
ing mass measurements and luminosities (Hoekstra et al.
2005; Madelbaum et al. 2006). Because the relationship
is currently only empirical, the finding that all stellar sys-
tems can be modeled with a simple, smooth functional
form is perhaps surprising — but it hints at rules gov-
erning galaxy formation that are currently not fully un-
derstood.

2.7. What Comes Next?

On the observational front, the refinement of the FM
requires a homogeneous dataset that includes all galaxy
types and luminosities and which is volume representa-
tive (not necessarily complete). Such data would enable
1) a determination of α, 2) tests of whether the scatter
increases for certain classes of galaxies, which would ad-
dress whether the virial coeffciients are sufficiently con-
stant across galaxy types, and 3) a determination of how
the surface relating Υh to (Vh, Ih) is populated to identify
additional constraints on galactic structure. Care should
be taken to minimize sources of photometric scatter by
choosing passbands that minimize variations arising from
stellar population variations and extinction. The sample
should consist of galaxies with independent distance es-
timators so that distance uncertainties contribute mini-
mally to rh. Currently, the distances are calculated us-
ing the recessional velocities and an adopted value of the
Hubble constant. 2-D kinematics would help address is-
sues related to inclination corrections for rotation speeds
and help in the measurement of σv and vr in systems
where both contribute noticeably to the dynamical sup-
port. The sample might also include more systems where
Υh can be estimated in an independent manner, for ex-
ample through the use of gravitational lensing. Finally,
and particularly important for questions related to the
nature of the luminous baryon distribution, it is neces-
sary to have independent estimates the stellar mass-to-
light ratio, Υ∗. One such approach at measuring Υ∗

is to use infrared luminosities and colors (Meidt et al.
2012; Eskew et al. 2012), although these estimates de-
pend on stellar population models, that have their own
set of uncertainties. Should these uncertainties be sorted
out in subsequent work, we would be able to use the
FM and these estimates to uncover the dark matter frac-
tions for all galaxies within rh in a way now done only
with more sophisticated modeling on smaller samples of
galaxies (Cappellari et al. 2012).

3. DISCUSSION

3.1. The Bifurcation of Stellar Systems

The function that describes the relation between Υh

and (Vh,Ih) is roughly parabolic along the Vh axis and
power-law like along the Ih axis (Equation 7). The
general shape places constraints on how baryons set-
tle and become stars within dark matter potentials.
However, an important aspect that I have mostly ig-
nored so far is how this surface is populated. In
particular, there is a bifurcation in the population
at low Vh where two branches develop, one head-
ing upward to large values of Υh, populated by the
Local Group dwarf spheroidals (Zaritsky et al. 2006a;
Tollerud et al. 2011; Salucci et al. 2012) and ultrafaint
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galaxies (Zaritsky et al. 2011; Willman & Strader 2012),
and another heading downward to low values of Υh, pop-
ulated by ultracompact dwarf galaxies and star clusters
(Mieske et al. 2008; Zaritsky et al. 2011). The question
is whether this bifurcation points to a problem with
the scaling relation (Forbes et al. 2008) or whether it
is pointing to a fundamental difference between sys-
tems with and without dark matter halos (Zaritsky et al.
2011).
The bifurcation may lie at the heart of a phys-

ical distinction between galaxies and star clusters
(Willman & Strader 2012) and the FM may be a way
to help explore that division. In particular, it would be
of interest to determine whether there are objects that lie
between these two branches, or whether the branches are
absolute (Misgeld & Hilker 2011). Unfortunately, strong
selection effects come into play. At the extremely low sur-
face brightnesses of the ultrafaint galaxies, these systems
require star counts to detect and are therefore not within
reach if they lie outside the Local Group. It may be pos-
sible, with the next generation of sky surveys, to detect
large numbers of such objects even though we are con-
fined to finding only the local ones (Tollerud et al. 2008).
On the high surface brightness side, these objects become
confused with stars (Hilker et al. 1999; Drinkwater et al.
2000; Phillipps et al. 2001) and therefore require unbi-
ased redshift surveys to identify (for recent examples see
Misgeld et al. 2011; Chiboucas et al. 2011). There are a
handful of Galactic objects that might lie between the
branches (Zaritsky et al. 2011) but these systems are all
of low mass, highly susceptible to dynamical effects, and
may therefore not satisfy the basic requirement of Eq. 1,
which is that the system satisfy the virial theorem.

3.2. Theoretical Work

The physics of galaxy formation determines the rela-
tionship between Υh and the structural parameters of
each galaxy. As such, we desire a theory that will ex-
plain the principle observables of each galaxy individ-
ually. Many attempts to reconcile the theory of galaxy
formation as currently understood to observed scaling re-
lations (either one for spheroids or disks) exist (for some
examples see Dutton & van den Bosch 2012, and refer-
ences therein). The key to these models is how one fol-
lows the complicated physics of galactic feedback and an-
gular momentum transfer between the baryons and dark
matter. The models can reproduce general galaxy prop-
erties if one artificially imposes how these effects scale
with halo mass. Of course, the next question is why
such recaling exists. Dutton & van den Bosch (2012)
conclude that certain processes, such as the angular mo-
mentum evolution of galaxy disks, are not yet sufficiently
well understood to be modeled sufficiently accurately to
reproduce the scaling relations. Empirical scaling rela-
tion provide challenging benchmarks for the models. Ex-
tending the range of these scaling relations, for example
down to ultrafaint galaxies, is invaluable because it places
even stronger constraints on hypothesized physical mech-
anisms. For example, Anderson & Bregman (2010) and
McGaugh (2012) used the baryonic TF relation to argue
that there are basic conceptual problems with feedback
models, while Dutton (2012) then used this argument to
examine how to obtain plausible models for star forma-
tion and feedback. This article is not intended as review

of theoretical models, but such modeling is critically de-
pendent on the best possible empirical constraints. Be-
cause current simulations lack the ability to treat the
physical processes in detail and realistically, they are not
reliably predictive and must constantly be compared to
the available constraints.

4. APPLICATIONS OF THE FM

Although understanding galaxy formation remains the
principal goal behind refining and understanding the FM,
the relationship also has various uses that do not require
a theoretical underpinning. For example, as with the
FP and TF before it, the FM can be used as a distance
estimator because rh is in physical (distance dependent)
units.

4.1. Using the Scaling Relationships for Distance
Measurements

The advantages that the FM provides over its an-
tecedents come from its universality. For example, the
FM is applicable to low luminosity local systems, in
which individual stars are resolved but neither the FP or
TF apply. This capability is critical because certain dis-
tance methods require resolved stellar populations, which
are beyond our current technology’s reach for most of the
galaxies that we know satisfy the FP and TF. As such,
the FM can be used to cross-calibrate distance estimators
even when those estimators are not found in the same
galaxy. For example, Figure 4 (reproduced from Figure
2 of Zaritsky et al. (2011)) illustrates why it is difficult to
compare distances obtained from surface brightness fluc-
tuations (SBF) and Cepheids if one requires having dis-
tance estimates for the same galaxy from the two meth-
ods. Likewise, certain methods tend to work over limited
distance ranges and are therefore not suitable for com-
parison with other. Using the FM as a fiducial, distances
obtained using SN Ia, Cepheids, SBF, the luminosity of
the tip of the red giant branch (TRGB), circumnuclear
masers, eclipsing binaries, RR Lyrae stars, and the plan-
etary nebulae luminosity functions (PNe) were compared
by Zaritsky et al. (2011).
This comparison is done by placing galaxies with in-

dependent distance measures on the FM, using the dis-
tance from each particular distance estimator to convert
rh from angular to physical units. In Figure 5 we repro-
duce Figure 7 from Zaritsky et al. (2011) that presents
the FM relationship derived using the distance measure-
ments obtained from each type of distance estimator for
which there are at least 10 galaxies with all the neces-
sary data. The velocity dispersion dominated systems,
which have measured velocity dispersions and sometimes
also have stellar rotation values, are plotted in the up-
per panels of the Figure and the purely rotationally sup-
ported galaxies, which have no quoted stellar velocity
dispersion and where the inclination-corrected H I width
is adopted as a measure of vr, are plotted in the lower
panels. In general, if there is a stellar velocity disper-
sion measurement, the galaxy is a pressure supported
systems (vr/σv < 1). Within each panel a color-code
describes morphology, dividing the early and late type
galaxies at a T-Type of 1. The zero point of the FM is set
using the results from the pressure-supported, SBF sam-
ple, which is the largest subsample of galaxies and also
predominantly consists of early-type galaxies, which are
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Figure 4. Distribution of morphological types as a function of
distance measuring technique among a sample drawn from NED-
1D. The Y-axis is arbitrarily normalized to match scales among
subsamples. Differences among the types of galaxies accessible
to various methods are clear (adopted directly from Figure 2 of
Zaritsky et al. 2011)

less susceptible to extinction and stellar population vari-
ations. Although many more galaxies than those shown
have distances measured using at least one of these meth-
ods, many of those lack the measurements necessary to
place them on the FM. The solid lines represent the FM
and the only “free” parameter involved here is the nor-
malization applied to get the mean SBF relation exactly
(on average) on the FM. Normalization or slope errors for
any particular distance estimator suggests that there is a
problem with that estimator. Increased scatter suggests
a lower precision for that particular distance estimator.
A cursory examination of the panels reveals no serious

problems with any of the distance estimators as applied
to any of the galaxy subsamples, even though some per-
form better than others (either in terms of zero point or
scatter). There are a few individual galaxy outliers, al-
though it is often the same galaxy that is an outlier in
multiple panels because distances are sometimes avail-
able from multiple estimators, suggesting that fault lies
not with the distance estimate but rather with one of the
other parameters that enters the FM. There are no sta-
tistically significant differences in zero point between the
distance estimators (Zaritsky et al. 2011), although the
allowed differences are still above the level of precision (∼
percent) that is the goal of current studies. Increasing
the sample significantly, which is well within what can
be done with a reasonable investment of resources, will
provide stricter limits on potential systematic differences
among estimators.
Zaritsky et al. (2011) also examined the FM residuals

within a given distance estimator vs. other potential
sources of systematic error. For example, they examined
the relationship between FM residual and host galaxy
metallicity for distances derived using SNe Ia, they found
a correlation, confirming previous claims of metallicity-
dependent correction to the Ia distances (Gallagher et al.
2008; Howell et al. 2009; Romaniello et al. 2008).
Once established as a distance estimator itself, the

Figure 5. FM using measured distances. A comparison of the
FM’s obtained using different distance estimators. The sample is
divided into pressure supported (upper panels) and rotationally
supported (lower panels). Furthermore, color and shape codes dis-
tinguish galaxy morphologies (blue squares for late type, red cir-
cles for early type). The x axis is log rh in kpc, and the y-axis
is 2 log V − log Ih − logΥh − C, where V is in km sec−1, Ih is in
L⊙/sq. pc, and Υh is in solar units. C is obtained by calibrating to
the sample of surface brightness fluctuation distances (SBF) for the
pressure supported galaxies. The line is the 1:1 expectation, not
a fit to the data (adopted directly from Figure 7 of Zaritsky et al.
2011).

FM can be used for a large set of galaxies. In Figure
6, I reproduce Figure 12 of Zaritsky et al. (2011) that
shows the relationship between recessional velocity and
distance obtained from the FM for the same set of galax-
ies shown in Figure 5. Comparing between different nor-
malization of the distances, using the various distance
estimators available to them, Zaritsky et al. (2011) cite a
systematic uncertainty of 4 km sec−1 Mpc−1 in H0. The
inset shows the result of fitting the relationship for galax-
ies with v > 1500 km sec−1, 3σ outliers excluded, binned
by 10, with the fit forced through the origin. The low v
region is excluded to minimize the effect of local flows.
They find a best fit slope corresponding to H0 = 78 ± 2
(random) ± 4 (systematic) km sec−1 Mpc−1. The es-
timate of the systematic uncertainty does not include a
variety of potential problems that they ignored (modeling
of bulk flows, internal extinction corrections, adjustment
for potential biases in the galaxy sample, etc.), but this
calculation was done primarily as a plausibility exercise
to demonstrate the use of the FM.
One of those sources of uncertainty, internal extinction,

would be mitigated by going to the infrared, as shown
most recently by Freedman & Madore (2011) for Spitzer
wavelengths where the scatter about the TF relation is
reduced from 0.43 in the extinction-corrected B−band
data to 0.31 in the non-extinction-corrected 3.6µm data.
One avenue for advancement is therefore the use of large
IR photometric galaxy samples (Sheth et al. 2010).
The most straightforward way for advancement is to

obtain kinematic measurements for a large number of
galaxies with existing distance measurements. In Fig-
ure 7 I present a subset of galaxies with SNe Ia distance
measurements and highlight those for which all the nec-
essary data are available. An interesting indication of
how these data may help refine distances is provided by
two outliers from the FM (at 50 Mpc and the one da-
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Figure 6. Hubble diagram using distances derived using the FM.
Pressure supported systems are plotted as red circles and rota-
tionally supported systems as blue squares. Inset shows data at
v > 1500 km sec−1 binned so that each bin contains 10 galaxies.
The fitted line is constrained to go through the origin and corre-
sponds to H0 = 78±2 (random) ±4 (systematic) km sec−1 Mpc−1

(adopted directly from Figure 12 of Zaritsky et al. 2011)

Figure 7. SN Ia distances and the FM. The upper panel shows
the residuals about the FM relation (∆FM) for galaxies with SN
Ia distances. Blue and red symbols denote rotationally and pres-
sure supported systems respectively. The bottom panel shows the
Hubble diagram for galaxies with SN Ia distances available in the
NED 1-D database. The galaxies with all the necessary data to
be placed on the FM are highlighted in red. There are numer-
ous galaxies with existing SN Ia distances that could be added to
the FM with reasonable observational effort. The most noticeable
outliers from the FM are also outliers in the Hubble diagram.

tum beyond 100 Mpc), which are both outliers in the
SNe Hubble diagram. That these galaxies are outliers
in both panels suggests that there is a problem with the
distance. With larger samples, one could then attempt
to find the cause for the distance anomaly by comparing
with other characteristics, either those of the SNe itself
or those of the host galaxy. Refining the SNe distances
has broad implications for cosmology.

4.2. Using the Scaling Relationships for Mass
Measurements

The stellar mass of a galaxy is intricately con-
nected to a variety of galaxy properties: environ-
ment (Kauffmann et al. 2004), metal abundance
(Tremonti et al. 2004), star formation history
(Bundy et al. 2006), and dark matter halo mass
(van den Bosch et al. 2003), to name a few. However,
the stellar mass estimates we rely on are quite crude
and potentially rife with systematic errors. A seemingly
straightforward way to estimate the stellar mass is to
use measurements of the stellar populations, such as
color, to estimate Υ∗ and to convert the luminosity
into a mass. However those estimates depend on
three factors that are not well understood: 1) the
galaxy’s star formation history, which can be quite
complex (see for examples Harris & Zaritsky 2004, 2009;
Eskew & Zaritsky 2011; Weisz et al. 2011) 2) stars’
behavior during the phase(s) of their life at which
they are at their most luminous, which is problematic
(Maraston et al. 2006; Conroy, Gunn, & White 2008;
McQuinn, et al. 2011; Melbourne et al. 2012) and 3)
the initial distribution of stellar masses (the initial mass
function or IMF), which is a well-known unresolved
problem (Bastian et al. 2010). An alternative method is
to dynamically measure the mass and, if necessary, make
a correction for the amount of dark matter present. The
FM enables us to measure the total masses within rh.
An interesting set of stellar systems to examine are

stellar clusters, which presumably contain no dark mat-
ter and are single age populations. As such, the es-
timates of Υh obtained using the FM provide a mea-
surement of the mass-to-light ratio of a stellar pop-
ulation, Υ∗, of a certain age. A large compilation
of Local Group stellar cluster data was published by
McLaughlin & van der Marel (2005), although the veloc-
ity dispersions available at the time of that study were
either for the older (> 10 Gyr) clusters or the very young
ones (< 100 million yr). Zaritsky et al. (2012) filled in
this range by observing clusters over the full range of
ages.
Discrepancies between models and observations of

galaxies, when found, are often attributed to de-
viations in the IMF from the adopted prescrip-
tion (for some recent examples see van Dokkum
2008; Dabringhausen et al. 2009; Treu et al. 2010;
van Dokkum & Conroy 2010; Dutton et al. 2012) rather
than problems with either the star formation history or
stellar evolutionary models. However, direct measure-
ments of the initial mass function are difficult for various
reasons (see Bastian et al. 2010, for a review), particu-
larly over the full range of environments and conditions.
These clusters provide one of the most direct tests of the
IMF.
The principal empirical result presented by

Zaritsky et al. (2012), the relationship between Υ∗

and age, is reproduced in Figure 8 (their Figure 9
reproduced here). The naive expectation, that Υ∗

rises continually with age is evidently not reproduced
by the data. Internal dynamics, principally two-body
relaxation which causes preferential loss of low mass
stars over time (Spitzer 1958; Kruijssen 2008), plays
a role here, but it is insufficient to explain the large
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drop in Υ∗ between a few and 10 Gyr. Zaritsky et al.
(2012) support this claim by applying the dynamical
models of Anders et al. (2009). A second possible
reason for why the naive expectation may not be met
is the influence of binary stars, which can artificially
inflate the observed velocity dispersion of a system
(for examples see Minor et al 2010; Gieles et al. 2010).
Again the effects are considered and found to be too
weak to explain the observations or too contrived,
requiring unknown an binary population that affects
the kinematics of ∼ 1 Gyr populations but not those of
age > few Gyr. Variations in the initial mass function
among these systems is a viable explanation.
In the same Figure, Zaritsky et al. (2012) also included

two model tracks for the evolution of simple stellar pop-
ulations. First, the plotted values of Υ∗ for the stel-
lar clusters are corrected for the effect of internal dy-
namical evolution using the results of the Anders et al.
(2009) models. They plot the results of PEGASE models
(Fioc & Rocca-Volmerange 1997) using a Salpeter (1955)
IMF, spanning from 0.1 to 120 M⊙, with default stel-
lar mass loss and binarity parameters, and metallicity
matching the mean of the young clusters (−0.4). These
model values are not renormalized in any way and yet
do an acceptable job of reproducing the trend seen in
the younger clusters, for clusters of 8 <log(age [yrs])
< 9.4. Discrepancies at younger ages can be ignored
due to the likelihood that these clusters are not relaxed
(Goodwin & Bastian 2006). The second model is that of
a lightweighted Kroupa (2001) IMF, where ∼ 50% of the
mass is removed (lightweighted) to produce the match
in the Figure. A Charbrier (2003) IMF works similarly.
One interpretation of this Figure hypothesizes the pres-
ence of two IMFs for star clusters, one IMF being primar-
ily, but not exclusively, appropriate for older, metal poor
clusters and the other for primarily, but not exclusively,
for younger, metal rich clusters. The young (log(age
[yrs])<9.5) clusters are well-described by a bottom-heavy
IMF, such as a Salpeter IMF, while the older clusters are
better described by a top-heavy IMF, such as a light-
weighted Kroupa IMF, although neither of these specific
forms is a unique solution. Ongoing work will at least
double the sample size, but we will eventually need to
obtain high resolution deep imaging of the intermediate
age clusters to confirm that these have a bottom heavy
mass function. While some work has been done with
HST (Glatt et al. 2011), deeper, less ambiguous results
are necessary to definitively prove or disprove this inter-
pretation. Such work is within reach of adaptive optics
on large telescopes.
In addition to stellar clusters, the FM can also be ap-

plied to estimate the masses (within rh) of galaxies across
cosmic time. In particular, this approach can test the hy-
pothesis that large deviations from stellar evolutionary
models, rather than IMF variations, are responsible for
sudden drop in Υ∗ after a few Gyr. Using measurements
of the ages and structural parameters of two indepen-
dent sets of early type galaxies, Zaritsky et al. (2012)
compared the derived values of Υh to those derived for
the clusters. Such comparisons constrain both Υ∗ and
the fraction of the mass in the form of dark matter
within rh. They used both a study of Sloan Digital Sky
Survey (SDSS) local galaxies presented by Graves et al.
(2009) and a study of galaxy cluster FP measurements

Figure 8. The evolution of Υ∗ as inferred from early type galaxies
and comparison to models and our cluster data. The stellar cluster
data are plotted in solid circles (black), the results obtained us-
ing the results from van Dokkum & van der Marel (2007) are plot-
ted with open circles (red) when normalized to match the results
from the sample of Graves et al. (2009), which are plotted with
squares (pink). Also shown are the van Dokkum & van der Marel
(2007) data assuming a dark matter fraction of 80%, so as to qual-
itatively match to the stellar cluster data, in open circles (blue).
The dark matter fraction is likely to be somewhere between 0 and
80%. The upper solid line represents the values of Υh from a
PEGASE model of a population with an instantaneous burst at
t = 0 and a Salpeter IMF, while the lower represents a model with
a light-weighted Kroupa IMF (adopted directly from Figure 9 of
Zaritsky et al. (2012)).

presented by van Dokkum & van der Marel (2007). The
latter study provides only differences in Υh as a
function of redshift, so global shifts of Υh are al-
lowed. The results of those studies are include in Fig-
ure 8 for comparison to the cluster values (after the
van Dokkum & van der Marel (2007) data were normal-
ized to match the Graves et al. (2009) data). An im-
portant distinction for the galaxy results, is that these
systems do contain dark matter and that the exact pro-
portion of dark matter within rh is unknown and likely
to vary as a function of the structural parameters (for
some examples from the long history of this topic see
Babul & Rees 1992; Graham 2002; Marinoni & Hudson
2002; van den Bosch et al. 2003; Cappellari et al. 2006;
Zaritsky et al. 2006a; Wolf et al. 2010).
The comparisons between clusters, galaxies and mod-

els provide several interesting results. The early-type
galaxies lie between the extrapolation of the young clus-
ter trend and that of the old clusters. Because of the
dark matter content of galaxies, the actual value of Υ∗

for the galaxies is likely to be lower than that plotted.
This suggests that they will not lie on the track defined
by the young clusters, which is already slightly above
the galaxy data6. On the other hand, unless the dark
matter fraction is quite large (∼ 80%, the blue points in
the Figure), the ellipticals will not resemble the old clus-
ters either. Although the possibility of such a large DM
fraction is not excluded, we may be seeing the effects of
having a mixture of populations of stars, some with the
IMF of the old clusters and some with that of the young
clusters. However, there is no strong deviation from the
general behavior predicted by simple stellar evolutionary
models and so that does not appear to be the cause of

6 Careful modeling is necessary to reach robust conclusions be-
cause the galaxies are not necessarily single age populations. If an
old galaxy has a small population of younger stars, those stars will
lower the effective Υ of the galaxy.
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the behavior of Υ∗ in the stellar cluster sample.

5. SUMMARY

Order implies rules. Rules governing the structure of
dynamical systems are the manifestation of underlying
physics. Understanding this physics is the overarching
goal of the study of galaxy formation and evolution. Is
there order among galaxies?
In the early days of modern astronomy, the morpholog-

ical appearance of galaxies was the principal characteris-
tic that dominated attempts at describing order among
galaxies (Hubble 1926; Sandage 1961). This approach
has been mostly upended by 1) the realization that ac-
cretion and mergers drive galaxy evolution and alter mor-
phologies, 2) the dynamical importance of dark matter,
which clearly is not a part of a morphological scheme,
3) the increasingly quantitative nature of astronomy and
large digital surveys, and 4) the discovery of scaling re-
lations such as the Fundamental Plane (FP) and Tully-
Fisher (TF). In this review, I have described the devel-
opment of a scaling relation that is an extended version
of the FP, called the Fundamental Manifold (FM), that
works on all classes of stellar systems and exhibits a scat-
ter comparable to the more restrictive FP and TF rela-
tions.
The FM relationship depends on three distinct condi-

tions being satisfied: 1) that the virial theorem is ap-
plicable, 2) that the derived mass enclosed within the
half-light radius, rh, be at most only weakly dependent
on the distribution function of the tracer particles and
the gravitational potential, and 3) that the mass-to-light
ratio within rh, Υh, depend on at most the observed
parameters Vh and Ih. The first is as expected be-
cause we are working with systems that are virialized
(rh ≪ r200). The second is somewhat surprising, but
has now been verified at least for spheroidal systems,
which are the ones that are most likely to have large
variations among distribution functions, by the work of
Walker et al. (2009) and Wolf et al. (2010). The last still
requires explanation, although it is manifestly a critical
component of a complete theory of galaxy formation and
evolution.
Going forward there are several areas that will yield

immediate returns. First, homogenous samples across
galaxy type with detailed kinematics so that there is uni-
form, high quality data across the parameter space are
critical to testing Equation 7, measuring the parameter
that relates velocity dispersion and rotation, α, and de-
termining the intrinsic scatter about the relation as a
function of galaxy mass and morphology. Second, an im-
proved understanding of the initial mass function is key
to accurate and precise calculations of Υ∗. Determin-
ing Υ∗ is necessary to uncovering the behavior of dark
matter as a function of mass and galaxy type. Third,
direct application of the FM to a number of topics, in-
cluding distance determinations, will yield results even
if a deeper understanding of galaxy formation remains
elusive in the short term. The FM, like the FP and TF
before it, should help propel research forward in a wide
range of topic areas.
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