
Class 7. Numerical Linear Algebra, Part 2

LU Decomposition

• Suppose we can write A as a product of two matrices: A = LU, where L is lower triangular
and U is upper triangular:

L =







× 0 0
× × 0
× × ×





 U =







× × ×
0 × ×
0 0 ×







• Then Ax = (LU)x = L (Ux) = b, i.e., must solve,

(1) Ly = b; (2) Ux = y.

• Can reuse L and U for subsequent calculations.

• Why is this better?

– Solving triangular matrices is easy: just use forward substitution for (1), back-
substitution for (2).

• Problem is, how to decompose A into L and U?

– Expand matrix multiplication LU to get n2 equations for n2 + n unknowns (ele-
ments of L and U plus n extras because diagonal elements counted twice).

– Get an extra n equations by choosing Lii = 1 (i = 1, n).

– Then use Crout’s algorithm for finding solution to these n2 + n equations “triv-
ially” (NRiC §2.3).

LU decomposition in NRiC

• The routines ludcmp() and lubksb() perform LU decomposition and backsubstituion,
respectively.

• Can easily compute A−1 (solve for the identity matrix column by column) and det(A)
(find the product of the diagonal elements of the LU decomposed matrix)—see NRiC

§2.3.

• Warning : for large matrices, computing det(A) can overflow or underflow the com-
puter’s floating-point dynamic range (there are ways around this).

Iterative Improvement

• For large sets of linear equations Ax = b, roundoff error may become a problem.

• We want to know x but we only have x+δx, which is an exact solution to A(x+δx) =
b + δb.

1

• Subtract the first equation from the second, and use the second to eliminate δb:

Aδx = A(x + δx) − b.

• The RHS is known, hence can solve for δx. Subtract this from the wrong solution to
get an improved solution (make sure to use doubles!). See mprove() in NRiC.

Tridiagonal Matrices

• Many systems can be written as (or reduced to):

aixi−1 + bixi + cixi+1 = di i = 1, n

i.e., a tridiagonal matrix:






















b1 c1 0′s
a2 b2 c2

a3 b3 c3

. . .
. . .

. . .

an−1 bn−1 cn−1

0′s an bn













































x1

x2

x3

...
xn−1

xn























=























d1

d2

d3

...
dn−1

dn























.

Here a1 and cn are associated with “boundary conditions” (i.e., x0 and xn+1).

• LU decomposition and backsubstitution is very efficient for tri-di systems: O(n) oper-
ations as opposed to O(n3) in general case.

Sparse Matrices

• Operations on many sparse systems in general can be optimized, e.g.,

tridiagonal;

band diagonal with bandwidth M ;

block diagonal;

banded.

• See NRiC §2.7 for various systems and techniques.

Iterative methods

• For very large systems, direct solution methods (e.g., LU decomposition) are slow and
RE prone.

• Often iterative methods much more efficient:

1. Guess a trial solution x0.

2. Compute a correction x1 = x0 + δx.

3. Iterate procedure until convergence, i.e., |δx| < ∆.

• E.g., congugate gradient method for sparse systems (NRiC §2.7).

2

Singular Value Decomposition

• Can diagnose or (nearly) solve singular or near-singular systems.

• Used for solving linear least-squares problems.

• Theorem: any m × n matrix A (with m rows and n columns) can be written:

A = UWVT,

where U (m× n) and V (n× n) are orthogonal1 and W (n× n) is a diagonal matrix.

• Proof: buy a good linear algebra textbook...

• The n diagonal values wi of W are zero or positive and are called the “singular values.”

• The NRiC routine svdcmp() returns U, V, and W given A. You have to trust it (or
test it yourself!).

– Uses Householder reduction, QR diagonalization, etc.

• If A is square, then we know2

A−1 = V [diag(1/wi)]U
T.

– This is fine so long as no wi is too small (or zero). Otherwise, the presence of
small or zero wi tell you how singular your system is...

Definitions

• Condition number cond(A) = (maxwi)/(min wi).

– If cond(A) = ∞, A is singular.

– If cond(A) very large (∼ e−1
m), A is ill-conditioned.

• Consider Ax = b. If A is singular, there is some subspace of x (the nullspace) such
that Ax = 0.

• The nullity of A is the dimension of the nullspace (the number of linearly independent
vectors x that can be found in it).

• The subspace of b such that Ax = b is the range of A.

• The rank of A is the dimension of the range.

1
U has orthonormal columns while V, being square, has both orthonormal rows and columns.

2Since U and V are square and orthogonal, their inverses are equal to their transposes, and since W is

diagonal, its inverse is a diagonal matrix whose elements are 1/wi.

3

The homogeneous equation

• SVD constructs orthonormal bases for the nullspace and range of a matrix.

• Columns of U with corresponding non-zero wi are an orthonormal basis for the range.

• Columns of V with corresponding zero wi are an orthonormal basis for the nullspace.

• Hence immediately have solution for Ax = 0, i.e., the columns of V with corresponding
zero wi.

Residuals

• If b (6= 0) lies in the range of A, then the singular equations do in fact have a solution.

• Even if b is outside the range of A, can get solution which minimizes residual r =
|Ax− b|.

– Trick: replace 1/wi by 0 if wi = 0 and compute

x = V [diag(1/wi)] (U
Tb).

• Similarly, can set 1/wi = 0 if wi very small.

Approximation of matrices

• Can write A = UWVT as
Aij = ΣN

k=1wkUikVjk.

• If most of the singular values wk are small, then A is well-approximated by only a few
terms in the sum (strategy: sort wk’s in descending order).

• For large memory savings, just store the columns of U and V corresponding to non-
negligible wk’s.

• Useful technique for digital image processing.

4

