
Class 15. ODEs, Part 2

The Leapfrog Integrator

• Very useful for second-order DEs in which d2x/dt2 = f(x), e.g., SHM, N -body, etc.

– NOTE: Now dropping the prime (′) from f ...

• Suppose x is position, so d2x/dt2 is acceleration.

• Procedure: define v = dx/dt at the midpoints of the steps, i.e., velocities staggered
wrt positions.

– Set vn+1/2 = v(tn + 1

2
h).

– Then advance xn to xn+1 and vn+1/2 to vn+3/2:

xn+1 = xn + hvn+1/2,

vn+3/2 = vn+1/2 + hf(xn+1).

x0 x1 x2

v1/2 v3/2 v5/2

t0 t1/2 t1 t3/2 t2 t5/2

• Complication: need to “jumpstart” and “resync”...

vn+1/2 = vn + (h/2)f(xn) [opening “kick”: Euler]
xn+1 = xn + hvn+1/2 [“drift”]
vn+1 = vn+1/2 + (h/2)f(xn+1) [closing “kick”: resync]

– Note vn+3/2 = vn+1 + (h/2)f(xn+1) = vn+1/2 + hf(xn+1).

• Also have “drift-kick-drift” (DKD) scheme.

• Like midpoint method, Leapfrog is second order:

x(t + h) = x(t) + hv(t + h/2),

but
v(t + h/2) = v(t) + (h/2)f(t) + O(h2).

Therefore
x(t + h) = x(t) + hv(t) + (h2/2)f(t) + O(h3).

– This is formally equivalent to midpoint method.
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• So why is Leapfrog so great?...

• Answer: Leapfrog is time reversible.

• Suppose we step back from (tn+1,xn+1,vn+3/2) to (tn,xn,vn+1/2). Applying the algo-
rithm:

vn+1/2 = vn+3/2 + (−h)f(xn+1),

xn = xn+1 + (−h)vn+1/2.

• These are precisely the steps (in reverse) that we took to advance the system in the
first place!

• Hence if we Leapfrog forward in time, then reverse to t = 0, we’re back to where we
started, precisely.

• Leapfrog is time reversible because of the symmetric way in which it is defined, unlike
the other schemes.

– In Euler, forward and backward steps do not cancel since they use different deriva-
tives at different times.

– In Midpoint, the estimate of the derivative is based on an extrapolation from the
left-hand side of the interval. On time reversal, the estimate would be based on
the right-hand side, not the same.

– Similarly, RK4 is not time reversible.

• Time reversibility is important because it guarantees conservation of energy, angular
momentum, etc. (in many cases).

– Suppose the integrator makes an error ε after one orbital period. Now reverse.
Is the error −ε? No! The time-reversed orbit is a solution of the original ODE
(with v replaced with −v), so the energy error is still +ε. But we’ve returned to
our starting point, so we know the final energy error is zero. Hence ε = 0!

• Leapfrog is only second order, but very stable.

• Leapfrog is an example of a class of “symplectic” integrators that conserve phase-space
volume: exactly solves an approximate Hamiltonian system.

H = HD + HK + Herr =
1

2
v2 + V (r) + Herr,

or D(h/2)K(h)D(h/2), with Herr ∼ O(h3). You can also construct the usual kick-
drift-kick scheme, K(h/2)D(h)K(h/2), because the Hamiltonian is separable.
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Adaptive Stepsize Control

• Up to now, have assumed stepsize h is constant.

• Clearly prefer choosing h small when |f ′| is large, and h large when |f ′| is small. (We’ve
reintroduced the prime (′) notation, just to be confusing...)

• The tradeoff is extra trial steps to determine optimum h, but may achieve factor of 10
to 100 increase in stepsize, so it’s often worth it.

• NRiC provides a routine odeint() for RK4 with adapative stepsize control. Compli-
cated to use!
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