
Class 17. ODEs, Part 4 (2-pt BVPs)

Two-point Boundary Value Problems

• NRiC §17.

• BCs specified at two or more points, e.g., start and end.

• For IVP, just integrate away.

• For 2-pt BVP, must make a free choice of unknown BVs at initial point, then integrate
away. But solution will almost certainly not satisfy other BCs at end.

• Strategy: Use information about how much the other BVs “missed” to iteratively
improve initial guess.

=⇒ Techniques are all iterative (and expensive).

Notation

• Denote standard system as:

dyi(x)

dx
= gi(x, y1, ..., yN ) i = 1, ..., N.

• At x1, the solution is supposed to satisfy:

B1j(x1, y1, ..., yN ) = 0 j = 1, ..., n1.

• At x2, it is supposed to satisfy:

B2k(x2, y1, ..., yN ) = 0 k = 1, ..., n2,

where n2 = N − n1.

Two Basic Techniques

Shooting method

1. Begin at x1.

2. Guess values for free BCs (n2 values).

3. Integrate as IVP to x2.

4. Adjust n2 guesses to get closer to BVs at x2.

1



����

��
��
��
��

1

3

2

Required BV

y

x

Desired BV

• Heart of technique: system of iteratively improving guesses.

=⇒ Multi-D root finding.

Relaxation method

1. Replace ODEs by finite-difference equations on mesh from x1 to x2.

2. Guess solution on this mesh.

3. Mathematically, FDEs are just algebraic relations between unknowns. Use iterative
technique to relax this solution to true solution.
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• Relaxation very powerful for smooth solutions, or ODEs that must be solved many
times with different parameter values. Also good when ODEs have extraneous solu-
tions, i.e., stiff equations.

• NRiC : “Shoot first, relax later.”
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2-pt BVP: Shooting Method

Procedure (NRiC §17.1):

1. At x1, must specify N starting values for yi, i = 1, ..., N .

• n1 values given by BC at x1.

• ∴ n2 = N − n1 values can be chosen freely.

2. Represent the free values as a vectorV of dimension n2 (actually,V represents schemat-
ically any parameter values that specify unknown BVs).

3. Now integrate to x2.

4. Define “discrepancy vector” F of dimension n2, where

Fk = B2k(x2,y) k = 1, ..., n2.

• We want to find V that zeroes F.

5. Solve n2 linear equations:
J δV = −F,

where Jij ≡ ∂Fi/∂Vj is the Jacobian matrix.

• This is the globally convergent Newton’s method (NRiC §9.7).

6. Then Vnew = Vold + δV.

7. Use Vnew to solve ODEs again as IVP, recompute F, and iterate again until |F| < ε,
the convergence criterion.

• Infeasible to compute Jacobian analytically. Instead evaluate differences numerically,
i.e.,

∂Fi

∂Vj

≃
Fi(V1, ..., Vj +∆Vj , ..., Vn2

)− Fi(V1, ..., Vj , ..., Vn2
)

∆Vj

,

i.e., solve IVP n2 times, varying each component of V by ±∆V each time to build
up Jacobian (recall Fi(V1, ..., Vn2

) already computed in step 4).

• Overall procedure requires n2 + 1 solutions to ODEs per iteration.

• For linear systems, one iteration is enough.

• For nonlinear systems, many (say M) iterations may be required to converge =⇒
M × (n2 + 1) solutions of ODEs!

• ∴ need efficient integrator... (NRiC routine shoot() uses odeint()).
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• NOTE: Can also shoot to a fitting point xf between x1 and x2 (NRiC §17.2; specify
known points at x1 and x2, choose the rest, integrate in both directions, and require
that y(xf ) match for both integrations). Useful for singular BC(s) and/or domain
point(s); integrate away from these.

1x xf x2
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2-pt BVP: Relaxation Method

Procedure (NRiC §17.3):

1. Replace ODEs
dy(x)

dx
= g(x,y)

with finite difference equations (FDEs) on a grid:1

yk − yk−1

xk − xk−1

= g

(

xk + xk−1

2
,
yk + yk−1

2

)

,

where yk refers to the entire set of dependent variables y1, y2, . . . , yN at point xk.

• Here xk and the components of yk are discrete values of independent and depen-
dent variables at “mesh points.”

...

y

1 2 3 M

• For M mesh points and N coupled equations, have M × N yk components to
solve for. Approximate the set of N first-order ODEs by

0 = Ek ≡ yk − yk−1 − (xk − xk−1)gk(xk, xk−1,yk,yk−1), k = 2, 3, . . . ,M.

Here gk can be evaluated using information from both points k, k − 1.

1This is not a unique representation. We could, for example, evaluate g at (xk,yk) and (xk−1,yk−1),
then take the average.
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• This is (M − 1)N equations; get remaining equations from the boundary condi-
tions:

0 = E1 ≡ B(x1,y1)

0 = EM+1 ≡ C(xM ,yM)

2. The “solution” of the FDE problem consists of a set of variables yj,k. Need to guess
starting values for all yj,k. We then determine increments ∆yj,k such that yj,k +∆yj,k
is an improved approximation to the solution.

3. To get increments, expand FDEs in first-order Taylor series about yk (N-R method):

Ek(yk +∆yk,yk−1 +∆yk−1) ≃ Ek(yk,yk−1) +
N
∑

n=1

∂Ek

∂yn,k−1

∆yn,k−1 +
N
∑

n=1

∂Ek

∂yn,k
∆yn,k.

Similar relations can be obtained for the boundary conditions (see NRiC §17.3 for
details; the partial derivatives can be computed analytically—it’s just tedious! NRiC

§17.4 gives a worked example).

4. Want E(y + ∆y) = 0. Result is a large (M × N) × (M × N) block-diagonal matrix2

that can be solved using optimized Gaussian elimination for the ∆y’s.

5. After applying the new increments, iteratively improve (“relax”) solution until the
boundary conditions are satisfied and the difference equations between grid points are
zeroed to the desired accuracy.

• Need to solve a matrix equation each iteration.

• Choice of grid points is an important issue and leads to adaptive mesh strategies
in modern solvers.

Example: Stellar Structure

• Numerical methods for 2-pt BVPs largely developed by astronomers seeking to solve
equations of stellar structure.

– Form a system of four coupled ODEs.

1. Consider spherical shell, thickness dr, distance r from origin. Then dMr = 4πr2drρ,
or,

dMr

dr
= 4πr2ρ.

It is convenient to transform this equation (and the rest) so that Mr is the independent
variable. In this case, just take the reciprocal:

dr

dMr

=
1

4πr2ρ
.

2Each interior point supplies a block of N equations coupling 2N corrections to the solution variables at
points k, k − 1. The boundary conditions supply smaller blocks, n1 ×N and n2 ×N .
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2. Hydrostatic equilibrium =⇒ net force on shell is zero. ∴ −∇rP − ρg = 0, where g =
gravitational acceleration per unit mass = GMr/r

2, or,

dP

dr
= −

GMr

r2
ρ.

(To derive, note upward force on shell per unit area = P (r) − P (r + ∆r) = −∆P
must equal downward force per unit area = [GMr/r

2](Mshell/4πr
2) = (GMr/r

2)ρ dr.)
Transforming,

dP

dMr

= −
GMr

4πr4
.

3. Let ε = energy generation rate/unit mass. Then energy transport rate through shell
∆L = L(r + ∆r) − L(r) must equal energy generation rate 4πr2dr ρε, where L =
luminosity, or,

dLr

dr
= 4πr2ρε.

Transforming,
dLr

dMr

= ε.

4. Finally, there is an equation describing energy transport. For radiative (and conduc-
tive) transport,

dT

dr
∝

κρLr

r2T 3
,

where κ is the mean absorption coefficient (opacity; so higher opacity =⇒ higher T
gradient). Transforming,

dT

dMr

∝
κLr

r4T 3
.

• This equation harder to derive since it depends on radiation transport mechanism
and convective stability.

• We have 4 ODEs in 7 unknowns (r, ρ, P, Lr, T, ε, κ).

• Need 3 constitutive relations:

1. P = P (ρ, T ) — equation of state.

2. ε = ε(ρ, T ) — nuclear energy generation rate.

3. κ = κ(ρ, T ) — opacity (for radiative transport; otherwise need an equivalent
relation for convection).

• Boundary conditions (need 4):

– At center (Mr = 0): r = 0, Lr = 0. But P = Pc = ?, T = Tc = ?

– At surface (Mr = M): P ≃ 0, T ≃ 0 (also ρ ≃ 0). But r = R = ?, Lr = L = ?

• This is a classic 2-pt BVP.
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• First solving techniques based on shooting method.

• Singularity at center =⇒ must fit at an intermediate point: Schwarzschild Scheme
(e.g., Schwarzchild, Structure and Evolution of the Stars).

• Modern stellar structure codes use relaxation method with adaptive mesh (e.g., P.
Eggleton, MNRAS, 151, 351 (1971)).

Polytropes

• Can illustrate technique with calculation of structure of polytropes.

• Assume there is no energy generation anywhere inside (ε ≡ 0), e.g., white dwarf or
neutron star.

• Assume EOS of form P = kρ(n+1)/n (no T dependence).

– E.g., EOS for monatomic gas (such as degenerate electron gas) is:

P ∝ ρ5/3 if non-relativistic (n = 3/2);

P ∝ ρ4/3 if relativistic (n = 3).

• This form is called a polytropic EOS. n is polytropic index.

• It is convenient to rewrite ρ = θn. Then the first stellar structure equation becomes

dM

dR
= R2θn,

and the second becomes
dθ

dR
= −

M

R2
,

where R ≡ r/r0, M = 4πr30M, and r20 = (n+ 1)k/4πG (E.F.T.S.).

• These are the “Lane-Emden Equations.”

• This is a system of 2 ODEs with BC M = 0 at R = 0 and θ = 0 at R = R⋆/r0.

– If we have a desired R⋆ known in advance (or, equivalently, M⋆), then we can
set θ = θc (say) at R = 0 and iterate over different starting θc until the outer
boundary condition is satisfied.
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