Class 19. N-body Techniques, Part 2

Time-integration Schemes

e Clearly, Newton’s laws are IVP. Could use any method (Euler, RK4, etc.).

e But, issue is to balance accuracy wvs. efficiency.

e Typically need many particles to capture dynamics correctly (e.g., in stellar system or
galaxy). This consideration may be as important as accuracy of any one individual
particle (exception: solar system—N ~ 9, 7 ~ 10910 orbits).

e Could use Euler scheme. But we have seen it is just as easy to design 2"-order scheme
by centering derivatives = could use leapfrog (very stable).

Practical timestep control

e The stability criterion from the discussion of stiff systems also applies to the leapfrog
integrator for the N-body problem.

e Can show need §t < 2/, where Q? = |VF]| is a characteristic “interaction frequency”
for a particle (in practice, need 6t < 2/ to avoid problems).

e But Q? is different for every particle; can be very large for particle undergoing close
interaction.

o If have to take €., can be very restrictive. Two solutions:

1. Use different timesteps for each particle (individual timesteps).

E.g., 0t; = nF; /E — effective, but complex implementation, and may break
symplecticity of leapfrog (for example).

— More complex expressions for dt; can be formulated, e.g., involving higher-
order derivatives of F'. These are largely heuristics with convenient properties.
It is difficult to prove analytically that one formulation is superior to another.

— Sometimes dt; is discretized, e.g., in factors of 2 (multistepping).
2. Eliminate short-timescale phenomena by modifying gravity on small scales.

E.g., Set 0t = 7 /30 and/or use softening (see below).
e Always important to check whether simulation is giving physically meaningful results.
— Handy technique: reduce timestep by factor of 2 to see if global behavior strongly

affected. If so, may have to use smaller steps.

— Beware of chaos: if state of system strongly dependent on initial conditions,
change of timestep may give seemingly vastly different results. Need to monitor
constants of motion to be sure.

Force evaluation

e Solving the IVP requires evaluation of the RHS of the ODEs, i.e., must compute
interparticle forces.

e Will discuss PP, PM, P3M, and tree methods.

e But first must consider another practical issue, related to timestep control...

Hard interactions
e Recall fz'j = —ij(rz- - I'j)/|I'Z' - I'j‘g.
e Problem: if |r; —r;| is small, |F;;| diverges, leading to timestep trouble as |v;| — oo.

e Physically, very close encounters occur on very short timescales, e.g., can form close
binaries with very short periods.

e To alleviate problem, could use “softened” forces:

ij (I‘i — I‘j)

fi':_)
(N DR

where ¢ = “softening parameter.”

— Maximum force now ~ Gm?/e2.
— Physically, this eliminates possibility of forming binaries with r < ¢.

x OK when particles represent collection of stars on similar orbits.

x Not OK if studying small clusters, where each particle represents an individual
star. In this case binaries can form and significantly affect evolution of entire
cluster.

e Modern methods also sometimes use “regularization.”

— Binaries (or hierarchies) replaced by pseudo-particles until interaction with other
particles becomes important.

Direct Summation (PP Method)

e Most straightforward way of evaluating F;;.

e But number of operations = $N(N — 1) ~ N2 for N > 1 (the 3 comes from the fact

.. 10x more particles = 100x more work.
e Severely limits number of particles that can be used (typically < 10%%).

e Motivates finding more efficient techniques.

Evaluating Forces on a Mesh (PM Method)

e Idea: compute forces (per unit mass) from gravitational potential:
F =-Vo, (1)

where ® = potential, a scalar function of r.

Potential given by solution of Poisson’s equation:

V20 = 47Gp. (2)

Can FD (2) to compute ® on a mesh, then FD (1) to compute F from ®.

In 1-D, Poisson equation is:
0?P

— This is an elliptic PDE.

Consider discretizing ® on a mesh, center ®; and p;, at mesh centers i =1, ..., N.

B
l | l | | | | |
O | ®®° w w w w jeeefx— ©
D P ., &, & D, P, Dy Py
(BC) Py Piz Pict Pi Pir1 Pix PN (BC)
Then, 2"d-order FDE for (2) is:
(Pit1—P;) (P;—P;_1)
- D, —20; + P,
Az Ax i—1 7 i+1 .
fry = 4 i = 1, “eey N .
- o "G i @

For ¢=1, need &,

i =N, need Dy, }(boundary conditions).

e For the force, just FD (1) using the same mesh:

Qi1 — (I)z':|

Fivijp = — { Ar

(need to interpolate to cell centers).

