Class 20. N-body Techniques, Part 3

The PM Method, Continued

There are several distinct steps in PM process:
1. Assign particles to mesh to compute p;.
2. Get boundary conditions for ® (g and Pyyq).
3. Solve discretized version of Poisson’s equation.

4. Compute F from discretized version of force equation.

Step 1: Assigning particles to mesh

Discuss two schemes here:
1. Nearest Grid Point (NGP) scheme:

e Assign entire mass of particle to grid zone that contains it.

e b.g., discretize space into N zones in z-dimension:

Set p; = n;m/Ax, where n; = number of particles in cell i (equal mass).

e Leads to a very coarse distribution of p;:

2. Charge-In-Cell (CIC) or Particle-In-Cell (PIC):

e Assign a “shape” or “cloud” to particle.
e Assume a distribution of p inside this shape.
e Then distribute mass to zones according to overlap.

e E.g., assume particle has top-hat p distribution, width w, height py = m/w:



Then (in 1-D), [ p(x) dz = m. Distribute mass of particle according to overlap:

Leads to smoother p;.

e Can adopt more complex shapes for density. E.g.,

Triangle
Gaussian
ete.

Higher-order “shapes” introduce ringing into system.

Step 2: Boundary conditions

e Given p;, i =1,..., N, need a boundary value for ®, i.e., need &5 and Py .

e Often can use periodic BC, i.e., g = @y, Py = P;. Appropriate for, e.g., cosmology
simulations.

e Otherwise, standard to use multipole expansion (e.g., Jackson 1975) to compute po-
tential on boundary due to mass in each cell.

— Often, first (monopole) term is good enough:
-
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— See Binney & Tremaine Eq. 2-122 for full series (involves spherical harmonics).
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Step 3: Solve Poisson’s equation
e Can see that discretized equation
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leads to tri-diagonal (tri-di) matrix:
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e There is an extremely efficient algorithm for solving tri-di systems.
— Write discretized system as:
a;®i1 + 0P + ¢ Piy1 = d;.

— Then forward elimination gives (Hockney & Eastwood, p. 185):!
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— Backsubstitution:
Oy = gn

o, = g —wiPiq,

withi=N—1,N—2 . 1.
— If a, b, ¢ constant, can precompute w; and 1/(b; — a;w;_1).
—Ifa=1,b=—-2,c=1, only need 4N operations.
— For periodic BC, even simpler method possible (Hockney & Eastmood, p. 35).

Step 4: Force interpolation

e Once potential is given, must compute force (per unit mass) from F = —V .
e In 1—D, F = —0(13/&17 = FDE E+1/2 = _(q)i-i-l — (I)Z)/A.Z'

— Forces centered at cell boundaries:

e Must interpolate forces to particle positions.

e Linear interpolation simplest. For each particle, position x;_1/2 < x < x;11/2, compute:

— Ti—1/2

A
F(x) = Fic1jo + Az (~7:i+1/2 - 71’—1/2) .

e Higher-order interpolation used in conjunction with higher-order charge-assignment
schemes.

1 Also see tridag() (NRiC §2.4).




We now have ingredients necessary for a 1-D PM code:

1. Particle assignment;
2. Boundary conditions;
3. Solve Poisson’s equation;

4. Force interpolation.

Result is F for every particle.

Generalizing to 3-D
e Generalizing to 3-D is straightforward:
1. Particle assignment: use NGP; or for PIC, particle is sphere.
2. BCs: periodic, or use 3-D multipole expansion.

3. Solve Poisson’s equation in 3-D (see below).

4. Interpolate F in 3-D (easy).

e Poisson’s equation in 3-D:
9’ 9*d  9*P
Ox? * Oy? + 02 AnGp.
e Discretize ® in 3-D:
(I)(xa Y, Z) - (bi,j,lw
P(xa Y, Z) —  Pigk-
e F'DE becomes:
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e Can be written in matrix form:

a;i®; k-1 + 0P i1k +ci®im1jn + di®s ik + eiPipr ik + [iPijrir + 9Pkt = hi,
where i =1,...,N,, 7 =1,..,N,, k=1,..., N, and

ci=e; = 1/(Ax)? di = =2 [(1/Az)* + (1/Ay)? + (1/A2)?]
bi = fi = 1/(Ay)? h; = 4wGp; ;. (modulo BCs)
a; = g;i = 1/(Az)?



e Leads to very large sparse banded matrix:
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— Dimension is (N, N,N.) x (NN, N,)!

— = even very small problem (20%) — large matrix 8000 x 8000.
— “Reasonable” sized problem (100%) — 10° x 105 matrix!

— Clearly need efficient ways to solve matrix:

1. Relaxation schemes — guess solution, then relax (Cf. NRiC §19.5-19.6).

E.g., “Successive Over-Relaxation” (SOR), “Alternating-Direction Implicit”
(ADI), multi-grid (use exact solution on coarse grid as initial guess for
iterative solution on fine grid), etc.

2. Sparse banded solvers, e.g., conjugate gradient method (NRiC, §2.7).

3. Fourier methods — solution of FDE in Fourier space is very simple, then can
inverse Fourier transform solution back to real space (NRiC §19.4).

x Very powerful, but requires periodic BCs.

Summary: PM Method
e What is advantage of PM code?

— Force solving scales as O(N,), where N, = number of mesh grid points.
— Leapfrog scales as O(N,,), where N,, = number of particles.
— Work associated with leapfrog < solving Poisson’s equation.

.. can afford very large N, e.g., N, 1058 with N, ~ 10*.

— Not good for correlated systems (in which 2-body encounters important) but great
for uncorrelated systems (where it takes the place of softening).



