
Class 20. N -body Techniques, Part 3

The PM Method, Continued

There are several distinct steps in PM process:

1. Assign particles to mesh to compute ρi.

2. Get boundary conditions for Φ (Φ0 and ΦN+1).

3. Solve discretized version of Poisson’s equation.

4. Compute F from discretized version of force equation.

Step 1: Assigning particles to mesh

Discuss two schemes here:

1. Nearest Grid Point (NGP) scheme:

• Assign entire mass of particle to grid zone that contains it.

• E.g., discretize space into N zones in x-dimension:

Set ρi = nim/∆x, where ni = number of particles in cell i (equal mass).

• Leads to a very coarse distribution of ρi:

2. Charge-In-Cell (CIC) or Particle-In-Cell (PIC):

• Assign a “shape” or “cloud” to particle.

• Assume a distribution of ρ inside this shape.

• Then distribute mass to zones according to overlap.

• E.g., assume particle has top-hat ρ distribution, width w, height ρ0 = m/w:

1

Then (in 1-D),
∫

∞

−∞
ρ(x) dx = m. Distribute mass of particle according to overlap:

Leads to smoother ρi.

• Can adopt more complex shapes for density. E.g.,

Triangle
Gaussian

etc.

Higher-order “shapes” introduce ringing into system.

Step 2: Boundary conditions

• Given ρi, i = 1, ..., N , need a boundary value for Φ, i.e., need Φ0 and ΦN+1.

• Often can use periodic BC, i.e., Φ0 = ΦN , ΦN+1 = Φ1. Appropriate for, e.g., cosmology
simulations.

• Otherwise, standard to use multipole expansion (e.g., Jackson 1975) to compute po-
tential on boundary due to mass in each cell.

– Often, first (monopole) term is good enough:

ΦB(r) = −
N

∑

i=1

Gmi

|r− ri|
.

– See Binney & Tremaine Eq. 2-122 for full series (involves spherical harmonics).

Step 3: Solve Poisson’s equation

• Can see that discretized equation

Φi−1 − 2Φi + Φi+1

(∆x)2
= 4πGρi

leads to tri-diagonal (tri-di) matrix:



















−2 1
1 −2 1

1 −2
. . .

. . .
. . .

. . .

1 −2 1
1 −2





































Φ1

Φ2

Φ3

...

...
ΦN



















=



















4πGρ1(∆x)2 − Φ0

4πGρ2(∆x)2

4πGρ3(∆x)2

...

...
4πGρN(∆x)2 − ΦN+1



















.

2

• There is an extremely efficient algorithm for solving tri-di systems.

– Write discretized system as:

aiΦi−1 + biΦi + ciΦi+1 = di.

– Then forward elimination gives (Hockney & Eastwood, p. 185):1

w1 =
c1

b1

wi =
ci

bi − aiwi−1

,

(i = 2, 3, ..., N − 1), and,

g1 =
d1

b1

gi =
di − aigi−1

bi − aiwi−1

.

– Backsubstitution:

ΦN = gN

Φi = gi − wiΦi+1,

with i = N − 1, N − 2, ..., 1.

– If a, b, c constant, can precompute wi and 1/(bi − aiwi−1).

– If a = 1, b = −2, c = 1, only need 4N operations.

– For periodic BC, even simpler method possible (Hockney & Eastmood, p. 35).

Step 4: Force interpolation

• Once potential is given, must compute force (per unit mass) from F = −∇Φ.

• In 1-D, F = −∂Φ/∂x ⇒ FDE Fi+1/2 = −(Φi+1 − Φi)/∆x.

– Forces centered at cell boundaries:

• Must interpolate forces to particle positions.

• Linear interpolation simplest. For each particle, position xi−1/2 < x < xi+1/2, compute:

F(x) = Fi−1/2 +

(

x − xi−1/2

∆x

)

(

Fi+1/2 − Fi−1/2

)

.

• Higher-order interpolation used in conjunction with higher-order charge-assignment
schemes.

1Also see tridag() (NRiC §2.4).

3

We now have ingredients necessary for a 1-D PM code:

1. Particle assignment;

2. Boundary conditions;

3. Solve Poisson’s equation;

4. Force interpolation.

Result is F for every particle.

Generalizing to 3-D

• Generalizing to 3-D is straightforward:

1. Particle assignment: use NGP; or for PIC, particle is sphere.

2. BCs: periodic, or use 3-D multipole expansion.

3. Solve Poisson’s equation in 3-D (see below).

4. Interpolate F in 3-D (easy).

• Poisson’s equation in 3-D:

∂2Φ

∂x2
+

∂2Φ

∂y2
+

∂2Φ

∂z2
= 4πGρ.

• Discretize Φ in 3-D:

Φ(x, y, z) → Φi,j,k,

ρ(x, y, z) → ρi,j,k.

• FDE becomes:

Φi−1,j,k − 2Φi,j,k + Φi+1,j,k

(∆x)2
+

Φi,j−1,k − 2Φi,j,k + Φi,j+1,k

(∆y)2

+
Φi,j,k−1 − 2Φi,j,k + Φi,j,k+1

(∆z)2
= 4πGρi,j,k.

• Can be written in matrix form:

aiΦi,j,k−1 + biΦi,j−1,k + ciΦi−1,j,k + diΦi,j,k + eiΦi+1,j,k + fiΦi,j+1,k + giΦi,j,k+1 = hi,

where i = 1, ..., Nx, j = 1, ..., Ny, k = 1, ..., Nz and

ci = ei = 1/(∆x)2 di = −2
[

(1/∆x)2 + (1/∆y)2 + (1/∆z)2
]

bi = fi = 1/(∆y)2 hi = 4πGρi,j,k (modulo BCs)

ai = gi = 1/(∆z)2

4

• Leads to very large sparse banded matrix:









































d e f g
c · · · ·

· · · · g
· · · f

· · · ·
b · d e ·

· c d · f
· · · ·

b · · ·
a · · · ·

· · · · e
a b c d









































– Dimension is (NxNyNz) × (NxNyNz)!

– =⇒ even very small problem (203) → large matrix 8000 × 8000.

– “Reasonable” sized problem (1003) → 106 × 106 matrix!

– Clearly need efficient ways to solve matrix:

1. Relaxation schemes — guess solution, then relax (Cf. NRiC §19.5–19.6).

E.g., “Successive Over-Relaxation” (SOR), “Alternating-Direction Implicit”
(ADI), multi-grid (use exact solution on coarse grid as initial guess for
iterative solution on fine grid), etc.

2. Sparse banded solvers, e.g., conjugate gradient method (NRiC, §2.7).

3. Fourier methods — solution of FDE in Fourier space is very simple, then can
inverse Fourier transform solution back to real space (NRiC §19.4).

∗ Very powerful, but requires periodic BCs.

Summary: PM Method

• What is advantage of PM code?

– Force solving scales as O(Ng), where Ng = number of mesh grid points.

– Leapfrog scales as O(Np), where Np = number of particles.

– Work associated with leapfrog � solving Poisson’s equation.

∴ can afford very large Np, e.g., Np 106–8 with Ng ∼ 104–6.

– Not good for correlated systems (in which 2-body encounters important) but great
for uncorrelated systems (where it takes the place of softening).

5

