Class 23. PDEs, Part 2

Solving Hyperbolic PDEs, Continued
Upwind differencing

e In addition to amplitude errors (instability or damping), scheme may also have phase
errors (dispersion) or transport errors (spurious transport of information).

o Upwind differencing helps reduce transport errors:
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where here we’ve supposed that v is not constant, for illustration.

e Schematically, only use information upwind of grid point j to construct differences:
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e Upwind difference is only first order in space. Still, it has lower transport error than
second-order centered difference. Better? Can construct higher-order upwind difference

schemes...

Second-order accuracy in time

e We have been dealing with two derivatives, 0/0x and 0/0t. We have constructed
higher-order schemes in space. What about ¢?

e Staggered leapfrog is 2"4-order in time:
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But, subject to a mesh-drift instability. Think of space-time discretization:

— Odd-integer n coupled to even-integer j,

— Even-integer n coupled to odd-integer j

(“red-black” ordering; odd and even mesh points decoupled). Schematically,
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Can be fixed by adding diffusion to couple grid points (add e(F}" | —2F]+F}' ), e < 1
to RHS).

e Two-step Lax-Wendroff: another 2"d-order scheme.

1. Use Lax step to estimate fluxes at n + % and 7 £ %:
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2. Using these half-step values of u, calculate F (ujill //22 ) = F;Irll/;.

3. Then use leapfrog to get updated values:
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Fixes dissipation and mesh drifting but introduces phase error (dispersion). Often
first-order upwind scheme is as good as/better than 2°%-order L-W.



Summary: Hyperbolic methods

e Many IVPs can be cast in flux-conservative form.
e Solving methods:

1. FTCS — unconditionally unstable. Never use.

2. Lax — equivalent to adding diffusion, damps small scales.

3. Upwind differencing — reduces transport errors, but only 1¥-order in space.
4.

Staggered leapfrog — 2"d-order in time, but subject to mesh-drift instability. Fix
with diffusion.

5. Two-step Lax-Wendroff — 2"d-order in time, but suffers from phase error.

e NRiC recommends staggered leapfrog (presumably with diffusion), particularly for
problems related to the wave equation.

e For problems sensitive to transport errors, NR:C' recommends upwind differencing
schemes.

Solving Parabolic PDEs (Diffusive IVPs)
o NRiC §19.2.

e Prototypical parabolic PDE is diffusion equation:
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where we have taken D > 0 to be constant (D = 0 is trivial and D < 0 leads to
physically unstable solutions).

e Consider FTCS differencing:
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e von Neumann analysis gives (E.F.T.S.)

4DAt kA
Ek)y=1- L sin? <Tx) :

This is stable provided (E.F.T.S.)
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The 2™ derivative makes all the difference (we saw adding diffusion via the Lax method
stabilizes FTCS for the hyperbolic equation).
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e Diffusion time over scale L is 7p ~ L?/D. So stability criterion says At < 7p/2 across
one cell.

o Often interested in evolution of time scales > 7p of one cell. How can we build stable
scheme for larger At?

Implicit differencing

e Evaluate RHS of difference equation at n + 1:
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e To solve this, rewrite as:
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where o = DAt/(Ax)?.

— In 1-D, this is a tri-di matrix.
— In 3-D, get large, sparse, banded matrix.

— Solve the usual way.

e What is limit of (1) as At — oo (@ — o0)? Divide through by « to find FD form of
0?u/0z* = 0, i.e., static solution.

e Fully implicit scheme is unconditionally stable (E.F.T.S.) and gives correct equilibrium
structure, but cannot be used to follow small-timescale phenomena.

Crank-Nicholson differencing

e Form average of explicit and implicit schemes (in space):
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e Unconditionally stable (E.F.T.S.), 2™-order accurate in time (both sides centered at
n+1/2).

e Schematically,
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o “Freezes” small-scale phenomena. Can use fully implicit scheme at end to drive fluc-
tuations to equilibrium.
Nonlinear diffusion problems

e For nonlinear diffusion problems, e.g., where D = D(z), then implicit differencing more
complex.

e Must linearize system and use iterative methods.



