
Class 27. Fourier Transforms, Part 2

• For each n discrete frequencies must compute sum of k discrete times =⇒ O(N2)
operation.

• Can we do better? Yes!

The Fast Fourier Transform (FFT)

• Cf. NRiC §12.2.

• Strategy: divide and conquer. Notice

Hn =
N−1
∑

k=0

hke
2πikn/N

=

N/2−1
∑

k=0

h2ke
2πi(2k)n/N +

N/2−1
∑

k=0

h2k+1e
2πi(2k+1)n/N

=

N/2−1
∑

k=0

h2ke
2πikn/(N/2) + e2πin/N

N/2−1
∑

k=0

h2k+1e
2πikn/(N/2)

= He
n + e2πin/NHo

n,

where He
n and Ho

n are periodic in n with length N/2.

• Can continue this process:

He
n = Hee

n + e2πin/(N/2)Heo
n

Ho
n = Hoe

n + e2πin/(N/2)Hoo
n ,

where each of Hee
n , Heo

n , Hoe
n , and Hoo

n are periodic in n, length N/4.

• If N is a power of 2 (zero-pad your data if not!), can continue process until you get
transforms of length 1. What is FT of length 1? Just identity op that copies its one
input number (hk) into its output slot! I.e.,

0
∑

k=0

hke
2πikn/(N/N) = hk.

• End up with log2 N pattern of e’s & o’s such that, e.g.,

Heooeeeoe···eoo
n = hk,

for some k. (This doesn’t depend on n, since it’s periodic with length 1.)

• Trick is to figure out which k corresponds to which pattern of e’s & o’s. Solution:
reverse (left-to-right) pattern of e’s & o’s and let e ≡ 0, o ≡ 1—this is the binary
representation of k! Why? Schematically,

1



h0 h3h1 h2

h2h0 h3h1

h0 h2 h1 h3

00
= 0

10
= 2

01
= 1

11
= 3

(e) (o) 2 (N = 2)

1 (N = 4)

4 (N = 1)(ee) (eo) (oe) (oo)

Algorithm

• Rearrange input data in bit-reversed order. This gives the 1-pt FTs. Combine adjacent
pairs to get 2-pt FTs, then adjacent pairs to get 4-pt FTs, and so on until you get
desired N -pt FT.

• Each combination requires O(N) ops to perform. There are log2 N combinations, ∴

method is O(N log2 N) (assuming bit-reversal sorting is also O(N log2 N), which it is).

• This is called “decimiation-in-time” (Cooley-Tukey FFT). Could also do decimation-in-
frequency (Sande-Tukey FFT). Can also stop with base-4, base-8, or even base-prime
(for arbitrary N) to exploit various optimizations.

NRiC Implementation

• NRiC implements Cooley-Tukey as four1():

void four1(float data[],unsigned long nn,int isign)

• Use isign = +1 for forward transform, -1 for inverse (times N). Here nn is N . data is
2*nn elements long: 1st, 3rd, ... elements are real components; 2nd, 4th, ... are imaginary.

• Transform returned in data in same fashion, but using frequency-ordering conventiond
discussed earlier (cf. NRiC Fig. 12.2.2).

• If input function is pure real, can gain efficiencies (e.g., twofft(), realfft()).

• For 2-D, e.g., 2-D grid 0 ≤ k1 ≤ N1 − 1, 0 ≤ k2 ≤ N2 − 1:

H(n1, n2) =

N2−1
∑

k2=0

N1−1
∑

k1=0

h(k1, k2)e
2πik2n2/N2e2πik1n1/N1 .

– Pull sub-2 expression out of sub-1 summation ⇒ FFT-on-2 {FFT-on-1 [h(k1, k2)]}.

2



Discrete convolution (NRiC §13.1, convlv())

• Convolution with a response function of finite duration N :

(r ? s)j ≡

N/2
∑

k=−N/2+1

sj−krk.

• Convolution theorem:
N/2
∑

k=−N/2+1

sj−krk ⇐⇒ SnRn.

Here sj is periodic with period N and the rk’s are stored in wrap-around order.

Discrete correlation (NRiC §13.2, correl())

• Correlation of two sampled functions gk and hk, each of period N :

Corr(g, h)j ≡
N−1
∑

k=0

gj+khk.

• Correlation theorem:
Corr(g, h)j ⇐⇒ GkH

?
k .

Power spectrum estimation (NRiC §13.4, spctrm())

• A periodogram is the discrete analog of the power spectrum.

• Since fk’s are discrete, expect P (fk) to be some kind of average of P (f) over a narrow
window function centered on fk:

W (s) =
1

N2

[

sin(πs)

sin(πs/N)

]2

,

where s is the frequency offset, in bins. Note lims→∞
W = (πs)−2. W (s) is actually

the square of the DFT of the unity (square) window function.

• There will be significant leakage if f is not a pure sine wave.

• To minimize leakage, choose a “rounder” window. E.g.,

Bartlett Hann Welch

• Other methods for power spectrum analysis exist, e.g., maximum entropy “all poles”
method (NRiC §13.7), Bayesian analysis, etc.

3



Unevenly spaced data points

• Cf. NRiC §13.8, period() and fasper().

• Can interpolate onto a regular grid, but may get spurious power at low frequencies.

• Instead, use Lomb normalized periodogram (see NRiC ).

– Normally O(N2) but can use approximation to get O(N log N).

– May remove aliasing (i.e., get real power above fc).

4


