Introduction to Visualization
(and presentation tools)

There are a variety of visualization packages suitable for numerical astrophysics applications, ranging from
simple 2-D plotters to professional products that support animation and multi-dimensional exploration. This
tutorial will concentrate on sm, one of the 2-D varieties, and will touch on a few others. There will also
be some brief discussion regarding animations and ray tracing. Above all note that visualization is about
graphically conveying numerical information to viewers. As a result, there is a certain artistic element
involved that can be hard to master.

A brief word about presentation tools, such as IXTEX, xfig, and PowerPoint, is given at the end.

Visualization

sm

sm is a proprietary product for which the astronomy department has a license. If it’s not already in your
search path, add /local/bin/ to get it. The advantage of sm is that you can quickly plot straightforward
data yet at the same time you can make very complex scripts to exploit the full potential of the graphing
package. The entire manual is available online.!

There are 3 ways sm is typically used: 1) interactively; 2) semi-interactively with user-defined macros;
3) semi- or non-interactively with user-built scripts. Method 1 is the fastest for simple data that you don’t
plan to look at again. Method 3 is preferred for complex graphing applications. Method 2 will be discussed
only in passing.

Interactive sm

To use sm interactively, simply type sm. You will be asked to enter a command. Try the following (hit
RETURN after each line):

dev x11

box

relocate 0 O
draw 1 1

If all went well an X window popped up after the device (shorthand dev) command, axes with values
ranging from 0 to 1 appeared, and a diagonal line from the lower left corner to the upper right was drawn.
Now in another window create a file called sq.dat that looks like this:

O b =

© o0 ~NO O WNH-
N
(4]

81
10 100

sm interprets whitespace as column delimiters, much like awk. In sm type:

data sq.dat
read {n 1 s 2}
erase

Ihttp://www.astro.princeton.edu/~rhl/sm/sm.html

limits n s
box
points n s

You should see half a parabola worth of “x”s. The read command loaded two vectors, in this example
we called them n and s, with the corresponding columns of the data file. The 1limits command set the
plot limits automatically based on the values in n and s. The box command drew the axes (use xlabel and
ylabel to make axis labels) and points drew the points. If you don’t like the point size, try expand 2 to
make everything double size (you’ll need to redraw the points). You can also experiment with the ptype
command (try ptype 3 0 for example). Hint: If your terminal settings are set correctly, you can use the up
and down arrow keys to cycle through the command history. Now try the following:

set n2 = n*n
connect n n2

The set command allows you to make a new vector or modify an existing one. The connect command
connects points. You should notice the point for N=7 lies off the curve (yes, that was deliberate). You may
also notice the curve is a bit jagged (particularly if you replot the curve without doing points first). Let’s
use 100 points instead:

erase
box

set i = 1,100
set n2 = i*i
connect i n2
points n s

(If you’re using expand 2 you’ll notice the axis labels and ticks got bigger). Note how we were able to
create the vector i. Now try this:

ctype red
histogram n s

Assuming you’re in front of a colour screen you should now have steps drawn in red going up the curve.
If you prefer your histograms to have bars that go all the way down, use barhist 100 n s instead (the
optional numeric value specifies the percentage width of the bars). To go back to drawing in the default
colour, type ctype default (this is preferable to ctype white because the latter won’t work very well on
white paper, whereas the former automatically knows to switch to a black foreground).

For more help on a particular function, simply type help fumction. You may also find the apropos
command useful. And there’s always the manual. Some of the most popular commands, in addition to what
we’ve seen so far, are: define, do, draw, errorbar, if, 1type, lweight, macro, putlabel, relocate, sort,
ticksize, window, and while. Also try help arithmetic to see what math operators and functions are
supported, and 1ist device to see what devices are available (e.g. to output everything to an encapsulated
postscript file, use dev postencap myfile.eps instead of dev x11).

Scripting sm

The commands in the example above could all be placed in a file, say sq.sm, and read in like this: sm
inp new sq.sm. This is useful if you plan to look at data of this nature over and over. It’s particularly
useful if you first want to look at the output on the screen and then later print to a file. Note however there
were a few erases above, and these cause the plots to flash by. Here’s a way to handle such cases:

define ps O # use O for screen output, 1 for file output
macro pause {
define dum (’°c’) # default is to continue
while {1} { # keep looping until a valid response is given
define dum ? {Type c to continue or q to quit}

if ($dum’ == ’q’) {quit}
if (°$dum’ == ’c’) {return}
}
}
macro next {
if ($ps) {
hardcopy
} else { # NOTE: the else MUST be on the same line as } and {
pause
erase
}
}
#
execution begins here...
if ($ps) {
dev postencap myfile.eps
} else {
dev x11
}

Here we’ve used the define command to create scalars (as opposed to vectors). Note that the value of
a scalar can be obtained by prepending a dollar sign: $ps. If the lines above are added at the start of the
script, you could replace all erase calls with our user-defined macro next. The user would then be prompted
to press RETURN before the next plot is drawn. Notice that if ps is defined then a hardcopy command is
issued instead, which sends a print request to a file (or printer). Alternatively you could use the window
command to put more than one plot on the screen at once, but there’s a limit to how many plots you can
cram in this way.

Commonly used macros can be stored in a file by themselves and read in with the command macro read
macrofile before doing anything else. This is how method 2 of using sm works.

sm can be about as frustrating as (t)csh at times as far as remembering the correct syntax, perhaps
more so. Trial and error is your best bet. As a general rule of thumb, an expression used as an argument to
a define command should be in () and any string value should be quoted ’’ just to be safe.

Other Graphing Packages

The following table lists some other common Unix graphing packages with their most useful features.

Package Features

PGPLOT/pgperl callable plotting libraries for C or FORTRAN

gnuplot interactive function plotting; 3-D wire & surface plots

IDL “Interactive Data Language”—heavyweight analysis & plotting package
geomview interactive geometry viewer; real-time rotations

NCAR Graphics scientific visualization with emphasis on supercomputing
Consult man or web pages for more information on these utilties.

Animation

Animation under Unix remains an awkward process; PCs (running Windows) & Macs are much better at
this. Still, it can be done, even without buying expensive software. Generally the easiest way is to create

a series of frames that you want to string together to form a movie. These frames could be produced by a
drawing package (like POV-Ray, described below) and/or a plotting package (for example, in sm you could
output to device blackgif to create a GIF image of a plot). The frames should be numbered consecutively
and left-padded with zeroes, e.g. frame001.gif, frame002.gif, etc. for easy manipulation. The file format
is largely dictated by the movie-making package you choose. For example, mpeg_encode accepts a handful of
formats and has a provision to convert from an unsupported format to a supported one. Conversely, ppm2£f1i
supports only PPM format (“portable pixmap”) and gifsicle supports only GIFs. If you need to keep
the frames as well as the movie, the best strategy is to use compressed formats for the frames. Otherwise,
use PPM for maximum flexibility. The Netpbm package contains lots of graphics conversion and processing
utilities. These are available on the department machines (e.g. man pbm pgm ppm pnm to get listings of most
of the utilities). Also check out:

http://netpbm.sourceforge.net/
for the latest source. Another popular conversion tool is ImageMagick:

http://www.imagemagick.org/
(in particular, check out the convert command, which comes standard these days in many Linux implemen-
tations.) You can use xv or display to view graphics files in a window.

mpeg_encode

The mpeg_encode utility allows you to take individual frames and make them into an MPEG movie, a popular
though lossy animation format. You could then use mpeg_play (or any variety of other MPEG viewers) to
watch the movie. The player is available on the department Suns. The encoder can be found at:

http://bmrc.berkeley.edu/frame/research/mpeg/
Also try out mencoder and mplayer, a more modern MPEG encoder and player set, available here:

http://www.mplayerhq.hu/homepage/design7/news.html

ppm2fli

This utility makes a FLI animation that can be viewed with xanim (available on the department machines).
FLI is not nearly as compressed as MPEG, but the playback quality is far superior. Only PPM format
frames are supported. The encoder is available at:

http://vento.pi.tu-berlin.de/fli.html

gifsicle
The gifsicle utility creates an animated GIF from individual GIF frames. This is one way to make an
embedded animation on a webpage. It’s available on the department Linux machines, or from:

http://www.lcdf.org/ eddietwo/gifsicle/

GIF anims are more compressed than FLIs, but not as much as MPEGs.

Other encoders

There may be other free encoders out there—surf the web to find them. Otherwise there are a variety of
packages available for purchase that can make very fancy animations with titles, fades, etc., but most are
designed for Windows/Mac environments.

Also, I have designed my own suite of animation scripts that handles a variety of formats and supports
simple titles, fades, and so on.

Ray Tracers

To make really high quality animations (or stills) that consist of more than dots or line drawings, you need
a ray tracer. A ray tracer allows you to construct a world seen from a specific viewpoint, using complicated
geometrical shapes and carefully arranged light sources. A very easy-to-use public domain package is the
Persistence of Vision Ray Tracer, POV-Ray:

http://www.povray.org/

(be sure to check out the Hall of Fame pictures!) POV-Ray accepts text-format descriptions of worlds that
can be quickly transformed into high-quality images.

Presentation Tools

Although not visualization methods per se, presentation tools allow you to convey scientific concepts more
easily by incorporating graphics and equations into text.

BETEX

KTEX (or, more specifically, ITEX 2.) is a powerful text formatting language. Much like code, a KTEX
document contains text commands that are compiled into the finished product (typically a postscript file).
The language is best illustrated by example:

% this is a comment
\documentclass[12pt]{article}
\begin{document}

\section{Introduction}

Latex (or \LaTeX) is a powerful text formatting language.
You can write in \textit{italics} or \textbf{bold face}. You can
\underline{underline} and $\overline{\mbox{overlinel}}$.
Best of all, you can do equationms:
\begin{equation}

E = mc™2
\end{equation}
or arrays of equations:
\begin{eqgnarray}

\dot{x} & = & z \\

\dot{z} & = & x + z
\end{eqgnarray}
Even integrals!
\begin{equation}

M = \int_x \int_y \int_z \rho(x,y,z)\, dz\,dy\,dx
\end{equation}

\subsection{Here’s a subsection}
Here’s a table:

\begin{table} [h]
\begin{tabular}{llc|r}
Left & Center & Right \\
\hline

1&2&3\\

45 &6
\end{tabular}
\end{table}

Here’s how you start a new paragraph (just leave a blank line).
Notice how the line is indented.

\subsubsection*{Here’s a subsubsection without a number}
Here’s how you might include a figure:

\begin{figure}
\resizebox{\textwidth}{!}{\includegraphics{myfigure.eps}}
\caption{Caption goes here.}

\end{figure}

(you’1l need a \usepackage{graphics} command in the preamble).
y % geigrap p

\subsubsection*{And here’s a numbered list:}
\begin{enumerate}

\item Item 1.

\item Item 2.

\item etc.

\end{enumerate}

\end{document}

As you can see, ITEX contains powerful equation typesetting tools and supports both embedded tables
and figures. Naturally, the document you are currently reading was written in I¥TEX (and converted to
HTML for the course website using the latex2html utility).

To compile a M TEX document, just type latex mydocument.tex, where mydocument.tex is the name of
your document. This creates a dvi file which can be viewed in a window with xdvi or converted to postscript
with dvips (use ghostview or gv to view a postscript document in a window). If you want PDF output, use
the convert utility: convert mydocument.ps mydocument.pdf (use acroread to view a PDF document in
a window).

A nice IATEX tutorial is available here:

http://www.ctan.org/tex-archive/info/lshort/english/1lshort.pdf?action=/starter/
There are also extensive lists of special symbols that you might find useful:
http://www.ctan.org/tex-archive/info/symbols/comprehensive/symbols-a4.pdf

(these documents are all part of the Comprehensive TEX Archive Network at http://www.ctan.org/).

xfig

xfig is a free drawing tool that allows the user to produce precise schematics. It can also be used to overlay
text and symbols on image files. A variety of output formats are supported. Here is a sample figure produced
with xfig:

For more information on xfig, surf here:

http://www.xfig.org/

PowerPoint

PowerPoint is software for creating and displaying presentations, typically used in conjunction with a video
projector. It is the standard these days at scientific conferences (you might also see OpenOffice or PowerBook
display tools). Examples of both PowerPoint and OpenOffice presentations are available on the course web
page.

One disadvantage of these tools is that it can often be hard to typeset equations (not that you should
have too many equations in a presentation anyway...). An easy workaround is to generate the equations in
IATEX first, convert the output to a rendered image, then import it into the presentation.

Another Word About HTML

A web page (HTML) is another good way of presenting your work, and has the advantage that it can be
viewed by anyone with a web browser. Refer to the UNIX tutorial for more information about HTML.

