
Data RepresentationsData Representations

Computers store data as different variable types, 
e.g. integer, floating point, complex, etc.

Different machines have different wordlengths, 
e.g. 4-byte ints on a 32-bit machine (Pentium), 
8-byte ints on a 64-bit machine (Alpha).

This makes (binary) data non-portable.



IntegersIntegers

All data types represented by 0's and 1's.

An integer value:

 N = # of bits in word

 s
i

= value of bit i in binary string s

e.g. 0 0 0 0 0 1 1 0 = 22 + 21 = 6 for 8-bit word.

Use "two's complement" method for sign.
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Integers, Cont'dIntegers, Cont'd

Largest value that can be represented is 2N - 1.

For 32-bit word this is 4,294,967,295.

Arithmetic with integers is exact, except:
 When division results in remainder.

 Result exceeds largest representable integer

e.g. 2 × 109 + 3 × 109 = overflow error

Note multiplication by 2's can be achieved by 
left-shift, which is very fast (in C: "<<" operator).



Two's ComplementTwo's Complement

Exploits finite size of data representations (cyclic 
groups) and properties of binary arithmetic.

To get negative of binary number, invert all bits 
and add 1 to the result.

e.g. 1 = 0 0 0 0 0 0 0 1 in 8-bit

invert bits: 1 1 1 1 1 1 1 0

add 1: 0 0 0 0 0 0 0 1

result: 1 1 1 1 1 1 1 1 = -1

In 8 bits, signed char ranges from -128 to +127.



Negative Powers of 2Negative Powers of 2

Binary notation can be extended to cover negative 
powers of 2, e.g. "110.101" is:

1 × 22 + 1 × 21 + 1 × 2-1 + 1 × 2-3 = 6.625

Can represent real numbers by specifying some 
location in the word as the "binary point" → 
fixed-point representation.

In practice, use some bits for an exponent → 
floating-point representation.



FloatsFloats

For most machines these days, real numbers are 
represented by floating-point format:

s = sign B = base (usually 2, sometimes 16)

M = mantissa e = exponent

E = bias, usually 127.

In past, manufacturers used different number of 
bits for each of M and e → non-portable code.
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Floats, Cont'dFloats, Cont'd

Currently, most manufacturers adopt IEEE 
standard:
 s = 1st bit

 Next 8 bits are e

 Last 23 bits are M, expressed as a binary fraction, 
either 1.F, or, if e=0, 0.F, where F is in base 2.

Largest single-precision float f
max

 =2127 ≈ 1038.

Smallest (and least precise!) f
min  

= 2-149 ≈ 10-45.



Round-off ErrorRound-off Error

Not all values along real axis can be represented.

There are 1038 integers between f
min

 & f
max

, but 

only 232 ≈ 109 bit patterns.

Values < |10-45| result in "underflow" error.

If value cannot be represented, next nearest value 
is produced. Difference between desired and 
actual value is called "round-off error" (RE).



Round-off Error, Cont'dRound-off Error, Cont'd

Smallest value e
m
 for which 1 + e

m
 > 1 is called 

"machine accuracy", typically ∼10-7 for 32 bits.

Double precision greatly reduces e
m 

(~ 10-16).

RE accumulates in a calculation:

 Random walk: total error N1/2 e
m
 after N operations.

 But algorithms rarely random → linear error N e
m
.



Round-off Error, Cont'dRound-off Error, Cont'd

Subtraction of two very nearly equal numbers can 
give rise to large RE.

e.g. Solution of quadratic equation...

...can go badly wrong whenever ac << b2 (Cf. PS#2).

RE cannot be avoidedit is a consequence of 
using a finite number of bits to represent real 
values.
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Truncation ErrorTruncation Error

In practice, most numerical algorithms approxi-
mate desired solution with a finite number of 
artithmetic operations.

e.g. evaluating integral by quadrature

       summing series using finite number of terms

Difference between true solution and numerical 
approximation to solution is called "truncation 
error" (TE).



Truncation Error, Cont'dTruncation Error, Cont'd

TE exists even on "perfect" machine with no RE.

TE is under programmer's control; much effort 
goes into reducing it.

Usually RE and TE do not interact.

Sometimes TE can amplify RE until it swamps 
calculation. Solution is then called unstable.

e.g. Integer powers of Golden Mean (Cf. PS#2).


