
Numerical Linear AlgebraNumerical Linear Algebra

 Probably the simplest kind of problem.
 Occurs in many contexts, often as part of larger

problem.
 Symbolic manipulation packages can do linear

algebra "analytically" (e.g. Mathematica, Maple).
 Numerical methods needed when:

 Number of equations very large

 Coefficients all numerical

Linear SystemsLinear Systems

     � � �     = 

    � � �     = 

⋮ ⋮
      � � �     = 

 Write linear system as:

 This system has n unknowns and m equations.

 If n = m, system is closed.

 If any equation is a linear combination of any others,
equations are degenerate and system is singular.*

*see Singular Value Decomposition (SVD), NRiC 2.6.

Numerical ConstraintsNumerical Constraints

 Numerical methods also have problems when:

1) Equations are degenerate "within round-off error".

2) Accumulated round-off errors swamp solution
(magnitude of a's and x's varies wildly).

 For n,m < 50, single precision usually OK.

 For n,m < 200, double precision usually OK.

 For 200 < n,m < few thousand, solutions possible
only for sparse systems (lots of a's zero).

Matrix FormMatrix Form

 Write system in matrix form:

where:
 =

=   ⋯  

  ⋯  

⋮ ⋮ ⋮
     ⋯  


Columns

Rows

Matrix Data RepresentationMatrix Data Representation

 Recall, C stores data in row-major form:

a
11

, a
12

, ..., a
1n

;

a

21
, a

22
, ..., a

2n
; ...; a

m1
, a

m2
, ..., a

mn

 If using "pointer to array of pointers to rows"
scheme in C, can reference entire rows by first
index, e.g. 3rd row = a[2].
 Recall in C array indices start at zero!!

 FORTRAN stores data in column-major form:

a
11

, a
21

, ..., a
m1

;

a

12
, a

22
, ..., a

m2
; ...; a

1n
, a

2n
, ..., a

mn

Note on Numerical Recipes in CNote on Numerical Recipes in C

 The canned routines in NRiC make use of special
functions defined in nrutil.c (header nrutil.h).
 In particular, arrays and matrices are allocated

dynamically with indices starting at 1, not 0.

 If you want to interface with the NRiC routines, but
prefer the C array index convention, pass arrays by
subtracting 1 from the pointer address (i.e. pass p-1
instead of p) and pass matrices by using the functions
convert_matrix() and free_convert_matrix()
in nrutil.c (see NRiC 1.2 for more information).

Tasks of Linear AlgebraTasks of Linear Algebra

 We will consider the following tasks:

1) Solve Ax = b, given A and b.

2) Solve Ax
i
 = b

i
 for multiple b

i
's.

3) Calculate A-1, where A-1A = I, the identity matrix.

4) Calculate determinant of A, det(A).

 Large packages of routines available for these
tasks, e.g. LINPACK, LAPACK (public domain);
IMSL, NAG libraries (commercial).

 We will look at methods assuming n = m.

The Augmented MatrixThe Augmented Matrix

 The equation Ax = b can be generalized to a form
better suited to efficient manipulation:

 The system can be solved by performing
operations on the augmented matrix.

 The xi's are placeholders that can be omitted until
the end of the computation.

 ∣ =   ⋯   ∣ 

  ⋯   ∣ 

⋮ ⋮ ⋮ ∣ ⋮
    ⋯  ∣ 



Elementary Row OperationsElementary Row Operations

 The following row operations can be performed
on an augmented matrix without changing the
solution of the underlying system of equations:

I. Interchange two rows.

II. Multiply a row by a nonzero real number.

III. Add a multiple of one row to another row.

 The idea is to apply these operations in sequence
until the system of equations is trivially solved.

The Generalized Matrix EquationThe Generalized Matrix Equation

 Consider the generalized linear matrix equation:

 Its solution simultaneously solves the linear sets:

Ax1 = b1, Ax2 = b2, Ax3 = b3, and AY = I,

 where the xi's and bi's are column vectors.

    

   

   

   






  ∣  ∣  ∣    

 ∣  ∣  ∣    

 ∣  ∣  ∣    

 ∣  ∣  ∣    






=   ∣  ∣  ∣    

 ∣  ∣  ∣    

 ∣  ∣  ∣    

 ∣  ∣  ∣    





Gauss-Jordan EliminationGauss-Jordan Elimination

 GJE uses one or more elementary row operations
to reduce matrix A to the identity matrix.

 The RHS of the generalized equation becomes the
solution set and Y becomes A-1.

 Disadvantages:

1) Requires all bi's to be stored and manipulated at same
time ⇒ memory hog.

2) Don't always need A-1.

 Other methods more efficient, but good backup.

Gauss-Jordan Elimination: ProcedureGauss-Jordan Elimination: Procedure

 Start with simple augmented matrix as example:

 Divide first row (a1|b1) by first element a11.

 Subtract ai1 (a1|b1) from all other rows:

 Continue process for 2nd row, etc.

    ∣ 

   ∣ 

   ∣ 


  /   /  ∣ / 

 − /  −/  ∣ −/ 
 − /  −/  ∣ − / 



Row a1|b1

Pivot row

First column of identity matrix

GJE Procedure, Cont'dGJE Procedure, Cont'd

 Problem occurs if leading diagonal element ever
becomes zero.

 Also, procedure is numerically unstable!
 Solution: use "pivoting" - rearrange remaining

rows (partial pivoting) or rows & columns (full
pivoting - requires permutation!) so largest
coefficient is in diagonal position.

 Best to "normalize" equations (implicit pivoting).

Gaussian Elimination with Gaussian Elimination with
BacksubstitutionBacksubstitution

 If, during GJE, only subtract rows below pivot,
will be left with a triangular matrix:

 Solution for x3 is then trivial: x3 = b3'/a33'.

 Substitute into 2nd row to get x2.

 Substitute x3 & x2 into 1st row to get x1.

 Faster than GJE, but still memory hog.


�


�


�

 
�


�

  
�  

 

 
=  

�


�


� "Gaussian

Elimination"

LULU Decomposition Decomposition

 Suppose we can write A as a product of two
matrices: A = LU, where L is lower triangular and
U is upper triangular:

 Then Ax = (LU)x = L(Ux) = b, i.e. must solve,

(1) Ly = b; (2) Ux = y

 Can reuse L & U for subsequent calculations.

 = ×  
× × 
× × ×  = × × ×

 × ×
  ×

LULU Decomposition, Cont'd Decomposition, Cont'd

 Why is this better?
 Solving triangular matrices is easy: just use forward

substitution for (1), backsubstitution for (2).

 Problem is, how to decompose A into L and U?
 Expand matrix multiplication LU to get n2 equations

for n2 + n unknowns (elements of L and U plus n
extras because diagonal elements counted twice).

 Get an extra n equations by choosing Lii = 1 (i = 1,n).

 Then use Crout's algorithm for finding solution to
these n2 + n equations "trivially" (NRiC 2.3).

LULU Decomposition in NRiC Decomposition in NRiC

 The routines ludcmp() and lubksb() perform LU
decomposition and backsubstitution respectively.

 Can easily compute A-1 (solve for the identity
matrix column by column) and det(A) (find the
product of the diagonal elements of the LU
decomposed matrix) - see NRiC 2.3.

 WARNING: for large matrices, computing det(A)
can overflow or underflow the computer's
floating-point dynamic range.

Iterative ImprovementIterative Improvement

 For large sets of linear equations Ax = b, roundoff
error may become a problem.

 We want to know x but we only have x + δx,
which is an exact solution to A(x + δx) = b + δb.

 Subtract the exact solution and eliminate δb:

 Aδx = A(x + δx) - b

 The RHS is known, hence can solve for δx.
Subtract this from the wrong solution to get an
improved solution (make sure to use doubles!).

Tridiagonal MatricesTridiagonal Matrices

 Many systems can be written as (or reduced to):

 ai xi-1 + bi xi + ci xi+1 = di i = 1,n

 i.e. a tridiagonal matrix:

 Here a1 and cn are associated with "boundary
conditions" (i.e. x0 and xn+1).

[
   � 

   

  

⋱ ⋱ ⋱
− −  −

 �   

][
 

 

 

⋮
 −

 

]= [
 

 

 

⋮
 −

 

]

Sparse MatricesSparse Matrices

 LU decomposition and backsubstitution is very
efficient for tri-di systems: O(n) operations as
opposed to O(n3) in general case.

 Operations on sparse systems can be optimized.

e.g. Tridiagonal

 Band diagonal with bandwidth M

 Block diagonal

 Banded

 See NRiC 2.7 for various systems & techniques.

Iterative MethodsIterative Methods

 For very large systems, direct solution methods
(e.g. LU decomposition) are slow and RE prone.

 Often iterative methods much more efficient:

1. Guess a trial solution x0

2. Compute a correction x1 = x0 + δx

3. Iterate procedure until convergence, i.e. |δx| < ∆
 e.g. Congugate gradient method for sparse

systems (NRiC 2.7).

Singular Value DecompositionSingular Value Decomposition

 Can diagnose or (nearly) solve singular or near-
singular systems.

 Used for solving linear least-squares problems.

 Theorem: any m × n matrix A can be written:

 A = UWV T

 where U (m × n) & V (n × n) are orthogonal and
W (n × n) is a diagonal matrix.

 Proof: buy a good linear algebra textbook.

SVD, Cont'dSVD, Cont'd

 The values Wi are zero or positive and are called
the "singular values".

 The NRiC routine svdcmp() returns U, V, & W
given A. You have to trust it (or test it yourself!).
 Uses Householder reduction, QR diagonalization, etc.

 If A is square then we know:

 A-1 = V [diag(1/Wi)] U
 T

 This is fine so long as no Wi is too small (or 0).

DefinitionsDefinitions

 Condition number cond(A) = (max Wi)/(min Wi).

 If cond(A) = ∞, A is singular.

 If cond(A) very large (106, 1012), A is ill-conditioned.

 Consider Ax = b. If A is singular, there is some
subspace of x (the nullspace) such that Ax = 0.

 The nullity is the dimension of the nullspace.
 The subspace of b such that Ax = b is the range.
 The rank of A is the dimension of the range.

The Homogeneous EquationThe Homogeneous Equation

 SVD constructs orthonormal bases for the
nullspace and range of a matrix.

 Columns of U with corresponding non-zero Wi
are an orthonormal basis for the range.

 Columns of V with corresponding zero Wi are an
orthonormal basis for the nullspace.

 Hence immediately have solution for Ax = 0, i.e.
the columns of V with corresponding zero Wi.

ResidualsResiduals

 If b (≠ 0) lies in the range of A, then the singular
equations do in fact have a solution.

 Even if b is outside the range of A, can get
solution which minimizes residual r = |Ax - b|.

 Trick: replace 1/Wi by 0 if Wi = 0 and compute

 x = V [diag (1/Wi)] (U
 T b)

 Similarly, can set 1/Wi = 0 if Wi very small.

Approximation of MatricesApproximation of Matrices

 Can write A = UWV T as:

 If most of the singular values Wk are small, then A
is well-approximated by only a few terms in the
sum (strategy: sort Wk's in descending order).

 For large memory savings, just store the columns
of U and V corresponding to non-negligible Wk's.

 Useful technique for digital image processing.

=∑
=



     

