Nurnierical Liriezr Alcgjeora

* Probably the ssmplest kind of problem.

e Occursin many contexts, often as part of larger
problem.

e Symbolic manipulation packages can do linear
algebra"analytically" (e.g. Mathematica, Maple).

e Numerica methods needed when:

— Number of equations very large
— Coefficients all numerical

v N\ Jerrer o
L lriesr W) SUSIINS
e Write linear system as:
a, x,‘ta,x,* +a, x, = b
a, x,‘ta,x,* +a, x = b,
a, x,ta,,x,+ +a,x, = b,

— This system has n unknowns and m eguations.
- If n=m, system is closed.

— If any equation is alinear combination of any others,
equations are degenerate and system is singular.*

*see Singular Vaue Decomposition (SVD), NRIC 2.6.

Nurrierical Corstralries

* Numerical methods also have problems when:

1) Equations are degenerate "within round-off error".

2) Accumulated round-off errors swamp solution
(magnitude of a's and x's varies wildly).

* For n,m< 50, single precision usually OK.

* For n,m< 200, double precision usually OK.

* For 200 < n,m < few thousand, solutions possible
only for sparse systems (lots of a's zero).

M zitr] ¢ Forrr

e Write system in matrix form:

AXx=Db
where:
ay, a, o 4l < Rows
A: dy; dy a,
amn amZ am

Columns

Mlziir] ¢ Deliel Reoreserizl] o)

* Recall, C stores data in row-major form:

all, alz, eny aln; 6121, a22, vy d e, d A A

2N ml m2 mn

* |f using "pointer to array of pointersto rows"
scheme in C, can reference entire rows by first
index, e.g. 3%row =a[2] .

x Recall in C array indices start at zero!!
* FORTRAN stores data in column-major form:

all, 821, eny aml; alz, azz, ceny amz; ens aln, a2n, cens amn

Naote o Nurriericel Recloes i C

* The canned routines in NRIC make use of special
functionsdefined innrutil.c (header nrutil . h).

- In particular, arrays and matrices are allocated
dynamically with indices starting at 1, not O.

- If you want to interface with the NRIC routines, but
prefer the C array index convention, pass arrays by
subtracting 1 from the pointer address (i.e. passp- 1
Instead of p) and pass matrices by using the functions
convert _matrix() andfree convert _matri x()
Innrutil.c (seeNRIC 1.2 for more information).

rl

Tesis of Lireasr Algeoral

* We will consider the following tasks:

1) Solve Ax = b, given A and b.

2) Solve Ax = b for multipleb’'s.

3) Calculate A*, where A*A = |, the identity matrix.
4) Calculate determinant of A, det(A).

* Large packages of routines available for these
tasks, e.g. LINPACK, LAPACK (public domain);
IMSL, NAG libraries (commercial).

* Wewill look at methods assuming n=m.

Trie Augrrieritec] VIzirx

* The eguation Ax = b can be generalized to aform
better suited to efficient manipulation:

Ay dy, 0 4y, b,

(A|b>: a:21 a:22 a:2n b:z

anl anZ ann bn

* The system can be solved by performing
operations on the augmented matrix.

e Thex,'s are placeholders that can be omitted until
the end of the computation.

Elerrieritary How Ogeretl ofis

* The following row operations can be performed
on an augmented matrix without changing the
solution of the underlying system of equations.

l. Interchange two rows.
1. Multiply arow by anonzero real number.
1. Add a multiple of one row to another row.

* Theideaisto apply these operations in sequence
until the system of eguationsistrivially solved.

Trie Gererellzed Mlzirl¢ Ecjuzi]of)

e Consider the generalized linear matrix equation:

Ay Gy Ay Ayl Xy | Xio | X3 | Y Yo Vs Vg by | by | ;1 | 10 0 0
i G O Gl | Em | s | B P B P _ | by | by | by [01 00
A3 A3y i3 Ayl X3 ‘ X3y ’ X33 ’ Yar Vs Vs Vi iy | b | b | 00 10
Ay Gy Ayz o Gyyf | Xy | X42 | X 43 | Yar Voo Va3 Vs D | i | s | 0 0 0 1
coefficients solutions and inverse RHS and identity

* |ts solution simultaneously solvesthe linear sets.
AX, = by, AX, = b,, AX; =b,, and AY =1,
where the x;'s and b,'s are column vectors.

Caljes-Jorclar) El i ret] of)

* GJE uses one or more elementary row operations
to reduce matrix A to the identity matrix.

* The RHS of the generalized equation becomes the
solution set and Y becomes A™.

e Disadvantages.
1) Requires all b,'s to be stored and manipulated at same
time 0 memory hog.
2) Don't always need A™.
* Other methods more efficient, but good backup.

CaljesJorclain) Ellrrireti oy Proceclur

(D

e Start with ssmple augmented matrix as example:

i, dys b,| < Row a, b,

dyy Gy Qo b,

d3; 43 Gj; b,
e Dividefirst row (a,|b,) by first element a,;.
e Subtract a, (a,|b,) from all other rows.

1 alzlall a13/a11 ’ b1/a11 <— Pivot row

0 azz_a21<a12/a11) a23_a21(a13/a11) | b2—a21(b1/a“)

0 a32—a31(a12/a“) a33_a31(a13/a11) | b3_a31<b1/a11)

First column of identity matrix

 Continue process for 2™ row, etc.

_l

GJ= Procecure, Corii'c

QD

(1’

* Problem occurs if leading diagonal element ever
becomes zero.

* Also, procedure is numerically unstablel

e Solution: use "pivoting" - rearrange remaining
rows (partial pivoting) or rows & columns (full
pivoting - reguires permutation!) so largest
coefficient isin diagonal position.

e Best to "normalize" equations (Implicit pivoting).

Cawjsslar) =l netl o Wi

)

BeCKSLIOSITLT o)

e |f, during GJE, only subtract rows below pivot,
will be left with atriangular matrix:

.\ : a4 dgs)|x, b,
Gaussian 0 _ 4
Elimination" Ay Aps|| X2 2

0 U AR b,

— Solution for x; Isthen trivial: X; = b,'/ay;'.

— Substitute into 2™ row to get x..

— Substitute X, & X, into 1% row to get X,.
e Faster than GJE, but still memory hog.

LU Decorrigoslilor

* Suppose we can write A as a product of two
matrices. A= LU, where L is |ower triangular and
U Is upper triangular:

L= U=

X
0
0

S X X
X X X

0 O
X 0
X X

X X X

* Then Ax = (LU)x = L(Ux) = Db, I.e. must solve,
(1) Ly =b; (2) Ux =y
* Canreuse L & U for subseguent calculations.

LU Decornoosliiorn, Corii'c

 Why Isthis better?

— Solving triangular matrices s easy: just use forward
substitution for (1), backsubstitution for (2).

* Problem is, how to decompose A into L and U?

- Expand matrix multiplication LU to get n* equations
for n° + n unknowns (elements of L and U plus n
extras because diagonal elements counted twice).

— Get an extran equations by choosing L; = 1 (1 = 1,n).

— Then use Crout's algorithm for finding solution to
these n* + n equations "trivialy" (NRiC 2.3).

LU Decorrigosition 1n NFEIC

* Theroutines| udcnp() and | ubksb() perform LU
decomposition and backsubstitution respectively.

e Can easily compute A" (solve for the identity
matrix column by column) and det(A) (find the
product of the diagonal elements of the LU
decomposed maitrix) - see NRIC 2.3.

e WARNING: for large matrices, computing det(A)
can overflow or underflow the computer's
floating-point dynamic range.

ltereil ve | rnoroverreri

For large sets of linear equations Ax = b, roundoff
error may become a problem.

We want to know X but we only have x + ox,
which Is an exact solution to A(x + 0x) = b + db.

Subtract the exact solution and e iminate ob:
AdX = A(X+0x) - b

The RHS Is known, hence can solve for ox.

Subtract this from the wrong solution to get an
Improved solution (make sure to use doubl es!).

Triclzgorzl Meirlces

e Many systems can be written as (or reduced to):
aX.,+bx+cx,=d 1=1n
|.e. atridiagonal matrix:

b, ¢ OS.xll .dll
a, by ¢ 255 d,
a; by ¢ Xy | = | ds
. an..—l bn..—l €1 xn:—l d;—l
0 s a, b, || x, d,
Here a, and ¢, are associated with "boundary

conditions’ (i.e. X, and X.,,).

ﬂ

Sperse Mzirices

* | U decomposition and backsubstitution is very
efficient for tri-di systems: O(n) operations as
opposed to O(n°) in genera case.

e Operations on sparse systems can be optimized.
e.g. Tridiagonal
Band diagonal with bandwidth M
Block diagonal
Banded

* See NRIC 2.7 for various systems & techniques.

lteret) ve Y einocls

(D
Qh
(D

v

e For very large systems, direct solution methods
(e.g. LU decomposition) are sSlow and RE prone.

e Often iterative methods much more efficient:
1. Guess a trial solution x°
2. Compute a correction x* = x° + dx

3. Iterate procedure until convergence, i.e. [0x| < A

* e.g. Congugate gradient method for sparse
systems (NRIC 2.7).

Singular Velle Decorngoslior)

e Can diagnose or (nearly) solve singular or near-
singular systems.

e Used for solving linear |east-sguares problems.

* Theorem: any m x n matrix A can be written:
A=UW'
where U (mx n) & V (n x n) are orthogonal and
W (n x n) Isadiagonal matrix.

* Proof: buy agood linear algebra textbook.

SV D, Corii'c

e Thevalues\W are zero or positive and are called
the "singular values'.

* The NRIC routine svdcnp() returnsU, V, & W
given A. You haveto trust it (or test it yourself!).

— Uses Householder reduction, QR diagonalization, etc.
e |f Alssguarethen we know:
AT =V [diag(VW)] U’
e Thisisfinesolong asnoW. istoo small (or 0).

Deflnltlons

e Condition number cond(A) = (max W)/(min W,).

— If cond(A) = o0, Aissingular.
- If cond(A) very large (10°, 10"), A isill-conditioned.

* Consider Ax = b. If Aissingular, thereis some
subspace of X (the nullspace) such that Ax = 0.

* The nullity isthe dimension of the nullspace.

* The subspace of b such that Ax = b isthe range.
 Therank of A isthe dimension of the range.

/

Trie rlornogerneols =Ll or)

e SVD constructs orthonormal bases for the
nullspace and range of a matrix.

e Columns of U with corresponding non-zero W.
are an orthonormal basis for the range.

e Columns of V with corresponding zero W, are an
orthonormal basis for the nullspace.

* Hence immediately have solution for Ax =0, I.e.
the columns of V with corresponding zero W..

* [f b (#0) liesintherange of A, then the singular
equations do In fact have a solution.

* Even if b Isoutside the range of A, can get
solution which minimizesresidual r = |Ax - b|.

o Trick: replace /W, by O if W, = 0 and compute
x =V [diag (UW)] (U b)
e Similarly, can set /W, =0 iIf W very small.

Avorodrrziior of Vlzirces

Can write A= UWV ' as

N
Aij:Z W, UiV i
=1

If most of the singular values W, are small, then A

IS well-approximated by only afew termsin the
sum (strategy: sort W,'s in descending order).

For large memory savings, just store the columns
of U and V corresponding to non-negligible W,'s.

Useful technique for digital image processing.

