Nonlinear Equations

- Often (most of the time?) the relevant system of equations is not linear in the unknowns.
- Then, cannot decompose as $Ax = b$. Oh well.
- Instead write as:

 \begin{align*}
 (1) \quad f(x) &= 0 \quad \text{function of one variable (1-D)} \\
 (2) \quad f(x) &= 0 \quad x = (x_1, x_2, \ldots, x_n), \quad f = (f_1, f_2, \ldots, f_n) \quad (n-D)
 \end{align*}

- Not guaranteed to have any real solutions, but generally do for astrophysical problems.
Solutions in 1-D

- Generally, solving multi-D equations is much harder, so we'll start with the 1-D case first...
- By writing $f(x) = 0$ we have reduced the problem to solving for the roots of f.
- In 1-D it is usually possible to trap or bracket the desired roots and hunt them down.
- Typically all root-finding methods proceed by iteration, improving a trial solution until some convergence criterion is satisfied.
Function Pathologies

- Before blindly applying a root-finding algorithm to a problem, it is essential that the form of the equation in question be understood: graph it!
- For smooth functions good algorithms will always converge, provided the initial guess is good enough.
- Pathologies include discontinuities, singularities, multiple or very close roots, or no roots at all!
Numerical Root Finding

• Suppose $f(a)$ and $f(b)$ have opposite sign.

• Then, if f is continuous on the interval (a,b), there must be at least one root between a and b (this is the Intermediate Value Theorem).

• Such roots are said to be bracketed.

Bracketed root Many roots No roots
Example Application

• Use root finding to calculate the equilibrium temperature of the ISM.

• The ISM is a very diffuse plasma.
 – Heated by nearby stars and cosmic rays.
 – Cooled by a variety of processes:
 • Bremsstrahlung: collisions between electrons and ions
 • Atom-electron collisions followed by radiative decay
 • Thermal radiation from dust grains
Example, Cont'd

- Equilibrium temperature given when:

 Rate of Heating \(H = \) Rate of Cooling \(C \)

 - Often \(H \) is not a function of temperature \(T \).
 - Usually \(C \) is a complex, nonlinear function of \(T \).

- To solve, find \(T \) such that \(H - C(T) = 0 \).
Bracketing and Bisection

• NRiC 9.1 lists some simple bracketing routines.
• Once bracketed, root is easy to find by bisection:
 – Evaluate f at interval midpoint $(a + b) / 2$.
 – Root must be bracketed by midpoint and whichever a or b gives f of opposite sign.
 – Bracketing interval decreases by 2 each iteration:
 $$\varepsilon_{n+1} = \varepsilon_n / 2.$$
 – Hence to achieve error tolerance of ε starting from interval of size ε_0 requires $n = \log_2(\varepsilon_0/\varepsilon)$ steps.
Convergence

• Bisection converges linearly (first power of ε).

• Methods in which

 \[\varepsilon_{n+1} = (\text{constant}) \times (\varepsilon_n)^m \quad m > 1 \]

 are said to converge superlinearly.

• Note error actually decreases exponentially for bisection. It converges "linearly" because successive figures are won linearly with computational effort.
Tolerance

- What is a practical tolerance ε for convergence?
- Cannot be less than round-off error.
- For single-precision (float) accuracy, typically take $\varepsilon = 10^{-6}$ in fractional error.

 i.e. $\frac{f(x) - f(x_r)}{f(x_r)} \sim 10^{-6}$

 where $x =$ numerical solution, $x_r =$ actual root.
- When $f(x_r) = 0$ this fails, so use $\varepsilon = 10^{-6}$ as absolute error (or perhaps use $\varepsilon(|a| + |b|)/2$).
Newton-Raphson Method

• Can one do better than linear convergence? **Duh!**
• Expand $f(x)$ in a Taylor series:

$$f(x + \delta) = f(x) + f'(x) \delta + f''(x) \frac{\delta^2}{2} + ...$$

• For $\delta << x$, drop higher order terms, so:

$$f(x + \delta) = 0 \Rightarrow \delta = -\frac{f(x)}{f'(x)}$$

• δ is correction added to current guess of root:

i.e. $x_{i+1} = x_i + \delta$
• Graphically, Newton-Raphson (NR) uses tangent line at x_i to find zero crossing, then uses x at zero crossing as next guess:

• Note: only works near root ($\delta << x$)
Newton-Raphson, Cont'd

- When higher order terms important, NR fails spectacularly. Other pathologies exist too:

 - Shoots to infinity
 - Never converges
Newton-Raphson, Cont'd

- Why use NR if it fails so badly?
- Rate of convergence:
 \[\varepsilon_{i+1} = \varepsilon_i - \frac{f(x_i)}{f'(x_i)} \]

- Taylor expand \(f(x_i) \) & \(f'(x_i) \) to get:
 \[\varepsilon_{i+1} = - \varepsilon_i^2 \frac{f''(x_i)}{f'(x_i)} \quad \text{[quadratic!]} \]

- Note both \(f(x) \) and \(f'(x) \) must be evaluated each iteration, plus both must be continuous near root.
- Best use of NR is to "polish-up" bisection root.
Nonlinear Systems of Equations

- Consider the system \(f(x,y) = 0, \ g(x,y) = 0 \). Plot zero contours of \(f \) & \(g \):

- No information in \(f \) about \(g \), and vice versa.
 - In general, no good method for finding roots.
Nonlinear Systems, Cont'd

- If you are near root, best bet is NR.

e.g. For $\mathbf{F}(\mathbf{x}) = \mathbf{0}$, choose $x_{i+1} = x_i + \delta$, where

 $$\mathbf{F}'(\mathbf{x}) \, \delta = - \mathbf{F}(\mathbf{x})$$

- This is a matrix equation: $\mathbf{F}'(\mathbf{x})$ is a matrix with elements $\frac{\partial F_i}{\partial x_j}$. The matrix is called the Jacobian.

- Written out:

\[
\frac{\partial f}{\partial x} \delta_x + \frac{\partial f}{\partial y} \delta_y = - f(x, y) \\
\frac{\partial g}{\partial x} \delta_x + \frac{\partial g}{\partial y} \delta_y = - g(x, y)
\]
Nonlinear Systems, Cont'd

- Given initial guess, must evaluate matrix elements and RHS, solve system for δ, and compute next iteration x_{i+1}. Then repeat (must solve 2×2 linear system each time).

- Essentially the non-linear system has been linearized to make it easier to work with.

- NriC 9.7 discusses a global convergence strategy that combines multi-D NR with "backtracking" to improve chances of finding solutions.
Example: Interstellar Chemistry

- ISM is multiphase plasma consisting of electrons, ions, atoms, and molecules.
- Originally, the ISM was thought to be too hostile for molecules.
- But in 1968-69, radio observations discovered absorption/emission lines of \(\text{NH}_3, \text{H}_2\text{CO}, \text{H}_2\text{O}, \ldots \)
- Lots of organic molecules, e.g. \(\text{CH}_3\text{CH}_2\text{OH} \) (ethanol).
Example, Cont'd

• In some places, all atoms have been incorporated into molecules.

• For example, molecular clouds: dense, cold clouds of gas composed primarily of molecules.

 \((T \sim 30 \text{ K}, n \sim 10^6 \text{ cm}^{-3}, M \sim 10^{5-6} M_\odot, R \sim 10 - 100 \text{ pc}) \).

• How do you predict what abundances of different molecules should be, given \(n \) and \(T \)?

• Need to solve a chemical reaction network.
Example, Cont'd

• Consider reaction between two species A and B:

 \[A + B \rightarrow AB \quad \text{reaction rate} = n_A n_B R_{AB} \]

• Reverse also possible:

 \[AB \rightarrow A + B \quad \text{reaction rate} = n_{AB} R'_{AB} \]

• In equilibrium:

 (1) \[n_A n_B R_{AB} = n_{AB} R'_{AB} \]

 (2) \[n_A + n_{AB} = n_A^0 \quad \text{\textbackslash Normalizations: #} \]

 (3) \[n_B + n_{AB} = n_B^0 \quad \text{\textbackslash A \& B conserved} \]
Example, Cont'd

- Substitute normalization equations into reaction equations to get quadratic in n_{AB}, easily solved.

- However, many more possible reactions:
 - $AC + B \leftrightarrow AB + C$ (exchange reaction)
 - $ABC \leftrightarrow AB + C$ (dissociation reaction)

- Wind up with large nonlinear system describing all forward/reverse reactions, involving known reaction rates R. Must solve given fixed n^0 & T.
Numerical Derivatives

• For NR and function minimization, often need derivatives of functions. It's always better to use an analytical derivative if it's available.

• If you're stuck, could try:

\[f'(x) \approx \frac{f(x+h) - f(x)}{h} \]

• However, this is very susceptible to RE. Better:

\[f'(x) \approx \frac{f(x+h) - f(x-h)}{2h} \]

• Read NriC 5.7 before trying this!