
Ordinary Differential Equations Ordinary Differential Equations
(ODEs)(ODEs)

 NRiC Chapter 16.
 ODEs involve derivatives wrt one independent

variable, e.g. time t.
 ODEs can always be reduced to a set of first-

order equations (involving only first derivatives).

e.g.

is equivalent to the set

=

=

= −

ODE Intro, Cont'dODE Intro, Cont'd

 Usually new variables just derivatives of old, but
sometimes need additional factors of t to avoid
pathologies.

 General problem is solving set of 1st order ODEs:

 But also need boundary conditions: algebraic
conditions on values of yi at discrete time(s) t...

=

�

 ���

 = � ��

fi' are known
functions

ODE Boundary Conditions (BC)ODE Boundary Conditions (BC)

 Two categories of BC:
 Initial Value Problem (IVP): all yi are given at some

starting point ts, and solution is needed from ts to tf.

 Two-point Boundary Value Problem (BVP): yi are
specified at two or more t, e.g. some at ts, some at tf
(only one BC needed for each y).

 Generally, IVP much easier to solve than 2-pt
BVP, so consider this first.

Finite DifferencesFinite Differences

 How do you represent derivatives with discrete
number system?

 Basic idea: replace dy/dt with finite differences
y/t. Then:

 How do you use this to solve ODEs?

Euler's MethodEuler's Method

 Write y/t = f'(t,y) ⇒ y = t f'(t,y).

 Start with known values yn at tn (initial values).

 Then yn+1 at tn+1 = tn + h is:

 yn+1 = yn + h f'(tn,yn)

 h is called the step size.
 Integration is not symmetric: derivative evaluated

only at start of step ⇒ error term O(h2), from
Taylor series. So, Euler's method is first order.

Euler's Method, Cont'dEuler's Method, Cont'd

Runge-Kutta MethodsRunge-Kutta Methods

 We can do better by symmetrizing derivative:

 Take a trial step to midpoint, evaluate yn+1/2 and tn+1/2.

 Use these to evaluate derivative f'(tn+1/2,yn+1/2).

 Then use this to go back and take a full step.

 Thus:

 yn+1 = yn + h f'(tn + ½ h,yn + ½ h f'(tn,yn)) + O(h3)

 Can show that O(h2) terms "cancel," so leading
error term is O(h3) ⇒ 2 nd-order Runge-Kutta.

Runga-Kutta, Cont'dRunga-Kutta, Cont'd

Fourth-Order Runge-KuttaFourth-Order Runge-Kutta

 Actually, there are many ways to evaluate f' at
midpoints, which add higher order error terms
with different coefficients. Can add these together
in ways such that higher order error terms cancel.

 e.g. can build fourth-order Runge-Kutta (RK4):

 k1 = h f'(tn,yn)

 k2 = h f'(tn + h/2,yn + k1/2)

 k3 = h f'(tn + h/2,yn + k2/2)

 k4 = h f'(tn + h,yn + k3)

Then yn+1 = yn + k1/6 + k2/3 + k3/3 + k4/6 + O(h5)

Fourth-Order Runge-Kutta, Cont'dFourth-Order Runge-Kutta, Cont'd

Fourth-Order Runge-Kutta, Cont'dFourth-Order Runge-Kutta, Cont'd

 Disadvantage of RK4: requires f' to be evaluated
4 times per step.

 But, can still be cost effective if larger steps OK.
 RK4 is workhorse method. Higher-order RK4

takes too much effort for increased accuracy.
 Other methods (e.g. Bulirsch-Stoer, NRiC §16.4)

are more accurate for smooth functions.
 But RK4 often "good enough".

The Leapfrog IntegratorThe Leapfrog Integrator

 Extremely useful for second-order DEs in which
d2x/dt2 = f(x), e.g. SHM, N-body, etc.

 Suppose x is position, so d2x/dt2 is acceleration.
 Procedure: define v = dx/dt at the midpoints of the

steps, i.e. velocities staggered wrt positions.

 Define vi+1/2 = v(t + ½ t), i = 0, 1, 2, ...

 Then advance xi to xi+1 and vi+1/2 to vi+3/2:

 xi+1 = xi + vi+1/2 t

vi+3/2 = vi+1/2 + f(xi+1) t

Leapfrog, Cont'dLeapfrog, Cont'd

Leapfrog, Cont'dLeapfrog, Cont'd

 Complication: need to "jumpstart" and "resync"...

vi+1/2 = vi + ½ t f(xi) [opening "kick": Euler]

 xi+1 = xi + vi+1/2 t ["drift"]

 vi+1 = vi+1/2 + ½ t f(xi+1) [closing "kick": resync]

 Note vi+3/2 = vi+1 + ½ t f(xi+1) = vi+1/2 + t f(xi+1).

 Also have "drift-kick-drift" (DKD) scheme.
 Like midpoint method, Leapfrog is second order.
 So why is Leapfrog so great?...

Leapfrog, Cont'dLeapfrog, Cont'd

 Answer: Leapfrog is time reversible.

 Suppose we step back from (ti+1,xi+1,vi+3/2) to
(ti,xi,vi+1/2). Applying the algorithm:

 vi+1/2 = vi+3/2 + f(xi+1)(-t)

 xi = xi+1 + vi+1/2(-t)

 These are precisely the steps (in reverse) that we took to
 advance the system in the first place!

 Hence if we Leapfrog forward in time, then reverse to
t = 0, we're back to where we started, precisely.

Leapfrog, Cont'dLeapfrog, Cont'd

 Leapfrog is time reversible because of the
symmetric way in which it is defined, unlike the
other schemes.
 In Euler, forward and backward steps do not cancel

since they use different derivatives at different times.

 In Midpoint, the estimate of the derivative is based on
an extrapolation from the left-hand side of the
interval. On time reversal, the estimate would be
based on the right-hand side, not the same.

 Similarly, RK4 is not time reversible.

Leapfrog, Cont'dLeapfrog, Cont'd

 Time reversibility is important because it
guarantees conservation of energy, angular
momentum, etc. (in many cases).
 Suppose the integrator makes an error after one

orbital period. Now reverse. Is the error -? No! The
time-reversed orbit is a solution of the original ODE
(with v replaced with -v), so the energy error is still
+. But we've returned to our starting point, so we
know the final energy error is zero. Hence = 0!

 Leapfrog is only second order, but very stable.

Adaptive Stepsize ControlAdaptive Stepsize Control

 Up to now, have assumed stepsize h is constant.
 Clearly prefer choosing h small when f ' is large,

and h large when f ' is small.
 The tradeoff is extra trial steps to determine

optimum h, but may achieve factor of 10 to 100
increase in stepsize, so it's often worth it.

 NRiC provides a routine odeint() for RK4 with
adapative stepsize control. Complicated to use!

