
Random NumbersRandom Numbers

● NRiC Chapter 7.
● Frequently needed to generate initial conditions.
● Often used to solve problems statistically.
● How can a computer generate a random number?

– It can't! Generators are pseudo-random.

– Generators are deterministic: it's always possible to
produce the same sequence over and over.

– Sometimes this is a good thing!

Random Number GeneratorsRandom Number Generators

● User specifies an initial value, or seed.
● Initializing generator with same seed gives same

sequence of "random" numbers.
● For a different sequence, use a different seed.
● One strategy is to use the current time, or the

processor ID, to seed the generator.
– WARNING: this may have poor dynamic range, or

may be correlated with when the code is run.

Choosing a GeneratorChoosing a Generator

● Since generators do not produce truly random
sequences, it is possible that your results may be
affected by the generator used!

● Often the supplied generators on a given machine
have poor statistical properties.

● But even a statistically sound generator can still
be inadequate for a particular application.

● Solution: always compare results using two
generators!

GuidelinesGuidelines

● Follow these steps to minimize problems:

1. Always remember to seed the generator before using
it (discarding any returned value).

2. Use seeds that are "somewhat random", i.e. have a
good mixture of bits, e.g. 2731774 or 10293082
instead of 1 or 4096 or some other power of two.

3. Avoid sequential seeds: they may cause correlations.

4. Compare results using at least two generators.

5. When publishing, indicate generator used.

Uniform DeviatesUniform Deviates

● Random numbers that lie within a specified range
(typically 0 to 1), with any one number in the
range as likely as any other, are uniform deviates.

 i.e. p(x) dx = dx if 0 < x < 1, 0 otherwise.

● Useful in themselves, often used to generate
differently distributed deviates.

● Distinguish between linear generators (discussed
next) and nonlinear generators (do a web search).

Linear Congruential GeneratorsLinear Congruential Generators

● Typical of most system-supplied generators.

● Produces series of integers I1, I2, I3, ..., each
between 0 and m -1 using:

 Ij+1 = aIj + c (mod m)

 where m is the modulus, and a and c are positive
integers called the multiplier and increment.

● If m, a, and c are properly chosen, all possible
integers between 0 and m -1 occur at some point.

LCGs, Cont'dLCGs, Cont'd

● The LCG method is very fast but it suffers from
sequential correlations.

● If k random numbers at a time are used to plot
points in k-dimensional space, points tend to lie
on (k -1)-dimensional hyperplanes. There will be
at most m1/k planes, e.g. ~1600 if k=3 & m=232!

● The quality of a LCG is measured by the maxi-
mum distance between successive hyperplanes:
the smaller the distance, the better.

NRiCNRiC RNGs RNGs

● NRiC gives several uniform deviate generators:

● There is much discussion on the web of relative
merits of RNGs. Recommended generators
include TT800 and the Mersenne Twister.

  

ran0 � 

ran1 �

ran2 �
ran3 � 

ranqd1 � 

ranqd2 � 

ran4 � 


ran1

Transformation MethodTransformation Method

● Suppose we want to generate a deviate from a
distribution p(y) dy, where p(y) = f(y), with y
ranging from ymin to ymax.

● Let F(y) be the cumulative distribution of f(y),
from ymin to y.

● Set a uniform deviate x = F(y)/F(ymax) and solve
for y: this is the new generation function.

● Only useful if F -1(x) is easy to compute.

Example: Exponential DeviatesExample: Exponential Deviates

● Suppose we want p(y) dy = e-y dy, y  [0,∞).

● Apply the transformation method:
– Have f(y) = e-y, F(y) = e-0 -e-y = 1 -e-y.

– Set x = F(y)/F(∞) and solve x(1 -e-∞) = 1 -e-y for y.

– Get y(x) = -ln(1 -x).

● So if x is a uniform deviate between 0 and 1, y(x)
(x < 1) will be an exponential deviate.

● See NRiC §7.2 for Gaussian deviates.

Another Example: A Simple IMFAnother Example: A Simple IMF

● Suppose we want to generate particle masses
according to M dM = M dM, M  [Mmin,Mmax].

● From the transformation method we get:

 or

● What happens if  = -1? EFTS...

=
{ [ 









−]}




=[− 


 


]




Initial ConditionsInitial Conditions

● Often want to generate random initial conditions
for a simulation, e.g. initial position & velocity.

● Must take care when using transformations, since
you may not get the distribution you expect.

● For example, to fill a flat disk of radius R with
random points is it better to:

1. Fill a square and reject points with x2 + y2 > R2?

2. Choose random  and r then set x = rcos, y = rsin?

Application: CryptographyApplication: Cryptography

● A simple encryption/decryption algorithm can be
constructed using random number generators.

● If both parties know the initial seed, they can both
reproduce the same sequence of values.

● However, communicating the seed between
parties carries risk.

● One popular technique is to combine public and
private keys for secure communication.

Cryptography, Cont'dCryptography, Cont'd

● How do public & private keys work?

– k is the encryption key. This procedure relies on the
fact that it is very difficult to factor large numbers.

– Also uses the handy relationship:

 (by (mod p))x (mod p) = (by)x (mod p) for any x.

  





 
 
 
 

Simple Monte Carlo IntegrationSimple Monte Carlo Integration

● Can use RNGs to estimate integrals.

● Suppose we pick N random points x1, ..., xN
uniformly in a multidimensional volume V.

● Basic theorem of Monte Carlo integration:

 where &

∫
  ≈  〈  〉 ±   〈 

〉−〈  〉



〈  〉 ≡ 


∑
=



  

 〈 

〉 ≡ 


∑
=




  




Monte Carlo, Cont'dMonte Carlo, Cont'd

● The error term is 1, not a rigorous bound.

● Previous formula works fine if V is simple.
● What if we want to integrate a function g over a

region W that is not easy to sample randomly?
● Solution: find a simple volume V that encloses W

and define a new function f(x), x  V such that:

 f(x) = g(x) for all x  W

 f(x) = 0 otherwise

Monte Carlo, Cont'dMonte Carlo, Cont'd

● Strategy: make V as close as possible to W, since
zero values of f will increase the error estimate.

Monte Carlo, Cont'dMonte Carlo, Cont'd

● Principal disadvantage: accuracy increases only
as square root of N.

● Fancier routines exist for faster convergence.

 Cf. NRiC §7.7-7.8.

● Monte Carlo techniques used in a variety of other
contexts: anywhere statistical sampling is useful.

 e.g. Predicting motion of bodies with short Lyapunov
times if starting positions & velocities poorly known.

