
Data Representation and
Introduction to Visualization

Massimo Ricotti

ricotti@astro.umd.edu

University of Maryland

Data Representation and Introduction to Visualization – p.1/18

VISUALIZATION
Visualization is useful for:
1. Data entry (initial conditions).
2. Code debugging and performance

analysis.
3. Interpretation and display of results.

Our focus will be #3. The computational
astrophysicist can either:
1. Develop new visualization software tailored

to problem under study.
2. Use an existing software package.

Data Representation and Introduction to Visualization – p.2/18

Plotting 1-D data
Function of one variable only: f(x) vs. x.

Examples: sm, gnuplot, xgobi, IDL, etc.

Minimum requirements:
Read data from file.
Perform arithmetic manipulation of data.
Multiple data sets on plot.
Multiple plots on page.
Add text to plots.

Data Representation and Introduction to Visualization – p.3/18

Plotting 2-D data
Function of 2 variables, i.e. f(x, y).

If f is a scalar quantity, can:

1. Make image.
Represent each (x, y) data point by one or more pixels on
screen.
Use integer value to represent data value at (x, y) point (8
bit: 0–255; 24-bit: 0–16.8 million).

2. Make contour plot.
Contours are isosurfaces of data.

3. Make 3-D surface plot.
Use (x, y) as 2 coordinates, f as third coordinate, plot
surface.

Data Representation and Introduction to Visualization – p.4/18

If f is a vector quantity, i.e. f(x, y), can:

1. Plot vectors directly (as arrows).
Can be hard to see.

2. Plot streamlines.
Contours of Φ, where f = ∇Φ.

2-D plotting packages include sm, gnuplot, xgobi, IDL,
ximage, NCAR graphics, etc.

Data Representation and Introduction to Visualization – p.5/18

Plotting 3-D data
Function of 3 variables, i.e. f(x, y, z).

If f is a scalar quantity, can:

1. Plot 2-D slices.
E.g. faces of cube.

2. Plot isosurfaces.
These are now 3-D surfaces. Can use wireframe of
polygons. Can shade with second variable g(x, y, z).

3. Plot volumetric rendering.
Solve transfer equation (“ray tracing”) using emissivity
proportional to data value.

Data Representation and Introduction to Visualization – p.6/18

Standard algorithms exist for 3-D rendering, including shadowing,
hidden surface removal, etc. Often implemented in hardware.
Also have “dynamic/interactive” visualization: rotation, etc.

If f is a vector quantity, i.e. f(x, y, z), can:

1. Plot 3-D vectors on 2-D slice.

2. Plot streamlines in 3-D.

3-D plotting packages include tipsy, xgobi, IDL, NCAR
graphics, xdataslice, etc.

Data Representation and Introduction to Visualization – p.7/18

Animation
If any one of the coordinates of data in a plot is time, it makes
sense to render images as a time sequence, e.g. make animation.

The eye is very sensitive to motion, can discover much detail
using animations.

Animation formats include MPEG, FLI, QT, AVI, GIF, plus many
custom formats.

Animation players include mpeg_play, xanim, quicktime,
gifview, etc.

Often built into web browsers.

Data Representation and Introduction to Visualization – p.8/18

DATA REPRESENTATION
Computers store data as different variable
types, e.g. integer, floating point, complex,
etc.

Different machines have different
wordlengths, e.g. 4-byte ints on a 32-bit
machine (Pentium), 8-byte ints on a 64-bit
machine (G5).

This makes (binary) data non-portable.

Data Representation and Introduction to Visualization – p.9/18

Integers
All data types represented by 0’s and 1’s.

An integer value:

j =
N

∑

i=1

si × 2N−i

N = # of bits in word.

si = value of bit i in binary string s.

E.g., 0 0 0 0 0 1 1 0 = 22 + 21 = 6 for 8-bit word.

Use “two’s complement” method for sign (see below).

Largest value that can be represented is 2N − 1.

For 32-bit word this is 4,294,967,295.

Data Representation and Introduction to Visualization – p.10/18

Arithmetic with integers is exact, except:

when division results in remainder, or

result exceeds largest representable integer.
E.g. 2 × 109 + 3 × 109 = overflow error.

Note multiplication (division) by 2’s can be achieved by left-shift
(right-shift), which is very fast (in C, use the << (>>) operator).

Data Representation and Introduction to Visualization – p.11/18

Two’s complement
Exploits finite size of data representations (cyclic groups) and
properties of binary arithmetic.

To get negative of binary integer, invert all bits and add 1 to the
result.

E.g., 1 = 0 0 0 0 0 0 0 1 in 8-bit.

invert bits: 1 1 1 1 1 1 1 0

add 1: 0 0 0 0 0 0 0 1

result: 1 1 1 1 1 1 1 1 = −1

In 8 bits, signed char ranges from −128 to +127.

Data Representation and Introduction to Visualization – p.12/18

Negative powers of 2
Binary notation can be extended to cover negative powers of 2,
e.g. “110.101” is:

1 × 22 + 1 × 21 + 1 × 2−1 + 1 × 2−3 = 6.625.

Can represent real numbers by specifying some location in the
word as the “binary point” (“fixed-point representation”).

In practice, use some bits for an exponent (“floating-point
representation”).

Data Representation and Introduction to Visualization – p.13/18

Floats
For most machines these days, real numbers are represented by
floating-point format:

x = s × M × Be−E

s = sign B = base (usually 2, sometimes 16)

M = mantissa e = exponent

E = bias, usually 127.

In past, manufacturers used different number of bits for each of M

and e, resulting in non-portable code.

Data Representation and Introduction to Visualization – p.14/18

Currently, most manufacturers adopt IEEE standard:

s = first bit.

Next 8 bits are e. (e = 255 reserved for inf & NaN.)

Last 23 bits are M , expressed as a binary fraction, either 1.F,
or, if e = 0, 0.F (in which case E = 126), where F is in base 2.

E.g., 0 10000001 10100000000000000000000 =
(+1)

[

2(129−127)
]

(1 + 0.5 + 0.125) = 6.5.

Largest single-precision float
fmax = 2127 × (1 + 1/2 + 1/4 + · · · + 1/223) ≈ 3.4028235 × 1038

(just under 2128).

Smallest (and least precise!) fmin = 2−149 ≈ 10−45.

Data Representation and Introduction to Visualization – p.15/18

Round-off error
Not all values along real axis can be represented.

There are 1038 integers between fmin and fmax, but only 232 ≈ 109

bit patterns.

Values < |10−45| result in “underflow” error.

If value cannot be represented, next nearest value is produced.
Difference between desired and actual value is called “round-off
error” (RE).

Smallest value em for which 1 + em > 1 is called “machine
accuracy,” typically 2−23 ∼ 10−7 for 32 bits.

Double precision greatly reduces em (∼ 10−16). (In this case the
64 bits are divided into 1 sign bit, 11 exponent bits, and 52
mantissa bits; the bias is 1023.)

Data Representation and Introduction to Visualization – p.16/18

RE accumulates in a calculation:

Random walk: total error
√

Nem after N operations.

But algorithms rarely random, giving linear error Nem.

Subtraction of two very nearly equal numbers can give rise to
large RE.

E.g., solution of quadratic equation...

x =
−b ±

√
b2 − 4ac

2a

...can go badly wrong whenever ac ≪ b2 (Cf. PS#2).

RE cannot be avoided—it is a consequence of using a finite
number of bits to represent real values.

Data Representation and Introduction to Visualization – p.17/18

Truncation error
In practice, most numerical algorithms approximate desired
solution with a finite number of artithmetic operations, e.g.,

evaluating integral by quadrature;

summing series using finite number of terms.

Difference between true solution and numerical approximation to
solution is called “truncation error” (TE).

TE exists even on “perfect” machine with no RE.

TE is under programmer’s control; much effort goes into reducing
it.

Usually RE and TE do not interact.

Sometimes TE can amplify RE until it swamps calculation. The
solution is then called unstable.

E.g., integer powers of Golden Mean (Cf. PS#2).
Data Representation and Introduction to Visualization – p.18/18

	VISUALIZATION
	Plotting 1-D data
	Plotting 2-D data
	
	Plotting 3-D data
	
	Animation
	DATA REPRESENTATION
	Integers
	
	Two's complement
	Negative powers of 2
	Floats
	
	Round-off error
	
	Truncation error

