
Numerical Linear Algebra, Part I
Massimo Ricotti

ricotti@astro.umd.edu

University of Maryland

Numerical Linear Algebra, Part I – p.1/16



Probably the simplest kind of problem.
Occurs in many contexts, often as part of
larger problem.
Symbolic manipulation packages can do
linear algebra analytically (e.g., Mathematica,
Maple, etc.).
Numerical methods needed when:
Number of equations very large.
One or more coefficients numerical.

Numerical Linear Algebra, Part I – p.2/16



Linear Systems
Write linear system as:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

... =
...

am1x1 + am2x2 + · · · + amnxn = bm

This system has n unknowns and m equations.
If n = m, system is closed.
If m ≤ n and any equation is a linear combination of any
others, equations are degenerate and system is singular.

Numerical Linear Algebra, Part I – p.3/16



Numerical Constraints
Numerical methods have their own problems when:
1. Equations are degenerate “within round-off error.”
2. Accumulated round-off errors swamp solution (magnitudes of

a’s and x’s vary wildly).

For n, m < 50, single precision usually OK (but why bother?).

For n, m < 200, double precision usually OK.

For 200 < n, m < few thousand, solutions possible only for sparse
systems (lots of a’s zero).

Numerical Linear Algebra, Part I – p.4/16



Matrix Form
Write system in matrix form:

Ax = b,

where:

A =

⎛

⎜

⎜

⎜

⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
... ... ...

am1 am2 · · · amn

⎞

⎟

⎟

⎟

⎠

.

Numerical Linear Algebra, Part I – p.5/16



Matrix Data Representation
Recall, C stores data in row-major form:
a11, a12, . . . , a1n; a21, a22, . . . , a2n; . . . ; am1,

am2, . . . , amn.
If using “pointer to array of pointers to rows”
scheme in C, can reference entire rows by
first index, e.g., 3rd row = a[2].
(!) Recall in C array indices start at zero!
FORTRAN stores data in column-major form:
a11, a21, . . . , am1; a12, a22, . . . , am2; . . . ; a1n,

a2n, . . . , amn.

Numerical Linear Algebra, Part I – p.6/16



Note on Numerical Recipes in C
The canned routines in NRiC make use of special functions
defined in nrutil.c (header nrutil.h).

In particular, arrays and matrices are allocated dynamically
with indices starting at 1, not 0.
If you want to interface with the NRiC routines, but prefer the
normal C array index convention, pass arrays by subtracting 1
from the pointer address (i.e., pass p - 1 instead of p) and
pass matrices by using the functions convert_matrix()
and free_convert_matrix() in nrutil.c (see NRiC
§1.2 for more information).

Numerical Linear Algebra, Part I – p.7/16



Tasks of Linear Algebra
We will consider the following tasks:
1. Solve Ax = b, given A and b.
2. Solve Axi = bi for multiple bi’s.
3. Calculate A−1, where A−1A = 1, the
identity matrix.

4. Calculate the determinant of A, det(A).
Large packages of routines available for these
tasks, e.g., LINPACK, LAPACK, GSL (public
domain), IMSL, NAG libraries (commercial).
We will look at methods assuming n = m.

Numerical Linear Algebra, Part I – p.8/16



The Augmented Matrix
The equation Ax = b can be generalized to a
form better suited to efficient manipulation:

(A|b) =

⎛

⎜

⎜

⎜

⎝

a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
... ... ... ...

an1 an2 · · · ann bn

⎞

⎟

⎟

⎟

⎠

.

The system can be solved by performing
operations on the augmented matrix.
The xi’s are placeholders that can be omitted
until the end of the computation.

Numerical Linear Algebra, Part I – p.9/16



Elementary row operations
The following row operations can be
performed on an augmented matrix without
changing the solution of the underlying
system of equations:
1. Interchange two rows.
2. Multiply a row by a nonzero real number.
3. Add a multiple of one row to another row.
The idea is to apply these operations in
sequence until the system of equations is
trivially solved.

Numerical Linear Algebra, Part I – p.10/16



The generalized matrix equation
Consider the generalized linear matrix equation:
0

B
B
B
B
B
@

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

1

C
C
C
C
C
A

| {z }

coefficients

0

B
B
B
B
B
@

x11 x12 x13 y11 y12 y13 y14

x21 x22 x23 y21 y22 y23 y24

x31 x32 x33 y31 y32 y33 y34

x41 x42 x43 y41 y42 y43 y44

1

C
C
C
C
C
A

| {z }

solutions and inverse

=

=

0

B
B
B
B
B
@

b11 b12 b13 1 0 0 0

b21 b22 b23 0 1 0 0

b31 b32 b33 0 0 1 0

b41 b42 b43 0 0 0 1

1

C
C
C
C
C
A

| {z }

RHS and identity

.

Its solution simultaneously solves the linear sets:
Ax1 = b1, Ax2 = b2, Ax3 = b3, and AY = 1,
where the xi’s and bi’s are column vectors. Numerical Linear Algebra, Part I – p.11/16



Gauss-Jordan Elimination
GJE uses one or more elementary row operations to reduce
matrix A to the identity matrix.

The RHS of the generalized equation becomes the solution set
and Y becomes A−1.

Disadvantages:
1. Requires all bi’s to be stored and manipulated at same time

⇒ memory hog.
2. Don’t always need A−1.

Other methods more efficient, but good backup.

Numerical Linear Algebra, Part I – p.12/16



Procedure
Start with simple augmented matrix as example:

⎛

⎜

⎜

⎝

a11 a12 a13 b1

a21 a22 a23 b2

a31 a32 a33 b3

⎞

⎟

⎟

⎠

Divide first row (a1|b1) by first element a11.

Subtract ai1(a1|b1)′ from all other rows:
⎛

⎜

⎜

⎝

1 a12/a11 a13/a11 b1/a11

0 a22 − a21(a12/a11) a23 − a21(a13/a11) b2 − a21(b1/a11)

0 a32 − a31(a12/a11) a33 − a31(a13/a11) b3 − a31(b1/a11)

⎞

⎟

⎟

⎠

Continue process for 2nd row, etc.
Numerical Linear Algebra, Part I – p.13/16



Now the matrix has the form:
⎛

⎜

⎜

⎝

1 a12 a13 b1

0 a22 a23 b2

0 a32 a33 b3

⎞

⎟

⎟

⎠

Repeat process for 2nd row:

divide 2nd row (a2|b2) by a22.

Subtract ai2(a2|b2)′ from all other rows:
⎛

⎜

⎜

⎝

1 0 a13 − a12(a23/a22) b1 − a12(b2/a22)

0 1 a23/a22 b2/a22

0 0 a33 − a32(a23/a22) b3 − a32(b2/a22)

⎞

⎟

⎟

⎠

Repeat process for 3rd row, etc. Numerical Linear Algebra, Part I – p.14/16



Problem occurs if leading diagonal element ever becomes zero.

Also, procedure is numerically unstable (in presence of RE)!

Solution: use “pivoting”—rearrange remaining rows (partial
pivoting) or rows and columns (full pivoting—requires
permutation!) so largest coefficient is in diagonal position.

Best to “normalize” equations (implicit pivoting) so largest
coefficient in each row is exactly unity before starting the
procedure.

Numerical Linear Algebra, Part I – p.15/16



Gaussian elimination with backsubsti-
tution

If, during GJE, only subtract rows below pivot, will be left with a
triangular matrix (“Gaussian elimination”):

⎛

⎜

⎜

⎝

a′

11 a′

12 a′

13

0 a′

22 a′

23

0 0 a′

33

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎝

x1

x2

x3

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

b′1

b′2

b′3

⎞

⎟

⎟

⎠

Solution for x3 is then trivial: x3 = b′3/a′

33.
Substitute into 2nd row to get x2.
Substitute x3 and x2 into 1st row to get x1.

Faster than GJE, but still memory hog.

Numerical Linear Algebra, Part I – p.16/16


	
	Linear Systems
	Numerical Constraints
	Matrix Form
	Matrix Data Representation
	Note on 	extit {Numerical Recipes in C}
	Tasks of Linear Algebra
	The Augmented Matrix
	Elementary row operations
	The generalized matrix equation
	Gauss-Jordan Elimination
	Procedure
	
	
	Gaussian elimination with backsubstitution

