
Ordinary Differential Equations
Part 4

Massimo Ricotti
ricotti@astro.umd.edu

University of Maryland

Ordinary Differential Equations – p. 1/23

Two-point Boundary Value Problems
NRiC §17.

BCs specified at two or more points, e.g., start and end.

For IVP, just integrate away.

For 2-pt BVP, must make a free choice of unknown BVs at initial
point, then integrate away. But solution will almost certainly not
satisfy other BCs at end.

Strategy: Use information about how much the other BVs
“missed” to iteratively improve initial guess.
=⇒ Techniques are all iterative (and expensive).

Ordinary Differential Equations – p. 2/23

Notation
Denote standard system as:

dyi(x)

dx
= gi(x, y1, ..., yN) i = 1, ..., N.

At x1, the solution is supposed to satisfy:

B1j(x, y1, ..., yN) = 0 j = 1, ..., n1.

At x2, it is supposed to satisfy:

B2k(x, y1, ..., yN) = 0 k = 1, ..., n2,

where n2 = N − n1.

Ordinary Differential Equations – p. 3/23

Two Basic Techniques:
Shooting method
1. Begin at x1.

2. Guess values for free BCs (n2 values).

3. Integrate as IVP to x2.

4. Adjust n2 guesses to get closer to BVs at x2.

Ordinary Differential Equations – p. 4/23

1

3

2

Required BV

y

x

Desired BV

Heart of technique: system of iteratively improving guesses.
=⇒ Multi-D root finding.

Ordinary Differential Equations – p. 5/23

Two Basic Techniques:
Relaxation method
1. Replace ODEs by finite-difference equations on mesh from x1 to

x2.

2. Guess solution on this mesh.

3. Mathematically, FDEs are just algebraic relations between
unknowns. Use iterative technique to relax this solution to true
solution.

Ordinary Differential Equations – p. 6/23

y

x

1

2 3
true solution Required BV

Required BV

Relaxation very powerful for smooth solutions, or ODEs that must
be solved many times with different parameter values. Also good
when ODEs have extraneous solutions, i.e., stiff equations.

NRiC: “Shoot first, relax later.”
Ordinary Differential Equations – p. 7/23

2-pt BVP: Shooting Method
1. At x1, must specify N starting values for yi, i = 1, ..., N (in NR

user provided function load()).
n1 values given by BC at x1.
∴ n2 = N − n1 values can be freely chosen.

2. Represent the free values as a vector V of dimension n2 (actually,
V represents schematically any parameter value that specifies
unknown BVs).

3. Now integrate to x2.

4. Define “discrepancy vector” F of dimension n2 (in NR, user
provided function score()), where

Fk = B2k(x2,y) k = 1, ..., n2.

We want to find V that zeroes F.

Ordinary Differential Equations – p. 8/23

5 Solve n2 linear equations:

J δV = −F,

where Jij ≡ ∂Fi/∂Vj is the Jacobian matrix.
This is the globally convergent Newton’s method (NRiC §9.7).

6 Then Vnew = Vold + δV.

7 Use Vnew to solve ODEs again as IVP, recompute F, and iterate
again until |F| < ε, the convergence criterion.

Ordinary Differential Equations – p. 9/23

Cannot compute Jacobian analytically. Instead evaluate
differences numerically, i.e.,

∂Fi

∂Vj
≃ Fi(V1, ..., Vj +∆Vj , ..., Vn2)− Fi(V1, ..., Vj , ..., Vn2)

∆Vj
,

i.e., solve IVP n2 times varying each component of V by ∆V each
time to build up Jacobian (recall Fi(V1, ..., Vn2) already computed
in step 4).

Overall procedure requires n2 + 1 solutions to ODEs per iteration.

For linear systems, one iteration is enough.

For nonlinear systems, many (sayM) iterations may be required
to converge =⇒ M × (n2 + 1) solutions of ODEs!

∴ need efficient integrator... (NRiC routine shoot() uses
odeint() and is called by newt()).

Ordinary Differential Equations – p. 10/23

NOTE: Can also shoot to a fitting point between x1 and x2 (NRiC
§17.2). Useful for singular BC(s) and/or domain point(s).

y

x1 x2xf

Ordinary Differential Equations – p. 11/23

#define NRANSI
#include "nrutil.h"
#define EPS 1.0e-6

extern int nvar;
extern float x1,x2;

int kmax,kount;
float *xp,**yp,dxsav;

void shoot(int n, float v[], float f[])
{
void derivs(float x, float y[], float dydx[]);
void load(float x1, float v[], float y[]);
void odeint(float ystart[], int nvar, float x1, float x2,
float eps, float h1, float hmin, int *nok, int *nbad,
void (*derivs)(float, float [], float []),
void (*rkqs)(float [], float [], int, float *, float, float,
float [], float *, float *, void (*)(float, float [], float [])));
void rkqs(float y[], float dydx[], int n, float *x,
float htry, float eps, float yscal[], float *hdid, float *hnext,
void (*derivs)(float, float [], float []));
void score(float xf, float y[], float f[]);
int nbad,nok;
float h1,hmin=0.0,*y;

y=vector(1,nvar);
kmax=0;
h1=(x2-x1)/100.0;
load(x1,v,y);
odeint(y,nvar,x1,x2,EPS,h1,hmin,&nok,&nbad,derivs,rkqs);
score(x2,y,f);
free_vector(y,1,nvar);
}
#undef EPS
#undef NRANSI
/* (C) Copr. 1986-92 Numerical Recipes Software ?421.1-9. */

Ordinary Differential Equations – p. 12/23

2-pt BVP: Relaxation Method
Procedure:

1. Replace ODE (e.g., dy/dx = g(x, y)) with FDE on a grid:a

yk − yk−1 − (xk − xk−1) g
[
1
2 (xk + xk−1),

1
2 (yk + yk−1)

]
= 0.

Here xk and yk are discrete values of independent and
dependent variables at “mesh points.”

...

y

1 2 3 M

aThis is not a unique representation. Ordinary Differential Equations – p. 13/23

ForM mesh points and N coupled equations, haveM ×N yk ’s to
solve for.

2 Guess starting values for all yk.

3 Iteratively improve (“relax”) solution using N-R. The correct
solution is obtained when the boundary conditions are satisfied
and the difference equations between grid points, like the one
above, are zeroed to the desired accuracy.

Ordinary Differential Equations – p. 14/23

Need to solve a matrix equation each iteration, where the matrix is
(M ×N)× (M ×N) in size, but is also block diagonal (for which
efficient solving algorithms exist). The block diagonal form comes
from first-order Taylor series expansions of the FDEs about each
pair of grid points.a

Choice of grid points is an important issue and leads to adaptive
mesh strategies in modern solvers.

aEach interior point supplies a block ofN equations coupling 2N corrections
to the solution variables at points k, k − 1. The boundary conditions supply
smaller blocks, n1 ×N and n2 ×N .

Ordinary Differential Equations – p. 15/23

Example: Stellar Structure

Numerical methods for 2-pt BVPs largely developed by
astronomers seeking to solve equations of stellar structure.

Form a system of four coupled ODEs.

Ordinary Differential Equations – p. 16/23

Equations of stellar structure
1. Consider spherical shell, thickness dr, distance r from origin.

Then dM = 4πr2drρ, or,

dM

dr
= 4πr2ρ.

2. Hydrostatic equilibrium =⇒ net force on shell is zero.
∴ −∇rP − ρg = 0, where g = gravitational acceleration per unit
mass = GM/r2, or,

dP

dr
= −GM

r2
ρ.

(To derive, note upward force on shell per unit area =
P (r)− P (r +∆r) = −∆P must equal downward force per unit
area = [GM(r)/r2](Mshell/4πr2) = (GM/r2)ρ dr.)

Ordinary Differential Equations – p. 17/23

3. Let ε = energy generation rate/unit mass. Then energy transport
rate through shell ∆L = L(r +∆r)− L(r) must equal energy
generation rate 4πr2dr ερ, where L = luminosity, or,

dL

dr
= 4πr2ερ.

4. Finally, there is a relationship between luminosity through shell,
“thermal conductivity” across shell, and temperature gradient
(transport dominant in white dwarfs):

dT

dr
∝ −L

κ
,

where,

higher κ → lower T gradient;
higher L → higher T gradient.

Ordinary Differential Equations – p. 18/23

This equation harder to derive since it depends on energy
transport mechanism and convective stability that differs from star
to star and with depth inside a star. Eg, for radiative transport:

dT

dr
∝ −αρL

σT 3
,

where α is the gas opacity.

This gives 4 ODEs in 7 unknowns (M, ρ, P, L, T, ε,κ).

Need 3 constitutive relations:
1. P = P (ρ, T)— equation of state.
2. ε = ε(ρ, T)— nuclear energy generation rate.
3. κ = κ(ρ, T)— thermal conductivity.

Ordinary Differential Equations – p. 19/23

Boundary conditions (need 4):
At r = 0: M = 0, L = 0.
At r = R⋆ (M = M⋆): P = 0, ρ = 0 (⇒ T = 0).

This is a classic 2-pt BVP.

First techniques developed based on shooting method.

Singularity at r = 0 =⇒ must fit at an intermediate point:
Schwarzschild Scheme (e.g., Schwarzchild, Structure and
Evolution of the Stars).

Modern stellar structure codes use relaxation method with
adaptive mesh (e.g., P. Eggleton, MNRAS, 151, 351 (1971)).

Ordinary Differential Equations – p. 20/23

Polytropes
Can illustrate technique with calculation of structure of polytropes.

Assume there is no energy generation anywhere inside (ε ≡ 0),
e.g., white dwarf or neutron star.

Assume EOS of form P = kρ(n+1)/n (no T dependence).
E.g., EOS for monatomic gas (such as degenerate electron
gas) is:
P ∝ ρ5/3 if non-relativistic (n = 3/2);
P ∝ ρ4/3 if relativistic (n = 3).

This form is called a polytropic EOS. n is polytropic index.

Ordinary Differential Equations – p. 21/23

It is convenient to rewrite ρ = ρcθn. Then the first stellar structure
equation becomes

dM
dR = R2θn,

and the second becomes

dθ

dR = −M
R2

,

where R ≡ r/r0,M ≡ M/M0, withM0 = 4πr30ρc and
r20 = (n+ 1)kρ1/n−1

c /4πG.

These are the “Lane-Emden Equations.”

This is a system of 2 ODEs with BCM = 0 at R = 0 and θ = 0 at
R = R⋆/r0.

If we have a desired R⋆ known in advance (or, equivalently,
M⋆), then we can set θ = 1 at R = 0, integrate and find R or
M where θ = 0. The mass or radius wanted at θ = 0 sets ρc.

Ordinary Differential Equations – p. 22/23

Solutions of Lane Emden equation for n = 0, 1, 2, 3, 4, 5.

Ordinary Differential Equations – p. 23/23

