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Time-integration Schemes
Clearly, Newton’s laws are IVP. Could use any method (Euler,
RK4, etc.).

But, issue is to balance accuracy vs. efficiency.

Typically need many particles to capture dynamics correctly (e.g.,
in stellar system or galaxy). This consideration may be as
important as accuracy of any one individual particle (exception:
solar system—N ∼ 9, τ ∼ 109–1010 orbits).

Could use Euler scheme. But we have seen it is just as easy to
design 2nd-order scheme by centering derivatives =⇒ could use
leapfrog (very stable).
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Practical timestep control
The stability criterion from the discussion of stiff systems also
applies to the leapfrog integrator for the N -body problem.

Can show need δt < 2/Ω, where Ω2 = |∇F | is a characteristic
“interaction frequency” for a particle (in practice, need δt $ 2/Ω to
avoid problems).

But Ω2 is different for every particle; can be very large for particle
undergoing close interaction.

If have to take Ωmax, can be very restrictive.
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Two solutions:

1. Use different timesteps for each particle (individual timesteps).
E.g., δti = ηFi/Ḟi — effective, but complex implementation, and
may break symplecticity of leapfrog (for example).

More complex expressions for δti can be formulated, e.g.,
involving higher-order derivatives of F . These are largely
heuristics with convenient properties. It is difficult to prove
analytically that one formulation is superior to another.
Sometimes δti is discretized, e.g., in factors of 2
(multistepping).
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2 Eliminate short-timescale phenomena by modifying gravity on
small scales.
E.g., Set δt = τD/30 and/or use softening (see below).

Always important to check whether simulation is giving physically
meaningful results.

Handy technique: reduce timestep by factor of 2 to see if
global behavior strongly affected. If so, may have to use
smaller steps.
Beware of chaos: if state of system strongly dependent on
initial conditions, change of timestep may give seemingly
vastly different results. Need to monitor constants of motion to
be sure.
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Force evaluation
Solving the IVP requires evaluation of the
RHS of the ODEs, i.e., must compute
interparticle forces.
Will discuss PP, PM, P3M, and tree methods.
But first must consider another practical
issue, related to timestep control...
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Hard interactions

Recall F ij = −Gmj(ri − rj)/|ri − rj |3.

Problem: if |ri − rj | is small, |F ij | diverges, leading to timestep
trouble as |vi| → ∞.

Physically, very close encounters occur on very short timescales,
e.g., can form close binaries with very short periods.

To alleviate problem, could use “softened” forces:

F ij = − Gmj(ri − rj)

(|ri − rj |2 + ε2)3/2
,

where ε = “softening parameter.”
Maximum force now ∼ Gm2/ε2.
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Physically, this eliminates possibility of forming binaries with
r < ε.
• OK when particles represent collection of stars on similar
orbits.

• Not OK if studying small clusters, where each particle
represents an individual star. In this case binaries can form
and significantly affect evolution of entire cluster.

Modern methods also sometimes use “regularization.”
Binaries (or hierarchies) replaced by pseudo-particles until
interaction with other particles becomes important.
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Direct Summation (PP Method)
Most straightforward way of evaluating Fij.

But number of operations = 1
2N(N − 1) ∼ N2 for N ( 1 (the 1

2

comes from the fact that Fij = −Fji.
∴ 10× more particles =⇒ 100× more work.

Severely limits number of particles that can be used (typically
" 103−4).

Motivates finding more efficient techniques.
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Evaluating Forces on a Mesh
(PM Method)

Idea: compute forces (per unit mass) from gravitational potential:

F = −∇Φ, (1)

where Φ = potential, a scalar function of r.

Potential given by solution of Poisson’s equation:

∇2Φ = 4πGρ. (2)

Can FD (2) to compute Φ on a mesh, then FD (1) to compute F
from Φ.
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In 1-D, Poisson equation is:

∂2Φ

∂x2
= 4πGρ.

This is an elliptic PDE.

Consider discretizing Φ on a mesh, center Φi and ρi, at mesh
centers i = 1, ..., N .
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Then, 2nd-order FDE for (2) is:

(Φi+1−Φi)
∆x − (Φi−Φi−1)

∆x

∆x
=

Φi−1 − 2Φi + Φi+1

(∆x)2
= 4πGρi (i = 1, ..., N ).

(3)

For i = 1, need Φ0

i = N, need ΦN+1




 (boundary conditions).

For the force, just FD (1) using the same mesh:

Fi+1/2 = −
[
Φi+1 − Φi

∆x

]
(4)

(need to interpolate to cell centers).
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