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Tree Codes
Efficiency can be increased by grouping particles together:

Nearest particles exert greatest forces → direct summation.

Distant particles exert smallest forces → treat in groups.

Evaluate forces
directly for
nearby particles.

Treat distant particles
as one large particle
of equivalent mass
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But how do we organize particles into groups?

Will sketch one method (Barnes & Hut 1986, Na-

ture 324, 426; also see Hernquist 1987, ApJS 64,

715), then go into more detail.
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Barnes & Hut method: Overview
The BH method is a hierarchical force-calculation algorithm:

Place particles on mesh one at a time.

Divide mesh into equal volume subdomains at each
placement so that each particle occupies a single subdomain.
E.g., in 2-D:
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Now, organize particles based on nesting of subdomains:
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How does this speed up force evaluation? Consider evaluation of
force on particle 1:

If any subdomain subtends an angle θ = l/d . θcrit as seen
from particle 1 (l is size of subdomain, d is distance from
particle 1), then treat all particles in that subdomain as one.
E.g.,

Particle 2, 8: treat directly.
Top-left subdomain: treat as group.
=⇒ just 3 summations, instead of 7.
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Barnes & Hut method: Details
Average size of a particle-bearing cell is of order the interparticle
spacing d ∼ s/N1/k (in k-D) and number of cells in any dimension
∼ s/d, so number of levels ∼ O(log2k N1/k) = O(log N).

∴ time required to construct tree ∼ O(N log N).

Must also compute total mass and center-of-mass position =⇒
one more O(N log N) pass through tree.

Finally, force evaluation (“pruning”) =⇒ O(log N) sums per
particle =⇒ O(N log N) scaling ≪ N2 for N ≫ 1.
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How bad an approximation is it?

Consider expanding potential of cell α (e.g., Marion & Heald 1980,
pp. 38–40):
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so

Φ =
∑

α

Φα = Φ(1) + Φ(2) + Φ(4) + · · · + Φ(2l) + · · ·
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If we choose expansion center to be center of mass of group, then
∑

α mαr′α = 0. But then notice that
Φ(2) =

∑

α Gmαr′α · ∇(1/r) = 0, so dipole vanishes.
∴ error term dominated by quadrupole.

(Can also write

Φ = −GM

r
− 1

2

G

r5
(rQr),

where

Qij =
∑

k

mk(3xk,ixx,j − r2
kδij)

is the traceless quadrupole tensor, k is over the mass
components, and rk is relative to the cell center of mass. With this
notation, and invoking the parallel axis theorem, the quadrupole of
a parent cell can be constructed via the quadrupoles of its
daughter cells: Q =

∑

i Qi +
∑

i mi(3riri − r2
i 1), where i is over

the daughter cells and ri is relative to the parent center of mass.)

Often, quadrupole not needed (monopole is “good enough”).
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With quadrupole, for θcrit = 1, forces typically accurate to ∼ 1% (in
practice, keep θcrit < 1/

√
2 = 0.7 for 2-D tree, < 1/

√
3 = 0.6 for

3-D tree). This is average error; certain pathological
configurations can give much larger errors. Also, trees in general
break Fij = −Fji...

For high precision, might consider octopole.

Turns out the octopole does not help convergence
much—need to go to next higher order, the hexadecapole!

Obviously this means many more computations to compute
force (still scales as O(N log N)), but can use larger θcrit.

On balance, probably never need better than hexadecapole.
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Barnes & Hut method: Pseudocode
Define a node struct: contains size, center, mass, position, Q, etc. of
cell, plus info on children (may be nodes).

Tree build — start with special cell (“root”)

start

root = new node [includes initialization]

loop over particles i

put_in_tree(i,root)

calc_moments(root)

function put_in_tree(particle,node)

which octant (child) contains particle?

is child...

...empty? : make particle a leaf

break
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...leaf? : make leaf a branch

child = new node

put_in_tree(leaf,child)

...branch? : put_in_tree(particle,child)

function calc_moments(node)

[loop over non-empty child cells

is child...

...leaf? : node->mass += leaf->mass

node->pos += (leaf->mass)*(leaf->pos)

break

...branch? : calc_moments(child)

node->mass += child->mass

node->pos += (child->mass)*(child->pos)

]

node->pos /= node->mass
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Tree walk — start at root

function add_force(pos,node,force)

compute theta = (node->size)/(distance to node)

theta < theta_crit? : force += expansion(node) ["prune"]

else : [loop over non-empty child cells

is child ...

... leaf? : force += (direct force)

break

... branch? : add_force(particle,child,force)

]
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Other Types of Trees
Differ primarily in organization of particle information.

Mutually nearest neighbour

E.g., Appel 1981, Jernigan 1985, Porter 1985.

Given N particles, two nearest joined together → node, leaving
N − 1 entities (N − 2 particles plus 1 node) in list.

Node contains total mass and center-of-mass position of cluster.

Repeat until only 1 cluster remains.

O(log2 N) levels (binary tree), O(N log N) update time.
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Advantage: Preserves physical proximity of particles (binaries).
Can also let particles “drift” a while before update.

Disadvantage: Arbitrary node shapes, hard to estimate error.

k-D tree (recusively bisect longest dimension)

E.g., Olson & Packer 1996.

First determine dimension (x, y, or z) that spans largest spatial
range of particle distribution.

Sort data on this dimension and divide into halves containing
equal numbers of particles.

Repeat with sublists until each contains only 1 particle.

Often used for “domain decomposition” to balance work between
multiple processors.
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Advantage: No empty cells, more efficient shape.

Disadvantage: Extreme oblong shapes → larger error.
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Summary
PP method (direct summation) — most accurate, but O(N2).

PM method — O(Ng log Ng), but resolution limited.

Tree codes — O(N log N), but sometimes difficult to implement.

Also: PP-PM = P3M — direct summation over nearby particles,
use grid for distant interactions.
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