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Classification of PDEs
®» Cf. NRIC §19.

A PDE is simply a differential equation of more than one variable (so
an ODE is a special case of a PDE). PDEs are usually classified into
three types:

1. Hyperbolic (second or first order in time and space)

® Prototype is the wave equation:
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(this is the 1-D version), where v = (constant) wave speed and
u = amplitude.
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2 Parabolic (first order in time, second order in space)

® Prototype is the diffusion equation:

ou 0 ou
o on (D a—x) @
(1-D), where D = diffusion coefficient, « = amplitude.

3 Elliptic (second order in space)

® Prototype is the Poisson equation:
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(3-D), where p = density (if p = 0, get Laplace equation).
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® Note that (1) and (2) define initial value problems. If u(z) (and
perhaps ou/0x) defined at t = ¢, then equations define how
u(x,t) propagates forward in time. ... numerical solutions of (1)
and (2) give time evolution of « (e.g., wave amplitude).

®» On the other hand, (3) defines a boundary value problem. Given
static function p, find static solution « satisfying BCs. .-. numerical
solution of (3) gives space distribution of u (e.g., gravitational
potential).

® Distinction between IVPs vs. BVPs more important than
distinction between (1) and (2). Often, IVPs are mixture of
hyperbolic and parabolic.
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Solving Elliptic PDEs (BVP)

® Already discussed this at length for PM codes: finite differencing

yields large set of coupled algebraic equations — large sparse
banded matrix.

» Many techniques for solving matrix:
1. Relaxation schemes.

2. Sparse banded matrix solvers.
3. Fourier methods.

» Use #3 when you can, #1 or #2 otherwise.
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Solving Hyperbolic PDEs (IVP)

#» NRIC 819.1.

® Overriding concern is stability of algorithm.
Conservative form

® Large class of IVP can be put in “flux-conservative” form:

ou  0F(u)
ot oxr

(4)

where F = flux of conserved quantity. In multidimensions,
ou
T _— _V-F
ot

(this is in the form of a conservation law).
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For example, prototypical hyperbolic PDE

0°u  50%u
= 1V —

o2 Ox?
(v constant) can be decomposed into two first-order equations:
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where
_ Ou _ Ou
71:2@56? s::-éz.
(can show that these two equations do indeed combine to give the
original second-order equation.) Then let

Plugging these into the conservative form (4) gives the decomposed
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The scalar advection equation

®» If we can cast our hyperbolic PDE into conservative form, then all
we need to do is develop numerical solution strategies for the
first-order equations, which can usually be written in the form:
ou ou )
—_— = —) —
ot Ox
(v still constant). We happen to already know the analytical
solution is u = f(x — vt), i.e., function f displaced by vt, #

°To see this, let w = x — vt and differentiate © = f(w) using the

chain rule: 9f /0t = (Of /Ow)(Qw/0t) = —v(df/0w); —v(0f/0x) =
—v(0f/0w)(Ow/0x) = —v(0f/0w).
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but we do not necessarily know the exact form of f. Equation (5) is a
scalar advection equation (the quantity w Is transported by a “fluid flow”

with a speed v).
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®» Best example of (5) in astrophysics is continuity equation, i.e.,

conservation law for some quantity with density p. Evolution of p
(in 1-D) obeys

0 0

=P + vl —
if [ada = constant, i.e., material conserved. Describes how
material is mixed in ISM, how mass Is transported. One of the
equations of fluid dynamics.
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Forward time centered space scher

$» How can we construct a numerical solution to (5)7?

®» Try simple Euler differencing:

n—+1 n n n
U . — U U — U
+1 —1
J J ———v( J J ) (6)

At 201

This is first order in time and second order in space. Leads to the
forward time centered space (FTCS) scheme.
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Schematically:

t
new point
n+1 | P
n - .\i/. known points
- | - X
J-1 J J+1

® Explicit in time (just solve for /).

® \What about stability of scheme?
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von Neumann stabillity analysis

®» To check stability, customary to perform a von Neumann stability
analysis.

® Treat all coefficients of difference equations as constant in x and ¢
(local analysis).

®» Then, eigenmodes of difference equations all of form
uj = €A, (7)

where £(k) is the (complex) amplitude. #

® The point is that the ¢ dependence of u; is just ¢ raised to the n'"
power. So if |£(k)| > 1 for some k, scheme is unstable. ¢ is called
the amplification factor.

®Formally, the eigenmodes can be obtained from Fourier analysis of the

finite-difference equations, but this is beyond our scope.
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®» Substitute (7) into (6), divide by &7, get:

A
gk)=1— z‘—UA L in kA,
€XT

Note |£(k)| > 1 for all k. .. FTCS is unconditionally unstable. Too
bad. Simple scheme gives garbage.
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[ ax scheme

» How do we fix it?

® Replace forward Euler time derivative:

n—+1 1/..n n
Ou u;  —guf +uf,)

ot At ’

where we have substituted the average value of u7_; and v, for

n
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® Schematically:

t
new point
n+1 | R
n -+ o ", known points
| | . X
J-1 J J+1
® FDE becomes
1 vAt
n—+1 _ n n n n
Uy = 5(“3'—1 +ujig) - E@%H —ur_q), (8)

called the Lax scheme.
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$» von Neumann stability analysis of (8) gives

A
£(k) = coskAx — zZ—t sin kA,
X
which, for |£(k)| < 1, requires
lv| At
< 1.
Ay = 9)

$» Equation (9) is the Courant condition (or CFL condition, for
Courant-Friedrichs-Lewy).

®» Intuitively, the Courant condition can be thought of as limiting
domain over which information can propagate in one timestep to
be less than one gridzone, i.e., Az > |v|At:
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$» Simple change in t derivative makes FTCS stable. Why? Write (8)
In form of (6) with remainder term:

n+l _

iy uy . Uiy — Uy +1 Ujp1 — 2uj +uj g .
At 2Ax 2 At

But this is just FTCS representation of

ou ou (Az)? 0%u

ot 0r  _2At 012
diffusion term

$» Adding diffusion stabilizes scheme: diffusion damps short
wavelengths (kAx ~ 1), leaves large wavelengths unaffected.
This is called numerical dissipation or numerical viscosity.

$» Damping short scales not as bad as instability!
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