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Upwind differencing

$» |n addition to amplitude errors (instability or damping), scheme
may also have phase errors (dispersion) or transport errors
(spurious transport of information).

®» Upwind differencing helps reduce transport errors:
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where here we’ve supposed that v Is not constant, for illustration.

Partial Differential Equations — p.2/1!



®» Schematically, only use information upwind of grid point j to

construct differences:
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$» Upwind difference is only first order in space. Still, it has lower
transport error than second-order centered difference. Better?
Can construct higher-order upwind difference schemes...
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Second-order accuracy In time

® We have been dealing with two derivatives, 0/0x and 0/0t. We
have constructed higher-order schemes in space. What about ¢?

® Staggered leapfrog is 2"¢-order in time:
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But, subject to a mesh-drift instability. Think of space-time

discretization:

# Odd-integer n coupled to even-integer 7,

» Even-integer n coupled to odd-integer j
(“red-black” ordering; odd and even mesh points decoupled).
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$» Schematically,

n-1 "1

®» Can be fixed by adding diffusion to couple grid points (add
E(F]n—]_ o 2F]n —|_ F]n+1)’ € << ]‘ to RHS)' Partial Differential Equations — p.5/1!



® Two-step Lax-Wendroff: another 2"-order scheme.

1. Use Lax step to estimate fluxes at n + % and j + %:
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2. Using these half-step values of u, calculate
n+1/2\ __ n+1/2
F(ujil/Z) =Fiq)s

3. Then use leapfrog to get updated values:
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$» Schematically,
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® Fixes dissipation and mesh drifting but introduces phase error
(dispersion). Often first-order upwind scheme is as good as/better
than 2"4-order L-W.
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Summary: Hyperbolic methods

» Many IVPs can be cast in flux-conservative form.

$» Solving methods:
1. FTCS — unconditionally unstable. Never use.
2. Lax — equivalent to adding diffusion, damps small scales.

3. Upwind differencing — reduces transport errors, but only
15t-order in space.

4. Staggered leapfrog — 2™d-order in time, but subject to
mesh-drift instability. Fix with diffusion.

5. Two-step Lax-Wendroff — 27d-order in time, but suffers from
phase error.

®» NRIC recommends staggered leapfrog (presumably with
diffusion), particularly for problems related to the wave equation.

®» For problems sensitive to transport errors, NRIC recommends
upwind differencing schemes. partial Diftrential Equations — p.&/1



Solving Parabolic PDEs
(Diffusive IV Ps)

» NRIC 819.2.

® Prototypical parabolic PDE is diffusion equation:
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where we have taken D > 0 to be constant (D = 0 is trivial and
D < 0 leads to physically unstable solutions).

® Consider FTCS differencing:
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$» von Neumann analysis gives

B ADAt . 5 [ kAx
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This Is stable provided
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The 2™ derivative makes all the difference (we saw adding
diffusion via the Lax method stabilizes FTCS for the hyperbolic
equation).

® Diffusion time over scale L is Tp ~ L?/D. So stability criterion
says At < 7p/2 across one cell.

» Often interested in evolution of time scales > p of one cell. How
can we build stable scheme for larger At?
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Implicit differencing
®» FEvaluate RHS of difference equation at n + 1:
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® To solve this, rewrite as:

n—|—1 n—|—1 n+1
—au; T + (14 20)ui™ —auly = ur,

where o = DAt/(Ax)?.

# In 1-D, this is a tri-di matrix.

# In 3-D, get large, sparse, banded matrix.
# Solve the usual way.

(1)
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» What is limit of (1) as At — oo (o — 00)? Divide through by « to
find FD form of 9%u/0x% = 0, i.e., static solution.

®» Fully implicit scheme is unconditionally stable and gives correct

equilibrium structure, but cannot be used to follow small-timescale
phenomena.
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Crank-Nicholson differencing

®» Form average of explicit and implicit schemes (in space):

u?“ —uf 5 (u?fll 2u ;“Ll —|—u"+1) + (uf_y —2uf +u? )
At 2(Ax)?

#® Unconditionally stable, 2"4-order accurate in time (both sides
centered at n + 1/2).
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Schematically,
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(2nd—order stable for all dt)
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“Freezes” small-scale phenomena. Can use fully implicit scheme at end

to drive fluctuations to equilibrium.
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Nonlinear diffusion problems

» For nonlinear diffusion problems, e.g., where
D = D(x), then implicit differencing more
complex.

# Must linearize system and use Iterative
methods.
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