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The equations of fluid dynamics are coupled
PDEs that form an IVP (hyperbolic).

Use the techniques described so far, plus
additions.
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Fluid Dynamics in Astrophysics
99% of normal matter in the Universe is in gas or plasma (ionized
gas) phase

Whenever mean free path λ ≪ problem scale L in a plasma, can
use continuum equations to describe evolution of macroscopic
variables, e.g., density, pressure, etc.

Mathematically,

λ ≃
1

σn
∼

1016

[n/1 cm−3]
cm,

where σ = classical cross-section of atom or ion (∼ πr2

Bohr
).
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Where is λ ≪ L in astrophysics?

Medium ∼ n (cm−3) ∼ λ (cm) ∼ L (cm) Scale

planetary atmosphere 1020 10−4 102–3 1–10 m

stellar interior 1024 10−8 1011 1 R⊙

protoplanetary disk 1010 106 1013 1 AU

GMC 10 1015 1019 10 pc

diffuse ISM 1 1016 1020 100 pc

cluster gas 0.1 1017 1022 10 kpc

universe 10−6 1022 > 1024 > 1 Mpc
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What would we like to learn from studying fluid dynamics?

1. Steady-state structure of certain fluid flows, e.g., stellar
structure, accretion and winds around stars and compact
objects

2. Time evolution of system, e.g.,
stellar evolution
ISM=interstellar medium and IGM=intergalactic medium
Propagation of shocks through clumpy medium (SN
explosions).
Accretion flows onto protostar or black hole.
Formation of structure in universe.

3. Growth and saturation of instabilities, e.g.,
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Rayleigh-Taylor:

heavy fluid

light fluid
g

Important in SN explosions, ISM, etc.

Kelvin-Helmholtz:

fast

slow

Important in jets and outflows in ISM.

To study these phenomena, must use equations of fluid dynamics.
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Equations of Fluid Dynamics
1. Continuity equation:

∂ρ

∂t
+ ∇·(ρv) = 0, (1)

where ρ = mass density, v = velocity, and ∇ = ( ∂
∂x

, ∂
∂y

, ∂
∂z

).

Sometimes see this written as:

Dρ

Dt
= −ρ∇·v,

where D
Dt

≡
∂
∂t

+ v·∇ = Lagrangian or co-moving or
substantive derivative (rate of change of ρ in fluid frame, as
opposed to ∂

∂t
= Eulerian derivative, rate of change in lab

frame).
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For an incompressible fluid, ρ is constant in space and time, so
the continuity equation reduces to:

∇·v = 0.

The continuity equation is a statement of mass conservation.
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2 Euler’s equation (equation of motion):

∂v

∂t
+ (v·∇)v =

F

ρ
−

1

ρ
∇p, (2)

where p = pressure and F = any external force (other than gas
pressure) acting on a unit volume.

More compactly,

ρ
Dv

Dt
= F − ∇p.

For gravity, have F = −ρ∇φ, where ∇
2φ = 4πGρ. In

hydrostatic equilibrium, F = ∇p, so there is no mass flow.
E.g., in 1-D, have dp/dr = −ρ GM(r)/r2 = −gρ, where g =
gravitational acceleration.
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For viscosity, F = µ∇
2
v, where µ = coefficient of dynamical

viscosity, assuming ρ = constant (incompressible fluid). If there
are no other force terms in F, this gives the Navier-Stokes
equation.

Similarly, can add force terms for electric and/or magnetic fields.

For the steady flow of a gas, ∂v/∂t = 0 and, if there are no
external forces, get

ρv·∇v = −∇p,

which is Bernoulli’s equation for compressible flow.

Euler’s equation is a statement of momentum conservation.

Fluid Dynamics – p.10/14



3 Energy equation:

∂e

∂t
+ ∇· [(e + p)v] = 0, (3)

where e ≡ ρ(ε + 1

2
v2) = energy density (energy/volume) and ε =

specific internal energy (energy/mass).

In Lagrange form,

De

Dt
= −e(∇·v) − ∇·(pv),

or, more compactly,

Dε

Dt
= −

p

ρ
(∇·v).

The energy equation is a statement of energy conservation
(there are many alternative ways to write the energy equation,
depending on the context, e.g., using specific enthalpy
(= ε + p/ρ), specific entropy combined with temperature and
heat transfer, etc.).
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4 Equation of state:

p = p(ρ, ε). (4)

Needed to close system.

E.g., for ideal gas, p = (γ − 1)ρε, where γ = adiabatic index (=
ratio of specific heats at constant volume and pressure). a

For ideal monatomic, diatomic, and polyatomic gases, γ = 5/3,
7/5, and 4/3, respectively.

aAlso have pV γ = constant, TV γ−1 = constant, Tp(1−γ)/γ = constant.
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Solving the Equations of Fluid Dynam-
ics

There are many choices one can make when adopting a
numerical algorithm to solve the equations of fluid dynamics, e.g.,

1. Finite differencing methods, including:
(a) Flux-conservative form.
(b) Operator splitting.

2. Particle methods (e.g., smoothed particle hydrodynamics, or
SPH).
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Schematically (will discuss methods in italics),

HD

finite
differencing

particle
methods

operator
split FDE form

Godunov
schemesetc.L−W

SPH

vortex
methods

conservative
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