Lecture 2 - Jan 29 2013

The Next 2-3 Lectures

- Today we are continuing the intro to the field and will discuss a bit of the history of the field, (see heasarc.gsfc.nasa.gov/docs/hea sarc/headates/heahistory.html)
- atmospheric transmission (Melia's book sec 1.3), the objects of high energy astrophysics (e.g. neutron stars, black holes, clusters of galaxies) from a very broad perspective (Rosswog and Bruggen ch 5.1 and Melia sec

Physical Processes-Melia ch 5 and Rosswog and Bruggen ch 3

Black body radiation Synchrotron Radiation Compton Scattering Line emission and absorption Absorption (not in the recommended texts)

Please read Melia chapter 1 for a broad introduction to the field

A very nice teaching resource is Joern Wilm's website

http://pulsar.sternwarte.uni-erlangen.de /wilms/teach/index.html

X-ray Astronomy

- From its start in 1962 sensitivity has increased by 10⁷
- (~ $5x10^{-17}$ ergscm²sec in the 0.5-2 keV band)
 - angular resolution by $10^5 (0.5")$
 - spectral resolution by 10^4 (E/ Δ E \sim 1000)
- There are now >300,000 known x-ray sources (in 1977~1000 sources, in 1969~25)
- At the faintest levels probed by Chandra there are >2000 x-ray sources/deg² (e.g. 10⁸ all sky)
- Despite these spectacular advances x-ray astronomy is photon limited (the largest x-ray telescopes have collecting areas of 3000 cm² compared to 10⁶ cm² for the largest optical telescopes- cosmology with a 12" telescope !)

2 deg

Nature of Faint X-ray Sources

- Most of the faint x-ray sources are active galaxies (AGN, quasars, Seyfert galaxies)
- At a median redshift of 0.7 $(D_L=4260 \text{ Mpc} = 1.312 \times 10^{28} \text{ cm})$
- median x-ray luminosity $10^{43.5}$ ergs/sec = $8x10^9 L_{sun}$
- The red 'blobs' are clusters of

High Energy Astrophysics is 'New'- see heasarc.gsfc.nasa.gov/docs/heasarc/headates/heahistory.html http://imagine.gsfc.nasa.gov/docs/science/know_l1/history_gamma.html

- γ-Rays gamma rays are emitted by the nucleus or from other particle decays or annihilation events.
- 1958 a burst of gamma rays from a solar flare
- 1962 diffuse γ-ray background at (0.1 to 3 MeV) Ranger 3, which flew by the moon.
- 1967 The 1st cosmic γ-Ray Burst (GRB)* via the Vela 4a,b satellites. This discovery was not made public for several years due to military classification.
- 1970 γ-ray emission from the Galactic Center
- 1971 pulsed high-energy γ-ray emission from the Crab Pulsar above 50 MeV

γ-Ray Sky with Fermi Detected >1000 sources in first year of operation (most are blazars and pulsars)

Other γ-Ray sources include Supernova remnants Unusual binary stars

Notice the introduction of vast amounts of jargon

Fermi High Energy (>100 MeV) Gamma-ray Sources

- Many classes
- Blazars
- Pulsars
- Supernova remnants
- Starburst galaxies
- Binaries

Relative Sensitivity Astronomical Observatories

For multiwavelength study of the faintest known **x-ray** sources one needs the largest optical and IR telescopes

Space Based High Energy

- The atmosphere is opaque (at ground level) to all wavelengths from γ-rays (TeVs) to ultra-violet(10¹³-10 eV;1eV=1.6x10⁻¹² ergs/cm²/sec)**
- Thus to detect 'high energy' photons need to go to space*
- Space missions are expensive and take a lot of time
- *its possible to detect TeV photons indirectly from the ground
- ** I will use CGS rather than MKS- it is traditional in astrophysics- I will also often use eV, keV etc for energy and flux in photons/cm²/sec/energy bin

Chandra Optical Bench

Atmospheric transmission

Very High Energy Cosmic Rays and TeV Astronomy

• Very high energy photons and cosmic rays interact in the atmosphere **but** produce observable effects from the ground

Major high energy astrophysics missions since 1970

The Objects of High Energy Astrophysics-Neutron Stars

R+B pg 161 sec 5.1

- 1934, Baade and Zwicky proposed the existence of the neutron star 2 years after Chadwick's* discovery of the neutron ! they proposed that the neutron star is formed in a supernova
- 1967, Shklovsky explained the X-ray and optical observations of Scorpius X-1 (the first non-solar) x-ray source as radiation coming from a neutron star via accretion.
- 1967, Jocelyn Bell and Antony Hewish** discovered regular radio pulses from the Crab-radiation from an isolated, rotating neutron star. The energy source of the pulsar is the rotational energy of the neutron star.
- 1971, Giacconi*** et al discovered 4.8 sec pulsations in an X-ray source in the constellation Centarus, Cen X-3: Emission from a rotating hot neutron star. The energy source is the same as in Sco X-1

*Nobel laureate in physics awarded for his discovery of the neutron.

** Nobel laureate in physics 1974

***Nobel laureate in physics 2002

History: Baade and Zwicky

"With all reserve, we advance the view that a *supernova* represents the transition of an ordinary star into a *neutron star* consisting mainly of neutrons...

Walter Baade

Baade & Zwicky (1934)

Fritz Zwicky

Just 2 yrs after the discovery of the neutron!

Black Holes Melia ch 10.1

- 1963 Schmidt identified the first quasar, showing that these starlike objects exhibit ordinary hydrogen lines, but at redshifts far greater than those observed in stars.
- Quasars were shown to be powerful xray sources in the mid-1970s
- Quasars are accreting supermassive (M>10⁶M_{sun} black holes (*)- how do we know this??
- The first accreting 'stellar mass' black hole Cyg X-1 was identified in 1972 as an x-ray source
- About 20 BHs in the Milky Way are known (100's more in nearby galaxies)
- $\sim 10^8 \text{ AGN}$

* $M_{sun=} 2x10^{33} \text{ gm}$

Clusters of Galaxies

Most massive and largest objects in the universe- M> 10^{14} M_{\odot} $R \sim 3.08 \times 10^{24} \text{ cm} = 1$ Mpc

**the bending of light by strong gravity can act as a lens

Most of the baryons* in clusters are in the hot x-ray emitting gasmost of the mass is dark matter

Can act as a gravitational lens**- revealing the amount of and distribution of **dark** matter***.

Dark Matter

 'Dark' matter is material that interacts via gravity but does not emit or absorl light

Dark matter has 6x mass of baryons averaged over the entire universe.

Hubble deep field

- The biggest indication that we do not understand the universe very well
- 95% of the universe consists of stuff that is not understood and can't be 'seen'
- The name 'Dark Matter' conveys what we don't know

The bright suns I see and the dark suns I cannot see are in their place, The palpable is in its place and the impalpable is in its place Walt Whitman Leaves of Grass

Physical Processes Over View – More Equations Later Melia ch 5 and Rosswog and Bruggen ch 3

- How are 'high energy' photons produced
 - Continuum

Thermal emission processes

Blackbody radiation Bremsstrahlung

Non-thermal processes Synchrotron radiation

Inverse Compton emission

Non-thermal bremms

In "thermal" processes the electrons are in a Maxwell-Boltzman distribution- the system has a 'temperature'

In non-thermal the electron distribution is often a power law-no temperature

BREMSSTRAHLUNG

"Braking radiation"

Examples: clusters of galaxies, supernova remnants, stellar coronae

is often a power law-no temperature Electromagnetic radiation is produced by the acceleration of charged particles (mostly electrons)