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1 Introduction

Light rays are deflected when they propagate through a gravitational field.
Long suspected before General Relativity — the theory which we believe pro-
vides the correct description of gravity — it was only after Einstein’s final
formulation of this theory that the effect was described quantitatively. The
rich phenomena which are caused by this gravitational light deflection has led
to the development of the rather recent active research field of gravitational
lensing, and the fact that the 2003 Saas-Fee course is entirely devoted to this
subject is just but one of the indications of the prominence this topic has
achieved. In fact, the activities in this area have become quite diverse and
are reflected by the three main lectures of this course. The phenomena of
light propagation in strong gravitational fields, as it occurs near the surface
of neutron stars or black holes, are usually not incorporated into gravita-
tional lensing — although the physics is the same, these strong-field effects
require a rather different mathematical description than the weak deflection
phenomena.

In this introductory chapter we shall provide an outline of the basics of
gravitational lensing, covering aspects that are at the base of it and which
will be used extensively in the three main lectures. We start in Sect. 1.1 with
a brief historical account; the study of the influence of a gravitational field
on the propagation of light started long before the proper theory of gravity
— Einstein’s General Relativity — was formulated. Illustrations of the most
common phenomena of gravitational lensing will be given next, before we
will introduce in Sect. 2 the basic equations of gravitational lensing theory. A
few simple lens models will be considered in Sect. 3, in particular the point-
mass lens and the singular isothermal sphere model. Since the sources and
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deflectors in gravitational lensing are often located at distances comparable
to the radius of the observable Universe, the large-scale geometry of space-
time needs to be accounted for. Thus, in Sect. 4 we give a brief introduction
to the standard model of cosmology. We then proceed in Sect. ?? with some
basic considerations about lensing statistics, i.e. the question of how probable
it is that observations of a source at large distance are significantly affected
by a lensing effect, and conclude with a description of the large-scale mat-
ter distribution in the Universe. The material covered in this introductory
chapter will be used extensively in the later chapters of this book; those will
be abbreviated as SL (Strong Lensing, Kochanek 2004), ML (MicroLensing,
Wambsganss 2004) and WL (Weak Lensing, Schneider 2004).

Gravitational lensing as a whole, and several particular aspects of it, has
been reviewed previously. Two extensive monographs (Schneider, Ehlers &
Falco 1992, hereafter SEF; Petters, Levine & Wambsganss 2001, hereafter
PLW) describe lensing in great detail, in particular providing a derivation of
the gravitational lensing equations from General Relativity (see also Seitz,
Schneider & Ehlers 1994). Blandford and Narayan (1992) review the cos-
mological applications of gravitational lensing, Refsdal & Surdej (1994) and
Courbin et al. (2002) discuss quasar lensing by galaxies and provide an intu-
itive geometrical optics approach to lensing, Fort & Mellier (1994) describe
the giant luminous arcs and arclets in clusters of galaxies, Paczyniski (1996)
reviews the effects of gravitational microlensing in the local group, the review
by Narayan & Bartelmann (1999) provides a concise account of gravitational
lensing theory and observations, and Mellier (1999), Bartelmann & Schnei-
der (2001), Wittman (2002) and van Waerbeke & Mellier (2003) review the
relatively young field of weak gravitational lensing.

1.1 History of gravitational light deflection

We start with a (very) brief account on the history of gravitational lensing;
the reader is referred to SEF and PLW for a more detailed presentation.

The early years, before General Relativity. The Newtonian theory
of gravitation predicts that the gravitational force F on a particle of mass
m is proportional to m, so that the gravitational acceleration a = F/m is
independent of m. Therefore, the trajectory of a test particle in a gravitational
field is independent of its mass but depends, for a given initial position and
direction, only on the velocity of the test particle. About 200 years ago,
several physicists and astronomers speculated that, if light could be treated
like a particle, light rays may be influenced in a gravitational field as well.
John Mitchell in 1784, in a letter to Henry Cavendish, and later Johann
von Soldner in 1804, mentioned the possibility that light propagating in the
field of a spherical mass M (like a star) would be deflected by an angle
an = 2GM/(c*€), where G and ¢ are Newton’s constant of gravity and the
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velocity of light, respectively, and £ is the impact parameter of the incoming
light ray. At roughly the same time, Pierre-Simon Laplace in 1795 noted
“that the gravitational force of a heavenly body could be so large, that light
could not flow out of it” (Laplace 1795), i.e. that the escape velocity ve =
V2GM /R from the surface of a spherical mass M of radius R becomes the
velocity of light, which happens if R = Ry = 2GM/c?, nowadays called the
Schwarzschild radius of a mass M.

Gravitational light deflection in GR. All these results were derived un-
der the assumption that light somehow can be considered like a massive test
particle; this was of course well before the concept of photons was introduced.
Only after the formulation of General Relativity by Einstein in 1915 could the
behavior of light in a gravitational field be studied on a firm physical ground.
Before the final formulation of GR, Einstein published a paper in 1911 where
he recalculated the results of Mitchell and Soldner (of whose work he was
unaware) for the deflection angle. Only after the completion of GR did it
become clear that the ‘Newtonian’ value of the deflection angle was too small
by a factor of 2. In the general theory of relativity, the deflection is
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The deflection of light by the Sun can be measured during a Solar Eclipse
when it is possible to observe stars projected near the Solar surface; light
deflection then slightly changes their positions. A measurement of the deflec-
tion in 1919, with a sufficient accuracy to distinguish between the ‘Newtonian’
and the GR value, provided a tremendous success for Einstein’s new theory
of gravity.

Soon thereafter, Lodge (1919) used the term ‘lens’ in the context of grav-
itational light deflection, but noted that ‘it has no focal length’. Chwolson
(1924) considered a source perfectly coaligned with a foreground mass, con-
cluding that the source should be imaged as a ring around the lens — in fact,
only fairly recently did it become known that Einstein made some unpub-
lished notes on this effect in 1912 (Renn et al. 1997) — hence, calling them
‘Einstein rings’ is indeed appropriate. If the alignment is not perfect, two
images of the background source would be visible, one on either side of the
foreground star. Einstein, in 1936, after being approached by the Czech en-
gineer Rudi Mandl, wrote a paper where he considered this lensing effect by
a star, including both the image positions, their separation, and their magni-
fications. He concluded that the angular separation between the two images
would be far too small (of order milliarcseconds) to be resolvable, so that
“there is no great chance of observing this phenomenon” (Einstein 1936).

Zwicky’s visions. This pessimistic view was not shared by Fritz Zwicky,
who in 1937 published two truly visionary papers. Instead of looking at lens-
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ing by stars in our Galaxy, he considered “extragalactic nebulae” (nowadays
called galaxies) as lenses — with his mass estimates of these nebulae, he esti-
mated typical image separation of a background source to be of order 10" —
about one order of magnitude too high — and such pairs of images can be sep-
arated with telescopes. Observing such an effect, he noted, would furnish an
additional test of GR, allow one to see galaxies at larger distances (due to the
magnification effect), and would determine the masses of these nebulae acting
as lenses (Zwicky 1937a). He then went on to estimate the probability that
a distant source would be lensed to produce multiple images, concluded that
about 1 out of 400 distant sources should be affected by lensing (this is about
the fractional area covered by the bright parts of nebulae on photographic
plates), and hence predicted that “the probability that nebulae which act as
gravitational lenses will be found becomes practically a certainty” (Zwicky
1937b). As we shall see in due course, basically all of Zwicky’s predictions
became true.!

The revival of lensing. Until the beginning of the 1960’s the subject rested,
but in 1963/4, three authors independently reopened the field: Yu.G. Klimov
(1963), S. Liebes (1964) and S. Refsdal (1964a,b). Klimov considered lensing
of galaxies by galaxies, whereas Liebes and Refsdal mainly studied lensing by
point-mass lenses. Their papers have been milestones in lensing research; for
example, Liebes considered the possibility that stars in the Milky Way can
act as lenses for stars in M31 — we shall see in ML, this is a truly modern
idea. Refsdal calculated the difference of the light travel times between the
two images of a source — since light propagates along different paths from the
source to the observer, there will in general be a time delay which can be ob-
served provided the source is variable, such like a supernova. Refsdal pointed
out that the time delay depends on the mass of the lens and the distances to
the lens and the source, and concluded that, if the image separation and the
time delay could be measured, the lens mass and the Hubble constant could
be determined. We shall see in SL how these predictions have been realized
in the meantime.

In 1963, the first quasars were detected: luminous, compact (‘quasi-stellar’)
and very distant sources — hence, a source population had been discovered
which lies behind Zwicky’s nebulae, and finding lens systems amongst them
should be a certainty. Nevertheless, it took another 15 years until the first
lens system was observed and identified as such.

! Zwicky thought he had found a gravitational lens system and said so at a con-
ference in the 1950s. Munch, one of his Caltech colleagues, said that if it were
a lens, he’d “eat his hat”. Sargent (from whom this story was communicated)
found the photographic plate after Zwicky’s death, hoping to improve Munch’s
diet, but concluded it was a plate defect.
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Fig. 1. The two upper panels show a short (left) and longer (right) optical exposure
of the field of the double QSO 0957+561 (Young et al. 1981). In the short exposure,
the two QSO images are clearly visible as a pair of point sources, separated by ~ 6" .
The longer exposure reveals the presence of an extended source, the lens galaxy,
between the two point sources, as well as a small cluster of galaxies of which the
lens galaxy G1 is the brightest member. The lower left panel shows a 6 cm VLA
map of the system (Harvanek et al. 1997), where besides the two QSO sources A
and B, and the extended radio structure seen for image A, radio emission from
the lens galaxy G is also visible. The milli-arcsecond structure of the two compact
components A, B is shown in the lower right panel (Gorenstein et al. 1988a), where
it is clearly seen that one VLBI jet is a linearly transformed version of the other,
and they are mirror symmetric; this is predicted by any generic lens model which
assigns opposite parity to the two images
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1.2 Discoveries

First detections of multiple imaging (1979). In their program to opti-
cally identify radio sources, Walsh, Carswell & Weymann in 1979 discovered
a pair of quasars separated by about 6 arcseconds, having identical colors,
redshifts (zs = 1.41) and spectra (see Walsh 1989 for the history of this dis-
covery). The year 1979 also marked two important technical developments in
astronomy: the first CCD detectors replaced photographic plates, thus pro-
viding much higher sensitivity, dynamic range and linearity, and the Very
Large Array (VLA), a radio interferometer providing radio images of sub-
arcsecond image quality, went into operation. With the VLA is was soon
demonstrated that both quasar images are compact radio sources, with sim-
ilar radio spectra. Soon thereafter, a galaxy situated between the two quasar
images was detected (Stockton 1980; Young et al. 1980). The galaxy has a
redshift of z4 = 0.36 and it is the brightest galaxy in a small cluster. We now
know that the cluster contributes its share to the large image separation in
this system. Furthermore, the first Very Long Baseline Interferometry (VLBI)
data of this system, known as QSO 09574561, showed that both components
have a core-jet structure with the symmetry expected for lensed images of a
common source (see Fig.1). The great similarities of the two optical spectra
(Fig.2) is another proof of the lensing nature of this system.

+ Q095745614

'-i; |k ;r&lv
]

e |r-=|u5-u|l
I
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M*I'N‘ﬂfw ﬂ h )\'%-.H | ages of the lens system QSO
1 """ﬁ 09574561, obtained with the

| 'wams_m (1S ‘I.  Faint Object Spectrograph on-
SRR, " board HST (Michalitsianos et al.
” Q0957+5618 . 1997). The strong similarities of
; .ﬂ« { the spectra, in particular the
| h i same line ratios and the identical
! redshift, verifies this system as a
| definite gravitational lens system

i Ih"|"||J J.r‘flllnl' T, "1- i

] |
|

300 1000 ) am a0 Jam
Wasatangth (A] in zggo = 1.49 Rast Frama

s
T —
il

Apsolute Flux 310" Erg omi7s A7)

One year later, the so-called triple quasar PG 11154080 was discovered
(Weymann et al. 1980). It apparently consisted of three images, one of which
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Fig. 3. In the left panel, a NIR image of the gravitational lens system PG 11154080
is shown, taken with the NICMOS instrument onboard HST. The QSO has a red-
shift of z; = 1.72. The double nature of the brightest component is clearly recog-
nized, as well as the lens galaxy with redshift zq = 0.31, situated in the ‘middle’ of
the four QSO images. When the QSO images and the lens galaxy are subtracted
from the picture, the remaining image of the system (right panel) shows a nearly
complete ring, which is the lensed image of the host galaxy of the QSO, mapped
onto a nearly complete Einstein ring. In near-IR observations of lens systems, such
rings occur frequently (source: C. Impey and NASA, see Impey et al. 1998)

was much brighter than the other two (see Fig.3). Soon thereafter it was
shown that the bright image was in fact a blend of two images separated
by ~ 0”5, and thus very difficult to resolve with optical telescopes from the
ground. The fact that the close pair is much brighter than the other two
images is a generic prediction of lens theory, as will be shown below.

Until 1990, a few more lens systems or lens candidate systems have been
discovered, some of them from a systematic search for lenses amongst radio
sources (e.g., Burke et al. 1992), but most of them serendipitously (such as
the one shown in Fig.4). The 1990’s then have witnessed several systematic
searches for lens systems, including programs carried out with the Hubble
Space Telescope (HST; Maoz et al. 1993), lens searches amongst 15000 ra-
dio sources (JVAS and CLASS; see King et al. 1999; Browne et al. 2003),
and those amongst very bright high-redshift quasars — these surveys will be
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Fig. 4. Around the center of this nearby spiral galaxy (zq = 0.04), four point-like
sources are seen is a fairly symmetric geometry (Yee 1988). Their spectra iden-
tify them as four images of a background QSO with z; = 1.7. This system, QSO
223740305, is the closest gravitational lens and one of the few systems where the
lens is a spiral; it has been found in a spectroscopic redshift survey of nearby galaxies

detailed in SL. By now, more than 80 multiple-image lens systems with a
galaxy acting as the (main) lens are known.

Fig.5. The giant arc in the
cluster of galaxies Cl 2244—02,
taken with the ISAAC instru-
ment at the VLT (source: ESO
Press Photo 46d/98). The arc
has a redshift of 23 = 2.24,
and was at the time of discov-
ery the highest redshift normal
galaxy. The high magnification
caused by the gravitational lens
renders this still (one of) the
brightest galaxies with z > 2

Giant luminous arcs (1986). In 1986, two groups (Lynds & Petrosian
1986; Soucail et al. 1987) independently pointed out the existence of strongly
elongated, curved features around two clusters of galaxies (see Figs. 5 and
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Fig. 6. The cluster A2218 at z = 0.175 contains one of the most impressive systems
of arcs, as can be seen in the multi-color images taken with the WFPC2 instrument
onboard HST (source: NASA /STScI). This cluster contains several multiple image
systems of background galaxies which, together with the morphology of arcs, allows
the construction of very detailed mass models for this cluster. Also remarkable is
the thinness of several of the arcs, so that they are not resolved in width even
with the HST; this implies very large length-to-width ratios of these arcs and,
correspondingly, very high magnifications

6). Their tangential extent relative to the cluster center was at least ten
times their radial extent, although the exact value was difficult to determine
as they were not well resolved in width from the ground (HST has shown
that this ratio is substantially larger than 10:1 in many cases). These giant
luminous arcs were seen displaced from the cluster center, and curving around
it. Various hypotheses were put forward as to their nature, and all proven
wrong, except for one (Paczyriski 1987), when the redshift of the giant arc in
A370 was measured (Soucail et al. 1988) and shown to be much larger than
the redshift of the cluster. The arc was thus proven to be a highly distorted
and magnified image of an otherwise normal, higher-redshift galaxy. By now,
many clusters with giant arcs are known and have been investigated in detail.
As with most optical studies of lenses, the high-resolution of the HST was
essential to study the detailed brightness distribution of arcs and to identify
multiple images by their morphology and colors. Less distorted images of
background galaxies have been named arclets (Fort et al. 1988); they can
be identified in many clusters, and they are generally stretched tangentially
with respect to the cluster center. In addition, clusters can act as strong
lenses also to produce multiple images of background galaxies. Some of these
aspects will be covered in Sect. 4 of WL.
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Fig. 7. The quasar MG 1654413 at redshift z; = 1.72 is shown, both as an optical
image (grey scale) and in the radio (contours). The optical QSO is denoted as Q,
and is the central component (or core) of a triple radio source. The Northern radio
lobe is denoted by C, whereas the Southern radio lobe is mapped onto an Einstein
ring. At the center of this ring, one sees a bright galaxy with spectroscopic redshift
of zq = 0.25. This galaxy lenses the second radio lobe into a complete Einstein ring.
Within this ring, brightness peaks can be identified, and the components denoted
A and B are similar to, but not multiple images of, the brightness peak in the
Northern lobe C (source: G. Langston)

Rings, after all (1988). Whereas Einstein ring images were predicted in
the case of a perfectly coaligned source with a spherically symmetric lens,
the first multiple images lens systems have taught us that lenses are far from
spherical — thus, the discovery of a radio ring in the source MG 1131+0456
(Hewitt et al. 1988) came as a big surprise. Unfortunately, owing to its faint
optical counterpart, the lensing nature of this first system could not be proven
easily, but the relative ease by which the radio source morphology, at several
frequencies, could be modeled by a simple gravitational lens (Kochanek et al.
1989) made a very strong case for its lensing nature. The second radio ring
discovered (Langston et al. 1989) made a much cleaner case: Of the two radio
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lobes of a redshift 1.72 quasar, one of them is imaged into a ring (see Fig. 7).
At the center of this ring lies a bright, redshift zqg = 0.25 galaxy, responsi-
ble for the light deflection. High-resolution imaging with HST in optical and
near-infrared filters revealed the presence of Einstein rings in many multiply
imaged quasars (Fig.8), where the host galaxy of the active nucleus is the
corresponding (extended) source. We now know a lens need not be exactly
spherical; it is a combination of the asymmetry (ellipticity) of the mass dis-
tribution and the source size that determines whether we will see an Einstein
ring (see SL, Sect. 10).

Fig. 8. The gravitational lens system B 1938+4666. The left panel shows a NIC-
MOS@HST image of the system, clearly showing a complete Einstein ring into
which the Active Galaxy is mapped, together with the lens galaxy situated near
the center of the ring. The right panel shows the NICMOS image as grey-scales,
with the radio observations superposed as contours. The radio source is indeed a
double, with one component being imaged twice (the two images just outside and
just inside the Einstein ring), whereas the other source component has four images
along the Einstein ring, with two them close together (source: L.J. King, see King
et al. 1998)

Quasar microlensing (1989). The mass of galaxies is not distributed
smoothly, since at least a fraction of it is in stars. These stars will split
the (macro)images of a quasar into many microimages whose typical separa-
tions of few microarcseconds are unresolvable. However, these perturbations
of the gravitational field change the magnification of the macroimages, pro-
vided the source is sufficiently compact. Since the source, the lens and the
observer are not stationary, and the stars in the galaxies move, this magni-
fication will also change in time; the characteristic time-scales are of order a
decade or less, and in one case (QSO 2237+0305, see Fig. 4) where the lens is
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very close to us (zq = 0.0395), even smaller. Hence, as predicted by Chang &
Refsdal (1979, 1984), Paczyniski (1986a) Kayser et al. (1986) and Schneider
& Weiss (1987), this microlensing effect should yield flux variations of the
images which are uncorrelated between the different images — an intrinsic
variation of the source would affect the flux of all images in the same way,
though with a time delay. In 1989, this microlensing effect was detected in the
four image quasar lens QSO 223740305 as uncorrelated brightness variations
in the four images (Irwin et al. 1989).

Weak lensing (1990). As mentioned before, arclets are images of back-
ground galaxies stretched by the lensing effect of a cluster. In order to identify
an arclet as such, the image distortion must be significant; otherwise, owing
to the intrinsic ellipticity distribution of galaxies, the stretching could not be
distinguished from the intrinsic shape. However, if the distortion field varies
slowly with position, then galaxy images lying close to each other should be
distorted by a similar degree. Since we live in a Universe where the sky is
densely covered with faint and small galaxies (e.g., Tyson 1988; Williams et
al. 1996), an average over local ensembles of galaxies can be taken; the mean
distortion of this ensemble is then a measure for the lens stretching. This weak
gravitational lensing effect was first detected in two clusters in 1990 (Tyson,
Valdes & Wenk 1990). The advances in optical imaging cameras, in particular
the availability of large mosaic CCD cameras which enable the mapping of
nearly degree-sized fields in a single pointing, and the development of specific
image analysis tools, have permitted the detection and quantitative analysis
of weak lensing in many clusters. Even weaker lensing effects, those by an
ensemble of galaxies and of the large-scale matter distribution in the Universe
were discovered in 1996 (Brainerd et al. 1996) and 2000 (Bacon et al. 2000;
Kaiser et al. 2000; van Waerbeke et al. 2000; Wittman et al. 2000); we shall
report on this in WL.

Time delays (> 1992). Following Refsdal’s idea to determine the Hubble
constant from lensing by combining a good mass model for the lens with the
time delay, the light curves of the first double QSO 095+561 were monitored
by several groups in the optical and radio waveband (e.g., Vanderriest et
al. 1989; Schild 1990; Lehar et al. 1992). From these lightcurves, estimates of
the time delay were derived by a number of groups, and significantly different
results were obtained. Difficulties include seasonal gaps in the optical light
curves and the possibility of uncorrelated variability in the images due to
microlensing by the lensing galaxy. To account for these effects, different
methods were developed, yielding different results; broadly speaking, either
delays of 410 days or 540 days were obtained. The issue was put to rest when
a relatively sharp variation of the flux of the leading image was detected in
December 1994 (Kundic et al. 1995; Fig. 9). Each of the two estimates for the
time delay predicted a different epoch for the occurrence of the corresponding
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Fig. 9. Light curves of the two im-
ages of the QSO 0957+561A,B in two
different filters. The two light curves
have been shifted in time relative to
each other by the measured time de-
. . w . w lay of 417 days, and in flux accord-
ing to the flux ratio. The sharp drop
measured in image A in Dec. 1994
and subsequently in image B in Feb.
1996 provides an accurate measure-
ment of the time delay (data from
Kundié et al. 1997)
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feature in the other image. With the observation of the feature in the trailing
image in February 1996 (Kundic et al. 1997), the controversy was resolved
in favor of the short delay, yielding 417 + 3 days. Time delays have now been
measured in 10 lens systems, although the resulting estimates for the Hubble
constant are still problematic — see SL.

Galactic microlensing (1993). Stars in our Galaxy can act as lenses for
other stars or extragalactic sources; however, the probability for this to occur
is extremely small, as already noted by Liebes (1964). However, if one consid-
ers a sufficient number of background sources, even very small probabilities
can be beaten. Such a lensing effect would be noted as a magnification of the
background star; owing to transverse motion of source, lens and observer,
the magnification changes in time and leads to a characteristic light curve.
Paczynski (1986b) proposed in 1986 to monitor the brightness of stars in
dense stellar fields of the Large Magellanic Cloud to search for such charac-
teristic variability. The main idea behind this suggestion was to test whether
the dark matter in the halo of our Galaxy, necessary to explain the flat ro-
tation curve of the Milky Way (and other spiral galaxies) is made up of
compact objects — brown dwarfs, neutron stars, ‘Jupiters’, black holes. The
‘only’ problem was that about 1 out of 107 stars in the LMC is expected to
be lensed at any given time — the number of stars needed to be monitored
is indeed large. Nevertheless, two groups started this adventure in the early
1990s, and reported in 1993 the first microlensing events towards the LMC
(Alcock et al. 1993; Aubourg et al. 1993). Shortly thereafter, a third group
announced the discovery of microlensing events towards the Galactic bulge
(Udalski et al. 1993). Since then, this fields has flourished, and will be covered
in depth in ML. In addition to the discovery of a large number of microlens-
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e . . L Fig. 10. Blue and red lightcurve

blue t A,.x=6.86 of the first Galactic microlens-
ing event MACHO-LMC-1 (Al-
cock et al. 1993). Data points
with error bars show the mea-
sured brightness of a star in the
LMC as a function of time, and
the curve in both upper panels
show the best fitting ‘standard’
microlensing lightcurve. Overall,
the quality of the fit is impres-
sive, and the lack of chromatic ef-
fects, demonstrated by the con-
stancy of the flux ratio shown
in the lowest panel, strongly ar-
gues for this being a microlens-
ing event. However, some points
(in particular one close to the
maximum flux) deviate very sig-
nificantly from the simple model
420 440 460 . e .
days from 2 Jan 1992 lightcurve, indicating that this
may be a binary microlens

400

ing events, these surveys provide unique data sets which are also useful for
other branches of astronomy, most notably studies of stellar statistics and
variability.

1.3 What is lensing good for?

Hopefully, by the end of these lectures we will have provided convincing
answers to this question, but for the impatient, we shall summarize some of
the highlights of lensing applications.

Measure mass and mass distributions. Gravitational light deflection is
determined by the gravitational field through which light propagates. This
in turn is related to the mass distribution via the Poisson equation (or its
GR generalization). It is essential to realize that this simple fact implies that
gravitational light deflection is independent of the nature of the matter and
of its state — lensing is equally sensitive to dark and luminous matter, and to
matter in equilibrium or far out of it. On the negative side, this implies that
lensing alone cannot distinguish between these forms of matter, but on the
positive side, it also cannot miss one of these matter forms. Hence, lensing is
an ideal tool for measuring the total mass of astronomical bodies, dark and
luminous.
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From the Einstein deflection law (1), it is obvious that characteristic image
separations scale with the lens mass like M'/2; hence, the observation of
multiple images and rings immediately allows an estimate of the mass of
the lensing galaxy — or more precisely, the mass within a cylinder with a
diameter of the image separation or the ring diameter, centered on the lens.?
More detailed modeling, and additional observables, such as flux ratios, can
yield very precise mass estimates. Indeed, as will be discussed in SL, accurate
mass estimates within galaxies, with an uncertainty of a few percent, have
been achieved — by far the most precise mass determinations in (extragalactic)
astronomy. Similarly, from the locations of giant arcs in clusters, the masses
of the central parts of clusters can be determined (Sect.4 of WL). With the
advent of HST imaging and the discovery of multiple image systems in some
strong lensing clusters, detailed mass models have been obtained, which led
to very precise mass estimates in those clusters (needless to say, they confirm
the dominance of dark matter in clusters).

Weak lensing studies of clusters estimate the mass distribution to much
larger radii than the strong lensing regime, and, like strong lensing effects,
probe for asymmetries and substructures in the cluster mass. For example,
already the strong lensing properties of the cluster A2218 (Fig. 6) reveals the
bimodal nature of the mass distribution. In fact, substructure in the mass
distribution of lens galaxies has been detected, thereby confirming one of
the robust predictions of the Cold Dark Matter model for our Universe (SL,
Sect. 8). In addition, the mass distribution of galaxies at large radii, where
one runs out, of local dynamical tracers, can be studied statistically using an
effect called galaxy-galaxy lensing (WL, Sect. 8).

Constraining the number density of mass concentrations. The prob-
ability for a lensing event to occur (e.g., the fraction of high-redshift sources
that are multiply imaged, or the fraction of stars undergoing microlensing)
depends on the projected number density of potential lenses. Hence, by inves-
tigating statistically well-defined samples of sources and their lensed fraction,
we can infer the number density of lenses. Examples of such studies are es-
timates of the number density of compact objects in the dark halo of our
Galaxy, the redshift evolution of the number density of galaxies acting as
strong lenses, and the number density of clusters producing strong and weak
lensing signals. Upper limits on the number of lensing events can also be
translated into upper bounds on the number density of putative lenses: e.g.,
the fact that nearly all multiply-imaged sources have a visible lens galaxy puts
strong upper bounds on the number density of dark lenses (they can at most
provide a few percent of the galaxy-mass objects), and the non-detection
of lens systems with image separations of tens of milliarcseconds provides

2 Whereas this ‘cylinder’ contains all the mass inhomogeneities of the cosmic mat-
ter distribution between the source and the observer, it is dominated by the mass
of the lensing galaxy.
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bounds on the number density of compact galaxies with masses ~ 109 M.
In fact, by now lensing has put stringent constraints on the population of
compact massive objects in the Universe over an extremely broad range of
mass scales, from ~ 1073 M, (from upper limits on the variability of distant
quasars) to ~ 10'® My, (from the absence of very wide pairs of quasars), with
only a few mass gaps within this range. Even lower-mass objects (~ 10~ 5M)
can be ruled out as significant contributors to the dark matter in our Milky
Way (see ML).

Provide estimates of cosmological parameters. Following Refsdal’s
idea, the Hubble constant can be obtained from the time delay in multi-
ple image systems. This method has the advantage of being independent, of
the usual distance ladder used in determinations of Hy, and it also mea-
sures the Hubble constant on a truly cosmic scale, in contrast to the quite
local measurements based on Cepheid distances. Despite the determination
of time delays in a number of systems, values for Hy by lensing are burdened
with the uncertainties of the lens models; however, there is a trend towards
slightly lower values of the Hubble constant than obtained from Cepheids
(see SL, Sect. 5). Other cosmological parameters can also be obtained from
lensing. For example, the fraction of lensed high-redshift quasars when com-
bined with the distribution of image separations can be used to estimate the
cosmological model (SL, Sect. 6). Weak lensing by the large-scale structure is
sensitive to the matter density parameter and the normalization of the den-
sity fluctuations, and significant constraints on these parameters have been
obtained (WL, Sect.7). In particular in combination with results from the
anisotropy of the cosmic microwave background, future cosmic shear studies
will provide an invaluable probe of the equation of state of the dark energy.
Weak lensing has also successfully been used to determine the bias parameter,
which describes the relation between the statistical distribution of galaxies
and the underlying dark matter, and for which only few alternative methods
are available (WL, Sect. 8).

Lenses as natural telescopes. Since a lens can magnify background sources,
these appear brighter than they would without a lens. This makes it easier
to investigate these sources in detail, e.g. through spectroscopic observations.
In some cases, this magnification is even essential to detect the sources in the
first place, provided their lensed brightness just exceeds the detection thresh-
old of a survey or of the current instrumental sensitivity. This magnification
effect has in fact yielded spectacular results, such a very detailed spectra of
very distant galaxies, the detection of some of the highest redshift galaxies
behind cluster lenses, and the detection of very faint sub-millimeter sources
in cluster fields.? In fact, the lens magnification can be very large in some

3 A magnification by a factor of, say, 5 implies that a spectrum of the source can
be taken in 1/25-th of the time it would take to get the same signal-to-noise
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rare cases, but these rare cases truly stick out: some of the most extreme
sources, with regards to their apparent luminosity, are strongly magnified
— such as the spectacular TRAS galaxy F10214 (e.g., Broadhurst & Lehar
1995), the by-far brightest redshift ~ 3 galaxy cB58 (Seitz et al. 1998), or
the extremely luminous z = 3.87 quasar APM 0827945255 (Irwin et al.
1998).* A good fraction of known galaxies with redshift larger than ~ 4
have been detected behind cluster lenses, including the redshift record holder
(z = 10.0) at present (Pellé et al. 2004); see Fig.11 for an example. During
high-magnification Galactic microlensing events, detailed spectra of stars at
large distances (e.g. the Galactic bulge) have been taken. As the high magni-
fication region crosses a distant star, observations have mapped the surface
brightness distribution of the stars to test stellar atmosphere models.

Fooew  — y F160W

Fig. 11. Example for the use of a gravitational lens as a natural telescope. In a
search for very high redshift objects, deep multi-band HST images are taken near
the critical curves of clusters, where large magnifications are expected. Shown here
are images of a field in the cluster A2218 (see Fig.6) in four filters, ranging from
0.6 pum to the near-IR at 1.6 pum. In the two larger wavelength images, a double
source is seen, which is absent at shorter wavelength. The two components are
situated at opposite sides of the critical curve, which is drawn for three source
redshifts of zs = 6, 6.5 and 7; due to the large number of strong lensing constraints
for this cluster, its mass distribution in the central part is very well determined.
The sticks indicate the shear field of the cluster, and the elongation of the double
images is parallel to this shear, as expected if they were gravitationally lensed
images. From the location of the images with respect to the critical curve, and the
drop-out of their flux at wavelengths shorter than ~ 0.8 um, the redshift of the
source is estimated to be between z; = 6.5 to 7 (from Kneib et al. 2004)

With the lenses as magnifiers, larger effective angular resolution of the
sources is obtained. Galaxies acting as sources for giant arcs can therefore be

spectrum of the unlensed source. Needless to say that such a factor can make the
difference between an observation being made and one that cannot be done.

* Such extremely bright quasars are of great importance for the study of the inter-
galactic absorption, e.g., the Ly-« forest; no surprise then that such objects, like
the highly magnified z = 3.62 QSO 14224231, are preferred targets for investi-
gating absorption lines.
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resolved in unprecedented detail, at least in one dimension. The host galaxy
of quasars, which is difficult to study in unlensed objects owing to the large
brightness contrast between the active nucleus and the surrounding host, can
be studied much easier when lensing allows the spatial resolution of the host
— in many cases, the host galaxy is in fact mapped into an Einstein ring (see
Figs. 3 and 8).

Searches for planets. The light curves of Galactic microlensing events are
affected by companions of the main lens. For example, light curves of binary
stars are readily identified as such, provided their separation falls into a favor-
able range determined by the geometry of the lens system. Because of that,
even planets will leave an observable trace in the microlensing lightcurves if
they are situated at the right radius from the star and at the right orbital
phase. Although these traces can be quite subtle, and last for a short time
only, current observing campaigns aimed at the search for planets have the
sensitivity for their detection, and several candidate events for the detection
of planetary signals in microlensing light curves have been reported. Indeed,
microlensing is considered to be the simplest (and cheapest) possibility to
detect the presence of low-mass planets around distant stars (ML).

These few examples should suffice to illustrate the broad range of appli-
cations of gravitational lensing; the ever increased publication rate of articles
investigating and applying gravitational lensing underlines the timeliness of
the subject.

2 Gravitational lens theory

Assuming the validity of General Relativity, light propagates along the null
geodesics of the space-time metric. However, most astrophysically relevant
situations permit a much simpler approximate description of light rays, which
is called gravitational lens theory. In this section, we summarize the basic
equations for the description of light deflection in a gravitational field. The
reader is referred to SEF and PLW for a more detailed account and further
references.

2.1 The deflection angle

Consider first the deflection of a light ray by the exterior of a spherically
symmetric mass M. Provided that the ray’s impact parameter £ is much
larger than the Schwarzschild radius of the mass, £ > Ry = 2GM ¢~ 2, then
General Relativity predicts that the deflection angle & is

4GM
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This is just twice the value obtained in Newtonian gravity (see Sect.1.1).
According to the condition £ > Rs, the deflection angle is small, & < 1.
This condition also implies that the Newtonian gravitational field strength is
small, ¢n/c® < 1.

The field equations of General Relativity can be linearized if the gravita-
tional field is weak. The deflection angle of an ensemble of mass points is then
the (vectorial) sum of the deflections due to the individual mass components.
A three-dimensional mass distribution with volume density p(r) can be di-
vided into cells of size dV' and mass dm = p(r)dV. Let a light ray pass this
mass distribution, and describe its spatial trajectory by (& (), &2(N),r3(N)),
where the coordinates are chosen such that the incoming light ray (i.e. far
from the deflecting mass distribution) propagates along r3. The actual light
ray is deflected, but if the deflection angle is small, the ray can be approxi-
mated as a straight line in the neighborhood of the deflecting mass (note that
this corresponds to the Born approximation in atomic and nuclear physics). A
mass distribution for which this condition is satisfied is called a geometrically-
thin lens. Then, £(\) ~ &, independent of the affine parameter A. Note that
& = (&,&) is a two-dimensional vector. The impact vector of the light ray
relative to the mass element dm at r' = (¢, &}, r4) is then £ —¢’, independent
of r§, and the total deflection angle is

%) 4G 1o —-¢
a(6) = L dm(@.6.) f—gm
4G ! ! AP | -¢
=5 [ee [anne g gn )

which is also a two-dimensional vector. Since the last factor in (3) is inde-
pendent of rf, the ri-integration can be carried out by defining the surface
mass density

X)) = /drs p(&1,62,73) , (4)

which is the mass density projected onto a plane perpendicular to the in-
coming light ray. Thus, the deflection angle produced by an arbitrary density
distribution is

£-¢

E—ep %)

provided that the deviation of the actual light ray from a straight (unde-
flected) line within the mass distribution is small compared to the scale on
which the mass distribution changes significantly. This condition is satisfied
in virtually all astrophysically relevant situations (i.e. lensing by galaxies and
clusters of galaxies), unless the deflecting mass extends all the way from the
source to the observer (a case which will be dealt with in WL). It should
also be noted that in a lensing situation such as that displayed in Fig. 12,
the incoming light rays are not mutually parallel, but fall within a beam

ale) =5 [ ¢ zE)
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with opening angle approximately equal to the angle which the mass dis-
tribution subtends on the sky. This angle, however, is typically very small
(in the case of cluster lensing, the relevant angular scales are of order 1 arc
min ~ 3 x 10~* radians).

2.2 The lens equation

A typical situation considered in gravitational lensing is sketched in Fig. 12,
where a mass concentration at redshift zq (or distance Dy) deflects the light
rays from a source at redshift z; (or distance Ds). If there are no other
deflectors close to the line-of-sight, and if the extent of the deflecting mass
along the line-of-sight is very much smaller than both Dgq and the distance
Dy, from the deflector to the source,? the actual light rays which are smoothly
curved in the neighborhood of the deflector can be replaced by two straight
rays with a kink near the deflector. The magnitude and direction of this kink is
described by the deflection angle &, which depends on the mass distribution of
the deflector and the impact vector of the light ray. The lens equation relates
the true position of the source to its observed position on the sky. As sketched
in Fig. 12, the source and lens planes are defined as planes perpendicular to
a straight line (the optical axis) from the observer to the lens at the distance
of the source and of the lens, respectively. The exact definition of the optical
axis does not matter because of the smallness of the angles involved in a
typical lens system. Let 17 denote the two-dimensional position of the source
on the source plane, measured with respect to the intersection point of the
optical axis with the source plane. From Fig. 12 we can read off the geometric
condition that (again making use of the smallness of angles occurring, so that
sin& & & ~ tan &)

D N
n= 7€~ Das@lé) . (6)
d
Introducing angular coordinates by
n = DB and £ = Dq0, (7)

we can transform eq. (6) to

&(DaB) = 0 — a(8) , 8)

where we defined the scaled deflection angle a(0) in the last step. The inter-
pretation of the lens equation (8) is that a source with true position 8 can
be seen by an observer to be located at angular positions 0 satisfying (8).
If (8) has more than one solution for fixed 3, a source at 3 has images at

5 This condition is very well satisfied in most astrophysical situations. A cluster of
galaxies, for instance, has a typical size of a few Mpc, whereas the distances Dy,
Dy, and Dys are fair fractions of the Hubble length cHO_1 =3h"! x 10° Mpc.
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Fig. 12. Sketch of a typical gravitational lens system.

several positions on the sky, i.e. the lens produces multiple images. For this
to happen, the lens must be ‘strong’. We can express the scaled deflection
angle in terms of the surface mass density as

1 0-0
0) =— d’0' k(0") ——— 9
a(0) =~ | 0 K0) G=gs 9
where we have defined the dimensionless surface mass density or convergence
E(Ddo) . 02 Ds
0) = —= th Yo =-— , 10
~(6) S 7T 4G Dy Das (10)

where the critical surface mass density X, depends on the distances to the
source and the lens. As will be discussed later (Sect. 2.4), a mass distribution
which has & > 1 somewhere, i.e. ¥ > X, produces multiple images for some
source positions. Hence, Y., is a characteristic value for the surface mass
density which is the dividing line between ‘weak’ and ‘strong’ lenses.®

6 In order to derive the foregoing equations, we have used Euclidean geometry
to relate angles to length scales. We shall discuss in Sect. 4 that the equations
still hold in an expanding universe, provided the distances D’s are interpreted as
angular diameter distances — hence, in the notation of Sect.4, D = D*"8.
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The lens equation (8) describes a mapping 6 — B from the lens plane
to the source plane; for any mass distribution X'(€), this mapping can (in
principle) be easily calculated. One problem of gravitational lens theory is
the inversion of (8), i.e., to find all the image positions 6 for a given source
position 3. Since the mapping @ — 3 is non-linear, the inversion of the lens
equation can be carried out analytically only for very simple mass models of
the lens. As the number of images 6 for a given source 3 is not known a priori,
a numerical inversion is non-trivial in general; however, we shall see below
that there are methods to determine the image multiplicity as a function of
the source position.

The identity VIn|@| = 6/|0]?, valid for any two-dimensional vector 6,
shows that the (scaled) deflection angle can be written as a gradient of the
deflection potential,

0O =2 [ a2 k@)oo (11)
T JR2
as
a=Vi, (12)
so that the mapping 8 — 3 is a gradient mapping. Furthermore, using the
identity V2In |@| = 276p(0), where 6p is the (two-dimensional) Dirac delta
‘function’, one obtains from (11) that

V3 =2k, (13)

which is the Poisson equation in two dimensions. The similarity between these
lensing relations and standard three-dimensional gravity (¢ corresponds to
the gravitational potential ¢n, a corresponds to the acceleration vector, k
corresponds to the volume mass density p) shall be noted.

For later purposes, we shall find it useful to define a further scalar function

r(8:8) = 5 (6~ 6) ~¥(6) (14)

called the Fermat potential; this is a function of the lens plane coordinate 6,
with the source position 3 entering as a parameter. It should be noted that

vr(0;8)=0 (15)

is equivalent to the lens equation (8). As has been shown in Schneider (1985;
see also SEF), the function 7(0;3) is, up to an affine transformation, the
light travel time along a ray starting at position 3, traversing the lens plane
at position 0 and arriving at the observer. Thus, (15) expresses the fact that
physical light rays are those for which the light travel time is stationary —
which thus expresses Fermat’s principle in the context of lensing by a geo-
metrically thin matter distribution. We shall see that the Fermat potential
— or time-delay function — is very useful for a classification of the multiple
images in a gravitational lens system. Displaying lens properties in terms of
the Fermat potential (Blandford & Narayan 1986) provides useful insight in
the behavior of the lens mapping.
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2.3 Magnification and distortion

The solutions @ of the lens equation yield the angular positions of the images
of a source at 3. The shapes of the images will differ from the shape of the
source because light bundles are deflected differentially, as we saw from the
images of giant arcs in Fig.6. In general, the shape of the images must be
determined by solving the lens equation for all points within an extended
source. Liouville’s theorem and the absence of emission and absorption of
photons in gravitational light deflection imply that lensing conserves surface
brightness (or specific intensity). Hence, if I(*)(3) is the surface brightness
distribution in the source plane, the observed surface brightness distribution
in the lens plane is

1(6) = I0[8(9)] - (16)

If a source is much smaller than the angular scale on which the lens properties
change, the lens mapping can be linearized locally. The distortion of images
is then described by the Jacobian matrix

_6:8_ ,__621/’(0) _ 1—6k-—m -2

where we have introduced the components of the shear v = y1 +ivs = |y]e*'%,

"= %(l/&n —to2), T2=vi12, (18)

and & is related to ¢ through Poisson’s equation (13). Hence, if 8y is a point
within an image, corresponding to the point 89 = B(0y) within the source,
we find from (16), using the locally linearized lens equation,

1(8) = I [Bo + A(Bo) - (0 — 8))] . (19)

According to this equation, the images of a source with circular isophotes
are ellipses. The ratios of the semi-axes of such an ellipse to the radius of
the source are given by the inverse of the eigenvalues of 4(6y), which are
1 — k £ ||, and the ratio of the solid angles subtended by an image and the
unlensed source is the inverse of the (absolute value of the) determinant of
A. The inverse of the Jacobian is called the magnification tensor,

M@ =A"1, (20)

and yields the local mapping from the source to the image plane. The fluxes
observed from the image and from the unlensed source are given as integrals
over the brightness distributions I(0) and I()(83), respectively, and their
ratio is the magnification |u(60o)|. From (19), we find for the magnification of
a ‘small’ source

1 1

n=det M = e T A= =

(21)
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The images are thus distorted in shape and size. The shape distortion is
due to the tidal gravitational field, described by the shear -y, whereas the
magnification is caused by both isotropic focusing due to the local matter
density k and anisotropic focusing due to shear. The magnification as de-
fined in (21) can have either sign; the sign of p is called the parity of an
image. Negative-parity images are mirror-symmetric images of the source. Of
course, the observed fluxes of images are determined by the absolute value of
1. Since the intrinsic luminosity of sources is unknown, the magnification in
a lens system is not an observable. However, the flux ratio of different images
provides a direct measurement of the (absolute value of the) corresponding
magnification ratio. In general, if two extended images of a source are ob-
served, then their shapes depend on the shape of the source through A. As
the shape of the source is unknown, what can be determined from the shape
of extended images is the relative magnification matrix A;; = A(6;).A~'(6;),
which provides the linearized mapping of one image onto the other. Note that
Aj;; is in general not symmetric and thus has four independent components.
For a pair of images with opposite parity, det.4;; < 0, and so these two
images are mirror symmetric; an example of this can be seen in the VLBI
images of QSO 0957+561 (see Fig. 1).

To consider the distortion of the shape of images in somewhat more detail,
we shall rewrite the Jacobian in a slightly different form,

Aoy =a-n (1200 (22)

—g92 1+ g1

where we have defined the reduced shear

— Y _ |’Y| eQicp
T 1-k 11—k ’

g (23)
As can be easily seen from (22), the factor (1 — &) only yields an isotropic
stretching of the image, but does not affect its shape. The reduced shear
g — like v — is considered to be a complex number, g = g1 + igo and its
components determine the change of shape between the source and the image.
In particular, a circular source of unit radius is mapped onto an ellipse with
axes |(1—&)(1+]g])] " and |(1 — k)(1 —|g])|"", and the orientation of the
ellipse is determined by the phase ¢ of g. As will be seen in WL, the reduced
shear is the central quantity in weak gravitational lensing.

The images of a small source (what that means depends on the context;
see below) are therefore magnified by |u(8;)|, and the total magnification of
a small source at position 8 is given by the sum of the magnifications over
all its images,

pp(B) = Z (0], (24)

where the index ‘p’ indicates that this equation applies to the point-source
limit. The magnification of real sources with finite extent is given by the
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weighted mean of i, over the source’s area,

b= [ [asr® <ﬂ>] B [ @5 19@) ) (25)

where I®) () is the surface brightness profile of the source. Whereas grav-
itational lensing is achromatic, because the deflection of photons does not
depend on their frequency, the finite resolution of observations can lead to
color terms in practice, since the surface brightness distribution I®®(8) can
be different at different frequencies. Then, if the magnification u,(3) varies
on scales comparable to the source size, the magnification of an extended but
unresolved source can depend on the frequency.

Since the shear is defined by the trace-free part of the symmetric Jacobian
matrix A, it has two independent components. There exists a one-to-one
mapping from symmetric, trace-free 2 x 2 matrices onto complex numbers,
and we shall extensively use complex notation. Note that the shear (and the
reduced shear) transforms as e?'¥ under rotations of the coordinate frame,
and is therefore not a vector (but a polar, i.e., it has the same transformation
properties as the linear polarization of electromagnetic waves). Equations (11)
and (18) imply that the complex shear can be written as

~(0) = l/ d20'D(0 — 0')k(60'), with
™ R2
2 92 o _
D(g) = 02 01 210102 = 1 (26)

6] (01 —i62)2

2.4 Critical curves and caustics, and general properties of lenses

In any lens there can be closed, smooth curves, known as critical curves, on
which the Jacobian vanishes, det . A(@) = 0. The curves in the source plane
which are obtained by mapping the critical curves with the lens equation
are called caustics, which are not necessarily smooth, but can develop cusps.
Critical curves and caustics are of great importance for a qualitative under-
standing of the lens mapping, owing to their following properties:

1. The magnification py = 1/det. A formally diverges for an image on a
critical curve. Infinite magnifications are of course unphysical. All astro-
nomical sources have a finite size that keeps their observed magnification
(25) finite. For a hypothetical source of vanishing extent, the magnifica-
tion would be finite because the geometrical optics approximation then
breaks down and we must use wave optics. The resulting diffraction pat-
terns predict finite, though potentially very high magnifications (see e.g.
Ohanian 1983 or Chapter 7 of SEF). Nevertheless, a source located near
a caustic can produce very highly magnified images close to the corre-
sponding critical curve in the lens plane.
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2. The number of images a source produces depends on its location relative
to the caustic curves. Assuming a mass profile of a lens for which the
deflection angle tends to zero for large |6| — as is true for all real lenses
— and an upper bound to the deflection angle (i.e. excluding point-mass
lenses for the moment), a source at large |3] will have only one image, at
0 =~ 3, whereas it can have multiple images for small impact vectors. The
lens mapping (8) is locally invertible at all locations for which det A # 0.
This immediately implies that a change of the source position does not
lead to the change of the number of images unless the source moves across
a caustic — since caustics are obtained by mapping the critical curves
(where the lens mapping in not invertible) onto the source plane. When
a source position crosses a caustic, a pair of images near the corresponding
critical curve is either created or destroyed, depending on the direction
of crossing. The side of the caustic where the number of images is larger
by two is often called the ‘inner side’. A source close to, and on the inner
side of a caustic possesses a pair of images with very high and nearly
equal magnification on either side of the critical curve, in addition to any
other images. The bright pair must have opposite parities because the
magnification changes sign at the critical curve.

Whereas the critical curves are smooth, this does not need to be the case
for caustics. To see that, let @(\) be a parameterization of a critical curve;
the caustic then is B(€()\)). The tangent vector to the critical curve is the
derivative O(\) = d@()\)/d\, and the tangent vector to the caustic is

dBO(N) _ 9B df _

D = o6 ay = ACNN.

This vector, however, can vanish if the tangent vector to the critical curve
O()\) is parallel to the eigenvector of A whose eigenvalue is 0 (remember
that we are analyzing a critical curve, along which one eigenvalue of A is
always zero). Hence, if the direction of the tangent vector to the critical
curve is the singular direction of A, the caustic curve need not be smooth;
in fact, it has a cusp. Apart from any cusps the caustic curves are smooth
curves called fold caustics. These names are taken from singularity theory, a
mathematical discipline that studies the critical points of general mappings.
We shall see the occurrence of cusps later in several specific examples of lens
mappings. A source close to and inside a cusp has three highly magnified
images near the corresponding point on the critical curve; one can show (see
e.g. Schneider & Weiss 1992; Mao 1992) that the sum of the absolute values
of the magnification of the two outer images equals the absolute value of the
magnification of the central of these three images. A source just outside the
cusp has one highly magnified image near the corresponding critical curve.
We thus obtain a qualitative understanding of the geometry of a lens map-
ping from the critical curves and caustics. The critical curves divide the lens
plane into regions of positive (i.e., u > 0) and negative (u < 0) parity. The
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corresponding caustics divide the source plane into regions of different image
multiplicity: whenever a source position changes across a caustic, the number
of images changes by +2. Since for mass distributions without singularities
(e.g., point masses) the number of images is 1 if the angular source position
is sufficiently distant from the mass concentration, the number of images can
be easily assigned to each of the regions in the source plane, once the caustics
are known.

If an extended source is located on the caustic, either fold or cusp, the
corresponding two or three images merge; only that part of the source which
lies inside the inner region of the caustic is (locally) multiply imaged. Since
det A = 0 implies that (at least) one of the two eigenvalues of 4 vanishes, the
image(s) are highly distorted in the direction of the corresponding eigenvec-
tor; therefore, the image of a circular source can be very strongly elongated.
This is the origin of the giant luminous arcs in clusters. From what has been
said above, for a cusp the singular direction is tangent to the critical curve;
hence, if an arc is produced by a source on a cusp, the direction of elongation
displays approximately the local direction of the critical curve.

Types of images. The Fermat potential 7(0;3) introduced in Sect. 2.2
yields a convenient classification of images, according to whether an image 0
is located at a minimum, maximum, or saddle point of 7 — remember that
images of a source occur at points @ for which 7 is stationary. Since the
Jacobian matrix is the Hessian of 7, A;; = 8°7/(96;06;), these three types
of images are distinguished by the signs of the two eigenvalues a; of A: At a
minimum of 7, both are positive, implying that det A > 0, tr 4 > 0, whereas
at a maximum, both are negative so that det A > 0, tr 4 < 0. At a saddle
point, the signs of the a; are different, so that det A < 0. Given that

trA=2(1-k), (27)

one sees that minima (maxima) occur at positions where k < 1 (k > 1),
whereas nothing can be said about x at saddles.

Odd number and magnification theorems. In a remarkable, one-page
paper, Burke (1981) proved a theorem on the number of images a gravita-
tional lens can produce: For a gravitational lens with a smooth surface mass
density which decreases faster than |@|~! as |@] — oo, the number of images
corresponding to extrema of 7, and thus to positive parity images, equals
the number of saddle points plus 1, provided the source is not located on a
caustic. Hence, the total number of images is odd. In addition, at least one
of the images corresponds to a minimum of 7.

The proof of this theorem is obtained using the Poincaré—Hopf index
theorem and can also be found in Sect. 5.4 of SEF. The fact that any source
has at least one image corresponding to a minimum of 7 is easily seen: the



28 P. Schneider

Fermat potential 7(0;3) behaves like |0|?/2 for |@] — oo, i.e. increases for
large impact vectors, and since it is a smooth function, it must attain a
minimum somewhere. In particular this implies that smooth lenses cannot
make sources disappear. A simple way to see the validity of this theorem
follows from what has been said above about the regions of different image
multiplicity: A very misaligned source has one image, corresponding to a
minimum of 7, and the number of images changes by £2 (one of either parity)
whenever the source crosses a caustic, and thus is always odd.

As shown by Schneider (1984), a minimum image is magnified, provided
k > 0. This follows directly from the properties of minima,

0<detA=(1-kr)?>—-|y*<1,

where the final inequality follows from tr 4 > 0. Since each source is mapped
onto at least one minimum image, the positive density constraint implies that
the total magnification of all sources is larger than unity; in other words, the
flux of a source behind a lens is larger than the unlensed source. What may
sound as a contradiction on first sight — ‘all sources are magnified’ (which
has triggered a rich and often confusing literature on the ‘flux conservation’
issue) is due to the assumed positivity of the surface density s which is
certainly the case near to strong lenses. However, most lines-of-sight in the
inhomogeneous Universe pass through regions which are slightly underdense
relative to the homogeneous Universe, resulting in negative x — since & is
defined as the projected mass overdensity relative to the smooth Universe.
The mean magnification over the sphere of sources at given redshift indeed
is unity (Weinberg 1976) if the magnification is defined relative to the flux
the same source would have in a homogeneous universe of the same mean
density.

These two theorems can also be generalized to the case that the deflect-
ing matter distribution is not a geometrically-thin lens, both using heuristic
arguments (SEF) or a rigorous proof (Seitz & Schneider 1992).

Necessary and sufficient conditions for multiple imaging. A matter
distribution described by its dimensionless surface mass density x may or may
not be sufficiently strong to cause multiple images of sources. Two general
criteria for the occurrence of multiple images can be obtained:

1. An isolated transparent lens can produce multiple images if, and only if|
there is a point @ with det 4(@) < 0. This can be shown as follows: if
det A(0) > 0 for all 8, then the lens equation is globally invertible, and
so no multiple images can occur. On the other hand, if det .A(8) < 0 at
some point @y, then a source at B, = B(6p) has an image (at 6y) which
corresponds to a saddle point; according to the odd-number theorem,
there must be at least two additional images corresponding to extrema
of 7.
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2. A sufficient (but not necessary) condition for possible multiple images is
that there exists a point @ such that x(8) > 1. The argument is similar
to the one above: if k(8p) > 1, then the source at B, = B(6y) has an
image which cannot correspond to a minimum of 7, as for them x < 1;
hence, the source must have at least one additional image corresponding
to a minimum.

The second criterion shows why lenses with x > 1 are called ‘strong’:
whereas £ > 1 is not a necessary condition for the possible occurrence of
multiple images, the critical surface mass density X, is nevertheless the
characteristic scale for the occurrence of strong lensing features likes arcs
and multiple images. It should be noted that the critical surface mass den-
sity depends on the redshift (or distance) of the source; for a given physical
surface mass density X, the lens strength increases with increasing source
redshift since Y., decreases. This also implies that the critical curves are
different for sources at different redshifts; this effect is clearly seen in sev-
eral clusters of galaxies where strong lensing phenomena occur at different
separations from the cluster center for sources of different redshifts.

2.5 The mass-sheet degeneracy

Suppose you observe a multiply-imaged source for which the image positions,
their fluxes and perhaps their shapes (in the case of resolved images) can
be measured. One then wants to find a mass model for the lens which can
reproduce the observational constraints in order to obtain information about
the mass distribution in the lens. Whereas this topic will be treated in SL,
Sect.5, and in a somewhat different context in WL, we can already here
consider the question of how unique such models can be, even if one assumes
a great number of observational constraints. A partial answer to the question
is provided by the existence of the mass sheet degeneracy (Falco et al. 1985;
Gorenstein et al. 1988b; for the weak lensing case, see Schneider & Seitz
1995).

Let k(@) be a mass distribution which provides a good fit to the ob-
servables (i.e., image positions, flux ratios, relative image shapes in the case
of extended images etc.); then the whole family of lens models with mass
distribution

Ea(0) = (1 —X) + Ak(0) (28)

provides an equally good fit to the data. The first term corresponds to adding
a homogeneous surface mass density k. = 1 — A to the mass distribution,
whereas the second term describes a rescaling of the ‘original’ mass distribu-
tion k(6). We shall now prove the statement made above.

The lens equation corresponding to k) reads

B=0—a\0) with a\(8)=(1-)\)0+\x(8), (29)
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where quantities without index ‘A’ correspond to the unscaled mass distribu-
tion £(6). Indeed,
1-X 5
ax(6) = Vyx(8) where 95(8) = ——[6]" + M(6) , (30)
so that the Poisson equation (13) is satisfied, V1) = 2k. By combining the
two equations (29), one finds

B =60 -—«f), (31)
A
so that the lens equation for the transformed mass distribution k), has the
same form as for the untransformed mass distribution, except that the coor-
dinates in the source plane is multiplied by 1/\. However, this rescaling is
not directly observable. As a consequence, the Jacobi matrix and the magni-
fication behave as u

A=A =g (32)
the first of these relations then implies with (17) that v,(8) = A\y(0) and
(1 — kx) = M1 — k), in agreement with (28). However, the reduced shear g
(23) is unchanged under the transformation, which means that the axis ratios
of the elliptical images of a round source are unaffected by the transformation.
In general, if nothing sets an absolute scale for the source (size or luminosity)
or an absolute mass scale for the lens (e.g., from observations of its stellar
dynamics), then one cannot distinguish the model described by & from one
described by k). In particular, the critical curves and the curves with x =1
are unaffected by the transformation (28). However, the Fermat potential
transforms as

n(0:8) = 50— B = vn(0) = \(0:5/N) + const., (33)

where the const. only depends on 8. As noted before, the Fermat potential
is, up to an affine transformation, the light travel time from the source to
the observer when passing through the lens plane at 8. Therefore, since the
difference in the Fermat potential calculated at two image positions is pro-
portional to the differences in light travel time, the mass-sheet degeneracy
changes this observable time delay. If we know the value of Hy from other
cosmological observations, we can break the degeneracy and determine the
absolute surface mass density of a lens. The implications of the mass sheet
degeneracy for lens determinations of the Hubble constant will be described
in SL. Furthermore, since the transformation (28) leaves the image shapes
of extended sources unchanged, the weak lensing techniques to be described
in WL are unable to break the mass sheet degeneracy, unless magnification
information can be used — see (32). In addition, the mass-sheet degeneracy
can be broken if sources with different distances Ds are lensed, since for a
given physical mass density X, the resulting convergence k will be different



Introduction to Gravitational Lensing and Cosmology 31

for different source distances, owing to the dependence of X, on the source
redshift.

Up to now we have not constrained the value of A in (28); however, not
all values are physically meaningful. For example, for some values of A the
resulting mass distribution k) may attain negative values. Depending on k,
the non-negativity of the surface mass density will restrict the possible value
of \.

3 Simple lens models

For a general mass distribution, the deflection angle has to be obtained
through numerical integration; however, for some relatively simple mass dis-
tributions, analytical expressions can be obtained. We shall introduce here a
few simple mass models for lenses which turn out to be useful for understand-
ing many of the lensing phenomena. The simplest lens models are obtained
if the mass distribution is assumed to be spherically symmetric or, of rele-
vance for lensing, if the projected mass distribution is axially symmetric, as
then the lens equation reduces essentially to a one-dimensional equation. We
shall consider the general properties of such lenses before specializing to two
highly relevant cases, the point-mass lens, or more generally, the light deflec-
tion exterior to a spherically-symmetric mass distribution, and the isothermal
sphere lens. The former one is of utmost relevance for Galactic microlensing,
as will be demonstrated in ML, whereas the latter is often used as a sim-
ple prescription for the (dark) matter distribution of galaxies and clusters.
Clusters and galaxies are not expected to have axisymmetric gravitational
potentials; we shall consider the next simple lens models — those which have
two axes of symmetry, like elliptical mass distributions — and their generic
behavior next.

3.1 Axially symmetric lenses

An axisymmetric matter distribution is characterized by X'(&) = X'(|€]), if the
origin is chosen at the center of symmetry, implying x(0) = £(|0|). The scaled
deflection angle a(@) is then collinear to @, as follows from the symmetry of
the situation; indeed, from (9) one obtains that

0 ‘ol ! ! !
a(8) = szo de’' 0" k(') or
ooy & AG S e — AGM(E])
&) = 15 g o | ag € 5@ =T (34)

where M (&) is the projected mass enclosed by the circle of radius £ = |£].
The deflection due to a geometrically-thin axisymmetric mass distribution
at a point £ is thus the point-mass deflection angle (2) for the mass M (|£])
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enclosed by the circle with radius |£]. This fact is analogous to Birkhoff’s
theorem in three-dimensional gravity which states that the gravitational force
caused by a spherically-symmetric mass shell vanishes inside of it; here, the
axisymmetric mass in rings causes no deflection at points within them.

Since a is collinear with 0, so is 3, as seen from (8). Hence, if the source
position is described by 8 = Be, where e is a unit vector, then 6 = fe as
well, and the lens equation becomes one-dimensional,

B=0-a), (35)

where the deflection angle has the properties
—— =kK(0)8, (36)

where m(#) is the dimensionless mass inside a circle of angular radius € and
k(0) is the mean surface mass density inside of 6,

[
m(®) =2 /0 AW 0RO, RO = ”;(f) . (37)

For calculating the Jacobian matrix, it is useful to write the lens equation in
the form

B=[-r(6])]6; (38)
then, according to (17) one finds from differentiation that
& (07 6.6
=[1—&(IODIZ — = ( 5 b 22
A) = 1= r(o1 7 - 5 (1 i) (39)

where 7 is the two-dimensional identity matrix, and &' (§) = d&/df = 2[x(6)—
%(6)] /6. Comparing (39) with the final form of (17), one sees that indeed
trA = 2(1 — k), and the shear is

¥(8) = [k(6) — &(6)]e* (40)

where we set @ = 6(cos p, sin ¢); hence, the phase of the shear is the same
as the polar angle of 0, as expected from symmetry. The determinant of the
Jacobian can be calculated either from (21) as

det A=(1—6)? =W’ =(1-k)?’—(r—r)>=0—k)(1+&—2k), (41)
or, using the original definition (17) of A as

Bds _
0 do
which can be seen, by inserting the derivative of &, to yield the same expres-
sion.

det A= (1-k)(1—&—6&) , (42)
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The fact that det A factorizes allows a very simple characterization of
the critical curves of these axisymmetric lenses: Critical curves, which of
course are circles in this case, occur either when 1 — () = 0, or when
1+ &(0) — 2k(f) = 0. The former ones are called tangential critical curves,
the latter ones radial critical curves. The reason for naming them this way
is found by considering the distortion of images close to these critical curves.
Consider an image position on the 6;-axis; according to (39), the Jacobian
matrix is diagonal there, A = diag(1+%—2xk,1—&). Near a tangential critical
curve, the second eigenvalue becomes very small. If the image was a circle, the
corresponding source in the source plane would be a highly flattened ellipse,
with the minor axis in the f3-direction being much smaller than the major
axis. This implies that if the source is a circle, then the corresponding image
near the tangential critical curve will be a highly elongated ellipse, with the
highly stretched axis in the 6 direction, that is, tangent to the direction
towards the center of the lens. Analogous reasoning shows that the image
of a circular source near a radial critical curve will be strongly stretched in
the radial direction. Recalling the shape and orientation of giant luminous
arcs, this consideration suggests that arcs are images of (probably relatively
round) sources occurring close to the tangential critical curves of the cluster
lenses.

Tangential critical curves are thus characterized by the condition & = 1.
The simplicity of this relation implies that from the location of the tangential
critical curve, one can immediately determine the mass inside of it, using (37),
namely 71'9]%: Dg Yer, where g is the angular radius of the critical curve. The
relation between @ and the mass enclosed within fg is

b — (1GM Das Y2 oo (M(<82) ' ( Das1Gpe 2 (13)
& DyD, P\ 1020, DqDs ’

where we used the definition (10) of the critical surface mass density. Thus,
if giant arcs indeed trace the location of the tangential critical curve, their
observation can be used to obtain a (at least approximate) mass estimate
for the corresponding cluster mass inside of it (we shall come back to this
issue in much mode detail in Sect.4 of WL). The caustic corresponding to
a tangential critical curve is a very special one: according to (38), the whole
circle 8 = 6y is mapped onto the origin 8 = 0 in the source plane: the
caustic degenerates into a point. This degeneracy occurs solely due to the
highly symmetric situation of the lens model; as we shall see later, any slight
perturbation of the mass distribution will ‘unfold’ this caustic point into a
curve of finite extent. This symmetric situation then leads to the following
result: if a source is placed onto the caustic point, it will be imaged by the
lens into a ring with radius g, plus an additional image at the center of the
lens with @ = 0. Such rings were predicted by Chwolson (1924), but already
in 1911, Einstein has discussed their possible occurrence in his notebook,
as shown in Renn et al. (1997). Whereas real lenses are not expected to be
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perfectly axisymmetric, and therefore one would also not expect to find such
Einstein rings, they have indeed been detected, as shown in Fig. 7; as will be
explained in Sect. 10 of SL, the occurrence of rings depends on a combination
of the mass asymmetry in a lens and the extent of the source. If the source
in an axisymmetric lens is moved away from the caustic point, the ring will
break up into two images, located near the Einstein radius, on opposite side
of the lens center; their image separation will be Af =~ 260g.

Radial critical curves are circles where 1 + &(0) — 2k(0) = 0, or, equiv-
alently, da/d# = 1. Their corresponding caustics are circles in the source
plane. In clusters of galaxies, these radial critical curves give rise to radial
arcs seen close to the cluster center, whereas they are not seen in galaxy
lenses.

General properties of axisymmetric lenses. One can derive several
general properties of axisymmetric lenses; again we shall assume that a(6) —
0 as |f| — oo, that the deflection angle is bounded, |a| < @max, and that «(6)
is a differentiable function. Then one can show that a source with sufficiently
large § has only a single image at # ~ [ (the validity of this property is
intuitively clear, but can be proven rigorously; see SEF).

Further, a lens can produce multiple images if, and only if, there exists
at least one value of # where d3/df = 1+ E(f) — 2k(f) < 0. The necessity is
obvious, since if d3/df > 0 throughout, 3(#) is a monotonic function, which
can be globally inverted, and no multiple solutions can occur. Sufficiency
is seen as follows: if d3/df < 0 at one point, then there must exist a pair
of points such that d3/df = 0 (note that these points lie on radial critical
curves), since asymptotically for large |6|, d3/df — 1. Hence, 3(#) then has
a local maximum (say at #) and a local minimum (at 62 > 6;), and between
these two values the function 3(f) decreases. A source located at By with
B(02) < By < B(01) then has at least three images, one with 6 < 6y, one with
6 > 65, and one with 6, < 6 < 5. The points 3(f;) and 3(62) lie on radial
caustics (see Sect. 3 of SL for graphical illustrations of this point).

The conditions for the possible occurrence of multiple images can also be
phrased in terms of the surface mass density: A necessary condition for the
occurrence of multiple images is that £ > 1/2 at least at one point. This
can be seen by noting that dg/df < 0 implies k > (1 4+ &)/2 > 1/2. A
sufficient condition for the possible occurrence of multiple images is £ > 1
at least at one point; this property has been shown already for a general
mass distribution, and in this special situation can be seen as follows: if the
maximum of £ occurs at O, then k(fy) > 1 and k(0n) > R(fm), which
implies d3/df < 0 at 6y, which according to the property shown before is a
sufficient condition for possible multiple images.

The most useful statement on multiple imaging applies to centrally con-
densed lenses; those are mass distributions where k(6) does not increase with
6, or k'(#) < 0 for & > 0. These mass profiles are the only relevant ones in
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astrophysics. Centrally condensed lenses are capable of producing multiple
images if, and only if, k(0) > 1. Sufficiency was shown already. Necessity
follows from this: if x(0) < 1, then & < 1 for all 6; then, one finds that
dg/dd = (1 — k) — Ok’ > 0, since & is also a non-increasing function of 6.
Another way to phrase the multiple image condition for centrally condensed
lenses is da/df > 1 at the origin.

3.2 The point-mass lens

Consider a point mass M or, equivalently, the outside region of a spherical
mass distribution of total mass M let the mass be located at the origin of
the lens plane. Then the surface mass density is X'(§) = Mop(€), and from
(5) one finds for the deflection angle

. 4AGM ¢
a(&) - c2 @ )
hence the amplitude of the deflection angle agrees with (2), and its direction

is the same as that of £, as expected from symmetry. Specializing (8) to the
current lens model yields

(44)

4GMDgys 0 5 0

B=0- 2., o =% PEiop (45)
where in the second step we have used the definition (43) of the Einstein angle
which depends on the lens mass M and the distances to lens and source. If we
choose without loss of generality the source position 8 to be on the positive
B1-axis, then @ will also be on the ; axis, and the lens equation becomes one-
dimensional. Scaling the angles in terms of the Einstein angle as y := 3/0g,
x :=60/6g, (45) becomes y = x — 1/z, with the two solutions

mi:%(y:l:\/gﬂ—l-él) , (46)

i.e.,, one image on each side of the lens. Note that z; > |z_|, hence the
image on the same side of the lens as the source is further away from the lens
than the other image. In the language of the previous section, m(f) = 63,
k(0) = (Ae/0)® = 272, so that we find from (41) the image magnification to

be )
1 1 1\
= =——=|1-— . 4
= det A~ 1-r2 < 374) (47)
As seen from (46), x4y > 1, and so u(x4) = py > 1. On the other hand, the

magnification of the second image can be rather small if z_ becomes small.
The magnification of the two images and the total magnification of the source

is
N
Yy VYT

y2+4 y

y2 +2

s Mp = py At po| = ——
yVy? +4

(48)
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hence, unless y S 1, the secondary image will be strongly demagnified. The

image separation
Af =20p+\/1 +y2/4 2 20 (49)

is therefore only slightly larger than 26y in relevant cases, since for values of
y 2 1 the secondary image will be demagnified below the detection threshold.
The sum of the two magnifications is p, ~ 1.34 for y = 1.

The magnification formally diverges for = 1, or # = 0, which justifies
using the same name as for the tangential critical curve in Sect. 3.1. But what
about the odd-number theorem (see Sect. ??)? Remember, for its validity the
smoothness of the mass distribution was assumed, but a point-mass lens is
not smooth; in particular, the deflection potential ¢ has a logarithmic spike
at the origin. In fact, one can easily picture where the third image has been
‘lost’: Assume one would smear out the mass M over a small but finite region
(say in the shape of a Gaussian), the central surface mass density xo would be
very high but finite; in that case, there would be a maximum of the Fermat
potential close to the center (the exact position depending on the location
of the source), hence the third image would appear there. Its magnification
ps = (kg — 1)72 < 1 would then be very small.

3.3 The singular isothermal sphere

A simple lens model which applies, at least to first order, to the lensing
properties of galaxies and clusters is the so-called singular isothermal sphere
(SIS). This spherical mass distribution yields flat rotation curves, such as are
observed for spiral galaxies. Their density distribution is described by

2

T 2Gr? (50)

p(r)

Physically this model corresponds to a distribution of self-gravitating par-
ticles where the velocity distribution at all radii is a Maxwellian with one-
dimensional velocity dispersion o, (hence, the term ‘isothermal’). The three-
dimensional velocity dispersion is v/30,, and the Keplerian rotation velocity
(i.e. the velocity of particles on a circular orbit) is v. = v/20,.

The mass distribution (50) has two pathological properties: the central
density diverges as p o< r~2 (hence the name ‘singular’), and the total mass
of this distribution diverges as r — oo. The former feature can be cured by
introducing a finite core radius, whereas the distribution for large r does not
affect the lensing properties at smaller radii. In SL and WL we shall discuss
the constraints lensing provides on the core radius of galaxy and cluster
lenses.

The SIS lens model. For the reasons just mentioned, the singular isother-
mal sphere is often used as a mass model for gravitational lenses; its surface
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mass density X'(§) follows from projection of (50) along the line-of-sight,
00 5 0.2 "
_ 2 — Jv -
50 = [ anp(\Ern)-gre. 651)

As will be shown immediately, the Einstein radius of this lens model is

Or = 4n (‘%)2 %d: , (52)

in terms of which one obtains

n@zﬁrﬁwzﬁ;M@zﬁraﬁz%%; (53)

note that the magnitude of a is constant. Here we use the same notation
as introduced before (34). The fact that %(fg) = 1 shows that fg is the
tangential critical curve of the SIS. The lens equation then reads

0 x

B=20 0E|0|, or y= =R (54)

where the second form employs the scaled angles z = /6, y = /0. As

before, we set y > 0; then, for y < 1, there are two images, at z, = y+1 and

x— =y — 1, i.e., on opposite sides of the lens center, with image separation

Af = 20g. For y > 1, only one image occurs, at x4 = y + 1. 4 corresponds

to a minimum of the Fermat potential, whereas z_ to a saddle point, so that

the subscripts denote the parity of the two images. The magnification can be
calculated from (41), noting that & = 2k, so that

S S S
F=detd " 17 Jo|-1°

(55)

hence, since z; > 1, py > 1, whereas the secondary image, with |z_| < 1,
can be strongly demagnified as z_ — 0, or y — 1. From (40) we find that
|v(z)| = k(z) = 1/(2z); thus, images are stretched in the tangential direction
by a factor |u|, whereas the distortion factor in the radial direction is unity.
The total magnification of a point source is pp, = 2/y for y < 1, and (1+y)/y
fory > 1.

Again, what about the odd-number theorem? As was true for the point-
mass lens, the mass distribution of the SIS is not smooth, so the theorem does
not apply. Another ‘strange’ property of the SIS is that the number of images
changes by +1 when the source position crosses the circle y = 1 — this is in
apparent conflict to what we said in Sect. 2.4. Both of these effects are due
to the singular mass distribution as § — 0, which causes || to be constant.
If we smoothed out the central mass singularity, by introducing a small but
finite core, then the deflection angle would be constant, except very close to
the center where it would make a smooth transition from —6@g for § < 0 to
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+0g for 6 > 0. In this transition region, there will be two points (at 8 = +6,)
where da/df = 1, corresponding to a radial critical curve. The corresponding
caustic circle will have radius 8, < 0g. A source with |8| < 8, will have three
images, one at ¢ & y+ 1, one with  ~ y — 1 and one in the inner core region,
whereas a source with |8| > f; has just one. The lens equation maps the
small circle with radius 6, onto the circle 8, ~ #g. When we now let the core
radius go to zero, 5, — fg, the magnification of the central image us — 0,
and the central region of the lens that is mapped onto 3, &~ fg decreases to
zero area. Hence, this limit process suggests that one can consider the third
image to be present, located at 8 = 0, and having zero magnification.

3.4 Non-symmetric lenses

To describe the mass profile of real lenses, more complicated (and realistic)
radial mass profiles can be used; even though the lens equation may no longer
be analytically solvable, the fact that it is one-dimensional renders numer-
ical investigations simple. The qualitative features of (centrally-condensed)
axisymmetric lenses do not depend strongly on the details of the radial pro-
file and can basically be read-off from the corresponding Young diagram (see
Sect. 3 of SL).

Breaking the symmetry leads to qualitatively new properties of the lens.
Most obvious of them, the central caustic point gets unfolded into a curve
of finite size; a source situated inside this curve can then have five images.
The fact that many of the observed lens systems have four images (i.e. five
minus the one being invisible probably due to very strong demagnification at
the center) shows that the axisymmetric models are definitely not sufficient
to explain them.

The next more complicated gravitational potential is then one with two
lines of symmetry, such as an ellipse has. Hence, one would be tempted to con-
sider mass distributions where  is constant on (confocal) ellipses. In fact,
Bourassa et al. (1973), Bourassa & Kantowski (1975), and later Schramm
(1990) have considered the lensing properties of such elliptical lenses — they
turn out to be fairly complicated analytically in general; nevertheless, for
some of the most relevant radial density profiles, explicit expressions for
the deflection angle can be derived (e.g., Kormann et al. 1994; Keeton &
Kochanek 1998; see SL), and such elliptical mass models are generally used
for fitting observed lens systems. Here we consider a simpler class of lens mod-
els with similar symmetry, namely axisymmetric matter distributions with an
external perturbation, henceforth called ‘quadrupole lenses’.

Quadrupole lenses. Even if the mass distribution of a lens is axisymmetric
(like that of a star), the corresponding gravitational potential is not expected
to share this symmetry, because lenses are typically not isolated: a galaxy is
often situated inside or near a group of galaxies, and the other member galax-
ies, and the dark-matter halo of the group, will perturb the symmetry of the
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potential. In many cases of astrophysical interest, like the one just mentioned,
the perturbing gravitational field changes very little over the relevant length
scale of the main lens. As an example, consider a lens galaxy in a cluster of
galaxies. The relevant length scale of the galaxy is about the region where
the multiple images occur, i.e. a region with radius of the Einstein radius, or
typically 1. In contrast, the relevant length scale of the cluster perturbation
is either the separation of the galaxy from the cluster center, or the Einstein
radius of the cluster, whatever is larger, and thus typically much larger than
1”. It is thus natural to expand the deflection potential of the perturber about
the center of the main deflector; the lowest-order, non-trivial term in the ex-
pansion is the quadratic term (tidal field). The analogous situation occurs
for a star in a distant galaxy, where the symmetry of the point-mass lens is
broken by the tidal field of its host galaxy; this is the situation considered by
Chang & Refsdal (1984; see ML).

Here we study the lens action of an axisymmetric matter distribution
which is perturbed by a larger-scale gravitational field, and we assume that
the latter is locally (that is, over the region where we want to study the
lensing properties of the main deflector) well described by its second-order
Taylor approximation. Choosing the origin to be the center of the main lens,
and the orientation of the coordinate system such that the Hessian of the
deflection potential of the perturber (or tidal matrix) is diagonal at the origin,
then the deflection caused by the perturber can be written as

al0) = a0+ (57 0 Yo, (56)

where the surface mass density and shear of the perturber are labeled with
subscript ‘p’. Note that the strength of the perturbation is not assumed to
be small. The lens equation then reads

p=li-stopio- ("3, 0 Yo, 67)

Kp = 7p

where we have translated the origin in the source plane by the vector ap(0).
The perturber thus adds a uniform sheet of matter plus an external shear.
The uniform sheet can be transformed away, recalling our discussion of the
mass-sheet degeneracy in Sect. 2.5; indeed, (57) can be rewritten as

o ,8 _ ]._g 0 A
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where g, = v,/(1 — kp) is the reduced shear of the perturber, 3 the rescaled
source coordinate, and k(|0|) = &(|0])/(1 — kp) the rescaled surface mass
density. We shall in the following discard the hats on the variables in (58).
Although an axisymmetric lens with an external shear is too simple to
represent real lenses, the resulting lens equation is sufficiently simple to allow
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some analytical progress; for didactical purposes, we shall discuss this lens
model in somewhat more detail. The lens equation now is two-dimensional,
and therefore more complicated to invert (i.e., to find all image positions for
a given source position) than in the axisymmetric case. However, the lens
equation can be recast into a one-dimensional equation, by introducing polar
coordinates 8 = (cos ¢, sin ¢) in the lens plane; then, (58) can be written as

b1 B2

cosp=———-+—+-—— , sihp=——"-—"FT—-——, 99
91— #(9) — g5 IO RS R
and by adding the squares of these two equations,

2 2 9] . 2 _ 2

071 (1-F)" —gy| —Bi(l—F+gy) B (1-F—gp) =0,  (60)

the polar angle ¢ has been eliminated: (60) is an equation for # only and can
be solved numerically. For each solution 6, the polar angle can be calculated
from (59). Not all solutions will have |cosp| < 1 and |sing| < 1; those
solutions # have been generated by a number of algebraic manipulations
needed to arrive at (60) and thus shall be discarded then. We just saw a nice
example of reducing the effective dimension of a problem to make it more
tractable.

The Jacobian for the quadrupole lens can be obtained from its definition
(17), and its determinant reads

detA:(l—E)Q—gg—GE' (1—-RK+gpcos2yp) , (61)

so that the critical curves can be easily calculated: for each value of 6, the
condition det 4 = 0 yields a value for cos2y; if this lies between +1, one
has found a pair (0,¢) of coordinates on the critical curve; in fact, one
has obtained four different critical points, one in each quadrant of the lens
plane, due to the symmetry of our lens model with respect to both reflections
(01,02) — £(+6,,165). Hence, the structure of critical curves and caustics
for quadrupole lenses can be easily investigated, at least numerically.

The non-singular isothermal sphere with external shear. We now
consider a specific example of a quadrupole lens which has frequently been
used in lens modeling: the perturbed non-singular isothermal sphere, for
which

0. 62 62\ *? e

so that x(0) = 6/6. is finite. The complex form of k(#) is chosen so that the
deflection profile is simple. We note that for 6 > 6., the mass distribution
approaches that of an SIS with Einstein angle 6,, but for a finite 6., 6, is not
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the location of the critical curve, but in general, fr = (62 — 6?) Y2 gor e < e
otherwise, the lens is not critical. For this lens model, the one-dimensional
form (60) of the lens equation can be even further simplified, by noting that
(62) implies 6% = 62 /&> — 02. Inserting this expression into (60), one obtains
after multiplying by &2 an equation which is a sixth-order polynomial in &.
Given that standard methods are known (e.g., Press et al. 1992) to find all
solutions of polynomials, this latter form is much more useful; the roots of this
polynomial are potential solution if they are real, and have 0 < & < 6,/6c;
those solutions can then be inserted into the original lens equation to check
whether they are actual solutions.

The critical curves are found from (61), where now the relation 6&' =
—62?k3 /62 can be used to replace &' there. The equation det A = 0 can then
be written in the form cos2¢ = f(&), where f is a function of & only. Thus
for all radial coordinates 6 > 0, or equivalently, for all 0 < & < 6,/6. one
can determine f(g); a value with |f(g)| < 1 yields four critical points at the
radius corresponding to this mean surface mass density.

The critical curves of this special lens (“NIS plus external shear”) can
be studied analytically; because of its importance for understanding lens
geometry, we shall provide a detailed description of the essential features
in the following and illustrate the results in Fig. 13. First to note is that if
the core radius is too large, or the central surface mass density too low, there
is no critical curve. One finds that det A(0) = (1—6./6.)*> — g3 at the center,
and can show that for z. = 6./6. > (1 — g,) ! no critical curves exist. In
other words, for kg = 1/z. < 1 — g, the lens is not critical. Compare this
condition with the one for an unperturbed lens (g, = 0); there, in order for
the lens to become critical, kg must be larger than unity. If the core radius
satisfies (14 gp)™"' < zc < (1 — gp)~", there is a single closed critical curve
(see upper left panel in Fig. 13), and the corresponding caustic has two cusps.
Owing to the shape of the caustic curve, one often calls it a lips caustic. A
source located inside the caustic has three images, whereas one outside has
a single image.

At z. = (1 + gp)~', the Jacobian vanishes again at the origin, and for
smaller values of the core radius, z. < (1 + g,)~"', there are two critical
curves and caustics, as seen in the upper right panel of Fig. 13. A second lips
caustic is located inside the first one, oriented perpendicular to it. Sources
inside both caustics now have five images, and those inside the outer one
but outside the inner one have three. When the core radius is further de-
creased, the two critical curves approach each other at two points, and cor-
respondingly, the cusps of the inner lips caustic approach the outer caustic.
At 2. = (1 — gp)"/%(1 + g,) /2, the critical curves and cusps merge, and
for smaller values of z., there are again two separate critical curves and two
caustics, but now, as shown in the lower left panel of Fig. 13, one of the caus-
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Fig. 13. Critical curves (dashed) and caustics (solid curves) for a non-singular
isothermal sphere model with external shear. Angles in the source and lens plane
have been scaled by fe, i.e., @ = ox, 3 = f.y. In all panels, the reduced shear is
gp = 0.2. The four possible configurations are shown: for z. > (1 —g,) ™", no critical
curve exists; panel (a) shows a case with (1+g,) "' < 2. < (1 —gp)™*, for which a
single critical curve exists, created from the previous case through a lips catastrophe.
In panel (b), the case (1 —gp)"?(14gp)™%/? < . < (14gp)~" is shown, for which
two critical curves exist, the second one created from the previous case by another
lips catastrophe. The two corresponding caustics have two cusps each. In panel (c),
ze < (1 —gp)"?(1 + gp)~%/?; there, one caustic with four cusps, and one caustic
without cusps occur. This case is obtained from the previous one through two
hyperbolic umbilics where the two cusps of the inner caustic in (b) were transferred
to the outer caustic; correspondingly, at that point the two critical curves intersect
on the z1-axis in this transition. Finally, panel (d) shows the same case as panel (c),
except that now the two ‘naked cusps’ — the cusps outside the other caustic — are
inside the other caustic. In addition, in all panels we have positioned three sources,
indicated by the filled triangle, the filled square and the filled hexagon, together
with their corresponding images, shown with the corresponding open symbols
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tics has four cusps, the other has none.” Two of these cusps lie inside the
other caustic, the other two fall outside of it; these are called ‘naked cusps’.®
The caustic with the cusps, also called the astroid or tangential caustic, cor-
responds to the outer critical curve, the one without cusp to the inner or
radial critical curve. Decreasing z. further, the inner critical curve decreases
in size, whereas the corresponding caustic increases and finally completely
encompasses the astroid caustic (Fig. 13, lower right panel).

In the figure, we have also illustrated the image locations (open symbols)
for several source positions (filled symbols). As will be discussed in SL, many
of these image configurations have actually been observed. For galaxy lensing,
configurations of the type shown in the lower right panel are most relevant
since galaxies seem to have a small core radius. In that case, one of the images
is located very close to the center of the lens where « is much larger than
unity, and therefore the magnification is very small — which is the canonical
explanation for the absence of an observed odd image. Furthermore we see
that in this case, the characteristic maximum image separation is Af ~
26, as expected. A source close to and inside a cusp produces three (highly
magnified) images lying close together near the corresponding critical curve;
in the case of a naked cusp, these are the only images of the source, whereas
if the cusp lies inside the other caustic, two additional images are formed
(one of which may be highly demagnified).

If the core radius is decreased to zero, the inner critical curve shrinks
to zero size, the corresponding caustic becomes a circle with radius 6., and
the number of images changes by +£1 when a source crosses this curve — the
behavior is identical to the one already encountered in the discussion of the
SIS model. The other critical curve attains a simple parametric form,

1-(1-g%)x 1— 2
cos(2p) = L UTBIT L mmeo) gy
9p 1-9;

describing a single closed curve around the origin, which is in fact an ellipse.

By inserting this parameterized form into the lens equation and eliminating

7 We have discussed folds and cusps before; one can show from singularity theory
that these are the only two ‘generic’ singularities that occur in a lens mapping.
However, if one considers a family of lens models, such as done here by varying
Z¢, higher-order singularities can occur. At the corresponding values of the lens
model parameter — here z. — the topology of critical curves can change. Examples
are the creation of lips singularities, or the ‘exchange of cusps’ just mentioned,
which technically speaking corresponds to a hyperbolic umbilic. Chap. 6 of SEF
provides a general description of singularities and their metamorphoses in lens
mappings.

Lensing geometries where a source is located inside a naked cusp, producing
three bright images, are probably seen in clusters, indicating a relatively large
core radius for them.
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the parameter ¢ results in the equation describing the astroid caustic,
1/3

1/3 )
1+g,\° 1—
[211% ( g") 232 ( g") ] —2, (64)
9p 9p

+
from which the locations of the cusps can be read off. In particular, (64)
shows that the size of the astroid caustic increases with increasing g, and, to
first order, its linear size is o gp.

In the limit g, — 0, the two critical curves become circles, with the outer
(inner) one being the tangential (radial) critical curves. Because of that, one
often uses the same names for the critical curves also in the perturbed case
gp # 0. The radial caustic then separates the three-image region from the
single-image region in the source plane, and the tangential caustic degenerates
into a single point. The fact that this point unfolds in the presence of a
perturbation is nicely illustrated by (64).

General discussion of ‘elliptical’ lenses. Mass distributions with ellip-
tical isodensity contours are needed to realistically model gravitational lens
systems. Although such models are considerably more difficult to handle an-
alytically, their qualitative properties are similar to the NIS with external
shear that was discussed above. In particular, the evolution of the critical
curves and the caustics as a function of ‘lens strength’ or ‘core size’ for these
models is the same as that shown in Fig. 13; the same is true for the prop-
erties regarding multiple imaging. Of course that does not mean that the
choice of the lens model is arbitrary: for systems with sufficiently detailed
observational constraints, a quantitative modeling technique can distinguish
between the various classes of models; as we shall see in SL, the NIS with
external shear is often too simple; many lens systems require an elliptical
mass distribution plus some external shear in addition.

4 The cosmological standard model I: The
homogeneous Universe

We assume that the reader is familiar with the basic concepts of standard cos-
mology, such as the hot Big Bang occurring some 13.7 billion years ago, after
which the Universes expanded and cooled down. During this expansion, the
simplest atomic nuclei, predominantly helium, were formed about a minute
after the Big Bang, and some 370 000 years later, the Universe became neu-
tral and released a thermal radiation that is still visible today, the Cosmic
Microwave Background radiation with a temperature of 2.73 K. In addition,
it is assumed that you are aware of the existence of dark matter, material
that reveals itself only through gravity, like in governing the rotation curves
of the Milky Way and other spiral galaxies or in providing the deep potential
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wells of clusters of galaxies which can keep very hot X-ray emitting plasma
and fastly moving galaxies gravitationally bound. Therefore, we shall only
briefly summarize those relations which will be used later in this course. Ex-
cellent textbooks on cosmology are available, among them are Kolb & Turner
(1990), Peacock (1999), Padmanabhan (1993), Peebles (1993) and Liddle &
Lyth (2000).

4.1 The cosmic expansion

Metric and coordinates. Observational evidence suggests that the Uni-
verse around us, when averaged over large angles, is isotropic (the Cosmic
Microwave Background, or CMB; the faint galaxy distribution, etc.). Further-
more, if we assume that our location in the Universe is not special, the same
property also holds for other observers: also for them the Universe should
appear isotropic when averaged over large scales. Together, this implies that
the Universe is spatially homogeneous and isotropic around every point. Is
has been shown by Robertson and Walker that for such a spacetime, the
metric can be written in the form

ds® = ¢® dt* — a®(t) [dw® + fi(w) (d§? +sin® 0 dy?)] , (65)

where ¢ is the cosmic time [which agrees with the time measured by comoving
observers, i.e. those with constant (w,6, )], a(t) the cosmic scale factor,
normalized that today, a(to) = 1, w the comoving radial coordinate, # and
@ are the angular coordinates on a unit sphere, and fx(w) the comoving
angular diameter distance, which depends on the curvature parameter K in
the following way:

ficlw) = |1 siom (1K)

K~12sin(K'/?w) (K >0)
w (K=0) . (66)
(—=K)~'/?sinh[(—K)'/?w] (K < 0)

Hence, (w,#,p) are spherical coordinates in a three-dimensional space of
constant curvature K. Radiation from a comoving source emitted at time ¢
and received by a comoving observer at time t; > t5 is redshifted by a factor
1+ Z12 = a(tl)/a(t2).

Expansion equation. Inserting the metric (65) into Einstein’s field equa-
tion of General Relativity shows that the matter contents must be that of a
(homogeneous) perfect fluid with density p(t) and pressure p(t). The compo-
nents of the field equation reduce to two independent dynamical equations
for the scale factor a(t),

LN\ 2
a &G K2 A
() =55 +3 6
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and 4 3 A
- 2P =
o= 37TG<,0+C2)+3. (68)

Equation (67) is called Friedmann’s equation (Friedmann 1922). The two
equations (67) and (68) can be combined to yield the adiabatic equation

(7,3
L mowe) + o050 =0, (69)

which has the following intuitive interpretation: the first term a3p is propor-
tional to the energy contained in a fixed comoving volume, and hence the
equation states that the change in ‘internal’ energy equals the pressure times
the change in proper volume. Hence, (69) expresses the first law of thermo-
dynamics in the cosmological context. The parameter A in (67) and (68) is
the cosmological constant; Einstein introduced it into his field equation (in
1916) because without it, no static model of the Universe would be predicted
by General Relativity — the Hubble expansion of the Universe was discovered
only a decade later, after which Einstein dismissed this term. In recent years,
the cosmological constant has regained great popularity — because, as will be
discussed later, there is strong evidence in favor of A # 0. On the other hand,
the interpretation of A has also changed, as we shall see.

World models for which the metric is given by (65) and where the scale
factor a(t) obeys Friedmann’s equation (67) and the adiabatic equation (69)
are called Friedmann-Lemaitre models. It should be noted that eq. (68) can
also be derived from Newtonian gravity except for the pressure term and the
cosmological constant. Unlike in Newtonian theory, pressure acts as a source
of gravity in General Relativity.

Matter models. By themselves, these equations do not specify the expan-
sion history a(t); for this we have to add an equation of state (EOS). In
general, matter components cannot be described by a simple equation of the
form p = p(p); however, for some limiting cases an equation of this form does
exist. Fortunately, the matter contents in our Universe seems to be such that
over most of its history it can be described by a few components, each of
which having such a simple EOS.

If the constituents of matter have random (thermal) velocities much smaller
than ¢, p < pc?, then the pressure of this component can be neglected in the
expansion equation; this kind of matter is approximated by p = 0 and called
‘dust’ (or simply ‘matter’). For p = 0, (69) yields that

Pm X a3 , (70)

a result that is intuitively clear: as the physical (or proper) volume of a fixed
comoving volume behaves like V o a?, and the number of matter particles
is conserved, their number density, and thus mass density must decrease as
poxVloca 3,
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In the other limiting case, where the constituents of matter have a random
velocity close to ¢ (or even ¢, as must be the case for massless particles, like
photons), one has p = pc?/3. For obvious reasons, matter with this EOS
is called ‘radiation’. From (69) one then finds that the energy density of
radiation evolves as

proca?, (71)

a result that can also be easily understood. Whereas the number density

of photons (assuming that they constitute the ‘radiation’) decreases as a=3,

again due to number conservation, their individual energy decreases as a™',
owing to the redshift of their energy (or adiabatic decompression).

Finally, there may be a mass component which can be interpreted as
the energy density of the vacuum, assumed to be a constant in time. If the
density is independent of a, then (69) predicts that p, = —pyc? for this
matter component.

The matter density and pressure of the Universe is then given by the sum
of these three components,

2 2

p=pmtpetp = %"'%"‘pv , p= %—pﬁ = pg?;

where the additional index ‘0’ indicates that these are the values at present

time. Inserting these expressions into (67) and (68) (setting A = 0 in these

equations) shows that a term of the same form as the A-term appears; the

cosmological constant can therefore be interpreted as a vacuum energy den-
sity.

- pvc2 ’ (72)

Cosmological parameters. The ratio
H(t)=aa™" (73)

is the expansion rate of the Universe, and its current value Hy is called Hubble
constant. This is the ratio of recession velocity to the distance of objects in
the nearby Universe, and has the value

Hy~32x10 ®hs 'x1.0x10 Phyr (74)

where h parameterizes our lack of knowledge on the exact value of Hp; the

currently best estimates yield h ~ 0.72 (see Sect.6.3). If A = 0 and the

spatial curvature vanishes, K = 0, then the current density of the Universe is

directly related to Hy, as seen from (67); this density is called eritical density,

3Hg —29 72 -3

=—=x19%x 107" h*gc . 75

Per 3Gy gem (75)

This characteristic density is used to scale the matter densities by defining
the density parameters

Qm::m; Qr::@; (2/1::&:—. (76)
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The radiation density in the Universe is fairly well known: it is dominated by
the energy density of the cosmic microwave background (CMB) which has
a Planck spectrum with temperature of Tcyvp ~ 2.73 K and whose energy
density can be calculated from the Stefan—Boltzmann law to be

2 4
cl2 717—5 % ~45x107 % gem™ - Qovp =24x107°h72 .

(77)
In addition, from the era just before the primordial nucleosynthesis took
place, there is a relic background of neutrinos, at a temperature corresponding
to T, = (4/11)"/*Tomp ~ 1.95 K; their number density today is 113 cm™ per
species. If neutrinos were massless, they would contribute to the radiation
density, and with three neutrino families one would have {2, ~ 1.682c\g. If
neutrinos have a small, but finite rest mass above ~ 10~*eV they would be
non-relativistic today, and contribute to the matter density instead. However,
at earlier epochs the neutrinos were relativistic and therefore contributed
to the radiation energy density. In any case, for the present epoch we can
completely neglect the influence of the radiation on the expansion rate. This,
of course, was not always the case; since the radiation density drops as a4,
whereas the matter density only as a =2, there was an epoch (or a scale factor)
when both were equal, namely at

PCMB =

Geq = L 32x107°0 ' h?, (78)
m
and we used {2, ~ 1.68(2cvp here, since at aeq, the neutrinos were relativistic.
For scale factors a < aeq, radiation was the dominant component in the
Universe.

Making use of (72) and the definitions (76) of the density parameters, the
expansion equation (67) becomes

P 2 Kc?
H>=H | = + 2 + 24 . (79)
la*  @® a®H?

Specializing this to the current epoch, a = 1, yields an expression for the
curvature, K = (2m + 24 — 1)HZ /c® (where we used (2, < (2,), which can
be inserted into (80) to yield

H? = H2 [0 ™ + Qna ™ + (1 - )a 2 + Q4] , (80)
where we defined
.QO = .Qm + -QA + -Qr (81)

as the total density parameter of the present-day Universe. One sees that
the sign of 29 — 1 agrees with that of K, so that the total matter density
determines the spatial curvature of the Universe. Note that (80) is a first-
order differential equation for a(t), which can be integrated (numerically, if
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necessary) with the boundary condition a(tp) = 1. The general discussion of
the qualitative behavior of a(t) (see, e.g., Peacock 1999, Sect. 3.2; also Fig. 19
below) yields the following results: The scale factor a(t) is a monotonically
increasing function for a < 1; hence, a decreases monotonically as we go back-
wards in time. Whereas in principle it is possible that a does not decrease
below a finite positive value (so-called bouncing Universes), we happen not
to live in one — such models predict a minimum a, and therefore a maximum
redshift; the fact that we have discovered sources at redshift z & 6, coupled
with a matter density that certainly exceeds {2,,, > 0.05 excludes the possibil-
ity that our Universe is of that kind. Hence, formally a — 0 as we go into the
past, at a finite instant. This instant is called the Big Bang, an event when
the Universe was extremely dense and hot. The behavior of a(t) in the future
depends on the values of the density parameters. If 24 = 0, then a(t) will
continue to grow provided (2, < 1, otherwise it will reach a maximum value
of a and then recollapse. If 24 > 0, the threshold value of (2, for recollapse
is slightly changed. Flat models, i.e. those with (2, + 24 = 1 expand forever
provided 2, < 1.

Defining ¢t = 0 to be the instant of the Big Bang when a = 0, the cosmic
time as a function of scale factor can be calculated from (80), since dt =
daa™' = da(aH)™!; ignoring 2, (which is important only over a very brief
period at the beginning of the expansion), one has

1
=

/ da’ [a'*lﬂm + (1= 02n—24) + a'2(2/1] e ; (82)
0

t(a)
in particular, to is obtained by setting @ = 1. Apart from a numerical factor
which depends on the density parameters, this yields tq ~ Hj ! Equation
(82) can be inverted to yield a(t).

Light propagates along null geodesics; in the coordinate system used to
define the metric (65), it is easy to show from symmetry arguments that
radial null curves (i.e. those with # = const., ¢ = const.) are geodesics; for
them c¢dt = —adw, if we choose our location at w = 0. The minus sign
occurs since photons propagating to us have d¢ > 0 but dw < 0. Light from a
source that we observe today was emitted at a time obtained from integrating
cdt = —a dw; every observation of the distance Universe is inevitably a look
into the past.

We therefore have a number of variables which can be used to describe
the location of a source: its comoving distance w, the time ¢ at which the light
was emitted which we observe today from that source, the scale factor a at
this time or, equivalently, the redshift = a~! —1, and the temperature of the
Universe (which is defined as the temperature of the microwave background
radiation — note that cosmic expansion evolves a blackbody into a blackbody,
with temperature T' o< a~!). These variables are related to each other by

da da cdt cda cda

dt="2=", _dw=""=

a aH'’ a aa  a?H ' (83)
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4.2 Distances and volumes

The meaning of distance. Which of these descriptions of the location
of a source is the ‘correct distance’? Well, wrong question. This question is
based on the Euclidean preconception that there is a uniquely defined correct
distance, and that this is the outcome of all (correct) methods to measure
the distance. However, in a general spacetime, two complications occur. The
harmless one is that space may be curved. The more important one is that any
observation measures distances not at a given instant of time, but along the
backward light cone, and distances change in time as the Universe expands.
There is not a unique meaning of distance. Nevertheless, one can construct
methods on how to measure distance, and define distances according to these
measurement procedures. The two most important definitions of distance are
described next.

Distance measures. Suppose one knows the physical diameter 2R of a
source at redshift z (or scale factor a) which is observed to have an angular
diameter of §. In Euclidean space one would then measure the distance to
this source to be D = 2R/J; accordingly, one defines the angular diameter
distance as exactly this ratio,

Dang(2) = 2R/5 = a(2) fxe(w) , (84)

where the final expression follows from the metric by setting § = df and
ds = 2R. In the foregoing expression, w is to be understood as a function of
redshift; the corresponding relation can be obtained from (83) to be

c [ 9 4 1-1/2
111(21,22):FO - [an+a(1—(2m—(2,1)+a (2/1] da

=w(z2) —w(z) , (85)

which is the comoving distance between two sources that we see to have
redshifts z; < 29, and we set w(z) = w(0, z). The comoving distance can be
interpreted as the spatial distance between the intersections of the worldline
of these two comoving sources with the spatial hypersurface t = to — cf.
the definition of comoving coordinates. Generalizing (84), we can define the
angular-diameter distance Dang(21, 22) of a source at redshift z seen by an
observer at redshift z; < 29 as

Dang(21,22) = a(22) fr[w(z1,22)] . (86)

Note that in general, Dang(21, 22) 7# Dang(22) — Dang(21); on the other hand,
such an additive relation is valid for the comoving angular diameter distances
for a Universe with vanishing curvature K = 0, as seen from (85) and (66).
Thus, it is often useful to employ the comoving angular diameter distance,
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i.e. the ratio between the comoving diameter of an object and its angular
diameter.

Another method to measure distances is to relate the observed flux S of
a source to its luminosity L; if we know the luminosity, then the distance to
the source can be determined by

Dlum(z) = H % 5 (87)

which is called the luminosity distance. In Euclidean space, this measurement
would yield the same result as that from comparing diameters and angular
sizes; in curved spacetimes, this is no longer true. In fact, one can show
(Etherington 1933) that in general,

Dium(2) = (1 4+ 2)? Dang(2) = (1 + 2) fr(w) . (88)

In this equation, flux and luminosity have to be interpreted as bolometric
quantities, i.e., integrated over all frequencies. The flux at a given frequency
v is related to the specific luminosity of the source at a different frequency
ve = (1+ 2)v, owing to redshift. This frequency shift is taken into account by
the so-called K-correction in the relation between specific flux and luminosity.

We still need another distance concept, the proper distance. Suppose we
measure the redshifts z and z + Az of two comoving sources, being very
similar, and which also have small angular separation Af on the sky. What is
the separation between these two sources that an observer would measure who
lives somewhere near them? This separation can be measured by this fiducial
observer in the same way as we can measure the distance to Virgo-cluster
galaxies, without caring about the values of the cosmological parameters —
locally space can be approximated as being Euclidean where distances have
a unique meaning. The proper separation transverse to the line-of-sight is
Dang(2) AB, and that along the line-of-sight is

_ _ dwda ,  ca(z)
Arprop = a(2) Aw = a(z) P P i) Az
c Az

= — . 89
Hy \/QmCl*l +(1—Qm—(2/1)+(2/1a2 ( )

Volume elements. We can now also calculate volume elements: suppose
in a solid angle w one measures dN sources with redshift between z and
z + dz, the proper number density of these sources is n = dN/dV, where the
volume is given by the physical thickness of the redshift slice times the area

transverse to the line of sight, which is D}, . (2) w, so

drpr
AVirop = D2, (2) w —Té’;p dz (90)
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where we indicated that this is the proper volume element. The corresponding
comoving volume element is then

AVeom = a2 AVprop = fi[w(2)]w T dz . (91)

Finite volumes can be obtained from the foregoing equations by integration.

Special cases. Whereas the foregoing expansion equations are easily eval-
uated through numerical integration, there are some cases where explicit
expressions can be obtained. The simplest model is the Finstein—de Sitter
(EdS) Universe, characterized by 2,,, = 1, 24 = 0; this model has zero curva-
ture. The expansion equation (neglecting radiation) reduces to H = Hya3/2,
yielding t = 2/(3Hp)a/?; in particular, the current age of the Universe in
this model is to = 2/(3Hg) ~ 6.7 x 10°h~! years. The comoving and angular
diameter distance for an EdS model are easily obtained as

2c 1
Dang(e1,22) = 3 130z (14 2) V2 =+ 2) ]
2c
Deom(21,22) = 7 [(1420) /2 = (1 +20) /2] . (92)
0

In particular, as for all flat models, the comoving angular diameter distance
is the same as the comoving distance. Unfortunately, we seem to not be living
in an EdS Universe (see Sect.6.3).

For models without a cosmological constant, the angular-diameter dis-
tance can be written in closed from, using the famous Mattig (1958) relation,

2
Dang(21,22) =
a g(2’1 22) Qrzn(l +Zl)(]- +Z2)2

% [(2mzs — O + 2V1+ Pzt — (Pmz — O+ 2)V/1 + QmZQ] (93)

Next we consider the expansion equation (80) qualitatively. The different
dependencies of the four terms in (80) on the scale factor shows that for
very small a, the expansion was dominated by radiation, for a 2 aeq it was
dominated by matter; the effects of curvature (if different from zero) and the
cosmological constant play a role only at later stages of the cosmic expansion.
For small a < 1, (80) can be approximated as H = Hof28/>a=3/2\/T + teq/a
which can be integrated to yield

_ 2 —1/2 | 3/2 Qeq Geq | '/2 3/2
(@) = 357 {a (1 2a) (1+ a) +2a2] , (94)
and so t = a2 (2H0\/.Qmaeq)71 for a < Geq, and t = 2a°/? (3H0\/(2m)71 for
Geq € a K 1. For EdS, (94) describes the expansion for all a through the
radiation and matter dominated phases.
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4.3 Gravitational lensing in cosmology

The meaning of distance in lensing. When we used distances to write
the gravitational lens equations in Sect.2 we have not discussed what ‘dis-
tance’ means there. Now we learned that the concept of distance in curved
spacetimes, even if they are as simple as the Friedmann-Lemaitre space-
times, are more complicated than in the Euclidean case. Therefore, which of
the many distances defined above is the one to be used in the gravitational
lens equations?

The answer is quite obvious: recall that the basic lens equation (6) relates
images and source positions by a geometrical consideration; for that one
needs to relate angles with transverse distances. This is exactly the way the
angular-diameter distance was defined; hence, all equations in Sect. 2 are also
valid in a Friedmann—Lemaitre spacetime if the distances D are taken to be
the angular-diameter distances Dapg.

In many cases, the equations of gravitational lensing become simpler if the
comoving angular diameter distances fx (w) are used; one example is the ex-
pression (96) for the time delay. In particular this is true for flat cosmological
models, for which fx(w) = w. Furthermore, most equations of gravitational
lensing contain distances only in form of the ratio Dgs/Ds, for which it is
irrelevant whether D = D,ng or D = fg is used. In order not to confuse the
reader, we shall consistently use the following convention throughout the rest
of this book (recalling that in all equations in Sects.2 and 3, D = Dang is
implied): the angular diameter distance is denoted by D*"8, and the comov-
ing distance is denoted by D or fi. For example, in this notation the critical
surface mass density and the Einstein radius of a point mass read

? Dars A(14+21) Ds
Yer = ang ang
4xG DY D 4rG  Dq Dgs
AGM(1+ zq) Dgs \/*
O = . 95
" ( 2 DqDs (95)

The time delay. We mentioned in Sect. 2.2 that the light travel times along
the light rays that form the multiple images in a lens system are not the same,
but have not given an expression for it. Now that we are armed with the
necessary cosmological relations we can do so. There are two ways to derive
an expression for the time delay, both of which shall briefly be described
here. Cooke & Kantowski (1975) argued that the time delay must have two
different components: first, a light ray that is bent is longer, and thus light
needs more time to propagate along it, than for a straight ray. Since the
individual light rays are bent by different angles, their geometrical lengths
are different, giving rise to a ‘geometrical time delay’ between them. Second,
light rays propagate through a gravitational potential which retards them;
this is the well-known ‘Shapiro effect’, which has been amply tested by radar
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echo delay experiments towards the inner satellites in the Solar System. This
is the ‘gravitational time delay’. The total time delay is then simply the sum
of the two. For this derivation, it is important to note that the gravitational
time delay ‘occurs’ at the redshift of the lens, and hence gets redshifted by a
factor 1+ zq owing to the cosmic expansion.

An alternative derivation of the time delay was given by Refsdal and his
collaborators (see e.g. Kaiser & Refsdal 1983 and references therein); they
considered the wavefronts emitted from a source. Wavefronts are surfaces of
equal light travel time (image for example a set of photons all emitted in
a single flash from a bursting source; their location at fixed instant form a
wavefront), and Fermat’s principle states that light rays are perpendicular
to the wavefronts. Close to the source, the wavefronts are spheres; owing to
perturbations in the gravitational potential, they get distorted. If propagating
near a mass concentration, the wavefronts can become strongly distorted, and
after passing it, they can actually intersect themselves. An observer located
in that region would then be passed by the same folded wavefront more than
once; since the different sheets of the wavefronts have different orientations,
the observer will then see multiple images of the corresponding source, in the
direction perpendicular to the individual wavefront sheets. The time delay
between two images is then obtained as the time between the passing of the
two corresponding wavefront sheets. From a purely geometrical consideration,
the time delay can then be derived, yielding the same expression as adding
together the geometrical and potential time delays of the first method.? The
time delay can be written most conveniently in terms of the Fermat potential
as (Schneider 1985)

D"E pans
At = Zh i (1 2) [101:8) = 7(0%)58)|
_ DaDs 1 ). @),
- C-Dds |:T(0 718) _7(0 7ﬁ)] ’ (96)

where in the second expression the comoving angular diameter distances were
used, and 7(80;3) is the Fermat potential defined in (14). This result then
confirms the statement made in Sect. 2.2: 7(0; 3) is, up to an affine transfor-
mation, the light travel time along a ray originating at 8 in the source plane,
traversing the lens plane at @ and then propagating to the observer. The ad-
ditive constant of this affine transformation is irrelevant, as only differences
are observable; the factor in the linear term is given in (96). The potential
time delay is described by the deflection potential 1(0) in 7, the geometric
time delay by the |3 — 0]2/2 = |a|?/2-term.

9 As Sjur Refsdal reports, the first referee of his paper on the wavefront method
rejected it wholeheartedly, claiming that the resulting expression can contain
only the geometrical contribution to the time delay. It remains unknown how this
referee imagined the geometry of distorted and overlapping wavefronts without
the effect of retardation provided by the gravitational field of the deflector.
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5 Basics of lensing statistics

One is frequently interested in the probability that a specific gravitational
lensing event occurs. For example, Zwicky (1937b) estimated the probability
that a distant source is multiply imaged by “extragalactic nebulae” using the
surface density of these objects on the sky. This basic problem of statistical
gravitational lensing has since been studied in considerable detail, as will be
discussed in SL. The results of such an investigation depend on the assumed
distribution of lens masses and their individual density profiles. A comparison
of these results with a statistically well defined sample of observed lens cases
can in principle allow one to constrain the lens contents and/or the geometry
of the Universe. The probability for microlensing events to occur depends
on the density of compact objects along the sightline to the population of
sources which are monitored, as will be detailed in ML.

Another typical problem of statistical lensing is the so-called magnifi-
cation bias. Let us consider a sample which should include all sources of a
certain kind in a region of the sky brighter than a given threshold (i.e., a flux-
limited sample). From the observed fluxes of the sources and their distances
(e.g., determined from their redshifts) we can derive the intrinsic luminosi-
ties of the sources. If a source is magnified by a gravitational lens, its derived
luminosity will not be the true one, but will be higher in general. Moreover,
there may be sources in the sample which do not belong there because they
are intrinsically too faint to be included, but have been magnified above the
threshold of the sample. Since flux-limited samples of extragalactic sources
are used to derive information about the evolution of the sources and about
the structure of the universe, the magnification can mislead astronomers.
Statistical lensing investigations are used to estimate the importance of this
effect and its consequences. In this section we shall provide the basics of lens-
ing probability investigations, with details left to later chapters when specific
applications are discussed.

5.1 Cross-sections

The lensing probabilities depend on the number density of lenses, as well as
on their mass profile. The latter is used to define lensing cross-sections. We
shall start with two specific examples which should motivate this concept.

Cross-sections for a point-mass lens. First, consider a (point) source at
distance Dg, and a point mass at distance Dy from Earth. The separation
of the two images and their magnifications depend on the relative alignment
of source, observer, and lens. There is a one-to-one relationship between the
source position 8 = yfg and the corresponding total magnification pup, see
(48), where total magnification means the summed magnifications of the in-
dividual images. Thus, for any p, > 1 there is a value of y such that, if the
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distance S of the source is less than yfg from the optical axis, the latter is
magnified by more than pp:

=2 e 1) . (97)
Vi1

Hence, we can define the cross-section

o (pp) = 05y (p) (98)

for a point source magnification larger than pp. In other words, centered on
the caustic point there is a solid angle o(pp) within which the source must
lie in order to be magnified by more than p,. One could also consider o to
be the solid angle in which a lens must be located such that a fixed source is
magnified by more than pp,; these two points of view are basically equivalent,
though there are some subtleties involved (Ehlers & Schneider 1986) which
shall not be discussed here.

As a second example, we consider the ratio r = py /|u—| of the absolute
values of the magnifications (brightness ratio) for the two images produced
by a Schwarzschild lens — see (48). In order for this ratio to be less than
r, the impact parameter y needs to be less than r'/* — r=1/4 and so the
cross-section for magnification ratio less than r > 1 is

o(r) = mt} (r'/2 4712 = 2) . (99)

General definition of a lensing cross-section. After these two examples
we now discuss the general definition of a cross-section. Consider a source
and a lens, both at fixed distances from Earth. The lens may be described
by a set of parameters, and the source is characterized, say, by its size and
its brightness profile (if the source extent is relevant). If one is interested in
a certain property () of this gravitational lens system, one can ask where
the source must be located such that the images have the property Q. Two
examples for ) were given above, namely, that the total magnification is
larger than p and that the brightness ratio of the images is smaller than
r. More complicated examples of () will be considered in due course. The
question can be answered through an analysis of the gravitational lens model,
as demonstrated above for the point mass lens. One usually finds that the
source must be in a certain region of the source plane. The solid angle of that
region is then the Q—cross-section o for this lens—source system.

Lensing cross-section for a singular isothermal sphere. To illustrate
the concept further, we shall consider the lensing cross-sections of an SIS.
From Sect. 3.3 we know that this lens produces two images if § < 0g, and
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that the image separation is 20g. Hence, the cross-section of an SIS to produce
two images with separation larger than A#f is

o(Af) = mLH(20 — AF) (100)

where H(z) is the Heaviside step function. Next the (total) magnification and
the flux ratio r can be included; both are functions of y = 8/0g, u = 2/y
and r = (1 +y)/(1 — y). Therefore, the cross-section for an SIS to produce
two images with separation larger than A, total magnification larger than
p and flux ratio of the images smaller than r is

o(Ab,r, 1) = 76} [min (% %)} : H(20g — AQ) H(p —2) . (101)

The mass-sheet degeneracy and scaling of cross-sections. In Sect. 2.5
we have seen that the imaging properties, such as angular separation and
magnification ratios — and thus flux ratios, are unchanged if the surface mass
density is transformed according to (28). As can be seen from (31), this
transformation merely leads to a scaling of the lens plane, thereby affecting
the magnifications. The scaling of the lens plane implies that the cross-section
for an extended source of size p will, after the mass-sheet transformation, be
related to the cross-section for a source of size Ap. Hence, the cross-section
for flux ratio smaller than r, image separation larger than Af, magnification
larger than u for a source of size p transforms like

ox(r, A0, 1, p) = Mo (r, A0, X2, ) (102)

5.2 Lensing probabilities; optical depth

The probability that a lensing event with specified properties () occurs is
given by the product of the number density of lenses and their cross-sections.
Consider a solid angle w towards sources at distance Ds. To the distance in-
terval dz around z (note that we use a different notation for distance along
the line-of-sight here, for reasons which soon will become clear) corresponds
a proper volume element dV = D3, (z) (drprop/de) w within this solid an-
gle. We consider lenses which are described by a set of parameters, summa-
rized as ; such parameters could be lens mass, core radius, ellipticity, etc. If
n(x,x) dx is the (proper) number density of lenses at distance x with prop-
erties within dy of x, the total cross-section of all lenses within the tube of
solid angle w is then

drprop

7@ = [ o wDi@) T2 [axn@ )o@ ey, (10)

where the ()-cross-section of a lens depends on the lens parameters y, the
distance parameter z along the line-of-sight, and the source distance z5. The
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picture underlying this equation is that the cross-sections of the individual
lenses simply add up linearly. This picture is justified as long as the projected
separation between lenses is much larger than the linear size of the cross-
sections, or in other words, the cross-sections of individual lenses do not
overlap. The probability for a lensing event with property ) — also frequently
called optical depth for lensing — is then given by the ratio of the cross-section
oot (@) and the solid angle w, i.e., the fraction of solid angle covered by the
cross-sections,

P@ = [ e D) 22 [ ane0o@inan) . (00

We shall now consider the case where the distance to the source is small, so
that cosmological distances play no role. In this case, we can take x = Dy,
and (104) becomes

Dy
PQ) = /0 4Dy D? / ax n(Da,x) (@ Day Doyx) . (105)

In the other case, where the sources of interest are at cosmological distances,
redshift is a convenient distance variable, and (104) reads

= drpro
PQ) = [ dz Daugle) 22 [ dnza) 0@ zaz) . (106)

where the proper distance interval along the line-of-sight is given in (89). In
this cosmological context, it is often useful to specify the comoving number
density neom of lenses, instead of the proper density n; both are related by
n(z) = (1 + 2)3 neom; furthermore, we can use the comoving distance w as
integration variable, and work in terms of the comoving angular diameter
distance fx(w); then, (106) becomes

Ws

P@) = [ dwfiw) / AX Ticom (1w, X) (@3 w, w4, ) | (107)
0

which is particularly convenient in the case of flat models (fx (w) = w).

5.3 Magnification bias

Besides the optical depth for a source to be multiply imaged (with image
separation larger than an angular resolution limit of a survey), the magnifi-
cation probability distribution has received great attention in the literature.
Questions that have been studied include:

e Can all bright quasars be merely highly magnified images of much less
luminous Seyfert galaxies (Barnothy 1965)? No, the lensing probabilities
are far too small (e.g., Tyson 1981; Peacock 1982), even if the dark matter
in the Universe consists of compact objects (Canizares 1982; Schneider
1987).
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e Can magnification by (compact objects in the) halos of galaxies explain
the apparent angular correlation (e.g., Arp 1987, and references therein)
between nearby bright galaxies and high-redshift quasars? Again no, mag-
nification probabilities are far too small (e.g., Canizares 1981; Vietri &
Ostriker 1983; Schneider 1992).

e Does magnification affect the expected number of multiply-imaged QSOs
in a gravitational lens survey? Yes (e.g., Wallington & Narayan 1993):
for a lens survey with a bright flux threshold, magnification boosts the
fraction of lensed sources by a large factor (see SL).

Magnification can cause sources to be included in a flux-limited sample which
without lensing would be too faint to be included. Furthermore, sources with a
very large magnification factor can attain apparent luminosities which exceed
the maximum luminosities of the corresponding class of sources. In fact, sev-
eral of the most luminosity-extreme sources are strongly magnified: The ap-
parently most luminous TRAS galaxy F10214+4724 is magnified by a galaxy
by about a factor of u ~ 50 (Broadhurst & Lehar 1995), the most luminous
‘normal’ Lyman-break galaxy cB58 (Yee et al. 1996) at redshift z = 2.72 is
magnified by the cluster MS15124-36 with redshift z ~ 0.3 by a factor u ~ 30
(Seitz et al. 1998), the very bright z = 3.87 QSO APM 08279+5255 (Irwin
et al. 1998) is gravitationally lensed and highly magnified by a foreground
galaxy (Ibata et al. 1999), and several of the highest redshift galaxies have
been found behind lensing clusters (e.g., Hu et al. 2002; Kneib et al. 2004;
Pell6 et al. 2004).

Consider a class of sources is a narrow redshift interval, and denote by
p(p) dp the probability that one of these sources is magnified by a factor
within dp of u. Let No(> S) be the number of these sources per unit solid
angle that without lensing would be observed to have flux greater than S. If
these sources get magnified by a factor u, two things happen: first, a source
with unlensed flux S will attain an observed flux u.S. Second, since magnifica-
tion enlarges the solid angle, sources that without lensing would be contained
in a solid angle w on the sky, will now be spread over the solid angle uw, i.e,
the number density of sources decreases by a factor 1/u. Together, if the
magnification would be (locally) a constant u, the observed source counts
are

1 S
N(>S)=—Ng <> —) . (108)

Iz Iz
Considering a probability distribution p(u) in magnifications, this result gen-

eralizes to ) s

NG )= [dun N (> 2) (109)
where (u) is the mean magnification within the region of the sky considered.
If source counts are taken over random regions on the sky, then (u) = 1, but
if the magnification bias is considered around foreground galaxies, then in
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these regions, (1) > 1. The probability p(u) satisfies

/dup(u) =1; /du pp(p) = (1) ; (110)

the first relation expressing normalization, the second the definition of the
mean magnification. Of course, p(u) depends on the source redshift and the
density of lenses, as mentioned in the previous section.

At this point, we need to enter briefly in the discussion on ‘flux conser-
vation’. As you recall, we have shown that any lens produces at least one
image which is not demagnified, u > 1, provided x(6) is non-negative. If we
consider source counts averaged over the whole sky, then of course (u) = 1,
and then (110) implies that if there are lines-of-sight where p > 1, then there
must also exist those with p < 1. Hence, we get an apparent contradiction,
which has led to much confusion in the literature. The resolution of this
contradiction is seen when we consider the full matter distribution between
us and the sphere of sources at a given redshift. The unmagnified flux of a
source is defined as that flux which would be observed in a homogeneous
Universe, since it is this model which underlies the definition of the luminos-
ity distance. Now, the true mass distribution is inhomogeneous, consisting of
large overdensities like galaxies and clusters, and underdensities like voids. A
light bundle propagating through an underdense region of the Universe is less
focused than one propagating through the mean density of the Universe, so
that the effective k < 0 for the former, and p < 1. Conversely, light bundles
propagating through overdense regions get more focused, resulting in p > 1.
We shall discuss these relations in more detail in WL.

Note that there is a minimum magnification for each source redshift. Since
the cosmic density p > 0, a light bundle cannot be more defocused than
propagating through empty space; hence, p is bound from below, and this
bound depends on the source redshift and the density parameters 2, and
4.

We shall now consider the simple example of source counts which behave
like a power law, No(> S) = A S75. Inserting this into (109) yields

N> §) = <—;> /du pi) A () = N> ) é/du )i . (111)

Thus, if the unlensed source counts behave like a power law, so do the lensed
ones, with the same slope. The ratio between lensed and unlensed counts
depends on the magnification probability distribution p(u), as well as on the
slope 3 of the counts. The first remarkable result is that, if § = 1, then (111)
together with the second of (110) imply that N(> S) = No(> S), i.e. the
counts are unchanged in this case, independent of p(u). Hence, in this case
the enlargement of the solid angle over which sources are distributed just
compensates the brightening of the sources. For f < 1, the number counts
are depleted, whereas they are increased for f > 1. The larger the slope 3,
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the larger is the ratio N(> S)/No(> S), i.e. the stronger is the magnification
bias.

If one considers point sources, or more generally, sources whose angular
sizes are much smaller than the characteristic angular scale of the lenses, then
one can show (Blandford & Narayan 1986) that for very high magnification,
p(u) o =3, up to an upper limit for u at which the finite size of the source
limits the magnification. This functional dependence is due to the universal
behavior of the lens equation near fold caustics, as was discussed in Sect. 2.4.
This functional behavior implies that the integral in (111) formally diverges
as the slope 8 approaches 2. Hence, for a population of sources with steep
number counts, the magnification bias can become very large. In fact, the
formal divergence is due only to the assumption of a pure power law for
No(> S); whereas such a functional form is a good description, e.g., for
the QSO counts over a limited range of fluxes (or luminosities), it cannot
continue with a steep slope for arbitrarily faint sources, in order for the source
population not to produce infinite total flux. Nevertheless, if the counts are
steep, and one considers a value of S much larger than a break flux (where
the steep counts turn into flatter ones towards lower fluxes), the ratio N (>
S)/No(> S) can be very high indeed. This is the reason why we see extreme
QSOs like the one mentioned above, APM 08279+5255. Furthermore, if the
source population is better described by a Schechter luminosity function,
which implies an exponential decrease in the counts for high luminosities,
the bias can be even larger: the probability with a Schechter function to find
a single source far out in the exponential tail is very small, and if such an
apparently luminous source is observed, it is most likely a lensed one, as is
the case for F10214+4724 and cB58.

6 The cosmological standard model II: The
inhomogeneous Universe

Whereas the Universe appears to be nearly homogeneous on large scales, it
certainly is strongly inhomogeneous on smaller scales. Small fluctuations are
imprinted onto the CMB, leading to tiny but measurable anisotropies in its
temperature; in fact, these anisotropy measurements provide the strongest
constraints on cosmological parameters currently available. Furthermore, the
distribution of brighter (thus nearer) galaxies in the sky is highly anisotropic;
galaxies tend to be strongly correlated, they tend to appear in groups or clus-
ters of galaxies. Thus, on small scales the approximation of a homogeneous
Universe must break down.

6.1 Structure formation

Whereas the CMB fluctuations indicate very small inhomogeneities at the
time of recombination (corresponding to a redshift z ~ 1100) the inhomo-
geneities observed today in our neighborhood are much larger. A cluster of
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galaxies, for example, is a massive perturbation with a mean density more
than hundred times larger than the mean density in the Universe. It is be-
lieved that the density inhomogeneities that we see today have evolved from
much smaller fluctuations in the very early Universe. This evolution happens
naturally through gravitational instability. A slightly overdense region has a
somewhat higher self-gravity than the average region of the Universe, so its
expansion rate will be slightly smaller than that of the Universe as a whole.
As a result of slower expansion, the density contrast of this region increases
further, retarding expansion more, and so on. If the initial density contrast
is sufficiently large, this instability can actually bring the expansion to a
halt locally, after which the region recollapses under its own gravity to form
galaxies and clusters.

In this picture of gravitational instability, one can study the evolution of
structure in great detail. Since the major mass component in the Universe
is dark matter, which by definition only interacts gravitationally, the dom-
inant process is gravity. However, the laws of gravity are well understood.
Furthermore, additional simplifications arise in certain regimes; e.g., at early
stages in the evolution, density fluctuations are very small. One can therefore
linearize the equations of gravity around the homogeneous Universe. If the
length scale of the perturbations are much smaller than the characteristic
scale of the Universe [a size given by ¢/H (a)], gravity can be approximated
by the Newtonian equations. In addition, numerical simulations can follow
the evolution of the density field under the influence of gravity, and great
progress has been made in the level of detail these studies have achieved
(e.g., Frenk et al. 1999; Springel et al. 2001).

We shall outline here a number of results which will be used in later
Chapters; again, the reader is referred to the excellent textbooks mentioned
at the beginning of this section for a much more detailed treatment.

Horizons. No signal propagates at speeds larger than ¢; at a given cosmic
time ¢, this implies that the region within which matter has been in causal
contact is finite, essentially given by ct ~ ¢/H (t), where we used that tH (t) ~
1. The size of this region is called the horizon size at time ¢. The comoving
horizon size is

c c Geq\ —1/2
= = _— 022 (14 =4 112
dr aH(a) Hy ™ “ ( + a ) ’ (112)

where in the second step we used the approximation for a < 1 when cur-
vature and vacuum energy play hardly any role; cf. (94). As we shall see,
the comoving horizon size at the epoch of matter and radiation equality is of
particular importance and is

dri(aeq) = 27 2cHy 1 051 2all? ~ 12(2,h%) ™" Mpe . (113)
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Linear density evolution. If the density fluctuations are small, linear per-
turbation theory can be used to describe them. Specifically, one defines the
density contrast
5(x, 1) = LD =P (114)
p(t)
where p(t) is the mean cosmic matter density at time ¢, and x is the comoving
spatial coordinate. The matter equations are linearized about the homoge-
neous model, and only terms of order § are considered. If several matter
components are relevant (e.g., non-relativistic matter and radiation, in early
phases of the evolution), one defines a density contrast for each of them, and
considers the (coupled) set of linear evolution equations. As soon as |0 ~ 1,
this perturbation theory breaks down, and the full set of non-linear evolution
equations needs to be treated (numerically).

If one considers fluctuations on a scale much smaller than the horizon
scale, one can use Newtonian gravity. The relevant equations in this case are
the Vlasov (or collisionless Boltzmann) equation and the Poisson equation;
the former is usually approximated by the fluid equations, e.g. the continuity
equation and the Euler equation. A homogeneous, expanding Universe is a
solution to these equations, and the expansion factor follows the Friedmann
equation (67). Setting p(x,t) = p(t)[1 + 0(x,t)], these equations are then
transformed into comoving coordinates, e.g. for the Poisson equation one

finds

2
V2@ = 4nGa’ps = %Qma : (115)

Then, writing the velocity field as a sum of the Hubble expansion plus a
small perturbation to it, one finds that the terms linear in ¢ lead to a single
linear second-order differential equation in time whose coefficients do not
depend on the spatial coordinates. Hence, there are two linearly independent
solutions of the form §(x,t) = D4 () AL(x). One of the two functions, D_(t)
say, decreases quickly with time and is therefore unimportant for structure
growth; the other one grows with time, so that

5(x,t) = D.(t) do(x) (116)

is the relevant mode for structure growth. The function D, (t) is called the
linear growth factor, which can be obtained from solving the aforementioned
differential equation,

D+ocH(a)/0a%, (117)

with the constant of proportionality chosen such that D, (tp) = 1. Because
of this choice, one has §(x,tg) = do(x); hence, do(x) is the current density
contrast provided the evolution of § follows linear perturbation theory. Even
if it does not, defining the field dp is meaningful, since (116) still describes
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the evolution of the density contrast for epochs where 6 was much smaller
than unity. For obvious reasons, dg is called the linearly-extrapolated density
contrast. For an EdS Universe, the growth factor is D4 (t) = a(¢), for lower-
density models, Dy (t) > a(t) (see Fig.14); Carroll et al. (1992) provide a
fitting formula for D for general cosmologies. Note that (116) predicts that
the shape of fluctuations are time-independent in comoving coordinates, with
only their amplitude being a function of time.
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Fig. 14. The growth factor D4 as a function of the scale factor a (left) and as a
function of redshift (right), for three cosmological model: an EdS model (2, = 1,
24 = 0), a low density open model (2, = 0.3, 24 = 0), and a low-density flat
Universe (2, = 0.3, 24 =0.7)

Random fields, correlation functions and power spectra. Cosmol-
ogy will never be able to describe the specific density field of our Universe,
since in order to do so, we would need to know the density fluctuation field
0(x,t;) at some initial time #;. Instead, what a theory of structure formation
should explain are the statistical properties of the density field as a function
of time: how many clusters of galaxies per unit volume form as a function
of redshift, how does matter cluster together, etc. This is analogous to sta-
tistical physics, where the behavior of a physical system is described by its
macroscopic statistical properties, not by the trajectories of all molecules.
The density fluctuations §(x) at some fixed time are considered to be a
random field. A random field is characterized by the probability that a specific
realization §(x) of the density fluctuations occurs. This probability therefore
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is a mapping from the set of functions 6 : R* — R to R;. A conceptually
simpler way to look at this is to assume that all probable realizations of the
density field are ‘smooth’; so that §(x) can be described, with sufficient ac-
curacy, by its values on a regular grid in . Let x; be a set of appropriately
numbered gridpoints, and let §; = d(x;) be the density contrast at x;. The
realization of the random field is then described by the (possibly infinite) set
of the d;, and the random field is characterized by the joint probability distri-
bution p(d1, d2,...)dd; dds ... that d(x;) lies within dé; of §;. Hence, we have
reduced the description of the random field to a joint probability distribution
of (possibly infinite) discrete random variables. Since the Universe is assumed
to be statistically homogeneous and isotropic, the density field should share
these properties; this is formulated by the requirement that if all grid points
are translated and rotated the same way, x; - R(x; + y), where R is a
rotation matrix and y a translation vector, the probability density p must
remain unchanged.

More generally, let g(x) be a real or complex homogeneous and isotropic
random field in n dimensions. It is characterized by the probability distri-
bution that a particular realization g(x) can occur — note that we do not
distinguish notationally between the random field and a particular realiza-
tion, though these are two very different concepts. Hence, let p(g(x)) dg be
the probability for the occurrence of the realization g within dg, where dg
is the volume element in function space. Let (X) denote the ensemble aver-
age of a quantity X, that is, we imagine to have many realizations of this
random field with the same statistical properties, and we average X over all
these realizations. Formally,

(X) = / dg plg(@)) X . (118)

We shall assume that
(9(z)) =0, (119)

so that the expectation value of g at every position & vanishes. Consider the
(two-point) correlation function

(9(x)g"(y)) = Cyg(lz — yl) - (120)

The correlation function can only depend on the separation x — y of the
two points because the homogeneity of the field g means that the correlator
cannot depend on x and y individually. Furthermore, it depends only on
| — y| because g is an isotropic random field. Note that C, is a real function,
even if g is complex, as can be seen by taking the complex conjugate of (120),
which is equivalent to interchanging x and y, thus leaving the right-hand side
unaffected. We define the Fourier transform of g(z) as

~ n ix- . _ d"k A iz
i) = [ aag@e s og@ = [ a2
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We shall now calculate the ensemble average of (G(k) g*(k')), by inserting
the Fourier representation,

k)" (k) = | dree™ [ dnal T (g(x)g" () . (122)
R" R"

Using (120) and substituting &' = x + y, this becomes

(G)g" (k) = [ d"ze™® | dmy e =R Oy y))

= Cr ok =) [ a O,y (12)
= (20)"dn(k ~ K Py ([k])

where in the second step the z-integration was performed, and the final equal-
ity defines the power spectrum of the quantity g which obviously depends only
on the modulus of k. Hence, the power spectrum and the correlation function
are Fourier transform pairs,

PlkD = [ ay ey ul) (124)

Since the Fourier transform g(k) describes the same random field as g(x),
one can characterize the properties of the random field by the probability
for the occurrence of a realization with Fourier transform §(k). As was done
above for the real-space distribution, one can also discretize § on a grid in
k-space, denoted by gg.

A Gaussian random field is characterized by the properties that (1) the
Fourier components g are mutually statistically independent, and that (2)
the probability density for gg is described by a Gaussian. The second property
follows in many cases from the first, due to the central limit theorem. The
first property implies that the phases of different Fourier components are
mutually independent. A Gaussian random field is fully described by its power
spectrum; a particular realization of such a random field can be obtained
by drawing Gaussian deviates with dispersion (k) = /P(|k|) and Fourier
transforming the resulting g(k).

Gaussian random fields are almost universally used to describe the prop-
erties of the density perturbations in the early Universe. This is partly due
to the argument given above, that the central limit theorem suggests that
if the primordial perturbations were generated in a stochastic way (such as
predicted from the inflationary theories), the resulting density field should be
Gaussian. Another reason is that Gaussian random fields have very simple
and convenient properties, which can be derived from the preceding results:
The probability distribution of any linear combination of the random variable
g(x;) is a Gaussian, and more general, the joint probability distribution of
a number M of linear combinations of the random variables g(x;) is a mul-
tivariate Gaussian. In fact, this property can be used to define a Gaussian
random field.
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The power spectrum. Defining S(k,t) to be the Fourier transform of
the density fluctuation field, then (116) immediately yields that é(k,t) =

A

D4 (t)d(k, to), which implies for the corresponding power spectrum

where Py(k) is the linearly extrapolated power spectrum which would be
the true present-day power spectrum if the fluctuations follows the linear
evolution characterized by (116). Furthermore, the factorization of d(k,t)
implies that each Fourier mode evolves independently in time.

There are several situations where (116) is invalid. The obvious one is
when the density contrast approaches unity, where the linearization of the
evolution equations breaks down. We shall discuss this case further below.
Second, since the comoving horizon scale grows in time, the characteristic
comoving length scale A\ = 27 /k of each Fourier mode was larger than the
horizon size some times in the past. For such superhorizon fluctuations, New-
tonian theory of gravity necessarily breaks down, and one needs to use linear
perturbation theory of the Einstein equations. Third, for a < aeq radiation
dominated the matter contents of the Universe, which affects the growth of
structure. Fourth, particle populations with an appreciable intrinsic veloc-
ity dispersion will not simply fall into the potential wells, but can stream
away from them; this certainly applies to all relativistic species. One distin-
guishes between Cold Dark Matter (CDM), where the characteristic particle
velocities are highly non-relativistic, o, < ¢, at the time when a = aeq, and
Hot Dark Matter (HDM), when the matter particles are relativistic at this
epoch. If the Universe is dominated by HDM, small-scale fluctuations would
be smeared out due to free-streaming, and the first objects to form would be
clusters or superclusters of galaxies. Since the large-scale matter distribution
obtained for such models are very different in several respects from the ob-
served one, it is concluded that HDM (such as massive neutrinos) can only
contribute a very small fraction to (2,,. The favored model is one which is
dominated by CDM.

The effects of radiation domination in the early Universe and the initial
superhorizon scale of density modes can be summarized as follows: Suppose
at some very early time ¢; when all Fourier modes of interest had scales
much larger than the horizon scale then, the power spectrum of the density
fluctuations was P, (k). The power spectrum at some later time when all scales
of interest are much smaller than the horizon is then

D3 (#)

Bi(k), (126)

where the transfer function T (k) accounts for the aforementioned effects. It
can be calculated, and accurate approximation formulae for it are available
(e.g., Bardeen et al. 1986; Eisenstein & Hu 1998). For large scales, i.e., small
k, T ~ 1. For large k, T(k) o< k=2 in a CDM Universe [T'(k) decreases
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exponentially with k& for a HDM model]. The transition between the two
regimes depends on the scale of the comoving horizon at the time of matter-
radiation equality, i.e. on di(aeq). As cosmological length scales are measured
in h=! Mpc, this length is oc (2,h) 1. Thus, the shape of the transfer function
is determined by the shape parameter

Typect = h @ exp [—(zb (1 + \/ﬁ(z;f)] : (127)

and the final factor yields a small correction which accounts for the baryonic
contribution (with density parameter 2,) to the density of the Universe. As
the shape of the power spectrum, which is measurable, has imprinted on it
the comoving horizon scale d(aeq), this scale is actually observable.

Knowing the transfer function, one needs a prescription for the power
spectrum P (k) at some very early times to predict Ps for later stages of
the evolution. Since at #; all modes of relevance are much larger than the
horizon scale, there is no characteristic length scale available; therefore, one
assumes that the primordial power spectrum was a power law, P,(k) x k™.
Furthermore, if it is assumed that the total power of the fluctuations at
the time when their scale equals the horizon size is independent of k, and
for that matter, independent of time, then n = 1. Such a primordial power
spectrum is called Harrison—Zeldovich power spectrum, and is also the favored
value in theories which explain the origin of primordial fluctuations as initial
quantum fluctuations blown up in a period of exponential expansion, the
inflation period.

The linear power spectrum is thus determined in terms of n and the shape
parameter, except for the overall normalization. Several methods exist to fix
this normalization, three of which are mentioned here.

1. Normalization by density fluctuations in a sphere. The relative fluctua-
tions of the galaxy number density in the local Universe, dn/n, is of order
unity if one considers spheres of radius R = 8h~! Mpc. If one assumes
that the galaxies accurately trace the underlying dark matter field, this
observation would imply that the fluctuation field d(x, ty), averaged over
a scale of R = 8h~!Mpc, has a dispersion of 1. However, there is no
guarantee that the galaxy number density field closely follows the dark
matter distribution (see Fig. 15). Nevertheless, one might suspect that the
galaxy density is large at those locations where the dark matter density
is also large. In particular, galaxies might find it easier to form in peaks
of the dark matter distribution, and therefore galaxies can be clustered
more than the dark matter. One often summarizes our ignorance about
the relative distribution of galaxies and dark matter into a linear bias
factor b, defined such that the fluctuations of the galaxy number density
are a factor b larger than the fluctuations of the underlying dark matter
distribution (for a detailed discussion on biasing, see, e.g., Bardeen et al.
1986; Kauffmann, Nusser & Steinmetz 1997). We define the density field
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Fig. 15. This figure depicts a one-dimensional cut through a density field which
contains power on small and large scales, the latter being shown by the dashed
curve. If it is assumed that galaxies form only at locations where the density ex-
ceeds a critical threshold, here indicated by the horizontal line, then it is easily seen
that they are more strongly clustered than the matter field itself, as this thresh-
old is exceeded predominantly at the peaks of the long wavelength perturbations;
therefore, this would lead to a bias of the galaxy distribution relative to that of the
underlying matter (from Peacock 2003)

smoothed on a scale R by

(o) = [ @y dolu) Walle =) (129)

where Wg(z) is a filter function, normalized such that [ d3zWg(z) = 1.
From the convolution theorem for Fourier transforms, one finds dg (k) =
k) =

SOA(k) Wg(k), and the power spectrum of the smoothed field is Pg(
|[Wg(K)|? Py(k). The dispersion of the smoothed density field is then

o2 (R) = (83(x)) =/% Pak) #%

where we made use of (124). Note that o(R) describes the dispersion of
the smoothed version of the linearly extrapolated density field today. If
we take a so-called top-hat filter, which is constant for z < R and zero
otherwise, one has

3
" 47w R3

W[ Po(h), (120)

sinkR — kRcoskR

H(R—z) — Wg(k)=3 oL

Wr(z)

(130)
Coming back to the normalization, the dispersion in the galaxy number
counts then implies that

o(8h *Mpc) = og ~ — . (131)

S| =
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Normalization through the CMB. The DMR experiment on the COBE
satellite mission (see, e.g., Bond 1996; Smoot 1997 for reviews) has de-
tected the anisotropy of the microwave background on scales above ~
5degrees. The degree of anisotropy is proportional to the fluctuation
spectrum, and thus can be used directly to normalize the spectrum. The
normalization of the power spectrum is hampered by the uncertainty
whether the CMB anisotropy on large angular scales is caused solely
by scalar perturbations (i.e., density and associated adiabatic tempera-
ture fluctuations), or whether tensor perturbations (gravitational waves)
have been present at the recombination epoch. On smaller scales, the
expected contribution from tensor modes becomes very small. The first
year data of the WMAP satellite (Bennett et al. 2003) have provided a
much more accurate determination of the power spectrum normalization,
yielding og = 0.9 £ 0.1 (Spergel et al. 2003). Since the CMB anisotropies
measured by WMAP probe inhomogeneities on considerably larger scales
than 8h~! Mpc, translating their amplitudes into a value of og depends
on the shape of the power spectrum. In Sect. 6.3, we shall give the best
current estimates of the whole set of cosmological parameters.

. Normalization by the local abundance of clusters. The number density of

clusters as a function of their mass can be estimated analytically in terms
of the power spectrum Ps(k), as will be shown later. By comparing the
observed number density of clusters with these prediction, the normal-
ization of the power spectrum is determined (e.g., Eke et al. 1996). This
comparison yields normalizations which, when expressed in terms of oy,
are of the form

o8 ~ 0.520 052013, for D 404 =1. (132)

These estimates are relatively insensitive to the shape of the power spec-
trum (i.e., of Iypect), because the mass contained in a massive cluster
is about the mass contained in a comoving sphere of radius 8k~ ! Mpc,
so that the cluster abundance directly measures og. However, there has
been some recent claims that (132) may overestimate og (e.g., Viana et
al. 2002, and references therein). The main problem of the cluster nor-
malization is to obtain a well-selected sample of clusters (e.g., from X-ray
surveys) and to determine their masses reliably.

As we shall discuss in WL, lensing by the large-scale structure provides a

powerful tool to determine the normalization of the power spectrum. As for
clusters, this method yields, to lowest order, a degeneracy between og and
the density parameter (2.

To summarize, a CDM-dominated Universe has a (linear) power spectrum

given by (126), which is determined by a few parameters. Together with the
assumption that the primordial density field was Gaussian, then the evolved
field will also be Gaussian as long as it stays in the linear regime. Thus, in a
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statistical sense, the density field is fully specified, so that this cosmological
model is predictive.

Non-linear evolution. When |§| is no longer much smaller than unity, the
linear perturbation theory breaks down. The first idea, to consider higher-
order perturbations, does not really solve the problem: the perturbation series
is not converging, and only slightly larger perturbations of § can be described
satisfactorily. In addition, the fluid equations cease to be valid, since due to
the converging velocity field, streams of matter start to intersect, and thus
the Vlasov equations needs to be employed. A different approach, Lagrangian
perturbation theory (Zeldovich 1970; Buchert & Ehlers 1993) is substantially
more successful. However, with the advent of high-speed computers with
large memory, the need for (semi)analytic approximations decreases, as the
evolution of the density field can be obtained from N-body simulations tracing
the dark matter particles (e.g. White et al. 1987; Pearce et al. 2001; Navarro et
al. 2004). Each such simulation yields an evolved realization from an initially
Gaussian density field with power spectrum according to (126), starting at
a high redshift. Such simulations can be either used directly to study the
properties of the matter distribution, or can be used to derive fit formulae
for various quantities of interest, some of which will be discussed below.

Using a scaling argument, Hamilton et al. (1991) derived an approximate
equation relating the linearly evolved power spectrum to the fully non-linear
power spectrum Ps; this equation contains a single function, whose parame-
ters can be fitted to the results of N-body simulations. This approximation,
later generalized and refined by Jain, Mo & White (1995) and Peacock &
Dodds (1996), is truly remarkable as it yields an accurate description of the
fully non-linear power spectrum for all values of k& and ¢; example power spec-
tra are displayed in Fig. 16. More recently, an even more accurate expression
has been obtained by Smith et al. (2003).

6.2 Halo abundance and profile

Gravitationally bound objects like galaxies and clusters are of course highly
non-linear structures in the Universe — their average density contrast is much
larger that unity. Nevertheless, there are analytical approaches to determine
their number density as a function of mass and redshift. The best known of
these is the Press—Schechter approach, and more refined ones are deviates of
it.

The mass function of halos. The Press & Schechter (1974) approach is
based on two considerations: the time evolution of a spherical overdensity
and its collapse, and the statistical (Gaussian) property of the initial density
field.
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Fig. 16. The power spectrum of the cosmic density fluctuations at current epoch,
for various cosmological models. (c/Hy)*P (k) is plotted as a function of (c/Ho)k.
The cosmological models are distinguished by line types [with values in parenthe-
sis denoting (os, ['spect)], with thin lines displaying the linearly extrapolated power
spectrum, and thick lines the fully non-linear power spectrum following the pre-
scription of Peacock & Dodds (1996). The solid lines correspond to an Einstein-de
Sitter Universe, the dotted lines to an open Universe with 2, = 0.3, 24 = 0, the
short-dashed lines to a flat low-density Universe with 2, = 0.3, 24 = 0.7; those
three models are approximately normalized by the present-day cluster abundance,
as discussed at the end of Sect.6.1, and have the shape parameter Ispect = 0.25.
The remaining two models are EdS cosmologies, with different shape parameter or
different normalization. The linear power spectrum depends only on og and [ypect
(once the primordial slope n = 1 is fixed), so that those three models are degenerate.
This degeneracy is broken in the non-linear spectrum. The non-linear spectrum de-
viates from the linear prediction at (¢/Ho)k > 1000, corresponding to length scales
of L = 2w/k < 20h~! Mpc

The spherical collapse model considers an overdensity with spherically
symmetric density distribution. According to Birkhoff’s theorem, the evolu-
tion of a mass shell M is independent of the radial density profile at larger
radii, as long as shells of matter do not cross each other. The radius of the
mass shell as a function of time then follows an equation of motion. At early
time, when the average density contrast ¢ inside the mass shell is small, the
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expansion closely follows the Hubble expansion, but being slightly slower, the
density contrast grows. This leads to an increased deviation from the Hubble
expansion, and thus further increased density contrast. Provided the latter
is large enough, the expansion of the mass shell can come to a hold (at time
tmax, say), and the radius will decrease from there on: the shell is collapsing.
The symmetry of the equation of motion with respect to ¢ — —t then pre-
dicts that the collapse of the mass shell to very small radii takes the same
time as the expansion, so that the shell collapses at time tco = 2tmax. If the
mass distribution was exactly symmetric, the collapse would indeed proceed
to basically a single point; however, small-scale inhomogeneities of the matter
distribution will deflect the matter particles from their radial orbit, thereby
enhancing the density fluctuations, and very quickly the orbits of particles
become randomized. During this process the mass overdensity will virialize,
and this process takes place with a time scale comparable to teon (violent
relaxation; Lynden-Bell 1967; Binney & Tremaine 1987). The final state is
then a spherical halo of (dark) matter in nearly virial equilibrium.

In an EdS model, the various parameters of this model can be calculated
analytically: in order for the collapse to occur before the present time, teon <
to, the linearly extrapolated mean density contrast dy of the mass shell must
satisfy dp > d. = 3(127)%/3/20 ~ 1.69, and the condition that the collapse
happened before redshift z is that do > d.(1 + z). The mean density of
the virialized halo is (p) = 1872 per(1 + Zeon)® ~ 178(1 + 2co1)? per- Note that
(1+2con ) per is the critical density of the EAS Universe at redshift z.,;. Hence,
the mean overdensity of a virialized halo is of order 200 times the critical
density of the Universe at the time of formation. For other cosmological
parameters, these numbers change, but have been calculated (e.g., Eke et al.
1996). Given the idealization of the spherical model, one often defines the
virial radius ry;; of a dark matter halo to be the radius within which the
mean density is 200 times the critical density of the Universe.

Next, consider the linear density field at some early time being smoothed
with a top-hat filter of comoving radius R [see (128)]; this corresponds to a
mass inside the filter scale of M = 47 R3py0/3. A peak with density contrast
0r > dc(1+2) in this smoothed density field will then collapse before redshift
z to a virialized halo of mass M. Given that the linear density fluctuations are
assumed to be Gaussian, one can calculate the abundance of peaks exceeding
a certain threshold, and therefore the abundance of halos of a given mass
(determined by the filter scale R) that form before redshift z. This then yields
the Press—Schechter mass formula for the comoving density n(M,z) dM of
halos of mass within dM of M at redshift z,

_ 20mper 0c(2) do(R) exo [ — de(2)
nM2) = = A (R) M p( 202(3))’ (133)

where the radius R is related to the mass by the equation given above, o(R) is
given by (129), and d.(z) is the linearly extrapolated density contrast needed



74 P. Schneider

for a mass shell to collapse before redshift z. The mass spectrum of halos
behaves approximately as a power law for masses M < M, (z), where M, (z) is
the mass scale at redshift z at which the density field becomes non-linear; it is
defined implicitly through o?(R,)D3 (z) = 1 [cf. (129), with the linear power
spectrum at redshift z being D7 (z) times the one today]. For masses above
M, (z), the mass function decreases exponentially. The redshift evolution of
the mass function depends on the cosmological parameters: in low-density
Universes, the evolution with redshift is slower than in an EdS Universe.
Thus, for a given abundance of cluster-mass halos today, the expected number
of massive clusters at high redshift is much smaller for an EdS model than for
a low-density Universe (see Fig. 14). The normalization of the matter power
spectrum through the local cluster abundance, as discussed in Sect. 6.1, is
based on the prediction of the Press-Schechter function (133) or variants
thereof.

Comparison of the mass function with those obtained from N-body simu-
lations (see Fig.17), in which halos can be identified using a variety of tech-
niques, leads to the conclusion that, although the Press—Schechter formula
provides a very useful approximation of the halo abundance, it slightly over-
predicts the number of halos with mass $ M, (z) and underpredicts those with
M 2 M,(z). Various refinements to the original Press—Schechter approach
have been conducted, including the collapse of ellipsoidal mass overdensities
(Sheth & Tormen 1999). Jenkins et al. (2001) provided an accurate fit to
the halo abundance obtained from their numerical models; it is very similar
to the one obtained by Sheth & Tormen, and shares the simplicity of the
Press—Schechter formula.

The Press-Schechter approach can also be generalized to include statistical
information about the merger history of dark matter halos (e.g., Bond et al.
1991; Lacey & Coles 1993). These merger histories form the starting point
for semi-analytic models of galaxy formation and evolution (e.g., Kauffmann
et al. 1993, 1994); see Figs. 17 and 18.

The ‘universal’ density profile. From the numerical simulations, one can
investigate the density profile of typical dark matter halos. Navarro, Frenk &
White (1997; hereafter NFW) found that the density, averaged over spheres,
of dark matter halos is described by a ‘universal’ profile given by

_ dcper(2)
A = Gt e ..

which is shallower than isothermal (r—2) near the halo center and steeper

than isothermal for r 2 rg. The wvirial radius is denoted by ryg9 and is the

radius inside which the mean mass density of the halo equals 200p..(z),
2

where pe;(2) = %g) is the critical density of the Universe at the red-

shift of the halo. Hence, rygp immediately yields the mass of the halos,

M = 200pc;(z) 47r300/3. The ratio of the virial radius rago and the scale
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Fig. 17. One of the clusters obtained from N-body simulations. Shown is the dark
matter distribution at redshift z = 0 in a region of 21 x 21 x 8 (hilMpc)S. The
strongly structured mass in and around the cluster is clearly visible; it has been
formed through successive mergers of subclusters and groups (taken from the GIF
collaboration; Kauffmann et al. 1999a,b)

radius 7 is called the concentration parameter ¢ = rogo/rs. From the defini-
tion of 7999, the parameter d. can be related to the concentration parameter
through
200 c

3 In(l4+¢)—c/(1+¢c)"
NFW found that the concentration parameter depends on the mass of the
halo; it is smaller for higher-mass halos. Takada & Jain (2002) found for the
concentration parameter the dependence ¢ = co(1 + 2) " [M/M.(z = 0)]77,
with ¢y ~ 10 and 8 ~ 0.2.

There is no general agreement on the true ‘universality’ of the NFW
profile; different groups obtain slightly different profile slopes for r — 0,
whereas the behavior p oc r—3 for large r is reproduced by other teams as
well.

§e = (135)
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=3 72=2

Fig. 18. The redshift evolution of the galaxy distribution, obtained by semi-analytic
modeling based on the dark matter distribution as obtained from N-body simula-
tion. The matter distribution is shown as grey scales and for z = 0 is the same as
that shown in Fig. 17. Colors indicate the mean age of the stellar population in these
galaxies, with blue (red) indicating a young (old) population; red galaxies are seen
to be preferentially found in clusters. At high redshifts, there are of course no old
stellar populations (taken from the GIF collaboration; Kauffmann et al. 1999a,b)

The NFW gravitational lens. The gravitational lensing properties of
the NFW profile has been discussed by Bartelmann (1996), Golse & Kneib
(2002) and others. By projecting (134) along the line-of-sight, the surface
mass density can be written as

K(0) = K f(0/65) (136)
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where 65 = ry/D3"® is the angular scale radius,

2rsdcper (2
K = #U (137)
the characteristic surface mass density, and
1
f@)= s 01-F@], (138)
where h(1 .
Fla) = acosh(1/z)  Fl) = acos(1/z) (139)
V1—1z2 2 —1

for x < 1 and = > 1, respectively; taking the limit z — 1 in both cases yields
f(1) = 1/3. Similarly, the mean surface mass density %(f) inside 6 is given
by &(0) = kih(6/65), with

h(z) = ?22 7@ +m(3)] (140)

with k(1) = 2[1 — In(2)]. The absolute value of the shear is then, as usual,
v = K — k. The surface mass density diverges logarithmically as 8 — 0;
therefore, the NWF lens is critical and thus has a tangential and radial critical
curve. Since the deflection angle o = % is a smooth function also at § = 0,
the NFW lens produces either one or three images, i.e. the peculiarities of
the SIS model do not occur here.

6.3 The concordance model

The past few years have seen great advances in the determination of the
cosmological parameters, and the progress is continuing. At present, a set of
cosmological parameters can be defined which seems to be in accord with all
cosmological observations. Particularly notable is the fact that for each of
the parameters there are at least two very different methods for its determi-
nation. Here we briefly mention the major results which led to the current
concordance model, excluding the results from gravitational lensing, that will
be described in the later chapters.

The main observational results which led to the current set of cosmological
parameters came from the following sources:

e Anisotropies in the CMB. The CMB is nearly isotropic, but there are
temperature fluctuations of order AT/T ~ 10~° superimposed on the
isotropic field (plus, there is the dipole anisotropy reflecting our pecu-
liar motion). The primary anisotropies are due to density, temperature,
and potential inhomogeneities at the time of recombination, together
with corresponding peculiar velocities of the matter at this epoch (see
Hu & Dodelson 2002 for a recent review on the physics of the CMB
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anisotropies). Furthermore, anisotropies can be generated and modified
during the propagation of the light from z ~ 1100 to today, causing sec-
ondary anisotropies. The angular power spectrum of these anisotropies
depends on basically all cosmological parameters; therefore, their mea-
surements in recent years have yielded a wealth of cosmological con-
straints. Measurements before the release of the first WMAP data were
summarized and analyzed by Wang et al. (2003). The breathtaking re-
sults obtained by WMAP (Bennett et al. 2003; Spergel et al. 2003) have
confirmed earlier measurements, but with substantially smaller uncer-
tainties.

Light element abundances. During the first three minutes after the Big
Bang, the Universe was hot and dense enough to form the lightest chemi-
cal elements. Their primordial abundances depend on the baryon density
{2, of the Universe, as well as on the number of neutrino species which
determine the expansion rate in the radiation-dominated phase. Whereas
the primordial abundance of helium-4 (about 25% by mass) is fairly in-
sensitive to {2, the deuterium abundance is a very strong function of (2.
In the past few years, observations of intergalactic clouds in the form of
the Lyman-a absorption lines in high-redshift quasars have yielded de-
terminations of the deuterium-to-hydrogen abundance (e.g., Tytler et al.
2000). These measurements are extremely valuable, since this intergalac-
tic material is thought to be fairly unprocessed chemically, and thus still
reflects the primordial abundance ratios.

Type Ia supernovae. This type of supernova explosions is believed to
origin from the white dwarfs which just exceed their maximum possible
(Chandasekhar) mass; hence, they all would have essentially the same
explosion energy, which makes them excellent candidates for standard
candles. In fact, although their maximum luminosity shows an intrin-
sic spread, this variation is correlated with the characteristic width of
the light curve, which has been used for an empirical correction of the
maximum luminosity; after this correction, the remaining spread in their
peak luminosities is very small. No redshift evolution in their intrinsic
properties (such as rest-frame colors or spectra) has been found. Hence,
by measuring the flux at maximum light of SN Ia at different redshifts,
one can measure the luminosity distance as a function of z; on the other
hand, the luminosity distance depends on the cosmological parameters
2y and 24. Two teams have systematically searched for high-redshift
supernovae (Schmidt et al. 1998; Perlmutter et al. 1999), and constructed
the redshift—distance relation from their events, extending up to z ~ 1.
By now, many SN Ia have been found even with redshifts 2 1 (e.g. Riess
et al. 2004); the analysis of their brightness shows the expected behavior
for a Universe which is currently accelerating, but has be decelerating
before z ~ 0.7, as expected in a model with 2,4 ~ 0.7, 2, ~ 0.3, where
the transition to vacuum domination has occurred rather recently.
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e Large scale structure. The relation between the distribution of galaxies
and the underlying dark matter distribution is not known; on the other
hand, it is at least plausible that they follow each other closely. In par-
ticular on large spatial scales, say where the density field is still in the
linear regime (L 2 10h~!Mpc), one assumes that the number density
fluctuations of galaxies is proportional to that of the dark matter, with
the proportionality factor being called bias factor b. Then, the power
spectrum of the galaxy distribution is b? times the matter power spec-
trum. Large two-dimensional and three-dimensional (i.e. redshift) galaxy
surveys have recently been performed (in particular, the 2dF galaxy red-
shift survey; see e.g. Hawkins et al. 2003; the Sloan Digital Sky Survey,
e.g, Tegmark et al. 2004) to construct the galaxy power spectrum. From
that, the shape of the matter power spectrum, i.e., the shape parameter
I'spect, can be determined, among other parameters (e.g., Peacock 2003).
Statistics of the Ly-a forest. The spectra of all QSOs show a dense en-
semble of absorption lines shortward of the Ly-a emission line. These
absorption lines are due to the inhomogeneous distribution of intergalac-
tic hydrogen. At high redshift (z ~ 3) when these lines are observable in
the optical spectrum of QSOs, the corresponding density field of the gas



80

P. Schneider

is still in the linear regime. One therefore expects that the gas follows the
underlying dark matter closely. The gas is in photoionization equilibrium
with the UV radiation field, and obeys a simple temperature-density re-
lation. Most of the unknown physical parameters can be put into a mean
absorption which can be measured from the flux decrement across the
Ly-a emission line. The statistics of the Ly-a absorbers therefore probes
the corresponding matter density fluctuation spectrum. Recently, large
samples of QSO spectra became available for this kind of analysis; see
Kim et al. (2004) and Seljak et al. (2004) for recent results.

Cosmology from galaxy clusters. Clusters provide a wealth of cosmologi-
cal information: their abundance depends strongly on the normalization
og of the power spectrum, as mentioned in Sect. 6.1, the evolution of their
abundance with redshift probes the rate of growth of structure, which in
turn depends on the density parameters, and their correlation function
probes the shape of the power spectrum on large scales. In addition, clus-
ters are so large that one can assume their baryon-to-mass ratio fi, being
very similar to the cosmological mean of this ratio. Since the baryon
contents of clusters can be measured from their X-rays, and their mass
can be determined by X-rays, dynamics of their member galaxies and by
gravitational lensing, this baryon fraction can be determined and yields
fb &~ 0.17, with rather little scatter between clusters.

From these and several other methods, the set of cosmological parame-

ters can be determined. It must be realized that the various parameters are
correlated in a given data set, and sometime rather degenerate [such as seen
in (132)]. Estimates of one parameter need to be obtained by marginalizing
over the remaining ones, and the estimated error bars will depend on how
many parameters were considered in the analysis. This is not the place to
discuss these issues; we therefore present the currently ‘best’ estimates and
approximate 1-o error bars of the relevant parameters. In Fig. 19, some of
the constraints on the density parameters are summarized, and Fig. 20 illus-
trates the concordance in the determination of the power spectrum from a
large variety of different methods.

The Hubble constant, as determined from the Cepheid distances within
the Hubble Key Project (Freedman et al. 2001) and from combining CMB
data with galaxy redshift surveys, is

Hy~ 7lkms™'Mpc™ |, or h~0.7140.04, (141)

where the error from the CMB plus LSS is formally smaller than from
the Hubble Key Project, by about a factor of two.

From the deuterium abundance in QSO absorption lines, as well as from
WMAP combined with LSS and Ly-a statistics, the baryonic density
parameter is estimated to be

h% 2y, ~ 0.023 + 0.002 , (142)
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Fig. 20. The power spectrum of density fluctuations, as obtained from a variety
of measurement methods. The CMB anisotropies measure the fluctuations on the
largest spatial scale. Next come measurements from the clustering properties of
galaxies, as obtained in galaxy redshift surveys. The cluster abundance provides
a measurement of the fluctuation power near ~ 10h™" Mpc, i.e. close to the scale
where og is defined. Cosmic shear and the statistical properties of the Ly-a forest
provide reliable measurements on small spatial scales (taken from M. Tegmark’s
homepage, based on Tegmark et al. 2004)

where we give a slightly larger error than quoted in some recent papers.
Again, consistent results are obtained from totally different methods.
e The CMB anisotropies constrain the total density of the Universe to be
very close to unity,
O+ 24~ 1.02+0.02; (143)

combining the results from SN Ia studies with the evolution of the cluster
abundance, a similar conclusion is obtained, though with a larger error
estimate.

e The supernovae projects yield a joint constraint on the density parame-
ters as is shown in Fig. 19, and hence by themselves require, a non-zero
cosmological constant.
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The 2dF and SDSS galaxy redshift surveys determine the shape param-
eter; in particular, from the 2dFGRS one finds

Tipect ~ Qmh ~ 0.18 £ 0.02 , (144)

while the SDSS yield a slightly larger value.
CMB anisotropies, together with the LSS, yield a value for the matter
density parameter of

2, =029+0.04, (145)

a value that is in excellent agreement from cluster abundance evolution,
the determination of the shape parameter Ispect from the LSS, and the
baryon fraction fp, in clusters, when combined with the baryon density
(2, and the value for the Hubble constant.

The CMB anisotropy also determines the slope of the primordial den-
sity fluctuation spectrum, which turns out to be close to the Harrison—
Zeldovich value, n ~ 0.98 + 0.02.

Perhaps the parameter with the largest discrepancies between different
methods is the normalization of the power spectrum; we quote here the
value from Seljak et al. (2004), obtained by combining WMAP with the
SDSS galaxy redshift survey and the Ly-« forest analysis,

o5 = 0.89 +0.04 . (146)

The shape of the power spectrum, as shown in Fig. 20, is sufficiently well
determined to rule out any significant contribution of Hot Dark Matter
to the energy budget of the Universe. Translated into an upper bound on
the sum of neutrino masses, this constraint reads

> m, $0.5eV, (147)

an upper limit that is better by a factor of about 10 for the electron neu-
trino, and tremendously much better for the other two neutrino species,
than those obtained from laboratory measurements.

6.4 Challenges

One cannot finish a section on cosmology without pointing out the impres-
sive developments that we are currently witnessing, and some of their im-
plications. The concordance model that we have described in the previous
section is indeed a remarkable achievement, if one considers the huge variety
of methods and processes that have entered the determination of its param-
eters. There was no a priori guarantee that all of this would fit together.
Constraints obtained from nuclear physics about one minute after the Big
Bang are in agreement with those from the distribution of galaxies in the
local Universe!
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This concordance model has a large impact on other branches of physics,
most noticeably particle physics. The tight constraints on neutrino masses
obtained from cosmology is the most obvious example of a strong connection
between these two branches of fundamental science. Even more important
are the clear astronomical and cosmological evidences on the existence of
non-baryonic dark matter which most likely is in the form of some as yet
unknown species of elementary particles. This challenge has triggered a large
number of underground experiments for a direct search for these dark matter
particles. On the other hand, the next generation of particle accelerators
may cross the energy threshold where new physics will be discovered. Many
elementary particle physicist would put their eggs into the basket labeled
Super-Symmetry, a theory which would provide a ‘natural’ candidate for the
Cold Dark Matter particle, the neutralino.

Whereas one sees a possible solution to the Dark Matter problem, the sit-
uation is quite different with respect to vacuum energy, or the cosmological
constant, or Dark Energy — this variety of names already tells a lot about
how well this dominant component of the Universe is understood. Simple es-
timates of the density of vacuum energy from quantum field theory are barely
120 orders of magnitudes off, and we do not know why. It is not understood
why the vacuum energy density is essentially zero (compared to the simple es-
timates), but in addition, why it is then not ezactly zero. A constant vacuum
energy density is not the only ‘model’ discussed for the Dark Energy; differ-
ent equations of state p = w pc? cannot be ruled out by the current data,
except that w < —0.7 at the present epoch. Obtaining tighter constraints
on the equation of state of the Dark Energy from astronomical observations
is probably the only way to investigate it empirically. The existence of this
component to the cosmic energy budget arguably provides the largest chal-
lenge to fundamental physics, and its solution will almost certainly involve a
unification of the laws of gravity and quantum mechanics — the long-sought
theory of quantum gravity.

The concordance model also has made inflation a part of the standard
model. Invented some 20 years ago, inflation provides a solution to the flat-
ness problem (why the Universe has a total density parameter that is within
an order of magnitude around unity), the horizon problem (why the CMB
temperature on two opposite sides of the sky is the same within ~ 107%), and
the apparent absence of magnetic monopoles and other topological defects.
The model implies that the Universe underwent an early phase of exponen-
tial expansion, some 107325 after the Big Bang, before a phase transition
(‘reheating’) brought it back on track for normal Friedmann expansion. In
this model, the initial density fluctuations in the Universe are quantum fluc-
tuations, inflated to macroscopic scales in the exponential expansion phase.
The predictions of inflation, including that the Universe is nearly perfectly
flat (—2n, + 24 — 1] € 1) and that the primordial fluctuation spectrum is
very close to the Harrison—Zeldovich form, 1 —n < 1, have been impressively
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verified with the recent cosmological observations. Probing the physics of
inflation, e.g. through the presence of primordial gravitational waves which
would leave an observable imprint on the polarization of the CMB, is one of
the challenges of future cosmological studies.

7 Final remarks

These notes are an extended version of two introductory lectures given at the
beginning of the Saas-Fee course; they were intended to bring the participants
up to speed on topics on which much of the rest of the course rested. Over-
lap with some of the later material was unavoidable, but given the different
character and temperament of the three lecturers, maybe even not undesired.
Some of this overlap will surely be present in these write-ups; hopefully, our
readers do not mind.
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