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1 Introduction

Multiple images, microlensing (with appreciable magnifications) and arcs in
clusters are phenomena of strong lensing. In weak gravitational lensing, the
Jacobi matrix A is very close to the unit matrix, which implies weak dis-
tortions and small magnifications. Those cannot be identified in individual
sources, but only in a statistical sense. Because of that, the accuracy of any
weak lensing study will depend on the number of sources which can be used
for the weak lensing analysis. This number can be made large either by having
a large number density of sources, or to observe a large solid angle on the sky,
or both. Which of these two aspects is more relevant depends on the specific
application. Nearly without exception, the sources employed in weak lensing
studies up to now are distant galaxies observed in the optical or near-IR pass-
band, since they form the densest population of distant objects in the sky
(which is a statement both about the source population in the Universe and
the sensitivity of detectors employed in astronomical observations). To ob-
serve large number densities of sources, one needs deep observations to probe
the faint (and thus more numerous) population of galaxies. Faint galaxies,
however, are small, and therefore their observed shape is strongly affected by
the Point Spread Function, caused by atmospheric seeing (for ground-based
observations) and telescope effects. These effects need to be well understood
and corrected for, which is the largest challenge of observational weak lensing
studies. On the other hand, observing large regions of the sky quickly leads
to large data sets, and the problems associated with handling them. We shall
discuss some of the most important aspects of weak lensing observations in
Sect. 3.
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The effects just mentioned have prevented the detection of weak lensing
effects in early studies with photographic plates (e.g., Tyson et al. 1984); they
are not linear detectors (so correcting for PSF effects is not reliable), nor are
they sensitive enough for obtaining sufficiently deep images. Weak lensing re-
search came through a number of observational and technical advances. Soon
after the first giant arcs in clusters were discovered (see Sect. 1.2 of Schnei-
der, this volume; hereafter referred to as IN) by Soucail et al. (1987) and
Lynds & Petrosian (1989), Fort et al. (1988) observed objects in the lensing
cluster Abell 370 which were less extremely stretched than the giant arc, but
still showed a large axis ratio and was aligned in the direction tangent to its
separation vector to the cluster center; they termed these images ‘arclets’.
Indeed, with the spectroscopic verification (Mellier et al. 1991) of the arclet
A5 in A 370 being located at much larger distance from us than the lensing
cluster, the gravitational lens origin of these arclets was proven. When the
images of a few background galaxies are deformed so strongly that they can
be identified as distorted by lensing, there should be many more galaxy im-
ages where the distortion is much smaller, and where it can only be detected
by averaging over many such images. Tyson et al. (1990) reported this sta-
tistical distortion effect in two clusters, thereby initiating the weak lensing
studies of the mass distribution of clusters of galaxies. This very fruitful field
of research was put on a rigorous theoretical basis by Kaiser & Squires (1993)
who showed that from the measurement of the (distorted) shapes of galaxies
one can obtain a parameter-free map of the projected mass distribution in
clusters.

The flourishing of weak lensing in the past ten years was mainly due to
three different developments. First, the potential of weak lensing was realized,
and theoretical methods were worked out for using weak lensing measure-
ments in a large number of applications, many of which will be described in
later sections. This realization, reaching out of the lensing community, also
slowly changed the attitude of time allocation committees, and telescope
time for such studies was granted. Second, returning to the initial remark,
one requires large fields-of-views for many weak lensing application, and the
development of increasingly large wide-field cameras installed at the best as-
tronomical sites has allowed large observational progress to be made. Third,
quantitative methods for the correction of observations effects, like the blur-
ring of images by the atmosphere and telescope optics, have been developed,
of which the most frequently used one came from Kaiser et al. (1995). We
shall describe this technique, its extensions, tests and alternative methods in
Sect. 3.5.

We shall start by describing the basics of weak lensing in Sect. 2, namely
how the shear, or the projected tidal gravitational field of the intervening
matter distribution can be determined from measuring the shapes of images
of distant galaxies. Practical aspects of observations and the measurements
of image shapes are discussed in Sect. 3. The next two sections are devoted
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to clusters of galaxies; in Sect. 4, some general properties of clusters are
described, and their strong lensing properties are considered, whereas in Sect.
5 weak lensing by clusters is treated. As already mentioned, this allows us
to obtain a parameter-free map of the projected (2-D) mass distribution of
clusters.

We then turn to lensing by the inhomogeneously distributed matter distri-
bution in the Universe, the large-scale structure. Starting with Gunn (1967),
the observation of the distortion of light bundles by the inhomogeneously dis-
tributed matter in the Universe was realized as a unique probe to study the
properties of the cosmological (dark) matter distribution. The theory of this
cosmic shear effect, and its applications, was worked out in the early 1990’s
(e.g., Blandford et al. 1991). In contrast to the lensing situations studied in
the rest of this book, here the deflecting mass is manifestly three-dimensional;
we therefore need to generalize the theory of geometrically-thin mass distri-
butions and consider the propagation of light in an inhomogeneous Universe.
As will be shown, to leading order this situation can again be described in
terms of an ‘equivalent’ surface mass density. The theoretical aspects of this
large-scale structure lensing, or cosmic shear, are contained in Sect. 6. Al-
though the theory of cosmic shear was well in place for quite some time, it
took until the year 2000 before it was observationally discovered, indepen-
dently and simultaneously by four groups. These early results, as well as the
much more extensive studies carried out in the past few years, are presented
and discussed in Sect. 7. In Sect. 8, we consider the weak lensing effects of
galaxies, which can be used to investigate the mass profile of galaxies. As we
shall see, this galaxy-galaxy lensing, first detected by Brainerd et al. (1996),
is directly related to the connection between the galaxy distribution in the
Universe and the underlying (dark) matter distribution; this lensing effect is
therefore ideally suited to study the biasing of galaxies; we shall also describe
alternative lensing effects for investigating the relation between luminous and
dark matter. In the final Sect. 9 we discuss higher-order cosmic shear statis-
tics and how lensing by the large-scale structure affects the lens properties
of localized mass concentrations. Some final remarks are given in Sect. 10.

Until very recently, weak lensing has been considered by a considerable
fraction of the community as ‘black magic’ (or to quote one member of a PhD
examination committee: “You have a mass distribution about which you don’t
know anything, and then you observe sources which you don’t know either,
and then you claim to learn something about the mass distribution?”). Most
likely the reason for this is that weak lensing is indeed weak. One cannot ‘see’
the effect, nor can it be graphically displayed easily. Only by investigating
many faint galaxy images can a signal be extracted from the data, and the
human eye is not sufficient to perform this analysis. This is different even
from the analysis of CMB anisotropies which, similarly, need to be analyzed
by statistical means, but at least one can display a temperature map of the
sky. However, in recent years weak lensing has gained a lot of credibility,
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not only because it has contributed substantially to our knowledge about
the mass distribution in the Universe, but also because different teams, with
different data set and different data analysis tools, agree on their results.

Weak lensing has been reviewed before; we shall mention only five ex-
tensive reviews. Mellier (1999) provides a detailed compilation of the weak
lensing results before 1999, whereas Bartelmann & Schneider (2001; hereafter
BS01) present a detailed account of the theory and technical aspects of weak
lensing.1 More recent summaries of results can also be found in Wittman
(2002) and Refregier (2003a), as well as the cosmic shear review by van
Waerbeke & Mellier (2003).

The coverage of topics in this review has been a subject of choice; no
claim is made about completeness of subjects or references. In particular,
due to the lack of time during the lectures, the topic of weak lensing of
the CMB temperature fluctuations has not been covered at all, and is also
not included in this written version. Apart from this increasingly important
subject, I hope that most of the currently actively debated aspects of weak
lensing are mentioned, and the interested reader can find her way to more
details through the references provided.

2 The principles of weak gravitational lensing

2.1 Distortion of faint galaxy images

Images of distant sources are distorted in shape and size, owing to the tidal
gravitational field through which light bundles from these sources travel to us.
Provided the angular size of a lensed image of a source is much smaller than
the characteristic angular scale on which the tidal field varies, the distortion
can be described by the linearized lens mapping, i.e., the Jacobi matrix A.
The invariance of the surface brightness by gravitational light deflection,
I(θ) = I(s)[β(θ)], together with the locally linearized lens equation,

β − β0 = A(θ0) · (θ − θ0) , (1)

where β0 = β(θ0), then describes the distortion of small lensed images as

I(θ) = I(s)[β0 + A(θ0) · (θ − θ0)] . (2)

We recall (see IN) that the Jacobi matrix can be written as

A(θ) = (1 − κ)
(

1 − g1 −g2

−g2 1 + g1

)
, where g(θ) =

γ(θ)
[1 − κ(θ)]

(3)

1 We follow here the notation of BS01, except that we denote the angular diameter
distance explicitly by Dang, whereas D is the comoving angular diameter distance,
which we also write as fK , depending on the context; see Sect. 4.3 of IN for more
details. In most cases, the distance ratio Dds/Ds is used, which is the same for
both distance definitions.
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is the reduced shear, and the gα, α = 1, 2, are its Cartesian components.
The reduced shear describes the shape distortion of images through gravita-
tional light deflection. The (reduced) shear is a 2-component quantity, most
conveniently written as a complex number,

γ = γ1 + iγ2 = |γ| e2iϕ ; g = g1 + ig2 = |g| e2iϕ ; (4)

its amplitude describes the degree of distortion, whereas its phase ϕ yields
the direction of distortion. The reason for the factor ‘2’ in the phase is the
fact that an ellipse transforms into itself after a rotation by 180◦. Consider a
circular source with radius R (see Fig. 1); mapped by the local Jacobi matrix,
its image is an ellipse, with semi-axes

R

1 − κ− |γ| =
R

(1 − κ)(1 − |g|) ;
R

1 − κ + |γ| =
R

(1 − κ)(1 + |g|)

and the major axis encloses an angle ϕ with the positive θ1-axis. Hence,
if sources with circular isophotes could be identified, the measured image
ellipticities would immediately yield the value of the reduced shear, through
the axis ratio

|g| =
1 − b/a

1 + b/a
⇔ b

a
=

1 − |g|
1 + |g|

and the orientation of the major axis ϕ. In these relations it was assumed
that b ≤ a, and |g| < 1. We shall discuss the case |g| > 1 later.

S
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A−1

convergence only
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shear
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O

β2

β1

θ2

θ1

Fig. 1. A circular source, shown at the left, is mapped by the inverse Jacobian A−1

onto an ellipse. In the absence of shear, the resulting image is a circle with modified
radius, depending on κ. Shear causes an axis ratio different from unity, and the
orientation of the resulting ellipse depends on the phase of the shear (source: M.
Bradac)

However, faint galaxies are not intrinsically round, so that the observed
image ellipticity is a combination of intrinsic ellipticity and shear. The strat-
egy to nevertheless obtain an estimate of the (reduced) shear consists in
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locally averaging over many galaxy images, assuming that the intrinsic ellip-
ticities are randomly oriented. In order to follow this strategy, one needs to
clarify first how to define ‘ellipticity’ for a source with arbitrary isophotes
(faint galaxies are not simply elliptical); in addition, seeing by the atmo-
spheric turbulence will blur – and thus circularize – observed images, together
with other effects related to the observation procedure. We will consider these
issues in turn.

2.2 Measurements of shapes and shear

Definition of image ellipticities. Let I(θ) be the brightness distribution
of an image, assumed to be isolated on the sky; the center of the image can
be defined as

θ̄ ≡
∫

d2θ I(θ) qI [I(θ)] θ∫
d2θ I(θ) qI [I(θ)]

, (5)

where qI(I) is a suitably chosen weight function; e.g., if qI(I) = H(I − Ith),
where H(x) is the Heaviside step function, θ̄ would be the center of light
within a limiting isophote of the image. We next define the tensor of second
brightness moments,

Qij =
∫
d2θ I(θ) qI [I(θ)] (θi − θ̄i) (θj − θ̄j)∫

d2θ I(θ) qI [I(θ)]
, i, j ∈ {1, 2} . (6)

Note that for an image with circular isophotes, Q11 = Q22, and Q12 = 0.
The trace of Q describes the size of the image, whereas the traceless part of
Qij contains the ellipticity information. From Qij , one defines two complex
ellipticities,

χ ≡ Q11 − Q22 + 2iQ12

Q11 + Q22
and ε ≡ Q11 − Q22 + 2iQ12

Q11 + Q22 + 2(Q11Q22 − Q2
12)1/2

. (7)

Both of them have the same phase (because of the same numerator), but a
different absolute value. Fig. 2 illustrates the shape of images as a function
of their complex ellipticity χ. For an image with elliptical isophotes of axis
ratio r ≤ 1, one obtains

|χ| =
1 − r2

1 + r2
; |ε| =

1 − r

1 + r
. (8)

Which of these two definitions is more convenient depends on the context;
one can easily transform one into the other,

ε =
χ

1 + (1 − |χ|2)1/2
, χ =

2ε
1 + |ε|2 . (9)

In fact, other (but equivalent) ellipticity definitions have been used in the lit-
erature (e.g., Kochanek 1990; Miralda–Escudé 1991; Bonnet & Mellier 1995),
but the two given above appear to be most convenient.
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Fig. 2. The shape of image ellipses
for a circular source, in dependence
on their two ellipticity components χ1

and χ2; a corresponding plot in term
of the ellipticity components εi would
look quite similar. Note that the ellip-
ticities are rotated by 90◦ when χ →
−χ (source: D. Clowe)

From source to image ellipticities. In total analogy, one defines the
second-moment brightness tensor Q(s)

ij , and the complex ellipticities χ(s) and
ε(s) for the unlensed source. From

Q(s)
ij =
∫
d2β I(s)(θ) qI [I(s)(β)] (βi − β̄i) (βj − β̄j)∫

d2β I(s)(θ) qI [I(s)(β)]
, i, j ∈ {1, 2} , (10)

one finds with d2β = detAd2θ, β − β̄ = A
(
θ − θ̄
)
, that

Q(s) = AQAT = AQA , (11)

where A ≡ A(θ̄). Using the definitions of the complex ellipticities, one finds
the transformations (e.g., Schneider & Seitz 1995; Seitz & Schneider 1997)

χ(s) =
χ− 2g + g2χ∗

1 + |g|2 − 2Re(gχ∗)
; ε(s) =






ε− g

1 − g∗ε
if |g| ≤ 1 ;

1 − gε∗

ε∗ − g∗
if |g| > 1 .

(12)

The inverse transformations are obtained by interchanging source and image
ellipticities, and g → −g in the foregoing equations.

Estimating the (reduced) shear. In the following we make the assump-
tion that the intrinsic orientation of galaxies is random,

E
(
χ(s)
)

= 0 = E
(
ε(s)
)

, (13)

which is expected to be valid since there should be no direction singled out in
the Universe. This then implies that the expectation value of ε is [as obtained
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by averaging the transformation law (12) over the intrinsic source orientation]

E(ε) =






g if |g| ≤ 1

1/g∗ if |g| > 1 .
(14)

This is a remarkable result (Schramm & Kaiser 1995; Seitz & Schneider 1997),
since it shows that each image ellipticity provides an unbiased estimate of the
local shear, though a very noisy one. The noise is determined by the intrinsic
ellipticity dispersion

σε =
√〈

ε(s)ε(s)∗
〉

,

in the sense that, when averaging over N galaxy images all subject to the
same reduced shear, the 1-σ deviation of their mean ellipticity from the true
shear is σε/

√
N . A more accurate estimate of this error is

σ = σε
[
1 − min

(
|g|2, |g|−2

)]
/
√

N (15)

(Schneider et al. 2000). Hence, the noise can be beaten down by averaging
over many galaxy images; however, the region over which the shear can be
considered roughly constant is limited, so that averaging over galaxy images is
always related to a smoothing of the shear. Fortunately, we live in a Universe
where the sky is ‘full of faint galaxies’, as was impressively demonstrated by
the Hubble Deep Field images (Williams et al. 1996) and previously from
ultra-deep ground-based observations (Tyson 1987). Therefore, the accuracy
of a shear estimate depends on the local number density of galaxies for which
a shape can be measured. In order to obtain a high density, one requires
deep imaging observations. As a rough guide, on a 3 hour exposure with a
4-meter class telescope, about 30 galaxies per arcmin2 can be used for a shape
measurement.

In fact, considering (14) we conclude that the expectation value of the
observed ellipticity is the same for a reduced shear g and for g′ = 1/g∗.
Schneider & Seitz (1995) have shown that one cannot distinguish between
these two values of the reduced shear from a purely local measurement, and
term this fact the ‘local degeneracy’; this also explains the symmetry between
|g| and |g|−1 in (15). Hence, from a local weak lensing observation one can-
not tell the case |g| < 1 (equivalent to detA > 0) from the one of |g| > 1
or detA < 0. This local degeneracy is, however, broken in large-field obser-
vations, as the region of negative parity of any lens is small (the Einstein
radius inside of which |g| > 1 of massive lensing clusters is typically <∼ 30′′,
compared to data fields of several arcminutes used for weak lensing studies
of clusters), and the reduced shear must be a smooth function of position on
the sky.

Whereas the transformation between source and image ellipticity appears
simpler in the case of χ than ε – see (12), the expectation value of χ cannot be
easily calculated and depends explicitly on the intrinsic ellipticity distribution
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of the sources. In particular, the expectation value of χ is not simply related
to the reduced shear (Schneider & Seitz 1995). However, in the weak lensing
regime, κ ) 1, |γ| ) 1, one finds

γ ≈ g ≈ 〈ε〉 ≈ 〈χ〉
2

. (16)

2.3 Tangential and cross component of shear

Components of the shear. The shear components γ1 and γ2 are defined
relative to a reference Cartesian coordinate frame. Note that the shear is not
a vector (though it is often wrongly called that way in the literature), owing
to its transformation properties under rotations: Whereas the components
of a vector are multiplied by cosϕ and sinϕ when the coordinate frame is
rotated by an angle ϕ, the shear components are multiplied by cos(2ϕ) and
sin(2ϕ), or simply, the complex shear gets multiplied by e−2iϕ. The reason for
this transformation behavior of the shear traces back to its original definition
as the traceless part of the Jacobi matrix A. This transformation behavior is
the same as that of the linear polarization; the shear is therefore a polar. In
analogy with vectors, it is often useful to consider the shear components in
a rotated reference frame, that is, to measure them w.r.t. a different direc-
tion; for example, the arcs in clusters are tangentially aligned, and so their
ellipticity is oriented tangent to the radius vector in the cluster.

O

φ

α = 0◦
εt = 0.3
ε× = 0.0

α = 45◦
εt = 0.0
ε× = 0.3

α = 90◦
εt = −0.3
ε× = 0.0

Fig. 3. Illustration of the tangen-
tial and cross-components of the
shear, for an image with ε1 = 0.3,
ε2 = 0, and three different direc-
tions φ with respect to a reference
point (source: M. Bradac)

If φ specifies a direction, one defines the tangential and cross components
of the shear relative to this direction as

γt = −Re
[
γ e−2iφ

]
, γ× = −Im

[
γ e−2iφ

]
; (17)

For example, in case of a circularly-symmetric matter distribution, the shear
at any point will be oriented tangent to the direction towards the center
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of symmetry. Thus in this case choose φ to be the polar angle of a point;
then, γ× = 0. In full analogy to the shear, one defines the tangential and
cross components of an image ellipticity, εt and ε×. An illustration of these
definitions is provided in Fig. 3.

The sign in (17) is easily explained (and memorized) as follows: consider
a circular mass distribution and a point on the θ1-axis outside the Einstein
radius. The image of a circular source there will be stretched in the direction
of the θ2-axis. In this case, φ = 0 in (17), the shear is real and negative, and
in order to have the tangential shear positive, and thus to define tangential
shear in accordance with the intuitive understanding of the word, a minus
sign is introduced. Negative tangential ellipticity implies that the image is
oriented in the radial direction. We warn the reader that sign conventions and
notations have undergone several changes in the literature, and the current
author had his share in this.

Minimum lens strength for its weak lensing detection. As a first
application of this decomposition, we consider how massive a lens needs to
be in order that it produces a detectable weak lensing signal. For this purpose,
consider a lens modeled as an SIS with one-dimensional velocity dispersion
σv. In the annulus θin ≤ θ ≤ θout, centered on the lens, let there be N galaxy
images with positions θi = θi(cosφi, sinφi) and (complex) ellipticities εi. For
each one of them, consider the tangential ellipticity

εti = −Re
(
εi e−2iφi

)
. (18)

The weak lensing signal-to-noise for the detection of the lens obtained by
considering a weighted average over the tangential ellipticity is (see BS01,
Sect. 4.5)

S
N

=
θE

σε

√
πn
√

ln(θout/θin)

= 8.4
(

n

30 arcmin−2

)1/2 ( σε
0.3

)−1
(

σv

600 km s−1

)2

(19)

×
(

ln(θout/θin)
ln 10

)1/2〈Dds

Ds

〉
,

where θE = 4π(σv/c)2(Dds/Ds) is the Einstein radius of an SIS, n the mean
number density of galaxies, and the average of the distance ratio is taken
over the source population from which the shear measurements are obtained.
Hence, the S/N is proportional to the lens strength (as measured by θE),
the square root of the number density, and inversely proportional to σε, as
expected. From this consideration we conclude that clusters of galaxies with
σv >∼ 600 km/s can be detected with sufficiently large S/N by weak lensing,
but individual galaxies (σv <∼ 200 km/s) are too weak as lenses to be detected
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individually. Furthermore, the final factor in (19) implies that, for a given
source population, the cluster detection will be more difficult for increasing
lens redshift.

Mean tangential shear on circles. In the case of axi-symmetric mass
distributions, the tangential shear is related to the surface mass density κ(θ)
and the mean surface mass density κ̄(θ) inside the radius θ by γt = κ̄− κ, as
can be easily shown by the relation in Sect. 3.1 of IN. It is remarkable that
a very similar expression holds for general matter distributions. To see this,
we start from Gauss’ theorem, which states that

∫ θ

0
d2ϑ ∇ · ∇ψ = θ

∮
dϕ ∇ψ · n ,

where the integral on the left-hand side extends over the area of a circle of
radius θ (with its center chosen as the origin of the coordinate system), ψ is
an arbitrary scalar function, the integral on the right extends over the circle
with radius θ, and n is the outward directed normal on this circle. Taking ψ
to be the deflection potential and noting that ∇2ψ = 2κ, one obtains

m(θ) ≡ 1
π

∫ θ

0
d2ϑ κ(ϑ) =

θ

2π

∮
dϕ

∂ψ

∂θ
, (20)

where we used that ∇ψ · n = ψ,θ. Differentiating this equation with respect
to θ yields

dm

dθ
=

m

θ
+

θ

2π

∮
dϕ

∂2ψ

∂θ2
. (21)

Consider a point on the θ1-axis; there, ψ,θθ = ψ11 = κ + γ1 = κ − γt. This
last expression is independent on the choice of coordinates and must therefore
hold for all ϕ. Denoting by 〈κ(θ)〉 and 〈γt(θ)〉 the mean surface mass density
and mean tangential shear on the circle of radius θ, (21) becomes

dm

dθ
=

m

θ
+ θ [〈κ(θ)〉 − 〈γt(θ)〉] . (22)

The dimensionless mass m(θ) in the circle is related to the mean surface mass
density inside the circle κ̄(θ) by

m(θ) = θ2 κ̄(θ) = 2
∫ θ

0
dϑ ϑ 〈κ(ϑ)〉 . (23)

Together with dm/dθ = 2θ 〈κ(θ)〉, (22) becomes, after dividing through θ,

〈γt〉 = κ̄− 〈κ〉 , (24)

a relation which very closely matches the result mentioned above for axi-
symmetric mass distributions (Bartelmann 1995). One important immediate
implication of this result is that from a measurement of the tangential shear,
averaged over concentric circles, one can determine the azimuthally-averaged
mass profile of lenses, even if the density is not axi-symmetric.
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2.4 Magnification effects

Recall from IN that a magnification µ changes source counts according to

n(> S, θ, z) =
1

µ(θ, z)
n0

(
>

S

µ(θ, z)
, z

)
, (25)

where n(> S, z) and n0(> S, z) are the lensed and unlensed cumulative num-
ber densities of sources, respectively. The first argument of n0 accounts for
the change of the flux (which implies that a magnification µ > 1 allows the
detection of intrinsically fainter sources), whereas the prefactor in (25) stems
from the change of apparent solid angle. In the case that n0(S) ∝ S−α, this
yields

n(> S)
n0(> S)

= µα−1 , (26)

and therefore, if α > 1 (< 1), source counts are enhanced (depleted); the
steeper the counts, the stronger the effect. In the case of weak lensing, where
|µ − 1| ) 1, one probes the source counts only over a small range in flux,
so that they can always be approximated (locally) by a power law. Provided
that κ ) 1, |γ| ) 1, a further approximation applies,

µ ≈ 1 + 2κ ; and
n(> S)
n0(> S)

≈ 1 + 2(α− 1)κ . (27)

Thus, from a measurement of the local number density n(> S) of galaxies, κ
can in principle be inferred directly. It should be noted that α ∼ 1 for galax-
ies in the B-band, but in redder bands, α < 1 (e.g., Ellis 1997); therefore,
one expects a depletion of their counts in regions of magnification µ > 1.
Broadhurst et al. (1995) have discussed in detail the effects of magnification
in weak lensing. Not only are the number counts affected, but since this is
a redshift-dependent effect (since both κ and γ depend, for a given physi-
cal surface mass density, on the source redshift), the redshift distribution of
galaxies is locally changed by magnification.

Since magnification is merely a stretching of solid angle, Bartelmann &
Narayan (1995) pointed out that magnified images at fixed surface bright-
ness have a larger solid angle than unlensed ones; in addition, the sur-
face brightness of a galaxy is expected to be a strong function of redshift
[I ∝ (1 + z)−4], owing to the Tolman effect. Hence, if this effect could be
harnessed, a (redshift-dependent) magnification could be measured statisti-
cally. Unfortunately, this method is hampered by observational difficulties;
it seems that estimating a reliable estimate for the surface brightness from
seeing-convolved images (see Sect. 3.5) is even more difficult than determining
image shapes.
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Fig. 4. The size of galaxies ob-
served with the ACS camera on-
board HST. Small dots denote
the half-light radius of individual
galaxies, bigger points with er-
ror bars show the mean size in
a magnitude bin. The horizon-
tal line of point at rh ≈ 0.′′08
correspond to stellar images in
the ACS fields, as they have all
the same size but vary in magni-
tude, and points at even smaller
size are noise artefacts which are
not used for any lensing analysis
(source: T. Schrabback)

3 Observational issues and challenges

Weak lensing, employing the shear method, relies on the shape measurements
of faint galaxy images. Since the noise due to intrinsic ellipticity dispersion is
∝ σε/

√
n, one needs a high number density n to beat this noise component

down. However, the only way to increase the number density of galaxies is
to observe to fainter magnitudes. As it turns out, galaxies at faint magni-
tudes are small, in fact typically smaller than the size of the point-spread
function (PSF), or the seeing disk (see Fig. 4). Hence, for them one needs
usually large correction factors between the true ellipticity and that of the
seeing-convolved image. On the other hand, fainter galaxies tend to probe
higher-redshift galaxies, which increases the lensing signal due to Dds/Ds-
dependence of the ‘lensing efficiency’.

3.1 Strategy

In the present observational situation, only the optical sky is densely popu-
lated with sources; therefore, weak lensing observations are performed with
optical (or near-IR) CCD-cameras (photometric plates are not linear enough
to measure these subtle effects). In order to substantiate this comment, note
that the Hubble Deep Field North contains about 3000 galaxies, but only
seven radio sources are detected in a very deep integration with the VLA
(Richards et al. 1998).2 In order to obtain a high number density of sources,
2 The source density on the radio sky will become at least comparable to that

currently on the optical sky with the future Square Kilometer Array (SKA).
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long exposures are needed: as an illustrative example, to get a number den-
sity of useful galaxies (i.e., those for which a shape can be measured reliably)
of n ∼ 20 arcmin−2, one needs ∼ 2 hours integration on a 4-m class telescope
in good seeing σ <∼ 1′′.

Furthermore, large solid angles are desired, either to get large areas around
clusters for their mass reconstruction, or to get good statistics of lenses on
blank field surveys, such as they are needed for galaxy-galaxy lensing and cos-
mic shear studies. It is now possible to cover large area in reasonable amounts
of observing time, since large format CCD cameras have recently become
available; for example, the Wide-Field Imager (WFI) at the ESO/MPG 2.2-
m telescope at La Silla has (8K)2 pixels and covers an area of ∼ (0.5 deg)2.
Until recently, the CFH12K camera with 8K×12K pixels and field ∼ 30′×45′
was mounted at the Canada-French-Hawaii Telescope (CFHT) on Mauna Kea
and was arguably the most efficient wide-field imaging instrument hitherto.
In 2003, MegaCam has been put into operation on the CFTH which has
(18K)2 pixels and covers ∼ 1 deg2. Several additional cameras of comparable
size will become operational in the near future, including the 1 deg2 instru-
ment OmegaCAM on the newly built VLT Survey Telescope on Paranal. The
largest field camera on a 10-m class telescope is SuprimeCAM, a 34′ × 27′
multi-chip camera on the Subaru 8.2-meter telescope. Unfortunately, many
optical astronomers (and decision making panels of large facilities) consider
the prime use of large telescopes to be spectroscopy; for example, although
the four ESO VLT unit telescopes are equipped with a total of ten instru-
ments, the largest imagers on the VLT are the two FORS instruments, with
a ∼ 6.′7 field-of-view.3

The typical pixel size of these cameras is ∼ 0.′′2, which is needed to sample
the seeing disk in times of good seeing. From Fig. 4 one concludes immediately
that the seeing conditions are absolutely critical for weak lensing: an image
with 0.′′6 is substantially more useful than one with taken under the more
typical condition of 0.′′8 (see Fig. 5). There are two separate reasons why the
seeing is such an important factor. First, seeing blurs the images and make
them rounder; accordingly, to correct for the seeing effect, a larger correction
factor is needed in the worse seeing conditions. In addition, since the galaxy
images from which the shear is to be determined are faint, a larger seeing
smears the light from these galaxies over a larger area on the sky, reducing
its contrast relative to the sky noise, and therefore leads to noisier estimates
of the ellipticities even before the correction.
3 Nominally, the VIMOS instrument has a four times larger f.o.v., but our analysis

of early VIMOS imaging data indicates that it is totally useless for weak lensing
observations, owing to its highly anisotropic PSF, which even seems to show
discontinuities on chips, and its large variation of the seeing size across chips. It
may be hoped that some of these image defects are improved after a complete
overhaul of the instrument which occurred recently.
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Fig. 5. Mean number density of galaxy images for which a shape can be measured
(upper row) and the r.m.s. noise of a shear measurement in an area of 1 arcmin2 as
a function of the full width at half maximum (FWHM) of the point-spread function
(PSF) – i.e., the seeing. The data were taken on 20 different fields with the FORS2
instrument at the VLT, with different filters (I, R, V and R). Squares show data
taken with about 2 hours integration time, circles those with ∼ 45 min exposure.
The right-most panels show the coadded data of I,R,V for the long exposures, and
I,V,B for the 45min fields. The useful number of galaxy images is seen to be a strong
function of the seeing, except for the I-band (which is related to the higher sky
brightness and the way objects are detected). But even more dramatically, the noise
due to intrinsic source ellipticity decreases strongly for better seeing conditions,
which is due to (1) higher number density of galaxies for which a shape can be
measured, and (2) smaller corrections for PSF blurring, reducing the associated
noise of this correction. In fact, this figure shows that seeing is a more important
quantity than the total exposure time (from Clowe et al. 2004b)

Deep observations of a field require multiple exposures. As a characteristic
number, the exposure time for an R-band image on a 4-m class telescope is
not longer than ∼ 10 min to avoid the non-linear part of the CCD sensitivity
curve (exposures in shorter wavelength bands can be longer, since the night
sky is fainter in these filters). Therefore, these large-format cameras imply a
high data rate; e.g., one night of observing with the WFI yields ∼ 30 GB of
science and calibration data. This number will increase by a factor ∼ 6 for
MegaCam. Correspondingly, handling this data requires large disk space for
efficient data reduction.
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3.2 Data reduction: Individual frames

We shall now consider a number of issues concerning the reduction of imaging
data, starting here with the steps needed to treat individual chips on indi-
vidual frames, and later consider aspects of combining them into a coadded
image.

Flatfielding. The pixels of a CCD have different sensitivity, i.e., they yield
different counts for a given amount of light falling onto them. In order to
calibrate the pixel sensitivity, one needs flatfielding. Three standard methods
for this are in use:

1. Dome-flats: a uniformly illuminated screen in the telescope dome is ex-
posed; the counts in the pixels are then proportional to their sensitivity.
The problem here is that the screen is not really of uniform brightness.

2. Twilight-flats: in the period of twilight after sunset, or before sunrise, the
cloudless sky is nearly uniformly bright. Short exposures of regions of the
sky without bright stars are then used to calibrate the pixel sensitivity.

3. Superflats: if many exposures with different pointings are taken with a
camera during a night, then any given pixel is not covered by a source for
most of the exposures (because the fraction of the sky at high galactic
latitudes which is covered by objects is fairly small, as demonstrated by
the deep fields taken by the HST). Hence, the (exposure-time normalized)
counts of any pixel will show, in addition to a little tail due to those ex-
posures when a source has covered it, a distribution around its sensitivity
to the uniform night-sky brightness; from that distribution, the flat-field
can be constructed, by taking its mode or its median.

Bad pixels. Each CCD has defects, in that some pixels are dead or show
a signal unrelated to their illumination. This can occur as individual pixels,
or whole pixel columns. No information of the sky image is available at these
pixel positions. One therefore employs dithering: several exposures of the
same field, but with slightly different pointings (dither positions) are taken.
Then, any position of the field falls on bad pixels only in a small fraction
of exposures, so that the full two-dimensional brightness distribution can be
recovered.

Cosmic rays. Those mimic groups of bad pixels; they can be removed owing
to the fact that a given point of the image will most likely be hit by a cosmic
only once, so that by comparison between the different exposures, cosmic rays
can be removed (or more precisely, masked). Another signature of a cosmic
ray is that the width of its track is typically much smaller than the seeing
disk, the minimum size of any real source.
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Fig. 6. A flat field for the CFH12K camera, showing the sensitivity variations
between pixels and in particular between chips. Also, bad columns are clearly seen

Bright stars. Those cause large diffraction spikes, and depending on the
optics and the design of the camera, reflection rings, ghost images and other
unwanted features. It is therefore best to choose fields where no or very few
bright stars are present. The diffraction spikes of stars need to be masked, as
well as the other features just mentioned.

Fringes. Owing to light reflection within the CCD, patterns of illumination
across the field can be generated (see Fig. 8); this is particularly true for thin
chips when rather long wavelength filters are used. In clear nights, the fringe
pattern is stable, i.e., essentially the same for all images taken during the
night; in that case, it can be deduced from the images and subtracted off
the individual exposures. However, if the nights are not clear, this procedure
no longer works well; it is then safer to observe at shorter wavelength. For
example, for the WFI, fringing is a problem for I-band images, but for the
R-band filter, the amplitude of fringing is small. For the FORS instruments
at the VLT, essentially no fringing occurs even in the I band (Maoli et al.
2001).

Gaps. The individual CCDs in multi-chip cameras cannot be brought to-
gether arbitrarily close; hence, there are gaps between the CCDs (see Fig. 9
for an example). In order to cover the gaps, the dither pattern can be chosen
such as to cover the gaps, so that they fall on different parts of the sky in
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Fig. 7. A raw frame from the CFH12K camera, showing quite a number of ef-
fects mentioned in the text: bad column, saturation of bright stars, bleeding, and
sensitivity variations across the field and in particular between chips

different exposures. As we shall see, such relatively large dither patterns also
provide additional advantages.

Satellite trails, asteroid trails. Those have to be identified, either by
visual inspection (currently the default) or by image recognition software
which can detect these linear features which occur either only once, or at
different positions on different exposures. These are then masked, in the same
way as some of the other features mentioned above.

3.3 Data reduction: coaddition

After taking several exposures with slightly different pointing positions (for
the reasons given above), frames shall be coadded to a sum-frame; some of
the major steps in this coaddition procedure are:

Astrometric solution. One needs to coadd data from the same true (or
sky) position, not the same pixel position. Therefore, one needs a very precise
mapping from sky coordinates to pixel coordinates. Field distortions, which
occur in every camera (and especially so in wide-field cameras), make this
mapping non-linear (see Fig. 10). Whereas the distortion map of the tele-
scope/camera system is to a large degree constant and therefore one of the
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Fig. 8. The two left panels show the fringe patterns of images taken with the WFI
in the I-band; the upper one was taken during photometric conditions, the lower
one under non-photometric conditions. Since the fringe pattern is spatially stable,
it can be corrected for (left panels), but the result is satisfactory only in the former
case (source: M. Schirmer & T. Erben)

Fig. 9. Layout of the Wide Field
Imager (WFI) at the ESO/MPG
2.2m telescope at La Silla. The
eight chips each have ∼ 2048 ×
4096 pixels and cover ∼ 7.′5 × 15′
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known features, it is not stable to the sub-pixel accuracy needed for weak lens-
ing work, owing to its dependence on the zenith angle (geometrical distortions
of the telescope due to gravity), temperature etc. Therefore, the pixel-to-sky
mapping has to be obtained from the data itself. Two methods are used to
achieve this: one of them makes use of an external reference catalog, such
as the US Naval Observatory catalogue for point sources; it contains about
2 point sources per arcmin2 (at high Galactic latitudes) with ∼ 0.3 arcsec
positional accuracy. Matching point sources on the exposures with those in
the USNO catalog therefore yields the mapping with sub-arcsecond accuracy.
Far higher accuracy of the relative astrometry is achieved (and needed) from
internal astrometry, which is obtained by matching objects which appear
at different pixel coordinates, and in particular, on different CCDs for the
various dithering positions. Whereas the sky coordinates are constant, the
pixel coordinates change between dithering positions. Since the distortion
map can be described by a low-order polynomial, the comparison of many
objects appearing at (substantially) different pixel positions yield many more
constraints than the free parameters in the distortion map and thus yields
the distortion map with much higher relative accuracy than external data.
The corresponding astrometric solution can routinely achieve an accuracy of
0.1 pixel, or typically 0.′′02 – compared with a typical field size of ∼ 30′.

Photometric solution. Flatfielding corrects for the different sensitivities
of the pixels and therefore yields accurate relative photometry across indi-
vidual exposures. The different exposures are tied together by matching the
brightness of joint objects, in particular across chip boundaries. To achieve
an absolute photometric calibration, one needs external data (e.g., standard
star observations).

The coaddition process. Coaddition has to happen with sub-pixel accu-
racy; hence, one cannot just shift pixels from different exposures on top of
each other, although this procedure is still used by some groups. The by-now
standard method is drizzling (Fruchter & Hook 2002), in which a new pixel
frame is defined which usually has smaller pixel size than the original image
pixels (typically by a factor of two) and which is linearly related to the sky
coordinates. The astrometrically and photometrically calibrated individual
frames are now remapped onto this new pixel grid, and the pixel values are
summed up into the sub-pixel grid, according to the overlap area between ex-
posure pixel and drizzle pixel (see Fig. 11). By that, drizzling automatically
is flux conserving. In the coaddition process, weights are assigned, accounting
for the noise properties of the individual exposures (including the masks, of
course).

The result of the coaddition procedure is then a science frame, plus a
weight map which contains information about the pixel noise, which is of
course spatially varying, owing to the masks, CCD gaps, removed cosmic
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Fig. 10. This figure shows the geometric distortion of the WFI. Plotted is the
difference of the positions of stars as obtained from a simple translation, and a
third-order astrometric correction obtained in the process of image reduction. The
patterns in the two left chips is due to their rotation relative to the other six chips.
Whereas this effect looks dramatic at first sight, the maximum length of the sticks
corresponds to about 6 pixels, or 1.′′2. Given that the WFI covers a field of ∼ 33′,
the geometrical distortions are remarkably small – however, they are sufficiently
large that they have to be taken into account in the coaddition process (source: T.
Erben & M. Schirmer)

rays and bad pixels. Fig. 12 shows a typical example of a coadded image and
its corresponding weight map.

The quality of the coadded image can be checked in a number of ways.
Coaddition should not erase information contained in the original exposures
(except, of course, the variability of sources). This means that the PSF of the
coadded image should not be larger than the weighted mean of the PSFs of
the individual frames. Insufficient relative astrometry would lead to a blurring
of images in the coaddition. Furthermore, the anisotropy of the PSF should
be similar to the weighted mean of the PSF anisotropies of the individual
frames; again, insufficient astrometry could induce an artificial anisotropy of
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Fig. 11. The principle of drizzling in the process of coaddition is shown. The pixel
grid of each individual exposure is mapped onto an output grid, where the shifts
and geometric distortions obtained during the astrometric solutions are applied.
The counts of the input pixel, multiplied by the relative weight of this pixel, are
then dropped onto the output pixels, according to the relative overlap area, where
the output pixels can be chosen smaller than the input pixels. The same procedure
is applied to the weight maps of the individual exposures. If many exposures are
coadded, the input pixel can also be shrunk before dropping onto the output pixel.
After processing all individual exposures in this way, a coadded image and a coadded
weight map is obtained (source: T. Schrabback)

the PSF in the coaddition (which can be easily visualized, by adding two
round images with a slight center offset, where a finite ellipticity would be
induced).

Probably, there does not exist the ‘best’ coadded image from a given set of
individual exposures. This can be seen by considering a set of exposures with
fairly different individual seeing. If one is mainly interested in photometric
properties of rather large galaxies, one would prefer a coaddition which puts
all the individual exposures together, in order to maximize the total exposure
time and therefore to minimize the photometric noise of the coadded sources.
For weak lensing purposes, such a coaddition is certainly not optimal, as
adding exposures with bad seeing together with those of good seeing creates
a coadded image with a seeing intermediate between the good and the bad.
Since seeing is a much more important quantity than depth for the shape
determination of faint and small galaxy images, it would be better to coadd
only the images with the good seeing. In this respect, the fact that large
imaging instruments are operated predominantly in service observing more
employing queue scheduling is a very valuable asset: data for weak lensing
studies are then taken only if the seeing is better than a specified limit; in
this way one has a good chance to get images of homogeneously good seeing
conditions.

As a specific example, we show in Fig. 13 the ‘deepest wide-field image
in the Southern sky’, targeted towards the Chandra Deep Field South, one
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Fig. 12. A final coadded frame from a large number of individual exposures with
the WFI is shown in the upper left panel, with the corresponding weight map at
the upper right. The latter clearly shows the large-scale inhomogeneity of the chip
sensitivity and the illumination, together with the different number of exposures
contributing to various regions in the output image due to dithering and the gaps
between CCDs. The two lower panels show a blow-up of the central part. Despite
the highly inhomogeneous weight, the coadded image apparently shows no tracer
of the gaps, which indicates that a highly accurate relative photometric solution
was obtained (source: T. Erben & M. Schirmer)
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of regions in the sky in which all major observatories have agreed to obtain,
and make publically available, very deep images for a detailed multi-band
study. For example, the Hubble Ultra Deep Field (Beckwith et al. 2003) is
located in the CDFS, the deepest Chandra X-ray exposures are taken in this
field, as well as two ACS@HST mosaic images, one called the GOODS field
(Great Observatories Origins Deep Survey; cf. Giavalisco & Mobasher 2004),
the other the GEMS survey (Rix et al. 2004).

3.4 Image analysis

The final outcome of the data reduction steps described above is an image
of the sky, together with a weight map providing the noise properties of the
image. The next step is the scientific exploitation of this image, which in the
case of weak lensing includes the identification of sources, and to measure
their magnitude, size and shape.

As a first step, individual sources on the image need to be identified, to
obtain a catalog of sources for which the ellipticities, sizes and magnitudes
are to be determined later. This can done with by-now standard software, like
SExtractor (Bertin & Arnouts 1996), or may be part of specialized software
packages developed specifically for weak lensing, such as IMCAT, developed
by Nick Kaiser (see below). Although this first step seems straightforward at
first glance, it is not: images of sources can be overlapping, the brightness
distribution of many galaxies (in particular those with active star formation)
tends to be highly structured, with a collection of bright spots, and therefore
the software must be taught whether or not these are to be split into different
sources, or be taken as one (composite) source. This is not only a software
problem; in many cases, even visual inspection cannot decide whether a given
light distribution corresponds to one or several sources. The shape and size
of the images are affected by the point-spread function (PSF), which results
from the telescope optics, but for ground-based images, is dominated by the
blurring caused by the atmospheric turbulence; furthermore, the PSF may
be affected by telescope guiding and the coaddition process described earlier.

The point-spread function. Atmospheric turbulence and the other effects
mentioned above smear the image of the sky, according to

Iobs(θ) =
∫

d2ϑ I(ϑ)P (θ − ϑ) , (28)

where I(ϑ) is the brightness profile outside the atmosphere, Iobs(ϑ) the ob-
served brightness profile, and P is the PSF; it describes how point sources
would appear on the image. To first approximation, the PSF is a bell-shaped
function; its full width at half maximum (FWHM) is called the ‘seeing’ of the
image. At excellent sites, and excellent telescopes, the seeing has a median of
∼ 0.′′7–∼ 0.′′8; exceptionally, images with a seeing of ∼ 0.′′5 can be obtained.
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Fig. 13. A multi-color WFI image of the CDFS; the field is slightly larger than one-
half degree on the side. To obtain this image, about 450 different WFI exposures
were combined, resulting in a total exposure time of 15.8 hours in B, 15.6 hours
in V, and 17.8 hours in R. The data were obtained in the frame of three different
projects – the GOODS project, the public ESO Imaging Survey, and the COMBO-
17 survey. These data were reduced and coadded by Mischa Schirmer & Thomas
Erben; more than 2 TB of disk space were needed for the reduction.
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Recall that typical faint galaxies are considerably smaller than this seeing
size, hence their appearance is dominated by the PSF.

The main effect of seeing on image shapes is that it makes an elliptical
source rounder: a small source with a large ellipticity will nevertheless appear
as a fairly round image if its size is considerably smaller than the PSF. If not
properly corrected for, this smearing effect would lead to a serious underes-
timate of ellipticities, and thus of the shear estimates. Furthermore, the PSF
is not fully isotropic; small anisotropies can be introduced by guiding errors,
the coaddition, the telescope optics, bad focusing etc. An anisotropic PSF
makes round sources elliptical, and therefore mimics a shear. Also here, the
effect of the PSF anisotropy depends on the image size and is strongest for
the smallest sources. PSF anisotropies of several percent are typical; hence,
if not corrected for, its effect can be larger than the shear to be measured.

The PSF can be measured at the position of stars (point sources) on the
field; if it is a smooth function of position, it can be fitted by a low-order
polynomial, which then yields a model for the PSF at all points, in particu-
lar at every image position, and one can correct for the effects of the PSF.
A potential problem occurs if the PSF jumps between chips boundaries in
multi-chip cameras, since then the coaddition produces PSF jumps on the
coadded frame; this happens in cameras where the chips are not sufficiently
planar, and thus not in focus simultaneously. For the WFI@ESO/MPG 2.2-
m, this however is not a problem, but for some other cameras this problem
exists and is severe. There is an obvious way to deal with that problem,
namely to coadd data only from the same CCD chip. In this case, the gaps
between chips cannot be closed in the coadded image, but for most weak
lensing purposes this is not a very serious issue. In order not to lose too much
area in this coaddition, the dither pattern, i.e., the pointing differences in the
individual exposures, should be kept small; however, it should not be smaller
than, say, 20′′, since otherwise some pixels may always fall onto a few larger
galaxies in the field, which then causes problems in constructing a superflat.
Furthermore, small shifts between exposures means that the number of ob-
jects falling onto different chips in different exposures is small, thus reducing
the accuracy of the astrometric solution. In any case, the dither strategy shall
be constructed for each camera individually, taken into account its detailed
properties.

3.5 Shape measurements

Specific software has been developed to deal with the issues mentioned above;
the one that is most in use currently has been developed by Kaiser et al. (1995;
hereafter KSB), with substantial additions by Luppino & Kaiser (1997), and
later modifications by Hoekstra et al. (1998). The numerical implementation
of this method is called IMCAT and is publically available. The basic features
of this method shall be outlined next.
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First one notes that the definition (6) of the second-order moments of the
image brightness is not very practical for applying it to real data. As the
effective range of integration depends on the surface brightness of the image
(through the weight function qI) the presence of noise enters the definition
the Qij in a non-linear fashion. Furthermore, neighboring images can lead
to very irregularly shaped integration ranges. In addition, this definition is
hampered by the discreteness of pixels. For these reasons, the definition is
modified by introducing a weight function qθ(θ) which depends explicitly on
the image coordinates,

Qij =
∫

d2θ qθ(θ) I(θ) (θi − θ̄i) (θj − θ̄j)∫
d2θ qθ(θ) I(θ)

, i, j ∈ {1, 2} , (29)

where the size of the weight function qθ is adapted to the size of the galaxy
image (for optimal S/N measurement). One typically chooses qθ to be cir-
cular Gaussian. The image center θ̄ is defined as before, but also with the
new weight function qθ(θ), instead of qI(I). However, with this definition, the
transformation between image and source brightness moments is no longer
simple; in particular, the relation (11) between the second-order brightness
moments of source and image no longer holds. The explicit spatial depen-
dence of the weight, introduced for very good practical reasons, destroys the
convenient relations that we derived earlier – welcome to reality.

In KSB, the anisotropy of the PSF is characterized by its (complex) el-
lipticity q, measured at the positions of the stars, and fitted by a low-order
polynomial. Assume that the (reduced) shear g and the PSF anisotropy q are
small; then they both will have a small effect on the measured ellipticity. Lin-
earizing these two effects, one can write (employing the Einstein summation
convention)

χ̂obs
α = χ0

α + P sm
αβ qβ + P g

αβgβ . (30)

The interpretation of the various terms is found as follows: First consider
an image in the absence of shear and the case of an isotropic PSF; then
χ̂obs = χ0; thus, χ0 is the image ellipticity one would obtain for q = 0
and g = 0; it is the source smeared by an isotropic PSF. It is important to
note that E(χ0) = 0, due to the random orientation of sources. The tensor
P sm describes how the image ellipticity responds to the presence of a PSF
anisotropy; similarly, the tensor P g describes the response of the image el-
lipticity to shear in the presence of smearing by the seeing disk. Both, P sm

and P g have to be calculated for each image individually; they depend on
higher-order moments of the brightness distribution and the size of the PSF.
A full derivation of the explicit equations can be found in Sect. 4.6.2 of BS01.

Given that
〈
χ0
〉

= 0, an estimate of the (reduced) shear is provided by

ε = (P g)−1
(
χ̂obs − P smq

)
. (31)

If the source size is much smaller than the PSF, the magnitude of P g can be
very small, i.e., the correction factor in (31) can be very large. Given that



28 P. Schneider

the measured ellipticity χ̂obs is affected by noise, this noise then also gets
multiplied by a large factor. Therefore, depending on the magnitude of P g,
the error of the shear estimates differ between images; this can be accounted
for by specifically weighting these estimates when using them for statistical
purposes (e.g., in the estimate of the mean shear in a given region). Different
authors use different weighting schemes when applying KSB. Also, the tensors
P sm and P g are expected to depend mainly on the size of the image and
their signal-to-noise; therefore, it is advantageous to average these tensors
over images having the same size and S/N, instead of using the individual
tensor values which are of course also affected by noise. Erben et al. (2001)
and Bacon et al. (2001) have tested the KSB scheme on simulated data and in
particular investigated various schemes for weighting shear estimates and for
determining the tensors in (30); they concluded that simulated shear values
can be recovered with a systematic uncertainty of about 10%.

Maybe by now you are confused – what is ‘real ellipticity’ of an image,
independent of weights etc.? Well, this question has no answer, since only
images with conformal elliptical isophotes have a ‘real ellipticity’. By the
way, not necessarily the one that is the outcome of the KSB procedure. The
KSB process does not aim toward measuring ‘the’ ellipticity of any individual
galaxy image; it tries to measure ‘a’ ellipticity which, when averaged over a
random intrinsic orientation of the source, yields an unbiased estimate of the
reduced shear.

Given that the shape measurements of faint galaxies and their correc-
tion for PSF effects is central for weak lensing, several different schemes for
measuring shear have been developed (e.g., Valdes et al. 1983; Bonnet &
Mellier 1995; Kuijken 1999; Kaiser 2000; Refregier 2003b; Bernstein & Jarvis
2002). In the shapelet method of Refregier (2003b; see also Refregier & Ba-
con 2003), the brightness distribution of galaxy images is expanded in a set
of basis functions (‘shapelets’) whose mathematical properties are particu-
larly convenient. With a corresponding decomposition of the PSF (the shape
of stars) into these shapelets and their low-order polynomial fit across the
image, a partial deconvolution of the measured images becomes possible, us-
ing linear algebraic relations between the shapelet coefficients. The effect of a
shear on the shapelet coefficients can be calculated, yielding then an estimate
of the reduced shear. In contrast to the KSB scheme, higher-order brightness
moments, and not just the quadrupoles, of the images are used for the shear
estimate.

These alternative methods for measuring image ellipticities (in the sense
mentioned above, namely to provide an unbiased estimate of the local reduced
shear) have not been tested yet to the same extent as is true for the KSB
method. Before they become a standard in the field of weak lensing, several
groups need to independently apply these techniques to real and synthetic
data sets to evaluate their strengths and weaknesses. In this regard, one
needs to note that weak lensing has, until recently, been regarded by many
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researchers as a field where the observational results are difficult to ‘believe’
(and sure, not all colleagues have given up this view, yet). The difficulty
to display the directly measured quantities graphically so that they can be
directly ‘seen’ makes it difficult to convince others about the reliability of the
measurements. The fact that the way from the coadded imaging data to the
final result is, except for the researchers who actually do the analysis, close
to a black box with hardly any opportunity to display intermediate results
(which would provide others with a quality check) implies that the methods
employed should be standardized and well checked.

Surprisingly enough, there are very few (published) attempts where the
same data set is analyzed by several groups independently, and intermediate
and final results being compared. Kleinheinrich (2003) in her dissertation
has taken several subsets of the data that led to the deep image shown in
Fig. 13 and compared the individual image ellipticities between the various
subsets. If the subsets had comparable seeing, the measured ellipticities could
be fairly well reproduced, with an rms difference of about 0.15, which is small
compared to the dispersion of the image ellipticities σε ∼ 0.35. Hence, these
differences, which presumably are due to the different noise realizations on
the different images, are small compared to the ‘shape noise’ coming from
the finite intrinsic ellipticities of galaxies. If the subsets had fairly different
seeing, the smearing correction turns out to lead to a systematic bias in the
measured ellipticities. From the size of this bias, the conclusions obtained
from the simulations are confirmed – measuring a shear with better that
∼ 10% accuracy will be difficult with the KSB method, where the main
problem lies in the smearing correction.

Shear observations from space. We conclude this section with a few com-
ments on weak lensing observations from space. Since the PSF is the largest
problem in shear measurements, one might be tempted to use observations
from space which are not affected by the atmosphere. At present, the Hubble
Space Telescope (HST) is the only spacecraft that can be considered for this
purpose. Weak lensing observations have been carried out using two of its
instruments, WFPC2 and STIS. The former has a field-of-view of about 5
arcmin2, whereas STIS has a field of 51′′. These small fields imply that the
number of stars that can be found on any given exposure at high galactic lat-
itude is very small, in fact typically zero for STIS. Therefore, the PSF cannot
be measured from these exposures themselves. Given that an instrument in
space is expected to be much more stable than one on the ground, one might
expect that the PSF is stable in time; then, it can be investigated by analyz-
ing exposures which contain many stars (e.g., from a star cluster). In fact,
Hoekstra et al. (1998) and Hämmerle et al. (2002) have shown that the PSFs
of WFPC2 and STIS are approximately constant in time. The situation is
improved with the new camera ACS onboard HST, where the field size of
∼ 3.′4 is large enough to contain about a dozen stars even for high galactic
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latitude, and where some control over the PSF behavior on individual images
is obtained. We shall discuss the PSF stability of the ACS in Sect. 7.3 below.

The PSF of a diffraction-limited telescope is much more complex than that
of the seeing-dominated one for ground-based observations. The assumption
underlying the KSB method, namely that the PSF can be described by a
axi-symmetric function convolved with a small anisotropic kernel, is strongly
violated for the HST PSF; it is therefore less obvious how well the shear
measurements with the KSB method work in space. In addition, the HST
PSF in not well sampled with the current imaging instruments, even though
STIS and ACS have a pixel scale of 0.′′05. The number density of cosmic
rays is much larger in space, so their removal can be more cumbersome than
for ground-based observations. The intense particle bombardment also leads
to aging of the CCD, which lose their sensitivity and attain charge-transfer
efficiency problems. Despite these potential problems, a number of highly
interesting weak lensing results obtained with the HST have been reported, in
particular on clusters, and we shall discuss some of them in later sections. The
new Advanced Camera for Surveys (ACS) on-board HST has a considerably
larger field-of-view than previous instruments and will most likely become a
highly valuable tool for weak lensing studies.

4 Clusters of galaxies: Introduction, and strong lensing

4.1 Introduction

Galaxies are not distributed randomly, but they cluster together, forming
groups and clusters of galaxies. Those can be identified as overdensities of
galaxies projected onto the sky, and this has of course been the original
method for the detection of clusters, e.g., leading to the famous and still
heavily used Abell (1958) catalog and its later Southern extension (Abell et
al. 1989; ACO). Only later – with the exception of Zwicky’s early insight
9n 1933 that the Coma cluster must contain a lot of missing mass – it was
realized that the visible galaxies are but a minor contribution to the clusters
since they are dominated by dark matter. From X-ray observations we know
that clusters contain a very hot intracluster gas which emits via free-free and
atomic line radiation. Many galaxies are members of a cluster or a group;
indeed, the Milky Way is one of them, being one of two luminous galaxies
of the Local Group (the other one is M31, the Andromeda galaxy), of which
∼ 35 member galaxies are known, most of them dwarfs.

In the first part of this section we shall describe general properties of
galaxy clusters, in particular methods to determine their masses, before turn-
ing to their strong lensing properties, such as show up in the spectacular giant
luminous arcs. Very useful reviews on clusters of galaxies are from Sarazin
(1986) and in a recent proceedings volume (Mulchaey et al. 2004).
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4.2 General properties of clusters

Clusters of galaxies contain tens to hundreds of bright galaxies; their galaxy
population is dominated by early-type galaxies (E’s and S0’s), i.e. galaxies
without active star formation. Often a very massive cD galaxy is located at
their center; these galaxies differ from normal ellipticals in that they have a
much more extended brightness profile – they are the largest galaxies. The
morphology of clusters as seen in their distribution of galaxies can vary a
lot, from regular, compact clusters (often dominated by a central cD galaxy)
to a bimodal distribution, or highly irregular morphologies with strong sub-
structure. Since clusters are at the top of the mass scale of virialized objects,
the hierarchical merging scenario of structure growth predicts that many of
them have formed only recently through the merging of two or more lower-
mass sub-clusters, and so the irregular morphology just indicates that this
happened.

X-ray observations reveal the presence of a hot (several keV) intracluster
medium (ICM) which is highly enriched in heavy elements; hence, this gas
has been processed through star-formation cycles in galaxies. The mass of the
ICM surpasses that of the baryons in the cluster galaxies; the mass balance in
clusters is approximately as follows: stars in cluster galaxies contribute ∼ 3%
of the total mass, the ICM another ∼ 15%, and the rest (>∼ 80%) is dark
matter. Hence, clusters are dominated by dark matter; as discussed below
(Sect. 4.3), the mass of clusters can be determined with three vastly different
methods which overall yield consistent results, leadding to the aforementioned
mass ratio.

We shall now quote a few characteristic values which apply to rich, massive
clusters. Their virial radius, i.e., the radius inside of which the mass distri-
bution is in approximate virial equilibrium (or the radius inside of which the
mean mass density of clusters is ∼ 200 times the critical density of the Uni-
verse – cf. Sect. 4.5 of IN) is rvir ∼ 1.5 h−1 Mpc. A typical value for the one-
dimensional velocity dispersion of the member galaxies is σv ∼ 1000 km/s.
In equilibrium, this equals the thermal velocity of the ICM, corresponding
to a temperature of T ∼ 107.5 K ∼ 3 keV. The mass of massive clusters
within the virial radius (i.e., the virial mass) is ∼ 1015M&. The mass-to-light
ratio of clusters (as measured from the B-band luminosity) is typically of or-
der (M/L) ∼ 300h−1 (M&/L&). Of course, the much more numerous typical
clusters have smaller masses (and temperatures).

Cosmological interest for clusters. Clusters are the most massive bound
and virialized structures in the Universe; this, together with the (related)
fact that their dynamical time scale (e.g., the crossing time ∼ rvir/σv) is
not much smaller than the Hubble time H−1

0 – so that they retain a ‘mem-
ory’ of their formation – render them of particular interest for cosmologists.
The evolution of their abundance, i.e., their comoving number density as a
function of mass and redshift, is an important probe for cosmological models
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and traces the growth of structure; massive clusters are expected to be much
rarer at high redshift than today. Their present-day abundance provides one
of the measures for the normalization of the power spectrum of cosmological
density fluctuations. Furthermore, they form (highly biased) signposts of the
dark matter distribution in the Universe, so their spatial distribution traces
the large-scale mass distribution in the Universe. Clusters act as laboratories
for studying the evolution of galaxies and baryons in the Universe. Since the
galaxy number density is highest in clusters, mergers of their member galax-
ies and, more importantly, other interactions between them occur frequently.
Therefore, the evolution of galaxies with redshift is most easily studied in
clusters. For example, the Butcher–Oemler effect (the fact that the fraction
of blue galaxies in clusters is larger at higher redshifts than today) is a clear
sign of galaxy evolution which indicates that star formation in galaxies is
suppressed once they have become cluster members. More generally, there
exists a density-morphology relation for galaxies, with an increasing fraction
of early-types with increasing spatial number density, with clusters being
on the extreme for the latter. Finally, clusters were (arguably) the first ob-
jects for which the presence of dark matter has been concluded (by Zwicky
in 1933). Since they are so large, and present the gravitational collapse of
a region in space with initial comoving radius of ∼ 8h−1 Mpc, one expects
that their mixture of baryonic and dark matter is characteristic for the mean
mass fraction in the Universe (White et al. 1993). With the baryon fraction
of ∼ 15% mentioned above, and the density parameter in baryons deter-
mined from big-bang nucleosynthesis in connection to the determination of
the deuterium abundance in Lyα QSO absorption systems, Ωb ≈ 0.02h−2,
one obtains a density parameter for matter of Ωm ∼ 0.3, in agreement with
results from other methods, most noticibly from the recent WMAP CMB
measurements (e.g., Spergel et al. 2003).

4.3 The mass of galaxy clusters

Cosmologists can predict the abundance of clusters as a function of their
mass (e.g., using numerical simulations); however, the mass of a cluster is
not directly observable, but only its luminosity, or the temperature of the X-
ray emitting intra-cluster medium. Therefore, in order to compare observed
clusters with the cosmological predictions, one needs a way to determine their
masses. Three principal methods for determining the mass of galaxy clusters
are in use:

• Assuming virial equilibrium, the observed velocity distribution of galaxies
in clusters can be converted into a mass estimate, employing the virial
theorem; this method typically requires assumptions about the statistical
distribution of the anisotropy of the galaxy orbits.

• The hot intra-cluster gas, as visible through its Bremsstrahlung in X-rays,
traces the gravitational potential of the cluster. Under certain assump-
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tions (see below), the mass profile can be constructed from the X-ray
emission.

• Weak and strong gravitational lensing probes the projected mass profile
of clusters, with strong lensing confined to the central regions of clusters,
whereas weak lensing can yield mass measurements for larger radii.

All three methods are complementary; lensing yields the line-of-sight pro-
jected density of clusters, in contrast to the other two methods which probe
the mass inside spheres. On the other hand, those rely on equilibrium (and
symmetry) conditions; e.g., the virial method assumes virial equilibrium (that
the cluster is dynamically relaxed) and the degree of anisotropy of the galaxy
orbit distribution.

Dynamical mass estimates. Estimating the mass of clusters based on the
virial theorem,

2Ekin + Epot = 0 , (32)
has been the traditional method, employed by Zwicky in 1933 to find strong
hints for the presence of dark matter in the Coma cluster. The specific kinetic
energy of a galaxy is v2/2, whereas the potential energy is determined by the
cluster mass profile, which can thus be determined using (32). One should
note that only the line-of-sight component of the galaxy velocities can be
measured; hence, in order to derive the specific kinetic energy of galaxies,
one needs to make an assumption on the distribution of orbit anisotropies in
the cluster potential. Assuming an isotropic distribution of orbits, the l.o.s.
velocity distribution can then be related to the 3-D velocity dispersion, which
in turn can be transformed into a mass estimate if spherical symmetry is
assumed. This method requires many redshifts for an accurate mass estimate,
which are available only for a few clusters. However, a revival of this method
is expected and already seen by now, owing to the new high-multiplex optical
spectrographs.

X-ray mass determination of clusters. The intracluster gas emits via
Bremsstrahlung; the emissivity depends on the gas density and temperature,
and, at lower T , also on its chemical composition, since at T <∼ 1 keV the
line radiation from highly ionized atomic species starts to dominate the total
emissivity of a hot gas. Investigating the properties of the ICM with X-ray
observations have revealed a wealth of information on the properties of clus-
ters (see Sarazin 1986). Assuming that the gas is in hydrostatic equilibrium
in the potential well of the cluster, the gas pressure P must balance gravity,
or

∇P = −ρg ∇Φ ,

where ρg is the gas density. In the case of spherical symmetry, this becomes

1
ρg

dP

dr
= −dΦ

dr
= −GM(r)

r2
.
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From the X-ray brightness profile and temperature measurement, M(r), the
mass inside r, both dark and luminous, can then be determined,

M(r) = −kBTr2

Gµmp

(
d ln ρg

dr
+

d ln T

dr

)
, (33)

where µmp is the mean particle mass in the gas. Only for relatively few
clusters are detailed X-ray brightness and temperature profile measurements
available. In the absence of a temperature profile measurement, one often as-
sumes that T does not vary with distance form the cluster center. In this case,
assuming that the dark matter particles also have an isothermal distribution
(with velocity traced by the galaxy velocities), one can show that

ρg(r) ∝ [ρtot(r)]β ; with β =
µmpσ2

v

kBTg
. (34)

Hence, β is the ratio between kinetic and thermal energy. The mass profile
corresponding to the isothermality assumption follows from the Lame–Emden
equation which, however, has no closed-form solution. In the King approx-
imation, the density and X-ray brightness profile (which is obtained by a
line-of-sight integral at projected distance R from the cluster center over the
emissivity, which in turn is proportional to the square of the electron density,
or ∝ ρ2

g, for an isothermal gas) become

ρg(r) = ρg0

[
1 +
(

r

rc

)2
]−3β/2

; I(R) ∝
[
1 +
(

R

rc

)2
]−3β/2+1/2

where rc is the core radius. The observed brightness profile can now be fitted
with these β-models, yielding estimates of β and rc from which the cluster
mass follows. Typical values for rc range from 0.1 to 0.3h−1 Mpc; and β =
βfit ∼ 0.65. On the other hand, one can determine β from the temperature
T and the galaxy velocity dispersion using (34), which yields βspec ≈ 1. The
discrepancy between these two estimates of β is not well understood and
probably indicates that one of assumptions underlying this ‘β-models’ fails
in many clusters, which is not too surprising (see below).

The hot ICM loses energy through its thermal radiation; the cooling time
tcool of the gas, i.e., the ratio between the thermal energy density and the
X-ray emissivity, is larger than the Hubble time ∼ H−1

0 for all but the inner-
most regions. In the center of clusters, the gas density can be high enough to
have tcool < H−1

0 , so that there the gas can no longer be in hydrostatic equi-
librium. One expects that the gas flows towards the cluster center, thereby
being compressed and therefore maintain approximate pressure balance. Such
‘cooling flows’ (see, e.g., Fabian 1994) are observed indirectly, through highly
peaked X-ray emission in cluster centers which indicates a strong increase of
the gas density; furthermore, these cooling-flow clusters show a decrease of
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T towards the center. The mass-flow rate in these clusters can be as high as
100M& yr−1 or even more, so that the total cooled mass can be larger than
the baryonic mass of a massive galaxy. However, the fate of the cooled gas is
unknown.

New results from Chandra & XMM. The two X-ray satellites Chandra
and XMM, launched in 1999, have greatly increased our view of the X-ray
Universe, and have led to a number of surprising results about clusters. X-ray
spectroscopy verified the presence of cool gas near the center of cooling-flow
clusters, but no indication for gas with temperature below ∼ 1 keV has been
seen, whereas the cooling is expected to rapidly proceed to very low temper-
atures, as the cooling function increases for lower T where atomic transitions
become increasingly important. Furthermore, the new observations have re-
vealed that at least the inner regions of clusters often show a considerably
more complicated structure than implied by hydrostatic equilibrium. In some
cases, the intracluster medium is obviously affected by a central AGN, which
produces additional energy and entropy input, which might explain why no
sub-keV gas has been detected. As the AGN activity of a galaxy may be
switched on and off, depending on the fueling of the central black hole, even
in clusters without a currently active AGN such heating might have occurred
in the recent past, as indicated in some cases by radio relics. Cold fronts with
very sharp edges (discontinuities in density and temperature, but such that
P ∝ ρT is approximately constant across the front), and shocks have been
discovered, most likely showing ongoing or recent merger events. In many
clusters, the temperature and metalicity appears to be strongly varying func-
tions of position which invalidates the assumption of isothermality underlying
the β-model. Therefore, mass estimates of central parts of clusters from X-
ray observations require special care, and one needs to revise the simplified
models used in the pre-Chandra era. In fact, has there ever been the believe
that the β-model provides an adequate description of the gas in a cluster, the
results from Chandra and XMM show that this is unjustified. The physics of
the intracluster gas appears to be considerably more complicated than that.

4.4 Luminous arcs & multiple images

Strong lensing effects in cluster show up in the form of giant luminous arcs,
strongly distorted arclets, and multiple images of background galaxies. Since
strong lensing only occurs in the central part of clusters, it can be used only
to probe their inner mass structure. However, strong lensing yields by far
the most accurate central mass determinations in those cases where several
strong lensing features can be identified. For a detailed account of strong
lensing in clusters, the reader is referred to the review by Fort & Mellier
(1994).

Furthermore, clusters thus act as a ‘natural telescope’; many of the most
distant galaxies have been found by searching behind clusters, employing the
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lensing magnification. For example, the recently discovered very high redshift
galaxies at z ≈ 7 (Kneib et al. 2004) and z = 10 (Pelló et al. 2004) were found
through a search in the direction of the high-magnification region in the clus-
ters A2218 and A1835, respectively. In the first of these two cases, the multiple
imaging of the background galaxy provides not only the magnification, but
also an estimate of the redshift of the source (which is not determined by any
spectral line), whereas in the latter case, only the implied high magnification
makes the source visible on deep HST images and allows its spectroscopy,
yielding a spectral line which most likely is due to Lyα. The magnification
is indeed a very important asset, as can be seen from a simple example: a
value of µ = 5 reduces the observing time for obtaining a spectrum by a
factor 25 (in the case where the noise is sky background dominated) – which
is the difference of being doable or not. Recognizing the power of natural
telescopes, the deepest SCUBA surveys for faint sub-millimeter sources have
been conducted (e.g., Blain et al. 1999) around clusters with well-constrained
(from lensing) mass distribution to reach further down the (unlensed) flux
scale.

First go: M(≤ θE). Giant arcs occur where the distortion (and magnifi-
cation) is very large, that is near critical curves. To a first approximation,
assuming a spherical mass distribution, the location of the arc from the clus-
ter center (which usually is assumed to coincide with the brightest cluster
galaxy) yields the Einstein radius of the cluster, so that the mass estimate
(see IN, Eq. 43) can be applied.

M(θarc) ≈ π (Dang
d θarc)2 Σcr . (35)

Therefore, this simple estimate yields the mass inside the arc radius. However,
this estimate not very accurate, perhaps good to within ∼ 30% (Bartelmann
& Steinmetz 1996). Its reliability depends on the level of asymmetry and
substructure in the cluster mass distribution. Furthermore, it is likely to
overestimate the mass in the mean, since arcs preferentially occur along the
major axis of clusters. Of course, the method is very difficult to apply if the
center of the cluster is not readily identified or if the cluster is obviously
bimodal. For these reasons, this simple method for mass estimates is not
regarded as particularly accurate.

Detailed modeling. The mass determination in cluster centers becomes
much more accurate if several arcs and/or multiple images are present, since
in this case, detailed modeling can be done. This typically proceeds in an
interactive way: First, multiple images have to be identified (based on their
colors and/or detailed morphology, as available with HST imaging). Simple
(plausible) mass models are then assumed, with parameters fixed by matching
the multiple images, and requiring the distortion at the arc location(s) to be
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Fig. 14. The galaxy cluster Abell 1689 is the most impressive lensing cluster yet
found. This image has been taken with the new Advanced Camera for Surveys
(ACS) onboard HST. Numerous arcs are seen. A simple estimate for the mass of
the center of the cluster, obtained by identifying the arcs radius with the Einstein
radius, yields an extremely large equivalent velocity dispersion. The distribution
of the arcs shown here indicates that such a simple assumption is misleading, and
more detailed modeling required
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strong and to have the correct orientation. This model then predicts the
presence of possible further multiple images; they can be checked for through
morphology, surface brightness (in particular if HST images of the cluster
are available) and color. If confirmed, a new, refined model is constructed
including these new additional strong lensing constraints, which yields further
strong lensing predictions etc. As is the case for galaxy lensing (see SL), the
components of the mass models are not arbitrary, but chosen to be physically
motivated. Typically, as major component a ellipsoidal isothermal or NWF
distribution is used to describe the overall mass distribution of the cluster.
Refinements of the mass distribution are introduced as mass components
centered on bright cluster member galaxies or on subgroups of such galaxies,
describing massive subhalos which survived a previous merger. Such models
have predictive power and can be trusted in quite some detail; the accuracy
of mass estimates in some favorable cases can be as high as a few percent.

Fig. 15. The lower panel shows the
critical curves of the cluster A2390
(cluster redshift zd = 0.231), for
three different source redshifts of
zs = 1, 2.5 and 4 (from inner to
outer). The lens model is based on
the detailed HST image shown here.
Identified are two sets of multiple im-
ages, shown in the upper two panels,
which obviously need to be at very
high redshift. Indeed, spectroscopy
shows that they have zs = 4.04 and
zs = 4.05 (from Pelló et al. 1999)

In fact, these models can be used to predict the redshift of arcs and arclets.
As an example, we mention the strong lensing analysis of the cluster Abell
2390 based on HST imaging (Pelló et al. 1999). Two pairs of multiple images
were identified (see Fig. 15) which then implies that the critical curve has to
pass between the individual components. The location of the critical curves
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depends, however, on the source redshift. As shown in the figure, the sources
have to be at a high redshift in order for the corresponding critical curves
to have the correct location. In fact, spectroscopy placed the two sources at
zs = 4.04 and zs = 4.05, as predicted by the lens model.

Since the distortion of a lens also depends on the source redshift, once a
detailed mass model is available from arcs with known redshifts for at least
some of them, one can estimate the value of the lens strength ∝ Dds/Ds

and thus infer the redshift of arclets. This method has been successfully
applied to HST observations of clusters (Ebbels et al. 1998). Of course, having
spectroscopic redshifts of the arcs available increases the calibration of the
mass models; they are therefore very useful.

Lens properties from Fourier transforms. Before discussing results from
these detailed models, a brief technical section shall be placed here, related to
calculating lens properties of general mass distributions. A general method
to obtain the lensing quantities of a mass distribution is through Fourier
transformation. We assume that we have a mass distribution of finite mass;
this is not a serious restriction even for models with formally infinite total
mass, because we can truncate them on large scales, thus making the total
mass finite, without affected any lensing properties at smaller scales. We
define the Fourier transform κ̂($) of the surface mass density as4

κ̂($) =
∫

IR2
d2θ κ(θ) exp (i$ · θ) , (36)

and its inverse by

κ(θ) =
1

(2π)2

∫

IR2
d23 κ̂($) exp (−i$ · θ) . (37)

Similarly, we define the Fourier transforms of the deflection potential, ψ̂($),
of the deflection angle, α̂($), and of the complex shear, γ̂($). Differentiation
by θi in real space is replaced by multiplication by −i3i in Fourier space.
Therefore, the Fourier transform of ∂ψ/∂θj is −i3jψ̂($). Hence, the Poisson
equation as given in Sect. 2.2 of IN becomes in Fourier space

−|$|2ψ̂(3) = 2κ̂($) . (38)

Thus, for $ 0= 0, the Fourier transform of the potential which satisfies the
Poisson equation can be readily determined. The $ = 0 mode remains un-
determined; however, since this mode corresponds to a constant in ψ, it is
unimportant and can be set to zero. Once ψ̂ is determined, the Fourier trans-
form of the deflection angle and the shear follows from their definitions in
4 We denote the Fourier variable of three-dimensional space as k, that of angular

position by $.
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terms of the deflection potential, given in Sect. 2.2 of IN,

α̂($) = −i$ψ̂($) , (39)

γ̂($) = −
(
321 − 322

2
+ i3132

)
ψ̂($) . (40)

Thus, in principle, one determines the relevant quantities by Fourier trans-
forming κ, then calculating the Fourier transforms of the potential, deflection,
and shear, whose real-space counterparts are then obtained from an inverse
Fourier transform, like in (37).

Up to now we have not gained anything; the Fourier transforms as defined
above are two-dimensional integrals, as are the real-space relations between
deflection angle and shear, and the surface-mass density. However, provided
κ becomes ‘small enough’ for large values of |θ|, the integral in (36) may be
approximated by one over a finite region in θ-space. This finite integral is
further approximated as a sum over gridpoints, with a regular grid covering
the lens plane. Consider a square in the lens plane of side L, and let N be
the number of gridpoints per dimension, so that ∆θ = L/N is the size of a
gridcell. The inverse grid, i.e., the $-grid, has a gridcell of size ∆3 = 2π/L.
The discrete Fourier transform then uses the values of κ on the θ-grid to
calculate κ̂ on the $-grid. The latter, in fact, is then the Fourier transform
of the periodic continuation of the mass distribution in θ-space. Because of
this periodic continuation, the deflection angle as calculated from the discrete
Fourier transform, which is performed by the Fast Fourier Transform (FFT)
method, is the sum of the input mass distribution, plus all of its periodic
continuation. Here, finally, is why we have considered the Fourier method: the
FFT is a very efficient and quick procedure (see, e.g., Press et al. 1992), and
arguably the best one in cases of mass distributions for which no analytical
progress can be made. The lensing properties are calculated on a grid; if
needed, they can be obtained for other points by interpolation.

Because of the periodic continuation, the mass distribution has to de-
creases sufficiently quickly for large |θ|, or be truncated at large radii. In
any case, L should be taken sufficiently large to minimize these periodicity
effects.

Another point to mention is that a periodic mass distribution, each el-
ement of which has positive total mass, has an infinite mass, so that the
deflection potential has to diverge; on the other hand, the deflection poten-
tial is enforced to be periodic. This apparent contradiction can be resolved
by noting that the $ = 0 mode of κ̂ is not used in the calculation of α̂ and γ̂.
Indeed, if ψ̂ and ψ are calculated from the above equations, then the resulting
ψ does not satisfy the Poisson equation; the ψ resulting from this procedure
is the one corresponding to κ− κ̄, where κ̄ is the average of κ on the θ-grid.
A similar remark is true for the deflection angle. Thus, at the end, one has
to add a term κ̄ |θ|2 /2 to ψ, and a term κ̄θ to α.
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Since the FFT is very fast, one can choose N and L large, and then con-
sider only the central part of the θ-grid needed for the actual lens modeling.

4.5 Results from strong lensing in clusters

The main results of the strong lensing investigations of clusters can be sum-
marized as follows:

• The mass in cluster centers is much more concentrated than predicted
by (simple) models based on X-ray observations. The latter usually pre-
dict a relatively large core of the mass distribution. These large cores
would render clusters sub-critical to lensing, i.e., they would be unable
to produce giant arcs or multiple images. In fact, when arcs were first
discovered they came as a big surprise because of these expectations. By
now we know that the intracluster medium is much more complicated
than assumed in these ‘β-model’ fits for the X-ray emission.

• The mass distribution in the inner region of clusters often shows strong
substructure, or multiple mass peaks. These are also seen in the galaxy
distribution of clusters, but with the arcs can be verified to also corre-
spond to mass peaks (examples of this include the cluster Abell 2218
where arcs also curve around a secondary concentration of bright galax-
ies, clearly indicating the presence of a mass concentration, or the obvi-
ously bimodal cluster A 370). These are easily understood in the frame
of hierarchical mergers in a CDM model; the merged clusters retain their
multiple peaks for a dynamical time or even longer, and are therefore not
in virial equilibrium.

• The orientation of the (dark) matter appears to follow closely the ori-
entation of the light in the cD galaxy; this supports the idea that the
growth of the cD galaxy is related to the cluster as a whole, through
repeated accretion of lower-mass member galaxies. In that case, the cD
galaxy ‘knows’ the orientation of the cluster.

• There is in general good agreement between lensing and X-ray mass es-
timates (e.g., Ettori & Lombardi 2003; Donahue et al. 2003) for those
clusters where a ‘cooling flow’ indicates that they are in dynamical equi-
librium, provided the X-ray analysis takes the presence of the cooling
flow into account (Allen 1998).

Probably our ‘favourate’ clusters in which strong lensing effects are investi-
gated in detail are biased in favor of having strong substructure, as this in-
creases the lensing cross section for the occurrence of giant arcs (see below).
Hence, it may be that the most detailed results obtained from strong lensing
in clusters apply to a class of clusters which are especially selected because
of their ability to produce spectacular arcs, and thus of their asymmetric
mass distribution. Therefore, one must be careful in generalizing conclusions
drawn from the ‘arc clusters’ to the cluster population as a whole.
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Discrepancies. There are a few clusters where the lensing results and those
obtained from analyzing the X-ray observations or cluster dynamics are in
stong apparent conflict. Two of the most prominent ones shall be mentioned
here. The cluster A1689 (see Fig. 14) has arcs more than ∼ 40′′ away from
the cluster center, which would imply a huge mass in this cluster center.
This high mass is apparently confirmed by the high velocity dispersion of its
member galaxies, although their distribution in redshift makes it likely that
the cluster consists of several subcomponents (see Clowe & Schneider 2001
for a summary of these results). Several weak lensing results of this cluster
have been published, and they are not all in agreement: whereas Tyson &
Fischer (1995) from weak shear, and Taylor et al. (1998) and Dye et al.
(2001) from the magnification method (that will be discussed in the next
Section) find also a very high mass for this cluster, the weak lensing analysis
of Clowe & Schneider (2001; see also King et al. 2002b), based on deep wide-
field imaging data of this cluster, finds a more moderate mass (or equivalent
velocity dispersion) for this cluster. A new XMM-Newton X-ray observation
of this cluster (Andersson & Madejski 2004) lends support for the smaller
mass; in fact, their estimate of the virial mass of the cluster agrees with that
obtained by Clowe & Schneider (2001). However, the disrepancy with the
strong lensing mass in the cluster center remains at present; a quantitative
analysis of the ACS data shown in Fig. 14 will hopefully shed light on this
issue.

A second clear example for discrepant results in the cluster Cl 0024+17.
It has a prominent arc system, indicating an Einstein radius of ∼ 30′′, and
thus a high mass. The X-ray properties of this cluster, however, indicate
a much smaller mass (Soucail et al. 2000), roughly by a factor of three.
This discrepancy has been reaffirmed by recent Chandra observations, which
confirmed this factor-of-three problem (Ota et al. 2004). The resolution of
this discrepancy has probably been found by Czoske et al. (2001, 2002), who
performed an extensive spectroscopic survey of cluster galaxies. Their result is
best interpreted such that Cl 0024+17 presents a merger of two clusters along
our line-of-sight, which implies that the measured velocity dispersion cannot
be easily turned into a mass, as this system is not in virial equailibrium,
and that the X-ray data cannot be converted to a mass either, due to the
likely strong deviation from spherical symmetry and equilibrium. A wide
field sparsely sampled HST observation of this cluster (Kneib et al. 2003)
also indicates the presence of a second mass concentration about 3′ away from
the main peak. As will be mentioned below, clusters undergoing mergers have
particularly high cross sections for producing arcs (Torri et al. 2004); hence,
our ‘favourites’ are most likely selected for these non-equilibrium clusters.

Arc statistics. The abundance of arcs is expected to be a strong function
of the cosmological parameters: they not only determine the abundance of
massive clusters (through the mass function discussed in Sect. 4.5 of IN), but
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also the degree of relaxation of clusters, which in turn affects their strong
lensing cross section (Bartelmann et al. 1998). It is therefore interesting to
consider the expected abundance of arcs as a function of cosmological pa-
rameters and compare this to the observed abundance. In a series of papers,
M. Bartelmann and his colleagues have studied the expected giant arc abun-
dance, using analytical as well as numerical techniques (e.g., Bartelmann &
Weiss 1994; Bartelmann et al. 1995, 1998, 2002; Meneghetti et al. 2004; see
also Dalal et al. 2003; Oguri et al. 2003; Wambsganss et al. 2004). Some of
the findings of these studies can be summarized as follows:

• The formation of arcs depends very sensitively on the deviation from
spherical symmetry and the detailed substructure of the mass distri-
bution in the cluster. For this reason, analytical models which cannot
describe this substructure with sufficient realism (see Bergmann & Pet-
rosian 1993) do not provide realiable predictions for the arc statistics
(in particular, axisymmetric mass models are essentially useless for es-
timating arc statistics), and one needs to refer to numerical simulations
of structure formation. Since the substructure and triaxiality plays such
an important role, these simulations have to be of high spatial and mass
resolution.

• The frequency of arcs depends of course on the abundance of clusters,
which in turn depends on the cosmological model and the fluctuation
spectrum of the matter, in particular its normalization σ8. Furthermore,
clusters at a given redshift have different mean ages in different cosmo-
logical models, as the history of structure growth, and thus the merging
history, depends on Ωm and ΩΛ. Since the age of a cluster is one of the
determining parameters for its level of substructure – younger clusters do
not have had enough time to fully relax – this affects the lensing cross
section of the clusters for arc formation. In fact, during epochs of merg-
ers, the arc cross-section can have temporary excursions by large factors.
Even the same cluster at the same epoch can have arc forming cross sec-
tions that vary by more than an order-of-magnitude between different
projection directions of the cluster. For fixed cluster abundance today,
low-density models form clusters earlier than high-density models.

• Since the largest contribution of the total cross section for arc formation
comes from clusters at intermediate redshift (z ∼ 0.4), also the equation-
of-state of the dark energy matters; as shown in Meneghetti et al. (2004),
what matters is the dark energy density at the epoch of cluster forma-
tion. In addition, the earlier clusters form, the higher their characteristic
density, which then makes them more efficient lenses for arc formation.

Taking these effects together, a low-density open model produces a larger
number of arcs than a flat low-density model, which in turn has more arcs
than a high-density model, for a given cluster abundance today. Whereas
the differences between these models obtained by Meneghetti et al. (2004)
are smaller than claimed in Bartelmann et al. (1998), they in principle allow
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constraining the cosmological parameters, provided they can be compared
with the observed number of arcs.

Unfortunately, there are only a few systematic studies of clusters with
regards to their strong lensing contents. Luppino et al. (1999) report on 8
giant arcs in their sample of the 38 most massive clusters found in the Einstein
Medium Sensitivity Survey. Zaritsky & Gonzalez (2003) surveyed clusters in
the redshift range 0.5 <∼ z <∼ 0.7 over 69 deg2 and found two giant arcs with
R < 21.5 and a length θ1 > 10′′. Gladders at al. (2003) found 5 arc candidates
in their Red Cluster Sequence survey of 90 deg2, all of them being associated
with high-redshift clusters. In contrast to the claim by Bartelmann et al.
(1998), these observered arc frequencies can be accounted for in a standard
ΛCDM Universe, as shown by Dalal et al. (2003). There are several differences
between these two studies, which are based on different assumptions about
the number density of clusters and the source redshift distribution, which
Dalal et al. (2003) took from the Hubble Deep Field, whereas Bartelmann et
al. (1998) assumed all sources having zs = 1.

The strong dependence on the source redshift distribution has been pointed
out by Wambsganss et al. (2004). In contrast to the other studies, they in-
vestigated the arc statistics using ray tracing through a three-dimensional
mass distribution obtained from cosmological simulations, whereas the other
studies mentioned considered the lensing effect of individual clusters found
in these simulations. Although the former approach is more realistic, the as-
sumption of Wambsganss et al. (2004) that the magnification of a light ray
is a good measure for the length-to-width ratio of a corresponding arc is cer-
tainly not justified in detail, as shown in Dalal et al. (2003). The agreement
of the lensing probability between Wambsganss et al. (2004) and Bartelmann
et al. (1998) for all zs = 1 is therefore most likely a coincidence.

There are further difficulties in obtaining realistic predictions for the oc-
currence of giant arcs that can be compared with observations. First, the
question of whether an image counts as an arc depends on a combination of
source size, lens magnification, and seeing. Seeing makes arcs rounder and
therefore reduces their length-to-width ratio. An impressive demonstration
of this effect is provided by the magnificent system of arcs in the cluster
A1689 observed with the ACS onboard the HST, as shown in Fig. 14, com-
pared to earlier ground-based images of this cluster. Second, several of the
above-mentioned papers assume the source size to be θ = 1′′, whereas many
arcs observed with HST are essentially unresolved in width, implying much
smaller source sizes (and accordingly, a much higher sensitivity to seeing ef-
fects). Third, magnification bias is usually not taken into account in these
theoretical studies. In fact, accounting properly for the magnification bias is
quite difficult, as the surveys reporting on arc statistics are not really flux-
limited. One might argue that they are surface brightness-limited, but even
if this were true, the surface brightness of an arc coming from a small source
depends very much on the seeing.
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Therefore at present, the abundance of arcs seem to be not in conflict
with a ΛCDM model, but more realistic simulations which take the afore-
mentioned effects into account are certainly needed for a definite conclusion
on this issue. On the observational side, increasing the number of clusters
for which high-quality imaging is performed is of great importance, and the
survey of luminous X-ray clusters imaged either with the ACS@HST or with
ground-based telescopes during periods of excellent seeing would improve
the observational situation dramatically. Blank-field surveys, such as they
are conducted for cosmic shear research (see Sect. 7), could be used for blind
searches of arcs (that is, not restricted to regions around known clusters). It
may turn out, however, that the number of ‘false positives’ is unacceptably
high, e.g., by misidentification of edge-on spirals, or blends of sources that
yield apparent images with a high length-to-width ratio.

Constraints on collisional dark matter. Spergel & Steinhardt (2000)
suggested the possibility that dark matter particles are not only weakly in-
teracting, but may have a larger elastic scattering cross-section. If this cross-
section of such self-interacting dark matter is sufficiently large, it may help to
explain two of the remaining apparent discrepancies between the predictions
of the Cold Dark Matter model and observations: The slowly rising rotation
curves of dwarf galaxies (e.g., de Blok et al. 2001) and the substructure of
galaxy-scale dark matter halos (see Sect. 8 of SL). Self-interacting may soften
the strength of the central density concentration as compared to the NFW
profile, and could destroy most of the subclumps. However, there are other
consequence of such an interaction, in that the shapes of the inner parts of
dark matter halos tend to be more spherical. Meneghetti et al. (2001) have in-
vestigated the influence of self interaction of dark matter particles on clusters
of galaxies, in particular their ability to form giant arcs. From their numerical
simulations of clusters with varying cross-sections of particles, they showed
that even a relatively small cross-section is sufficient to reduce the ability
of clusters to produce giant arcs by an order of magnitude. This is mainly
due to two effects, the reduced asymmetry of the resulting mass distribution
and the shallower central density profile. Furthermore, self-interactions de-
stroy the ability of clusters to form radial arcs. Therefore, the ‘desired’ effect
of self-interaction – to smooth the mass distribution of galaxies – has the
same consequence for clusters, and can therefore probably be ruled out as
a possible mechanism to cure the aforementioned apparent problems of the
CDM model. From combining X-ray and lensing data of the cluster 0657−56,
Markevitch et al. (2004) obtained upper limits on the self-interaction cross
section of dark matter.

Do clusters follow the universal NFW profile? The CDM paradigm
of structure formation predict a universal density profile of dark matter ha-
los. One might therefore investigate whether the strong lensing properties of
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clusters are compatible with this mass profile. Of particular value for such
an investigation are clusters which contain several strong lensing features,
and in particular a radial arc, as it probes the inner critical curve of the
cluster. Sand et al. (2004; see also Sand et al. 2002) claim from a sample
of three clusters with radial arcs, that the slope of the inner mass profile
must be considerably flatter than predicted by the NFW model. However,
this conclusion is derived under the assumption of an axially-symmetric lens
model. As is true for strong lensing by galaxies (see SL), axisymmetric mass
model are not generic, and therefore conclusions derived from them are prone
to the systematic of the symmetry assumption. That was demonstrated by
Bartelmann & Meneghetti (2004) who showed that, as expected, the conclu-
sion about the inner slope changes radically once a finite ellipticity of the
mass distribution is allowed for, removing the apparent discrepancy with the
predictions from CDM models.

Cosmological parameters from strong lensing systems. The lens strength,
at given physical surface mass density Σ, depends on the redshifts of lens and
source, as well as on the geometry of the Universe which enters the distance-
redshift relation. Therefore, it has been suggested that a cluster which con-
tains a large number of strong lensing features can be used to constrain cos-
mological parameters, provided the sources of the arcs and multiple image
systems cover a large range of redshifts (Link & Pierce 1998). Simulations of
this effect, using realistic cluster models, confirmed that such purely geometri-
cal constraints can in principle be derived (Golse et al. 2002). One of the best
studied strong-lensing cluster up to now is A2218, for which four multiple-
image systems with measured (spectroscopic) redshift have been identified
which allows very tight constraints on the mass distribution in this cluster.
Soucail et al. (2004) applied the aforementioned method to this cluster and
obtained first constraints on the density parameter Ωm, assuming a flat cos-
mological model. This work can be viewed as a proof of concept; the new ACS
camera onboard HST will allow the identification of even richer strong lensing
systems in clusters, of which the one in A1689 (see Fig. 14) is a particularly
impressive example.

5 Mass reconstructions from weak lensing

Whereas strong lensing probes the mass distribution in the inner part of
clusters, weak lensing can be used to study the mass distribution at much
larger angular separations from the cluster center. In fact, as we shall see,
weak lensing can provide a parameter-free reconstruction of the projected
two-dimensional mass distribution in clusters – and hence offers the prospect
of mapping the dark matter distribution of clusters directly. This discovery
(Kaiser & Squires 1993) can be viewed to mark the beginning of quantita-
tive weak lensing research. But even before this discovery, weak lensing by
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clusters has been observed in a number of cases. Fort et al. (1988) found
that in addition to the giant arc in A 370, there are a number of images
stretched in the direction tangent to the center of the cluster, but with much
less spectacular axis ratios than the giant arc in this cluster; they termed
these new features ‘arclets’. Tyson et al. (1990) found a statistically signifi-
cant tangential alignment of faint galaxy images relative to the center of the
clusters A 1689 and Cl 1409+52, and obtained a mass profile from these lens
distortion maps. Comparison with numerical simulations yielded an estimate
of the cluster velocity dispersion, assuming an isothermal sphere profile.

In this section we consider the parameter-free mass reconstruction tech-
nique, first the original Kaiser & Squires method, and then a number of
improvements of this method. We then turn to the magnification effects; the
change of the number density of background sources, as predicted from (26),
can be turned into a local estimate of the surface mass density, and this
method has been employed in a number of clusters. Next we shall consider
inverse methods for the reconstruction of the mass distribution, which on the
one hand are more difficult to apply than the ‘direct’ methods, but on the
other hand are expected to yield more satisfactory results. Whereas the two-
dimensional maps yield a good visual impression on the mass distribution in
clusters, it is hard to extract quantitative information from them. In order
to get quantities that describe the mass and that can be compared between
clusters, often parameterized mass models are more useful, which are con-
sidered next. Finally, we consider aperture mass measures, which have been
introduced originally to obtain a mass quantity that is unaffected by the
mass-sheet degeneracy, but as will be shown, has a number of other useful
features. In particular, employing the aperture mass, one can device a method
to systematically search for mass concentrations on cluster-mass scales, using
their shear properties only, i.e. without referring to their luminous properties.

5.1 The Kaiser–Squires inversion

Weak lensing yields an estimate of the local (reduced) shear, as discussed in
Sect. 2.2. Here we shall discuss how to derive the surface mass density from
a measurement of the (reduced) shear. Recalling eq. (IN-26), the relation
between shear and surface mass density is

γ(θ) =
1
π

∫

IR2
d2θ′ D(θ − θ′)κ(θ′) , with

D(θ) ≡ −θ2
1 − θ2

2 + 2iθ1θ2

|θ|4 =
−1

(θ1 − iθ2)2
. (41)

Hence, the complex shear γ is a convolution of κ with the kernel D, or, in
other words, D describes the shear generated by a point mass. This relation
can be inverted: in Fourier space this convolution becomes a multiplication,

γ̂($) = π−1D̂($) κ̂($) for $ 0= 0 ,
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which can be inverted to yield

κ̂($) = π−1γ̂($) D̂∗($) for $ 0= 0 , (42)

where the Fourier transform of D is5

D̂($) = π

(
321 − 322 + 2i3132

)

|$|2 ; (43)

note that this implies that D̂($)D̂∗($) = π2, which has been used in obtaining
(42). It is obvious that D̂ is undefined for $ = 0, which has been indicated in
the foregoing equations. Fourier back-transformation of (42) then yields

κ(θ) − κ0 =
1
π

∫

IR2
d2θ′ D∗(θ − θ′) γ(θ′)

=
1
π

∫

IR2
d2θ′ Re

[
D∗(θ − θ′) γ(θ′)

]
. (44)

Note that the constant κ0 occurs since the $ = 0-mode is undetermined.
Physically, this is related to the fact that a uniform surface mass density
yields no shear. Furthermore, it is obvious (physically, though not so easily
seen mathematically) that κ must be real; for this reason, the imaginary part
of the integral should be zero, and taking the real-part only [as in the second
line of (44)] makes no difference. However, in practice this is different, since
noisy data, when inserted into the inversion formula, will produce a non-zero
imaginary part. What (44) shows is that if γ can be measured, κ can be
determined.

Before looking at this in more detail, we briefly mention some difficulties
with the inversion formula as given above:

• Since γ can at best be estimated at discrete points (galaxy images),
smoothing is required. One might be tempted to replace the integral
in (44) by a discrete sum over galaxy positions, but as shown by Kaiser
& Squires (1993), the resulting mass density estimator has infinite noise
(due to the θ−2-behavior of the kernel D).

• It is not the shear γ, but the reduced shear g that can be determined
from the galaxy ellipticities; hence, one needs to obtain a mass density
estimator in terms of g. In the case of ‘weak’ weak lensing, i.e., where
κ ) 1 and |γ| ) 1, then γ ≈ g.

• The integral in (44) extends over IR2, whereas data are available only on a
finite field; therefore, it needs to be seen whether modifications allow the
construction of an estimator for the surface mass density from finite-field
shear data.

5 The form of D̂ can be obtained most easily by using the relations between the
surface mass density and the shear components in terms of the deflection potential
ψ, given in (IN-18). Fourier transforming those immediately yields κ̂ = −|$|2ψ̂/2,
γ̂1 = −('21 − '22)ψ̂/2, γ̂2 = −'1'2ψ̂. Eliminating ψ̂ from the foregoing relations,
the expression for D̂ is obtained.
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• To get absolute values for the surface mass density, the additive constant
κ0 is of course a nuisance. As will be explained soon, this indeed is the
largest problem in mass reconstructions, and is the mass-sheet degeneracy
discussed in Sect. 2.5 of IN.

5.2 Improvements and generalizations

Smoothing. Smoothing of data is needed to get a shear field from discrete
data points. Consider first the case that we transform (44) into a sum over
galaxy images (ignoring the constant κ0 for a moment, and also assuming
the weak lensing case, κ ) 1, so that the expectation value of ε is the shear
γ),

κdisc(θ) =
1

nπ

∑

i

Re [D(θ − θi) εi] , (45)

where the sum extends over all galaxy images at positions θi and complex
ellipticity εi, and n is the number density of background galaxies. As shown
by Kaiser & Squires (1993), the variance of this estimator for κ diverges.
However, one can smooth this estimator, using a weight function W (∆θ)
(assumed to be normalized to unity), to obtain

κsmooth(θ) =
∫

d2θ′ W (|θ − θ′|)κdisc(θ′) , (46)

which now has a finite variance. One might expect that, since (i) smoothing
can be represented by a convolution, (ii) the relation between κ and γ is a
convolution, and (iii) convolution operations are transitive, it does not matter
whether the shear field is smoothed first and inserted into (44), or one uses
(46) directly. This statement is true if the smoothing of the shear is performed
as

γsmooth;1(θ) =
1
n

∑

i

W (|θ − θi|) εi . (47)

If this expression is inserted into (44), one indeed recovers the estimate (46).
However, this is not a particularly good method for smoothing, as can be
seen as follows: the background galaxy positions will at least have Poisson
noise; in fact, since the angular correlation function even of faint galaxies is
non-zero, local number density fluctuations will be larger than predicted from
a Poisson distribution. However, in the estimator (45) and in the smoothing
procedure (47), these local variations of the number density are not taken
into account. A much better way (Seitz & Schneider 1995) to smooth the
shear is given by

γsmooth;2(θ) =

[
∑

i

W (|θ − θi|)
]−1 ∑

i

W (|θ − θi|) εi , (48)
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which takes these local number density fluctuations into account. Lombardi
& Schneider (2001) have shown that the expectation value of the smoothed
shear estimate (48) is not exactly the shear smoothed by the kernel W , but
the deviation (i.e., the bias) is very small provided the effective number of
galaxy images inside the smoothing function W is substantially larger than
unity, which will always be the case for realistic applications. Lombardi &
Schneider (2002) then have demonstrated that the variance of (48) is indeed
substantially reduced compared to that of (47), in agreement with the finding
of Seitz & Schneider (1995).

When smoothed with a Gaussian kernel of angular scale θs, the covariance
of the resulting mass map is finite, and given by (Lombardi & Bertin 1998;
van Waerbeke 2000)

Cov
(
κ(θ), κ(θ′)

)
=

σ2
ε

4πθ2
s n

exp
(
−|θ − θ′|2

2θ2
s

)
. (49)

Thus, the larger the smoothing scale, the less noisy is the corresponding
mass map; on the other hand, the more are features washed out. Choosing
the appropriate smoothing scale is not easy; we shall come back to this issue
in Sect. 5.3 below.

The non-linear case, g "= γ. Noting that the reduced shear g = γ/(1 −
κ) can be estimated from the ellipticity of images (assuming that we avoid
the potentially critical inner region of the cluster, where |g| > 1; indeed,
this case can also be taken into account, at the price of somewhat increased
complexity), one can write:

κ(θ) − κ0 =
1
π

∫

IR2
d2θ′
[
1 − κ(θ′)

]
Re
[
D∗(θ − θ′) g(θ′)

]
; (50)

this integral equation for κ can be solved by iteration, and it converges quickly
(Seitz & Schneider 1995). Note that in this case, the undetermined constant
κ0 no longer corresponds to adding a uniform mass sheet. What the arbitrary
value of κ0 corresponds to can be seen as follows: The transformation

κ(θ) → κ′(θ) = λκ(θ) + (1 − λ) or
[1 − κ′(θ)] = λ [1 − κ(θ)] (51)

changes the shear γ → γ′ = λγ, and thus leaves g invariant; this is the
mass-sheet degeneracy! It can be broken if magnification information can be
obtained, since A → A′ = λA, so that

µ → µ′ = λ−2µ .

Magnification information can be obtained from the number counts of images
(Broadhurst et al. 1995), owing to the magnification bias, provided the un-
lensed number density is sufficiently well known. In principle, the mass sheet
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degeneracy can also be broken if redshift information of the source galaxies
is available and if the sources are widely distributed in redshift; this can be
seen as follows: let

Z(zs) =
Dds/Ds

limzs→∞ Dds/Ds
H(zs − zd) (52)

(H being the Heaviside step function) be the ratio of the lens strength of a
source at zs to that of a fiducial source at infinite redshift (see Fig. 16); then,
if κ∞ and γ∞ denote the surface mass density and shear for such a fiducial
source, the reduced shear for a source at zs is

g =
Zγ∞

1 − Zκ∞
, (53)

and there is no global transformation of κ∞ that leaves g invariant for sources
at all redshifts, showing the validity of the above statement. However, even
in this case the mass-sheet degeneracy is only mildly broken (see Bradac
et al. 2004). In particular, only those regions in the cluster where the non-
linearity (i.e., the difference between γ and g) is noticibly can contribute to
the degeneracy breaking, that is, the region near the critical curves where
|g| ∼ 1.

Fig. 16. The redshift weight
function Z(zs), defined in
(52), for three different val-
ues of the lens redshift zd =
0.2, 0.5, and 0.8, and three
different geometries of the
Universe, as indicated in the
labels (here, Ωm is denoted
as Ω0). Asymptotically for
zs → ∞, all curves tend to
Z = 1 (from Bartelmann &
Schneider 2001)

In the non-linear case (γ 0= g) the reduced shear needs to be obtained
from smoothing the galaxy ellipticities in the first place. Since the relation
between g and κ is non-linear, the ‘transitivity of convolutions’ no longer
applies; one thus cannot start from a discretization of an integral over im-
age ellipticities and smooth the resulting mass map later. We also note that
the accuracy with which the (reduced) shear is estimated can be improved
provided redshift estimates of individual source galaxies are available (see
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Fig. 17). In particular for high-redshift clusters, redshift information on indi-
vidual source galaxies becomes highly valuable. This can be understood by
considering a high-redshift lens, where an appreciable fraction of faint ‘source’
galaxies are located in front of the lens, and thus do not contribute to the
lensing signal. However, they do contribute to the noise of the measurement.
Redshift information allows the elimination of these foreground galaxies in
the shear estimate and thus the reduction of noise.

Fig. 17. The fractional gain in accuracy of the shear estimate when using redshift
information of individual source galaxies, relative to the case where only the redshift
distribution of the population is known, plotted as a function of the lens redshift.
It is assumed that the sources have a broad redshift distribution, with a mean of
〈zs〉 = 0.9 (solid and dotted curves) or 〈zs〉 = 1.5 (short-dashed and long-dashed
curves). The gain of accuracy also depends on the lens strength; the dotted and
long-dashed curves assume local lens parameters of γ∞ = 0.3 = κ∞, whereas the
solid and short-dashed curves assume only very weak lensing, here approximated
by γ∞ = 0 = κ∞. One sees that the gain is dramatic once the lens redshift becomes
comparable to the mean redshift of the source galaxies and is therefore of great
importance for high-redshift clusters (from Bartelmann & Schneider 2001)

Finite-field mass reconstruction. In order to obtain a mass map from a
finite data field, one starts from the relation (Kaiser 1995)

∇κ =
(
γ1,1 + γ2,2

γ2,1 − γ1,2

)
≡ uγ(θ) , (54)

which is a local relation between shear and surface mass density; it can easily
be derived from the definitions of κ and γ in terms of ψ,ij . A similar relation
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can be obtained in terms of reduced shear,

∇K(θ) =
−1

1 − g2
1 − g2

2

(
1 − g1 −g2

−g2 1 + g1

) (
g1,1 + g2,2

g2,1 − g1,2

)
≡ ug(θ) , (55)

where
K(θ) ≡ ln[1 − κ(θ)] (56)

is a non-linear function of κ. Based on these local relations, finite-field inver-
sion relations can be derived, and several of them appeared in the literature
right after the foregoing equations have been published. For example, it is
possible to obtain finite-field mass maps from line integrations (Schneider
1995; for other methods, see Squires & Kaiser 1996). Of all these finite-field
methods, one can be identified as optimal, by the following reasoning: in the
case of noise-free data, the imaginary part of (44) should vanish. Since one
is always dealing with noisy data (at least coming from the finite intrinsic
ellipticity distribution of the sources), in real life the imaginary part of (44)
will not be zero. But being solely a noise component, one can choose that
finite-field inversion which yields a zero imaginary component when averaged
over the data field (Seitz & Schneider 1996). One way of deriving this mass
map is obtained by a further differentiation of (54); this then yields a von
Neumann boundary-value problem on the data field U (Seitz & Schneider
2001),

∇2κ = ∇ · uγ with n · ∇κ = n · uγ on ∂U , (57)
where n is the outward-directed normal on the boundary ∂U of U . The anal-
ogous equation holds for K in terms of g and ug,

∇2K = ∇ · ug with n · ∇K = n · ug on ∂U . (58)

Note that (57) determines the solution κ only up to an additive constant,
and (58) determines K only up to an additive constant, i.e., (1 − κ) up
to a multiplicative factor. Hence, in both cases we recover the mass-sheet
degeneracies for the linear and non-linear case, respectively. The numerical
solution of these equations is fast, using overrelaxation (see Press et al. 1992).
In fact, the foregoing formulation of the problem is equivalent (Lombardi &
Bertin 1998) to the minimization of the action

A =
∫

U
d2θ |∇κ(θ) − uγ(θ)|2 , (59)

from which the von Neumann problem can be derived as the Euler equation
of the variational principle δA = 0. Furthermore, Lombardi & Bertin (1998)
have shown that the solution of (57) is ‘optimal’, in that for this estimator
the variance of κ is minimized.

Since (57) provides a linear relation between the shear and the surface
mass density, one expects that it can also be written in the form

κ(θ) =
∫

U
d2θ′ H(θ; θ′) · uγ(θ′) , (60)
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where the vector field H(θ; θ′) is the Green’s function of the von Neumann
problem (57). Accordingly,

K(θ) =
∫

U
d2θ′ H(θ; θ′) · ug(θ′) . (61)

Seitz & Schneider (1996) gave explicit expression for H in the case of a
circular and rectangular data field.

One might ask how important the changes in the resulting mass maps are
compared to the Kaiser–Squires formula applied to a finite data field. For
that we note that applying (44) or (50) to a finite data field is equivalent
to setting the shear outside the data field to zero. Hence, the resulting mass
distribution will be such as to yield a zero shear outside the data field, despite
the fact that we have no indication from data that the shear indeed is zero
there. This induces features in the mass map, in form of a pillow-like overall
mass distribution. The amplitude of this feature depends on the strength of
the lens, its location inside the data field, and in particular the size of the
data field. Whereas for large data fields this amplitude is small compared to
the noise amplitude of the mass map, it is nevertheless a systematic that can
easily be avoided, and should be avoided, by using the finite-field inversions,
which cause hardly any additional technical problems.

Various tests have been conducted in the literature as to the accuracy of
the various inversions. For those, one generates artificial shear data from a
known mass distribution, and compares the mass maps reconstructed with
the various methods with the original (e.g., Seitz & Schneider 1996, 2001;
Squires & Kaiser 1996). One of the surprising results of such comparisons
is that in some cases, the Kaiser & Squires original reconstruction faired
better than the explicit finite-field inversions, although it is known to yield
systematics. The explanation for this apparent paradox is, however, easy: the
mass models used in these test consisted of one or more localized mass peaks
well inside the data field, so the shear outside the data field is very small.
Noting that the KS formula applied to a finite data field is equivalent to
setting γ = 0 outside the data field, this methods provides ‘information’ to
the reconstruction process which is not really there, but for the mass models
used in the numerical tests is in fact close to the truth. Of course, by adding
this nearly correct ‘information’ to the mass reconstruction, the noise can
be lowered relative to the finite-field reconstructions where no assumptions
about the shear field outside the data field is made.

Constraints on the geometry of the Universe from weak lensing
mass reconstructions. The strength of the lensing signal depends, for a
given lens redshift, on the redshift of the sources, through the function Z(zs)
(52). Suppose that the surface mass density of a cluster was well known, and
that the redshifts of background sources can be determined. Then, by com-
paring the measured shear signal from sources at a given redshift zs with the
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one expected from the mass distribution, the value of Z(zs) can be deter-
mined. Since Z(z) depends on the geometry of the Universe, parameterized
through Ωm and ΩΛ, these cosmological parameters can in principle be de-
termined. A similar strategy for strong lensing clusters was described at the
end of Sect. 4.

Of course, the surface mass density of the cluster cannot assumed to be
known, but needs to be reconstructed from the weak lensing data itself. Con-
sider for a moment only the amplitude of the surface mass density, assuming
that its shape is obtained from the reconstruction. Changing the function
Z(z) by a multiplicative factor would be equivalent to changing the surface
mass density Σ of the cluster by the inverse of this factor, and hence such a
constant factor in Z is unobservable due to the mass-sheet degeneracy. Hence,
not the amplitude of the function Z(z) shown in Fig. 16 is important here,
but its shape.

Lombardi & Bertin (1999) have suggested a method to perform cluster
mass reconstructions and at the same time determine the cosmological pa-
rameters by minimizing the difference between the shear predicted from the
reconstructed mass profile and the observed image ellipticities, where the
former depends on the functional form of Z(z). A nice and simple way to
illustrate such a method was given in Gautret et al. (2000), called the ‘triplet
method’. Consider three background galaxies which have a small separation
on the sky, and assume to know the three source redshifts. Because of their
closeness, one might assume that they all experience the same tidal field and
surface mass density from the cluster. In that case, the shear of the three
galaxies is described by five parameters, the two components of γ∞, κ, and
Ωm and ΩΛ. From the six observables (two components of three galaxy el-
lipticities), one can minimize the difference between the predicted shear and
the observed ellipticities with respect to these five parameters, and in par-
ticular obtain an estimate for the cosmological parameters. Repeating this
process for a large number of triplets of background galaxies, the accuracy
on the Ω’s can be improved, and results from a large number of clusters can
be combined.

This procedure is probably too simple to be applied in practice; in partic-
ular, it treats κ∞ and γ∞ for each triplet as independent numbers, whereas
the mass profile of the cluster is described by a single scalar function. How-
ever, it nicely illustrates the principle. Lombardi & Bertin (1999) have used a
single density profile κ∞(θ) of the cluster, but assumed that the mass-sheet
degeneracy is broken by some other means. Jain & Taylor (2003) suggested a
similar technique for employing the lensing strength as a function of redshifts
and cosmological parameters to infer constraints on the latter. Clearly, more
work is needed in order to turn these useful ideas into a practically applicable
method.
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5.3 Inverse methods

In addition to these ‘direct’ methods for determining κ, inverse methods have
been developed, such as a maximum-likelihood fit (Bartelmann et al. 1996;
Squires & Kaiser 1996) to the data. There are a number of reasons why these
are in principle preferable to the direct method discussed above. First, in the
direct methods, the smoothing scale is set arbitrarily, and in general kept
constant. It would be useful to obtain an objective way how this scale should
be chosen, and perhaps, that the smoothing scale be a function of position:
e.g., in regions with larger number densities of sources, the smoothing scale
could be reduced. Second, the direct methods do not allow additional input
coming from complementary observations; for example, if both shear and
magnification information are available, the latter could not be incorporated
into the mass reconstruction. The same is true for clusters where strong
lensing constraints are known.

The shear likelihood function. In the inverse methods, one tries to fit
a (very general) lens model to the observational data, such that the data
agree within the estimated errors with the model. In the maximum-likelihood
methods, one parameterizes the lens by the deflection potential ψ on a grid
and then minimizes the regularized log-likelihood

− lnL =
Ng∑

i=1

|εi − g (θi, {ψn}) |2

σ2
i (θi, {ψn})

+ 2 lnσi(θi, {ψn}) + λeS({ψn}) , (62)

where σi ≈ σε
(
1 − |g(θi, {ψn})|2

)
[see eq. (15) for the case |g| < 1 that was

assumed here], with respect to these gridded ψ-values; this specific form of the
likelihood assumes that the intrinsic ellipticity distribution follows a Gaussian
with width σε.6 In order to avoid overfitting, one needs a regularization term
S; entropy regularization (Seitz et al. 1998) seems very well suited (see Bridle
et al. 1998; Marshall et al. 2002 for alternative regularizations). The entropy
term S gets large if the mass distribution has a lot of structure; hence, in
minimizing (62) one tries to match the data as closely as permitted by the
entropic term (Narayan & Nityananda 1986). As a result, one obtains a model
as smooth as compatible with the data, but where structure shows up where
6 This specific form (62) of the likelihood function assumes that the sheared ellip-

ticity probability distribution follows a two-dimensional Gaussian with mean g
and dispersion σ; note that this assumption is not valid in general, not even when
the intrinsic ellipticity distribution is Gaussian (see Geiger & Schneider 1999 for
an illustration of this fact). The exact form of the lensed ellipticity distribution
follows from the intrinsic distribution ps(ε

(s)) and the transformation law (12)
between intrinsic and lensed ellipticity, p(ε) = ps

(
ε(s)(ε; g)

)
det
(
∂ε(s)/∂ε

)
. How-

ever, in many cases the Gaussian approximation underlying (62) is sufficient and
convenient for analytical considerations.
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the data require it. The parameter λe is a Langrangean multiplier which sets
the relative weight of the likelihood function and the regularization; it should
be chosen such that the χ2 per galaxy image is about unity, i.e.,

Ng∑

i=1

|εi − g (θi, {ψn}) |2

σ2
i (θi, {ψn})

≈ Ng ,

since then the deviation of the observed galaxy ellipticities from their ex-
pectation value g is as large as expected from the ellipticity dispersion. This
choice of the regularization parameter λe then fixes the effective smoothing
used for the reconstruction.

Strong lensing constraints can be incorporated into the inverse method
by adding a term to the log-likelihood function which forces the minimum
to satisfy these strong constraints nearly precisely. E.g., if a pair of multiple
images at θ1 and θ2 is identified, one could add the term

λs |β(θ1) − β(θ2)|2 = λs |[θ1 − α(θ1)] − [θ2 − α(θ2)]|2

to the log-likelihood; by turning up the parameter λs, its minimum is guar-
anteed to correspond to a solution where the multiple image constraint is
satisfied. Note that the form of this ‘source-plane minimization’ is simplified
– see Sect. 4.6 of SL – but in the current context this approach suffices.

Magnification likelihood. Similarly, when accurate number counts of faint
background galaxies are available, the magnification information can be in-
corporated into the log-likelihood function. If the number counts behave (lo-
cally) as a power law, n0(> S) ∝ S−α, the expected number of galaxies on
the data field U then is

〈N〉 = n0

∫

U
d2θ |µ(θ)|α−1 ; (63)

see (26). The likelihood of observing N galaxies at the positions θi can then be
factorized into a term that yields the probability of observing N galaxies when
the expected number is 〈N〉, and one that the N galaxies are at their observed
locations. Since the probability for a galaxy to be at θi is proportional to the
expected number density there, n = n0 µα−1, the likelihood function becomes
(Seitz et al. 1998)

Lµ = PN (〈N〉)
N∏

i=1

|µ(θi)|α−1 , (64)

with the first factor yielding the Poisson probability. Note that this expression
assumes that the background galaxies are unclustered on the sky; in reality,
where (even faint) galaxies cluster, this factorization does not strictly apply.

It should be pointed out that the deflection potential ψ, and not the
surface mass density κ, should be used as variable on the grid, for two reasons:
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first, shear and κ depend locally on ψ, and are thus readily calculated by
finite differencing from ψ, whereas the relation between γ and κ is non-local
and requires summation over all gridpoints, which is of course more time
consuming. Second, and more important, the surface mass density on a finite
field does not determine γ on this field, since mass outside the field contributes
to γ as well. In fact, one can show (Schneider & Bartelmann 1997) that the
shear inside a circle is fully determined by the mass distribution inside the
circle and the multipole moments of the mass distribution outside the circle;
in principle, the latter can thus be determined from the shear measurement.

Despite these reasons, some authors prefer to construct inverse methods
in which the surface mass density on a grid serves as variables (e.g., Bridle
et al. 1998; Marshall et al. 2002). The fact that the mass density on a finite
field does not describe the shear in this field is accounted for in these methods
by choosing a reconstruction grid that is larger than the data field and by
allowing the surface mass density in this outer region to vary as well. Whereas
the larger numerical grid requires a larger numerical effort, in addition to the
non-local relation between κ and γ, this is of lesser importance, provided the
numerical resources are available. Worse, however, is the view that the mass
distribution outside the data field obtained by this method has any physical
significance! It has not. This mass distribution is solely one of infinitely many
that can approximately generate the shear in the data field from mass outside
the data field. The fact that numerical tests show that one can indeed recover
some of the mass distribution outside the data field is again a fluke, since these
models are usually chosen such that all mass distribution outside the field
in contained in a boundary region around the data field which is part of the
numerical grid – and hence, the necessary ‘external’ shear must be generated
by a mass distribution in this boundary zone which by construction is where
it is. In real life, however, there is no constraint on where the ‘external’ shear
contribution comes from.

5.4 Parameterized mass models

Whereas the parameter-free mass maps obtained through one of the methods
discussed above provide a direct view of the mass distribution of a cluster,
their quantitative interpretation is not straightforward. Peaks in the surface
mass density can indicate the presence of a mass concentration, or else be
a peak caused by the ellipticity noise of the galaxies. Since the estimated
values for κ at different locations θ are correlated [see eq. (49)], it is hard to
imagine ‘error bars’ attached to each point. Therefore, it is often preferable
to use parameterized mass models to fit the observed data; for example,
fitting shear (and/or magnification) data to an NFW mass profile (see IN,
Sect. 6.2) yields the virial mass M200 of the cluster and its concentration
index c. There are basically two methods which have been used to obtain
such parameterized models. The first one, assuming a spherical mass model,
orders the tangential component of the observed image ellipticities into radial
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bins and fits a parameterized shear profile through these bins, by minimizing
a corresponding χ2-function. One of the disadvantages of this method is that
the result of the fitting process can depend on the selected binning, but this
can be largely avoided by choosing the bins fine enough. This then essentially
corresponds to minimizing the first term in (62).

Alternatively, a likelihood method can be used, in which the log-likelihood
function (62) – without the regularization term – is minimized, with the val-
ues of the potential on the grid {ψn} replaced by a set of parameters which
describe the mass profile. Schneider et al. (2000) have used this likelihood
method to investigate with which accuracy the model parameters of a mass
profile can be obtained, using both the shear information as well as mag-
nification information from number counts depletion. One of the surprising
findings of this study was that the slope of the fitted mass profile is highly de-
generate if only shear information is used; indeed, the mass-sheet degeneracy
strikes again and causes even fairly different mass profiles to have very similar
reduced shear profiles, as is illustrated for a simple example in Fig. 18. In
Fig. 19, the resulting degeneracy of the profile slope is seen. This degeneracy
can be broken if number count information is used in addition. As seen in
the middle panel of Fig. 18, the magnification profiles of the four models dis-
played are quite different and thus the number counts sensitive to the profile
slope. Indeed, the confidence regions in the parameter fits, shown in Fig. 19,
obtained from the magnification information are highly inclined relative to
those from the shear measurements, implying that the combination of both
methods yields much better constraints on the model parameters. Of course,
as mentioned before, the mass-sheet degeneracy can also be broken if redshift
information of individual background galaxies is available.

However, in order for the magnification information to yield significant
constraints on the mass parameters, one needs to know the unlensed number
density n0 of sources quite accurately. In fact, even an uncertainty of less than
∼ 10% in the value of n0 renders the magnification information in relation to
the shear information essentially useless (in the frame of parameterized mod-
els). Note that an accurate determination of n0 is difficult to achieve: since n0

corresponds to the unlensed number density of faint galaxies at the same flux
limit as used for the actual data field, one requires an accurate photomet-
ric calibration. A flux calibration uncertainty of 0.1 mag corresponds to an
uncertainty in n0 of about ∼ 5% for a slope of α = 0.5, and such uncertain-
ties are likely at the very faint flux limits needed to achieve a high number
density of sources. In addition, the presence of bright cluster galaxies renders
the detection and accurate brightness measurement of background galaxies
difficult and requires masking of regions around them. Nevertheless, in cases
where only magnification information is available, it can provide information
on the mass profile by itself. Such a situation can occur for observing condi-
tions with seeing above ∼ 1′′, when the shear method is challenged by the
smallness of faint galaxies.
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Fig. 18. The Einstein radius of a spherical mass
distribution was assumed to be θE = 0.′5, and
the density profile outside the Einstein radius
was assumed to follow a power law, κ(θ) =
a(θ/θE)−q; an SIS would have a = 1/2 and
q = 1. The figure displays for four combinations
of model parameters the surface mass density
κ(θ), the function µ−1/2, which would be the de-
pletion factor for source counts of slope β = 1/2,
and the reduced shear g(θ). As can be seen,
whereas the density profiles of the four mod-
els are quite different, the reduced shear profiles
are pairwise almost fully degenerate. This is due
to the mass-sheet degeneracy; it implies that it
will be difficult to determine the slope q of the
profiles from shear measurements alone, unless
much larger fields around the cluster are used
(from Schneider et al. 2000)

The result shown in Fig. 19 implies that the shape of the mass profile
cannot be very well determined from the shear method, owing to the mass
sheet degeneracy. This result extends to more general mass profiles than
power-law models; e.g., King & Schneider (2001) considered NFW models
with their two parameters c and r200. A fairly strong degeneracy between
these two parameters was found. Furthermore, the mass-sheet degeneracy
renders it surprisingly difficult to distinguish an isothermal mass model from
an NFW profile. The ability to distinguish these two families of models in-
creases with a larger field-of-view of the observations. This expectation was
indeed verified in King et al. (2002b) where the wide-field imaging data of
the cluster A 1689 were analyzed with the likelihood method. Although the
field size is larger than 30′, so that the shear profile up to ∼ 15′ from the
cluster center can be measured, an NFW profile is preferred with less than
90% confidence over a power-law mass model. The determination of the mass
profiles is likely to improve when strong lensing constraints are taken into
account as well.
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Fig. 19. For the power-law models of Fig. 18, confidence regions in the slope q
and amplitude a are drawn, as derived from the shear (thin solid contours), the
magnification (dotted) and their combination (thick solid). A number density of
30/arcmin2 for shear measurements and 120/arcmin2 for number counts was as-
sumed. Thick dashed curves show models with constant total number of galaxies
in the field, demonstrating that most of the constraint from magnification is due to
the total counts, with little information about the detailed profile. It was assumed
here that the unlensed number density of background galaxies is perfectly known;
the fact that most of the magnification information comes from the total number
of galaxies in the field implies that any uncertainty in the unlensed number density
will quickly remove most of the magnification information (from Schneider et al.
2000)

The likelihood method for obtaining the parameters of a mass model is
robust in the sense that the result is only slightly affected by substructure,
as has been shown by King et al. (2001) using numerically generated cluster
models. However, if a ‘wrong’ parameterization of the mass distribution is
chosen, the interpretation of the resulting best-fit model must proceed care-
fully, and the resulting physical parameters, such as the total mass, may be
biased. The principal problems with parameterized models are the same as
for lens galaxies in strong lensing: unless the parameters have a well-defined
physical meaning, one does not learn much, even if they are determined with
good accuracy (see Sect. 4.7 of SL).

5.5 Problems of weak lensing cluster mass reconstruction and
mass determination

In this section, some of the major problems of determining the mass profile of
clusters from weak lensing techniques are summarized. The finite ellipticity
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dispersion of galaxies generates a noise which provides a fundamental limit
to the accuracy of all shear measurements. We will mention a number of
additional issues here.

Number 1: The mass-sheet degeneracy. As mentioned several times,
the major problem is the mass-sheet degeneracy, which implies that there
is always one arbitrary constant that is undetermined from the shear data.
Number count depletion can in principle lift this degeneracy, but this magni-
fication effect has been observed in only a few clusters yet, and as mentioned
above, this method has its own problems. Employing redshift information of
individual source galaxies can also break this degeneracy (Bradac et al. 2004).
Note that the mass-sheet degeneracy causes quite different mass profiles to
have very similar reduced shear profiles.

Source redshift distribution. Since the critical surface mass density Σcr

depends on the source redshift, a quantitative interpretation of the weak lens-
ing mass reconstruction requires the knowledge of the redshift distribution of
the galaxy sample used for the shear measurements. Those are typically so
faint (and numerous) that it is infeasible to obtain individual spectroscopic
redshifts for them. There are several ways to deal with this issue: probably
the best is to obtain multi-color photometry of the fields and employ photo-
metric redshift techniques (e.g. Connolly et al. 1995; Beńıtez 2000; Bolzonella
et al. 2000). In order for them to be accurate, the number of bands needs to
be fairly large; in addition, since much of the background galaxy population
is situated at redshifts above unity, one requires near-IR images, as optical
photometry alone cannot be used for photometric redshifts above z >∼ 1.3
(where the 4000 Å-break is redshifted out of the optical window). The prob-
lem with near-IR photometry is, however, that currently near-IR cameras
have a substantially smaller field-of-view than optical cameras; in addition,
due to the much higher sky brightness for ground-based near-IR observations,
they extend to brighter flux limits (or smaller galaxy number densities) than
optical images, for the same observing time. Nevertheless, upcoming wide-
field near-IR cameras, such as the VISTA project on Paranal or WIRCAM
at the CFHT, will bring great progress in this direction.

The alternative to individual redshift estimates of background galaxies is
to use the redshift distribution obtained through spectroscopic (or detailed
photometric redshift) surveys in other fields, and identify this with the faint
background galaxy population at the same magnitude. In this way, the red-
shift distribution of the galaxies can be estimated. The issues that need to be
considered here is that neither the targets for a spectroscopic survey, nor the
galaxy population from which the shear is estimated, are strictly magnitude
selected. Very small galaxies, for example, cannot be used for a shear esti-
mate (or are heavily downweighted) owing to their large smearing corrections
from the PSF. Similarly, for low-surface brightness galaxies it is much harder
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to determine a spectroscopic redshift. Hence, in these redshift identifications,
care needs to be excersized.

For cluster mass reconstructions, the physical mass scale is obtained from
the average β := 〈Dds/Ds〉 over all source galaxies. This average is fairly
insensitive to the detailed redshift distribution, as long as the mean source
redshift is substantially larger than the lens redshift. This is typically the
case for low-redshift (z <∼ 0.3) clusters. However, for higher-redshift lenses,
determining β requires a good knowledge of the galaxy redshift distribution.

Contamination of the source sample. Next on the list is the contam-
ination of the galaxy sample from which the shear is measured by cluster
galaxies; a fraction of the faint galaxies will be foreground objects or faint
cluster members. Whereas the foreground population is automatically taken
into account in the normal lensing analysis (i.e., in determining β), the cluster
members constitute an additional population of galaxies which is not included
in the statistical redshift distribution. The galaxy sample used for the shear
measurement is usually chosen as to be substantially fainter than the brighter
cluster member galaxies; however, the abundance of dwarf galaxies in clusters
(or equivalently, the shape of the cluster galaxy luminosity function) is not
well known, and may vary substantially from cluster to cluster (e.g., Tren-
tham & Tully 2002, and references therein). Including cluster members in
the population from which the shear is measured weakens the lensing signal,
since they are not sheared. As a consequence, a smaller shear is measured,
and a lower cluster mass is derived. In addition, the dwarf contamination
varies as a function of distance from the cluster center, so that the shape of
the mass distribution will be affected. Color selection of faint galaxies can
help in the selection of background galaxies, i.e., to obtain a cleaner set of
true background galaxies. Of course, cluster dwarfs, if not properly accounted
for, will also affect the magnification method. One method to deal with this
problem is to use only galaxies redder than the Red Cluster Sequence of the
cluster galaxies in the color-magnitude diagram, as this sequence indicates
the reddest galaxies at the corresponding redshift.

Accuracy of mass determination via weak lensing. Comparing the
‘true’ mass of a cluster with that measured by weak lensing is not trivial,
as one has to define what the true mass of a cluster is. Using clusters from
numerical simulations, the mass is defined as the mass inside a sphere of
radius r200 around the cluster center within which the overdensity is 200 times
the critical density of the universe at the redshift considered. When comparing
this mass with the projected mass inside a circle of radius R = r200, one
should not be surprised that the latter is larger (Metzler et al. 2001), since
one compares apples (the mass inside a sphere) with oranges (the mass within
a cylinder). Metzler et al. ascribed this to the mass in dark matter filaments
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at the intersection of which massive clusters are located, but it is most likely
mainly an effect of the mass definitions.

The mass-sheet degeneracy tell us there is little hope to measure the ‘total’
mass of a cluster without further assumptions. Therefore, one natural strat-
egy is to assume a parameterized mass profile and see how accurately one
can determine these parameters. The effect of ellipticity noise has already
been described in Sect. 5.4. Using simulated clusters, Clowe et al. (2004a)
have studied the effect of asphericity and substructure of clusters on these
mass parameters, by analyzing the shear field obtained from independent
projection of the clusters. They find that the non-spherical mass distribu-
tion and substructure induce uncertainties in the two parameters (r200 and
the concentration c) of an NWF profile which are larger than those from
the ellipticity noise under very good observing conditions. Among different
projections of the same cluster, the value of r200 has a spread of 10 – 15%,
corresponding to a spread in virial mass of ∼ 40%. Averaging over the differ-
ent projections, they find that there is little bias in the mass determination,
except for clusters with very large ellipticity.

Lensing by the large-scale structure. Lensing by foreground and back-
ground density inhomogeneities (i.e., the LSS), yields a fundamental limit to
the accuracy of cluster mass estimates. Since lensing probes the projected
density, these foreground and background inhomogeneities are present in the
lensing signal. Hoekstra (2003) has investigated this effect in the determina-
tion of the parameters of an NFW mass profile; we shall return to this issue
in Sect. 9.2 below when we consider lensing by the large-scale structure. In
principle, the foreground and background contributions can be eliminated if
the individual redshifts of the source galaxies are known, since in this case a
three-dimensional mass reconstruction becomes possible (see Sect. 7.6); how-
ever, the resulting cluster mass map will be very noisy.

5.6 Results

After the first detection of a coherent alignment of galaxy images in two
clusters by Tyson et al. (1990) and the development of the Kaiser & Squires
(1993) mass reconstruction method, the cluster MS 1224+20 was the first for
which a mass map was obtained (Fahlman et al. 1994). This investigation of
the X-ray selected cluster yielded a mass map centered on the X-ray centroid
of the cluster, but also a surprisingly high M/L-ratio of ∼ 800 h (here and
in following we quote mass-to-light ratios always in Solar units). This high
M/L ratio has later been confirmed in an independent analysis by Fischer
(1999). This mass estimate is in strong conflict with that obtained from a
virial analysis (Carlberg 1994); however, it is known that this cluster has a
very complex structure, is not relaxed, and most likely a superposition of
galaxy concentrations in redshift.
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Fig. 20. Contours show the
mass reconstruction of the
cluster A1689, obtained from
data taken with the WFI
at the ESO/MPG 2.2m tele-
scope. The image is ∼ 33′

on a side, corresponding to
∼ 4.3 h−1 Mpc at the cluster
redshift of zd = 0.18. In the
lower panel, the reduced shear
profile is shown, together with
the best fitting SIS and NFW
models. The mass reconstruc-
tion has been smoothed by
a 1.′15 Gaussian, and contour
spacing is ∆κ = 0.01. No cor-
rections have been applied to
account for contamination of
the lensing signal by cluster
dwarf galaxies – that would
increase the mass of the best
fit models by ∼ 25% (taken
from Clowe & Schneider 2001)

Since this pioneering work, mass reconstructions of many clusters have
been performed; see Mellier (1999) and Sect. 5.4 of BS. Here, only a few
recent results shall be mentioned, followed by a summary.

Wide-field mass reconstructions. The advent of large mosaic CCD cam-
eras provides an opportunity to map large regions around clusters to be used
for a mass reconstruction, and thus to measure the shear profile out to the
virial radius of clusters. These large-scale observations offer the best promise
to investigate the outer slope of the mass profile, and in particular distinguish
between isothermal distributions and those following the NWF profile. Fig.
20 shows an example of such a mass reconstruction, that of the cluster Abell
1689 with zd = 0.182. A significant shear is observed out to the virial radius.
The mass peak is centered on the brightest cluster galaxy, and the overall
lens signal is significant at the 13.4-σ level. The shear signal is fit with two
models, as shown in the lower panel of Fig. 20; the NWF profile yields a
better fit than an SIS profile. Two more clusters observed with the WFI by
Clowe & Schneider (2002) yield similar results, i.e., a detection of the lensing
signal out to the virial radius, and a preference for an NWF mass profile, al-
though in one of the two cases this preference is marginal. The lensing signal
of such rich clusters could be contaminated by faint cluster member galaxies;
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correcting for this effect would increase the estimate of the lensing strength,
but requires multi-color imaging for source selection.

The cluster A1689 is (one of) the strongest lensing clusters known (see
Fig. 14); in fact, it is strong enough so that a weak lensing signal can be
significantly detected from near-IR images (King et al. 2002a) despite the fact
that the usable number density of (background) galaxies is only∼ 3 arcmin−2.
The estimate of its velocity dispersion from weak lensing yields an Einstein
radius well below the distance of the giant arcs from the cluster center. Hence,
in this cluster we see a discrepancy between the strong and weak lensing
results, which cannot be easily explained by redshift differences between the
arc sources and the mean redshift of the faint galaxies used for the weak
lensing analysis. On the other hand, A1689 is known to be not a relaxed
cluster, due to the redshift distribution of its member galaxies. This may
explain the fact that the weak lensing mass estimates is also lower than that
obtained from X-ray studies.

Filaments between clusters. One of the predictions of CDM models for
structure formation is that clusters of galaxies are located at the intersection
points of filaments formed by the dark matter distribution. In particular,
this implies that a physical pair of clusters should be connected by a bridge
or filament of (dark) matter, and weak lensing mass reconstructions can in
principle be used to search for them. In the investigation of the z = 0.42
supercluster MS0302+17, Kaiser et al. (1998) found an indication of a possi-
ble filament connecting two of the three clusters, with the caveat (as pointed
out by the authors) that the filament lies just along the boundary of two
CCD chips; in fact, an indepedent analysis of this supercluster (Gavazzi et
al. 2004) failed to confirm this filament. Gray et al. (2002) saw evidence for a
filament connecting the two clusters A901A/901B in their mass reconstruc-
tion of the A901/902 supercluster field. Another potential filament has been
found in the wide-field mass reconstruction of the field containing the pair of
clusters A222/223 (Dietrich et al. 2004). Spectroscopy shows that there are
also galaxies at the same redshift as the two clusters present in the ‘filament’
(Dietrich et al. 2002).

One of the problems related to the unambiguous detection of filaments
is the difficulty to define what a ‘filament’ is, i.e. to device a statistics to
quantify the presence of a mass bridge. The eye easily picks up a pattern and
identifies it as a ‘filament’, but quantifying such a pattern turns out to be
very difficult, as shown by Dietrich et al. (2004). Because of that, it is difficult
to distinguish between noise in the mass maps, the ‘elliptical’ extension of
two clusters pointing towards each other, and a true filament. However, this
problem is not specific to the weak investigation: even if the true projected
mass distribution of a pair of clusters were known (e.g., from a cluster pair
in numerical simulations), it is not straightforward to define what a filament
would be.
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Fig. 21. A deep R-band image of the cluster pair Abell 222/223, obtained from
two different pointings with the WFI@ESO/MPG 2.2m, with contours showing the
reconstructed κ-map. The two clusters are in the region where the pointings overlap
and thus deep imaging is available there. Both clusters are obviously detected in
the mass map, with A223 (the Northern one) clearly split up into two subclusters.
The mass reconstruction shows a connection between the two clusters which can be
interpreted as a filament; galaxies at the clusters’ redshift are present in this inter-
cluster region. A further mass concentration is seen about 13′ to the South-East
of A222, which is significant at the 3.5σ level and where a clear concentration of
galaxies is visible. A possible red cluster sequence indicates a substantially higher
redshift for this cluster, compared to z ≈ 0.21 of the double cluster (from Dietrich
et al. 2004)
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Correlation between mass and light. Mass reconstructions on wide-
fields, particularly those covering supercluster regions, are ideally suited to in-
vestigate the relation between mass and galaxy light. For example, a smoothed
light map of the color-selected early-type galaxies can be correlated with the
reconstructed κ-map; alternatively, assuming that light traces mass, the ex-
pected shear map can be predicted from the early-type galaxies and com-
pared to the observed shear, with the mass-to-light ratio being the essential
fit parameter. Such studies have been carried out on the aforementioned su-
percluster fields, as well as on blank fields (Wilson et al. 2001). These studies
yield very consistent results, in that the mass of clusters is very well traced
by the distribution of early-type galaxies, but the mass-to-light ratio seems to
vary between different fields, with ∼ 400h (in solar units) for the 0302 super-
cluster (Gavazzi et al. 2004), ∼ 200h for the A901/902 supercluster (Gray et
al. 2002), and ∼ 300h for empty fields (Wilson et al. 2001) in the rest-frame
B-band. When one looks in more detail at these supercluster fields, inter-
esting additional complications appear. The three clusters in the 0302 field,
as well as the three clusters in the A901/902 field (A901 is indeed a pair of
clusters) have quite different properties. In terms of number density of color-
selected galaxies, A901a and A902 dominate the field, whereas only A901b
seems to be detected in X-rays. Considering early-type galaxies’ luminosity,
A901a is the most prominent of the three clusters. In contrast to this, A902
seems to be most massive as judged from the weak lensing reconstruction.
Similar differences between the three clusters in the 0302 field are also seen.
It therefore appears that the mass-to-light properties of clusters cover quite
a range.

Cluster mass reconstructions from space. The exquisite image quality
that can be achieved with the HST – imaging without the blurring effects
of atmospheric seeing – suggests that such data would be ideal for weak
lensing studies. This is indeed partly true: from space, the shape of smaller
galaxy images can be measured than from the ground where the size of the
seeing disk limits the image size of galaxies that can be used for ellipticity
measurements in practice. Fig. 22 shows an HST image of the cluster A851
(zd = 0.41), together with a mass reconstruction. The agreement between
the mass distribution and the angular distribution of bright cluster galaxies
is striking. A detailed X-ray observation of this cluster with XMM-Newton
(De Filippis et al. 2003) finds two extended X-ray components coinciding
with the two maxima of the bright galaxy distribution, and thus of the mass
map shown in Fig. 22, in addition to several compact X-ray sources inside
the HST field. Clearly, this cluster is a dynamically young system, as also
seen by the inhomogeneities of the X-ray temperature and metallicity of the
intracluster gas.

The drawback of cluster weak lensing studies with the HST is the small
field-of-view of its WFPC2 camera, which precludes imaging of large regions
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Fig. 22. The left panel shows an WFPC2@HST image of the cluster Cl0939+4713
(=Abell 851; taken from Seitz et al. 1996; the field is about 2.′5 on a side), whereas
the right panel shows a mass reconstruction obtained by Geiger & Schneider (1999);
this was obtained using the entropy-regularized maximum likelihood method of
Seitz et al. (1998). One notices the increased spatial resolution of the resulting
mass map near the center of the cluster, which this method yields ‘automatically’
in those regions where the shear signal is large. Indeed, this mass map predicts that
the cluster is critical in the central part, in agreement with the finding of Trager
et al. (1997) that strong lensing features (multiple images plus an arc) of sources
with z ∼ 4 are seen there. The strong correlation between the distribution of mass
and that of the bright cluster galaxies is obvious: Not only does the peak of the
mass distribution coincide with the light center of the cluster, but also a secondary
maximum in the surface mass density corresponds to a galaxy concentration (seen
in the lower middle), as well as a pronounced minimum on the left where hardly
any bright galaxies are visible

around the cluster center. To compensate for this, one can use multiple point-
ings to tile a cluster. For example, Hoekstra and collaborators have observed
three X-ray selected clusters with HST mosaics; the results from this survey
are summarized in Hoekstra et al. (2002d). One example is shown in Fig.
23, the high-redshift cluster MS1054−03 at zd = 0.83. Also in this cluster
one detects clear substructure, here consisting of three mass peaks, which is
matched by the distribution of bright cluster galaxies. The shape of the mass
maps indicates that this cluster is not relaxed, but perhaps in a later stage
of merging, a view also supported by its hot X-ray temperature. In fact, new
observations with Chandra and XMM-Newton of MS 1054 have shown that
this cluster has a much lower temperature than measured earlier with ASCA
(Gioia et al. 2004). Only two of the three components seen in the galaxy
distribution and the mass reconstruction are seen in X-rays, with the central
weak lensing component being the dominant X-ray source. The newly deter-
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mined X-ray temperature is consistent with the velocity dispersion of cluster
galaxies.

Fig. 23. Mass reconstruction
(contours) of the inner part of
the high-redshift (zd = 0.83)
cluster MS1054−03, based on a
mosaic of six pointings obtained
with the WFPC2@HST (from
Hoekstra et al. 2000). The split-
ting of the cluster core into three
subcomponents, also previously
seen from ground-based images
by Clowe et al. (2000), shows
that this cluster is not yet relaxed

Magnification effects. As mentioned in Sect. 2.4, the magnification of a
lens can also be used to reconstruct its surface mass density (Broadhurst et
al. 1995). Provided a population of background source galaxies is identified
whose number count slope α – see (26) - differs significantly from unity,
local counts of these sources can be turned into an estimator of the local
magnification. If the lens is weak, (27) provides a relation between the local
number counts and the local surface mass density. If the lens is not weak,
this relation no longer suffices, but one needs to use the full expression

|µ|−1 =
∣∣(1 − κ)2 − |γ|2

∣∣ , (65)

where we have written absolute values to account for the fact that the sign of
the magnification cannot be observed. There are two obvious difficulties with
(65): the first comes from the sign ambiguities, namely whether µ is positive
or negative, and whether κ < 1 or > 1. Assuming that we are in the region of
the cluster where µ > 0 and κ < 1 (that is, outside the outer critical curve),
then (65) can be rewritten as

κ = 1 −
√

µ−1 + |γ|2 , (66)

which shows the second difficulty: in order to estimate κ from µ, one needs
to know the shear magnitude |γ|.

There are various ways to deal with this second problem. Consider first
the case that the (reduced) shear is also observed, in which case one better
writes

κ = 1 −
[
µ
(
1 − |g|2

)]−1/2 ; (67)
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but of course, if shear measurements are available, they should be combined
with magnification observations in a more optimized way. A second method,
using magnification only, is based on the fact that γ depends linearly on κ (ig-
noring finite-field problems here), and so (66) can be turned into a quadratic
equation for the κ field (Dye & Taylor 1998). From numerical models of
clusters, van Kampen (1998) claimed that the shear in these clusters approx-
imately follows on average a relation of the form |γ| = (1 − c)

√
κ/c, with

c ∼ 0.7; however, there is (as expected) large scatter around this mean rela-
tion which by itself has little theoretical justification. Fig. 24 shows the mass
reconstruction of the cluster Cl 0024+17 using galaxy number counts and the
two reconstruction methods just mentioned.

Fig. 24. Mass reconstruction of the clus-
ter Cl 0024+17 from the magnification
method. The two different reconstruc-
tions are based on two different ways to
turn the magnification signal – number
count depletions – into a surface mass
density mass, as described in the text:
in the upper panel, a local relation be-
tween surface mass density and shear
magnitude has been used, whereas in the
lower panel, the magnification was trans-
formed into a κ map using the (non-
local) quadratic dependence of the in-
verse magnification on the surface mass
density field. Overall, these two recon-
structions agree very well. To account for
the presence of bright foreground galax-
ies, the data field had to be masked
before local number densities of back-
ground galaxies were estimated – the
mask is shown in Fig. 25 (from Dye et
al. 2002)

Magnification effects have been observed for a few clusters, most noticibly
Cl 0024+17 (Fort et al. 1997; Rögnvaldsson et al. 2001; Dye et al. 2002) and
A1689 (Taylor et al. 1998; Dye et al. 2001). We shall describe some of the
results obtained for Cl 0024+17 as an example (Dye et al. 2002). Since the
cluster galaxies generate a local overdensity of galaxy counts, they need to
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be removed first, which can be done based on a color and magnitude crite-
rion. Comparison with extensive spectroscopy of this cluster (Czoske et al.
2001) shows that this selection is very effective for the brighter objects. For
the fainter galaxies – those from which the lensing signal is actually mea-
sured – a statistical subtraction of foreground and cluster galaxies needs to
be performed, which is done by subtracting galaxies according to the field
luminosity function with z < zd and cluster galaxies according to the cluster
luminosity function. The latter is based on the assumption that the luminos-
ity distribution of cluster galaxies is independent from the distance to the
cluster center. Next, the field of the cluster needs to be masked for bright
objects, near which the photometry of fainter galaxies becomes inaccurate
or impossible; Fig. 25 shows the masked data field. The number density of
sources is then determined from the unmasked area. The resulting mass re-
construction is shown in Fig. 24. The results confirm the earlier finding from

Fig. 25. The mask of the data field of
the cluster Cl 0024+17 (grey circles) and
the location of putative background ob-
jects (crosses). The inner dashed circle
shows the critical curve of the cluster
as derived from the multiply imaged arc
system (from Dye et al. 2002)

strong lensing (see Sect. 4.4) that the mass in the inner part of this cluster is
larger by a factor ∼ 3 than estimated from its X-ray emission (Soucail et al.
2000).

Magnification and shear method compared. It is interesting to con-
sider the relative merits of shear and magnification methods for weak lens-
ing studies. The number of clusters that have been investigated with either
method are quite different, with less than a handful for which the magnifi-
cation effect has been seen. The reason for this is multifold. First, the shear
method does not need external calibration, as it is based on the assumption
of random source ellipticity; in contrast to this, the magnification method
requires the number counts of unlensed sources. Whereas this can be ob-
tained from the same dataset, provided it covers a sufficiently large area,
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this self-calibration removes one of the strongest appeals of the magnifica-
tion effect, namely its potential to break the mass-sheet degeneracy. Second,
the magnification method is affected by the angular correlation of galax-
ies, as clearly demonstrated by Athreya et al. (2002) in their study of the
cluster MS 1008−1224, where the background number counts revealed the
presence of a background cluster which, if not cut out of the data, would
contaminate the resulting mass profile substantially. Third, the removal of
foreground galaxies, and more seriously, of faint cluster members introduces
an uncertainty in the results which is difficult to control. Finally, the number
count method yields a lower lensing signal-to-noise than the shear method:
If we consider Nγ and Nµ galaxies in a given patch of the sky, such that for
the former ones the ellipticities have been measured, and for the latter ones
accurate photometry is available and the galaxies are above the photometric
completeness brightness, the signal-to-noise ratio from the shear – see (15) –
and number count methods are

(
S
N

)

γ

=
|γ|
σε

√
Nγ ;
(

S
N

)

µ

= 2κ|α− 1|
√

Nµ , (68)

where we employed (27) in the latter case and assumed that the source galaxy
positions are uncorrelated. The ratio of these two S/N values is

(S/N)γ
(S/N)µ

=
|γ|
κ

1
2σε|1 − α|

√
Nγ

Nµ
. (69)

For an isothermal mass profile, the first of these factors is unity. With σε ≈ 0.4
and α ≈ 0.75 for R-band counts, the second factor is ∼ 5. The final factor
depends on the quality of the data: in good seeing conditions, this ratio is of
order unity. However, when the seeing is bad, the photometric completeness
level can be considerably fainter than the magnitude for which the shape
of galaxies can be measured reliably. Therefore, for data with relatively bad
seeing, the magnification effect may provide a competitive means to extract
weak lensing information. Having said all of this, the magnification method
will keep its position as an alternative to shear measurements, in particular
for future multi-color datasets where the separation of foreground and cluster
galaxies from the background population can be made more cleanly.

Summary. The mass reconstruction of clusters using weak lensing has by
now become routine; quite a few cameras at excellent sites yield data with
sub-arcsecond image quality to enable this kind of work. Overall, the recon-
structions have shown that the projected mass distribution is quite similar to
that of the projected galaxy distribution and the shape of the X-ray emission,
at least for clusters that appear relaxed. There is no strong evidence for a dis-
crepancy between the mass obtained from weak lensing and that from X-rays,
again with exceptions like for Cl0024+16 mentioned above (which most likely
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is not a single cluster). The weak lensing mass profiles are considered more
reliable than the ones obtained from X-ray studies, since they do not rely
on symmetry or equilibrium assumptions. On the other hand, they contain
contributions from foreground and background mass inhomogeneities, and
are affected by the mass-sheet degeneracy. What is still lacking is a combined
analysis of clusters, making use of weak lensing, X-ray, Sunyaev–Zeldovich,
and galaxy dynamics measurements, although promising first attempts have
been published (e.g., Zaroubi et al. 1998, 2001; Reblinsky 2000; Doré et al.
2001; Marshall et al. 2003).

5.7 Aperture mass and other aperture measures

In the weak lensing regime, κ ) 1, the mass-sheet degeneracy corresponds to
adding a uniform surface mass density κ0. However, one can define quantities
in terms of the surface mass density which are invariant under this transfor-
mation. In addition, several of these quantities can be determined directly in
terms of the locally measured shear. In this section we shall present the basic
properties of the aperture measures, whereas in the following section we shall
demonstrate how the aperture mass can be used to find mass concentrations
based solely on their weak lensing properties.

Aperture mass. Let U (|θ|) be a compensated weight (or filter) function,
meaning

∫
dθ θ U(θ) = 0, then the aperture mass

Map(θ0) =
∫

d2θ κ(θ)U(|θ − θ0|) (70)

is independent of κ0, as can be easily seen. For example, if U has the shape
of a Mexican hat, Map will have a maximum if the filter center is centered
on a mass concentration. The important point to notice is that Map can be
written directly in terms of the shear (Kaiser et al. 1994; Schneider 1996)

Map(θ0) =
∫

d2θ Q(|θ|) γt(θ; θ0) , (71)

where we have defined the tangential component γt of the shear relative to
the point θ0 [cf. eq. 17], and

Q(θ) =
2
θ2

∫ θ

0
dθ′ θ′ U(θ′) − U(θ) . (72)

These relations can be derived from (54), by rewriting the partial derivatives
in polar coordinates and subsequent integration by parts (see Schneider &
Bartelmann 1997); it can also be derived directly from the Kaiser & Squires
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inversion formula (44), as shown in Schneider (1996). Perhaps easiest is the
following derivation (Squires & Kaiser 1996): We first rewrite (70) as

Map = 2π
∫ θu

0
dϑ ϑU(ϑ) 〈κ(ϑ)〉

= 2π [X(ϑ) 〈κ(ϑ)〉]θu0 − 2π
∫ θu

0
dϑ X(ϑ)

d 〈κ〉
dϑ

, (73)

where θu is the radius of the aperture, and we have defined

X(θ) =
∫ θ

0
dϑ ϑU(ϑ) .

This definition and the compensated nature of U implies that the boundary
terms in (73) vanish. Making use of (24), one finds that

d 〈κ〉
dϑ

=
dκ̄
dϑ

− d 〈γt〉
dϑ

= − 2
ϑ
〈γt〉 −

d 〈γt〉
dϑ

,

where we used (23) and (24) to obtain dκ̄/dϑ = −2 〈γt〉 /ϑ. Inserting the
foregoing equation into (73), one obtains

Map = 2π
∫ θu

0
dϑ ϑ

2X(ϑ)
ϑ2

〈γt(ϑ)〉

+ 2π [X(ϑ) 〈γt(ϑ)〉]θu0 − 2π
∫ θu

0
dϑ

dX

dϑ
〈γt(ϑ)〉 . (74)

The boundary term again vanishes, and one sees that the last equation has
the form of (71), with the weight function Q = 2X/ϑ2−U , reproducing (72).

We shall now consider a few properties of the aperture mass, which follow
directly from (72).

• If U has finite support, then Q has finite support, which is due to the
compensated nature of U . This implies that the aperture mass can be
calculated on a finite data field, i.e., from the shear in the same circle
where U 0= 0.

• If U(θ) = const. for 0 ≤ θ ≤ θin, then Q(θ) = 0 for the same interval,
as is see directly from (72). Therefore, the strong lensing regime (where
γ deviates appreciably from g) can be avoided by properly choosing U
(and Q).

• If U(θ) = (πθ2
in)−1 for 0 ≤ θ ≤ θin, U(θ) = −[π(θ2

out − θ2
in)]−1 for θin <

θ ≤ θout, and U = 0 for θ > θout, then Q(θ) = θ2
out θ

−2
[
π(θ2

out − ϑ2
in)
]−1

for θin ≤ θ ≤ θout, and Q(θ) = 0 otherwise. For this special choice of U ,

Map = κ̄(θin) − κ̄(θin, θout) , (75)

the mean mass density inside θin minus the mean density in the annulus
θin ≤ θ ≤ θout (Kaiser 1995). Since the latter is non-negative, this yields
a lower limit to κ̄(θin), and thus to M(θin).
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The aperture mass can be generalized to the case where the weight function
U is constant on curves other than circles, e.g., on ellipses, in the sense
that the corresponding expressions can be rewritten directly in terms of the
shear on a finite region (see Squires & Kaiser 1996 for the case where U is
constant on a set of self-similar curves, and Schneider & Bartelmann 1997
for a general set of nested curves). In general, Map is not a particularly good
measure for the total mass of a cluster – since it employs a compensated filter
– but it has been specifically designed that way to be immune against the
mass-sheet degeneracy. However, Map is a very convenient measure for mass
concentrations (see Sect. 5.8) and, as shown above, yields a robust lower limit
on cluster masses.

Aperture multipoles. The aperture method can also be used to calculate
multipoles of the mass distribution: define the multipoles

Q(n) :=
∫

d2θ |θ|n U(|θ|) eniϕ κ(θ) , (76)

then the Q(n) can again be expressed as an integral over the shear. Here, U is
a radial weight function for which certain restrictions apply (see Schneider &
Bartelmann 1997 for details), but is not required to be compensated for n > 0.
A few cases of interest are: a weight function U which is non-zero only within
an annulus θin ≤ θ ≤ θout and which continuously goes to zero as θ → θin,out;
in this case, the shear is required only within the same annulus. Likewise, if
U is constant for 0 ≤ θ ≤ θin and then decreases smoothly to zero at θout,
only the shear within the annulus is required to calculate the multipoles.
Aperture multipoles can be used to calculate the multipole moments of mass
concentrations like clusters directly from the shear, i.e., without obtaining
first a mass map, which allows a more direct quantification of signal-to-noise
properties.

The cross aperture. We have seen that the Kaiser & Squires inversion,
given by the first expression in (44), must yield a real result; the imaginary
part of the integral in (44) vanishes in the absence of noise. Suppose one
would multiply the complex shear by i = e2iπ/4; this would transform the real
part of the integral into the imaginary part and the imaginary part into the
negative of the real part. Geometrically, multiplication by this phase factor
corresponds to rotating the shear at every point by 45◦. Hence, if all shears
are rotated by π/4, the real part of the Kaiser & Squires inversion formula
(44) yields zero. This 45-degree test has been suggested by A. Stebbins; it
can be used on real data to test whether typical features in the mass map
are significant, as those should have larger amplitude that spurious features
obtained from the mass reconstruction in which the shear has been rotated
by π/4 (the corresponding ‘mass map’ then yields a good indication of the
typical noise present in the real mass map).



Weak Gravitational Lensing 77

One can define in analogy to (71) the cross aperture by replacing the
tangential component of the shear by its cross component. According to the
45-degree test, the resulting cross aperture should be exactly zero. Hence, if
we define for θ0 = 0

M := Map + iM⊥=
∫

d2θ Q(|θ|) [γt(θ) + iγ×(θ)]

= −
∫

d2θ Q(|θ|) γ(θ) e−2iφ , (77)

where φ is the polar angle of θ as in (17), then M is expected to be purely
real. We shall make use of this definition and the interpretation of M in later
sections.

5.8 Mass detection of clusters

Motivation. If a weak lensing mass reconstruction of a cluster has been
performed and a mass peak is seen, it can also be quantified by applying the
aperture mass statistics to it: placing the center of the aperture on the mass
peak, and choosing the radius of the aperture to match the extent of the mass
peak will give a significant positive value of Map. Now consider to observe a
random field in the sky, and to determine the shear in this field. Then, one
can place apertures on this field and determine Map at each point. If Map

attains a significant positive value at some point, it then corresponds to a
point around which the shear is tangentially oriented. Such shear patterns
are generated by mass peaks according to (70) – hence, a significant peak in
the Map-map corresponds to a mass concentration (which can, in principle t
least, be a mass concentration just in two-dimensional projection, not neces-
sarily in 3D). Hence, the aperture mass statistics allows us to search for mass
concentrations on blank fields, using weak lensing methods (Schneider 1996).
From the estimate (19), we see that the detectable mass concentrations have
to have typical cluster masses.

The reason why this method is interesting is obvious: As discussed in Sect.
6 of IN, the abundance of clusters as a function of mass and redshift is an
important cosmological probe. Cosmological simulations are able to predict
the abundance of massive halos for a given choice of cosmological param-
eters. To compare these predictions with observations, cluster samples are
analyzed. However, clusters are usually detected either as an overdensity in
the galaxy number counts (possibly in connection with color information, to
employ the red cluster sequence – see Gladders & Yee 2000), or from extended
X-ray sources. In both cases, one makes use of the luminous properties of the
clusters, and cosmologists find it much more difficult to predict those, as the
physics of the baryonic component of the matter is much harder to handle
than the dark matter. Hence, a method for cluster detection that is inde-
pendent of their luminosity would provide a clean probe of cosmology. From
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what was said above, the aperture mass provides such method (Schneider
1996).

To illustrate this point, we show in Fig. 26 the projected mass and the
corresponding shear field as it results from studying the propagation of light
rays through a numerically generated cosmological matter distribution (Jain
et al. 2000; we shall return to such simulations in Sect. 6.6). From the com-
parison of these two panels, one sees that for each large mass concentration
there is a tangential shear pattern centered on the mass peak. Thus, a sys-
tematic search for such shear patterns can reveal the presence and abundance
of peaks in the mass map.

The method. The search for mass concentrations can thus be carried out
by calculating the aperture mass on a gid over the data field and to identify
significant peaks. A practical estimator for Map is obtained by replacing the
integral in (71) by a finite sum over image ellipticities:

M̂ap(θ0) =
1
n

∑

i

εti(θ0)Q(|θi − θ0|) , (78)

where n is the mean number density of galaxy images, and εti(θ0) is the ellip-
ticity component of a galaxy at θi tangent to the center θ0 of the aperture.
This estimator has easy-to-quantify signal-to-noise properties. In the absence
of a lensing signal,

〈
M̂ap

〉
≡ 0, and the dispersion of M̂ap(θ0) is

σ2(θ0) =
σ2
ε

2n2

∑

i

Q2(|θi − θ0|) ; (79)

hence, the signal-to-noise of M̂ap(θ0) is

S
N

=
√

2
σε

∑
i εti(θ0)Q(|θi − θ0|)√∑

i Q2(|θi − θ0|)
. (80)

The noise depends on θ0, as the image number density can vary of data field.
The size (or radius) of the aperture shall be adapted to the mass concen-
trations excepted: too small aperture radii miss most of the lensing signal of
real mass concentrations, but is more susceptible to noise peaks, whereas too
large aperture radii include regions of very low signal which may be swamped
again by noise. In addition, the shape of the filter function Q can be adapted
to the expected mass profiles of mass concentrations; e.g., one can design
filters which are particularly sensitive to NFW-like density profiles. In order
not to prejudice the findings of a survey, it may be advantageous to use a
‘generic’ filter function, e.g., of the form

U(ϑ) =
9

πθ2

(
1 − ϑ2

θ2

)(
1
3
− ϑ2

θ2

)
; Q(ϑ) =

6
πθ2

ϑ2

θ2

(
1 − ϑ2

θ2

)
. (81)
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Fig. 26. Projected mass distribution of the large-scale structure (left), and the
corresponding shear field (right), where the length and orientation of the sticks
indicate the magnitude and direction of the local shear. The top panels correspond
to an Einstein–de Sitter model of the Universe, whereas the bottom panels are for
a low density open model. The size of the field is one degree on the side, and the
background galaxies are assumed to all lie at the redshift zs = 1. Note that each
mass concentration seen in the left-hand panels generates a circular shear pattern
at this position; this form the basic picture of the detection of mass concentrations
from a weak lensing observation (from Jain et al. 2000)

The relation between the two expressions for Map given by (70) and (71) is
only valid if the aperture lies fully inside the data field. If it does not, i.e.,
if the aperture crosses the boundary of the data field, these two expressions
are no longer equivalent; nevertheless, the estimator (78) still measures a
tangential shear alignment around the aperture center and thus signifies the
presence of a mass concentration.
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There are superior estimates of the significance of a detected mass peak
than using the signal-to-noise ratio (80). One consists in bootstrapping; there
one calculates Map at a given point (where N galaxies are in the aperture)
many times by randomly drawing – with replacement – N galaxies and tests
how often is signal negative. The fraction of cases with negative values corre-
sponds to the error level of having a positive detection of Map. Alternatively,
one can conduct another Monte-Carlo experiment, by randomizing all galaxy
image orientations and calculating Map from these randomized samples, and
ask in which fraction of realizations is the value of Map larger than the mea-
sured value? As the randomized galaxies should show no lensing signal, this
fraction is again the probability of getting a value as large as that measured
from random galaxy orientations. In fact, from the central limit theorem one
expects that the probability distribution of Map from randomizing the im-
age orientations will be a Gaussian of zero mean, and its dispersion can be
calculated directly from (78) to be

σ2(θ0) =
1

2n2

∑

i

|εi|2 Q2(|θi − θ0|) , (82)

which is similar to (79), but accounts for the moduli of the ellipticity of the
individual galaxy images.

Both of the aforementioned methods take the true ellipticity distribution
of galaxy images into account, and should yield very similar results for the
significance. Highly significant peaks signify the presence of a mass concen-
tration, detected solely on the basis of its mass, and therefore, it is a very
promising search method for clusters.

There is nothing special about the weight function (81), except mathe-
matical simplicity. It is therefore not clear whether these filter functions are
most efficient to detect cluster-mass matter concentrations. In fact, as shown
in Schneider (1996), the largest S/N is obtained if the filter function U fol-
lows the true mass profile of the lens or, equivalently, if Q follows its radial
shear profile. Hennawi & Spergel (2003) and Schirmer (2004) tested a large
range of filter functions, including (81), Gaussians, and those approximat-
ing an NFW profile. Based on numerical ray-tracing simulations, Hennawi &
Spergel conclude that the ‘truncated’ NFW filter is most efficient for cluster
detections; the same conclusion has been achieved by Schirmer (2004) based
on wide-field imaging data.

Furthermore, Hennawi & Spergel have complemented their cluster search
by a ‘tomographic’ component, assuming that the source galaxies have (pho-
tometric) redshift estimates available. Since the lens strength is a function
of source redshift, the expected behaviour of the aperture mass signal as a
function of estimated source redshift can be used as an additional search cri-
teria. They shown that this additional information increases the sensitivity
of weak lensing to find mass concentrations, in particular for higher-redshift
ones; in fact, the cluster search by Wittman et al. (described below) has em-
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ployed the use of redshift information. As an additional bonus, this method
also provides an estimate of the lens redshift.

Results. In the past few years, a number of clusters and/or cluster candi-
dates have been detected by the weak lensing method, and a few of them
shall be discussed here. The right-hand panel of Fig. 27 shows the mass re-
construction of one of the 50 FORS1@VLT fields observed in the course of
a cosmic shear survey (see Sect. 7.1). This reconstruction shows an obvious
mass peak, indicated by a circle. The left panel shows the optical image, and
it is obvious that the location of the mass peak coincides with a concentration
of bright galaxies – this certainly is a cluster, detected by its weak lensing sig-
nal. However, no follow-up observations have been conducted yet to measure
its redshift.

Fig. 27. A cosmic shear survey was carried out with the FORS1 instrument on
the VLT (see Maoli et al. 2001 and Sect. 7.1 below). The left panel shows one of
the 50 fields observed in the course of this survey, whereas the right panel shows
a weak-lensing mass reconstruction of this field. Obviously, a strong mass peak is
detected in this reconstruction, indicated by the circle. At the same position, one
finds a strong overdensity of relatively bright galaxies on the VLT image; therefore,
this mass peak corresponds to a cluster of galaxies. A reanalysis of all 50 VLT fields
(Hetterscheidt 2003) yielded no further significant cluster candidate; however, with
a field size of only ∼ 6.′5, detecting clusters in them is difficult unless these are
positioned close to the field centers

Wittman et al. (2001, 2003) reported on the discovery of two clusters
from their wide-field weak lensing survey; one of them is shown in Fig. 28
and discussed here. First, a peak in their mass reconstruction was identified



82 P. Schneider

which has a significance of 4.5σ. The location of the mass peak is identified
with a concentration of red elliptical galaxies, with the two centers separated
by about 1′ (which is about the accuracy with which the centers of mass
concentrations are expected to be determined from mass reconstructions).
Follow-up spectroscopy confirmed the galaxy concentration to be a cluster at
redshift zd = 0.28, with a velocity dispersion of σv ∼ 600 km/s. Since multi-
color photometry data are available, photometric redshift estimates of the
faint galaxy population have been obtained, and the tangential shear around
the mass peak has been investigated as a function of this estimated redshift.
The lens signal rises as the redshift increases, as expected due to the lensing
efficiency factor Dds/Ds. In fact, from the source redshift dependence of the
lens signal, the lens redshift can be estimated, and yields a result within
∼ 0.03 of the spectroscopically measured zd. Hence, in this case not only can
the presence of a cluster be inferred from weak lensing, but at the same time
a cluster redshift has been obtained from lensing observations alone. This is
one example of using source redshift information to investigate the redshift
structure of the lensing matter distribution; we shall return to a more general
discussion of this issue in Sect. 7.6.

Fig. 28. Left: BTC image of a blank field, right: mass reconstruction, showing the
presence of a (mass-selected) cluster near the lower right corner – spectroscopically
verified to be at z = 0.276 (from Wittman et al. 2001)

In a wide-field imaging weak lensing survey of galaxy clusters, Dahle et
al. (2003) detected three significant mass peaks away from the clusters that
were targeted. One of these cases is illustrated in Fig. 29, showing the mass
reconstruction in the field of the cluster A 1705. The mass peak South-West
of the cluster coincides with a galaxy concentration at z ∼ 0.55, as estimated
from their color, and an arc is seen near the brightest galaxy of this cluster. A
further cluster was detected in the wide-field image of the A222/223 double
cluster field (Dietrich et al. 2004) which coincides with an overdensity of
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galaxies. Hence, by now of order ten cluster-mass matter concentrations have
been discovered by weak lensing techniques and verified as genuine clusters
from optical photometry and, for some of them, spectroscopy.

Fig. 29. Shown is the mass recon-
struction of the field containing the
cluster A1705, located near the cen-
ter of this field. The peak ∼ 4′ to
the North-East of A1705 appears to
be associated with galaxies at the
same redshift as A1705. However,
the peak ∼ 4′ South-West of A1705
seems to be associated with galax-
ies at considerably larger redshift, at
z ∼ 0.55 ± 0.05, as determined from
the V − I colors of the corresponding
galaxy concentration. Indeed, an arc
curving around the central galaxy of
this newly detected cluster candidate
is observed (from Dahle et al. 2003)

Miyazaki et al. (2002) used a 2.1 deg2 deep image taken with the Suprime-
Cam wide-field imager on Subaru to search for mass peaks. They compared
their peak statistics with both, the expected peak statistics from a noise field
created by intrinsic galaxy ellipticities (Jain & van Waerbeke 2000) as well
as from N-body simulations, and found a broader distribution in the actual
data. They interpret this as statistical evidence for the presence of mass
peaks; however, their interpreation of the significant dips in the mass map as
evidence for voids cannot hold, as the density contrast of voids is too small
(since the fractional density contrast δ > −1) to be detectable with weak
lensing. They find a number density of > 5σ peaks of about 5 deg−2, well in
agreement with predictions from Kruse & Schneider (1999) and Reblinsky et
al. (1999). Schirmer (2004) investigated about 16 deg2 of images taken with
the WFI@ESO/MPG 2.2m, and detected 100 > 4σ-peaks, again in good
agreement with theoretical expectations.

Dark clusters? In addition, however, this method has the potential to dis-
cover mass concentrations with very large mass-to-light ratio, i.e., clusters
which are very faint optically and which would be missed in more conven-
tional surveys for clusters. Two potential ‘dark clusters’ have been reported
in the literature.7 Umetsu & Futamase (2000), using the WFPC2 onboard
7 A third case reported in Miralles et al. (2002) has in the meantime been consid-

erably weakened (Erben et al. 2003).
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HST detected a highly significant (4.5σ) mass concentration 1.′7 away from
the cluster Cl 1604+4304, also without an apparent overdensity of associated
galaxies.

In the course of a wide-field weak lensing analysis of the cluster A 1942, Er-
ben et al. (2000) detected a mass peak which, using the aperture mass statis-
tics introduced previously, has been shown to be highly significant (∼ 4.7σ on
the V-band image), with the significance being obtained from the random-
ization and bootstrapping techniques described above. An additional I-band
image confirmed the presence of a mass peak at the same location as on the
V-band image, though with somewhat lower significance. No concentration
of galaxies is seen near the location of the mass peak, which indicates that it
either is a very dark mass concentration, or a cluster at a fairly high redshift
(which, however, would imply an enormous mass for it), or, after all, a statis-
tical fluke. It is important to note that the signal in Map comes from a range
of radii (see Fig. 30); it is not dominated by a few highly flattened galaxies
which happen to have a fortitious orientation. Gray et al. (2000) have used
near-IR images to search for a galaxy concentration in this direction, with-
out finding an obvious candidate. Therefore, at present it is unclear whether
the ‘dark clump’ is indeed a very unusual cluster. A low-significance X-ray
source near its position, as obtained in a ROSAT observation of A 1942, cer-
tainly needs confirmation by the more sensitive X-ray observatory XMM.8 Of
course, if there are really dark clusters, their confirmation by methods other
than weak lensing would be extremely difficult; but even if we are dealing
with a statistical fluke, it would be very important to find the cause for it. An
HST mosaic observation of this field has been conducted; a first analysis of
these data was able to confirm the findings of Erben et al., in the sense that
the shear signal from galaxies seen in both, the HST images and the ground-
based data, have a significant tangential alignment (von der Linden 2004).
However, contrary to expectations if this was truly a lensing mass signal,
there is hardly any tangential alignment from fainter galaxies, although they
are expected to be located at higher redshift and thus should show a stronger
shear signal. However, as a word of caution, the PSF anisotropy of WFPC2
cannot be controlled from stars on the image, owing to the small field-of-
view, and no stellar cluster has been observed with the filter with which the
dark clump observations were conducted, so that the PSF anisotropy cannot
be accurately inferred from such calibration images. The existence of dark
clusters would be highly unexpected in view of our current understanding
of structure formation and galaxy evolution, and would require revisions of
these models.

The search for clusters by weak lensing will certainly continue, due to
the novel properties of the cluster samples obtained that way. The observa-
tional data required are the same as those used for cosmic shear studies, and
8 Judging from the results of several proposal submissions, people on X-ray TACs

seem not to care too much about dark cluster candidates.
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Fig. 30. Tangential shear profile
from both (V- and I-band) images
around the ‘dark cluster’ candi-
date near the cluster A1942. For
each angular scales, two points
(and corresponding error bars)
are plotted, which are derived
from two different images of the
field in the V- and I-band. It can
be seen that the tangential shear
signal extends over quite a range
in radius (from Erben et al. 2000)

several very wide-field surveys are currently conducted, as will be described
in Sect. 7. Hence, we can expect to have a sizable sample of shear-selected
clusters in the near future. The search for mass concentrations by weak lens-
ing techniques is affected by foreground and background inhomogeneities,
which impose fundamental limits on the reliability and completeness of such
searches; we shall return to this issue in Sect. 9.2.

Expectations. Kruse & Schneider (1999) have calculated the expected num-
ber density of lensing-detected clusters, using the aperture-mass method, for
different cosmological parameters; these have been verified in numerical sim-
ulations of the large-scale structure by Reblinsky et al. (1999). Depending on
the cosmological model, a few clusters per deg2 should be detected at about
the 5σ level. The dependence of the expected number density of detectable
mass peaks on the cosmological parameters can be used as a cosmological
probe; in particular, Bartelmann et al. (2002) and Weinberg & Kamionkowski
(2003) demonstrate that the observed abundance of weak lensing clusters can
probe the equation-of-state of the dark energy. Bartelmann et al. (2001) ar-
gued that the abundance of weak lensing detected clusters strongly depends
on their mass profile, with an order-of-magnitude difference between NFW
profiles and isothermal spheres. Weinberg & Kamionkowski (2002) argued,
based on the spherical collapse model of cluster formation, that a consider-
able fraction of such detections are expected to be due to non-virialized mass
concentrations, which would then be considerably weaker X-ray emitters and
may be candidates for the ‘dark clusters’.
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6 Cosmic shear – lensing by the LSS

Up to now we have considered the lensing effect of localized mass concentra-
tions, like galaxies and clusters. In addition to that, light bundles propagating
through the Universe are continuously deflected and distorted by the gravita-
tional field of the inhomogeneous mass distribution, the large-scale structure
(LSS) of the cosmic matter field. This distortion of light bundles causes shape
and size distortions of images of distant galaxies, and therefore, the statistics
of the distortions reflect the statistical properties of the LSS (Gunn 1967;
Blandford et al. 1991; Miralda-Escudé 1991; Kaiser 1992).

Cosmic shear deals with the investigation of this connection, from the
measurement of the correlated image distortions to the inference of cosmo-
logical information from this distortion statistics. As we shall see, cosmic
shear has become a very important tool in observational cosmology. From a
technical point-of-view, it is quite challenging, first because the distortions
are indeed very weak and therefore difficult to measure, and second, in con-
trast to ‘ordinary’ lensing, here the light deflection does not occur in a ‘lens
plane’ but by a 3-D matter distribution, implying the need for a different de-
scription of the lensing optics. We start by looking at the description of light
propagating through the Universe, and then consider the second-order statis-
tical properties of the cosmic shear which reflect the second-order statistical
properties of the cosmic matter field, i.e., the power spectrum. Observational
results from cosmic shear surveys are presented in Sect. 7, whereas higher-
order statistical properties of the shear field will be treated in Sect. 9.

6.1 Light propagation in an inhomogeneous Universe

In this brief, but rather technical section, we outline the derivation of the
lensing effects of the three-dimensional mass distribution between the faint
background galaxy population and us; the reader is referred to Bartelmann
& Schneider (2001) for a more detailed discussion. The final result of this
consideration has a very simple interpretation: in the lowest-order approxi-
mation, the 3-D cosmological mass distribution can be considered, for sources
at a single redshift zs, as an effective surface mass density κ, just like in or-
dinary lensing. The resulting κ is obtained as a line-of-sight integral of the
density contrast ∆ρ, weighted by the usual geometrical factor entering the
lens equations.

The laws of light propagation follow from Einstein’s General Relativity;
according to it, light propagates along the null-geodesics of the space-time
metric. As shown in SEF (see also Seitz et al. 1994), one can derive from
General Relativity that the governing equation for the propagation of thin
light bundles through an arbitrary space-time is the equation of geodesic
deviation,

d2ξ

dλ2
= T ξ , (83)
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where ξ is the separation vector of two neighboring light rays, λ the affine
parameter along the central ray of the bundle, and T is the optical tidal matrix
which describes the influence of space-time curvature on the propagation of
light. T can be expressed directly in terms of the Riemann curvature tensor.

For the case of a weakly inhomogeneous Universe, the tidal matrix can be
explicitly calculated in terms of the peculiar Newtonian potential. For that,
we write the slightly perturbed metric of the Universe in the form

ds2 = a2(τ)
[(

1 +
2Φ
c2

)
c2dτ2 −

(
1 − 2Φ

c2

)(
dw2 + f2

K(w)dω2
)]

, (84)

where w is the comoving radial distance, a = (1 + z)−1 the scale factor,
normalized to unity today, τ is the conformal time, related to the cosmic
time t through dt = a dτ , fK(w) is the comoving angular diameter distance,
which equals w in a spatially flat model, and Φ(x, w) denotes the Newtonian
peculiar gravitational potential which depends on the comoving position vec-
tor x and cosmic time, here expressed in terms of the comoving distance w
(see Sect. 4 of IN for a more detailed description of the various cosmological
terms). In this metric, the tidal matrix T can be calculated in terms of the
Newtonian potential Φ, and correspondingly, the equation of geodesic devi-
ation (83) yields the evolution equation for the comoving separation vector
x(θ, w) between a ray separated by an angle θ at the observer from a fiducial
ray

f  (w)K

f  (w)K

dx= K

0

(x,w�’)

(w�’)

f  (w w�’)
x(w)

w w�’

(   ) =w

Fig. 31. Illustration of the evolution of the separation between two light rays in a
curved space-time (source: T. Schrabback)

d2x
dw2

+ K x = − 2
c2

[
∇⊥Φ (x(θ, w), w) −∇⊥Φ

(0) (w)
]

, (85)

where K = (H0/c)2 (Ωm + ΩΛ − 1) is the spatial curvature of the Uni-
verse, ∇⊥ = (∂/∂x1, ∂/∂x2) is the transverse comoving gradient operator,
and Φ(0)(w) is the potential along the fiducial ray.9 The formal solution of
9 In some of the literature, this transport equation is written without the term

accounting for the potential along the fiducial ray. The idea behind this is to
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this transport equation is obtained by the method of Green’s function, to
yield

x(θ, w) = fK(w)θ− 2
c2

∫ w

0
dw′ fK(w−w′)

[
∇⊥Φ (x(θ, w′), w′) −∇⊥Φ

(0) (w′)
]
.

(86)
A source at comoving distance w with comoving separation x from the fiducial
light ray would be seen, in the absence of lensing, at the angular separation
β = x/fK(w) from the fiducial ray (this statement is nothing but the defi-
nition of the comoving angular diameter distance). Hence, β is the unlensed
angular position in the ‘comoving source plane’ at distance w, where the ori-
gin of this source plane is given by the intersection point with the fiducial
ray. Therefore, in analogy with standard lens theory, we define the Jacobian
matrix

A(θ, w) =
∂β

∂θ
=

1
fK(w)

∂x
∂θ

, (87)

and obtain from (86)

Aij(θ, w) = δij−
2
c2

∫ w

0
dw′ fK(w − w′)fK(w′)

fK(w)
Φ,ik (x(θ, w′), w′) Akj(θ, w′) ,

(88)
which describes the locally linearized mapping introduced by LSS lensing. To
derive (88), we noted that ∇⊥Φ(0) does not depend on θ, and used the chain
rule in the derivative of Φ. This equation still is exact in the limit of validity
of the weak-field metric. Next, we expand A in powers of Φ, and truncate the
series after the linear term:

Aij(θ, w) = δij −
2
c2

∫ w

0
dw′ fK(w − w′)fK(w′)

fK(w)
Φ,ij (fK(w′)θ, w′) . (89)

Hence, to linear order, the distortion can be obtained by integrating along
the unperturbed ray x = fK(w)θ; this is also called the Born approximation.
Corrections to the Born approximation are necessarily of order Φ2. Through-
out this article, we will employ the Born approximation; later, we will com-
ment on its accuracy. If we now define the deflection potential

ψ(θ, w) :=
2
c2

∫ w

0
dw′ fK(w − w′)

fK(w) fK(w′)
Φ (fK(w′)θ, w′) , (90)

compare a light ray in the inhomogeneous universe with one in the homogeneous,
unperturbed universe. Apart from the conceptual difficulty, this ‘first-order ex-
pansion’ is not justified, as the light rays in an inhomogeneous universe can devi-
ate quite significantly from straight rays in the homogeneous reference universe –
much more than the lenght scale of typical density fluctuations. These difficulties
are all avoided if one starts from the exact equation of geodesic deviation, as
done here.
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then Aij = δij − ψ,ij , just as in ordinary lens theory. In this approximation,
lensing by the 3-D matter distribution can be treated as an equivalent lens
plane with deflection potential ψ, mass density κ = ∇2ψ/2, and shear γ =
(ψ,11 − ψ,22)/2 + iψ,12.

6.2 Cosmic shear: the principle

The effective surface mass density. Next, we relate κ to fractional density
contrast δ of matter fluctuations in the Universe; this is done in a number of
steps:

1. To obtain κ = ∇2ψ/2, take the 2-D Laplacian of ψ, and add the term Φ,33

in the resulting integrand; this latter term vanishes in the line-of-sight
integration, as can be seen by integration by parts.

2. We make use of the 3-D Poisson equation in comoving coordinates

∇2Φ =
3H2

0Ωm

2a
δ (91)

to obtain

κ(θ, w) =
3H2

0Ωm

2c2

∫ w

0
dw′ fK(w′)fK(w − w′)

fK(w)
δ (fK(w′)θ, w′)

a(w′)
. (92)

Note that κ is proportional to Ωm, since lensing is sensitive to ∆ρ ∝ Ωm δ,
not just to the density contrast δ = ∆ρ/ρ̄ itself.

3. For a redshift distribution of sources with pz(z) dz = pw(w) dw, the ef-
fective surface mass density becomes

κ(θ) =
∫

dw pw(w)κ(θ, w)

=
3H2

0Ωm

2c2

∫ wh

0
dw g(w) fK(w)

δ (fK(w)θ, w)
a(w)

, (93)

with
g(w) =

∫ wh

w
dw′ pw(w′)

fK(w′ − w)
fK(w′)

, (94)

which is the source-redshift weighted lens efficiency factor Dds/Ds for a
density fluctuation at distance w, and wh is the comoving horizon dis-
tance, obtained from w(a) by letting a → 0.

The expression (92) for the effective surface mass density can be interpreted
in a very simple way. Consider a redshift interval of width dz around z, corre-
sponding to the proper radial distance interval dDprop = |c dt| = H−1(z)(1+
z)−1 c dz. The surface mass density in this interval is ∆ρ dDprop, where only
the density contrast ∆ρ = ρ− ρ̄ acts as a lens (the ‘lensing effect’ of the mean
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matter density of the Universe is accounted for by the relations between an-
gular diameter distance and redshift; see Schneider & Weiss 1988a). Dividing
this surface mass density by the corresponding critical surface mass density,
and integrating along the line-of-sight to the sources, one finds

κ =
∫ zs

0
dz

4πG

c2

Dang
d Dang

ds

Dang
s

dDprop

dz
∆ρ . (95)

This expression is equivalent to (92), as can be easily shown (by the way,
this is a good excersize for practicing the use of cosmological quantities like
redshift, distances etc.).

Limber’s equation. The density field δ is assumed to be a realization of a
random field. It is the properties of the random field that cosmologists can
hope to predict, and not a specific realization of it. In particular, the second-
order statistical properties of the density field are described in terms of the
power spectrum (see IN, Sect. 6.1). We shall therefore look at the relation
between the quantities relevant for lensing and the power spectrum Pδ(k) of
the matter distribution in the Universe. The basis of this relation is formed
by Limber’s equation. If δ is a homogeneous and isotropic 3-D random field,
then the projections

gi(θ) =
∫

dw qi(w) δ (fK(w)θ, w) (96)

also are (2-D) homogeneous and isotropic random fields, where the qi are
weight functions. In particular, the correlation function

C12 = 〈g1(ϕ1) g2(ϕ2)〉 ≡ C12(|ϕ1 − ϕ2|) (97)

depends only on the modulus of the separation vector. The original form of
the Limber (1953) equation relates C12 to the correlation function of δ which
is a line-of-sight projection. Alternatively, one can consider the Fourier-space
analogy of this relation: The power spectrum P12(3) – the Fourier transform
of C12(θ) – depends linearly on Pδ(k) (Kaiser 1992, 1998),

P12(3) =
∫

dw
q1(w) q2(w)

f2
K(w)

Pδ

(
3

fK(w)
, w

)
, (98)

if the largest-scale structures in δ are much smaller than the effective range
∆w of the projection. Hence, we obtain the (very reasonable) result that the
2-D power at angular scale 1/3 is obtained from the 3-D power at length scale
fK(w) (1/3), integrated over w.

Comparing (93) with (98), one sees that κ(θ) is such a projection of δ
with the weights q1(w) = q2(w) = (3/2)(H0/c)2Ωmg(w)fK(w)/a(w), so that

Pκ(3) =
9H4

0Ω
2
m

4c4

∫ wh

0
dw

g2(w)
a2(w)

Pδ

(
3

fK(w)
, w

)
. (99)
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The power spectrum Pκ, if observable, can therefore be used to constrain
the 3-D power spectrum Pδ. For a number of cosmological models, the power
spectrum Pκ(3) is plotted in Fig. 32. Predictions of Pκ are plotted both for
assuming linear growth of the density structure (see Sect. 6.1 of IN), as well
as the prescription of the fully nonlinear power spectrum as given by the fit-
ting formulae of Peacock & Dodds (1996). From this figure one infers that the
nonlinear evolution of the density fluctuations becomes dominant for values
of 3 >∼ 200, corresponding to an angular scale of about 30′; the precise values
depend on the cosmological model and the redshift distribution of the sources.
Furthermore, the dimensionless power spectrum 32 Pκ(3), that is, the power
per logarithmic bin, peaks at around 3 ∼ 104, corresponding to an angular
scale of ∼ 1′, again somewhat depending on the source redshift distribution.
Third, one notices that the shape and amplitude of Pκ depends on the values
of the cosmological parameters; therefore, by measuring the power spectrum,
or quantities directly related to it, one can constrain the values of the cosmo-
logical parameters. We consider next appropriate statistical measures of the
cosmic shear which are directly and simply related to the power spectrum
Pκ.

Fig. 32. The power spectrum Pκ(') (left panel) and its dimensionless form '2 Pκ(')
(right panel) for several cosmological models (where here, ' is denoted by s). Specif-
ically, EdS denotes an Ωm = 1, ΩΛ = 0 Einstein-de Sitter model, OCDM an open
Ωm = 0.3, ΩΛ = 0 Universe, and ΛCDM a flat, low-density Ωm = 0.3, ΩΛ = 0.7
model. Numbers in parenthesis indicate (Γspect, σ8), where Γspect is the shape pa-
rameter of the power spectrum (see IN, Sect. 6.1) and σ8 is the power-spectrum
normalization. For these power spectra, the mean redshift of the galaxy distribution
was assumed to be 〈zs〉 = 1.5. Thin curves show the power spectra assuming linear
evolution of the density fluctuations in the Universe, and thick curves use the fully
non-linear evolution, according to the prescription of Peacock & Dodds (1996). For
angular scales below ∼ 30′, corresponding to ' ≥ 200, the non-linear evolution of
the power spectrum becomes very important (from Schneider et al. 1998a)
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6.3 Second-order cosmic shear measures

We will now turn to statistical quantities of the cosmic shear field which are
quadratic in the shear, i.e., to second-order shear statistics. Higher-order sta-
tistical properties, which already have been detected in cosmic shear surveys,
will be considered in Sect. 9. As we shall see, all second-order statistics of
the cosmic shear yield (filtered) information about, and are fully described
in terms of Pκ. The most-often used second-order statistics are:

• The two-point correlation function(s) of the shear, ξ±(θ),
• the shear dispersion in a (circular) aperture,

〈
|γ̄|2
〉
(θ), and

• the aperture mass dispersion,
〈
M2

ap

〉
(θ).

Those will be discussed next, and their relation to Pκ(3) shown. As a prepa-
ration, consider the Fourier transform of κ,

κ̂($) =
∫

d2θ ei$·θ κ(θ) ; (100)

then, 〈
κ̂($)κ̂∗($′)

〉
= (2π)2 δD($ − $′)Pκ(3) , (101)

which provides another definition of the power spectrum Pκ [compare with
eq. (123) of IN]. The Fourier transform of the shear is

γ̂($) =

(
321 − 322 + 2i3132

|$|2

)
κ̂($) = e2iβ κ̂($) , (102)

where β is the polar angle of the vector $; this follows directly from (42) and
(43). Eq. (102) implies that

〈
γ̂($)γ̂∗($′)

〉
= (2π)2 δD($ − $′)Pκ(3). (103)

Hence, the power spectrum of the shear is the same as that of the surface
mass density.

Shear correlation functions. Consider a pair of points (i.e., galaxy im-
ages); their separation direction ϕ (i.e. the polar angle of the separation vector
θ) is used to define the tangential and cross-component of the shear at these
positions for this pair, γt = −Re

(
γ e−2iϕ

)
, γ× = −Im

(
γ e−2iϕ

)
, as in (17).

Using these two shear components, one can then define the correlation func-
tions 〈γtγt〉 (θ) and 〈γ×γ×〉 (θ), as well as the mixed correlator. However, it
turns out to be more convenient to define the following combinations,

ξ±(θ) = 〈γtγt〉 (θ) ± 〈γ×γ×〉 (θ) , ξ×(θ) = 〈γtγ×〉 (θ) . (104)

Due to parity symmetry, ξ×(θ) is expected to vanish, since under such a
transformation, γt → γt, but γ× → −γ×. Next we relate the shear correlation
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functions to the power spectrum Pκ: Using the definition of ξ±, replacing γ
in terms of γ̂, and making use of relation between γ̂ and κ̂, one finds (e.g.,
Kaiser 1992)

ξ+(θ) =
∫ ∞

0

d3 3
2π

J0(3θ)Pκ(3) ; ξ−(θ) =
∫ ∞

0

d3 3
2π

J4(3θ)Pκ(3) , (105)

where Jn(x) is the n-th order Bessel function of first kind. ξ± can be measured
as follows: on a data field, select all pairs of faint galaxies with separation
within ∆θ of θ and then take the average 〈εti εtj〉 over all these pairs; since
εi = ε(s)i + γ(θi), the expectation value of 〈εti εtj〉 is 〈γtγt〉 (θ), provided
source ellipticities are uncorrelated. Similarly, the correlation for the cross-
components is obtained. It is obvious how to generalize this estimator in the
presence of a weight factor for the individual galaxies, as it results from the
image analysis described in Sect. 3.5.

The shear dispersion. Consider a circular aperture of radius θ; the mean
shear in this aperture is γ̄. Averaging over many such apertures, one defines
the shear dispersion

〈
|γ̄|2
〉
(θ). It is related to the power spectrum through

〈
|γ̄|2
〉

(θ) =
1
2π

∫
d3 3 Pκ(3)WTH(3θ) , where WTH(η) =

4J2
1(η)
η2

(106)

is the top-hat filter function (see, e.g., Kaiser 1992). A practical unbiased
estimator of the mean shear in the aperture is ˆ̄γ = N−1

∑N
i=1 εi, where

N is the number of galaxies in the aperture. However, the square of this
expression is not an unbiased estimator of

〈
|γ̄|2
〉
, since the diagonal terms of

the resulting double sum yield additional terms, since E (εiε∗i ) = |γ(θi)|2+σ2
ε .

An unbiased estimate for the shear dispersion is obtained by omitting the
diagonal terms,

̂〈
|γ̄|2
〉

=
1

N(N − 1)

N∑

i*=j

εi ε
∗
j . (107)

This expression is then averaged over many aperture placed on the data field.
Again, the generalization to allow for weighting of galaxy images is obvious.
Note in particular that this estimator is not positive semi-definite.

The aperture mass. Consider a circular aperture of radius θ; for a point
inside the aperture, define the tangential and cross-components of the shear
relative to the center of the aperture (as before); then define

Map(θ) =
∫

d2ϑ Q(|ϑ|) γt(ϑ) , (108)
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where Q is a weight function with support ϑ ∈ [0, θ]. If we use the function
Q given in (81), the dispersion of Map(θ) is related to power spectrum by
(Schneider et al. 1998a)

〈
M2

ap

〉
(θ) =

1
2π

∫ ∞

0
d3 3 Pκ(3)Wap(θ3) , with Wap,1(η) :=

576J2
4(η)

η4
.

(109)
Crittenden et al. (2002) suggested a different pair U and Q of filter functions,

U(ϑ) =
1

2π θ2

[
1 −
(

ϑ2

2θ2

)]
exp
(
− ϑ2

2θ2

)
; Q(ϑ) =

ϑ2

4πθ4
exp
(
− ϑ2

2θ2

)
.

(110)
These function have the disadvantage of not having finite support; however,
due to the very strong fall-off for ϑ 1 θ, for many practical purposes the
support can be considered effectively as finite. This little drawback is com-
pensated by the convenient analytic properties of these filter functions, as
we shall see later. For example, the relation of the corresponding aperture
mass dispersion is again given by the first of eqs. (109), but the filter function
simplifies to

Wap,2(η) =
η4

4
e−η

2
. (111)

Whereas the filter functions which relate the power spectrum to the shear
correlation functions, i.e., the Bessel function appearing in (105), and to the
shear dispersion, given by WTH, are quite broad filters, implying that these
statistics at a given angular scale depend on the power spectrum over a wide
range of 3, the two filter function Wap,1,2 are very localized and thus the
aperture mass dispersion yields highly localized information about the power
spectrum (see Bartelmann & Schneider 1999, who showed that replacing the
filter function W by a delta-‘function’ causes an error of only ∼ 10%). Hence,
the shape of

〈
M2

ap

〉
(θ) directly reflects the shape of the power spectrum as

can also be seen in Fig. 35 below.

Interrelations. These various 2-point statistics all depend linearly on the
power spectrum Pκ; therefore, one should not be too surprised that they
are all related to each other (Crittenden et al. 2002). The surprise perhaps
is that these interrelations are quite simple. First, the relations between ξ±
and Pκ can be inverted, making use of the orthonormality relation of Bessel
functions:

Pκ(3) = 2π
∫ ∞

0
dθ θ ξ+(θ) J0(3θ) = 2π

∫ ∞

0
dθ θ ξ−(θ) J4(3θ) . (112)

Next, we take one of these and plug them into the relation (105) between the
other correlation function and Pκ, to find:

ξ+(θ) = ξ−(θ) +
∫ ∞

θ

dϑ
ϑ

ξ−(ϑ)
(

4 − 12
θ2

ϑ2

)
; (113)
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ξ−(θ) = ξ+(θ) +
∫ θ

0

dϑϑ

θ2
ξ+(ϑ)
(

4 − 12
ϑ2

θ2

)
. (114)

These equations show that the two shear correlation functions are not inde-
pendent of each other, the reason for that being that the shear (which itself
is a two-component quantity) is derived from a single scalar field, namely
the deflection potential ψ. We shall return to this issue further below. Using
(112) in the equation for the shear dispersion, one finds

〈
|γ̄|2
〉

(θ) =
∫ 2θ

0

dϑϑ

θ2
ξ+(ϑ)S+

(
ϑ

θ

)
=
∫ ∞

0

dϑϑ

θ2
ξ−(ϑ)S−

(
ϑ

θ

)
,

where the S± are simple functions, given explicitly in Schneider et al. (2002a)
and plotted in Fig. 33. Finally, the same procedure for the aperture mass

Fig. 33. The function S±(x) and T±(x)
which relate the shear and aperture mass
dispersion to the correlation functions.
Note that S− does not vanish for x > 2,
as is the case for the other three func-
tions (from Schneider et al. 2002a)

dispersion lets us write

〈
M2

ap

〉
(θ) =
∫ 2θ

0

dϑϑ

θ2
ξ+(ϑ)T+

(
ϑ

θ

)
=
∫ 2θ

0

dϑϑ

θ2
ξ−(ϑ)T−

(
ϑ

θ

)
, (115)

again with analytically known functions T±, given for the filter function (81)
in Schneider et al. (2002a), and for the filter function (110) in Jarvis et
al. (2003b). Hence, all these 2-point statistics can be evaluated from the
correlation functions ξ±(θ), which is of particular interest, since they can be
measured best: Real data fields contain holes and gaps (like CCD defects;
brights stars; nearby galaxies, etc.) which makes the placing of apertures
difficult; however, the evaluation of the correlation functions is not affected
by gaps, as one uses all pairs of galaxy images with a given angular separation.
Furthermore, it should be noted that the aperture mass dispersion at angular
scale θ can be calculated from ξ±(ϑ) in the finite range ϑ ∈ [0, 2θ], and the
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shear dispersion can be calculated from ξ+ on ϑ ∈ [0, 2θ], but not from ξ−
on a finite interval; this is due to the fact that ξ− on small scales does not
contain the information of the power spectrum on large scales, because of the
filter function J4 in (105).

We also note that from a cosmic shear survey, the power spectrum Pκ
can be determined directly, as has been investigated by Kaiser (1998), Sel-
jak (1998) and Hu & White (2001). This is not done by applying (112), as
these relations would require the determination of the correlation function
for all separation, but by more sophisticated methods. A simple example
(though not optimal) is to consider the measured shear field on the square;
Fourier transforming it and binning modes in |$| then yields an estimate of
the power spectrum, once the power from the intrinsic ellipticity dispersion
is subtracted. Better methods aim at minimizing the variance of the recon-
structed power spectrum (Seljak 1998; Hu & White 2001). As mentioned be-
fore, the aperture mass dispersion is a filtered version of the power spectrum
with such a narrow filter, that it contains essentially the same information
as Pκ over the corresponding angular scale and at 3 ∼ 5/θ, provided Pκ has
no sharp features.

6.4 Cosmic shear and cosmology

Why cosmology from cosmic shear? Before continuing, it is worth to
pause for a second and ask the question why one tries to investigate cosmo-
logical questions by using cosmic shear – since it is widely assumed that the
CMB will measure ‘all’ cosmological quantities with high accuracy. Partial
answers to this question are:

• Cosmic shear measures the mass distribution at much lower redshifts
(z <∼ 1) and at smaller physical scales [R ∼ 0.3 h−1 (θ/1′)Mpc] than the
CMB; indeed, it is the only way to map out the dark matter distribution
directly without any assumptions about the relation between dark and
baryonic matter.

• Cosmic shear measures the non-linearly evolved mass distribution and its
associated power spectrum Pδ(k); hence, in combination with the CMB it
allows us to study the evolution of the power spectrum and in particular,
provide a very powerful test of the gravitational instability paradigm for
structure growth.

• As was demonstrated by the recent results from the WMAP satellite
(Bennett et al. 2003), the strongest constraints are derived when combin-
ing CMB measurements (constraining the power spectrum on large spa-
tial scales) with measurements on substantially smaller scales, to break
parameter degeneracies remaining from the CMB results alone (see Sper-
gel et al. 2003). Hu & Tegmark (1999) have explicitly demonstrated how
much the accuracy of estimates of cosmological parameters is improved
when the CMB results from missions like WMAP and later Planck is
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complemented by cosmic shear measurements (see Fig. 34). In fact, as
we shall see later, combinations of CMB anisotropy measurements have
already been combined with cosmic shear measurements (see Fig. 47) and
lead to substantially improved constraints on the cosmological parame-
ters.

• It provides a fully independent way to probe the cosmological model;
given the revolutionary claims coming from the CMB, SN Ia, and the LSS
of the galaxy distribution, namely that more than 95% of the contents in
the Universe is in a form that we have not the slightest idea about what
it is (the names ‘dark matter’ and ‘dark energy’ reflect our ignorance
about their physical nature), an additional independent verification of
these claims is certainly welcome.

• For a foreseeable future, astronomical observations will provide the only
possibility to probe the dark energy empirically. The equation of state
of the dark energy can be probed best at relatively low redshifts, that is
with SN Ia and cosmic shear observations, whereas CMB anisotropy mea-
surements are relatively insensitive to the properties of the dark energy,
as the latter was subdominant at the epoch of recombination.

• As we have seen in Sect. 5.8, cosmic shear studies provide a new and
highly valuable search method for cluster-scale matter concentrations.

Expectations. The cosmic shear signal depends on the cosmological model,
parameterized by Ωm, ΩΛ, and the shape parameter Γspect of the power spec-
trum, the normalization of the power spectrum, usually expressed in terms
of σ8, and the redshift distribution of the sources. By measuring ξ± over a
significant range of angular scales one can derive constraints on these param-
eters. To first order, the amplitude of the cosmic shear signal depends on the
combination ∼ σ8 Ω0.5

m , very similar to the cluster abundance. Furthermore,
the cosmic shear signal shows a strong dependence on the source redshift dis-
tribution. These dependencies are easily understood qualitatively: A higher
normalization σ8 increases Pδ on all scales, thus increasing Pκ. The increase
with Ωm is mainly due to the prefactor in (99), i.e. due to the fact that
the light deflection depends on ∆ρ, not just merely on δ = ∆ρ/ρ̄, as most
other cosmological probes. Finally, increasing the redshift of sources has two
effects: first, the lens efficiency Dds/Ds = fK(ws − w)/fK(ws) at given dis-
tance w increases as the sources are moved further away, and second, a larger
source redshift implies a longer ray path through the inhomogeneous matter
distribution.

In Fig. 35 the predictions of the shear dispersion and the aperture mass
dispersion are shown as a function of angular scale, for several cosmological
models. The dependencies of the power spectrum Pκ on cosmological pa-
rameters and 3 is reflected in these cosmic shear measures. In particular, the
narrow filter function which relates the aperture mass dispersion to the power
spectrum implies that the peak in 32Pκ(3) at around 3 ∼ 104 (see Fig. 32)
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Fig. 34. The improvement of the accuracy of cosmological parameters when sup-
plementing CMB data from WMAP (upper panel) and the Planck satellite (lower
panel) by a cosmic shear survey of solid angle θ2π. The accuracies are significantly
improved, certainly when combined with WMAP, but even in combination with
Planck, the accuracies of the density parameters can be increased, when using
next-generation cosmic shear surveys with hundreds of square degrees (from Hu &
Tegmark 1999)

translates into a peak of
〈
M2

ap

〉
at around θ ∼ 1′. The non-linear evolution

of the power spectrum is dominating the cosmic shear result for scales below
∼ 30′; the fact that the non-linear prediction approach the linear ones at
somewhat smaller scales for the shear dispersion

〈
|γ̄|2
〉

is due to the fact that
this statistics corresponds to a broad-band filter WTH (106) of Pκ which in-
cludes the whole range of small 3 values, which are less affected by non-linear
evolution.

Deriving constraints. From the measured correlation functions ξ±(θ) (or
any other measure of the cosmic shear, but we will concentrate on the statis-
tics which is most easily obtained from real data), obtaining constraints
on cosmological parameters can proceed through maximizing the likelihood
L(p|ξobs), which yields the probability for the set of cosmological parameters
being p, given the observed correlation function ξobs. This likelihood is given
by the probability P (ξobs|p) that the observed correlation function is ξobs,
given the parameters p. For a given set of parameters p, the correlation func-
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Fig. 35. The square root of the aperture mass dispersion (left) and of the shear
dispersion (right), for the same cosmological models as were used for Fig. 32, again
with results from assuming linear growth of structure in the Universe shown as thin
curves, whereas the fully non-linear evolution was taken into account for the thick
curves. One sees that the aperture mass signal is considerably smaller than that
of the shear dispersion; this is due to the fact that the filter function Wap is much
narrower than WTH; hence, at a given angular scale,

〈
M2

ap

〉
samples less power than〈

|γ̄|2
〉
. However, this also implies that the aperture mass dispersion provides much

more localized information about the power spectrum than the shear dispersion
and is therefore a more useful statistics to consider. Other advantages of

〈
M2

ap

〉

will be described further below. For scales below ∼ 30′, the non-linear evolution of
the power spectrum becomes very important (from Schneider et al. 1998a)

tion ξ(p) is predicted. If one assumes that the observed correlations ξobs are
drawn from a (multi-variate) Gaussian probability distribution, then

P (ξobs|p) =
1

(2π)n/2
√

detCov
exp
(
−χ2(p, ξobs)

2

)
,

with
χ2(p, ξobs) =

∑

ij

(
ξi(p) − ξobs

i

)
Cov−1

ij

(
ξj(p) − ξobs

j

)
. (116)

Here, the ξi = ξ(θi) are the values of the correlation function(s) (i.e., either
ξ±, or using both) in angular bins, n is the number of angular bins in case
either one of the ξ± is used, or if both are combined, twice the number of
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angular bins, and Cov−1
ij is the inverse of the covariance matrix, which is

defined as
Covij =

〈[
ξi(p) − ξobs

i

] [
ξj(p) − ξobs

j

]〉
, (117)

where the average is over multiple realizations of the cosmic shear survey
under consideration. Covij can be determined either from the ξ± itself, from
simulations, or estimated from the data in terms of the ξobs

± (see Schneider et
al. 2002b; Kilbinger & Schneider 2004, Simon et al. 2004). Nevertheless, the
calculation of the covariance is fairly cumbersome, and most authors have
used approximate methods to derive it, such as the field-to-field variations
of the measured correlation. In fact, this latter approach may be more ac-
curate than using the analytic expressions of the covariance in terms of the
correlation function, which are obtained by assuming that the shear field
is Gaussian, so that the four-point correlation function can be factorized as
products of two-point correlators. As it turns out, ξ+(θ) is strongly correlated
across angular bins, much less so for ξ−(θ); this is due to the fact that the
filter function that describes ξ in terms of the power spectrum Pκ is much
broader for ξ+ (namely J0) than J4 which applies for ξ−.

The accuracy with which ξ± can be measured, and thus the covariance
matrix, depends on the number density of galaxies (that is, depth and quality
of the images), the total solid angle covered by the survey, and its geometrical
arrangement (compact survey vs. widely separated pointings). The accuracy
is determined by a combination of the intrinsic ellipticity dispersion and the
cosmic (or sampling) variance. The likelihood function then becomes

L(p|ξobs) =
1

(2π)n/2
√

detCov
exp
(
−χ2(p, ξobs)

2

)
Pprior(p) , (118)

where Pprior(p) contains prior information (or prejudice) about the parame-
ters to be determined. For example, the redshift distribution of the sources
(at given apparent magnitude) is fairly well known from spectroscopic red-
shift surveys, and so the prior probability for zs would be chosen to be a fairly
narrow function which describes this prior knowledge on the redshifts. One
often assumes that all but a few parameters are known precisely, and thus
considers a restricted space of parameters; this is equivalent to replacing the
prior for those parameters which are fixed by a delta-‘function’. If m param-
eters are assumed to be undetermined, but one is mainly interested in the
confidence contours of m′ < m parameters, then the likelihood function is in-
tegrated over the remaining m−m′ parameters; this is called marginalization
and yields the likelihood function for these m′ parameters.

There are two principal contributions to the ‘noise’ of cosmic shear mea-
surements. One is the contribution coming from the finite intrinsic ellipticity
dispersion of the source galaxies, the other due to the finite data fields of any
survey. This latter effect implies that only a typical part of the sky is mapped,
whose properties will in general deviate from the average properties of such a
region in the sky for a given cosmology. This effect is called cosmic variance,
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or sample variance. Whereas the noise from intrinsic ellipticity dispersions
dominates at small angular scales, at scales beyond a few arcminutes the
cosmic variance is always the dominating effect (e.g., Kaiser 1998; White &
Hu 2000).

Of course, all of what was said above can be carried over to the other
second-order shear statistics, with their respective covariance matrices. The
first cosmic shear measurements were made in terms of the shear dispersion
and compared to theoretical prediction from a range of cosmological mod-
els. As is true for the correlation functions, the shear dispersion is strongly
correlated between different angular scales. This is much less the case for
the aperture mass dispersion, where the correlation quickly falls off once the
angular scales differ by more than a factor ∼ 1.5 (see Schneider et al. 2002b).
Even less correlated is the power spectrum itself. These properties are of
large interest if the results from a cosmic shear survey are displayed as a
curve with error bars; for the aperture mass dispersion and the power spec-
trum estimates, these errors are largely uncorrelated. However, for deriving
cosmological constraints, the correlation function ξ± are most useful since
they contain all second-order information in the data, in addition of being
the primary observable.

6.5 E-modes, B-modes

In the derivation of the lensing properties of the LSS, we ended up with
an equivalent surface mass density. In particular, this implied that A is a
symmetric matrix, and that the shear can be obtained in terms of κ or ψ.
Now, the shear is a 2-component quantity, whereas both κ and ψ are scalar
fields. This then obviously implies that the two shear components are not
independent of each other!

Recall that (54) yields a relation between the gradient of κ and the first
derivatives of the shear components; in particular, (54) implies that ∇×uγ ≡
0, yielding a local constraint relation between the second derivatives of the
shear components. The validity of this constraint equation guarantees that
the imaginary part of (44) vanishes. This constraint is also present at the
level of 2-point statistics, since one expects from (112) that

∫ ∞

0
dθ θ ξ+(θ)J0(θ3) =

∫ ∞

0
dθ θ ξ−(θ)J4(θ3) .

Hence, the two correlation functions ξ± are not independent. The observed
shear field is not guaranteed to satisfy these relations, due to noise, remaining
systematics, or other effects. Therefore, searching for deviations from this re-
lation allows a check for these effects. However, there might also be a ‘shear’
component present that is not due to lensing (by a single equivalent thin mat-
ter sheet κ). Shear components which satisfy the foregoing relations are called
E-modes; those which don’t are B-modes – these names are exported from
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the polarization of the CMB, which has the same mathematical properties
as the shear field, namely that of a polar.

E mode

B mode

Fig. 36. Sketch of the distinction be-
tween E- and B-modes of the shear. The
upper row shows a typical E-mode shear
pattern coming from a mass overden-
sity (left) or underdensity (right), yield-
ing tangential and radial alignment of
the shear, respectively. The lower row
shows a B-mode pattern, which is ob-
tained from the E-mode pattern by ro-
tating all shears by 45◦. Those cannot
be produced from gravitational lensing
(from van Waerbeke & Mellier 2003)

The best way to separate these modes locally is provided by the aperture
measures:

〈
M2

ap(θ)
〉

is sensitive only to E-modes. If one defines in analogy –
recall (77)

M⊥(θ) =
∫

d2ϑ Q(|ϑ|) γ×(ϑ) , (119)

then
〈
M2

⊥(θ)
〉

is sensitive only to B-modes. In fact, one can show that for
a pure E-mode shear field, M⊥ ≡ 0, and for a pure B-mode field, Map ≡ 0.
Furthermore, in general (that is, even if a B-mode is present), 〈Map〉 = 0,
since 〈κ〉 = 0, and 〈M⊥〉 = 0, owing to parity invariance: a non-zero mean
value of M⊥ would introduce a net orientation into the shear field. Using the
same argument, one finds that

〈
Mm

apM
n
⊥
〉

= 0 for n odd (Schneider 2003).

E/B-mode decomposition of a shear field. There are a number of
(equivalent) ways to decompose a shear field into its two modes. One is pro-
vided by the Kaiser & Squires mass reconstruction (44), which yields, for a
general shear field, a complex surface mass density κ = κE + iκB. Another
separation is obtained by considering the vector field uγ(θ) (54) obtained
from the first derivatives of the shear components. This vector will in general
not be a gradient field; its gradient component corresponds to the E-mode
field, the remaining one to the B-mode. Hence one defines

∇2κE = ∇ · uγ ; ∇2κB = ∇× uγ . (120)

In full analogy with the ‘lensing-only’ case (i.e., a pure E-mode), one defines
the (complex) potential ψ(θ) = ψE(θ) + iψB(θ) by the Poisson equation
∇2ψ = 2κ, and the shear is obtained in terms of the complex ψ in the usual
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way,

γ = γ1 + iγ2 = (ψ,11 − ψ,22) /2 + iψ,12

=
[
1
2
(
ψE

,11 − ψE
,22

)
− ψB

,12

]
+ i
[
ψE

,12 +
1
2
(
ψB

,11 − ψB
,22

)]
. (121)

On the level of second-order statistics, one considers the Fourier transforms
of the E- and B-mode convergence, and defines the two power spectra PE,
PB, and the cross-power spectrum PEB by

〈
κ̂E($)κ̂E∗($′)

〉
= (2π)2 δD($ − $′)PE(3) ,

〈
κ̂B($)κ̂B∗($′)

〉
= (2π)2 δD($ − $′)PB(3) , (122)

〈
κ̂E($)κ̂B∗($′)

〉
= (2π)2 δD($ − $′)PEB(3) .

From what was said above, the cross power PEB vanishes for parity-symmetric
shear fields, and we shall henceforth ignore it. The shear correlation functions
now depend on the power spectra of both modes, and are given as (Crittenden
et al. 2002; Schneider et al. 2002a)

ξ+(θ) =
∫ ∞

0

d3 3
2π

J0(3θ) [PE(3) + PB(3)] ,

ξ−(θ) =
∫ ∞

0

d3 3
2π

J4(3θ) [PE(3) − PB(3)] .

Hence, in the presence of B-modes, the ξ− correlation function cannot be
obtained from ξ+, as was the case for a pure E-mode shear field. The inverse
relation (112) now gets modified to

PE(3) = π

∫ ∞

0
dθ θ [ξ+(θ)J0(3θ) + ξ−(θ)J4(3θ)] ,

PB(3) = π

∫ ∞

0
dθ θ [ξ+(θ)J0(3θ) − ξ−(θ)J4(3θ)] . (123)

Hence, the two power spectra can be obtained from the shear correlation
functions. However, due to the infinite range of integration, one would need to
measure the correlation functions over all angular scales to apply the previous
equations for calculating the power spectra. Much more convenient for the
E/B-mode decomposition is the use of the aperture measures, since one can
show that

〈
M2

ap

〉
(θ) =

1
2π

∫ ∞

0
d3 3 PE(3)Wap(θ3) ,

〈
M2

⊥
〉
(θ) =

1
2π

∫ ∞

0
d3 3 PB(3)Wap(θ3) , (124)

so that these two-point statistics clearly separate E- and B-modes. In ad-
dition, as mentioned before, they provide a highly localized measure of the
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corresponding power spectra, since the filter function Wap(η) involved is very
narrow. As was true for the E-mode only case, the aperture measures can be
expressed as finite integrals over the correlation functions,

〈
M2

ap

〉
(θ)=

1
2

∫
dϑϑ

θ2

[
ξ+(ϑ)T+

(
ϑ

θ

)
+ ξ−(ϑ)T−

(
ϑ

θ

)]
,

〈
M2

⊥
〉
(θ) =

1
2

∫
dϑϑ

θ2

[
ξ+(ϑ)T+

(
ϑ

θ

)
− ξ−(ϑ)T−

(
ϑ

θ

)]
, (125)

where the two functions T± are the same as in (115) and have been given
explicitly in Schneider et al. (2002a) for the weight function Q given in (81),
and in Jarvis et al. (2003) for the weight function (110). Hence, the relations
(125) remove the necessity to calculate the aperture measures by placing
apertures on the data field which, owing to gaps and holes, would make this
an inaccurate and biased determination. Instead, obtaining the correlation
functions from the data is all that is needed.

The relations given above have been applied to recent cosmic shear sur-
veys, and significant B-modes have been discovered (see Sect. 7); the ques-
tion now is what are they due to? As mentioned before, the noise, which
contributes to both E- and B-modes in similar strengths, could be under-
estimated, the cosmic variance which also determines the error bars on the
aperture measures and which depends on fourth-order statistical properties
of the shear field could also be underestimated, there could be remaining
systematic effects, or B-modes could indeed be present. There are two possi-
bilities known to generate a B-mode through lensing: The first-order in Φ (or
‘Born’) approximation may not be strictly valid, but as shown by ray-tracing
simulations through cosmic matter fields (e.g., Jain et al. 2000), the resulting
B-modes are expected to be very small. Clustering of sources also yields a
finite B-mode (Schneider et al. 2002a), but again, this effect is much smaller
than the observed amplitude of the B-modes (see Fig. 37).

Intrinsic alignment of source galaxies. Currently the best guess for the
generation of a finite B-mode are intrinsic correlations of galaxy ellipticities.
Such intrinsic alignments of galaxy ellipticities can be caused by tidal grav-
itational fields during galaxy formation, owing to tidal interactions between
galaxies, or between galaxies and clusters. Predictions of the alignment of
the projected ellipticity of the galaxy mass can be made analytically (e.g. in
the frame of tidal torque theory) or from numerical simulations; however, the
predictions from various groups differ by large factors (e.g., Croft & Metzler
2000; Crittenden et al. 2001; Heavens et al. 2000; Jing 2002) which means
that the process is not well understood at present. For example, the results
of these studies depend on whether one assumes that the light of a galaxy is
aligned with the dark matter distribution, or aligned with the angular mo-
mentum vector of the dark halo. This is related to the question of whether
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Fig. 37. The correlation functions ξ±(θ) for a ΛCDM model with Γspect = 0.21
and σ8 = 1, and a source population with mean redshift of 〈zs〉 = 1.5. Also plotted
are the corresponding correlation functions that arise separately from the E- and
B-modes, with the ξE+ mode curve coinciding within the line thickness with ξ+.
In this calculation, the clustering of the faint galaxy population was taken into
account, and they give rise to a very small B-mode contribution, as can be seen
from the ξB± curves. The smallness of the B-mode due to intrinsic source clustering
renders this effect not viable to explain the B-modes observed in some of the cosmic
shear surveys (from Schneider et al. 2002a)

the orientation of the galaxy light (which is the issue of relevance here) is the
same as that of the mass.

If intrinsic alignments play a role, then

ξ+ =
〈
εi ε

∗
j

〉
=
〈
ε(s)i ε(s)∗j

〉
+ ξlens

+ , (126)

and measured correlations ξ± contain both components, the intrinsic corre-
lation and the shear. Of course, there is no reason why intrinsic correlations
should have only a B-mode. If a B-mode contribution is generated through
this process, then the measured E-mode is most likely also contaminated
by intrinsic alignments. Given that intrinsic alignments yield ellipticity cor-
relations only for spatially close sources (i.e., close in 3-D, not merely in
projection), it is clear that the deeper a cosmic shear survey is, and thus the
broader the redshift distribution of source galaxies, the smaller is the relative
amplitude of an intrinsic signal. Most of the theoretical investigations on the
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strength of intrinsic alignments predict that the deep cosmic shear surveys
(say, with mean source redshifts of 〈zs〉 ∼ 1) are affected at a ∼ 10% level,
but that shallower cosmic shear surveys are more strongly affected; for them,
the intrinsic alignment can be of same order or even larger than the lensing
signal.

However, the intrinsic signal can be separated from the lensing signal
if redshift information of the sources is available, owing to the fact that〈
ε(s)i ε(s)∗j

〉
will be non-zero only if the two galaxies are at essentially the

same redshift. Hence, if z-information is available (e.g., photometric red-
shifts), then galaxy pairs which are likely to have similar redshifts are to
be avoided in estimating the cosmic shear signal (King & Schneider 2002;
Heymans & Heavens 2002, Takada & White 2004). This will change the ex-
pectation value of the shear correlation function, but in a controllable way, as
the redshifts are assumed to be known. Indeed, using (photometric) redshifts,
one can simultaneously determine the intrinsic and the lensing signal, essen-
tially providing a cosmic shear tomography (King & Schneider 2003). This
again is accomplished by employing the fact that the intrinsic correlation can
only come from galaxies very close in redshift. Hence, in the presence of in-
trinsic alignments, the redshift dependent correlation functions ξ±(z1, z2; θ)
between galaxies with estimated redshifts zi are expected to show a strong
peak over the range |z1 − z2| <∼ ∆z, where ∆z is the typical uncertainty in
photometric redshifts. It is this peak that allows one to identify and subtract
the intrinsic signal from the correlation functions. An efficient method to cal-
culate the covariance of the redshift-dependent correlation functions has been
developed by Simon et al. (2004), where the improvement in the constraints
on cosmological parameters from redshift information has been studied, con-
firming the earlier results by Hu (1999) which were based on considerations
of the power spectrum.

Brown et al. (2002) obtained a measurement of the intrinsic ellipticity
correlation from the Super-COSMOS photographic plate data, where the
galaxies are at too low a redshift for cosmic shear playing any role. Heymans
et al. (2003) used the COMBO-17 data set (that will be described in Sect. 7.3
below) for which accurate photometric redshifts are available to measure
the intrinsic alignment. The results from both studies is that the models
predicting a large intrinsic amplitude can safely be ruled out. Nevertheless,
intrinsic alignment affects cosmic shear measurements, at about the 2% level
for a survey with the depth of the VIRMOS-DESCART survey, and somewhat
more for the slightly shallower COMBO-17 survey. Hence, to obtain precision
measurements of cosmic shear, very important for constraining the equation
of state of dark energy, these physically close pairs of galaxies need to be
identified in the survey, making accurate photometric redshifts mendatory.

Correlation between intrinsic ellipticity and shear. The relation (126)
above implicitly assumes that the shear is uncorrelated with the intrinsic
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shape of a neighboring galaxy. However, as pointed out by Hirata & Seljak
(2004), this is not necessarily the case. Hence consider galaxies at two signif-
icantly different redshifts zi < zj . For them, the first term in (126) vanishes.
However, making use of ε = ε(s) + γ, one finds

〈
εiε

∗
j

〉
=
〈
ε(s)i γ∗

j

〉
+ ξlens

+ , (127)

where the first term on the right-hand side describes the correlation between
the intrinsic ellipticity of the lower-redshift galaxy with the shear along the
l.o.s. to the higher-redshift one. The correlation can in principle be non-zero:
if the intrinsic alignment of the light of a galaxy is determined by the large-
scale tidal gravitational field, then this tidal field at the redshift zi causes
both, an alignment of the nearer galaxy and a contribution to the shear of
the more distant one (see Fig. 38). This alignment effect can therefore not be
removed by considering only pairs at different redshifts.

>0 >0

Fig. 38. A tidal gravitational field, for example caused by two matter concentra-
tions, can produce an alignment of a galaxy situated at the same redshift (indicated
by the solid ellipse), as well as contributing to the shear towards a more distant
galaxy (as indicated by the dashed ellipse) (from Hirata & Seljak 2004)

The importance of this effect depends on the nature of the alignment
of galaxies relative to an external tidal field. If the alignment is linear in
the tidal field strength, then this effect can be a serious contaminant of
the cosmic shear signal, in particular for relatively shallow surveys (where
the mean source redshift is small); in particular, this effect can yield much
larger contaminations than the intrinsic alignment given by the first term
in (126). As can be seen from Fig. 38, the resulting contribution is negative,
hence decreases the lensing signal. If, however, the intrinsic alignment de-
pends quadratically on the tidal field, as is suggested by tidal torque theory,
than this effect is negligible. Whether or not this effect is relevant needs to
be checked from observations. Assuming that the matter density field is rep-
resented approximately by the galaxy distribution, the latter can be used
to estimate the tidal gravitational field, in particular its direction. Alterna-
tively, since the correlation between the intrinsic alignment and the shear
towards more distant galaxies has a different redshift dependence than the
lensing shear signal, these two contributions can be disentangled from the
z-dependence of the signal.
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It should be noted that the use of photometric redshifts also permits to
study the cosmic shear measures as a function of source redshift; hence, one
can probe various redshift projections Pκ(3) of the underlying power spec-
trum Pδ(k; z) separately. This is due to the fact that the cosmic shear signal
from different populations of galaxies (i.e., with different redshift distribu-
tions) lead to different weight functions g(w) [see (94)], and thus to different
weighting in the projection (99) of the power spectrum. Not surprisingly,
uncertainties of cosmological parameters are thereby reduced (Hu 1999; Si-
mon et al. 2004). Also, as shown by Taylor (2001), Hu & Keeton (2002) and
Bacon & Taylor (2003), in principle the three-dimensional mass distribution
δ(x) can be reconstructed if the redshifts of the source galaxies are known
(see Sect. 7.6).

6.6 Predictions; ray-tracing simulations

The power spectrum of the convergence Pκ can be calculated from the power
spectrum of the cosmological matter distribution Pδ, using (99); the latter in
turn is determined by the cosmological model. However, since the non-linear
evolution of the power spectrum is essential for making accurate quantitative
predictions for the shear properties, there is no analytic method known how
to calculate the necessary non-linear Pδ. As was mentioned in Sect. 6.1 of
IN, fairly accurate fitting formulae exist which yield a closed-form expression
for Pδ and which can be used to obtain Pκ (see, e.g., Jain & Seljak 1997).
Nevertheless, there are a number of reasons why this purely analytic approach
should at least be supplemented by numerical simulations.

• First, the fitting formulae for Pδ (Peacock & Dodds 1996; Smith et al.
2003) have of course only a finite accuracy, and are likely to be insufficient
for comparison with results from the ongoing cosmic shear surveys which
are expected to yield very accurate measurements, owing to their large
solid angle.

• A second reason why simulations are needed is to test whether the vari-
ous approximations that enter the foregoing analytical treatment are in
fact accurate enough. To recall them, we employed the Born approxima-
tion, i.e., neglected terms of higher order than linear in the Newtonian
potential when deriving the convergence, and we assumed that the shear
everywhere is small, so that the difference between shear and reduced
shear can be neglected, at least on average. This, however, is not guaran-
teed: regions in the sky with large shear are most likely also those regions
where the convergence is particularly large, and therefore, there one ex-
pects a correlation between γ and κ, which can affect the dispersion of
g = γ/(1 − κ).

• Third, whereas fairly accurate fitting formulae exist for the power spec-
trum, this is not the case for higher-order statistical properties of the
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matter distribution; hence, when considering higher-order shear statis-
tics (Sect. 9), numerical simulations will most likely be the only way to
obtain accurate predictions.

• The covariance of the shear correlations (and all other second-order shear
measures) depends on fourth-order statistics of the shear field, for which
hardly any useful analytical approximations are available. The analyti-
cal covariance estimates are all based on the Gaussian assumption for
the fourth-order correlators. Therefore, simulations are invaluable for the
calculation of these covariances, which can be derived for arbitrary survey
geometries.

Ray-tracing simulations: The principle. The simulations proceed by
following light rays through the inhomogeneous matter distribution in the
Universe. The latter is generated by cosmological simulations of structure
evolution. Those start at an early epoch by generating a realization of a
Gaussian random field with a power spectrum according to the cosmological
model considered, and follow the evolution of the density and velocity field
of the matter using Newtonian gravity in an expanding Universe. The mass
distribution is represented by discrete particles whose evolution in time is
followed. A finite volume of the Universe is simulated this way, typically a
box of comoving side-length L, for which periodic boundary conditions are
applied. This allows one to use Fast Fourier Transforms (FFT) to evaluate
the gravitational potential and forces from the density distribution. The box
size L should be chosen such that the box contains a representative part of
the real Universe, and must therefore be larger than the largest scales on
which structure is expected, according to the power spectrum; a reasonable
choice is L >∼ 100h−1 Mpc. The number of grid points and the number of par-
ticles that can be distributed in this volume is limited by computer memory;
modern simulations work typically with 2563 points and the same number
of particles, though larger simulations have also been carried out; this im-
mediately yields the size of grid cells, of order 0.5h−1 Mpc. This comoving
length, if located at a redshift of z ∼ 0.3 (which is about the most relevant for
cosmic shear), subtends an angle of roughly 2′ on the sky. The finite number
of particles yields the mass resolution of the simulations, which is typically
∼ 1010h−1M&, depending on cosmological parameters.

In order to obtain higher spatial resolution, force calculations are split
up into near-field and far-field forces. The gravitational force due to the dis-
tant matter distribution is obtained by grid-based FFT methods, whereas
the force from nearby masses is calculated from summing up the forces of
individual particles; such simulations yield considerably higher resolution of
the resulting mass distribution. Since the matter in these simulations is rep-
resented by massive particles, these can undergo strong interactions, leading
to (unphysical) large orbital deflections. In order to avoid these unphysical
strong collisions, the force between pairs of particles is modified at short dis-
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tances, typically comparable to the mean separation of two particles in the
simulation. This softening length defines the minimum length scale on which
the results from numerical simulations can be considered reliable. Cosmolog-
ical simulations consider either the dark matter only or, more recently, the
hydrodynamics effects of baryons have been incorporated as well.

The outcome of such simulations, as far as they are relevant here, are the
3-dimensional positions of the matter particles at different (output) times
or redshifts. In order to study the light propagation through this simulated
mass distribution, one employs multiple lens-plane theory. First, the volume
between us and sources at some redshift zs is filled with boxes from the
cosmological simulations. That is, the comoving distance ws = w(zs) is split
up into n intervals of length L, and the mass distribution at an output time
close to ti = t(w = (i − 1/2)L) is considered to be placed at this distance.
In this way, one has a light cone covered by cubes containing representative
matter distributions. Since the mass distributions at the different times ti are
not independent of each other, but one is an evolved version of the earlier one,
the resulting mass distribution is highly correlated over distances much larger
than L. This can be avoided by making use of the statistical homogeneity and
isotropy of the mass distribution: each box can be translated by an arbitrary
two-dimensional vector, employing the periodicity of the mass distribution,
and rotated by an arbitrary angle; furthermore, the three different projections
of the box can be used for its orientation. In this way – a kind of recycling
of numerical results – the worst correlations are removed.

Alternatively, one can combine the outputs from several simulations with
different realizations of the initial conditions. In this case, one can use simu-
lation boxes of different spatial extent, to match the comoving size of a big
light cone as a function of redshift. That is, for a given light-cone size, only
relatively small boxes are needed at low redshifts, and bigger ones at higher
redshift (see White & Hu 2000).

Second, the mass in each of these boxes is projected along the line-of-
sight, yielding a surface mass density at the appropriate comoving distance
wi = (i− 1/2)L. Each of these surface mass densities can now be considered
a lens plane, and the propagation of light can be followed from one lens plane
to the next; the corresponding theory was worked out in detail by Blandford
& Narayan (1986; see also Chap. 9 of SEF), but applied as early as 1970 by
Refsdal (1970) for a cosmological model consisting of point masses only (see
also Schneider & Weiss 1988a,b). Important to note is that the surface mass
density Σ in each lens plane is the projection of ∆ρ = ρ − ρ̄ of a box, so
that for each lens plane, 〈Σ〉 = 0. As has been shown in Seitz et al. (1994),
this multiple lens-plane approach presents a well-defined discretization of the
full 3-dimensional propagation equations. Light bundles are deflected and
distorted in each lens plane and thus represented as piecewise straight rays.
The resulting Jacobi matrix A is then obtained as a sum of products of the
tidal matrices in the individual lens planes, yielding a discretized version of
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the form (88) for A. The result of such simulations is then the matrix A(θ)
on a predefined angular grid, as well as the positions β(θ) in the source plane.
The latter will not be needed here, but have been used in studies of multiple
images caused by the LSS (see Wambsganss et al. 1998).

One needs special care in applying the foregoing prescription; in particu-
lar, in the smoothing process to obtain a mass distribution from the discrete
particles; Jain et al. (2000) contains a detailed discussion on these issues.10
The finite spatial resolution in the simulations translates into a redshift-
dependent angular resolution, which degrades for the low redshift lens planes;
on the other hand, those have a small impact on the light propagation due
to the large value of Σcr for them [see eq. (10) of IN]. The discreteness of
particles gives rise to a shot-noise term in the mass distribution, yielding
increased power on small angular scales.

Results from ray-tracing simulations. We shall summarize here some of
the results from ray-tracing simulation:

• Whereas the Jacobi matrix in this multi-deflection situation is no longer
symmetric, the contribution from the asymmetry is very small. The power
spectrum of the asymmetric part of A is at least three orders of magni-
tude smaller than the power spectrum Pκ, for sources at zs = 1 (Jain
et al. 2000). This result is in accord with analytical expectations (e.g.,
Bernardeau et al. 1997; Schneider et al. 1998a), i.e., that terms quadratic
in the Newtonian potential are considerably smaller than first-order terms,
and supports the validity of the Born approximation. Furthermore, this
result suggests that a simpler method for predicting cosmic shear distri-
butions from numerical simulations may be legitimate, namely to project
the mass distribution of all lens planes along the grid of angular positions,
with the respective weighting factors, according to (92), i.e., employing
the Born approximation. Of course this simplified method is computa-
tionally much faster than the full ray-tracing.

• The power spectra obtained reproduce the ones derived using (99), over
the range of wavevectors which are only mildly affected by resolution and
discreteness effects. This provides an additional check on the accuracy of
the fitting formulae for the non-linear power spectrum.

• The simulation results give the full two-dimensional shear map, and thus
can be used to study properties other than the second-order ones, e.g.,
higher-order statistics, or the occurrence of circular shear patters indicat-
ing the presence of strong mass concentrations. An example of such maps
is shown in Fig. 26. These shear maps can be used to simulate real sur-
veys, e.g, including the holes in the data field resulting from masking or

10 For other recent ray-tracing simulations related to cosmic shear, see e.g. Barber
et al. (2000); Hamana & Mellier (2001); Premadi et al. (2001); Taruya et al.
(2002); Fluke et al. (2002); Barber (2002); Vale & White (2003).
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complicated survey geometries, and thus to determine the accuracy with
which the power spectra can be determined from such surveys. Note that
in order to quantify the error (or covariance matrix) of any second-order
statistics, one needs to know the fourth-order statistics, which in gen-
eral cannot be obtained analytically when outside the linear (Gaussian)
regime. Simulations are also used to obtain good survey strategies.

Higher-order correction terms. Up to now we have considered the lowest-
order approximation of the Jacobi matrix (88) and have argued that this
provides a sufficiently accurate description. Higher-order terms in Φ were
neglected since we argued that, because the Newtonian potential is very small,
these should play no important role. However, this argument is not fully
correct since, whereas the potential certainly is small, its derivatives are not
necessarily so. Of course, proper ray-tracing simulation take these higher-
order terms automatically into account.

We can consider the terms quadratic in Φ when expanding (88) to higher
order. There are two such terms, one containing the product of second-order
derivatives of Φ, the other a product of first derivatives of Φ and its third
derivatives. The former is due to lens-lens coupling: The shear and surface
mass densities from different redshifts (or lens planes, in the discretized ap-
proximation) do not simply add, but multi lens plane theory shows that the
tidal matices from different lens planes get multiplied. The latter term comes
from dropping the Born approximation and couples the deflection of a light
ray (first derivative of Φ) with the change of the tidal matrix with regards to
the position (third derivatives of Φ). These terms are explitly given in the ap-
pendix of Schneider et al. (1998a), in Bernardeau et al. (1997) and in Cooray
& Hu (2002) and found to be indeed small, providing corrections of at most
a few percent. Furthermore, Hamana (2001) has shown that the magnifica-
tion bias caused by the foreground matter inhomogeneities on the selection
of background galaxies has no practical effect on second-order cosmic shear
statistics.

Another effect that affects the power spectrum Pκ is the difference be-
tween shear and reduced shear, the latter being the observable. Since the
correlation function of the reduced shear is the correlation function of the
shear plus a term containing a product of two shears and one surface mass
density, this correction depends linearly on the third-order statistical proper-
ties of the projected mass κ. Also this correction turns out to be very small;
moreover, it does not give rise to any B-mode contribution (Schneider et al.
2002a).

7 Large-scale structure lensing: results

After the theory of cosmic shear was considered in some detail in the previous
section, we shall summarize here the observational results that have been
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obtained so far. In fact, as we will see, progress has been incredibly fast
over the past ∼four years, with the first detections reported in 2000, and
much larger surveys being available by now, with even larger ones ongoing
or planned. Already by now, cosmic shear is one of the pillars on which our
cosmological model rests.

The predictions discussed in the previous section have shown that the
rms value of cosmic shear is of the order of ∼ 2% on angular scales of ∼
1′, and considerably smaller on larger scales. These small values make the
measurements of cosmic shear particularly challenging, as the observational
and instrumental effects described in Sect. 3 are expected to be larger than the
cosmic shear signal, and thus have to be understood and removed with great
precision. For example, the PSF anisotropy of nearly all wide-field cameras
is considerably larger than a few percent and thus needs to be corrected for.
But, as also discussed in Sect. 3, methods have been developed and thoroughly
tested which are able to do so.

7.1 Early detections of cosmic shear

Whereas the theory of cosmic shear was worked out in the early 1990’s
(Blandford et al. 1991; Miralda-Escudé 1991; Kaiser 1992), it took until the
year 2000 before this effect was first discovered.11 The reason for this evo-
lution must be seen by a combination of instrumental developments, i.e. the
wide-field CCD mosaic cameras, and the image analysis software, like IMCAT
(the software package encoding the KSB method discussed in Sect. 3.5), with
which shapes of galaxies can be accurately corrected for PSF effects. Then
in March 2000, four groups independently announced their first discoveries
of cosmic shear (Bacon et al. 2000; Kaiser et al. 2000; van Waerbeke et al.
2000, Wittman et al. 2000). In these surveys, of the order of 105 galaxy im-
ages have been analyzed, covering about 1 deg2. Later that year, Maoli et
al. (2001) reported a significant cosmic shear measurement from 50 widely
separated FORS1@VLT images, each of size ∼ 6.′5 × 6.′5, which also agreed
with the earlier results. The fact that the results from four independent teams
agreed within the respective error bars immediately lend credit to this new
window of observational cosmology. This is also due to the fact that 4 differ-
ent telescopes, 5 different cameras (the UH8K and CFH12K at CFHT, the
8′× 16′-imager on WHT, the BTC at the 4m-CTIO telescope and FORS1 at
the VLT), independent data reduction tools and at least two different image
analysis methods have been used. These early results are displayed in Fig. 39,
where the (equivalent) shear dispersion is plotted as a function of effective
circular aperture radius, together with the predictions for several cosmolog-
ical models. It is immediately clear that a high-normalization Einstein-de
11 An early heroic attempt by Mould et al. (1994) to detect cosmic shear on a single

∼ 9′ × 9′ field only yielded an upper limit, and the putative detection of a shear
signal by Schneider et al. (1998b; see also Fort et al. 1996) in three 2′ × 2′ fields
is, due to the very small sky area, of no cosmological relevance.
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Sitter model can already be excluded from these early results, but the other
three models displayed are equally valid approximations to the data.

Fig. 39. Shear dispersion as a function of equivalent circular aperture radius as
obtained from the first five measurements of cosmic shear (MvWM+: Maoli et al.
2001; vWME+: van Waerbeke et al. 2000; KWL: Kaiser, Wilson & Luppino 2000;
BRE: Bacon, Refregier & Ellis 2000; WTK: Wittman et al. 2000). The data points
within each team are not statistically independent, due to the fairly strong covari-
ance of the shear dispersion on different angular scales, but points from different
teams are independent (see text). The error bars contain the noise from the in-
trinsic ellipticity dispersion and, for some of the groups, also an estimate of cosmic
variance. The four curves are predictions from four cosmological models; the upper-
most one corresponds to an Einstein-de Sitter Universe with normalization σ8 = 1,
and can clearly be excluded by the data. The other three models are cluster nor-
malized – see Sect. 4.4 of IN – and all provide equally good fits to these early data
(courtesy: Y. Mellier)

Maoli et al. (2001) considered the constraints one obtains by combining
the results from these five surveys, in terms of the normalization parameter
σ8 of the power spectrum. The confidence contours in the Ωm − σ8-plane are
shown in Fig. 40. There is clearly a degeneracy between these two parameters
from the data sets considered, roughly tracing σ8 ∼ 0.59Ω−0.47

m ; although the
best fitting model is defined by Ωm = 0.26, σ8 = 1.1, it cannot be significantly



Weak Gravitational Lensing 115

distinguished from, e.g., a Ωm = 1, σ8 = 0.62 model since the error bars
displayed in Fig. 39 are too large and the range of angular scales over which
the shear was measured is too small. In Fig. 40, the solid curve displays the
normalization as obtained from the abundance of massive clusters, which is
seen to follow pretty much the valley of degeneracy from the cosmic shear
analysis. This fact should not come as a surprise, since the cluster abundance
probes the power spectrum on a comoving scale of about 8h−1 Mpc, which is
comparable to the median scale probed by the cosmic shear measurements.
However, the predictions of the cluster abundance rely on the assumption that
the initial density field was Gaussian, whereas the cosmic shear prediction is
independent of this assumption, which therefore can be tested by comparing
the results from both methods.

Fig. 40. Constraints on Ωm and
σ8 from the five surveys shown in
Fig. 39; shown are 1, 2 and 3-σ
confidence regions. The cross de-
notes the best-fitting model, but
as can be seen, these two param-
eters are highly degenerate with
the data used. The solid curve
displays the constraint from clus-
ter normalization (from Maoli et
al. 2001)

7.2 Integrity of the results

As mentioned before, the cosmic shear effects are smaller than many ob-
servational effects (like an anisotropic PSF) that could mimic a shear; it is
therefore necessary to exclude as much as possible such systematics from the
data. The early results described above were therefore accompanied by quite
a large number of tests; they should be applied to all cosmic shear surveys
as a sanity check. A few of those shall be mentioned here.

Stellar ellipticity fits. The ellipticity of stellar objects should be well fit-
ted by a low-order function, so one is able to predict the PSF anisotropy
at galaxy locations. After subtracting this low-order fit from the measured
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stellar ellipticities, there should be no coherent spatial structure remaining,
and the ellipticity dispersion of the corrected ellipticities should be consider-
ably smaller that the original ones, essentially compatible with measurement
noise.

Correlation of PSF anisotropy with corrected galaxy ellipticities.
After correcting for the anisotropy of the PSF, there should remain no cor-
relation between the corrected galaxy ellipticities and the ellipticity of the
PSF. This correlation can be measured by considering 〈ε ε∗〉, where ε is the
corrected galaxy ellipticity (31), and ε∗ the uncorrected stellar ellipticity (i.e.,
the PSF anisotropy). Bacon et al. (2000) found that for fairly low signal-to-
noise galaxy images, this correlation was significantly different from zero, but
for galaxies with high S/N (only those entered their cosmic shear analysis),
no significant correlation remained. The same was found in van Waerbeke et
al. (2000), except that the average 〈ε1〉 was slightly negative, but independent
of ε∗1. The level of 〈ε1〉 was much smaller than the estimated cosmic shear,
and does not affect the latter by more than 10%.

Spatial dependence of mean galaxy ellipticity. When a cosmic shear
survey consist of many uncorrelated fields, the mean galaxy ellipticity at a
given position on the CCD chips should be zero, due to the assumed statistical
isotropy of the shear field. If, on the other hand, the shear averaged over many
fields shows a dependence on the chip position, most likely optical distortions
and/or PSF effects have not been properly accounted for.

Parity invariance. The two-point correlation function ξ×(θ) = 〈γtγ×〉 (θ)
is expected to vanish for a density distribution that is parity symmetric.
More generally, every astrophysical cause for a ‘shear’ signal (such as intrin-
sic galaxy alignments, or higher-order lensing effects) is expected to be in-
variant under parity transformation. A significant cross-correlation ξ× would
therefore indicate systematic effects in the observations and/or data analysis.

7.3 Recent cosmic shear surveys

Relatively soon after the announcement of the first cosmic shear detections,
additional results were published. These newer surveys can roughly be classi-
fied as follows: deep surveys, shallower, but much wider surveys, and special
surveys, such as obtained with the Hubble Space Telescope. We shall mention
examples of each of these classes here, without providing a complete list.

Deep surveys. Currently the largest of the deep surveys from which cosmic
shear results have been published is the VIRMOS-DESCART survey, carried
out with the CFH12K camera at the CFHT; this camera covers about 45′×30′
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Fig. 41. The shear dispersion as a function of aperture radius (left) and the shear
correlation function ξ+(θ) (right) as measured from the VIRMOS-DESCART sur-
vey (van Waerbeke et al. 2001). The lower panel on the right shows an enlarge-
ment with logarithmic axis of the larger figure. The error bars were calculated
from simulations in which the galaxy images have been randomized in orientation.
The curves show predictions from three different cosmological models, correspond-
ing to (Ωm, ΩΛ, σ8) = (0.3, 0, 0.9) (open model, short-dashed curves), (0.3, 0.7, 0.9)
(low-density flat model, solid curves), and (1, 0, 0.6) (Einstein-de Sitter Universe,
long-dashed curves). In all cases, the shape parameter of the power spectrum was
set to Γspect = 0.21. The redshift distribution of the sources was assumed to follow
the law (128), with α = 2, β = 1.5 and z0 = 0.8, corresponding to a mean redshift
of z̄ ≈ 1.2

in one exposure. The exposure time of the images, taken in the I-band, is
one hour. The survey covers four fields of 2◦ × 2◦ each, of which roughly
8.5 deg2 have been used for a weak lensing analysis up to now (van Waerbeke
et al. 2001, 2002). About 20% of the area is masked out, to account for
diffraction spikes, image defects, bright and large foreground objects etc. The
number density of galaxy images used for the cosmic shear analysis is about
17 arcmin−2. A small part of this survey was used for the early cosmic shear
detection (van Waerbeke et al. 2000). Compared to the earlier results, the
error bars on the shear measurements are greatly reduced, owing to the much
better statistics. We show in Fig. 41 the shear dispersion and the correlation
function as measured from this survey. Furthermore, this survey yielded the
first detection of a significant

〈
M2

ap

〉
-signal; we shall come back to this later.

In order to compare the measured shear signal with cosmological predictions,
one needs to assume a redshift distribution for the galaxies; a frequently used
parameterization for this is

p(z) = N

(
z

z0

)α
exp

[
−
(

z

z0

)β]
, (128)
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where α and β determine the shape of the redshift distribution, z0 the charac-
teristic redshift, and N is a normalization factor, chosen such as

∫
dz p(z) = 1.

Another example of a deep survey is the Suprime-Cam survey (Hamana
et al. 2003), a 2.1 deg2 survey taken with the wide-field camera Suprime-
Cam (with a 34′ × 27′ field-of-view) at the 8.2-m Subaru telescope. With an
exposure time of 30 min, the data is considerably deeper than the VIRMOS-
DESCART survey, due to the much larger aperture of the telescope. After
cuts in the object catalog, the resulting number density of objects used for
the weak lensing analysis is ≈ 30 arcmin−2. Fig. 42 shows how small the PSF
anisotropy is, and that the correction with a fifth-order polynomial over the
whole field-of-view in fact reduces the remaining stellar ellipticities consider-
ably. This survey has detected a significant cosmic shear signal, as measured
by the shear correlation functions and the aperture mass dispersion, over an-
gular scales 2′ <∼ θ <∼ 40′. The shear signal increases as fainter galaxies are
used in the analysis, as expected, since fainter galaxies are expected to be at
larger mean redshift and thus show a stronger shear signal.

Fig. 42. Stellar ellipticities be-
fore and after correction for PSF
anisotropies in the Suprime-Cam
survey. Numbers give mean and
dispersion of stellar ellipticities
|χ| (from Hamana et al. 2003)

Bacon et al. (2003) combine images taken at the Keck II telescope and the
WHT. For the former, 173 fields were used, each having a f.o.v. of 2′×8′; and
the data from WHT were obtained from 20 different fields, covering about
1 deg2 in total. The large number of fields minimizes the sample variance of
this particular survey, and the two instruments used allowed a cross-check of
instrumental systematics.

Very wide surveys. Within a given observing time, instead of mapping a
sky region to fairly deep magnitudes, one can also map larger regions with
smaller exposure time; since most of the surveys have been carried out with
goals in addition to cosmic shear, the survey strategy will depend on these
other considerations. We shall mention two very wide surveys here.

Hoekstra et al. (2002a; also Hoekstra et al. 2002b) used the Red Cluster
Sequence (RCS) survey, a survey designed to obtain a large sample of galaxy
clusters using color selection techniques (Gladders & Yee 2000). The cosmic
shear analysis is based on 53 deg2 of RC-band data, spread over 13 patches on
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the sky and observed with two different instruments, the CFH12K@CFHT
for Northern fields, and the Mosaic II camera at the CTIO 4m telescope in
the South. The integration times are 900 s and 1200 s, respectively. The shear
dispersion as measured with the two instruments are in satisfactory agree-
ment and thus can be safely combined. Owing to the shallower magnitude,
the detected shear is smaller than in the deeper surveys mentioned above: on
a scale of 2.5 arcmin, the shear dispersion is

〈
|γ̄|2
〉
∼ 4 × 10−5 in the RCS

survey, compared to ∼ 2 × 10−4 in the deeper VIRMOS-DESCART survey
(see Fig. 41), in accordance with expectations.

Jarvis et al. (2003) presented a cosmic shear survey of 75 deg2, taken with
the BTC camera and the Mosaic II camera on the CTIO 4m telescope, with
about half the data taken with each instrument. The survey covers 12 fields,
each with sidelength of ∼ 2.5◦. For each pointing, three exposures of 5 min
were taken, making the depth of this survey comparable to the RCS. A total
of ∼ 2×106 galaxies with R ≤ 23 were used for the shear analysis. Since this
survey has some peculiar properties which are very educational, it will be
discussed in somewhat more detail. The first point to notice is the large pixel
size of the BTC, of 0.′′43 per pixel – for comparison, the CFH12K has ∼ 0.′′20
per pixel. With a median seeing of 1.′′05, the PSF is slightly undersampled
with the BTC. Second, the PSF anisotropy on the BTC is very large, as
shown in Fig. 43 – a large fraction of the exposures has stellar images with
ellipticities higher than 10%. Obviously, this renders the image analysis and
the correction for PSF effects challenging. As shown on the right-hand part
of Fig. 43, this challenge is indeed met. This fact is very nicely illustrated
in Fig. 44, where the corrected stellar ellipticities are shown as a function of
the PSF anisotropy; in essence, the correction reduces the PSF anisotropy by
nearly a factor of 300!

The third point to notice is that the image analysis for this survey has
not been carried out with IMCAT (as for most of the other surveys), but
by a different image analysis method described in Bernstein & Jarvis (2002).
In this respect, this survey is independent of all the others described in this
section; it is important to have more than one image analysis tool to check
potential systematics of either one.

One of the amazing results from the CTIO cosmic shear survey is that the
shear dispersion can be measured with about a 3σ significance on each of the
12 fields. Hence, this provides a shear dispersion measurement on scales larger
than 1 degree (the radius of a circle with area of the mean area of the 12 fields
of ∼ 6.2 deg2); the shear dispersion on these scales is

〈
|γ̄|2
〉

= 0.0012±0.0003.

Special surveys. There are a number of cosmic shear surveys which cover
a much smaller total area than the ones mentioned above, and are thus not
competitive in terms of statistical accuracy, but which have some special
properties which give them an important complementary role. One example
are surveys carried out with the Hubble Space Telescope. Since for them the
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1% ellipticity 1% ellipticity

Fig. 43. On the left-hand side, the raw ellipticities of stars are shown for the four
CCDs of the BTC instrument; for reference, a 1% ellipticity is indicated. After
correcting for the PSF anisotropy, the remaining stellar ellipticities (shown on the
right) are of order 1–2%, and essentially uncorrelated with position on the chip,
i.e., they are compatible with measurement noise (from Jarvis et al. 2003)

10-3

-10-3

0

0 0.1-0.1 0 0.1-0.1

10-3

-10-3

0

Raw PSF E1 Raw PSF E2

Fi
na

l P
SF

 E
1

Fi
na

l P
SF

 E
2

Fig. 44. These two plots show the two components of the stellar ellipticities as
measured on the data (x-axis) and after correction, from the Jarvis et al. (2003)
survey. The slope of the straight line is about 1/300, meaning that the strong
PSF anisotropy can be corrected for up to this very small residual. The final PSF
anisotropy is well below 5× 10−4. This figure, together with Fig. 43, demonstrates
how well the procedures for PSF corrections work (from Jarvis et al. 2003)
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PSF is much smaller than for ground-based observations, PSF corrections
in measuring galaxy ellipticities are expected to be correspondingly smaller.
The drawback of HST observations is that its cameras, at least before the
installment of the ACS, have a small field-of-view, less than 1 arcmin2 for
the STIS CCD, and about 5 arcmin2 for WFPC2. This implies that the total
area covered by HST surveys are smaller than those achievable from the
ground, and that the number of stars per field are very small, so that PSF
measurements are typically not possible on those frames which are used for
a cosmic shear analysis. Hence, the PSF needs to be measured on different
frames, e.g., taken on star clusters, and one needs to assume (this assumption
can be tested, of course) that the PSF is fairly stable in time. In fact, this is
not really true, as the telescopes moves in and out the Earth’s shadow every
orbit, thereby changing its temperature and thus changing its length (an
effect called breathing). A further potential problem of HST observations is
that the WFPC2 has a pixel scale of 0.′′1 and thus substantially undersamples
the PSF; this is likely to be a serious problem for very faint objects whose
size is not much larger than the PSF size.

Cosmic shear surveys from two instruments onboard HST have been re-
ported in the literature so far. One of the surveys uses archival data from the
Medium Deep Survey, a mostly parallel survey carried out with the WFPC2.
Refregier et al. (2002) used 271 WFPC2 pointings observed in the I-band,
selected such that each of them is separated from the others by at least
10′ to have statistically independent fields. They detected a shear dispersion
on the scale of the WFC-chips (which is equivalent to a scale θ ∼ 0.′72) of〈
|γ̄|2
〉
∼ 3.5× 10−4, which is a 3.8σ detection. The measurement accuracy is

lower than that, owing to cosmic variance and uncertainties in the redshift
distribution of the sources. Hämmerle et al. (2002) used archival parallel data
taken with STIS; from the 121 fields which are deep enough, have multiple
exposures, and are at sufficiently high galactic latitude, they obtained a shear
dispersion of

〈
|γ̄|2
〉
∼ 15 × 10−4 on an effective scale of ∼ 30′′, a mere 1.5σ

detection. This low significance is due to the small total area covered by this
survey. On the other hand, since the pixel scale of STIS is half of that of
WFPC2, the undersampling problem is much less in this case. A larger set
of STIS parallel observations were analyzed with respect to cosmic shear by
Rhodes et al. (2004) and Miralles et al. (2003). Whereas Rhodes et al. ob-
tained a significant (∼ 5σ) detection on an angular scale of ∼ 30′′, Miralles
et al. concluded that the degradation of the STIS CCD in orbit regarding
the charge transfer efficiency prevents a solid measurement of weak lensing.
The discrepancies between these two works, which are based to a large de-
gree on the same data set, is unclear at present. Personally I consider this
discrepancy as a warning sign that weak lensing measurement based on small
fields-of-view, and correspondingly too few stars to control the PSF on the
science exposures, need to be regarded with extreme caution.
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The new ACS onboard HST offers better prospects for cosmic shear mea-
surements, since it has a substantially larger field-of-view. A first result was
derived by Schrabback (2004), again based on parallel data. He found that
the PSF is not stable in time, but that the anisotropy pattern changes among
only a few characteristic patterns. He used those as templates, and the (typ-
ically a dozen) stars in the science frames to select a linear combination of
these templates for the PSF correction of individual frames, thereby obtaining
a solid detection of cosmic shear from the early ACS data.

A further survey that should be mentioned here is the one conducted
on COMBO17 fields (Brown et al. 2003). COMBO17 is a one square degree
survey, split over four fields, taken with the WFI at the ESO/MPG 2.2m tele-
scope on La Silla, in 5 broad-band and 12 medium-band filters. In essence,
therefore, this multi-band survey produces low-resolution spectra of the ob-
jects and thus permits to determine very accurate photometric redshifts of
the galaxies taken for the shear analysis. Therefore, for the analysis of Brown
et al., the redshift distribution of the galaxies is assumed to be very well
known and not a source of uncertainty in translating the cosmic shear mea-
surement into a constraint on cosmological parameters. We shall return to
this aspect in Sect. 7.6. The data set was reanalyzed by Heymans et al. (2004)
where special care has been taken to identify and remove the signal coming
from intrinsic alignment of galaxy shapes.

7.4 Detection of B-modes

The recent cosmic shear surveys have measured the aperture mass dispersion〈
M2

ap(θ)
〉
, as well as its counterpart

〈
M2

⊥(θ)
〉

for the B-modes (see Sect. 6.5).
These aperture measures are obtained in terms of the directly measured shear
correlation functions, using the relations (125). As an example, we show in
Fig. 45 the aperture measures as obtained from the Red Cluster Sequence
survey (Hoekstra et al. 2002a). A significant measurement of

〈
M2

ap(θ)
〉

is
obtained over quite a range of angular scales, with a peak around a few ar-
cminutes, as predicted from CDM power spectra (see Fig. 35). In addition
to that, however, a significant detection of

〈
M2

⊥(θ)
〉

signifies the presence of
B-modes. As discussed in Sect. 6.5, those cannot be due to cosmic shear. The
only plausible explanation for them, apart from systematics in the observa-
tions and data analysis, is an intrinsic alignment of galaxies. If this is the
cause of the B-modes, then one would expect that the relative contribution
of the B-mode signal decreases as higher-redshift galaxies are used for the
shear measurement. In fact, this expectation is satisfied, as shown in Fig.
45, where the galaxy sample is split into a bright and faint part, and the
relative amplitude of the B-mode signal is smaller for the fainter (and thus
presumably more distant) sample.

Similar detections of a B-mode signal have been obtained by the other
surveys. For example, van Waerbeke et al. (2001) reported a significant B-
mode signal on angular scales of a few arcminutes. In the reanalysis of the
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Fig. 45. The aperture mass dispersion
〈
M2

ap(θ)
〉

(top panels) and the cross aperture

dispersion
〈
M2

⊥(θ)
〉

(bottom panels) from the RCS survey (Hoekstra et al. 2002a).
In the left panels, all galaxies with apparent magnitude 20 ≤ RC ≤ 24 are used,
the middle and right panels show the same statistics for the brighter and fainter
subsamples of background galaxies, respectively. Error bars in the former are larger,
owing to the smaller number of bright galaxies

VIRMOS-DESCART data, van Waerbeke et al. (2002) reported that the B-
mode on these scales was caused by the polynomial PSF anisotropy fit: the
third-order function (fitted for each chip individually) has its largest ampli-
tude near the boundary of the chips and is least well constrained there, unless
one finds stars close to these edges. If a second-order polynomial fit is used,
the B-modes on a few arcminute scales disappear. Van Waerbeke et al. (2002)
calculate the aperture statistics from the uncorrected stellar ellipticities in
their survey and found that the ‘E- and B-modes’ of the PSF anisotropy
have very similar amplitude and shape (as a function of θ). This similarity
is unlikely to change in the course of the PSF correction procedure. Thus,
they argue, that if the B-mode is due to systematics in the data analysis, a
systematic error of very similar amplitude will also affect the E-mode. Jarvis
et al. (2003) found a significant B-mode signal on angular scales below ∼ 30′;
hence, despite their detection of an E-mode signal over a large range of an-
gular scales 1′ <∼ θ <∼ 100′, one suspects that part of this signal might be due
to non-lensing effects.

Given our lack of understanding about the origin of the B-mode signal,
and the associated likelihood that any effect causing a B-mode signal also
contributes a non-lensing part to the E-mode signal, one needs a prescrip-
tion on how to use the detected E-mode signal for a cosmological analysis.
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Depending on what one believes the B-modes are due to, this prescription
varies. For example, if the B-mode is due to a residual systematic, one would
add its signal in quadrature to the error bars of the E-mode signal, as done
in van Waerbeke et al. (2002). On the other hand, if the B-mode signal is
due to intrinsic alignments of galaxies, as is at least suggested for the RCS
survey from Fig. 45 owing to its dependence on galaxy magnitudes, then it
could be more reasonable to subtract the B-mode signal from the E-mode
signal, if one assumes that intrinsic alignments produce similar amplitudes of
both modes [which is far from clear, however; Mackey et al. (2002) find that
the E-mode signal from intrinsic alignments is expected to be ∼ 3.5 times
higher than the corresponding B-mode signal].

Owing to the small size of the fields observed with the early HST instru-
ments, no E/B-mode decomposition can be carried out from these surveys –
the largest size of these fields is smaller than the angular scale at which the
aperture mass dispersion is expected to peak (see Fig. 35). However, future
cosmic shear studies carried out with ACS images will most likely be able to
detect, or set upper bounds on the presence of B-modes.

In fact, it is most likely that (most of) the B-mode signal seen in the
cosmic shear surveys is due to remaining systematics. Hoekstra (2004) in-
vestigated the PSF anisotropy of the CFH12k camera using fields with a
high number density of stars. Randomly selecting about 100 stars per CCD,
which is the typical number observed in high galactic latitute fields, he fitted
a second-order polynomial to these stars representing the PSF anisotropy.
Correcting with this model all the stars in the field, the remaining stellar el-
lipticities carry substantial E- and B-mode signals, essentially on all angular
scales, but peaking at about the size of a CCD. A substantially smaller resid-
ual is obtained if the ellipticities of stars in one of the fields is corrected by a
more detailed model of the PSF anisotropy as measured from a different field;
this improvement indicates that the PSF anisotropy pattern in the data set
used by Hoekstra is fairly stable between different exposures. This, however,
is not necessarily the case in other datasets. Nevertheless, if one assumes that
the PSF anisotropy is a superposition of two effects, one from the properties
of the telescope and instrument itself, the other from the specific observation
procedure (e.g., tracking, wind shake, etc.), and further assuming that the
latter one affects mainly the large-scale properties of the anisotropy pattern,
then a superposition of a PSF model (obtained from a dense stellar field and
describing the small-scale properties of the anisotropy pattern) plus a low-
order polynomial can be a better representation of the PSF anisotropy. This
indeed was verified in the tests made by Hoekstra (2004). In their reanalysis
of the VIRMOS-DESCART survey, van Waerbeke et al. (2004) have fitted
the PSF anisotropy with a rational function, instead of a polynomial. This
functional form was suggested by the study of Hoekstra (2004). When cor-
recting the galaxy ellipticities with this new PSF model, essentially no more
B-modes in the VIRMOS-DESCART survey are detected. Further studies on
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PSF anisotropy corrections need to be conducted; possibly the optimal way
of dealing with them will be instrument-specific.

7.5 Cosmological constraints

The measured cosmic shear signal can be translated into constraints on cos-
mological parameters, by comparing the measurements with theoretical pre-
dictions. In Sect. 6.4 we have outlined how such a comparison can be made;
there, we have concentrated on the shear correlation functions as the primary
observables. However, the detection of significant B-modes in the shear field
makes the aperture measures the ‘better’ statistics to compare with predic-
tions. They can be calculated from the shear correlation functions, as shown
in (125). Calculating a likelihood function from the aperture mass dispersion
proceeds in the same way as outlined in Sect. 6.4 for the correlation functions.

We have argued in Sect. 6.3 that
〈
M2

ap(θ)
〉

provides very localized infor-
mation about the power spectrum Pκ(3) and is thus a very useful statistic.
One therefore might expect that the aperture mass dispersion as calculated
from the shear correlation functions contains essentially all the second-order
statistical information of the survey. This is not true, however; one needs to
recall that the shear correlation function ξ+ is a low-pass filter of the power
spectrum, and thus contains information of Pκ on angular scales larger than
the survey size. This information is no longer contained in the aperture mass
dispersion, owing to its localized associated filter. Therefore, in order to keep
this long-range information in the comparison with theoretical predictions, it
is useful to complement the estimates of

〈
M2

ap(θ)
〉

with either the shear dis-
persion, or the correlation function ξ+, at a scale which is not much smaller
than the largest scale at which

〈
M2

ap(θ)
〉

is measured. Note, however, that
this step implicitly assumes that on these large angular scales, the shear sig-
nal is essentially free of B-mode contributions. If this assumption is not true,
and cannot be justified from the survey data, then this additional constraint
should probably be dropped.

The various constraints on parameters that have been derived from the
cosmic shear surveys differ in the amount of prior information that has been
used. As an example, we consider the analysis of van Waerbeke et al. (2002).
These authors have considered a model with four free parameters: Ωm, the
normalization σ8, the shape parameter Γspect and the characteristic redshift
zs (or, equivalently, mean redshift z̄s) of their galaxy sample, assuming a flat
Universe, i.e., ΩΛ = 1−Ωm. They have used a flat prior for Γspect and z̄s in a
fairly wide interval over which they marginalized the likelihood function (see
Fig. 46). Depending on the width of these intervals, the confidence regions
are more or less wide. It should be noted that the confidence contours close
if Γspect and z̄s are assumed to be known (see van Waerbeke et al. 2001), but
when these two parameters are kept free, Ωm and σ8 are degenerate.

The right panel of Fig. 46 shows the corresponding constraints as ob-
tained from the RCS survey. Since this survey is shallower and only extends
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Fig. 46. Constraints on Ωm and σ8 from two cosmic shear surveys. Left: The
VIRMOS-DESCART survey (van Waerbeke et al. 2002). The grey-scale and dashed
contours show the 68%, 95% and 99.9% confidence regions with a marginaliza-
tion over the range Γspect ∈ [0.05, 0.7], and mean galaxy redshift in the range
z̄s ∈ [0.50, 1.34], whereas the solid contours show the same confidence regions with
the stronger priors Γspect ∈ [0.1, 0.4] and z̄s ∈ [0.8, 1.1]. Right: The RCS survey
(Hoekstra et al. 2002), showing the 1, 2, and 3σ confidence regions for a prior
Γspect ∈ [0.05, 0.5] and mean redshift z̄s ∈ [0.54, 0.66]. In both cases, a flat Universe
has been assumed

to magnitudes where spectroscopic surveys provide information on their red-
shift distribution, the range of z̄s over which the likelihood is marginalized is
smaller than for the VIRMOS-DESCART survey. Correspondingly, the con-
fidence region is slightly smaller in the case. Even smaller confidence regions
are obtained if external information is used: Hoekstra et al. (2002a) consid-
ered Gaussian priors with Ωm+ΩΛ = 1.02±0.06, as follows from pre-WMAP
CMB results, Γspect = 0.21 ± 0.03, as follows from the 2dF galaxy redshift
survey, and z̄s = 0.59 ± 0.02, for which the width of the valley of maximum
likelihood narrows considerably. Jarvis et al. (2003) used for their estimate of
cosmological parameters the aperture mass dispersion at three angular scales
plus the shear dispersion at θ = 100′, and they considered alternatively the
E-mode signal, and the E-mode signal ± the B-mode signal, to arrive at con-
straints on the Ωm–σ8 parameter plane. Since the CTIO survey samples a
larger angular scale than the other surveys (data at small angular scales are
discarded owing to the large B-mode signal there), the results are much less
sensitive to Γspect; furthermore, for the same reason the Jarvis et al. results
are much less sensitive to the fit of the non-linear power spectrum according
to Peacock & Dodds (1996) which van Waerbeke et al (2002) found to be
not accurate enough for some cosmological models. In fact, if instead of the
Peacock & Dodds fitting formula, the fit by Smith et al (2003) is used to
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describe the non-linear power spectrum, the resulting best estimate of σ8 is
decreased by 8% for the RCS survey (as quoted in Jarvis et al. 2003).

For the RCS and the CTIO surveys, the covariance matrix was obtained
from field-to-field variations, i.e., Covij = 〈(di − µi)(dj − µj)〉, where µi is
the mean of the observable di (e.g., the aperture mass dispersion at a spe-
cific angular scale) over the independent patches of the survey, and angular
brackets denote the average over all independent patches. The estimate of the
covariance matrix for the VIRMOS-DESCART survey is slightly different, as
it has only four independent patches.

To summarize the results from these surveys, each of them found that
a combination of parameters of the form σ8Ωα

m is determined best from the
data, with α ∼ 0.55, where the exact value of α depends on the survey depth.
If we consider the specific case of Ωm = 0.3 which is close to the concordance
value that was recently confirmed by WMAP, then the VIRMOS-DESCART
survey yields σ8 = 0.94 ± 0.12, the RCS survey has σ8 = 0.91+0.05

−0.12, which
improves to σ8 = 0.86+0.04

−0.05 if the stronger (Gaussian) priors mentioned above
are used, and the CTIO survey yields σ8 = 0.71+0.12

−0.16, here as 2σ limits.
Whereas these results are marginally in mutual agreement, the CTIO value
for σ8 is lower than the other two. The higher values are also supported by
results from the WFPC2 survey by Refregier et al. (2002), who find σ8 =
0.94±0.17, Bacon et al. (2003) with σ8 = 0.97±0.13, and the earlier surveys
discussed in Sect. 7.1. The only survey supporting the low value of the CTIO
survey is COMBO17 (Brown et al. 2002; see also the reanalysis of this dataset
by Heymans et al. 2004). Most likely, these remaining discrepancies will be
clarified in the near future; see discussion below. It should also be noted that
at least for some of the surveys, a large part of the uncertainty comes from the
unknown redshift distribution of the galaxies; this situation will most likely
improve, as efficient spectrographs with large multiplex capability become
available at 10m-class telescopes, which will in the near future deliver large
galaxy redshift surveys at very faint magnitudes. Those can be used to much
better constrain the redshift distribution of the source galaxies in cosmic
shear surveys.

7.6 3-D lensing

As mentioned several times before, using individual source redshift informa-
tion, as will become available in future multi-color wide-field surveys, can
improve the cosmological constraints obtained from weak lensing. In this sec-
tion we shall therefore summarize some of the work that has been published
on this so-called 3-D lensing.

Three-dimensional matter distribution. Provided the redshifts of indi-
vidual source galaxies are known (or estimated from their multiple colors),
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one can derive the 3-D matter distribution, not only its projection. The princi-
ple of this method can be most easily illustrated in the case of a flat Universe,
for which the surface mass density κ(θ, w) for sources at comoving distance
w becomes – see (93)

κ(θ, w) =
3H2

0Ωm

2c2

∫ w

0
dw′ w′(w − w′)

w

δ(w′θ, w′)
a(w′)

. (129)

Multiplying this expression by w and differentiating twice yields

d2

dw2
(wκ(θ, w)) =

3H2
0Ωm

2c2

w

a(w)
δ(wθ, w) ,

which therefore allows one to obtain the three-dimensional density contrast
δ in terms of the surface mass densities κ at different source redshifts. As
we have seen in Sect. 5, there are several methods how to obtain the surface
mass density from the observed shear. To illustrate the 3-D method, we use
the finite-field reconstruction in the form of (60), for which one finds

δ(wθ, w) =
2c2

3H2
0Ωm

a(w)
w

∫
d2θ′ H(θ; θ′) · d2

dw2

[
w uγ(θ′, w)

]
. (130)

Taylor (2001) derived the foregoing result, but concentrated on the 3-D gravi-
tational potential instead of the mass distribution, and Bacon & Taylor (2003)
and Hu & Keeton (2003) discussed practical implementations of this relation.
First to note is the notorious mass-sheet degeneracy, which in the present con-
text implies that one can add an arbitrary function of w to the reconstructed
density contrast δ. This cannot be avoided, but if the data field is sufficiently
large, so that averaged over it, the density contrast is expected to vanish, this
becomes a lesser practical problem. For such large data fields, the above mass
reconstruction can be substituted in favour of the simpler original Kaiser &
Squires (1993) method. Still more freedom is present in the reconstruction of
the gravitational potential. The second problem is one of smoothing: owing
to the noisiness of the observed shear field, the w-differentiation (as well as
the θ-differentiation present in the construction of the vector field uγ) needs
to be carried out on the smoothed shear field. A discretization of the observed
shear field, as also suggested by the finite accuracy of photometric redshifts,
can be optimized with respect to this smoothing (Hu & Keeton 2003).

A first application of this methods was presented in Taylor et al. (2004)
on one of the COMBO17 fields which contains the supercluster A901/902.
The clusters present clearly show up also in the 3-D mass map, as well as a
massive structure behind the cluster A902 at higher redshift. Already earlier,
Wittman et al. (2001, 2003) estimated the redshifts of clusters found in their
deep blank-field data by studying the dependence of the weak lensing signal
on the estimated source redshifts, and subsequent spectroscopy showed that
these estimates were fairly accurate.
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Power spectrum estimates. A redshift-dependent shear field can also be
used to improve on the cosmological constraints obtained from cosmic shear.
Hu (1999) has pointed out that even crude information on the source redshifts
can strongly reduce the uncertainties of cosmological parameters. In fact, the
3-D power spectrum can be constructed from redshift-dependent shear data
(see, e.g., Heavens 2003, Hu 2002, and references therein). For illustration
purposes, one can use the κ power spectrum for sources at fixed comoving
distance w, which reads in a flat Universe – see (99)

Pκ(3, w) =
9H4

0Ω
2
m

4c4

∫ w

0
dw′ (w − w′)2

w2 a2(w′)
Pδ

(
3

w′ , w
′
)

. (131)

Differentiating w2Pκ three times w.r.t. w then yields (Bacon et al. 2004)

Pδ(k, w) =
2c4

9H4
0Ω

2
m

a2(w)
d3

dw3

[
w2 Pκ(wk, w)

]
. (132)

In this way, one could obtain the three-dimensional power spectrum of the
matter. However, this method is essentially useless, since it is both very noisy
(due to the third-order derivatives) and throws away most of the informa-
tion contained in the shear field, as it makes use only of shear correlations
of galaxies having the same redshift, and not of all the pairs at different dis-
tances. A much better approach to construct the three-dimensional power
spectrum is given, e.g., by Pen et al. (2003).

In my view, the best use of three-dimensional data is to construct the shear
correlators ξ±(θ; z1, z2), as they contain all second-order statistical informa-
tion in the data and at the same time allow the identification and removal
of a signal from intrinsic shape correlations of galaxies (King & Schneider
2003). From these correlation functions, one can calculate a χ2 function as in
(116) and minimize it w.r.t. the wanted parameters. One problem of this ap-
proach is the large size of the covariance matrix, which now has six arguments
(two angular separations and four redshifts). However, as shown in Simon et
al. (2004), it can be calculated fairly efficiently, provided one assumes that
the fourth-order correlations factorize into products of two-point correlators,
i.e., Gaussian fields (if this assumption is dropped, the covariance must be
calculated from cosmological N-body simulations).

Bacon et al. (2004) used the COMBO17 data to derive the shape of the
power spectrum, using the redshift dependent shear correlations. They pa-
rameterize the power spectrum in the form P (k, z) ∝ Akαe−sz, so that it is
described by an amplitude A, a local slope α and a growth parameter s which
describes how the amplitude of the power spectrum declines towards higher
redshifts. In fact, the slope α = −1.2 was fixed to the approximate value in
ΛCDM models over the relevant range of spatial scales and redshifts probed
by the COMBO17 data (since the data used cover only 1/2 deg2, reducing
the number of free parameters by fixing α is useful). The evolution of the
power spectrum is found with high significance in the data. Furthermore, the
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authors show that the use of redshift information improves the accuracy in
the determination of σ8 by a factor of two compared to the 2-D cosmic shear
analysis of the same data (Brown et al. 2003).

The main application of future multi-waveband cosmic shear surveys will
be to derive constraints on the equation of state of dark energy, as besides
lensing there are only a few methods available to probe it, most noticibly the
magnitude-redshift relation of SN Ia. Since dark energy starts to dominate the
expansion of the Universe only at relatively low redshifts, little information
about its properties is obtainable from the CMB anisotropies alone. For that
reason, quite a number of workers have considered the constraints on the
dark energy equation of state that can be derived from future cosmic shear
surveys (e.g., Huterer 2002; Hu 2002; Munshi & Wang 2003; Hu & Jain
2003; Abazajian & Dodelson 2003; Benabed & van Waerbeke 2003; Song &
Knox 2003). The results of these are very encouraging; the sensitivity on
the dark energy properties is due to its influence on structure growth. With
(photometric) redshift information on the source galaxies, the evolution of
the dark matter distribution can be studied by weak lensing, as shown above.
Van Waerbeke & Mellier (2003) have compared the expected accuracy of the
cosmic shear result from the ongoing CFHT Legacy Survey with the variation
of various dark energy models and shown that the CFHTLS will be able to
discriminate between some of these models, with even much better prospects
from future space-based wide-field imaging surveys (e.g., Hu & Jain 2003).

7.7 Discussion

The previous sections have shown that cosmic shear research has matured;
several groups have successfully presented their results, which is important in
view of the fact that the effects one wants to observe are small, influenced by
various effects, and therefore, independent results from different instruments,
groups, and data analysis techniques are essential in this research. We have
also seen that the results from the various groups tend to agree with each
other, with a few very interesting discrepancies remaining whose resolution
will most likely teach us even more about the accuracies of data analysis
procedures.

Lessons for cosmology. A natural question to ask is, what has cosmic
shear taught us so far about cosmology? The most important constraint
coming from the available cosmic shear results is that on the normalization
σ8, for which only few other accurate methods are available. We have seen
that cosmic shear prefers a value of σ8 ≈ 0.8 − 0.9, which is slightly larger
than current estimates from the abundance of clusters, but very much in
agreement with the measurement of WMAP. The estimate from the cluster
abundance is, however, not without difficulties, since it involves several scal-
ing relations which need to be accurately calibrated; hence, different authors
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arrive at different values for σ8 (see, e.g., Pierpaoli, Scott & White 2001; Sel-
jak 2002; Schuecker et al. 2003). The accuracy with which σ8 is determined
from CMB data alone is comparable to that of cosmic shear estimates; as
shown in Spergel et al. (2003), more accurate values of σ8 are obtained only
if the CMB measurements are combined with measurements on smaller spa-
tial scales, such as from galaxy redshift surveys and the Lyman alpha forest
statistics. Thus, the σ8-determination from cosmic shear is certainly compet-
itive with other measurements. Arguably, cosmic shear sticks out in this set
of smaller-scale constraints due to the fewer physical assumptions needed for
its interpretation.

But more importantly, it provides a fully independent method to mea-
sure cosmological parameters. Hence, at present the largest role of the cosmic
shear results is that it provides an independent approach to determining these
parameters; agreement with those obtained from the CMB, galaxy redshift
surveys and other methods are thus foremost of interest in that they pro-
vide additional evidence for the self-consistency of our cosmological model
which, taken at face value, is a pretty implausible one: we should always
keep in mind that we are claiming that our Universe consists of 4.5% normal
(baryonic) matter, with the rest being shared with stuff that we have given
names to (‘dark matter’, ‘dark energy’), but are pretty ignorant about what
that actually is. Insofar, cosmic shear plays an essential role in shaping our
cosmological view, and has become one of the pillars on which our standard
model rests.

Agreement, or discrepancies? How to clarify the remaining discrepancies
that were mentioned before – what are they due to? One needs to step back
for a second and be amazed that these results are in fact so well in agreement
as they are, given all the technical problems a cosmic shear survey has to
face (see Sect. 3). Nevertheless, more investigations concerning the accuracy
of the results need to be carried out, e.g., to study the influence of the different
schemes for PSF corrections on the final results. For this reason, it would be
very valuable if the same data set is analyzed by two independent groups
and to compare the results in detail. Such comparative studies may be a
prerequisite for the future when much larger surveys will turn cosmic shear
into a tool for precision cosmology.

Joint constraints from CMB anisotropies and cosmic shear. As men-
tioned before, the full power of the CMB anisotropy measurements is achieved
when these results are combined with constraints on smaller spatial scales.
The tightest constraints from WMAP are obtained when it is combined with
results from galaxy redshift surveys and the statistics of the Lyα forest ab-
sorption lines (Spergel et al. 2003). Instead of the latter, one can instead
use results from cosmic shear, as it provides a cleaner probe of the statis-
tical properties of the matter distribution in the Universe. As was pointed
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out before (e.g., Hu & Tegmark 1999; see Fig. 34), the combination of CMB
measurements with cosmic shear results is particularly powerful to break de-
generacies that are left from using the former alone. Contaldi et al. (2003)
used the CMB anisotropy results from WMAP (Bennett et al. 2003), supple-
mented by anisotropy measurements on smaller angular scales from ground-
based experiments, and combined them with the cosmic shear aperture mass
dispersion from the RCS survey (Hoekstra et al. 2002a). As is shown in Fig.
47, the constraints in the Ωm-σ8-parameter plane are nearly mutually orthog-
onal for the CMB and cosmic shear, so that the combined confidence region
is substantially smaller than each of the individual regions.

Fig. 47. The confidence region in
the Ωm-σ8-plane obtained from
the two-dimensional marginalized
likelihood. Shown are the 68%
and 95% confidence regions de-
rived individually from the CMB
and the RCS cosmic shear survey,
as well as those obtained by com-
bining both constraints (Contaldi
et al. 2003)

Wide vs. deep surveys. In designing future cosmic shear surveys, the
survey strategy needs to decide the effective exposure time. For a given total
observing time (the most important practical constraint), one needs to find
a compromise between depth and area. Several issues need to be considered
in this respect:

• The lensing signal increases with redshift, and therefore with increasing
depth of a survey; it should therefore be easier to detect a lensing signal
in deep surveys. Furthermore, by splitting the galaxy sample into sub-
samples according to the magnitude (and/or colors), one can study the
dependence of the lensing signal on the mean source redshift, which is
an important probe of the evolution of the matter power spectrum, and
thus of cosmology. If one wants to probe the (dark) matter distribution
at appreciable redshifts (z ∼ 0.5), one needs to carry out deep surveys.

• A wider survey is more likely to probe the linear part of the power spec-
trum which is more securely predicted from cosmological models than the
non-linear part; on the other hand, measurement of the latter, when com-
pared with precise models (e.g., from numerical simulations), can probe
the non-linear gravitational clustering regime.
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• Depending on the intrinsic galaxy alignment, one would prefer deeper
surveys, since the relative importance of the intrinsic signal decreases with
increasing survey depth. Very shallow surveys may in fact be strongly
affected by the intrinsic signal (e.g., Heymans & Heavens 2003). On the
other hand, for precision measurements, as will become available in the
near future, one needs to account for the intrinsic signal in any case,
using redshift information (at least in a statistical sense), and so shallow
surveys lose this potential disadvantage. In fact, the redshift estimates of
shallower surveys are easier to obtain than for deeper ones.

• In this context, one needs to compromise between area and and the num-
ber of fliters in which exposures should be taken. Smaller area means
worse statistics, e.g., larger effects of cosmic variance, but this has to
be balanced against the additional redshift information. Also, if a fixed
observing time is used, one needs to account for the weather, seeing and
sky brightness distribution. One should then device a strategy that the
best seeing periods are used to obtain images in the filter which is used
for shape measurements, and bright time shall be spent on the longest
wavelength bands.

• Fainter galaxies are smaller, and thus more strongly affected by the point-
spread function. One therefore expects that PSF corrections are on aver-
age smaller for a shallow survey than for a deeper one. In addition, the
separation between stars and galaxies is easier for brighter (hence, larger)
objects.

The relative weight of these arguments is still to be decided. Whereas some
of the issues could be clarified with theoretical investigations (i.e., in order
to obtain the tightest constraints on cosmological parameters, what is the
optimal choice of area and exposure time, with their product being fixed),
others (like the importance of intrinsic alignments) still remain unclear. Since
big imaging surveys will be conducted with a broad range of scientific ap-
plications in mind, this choice will also depend on those additional science
goals.

Future surveys. We are currently witnessing the installment of square-
degree cameras at some of the best sites, among them Megacam at the CFHT,
and OmegaCAM at the newly built VLT Survey Telescope (the 2.6m VST)
on Paranal (I present here European-biased prospects, as I am most familiar
with these projects). Weak lensing, and in particular cosmic shear has been
one of the science drivers for these instruments, and large surveys will be
carried out with them. Already ongoing is the CFHT Legacy Survey, which
will consist of three parts; the most interesting one in the current context is
a ∼ 160 deg2 survey with an exposure time of ∼ 1 h in each of five optical
filters. This survey will therefore yield a more than ten-fold increase over
the current VIRMOS-DESCART survey, with corresponding reductions of
the statistical and cosmic variance errors on measurements. The multi-color
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nature of this survey implies that one can obtain photometric redshift esti-
mates at least for a part of the galaxies which will enable the suppression
of the potential contribution to the shear signal from intrinsic alignments of
galaxies. A forecast of the expected accuracy of cosmological parameter es-
timates from the CFHTLS combined with the WMAP CMB measurements
has been obtained by Tereno et al. (2004). It is expected that a substantial
fraction of the VST observing time will be spend on multi-band wide-field
surveys which, if properly designed, will be extremely useful for cosmic shear
research. In order to complement results from the CFHTLS, accounting for
the fact that the VST has smaller aperture than the CFHT (2.6m vs. 3.6m),
a somewhat shallower but wider-field survey would be most reasonable. For
both of these surveys, complementary near-IR data will become available af-
ter about 2007, with the WirCam instrument on CFHT, and the newly build
VISTA 4m-telescope equipped with a wide-field near-IR camera on Paranal,
which will yield much better photometric redshift estimates than the opti-
cal data alone. Furthermore, with the PanStarrs project, a novel method for
wide-field imaging and a great leap forward in the data access rate will be
achieved.

Towards the end of the decade, a new generation of cosmic shear surveys
may be started; there are two projects currently under debate which would
provide a giant leap forward in terms of survey area and/or depth. One is a
satellite project, SNAP/JDEM, originally designed for finding and follow-up
of high-redshift supernovae to study the expansion history of the Universe
and in particular to learn about the equation of state of the dark energy. With
its large CCD array and multi-band imaging, SNAP will also be a wonderful
instrument for cosmic shear research, yielding photometric redshift estimates
for the faint background galaxies, and it is expected that the observing time
of this satellite mission will be split between these two probes of dark energy.
The other project under discussion is the LSST, a 8m telescope equipped
with a ∼ 9 deg2 camera; such an instrument, with an efficiency larger than
a factor 40 over Megacam@CFHT, would allow huge cosmic shear surveys,
easily obtaining a multi-band survey over all extragalactic sky (modulo the
constraints from the hemisphere). Since studying the equation of state of
dark energy will be done most effectively with good photometric redshifts
of source galaxies, the space experiment may appear more promising, given
the fact that near-IR photometry is needed for a reliable redshift estimate,
and sufficiently deep near-IR observations over a significant area of sky is not
possible from the ground.

8 The mass of, and associated with galaxies

8.1 Introduction

Whereas galaxies are not massive enough to show a weak lensing signal in-
dividually (see eq. 19), the signal of many galaxies can be superposed statis-
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tically. Therefore, if one considers sets of foreground (lens) and background
galaxies, then in the mean, in a foreground-background galaxy pair, the image
ellipticity of the background galaxy will be preferentially oriented in the di-
rection tangent to the line connecting foreground and background galaxy. The
amplitude of this tangential alignment then yields a mean lensing strength
that depends on the redshift distributions of foreground and background
galaxies, and on the mass distribution of the former population. This ef-
fect is called galaxy-galaxy lensing and will be described in Sect. 8.2 below;
it measures the mass properties of galaxies, provided the lensing signal is
dominated by the galaxies themselves. This will not be the case for larger
angular separations between foreground and background galaxies, since then
the mass distribution in which the foreground galaxies are embedded (e.g.,
their host groups or clusters) starts to contribute significantly to the shear
signal. The interpretation of this signal then becomes more difficult. On even
larger scales, the foreground galaxies contribute negligibly to the lens signal;
a spatial correlation between the lens strength and the foreground galaxy
population then reveals the correlation between light (galaxies) and mass in
the Universe. This correlated distribution of galaxies with respect to the un-
derlying (dark) matter in the Universe – often called the bias of galaxies –
can be studied with weak lensing, as we shall describe in Sect. 8.3 by using
the shear signal, and in Sect. 8.4 employing the magnification effect. It should
be pointed out here that our lack of knowledge about the relation between
the spatial distribution of galaxies and that of the underlying (dark) matter
is one of the major problems that hampers the quantitative interpretation of
galaxy redshift surveys; hence, these lensing studies can provide highly valu-
able input into the conclusions drawn from these redshift surveys regarding
the statistical properties of the mass distribution in the Universe.

8.2 Galaxy-galaxy lensing

The average mass profile of galaxies. Probing the mass distribution
of galaxies usually proceeds with dynamical studies of luminous tracers. The
best-known method is the determination of the rotation curves of spiral galax-
ies, measuring the rotational velocity of stars and gas as a function of distance
from the galaxy’s center (see Sofue & Rubin 2001 for a recent review). This
then yields the mass profile of the galaxy, i.e. M(≤ r) ∝ v2

rot(r) r. For ellipti-
cal galaxies, the dynamics of stars (like velocity dispersions and higher-order
moments of their velocity distribution, as a function of r) is analyzed to
obtain their mass profiles; as the kinematics of stars in ellipticals is more
complicated than in spirals, their mass profiles are more difficult to measure
(e.g., Gerhard et al. 2001). In both cases, these dynamical methods provided
unambiguous evidence for the presence of a dark matter halo in which the
luminous galaxy is embedded; e.g., the rotation curves of spirals are flat out
to the most distant point where they can be measured. The lack of stars or
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gas prevents the measurement of the mass profile to radii beyond the lumi-
nous extent of galaxies, that is beyond ∼ 10h−1 kpc. Other luminous tracers
that have been employed to study galaxy masses at larger radii include glob-
ular clusters that are found at large galacto-centric radii (Coté et al. 2003),
planetary nebulae, and satellite galaxies. Determining the relative radial ve-
locity distribution of the latter with respect to their suspected host galaxy
leads to estimates of the dark matter halo out to distances of ∼ 100h−1 kpc.
These studies (e.g., Zaritsky et al. 1997) have shown that the dark matter
halo extends out to at least these distances.

One of the open questions regarding the dark matter profile of galaxies is
the spatial extent of the halos. The dynamical studies mentioned above are all
compatible with the mass profile following approximately an isothermal law
(ρ ∝ r−2), which has to be truncated at a finite radius to yield a finite total
mass. Over the limited range in radii, the isothermal profile cannot easily
be distinguished from an NFW mass profile (see IN, Sect. 6.2), for which
measurements at larger distances are needed (the mass distribution in the
central parts of galaxies is affected by the baryons and thus not expected to
follow the NFW profile; see Sect. 7 of SL).

Weak gravitational lensing provides a possibility to study the mass pro-
files of galaxies at still larger radii. Light bundles from distant background
galaxies provide the ‘dynamical tracers’ that cannot be found physically as-
sociated with the galaxies. Light bundles get distorted in such a way that on
average, images of background sources are oriented tangent to the transverse
direction connecting foreground (lens) and background (source) galaxy. The
first attempt to detect such a galaxy-galaxy lensing signal was reported in
Tyson et al. (1984), but the use of photographic plates and the relatively
poor seeing prevented a detection. Brainerd et al. (1996) presented the first
detection and analysis of galaxy-galaxy lensing. Since then, quite a number
of surveys have measured this effect, some of them using millions of galaxies.

Strategy. Consider pairs of fore- and background galaxies, with separation
in a given angular separation bin. The expected lensing signal is seen as a
statistical tangential alignment of background galaxy images with respect to
foreground galaxies. For example, if φ is the angle between the major axis of
the background galaxy and the connecting line, values π/4 ≤ φ ≤ π/2 should
be slightly more frequent than 0 ≤ φ ≤ π/4 (see Fig. 48). Using the fact that
the intrinsic orientations of background galaxies are distributed isotropically,
one can show (Brainerd et al. 1996) that

p(φ) =
2
π

[
1 − γt

〈
1
|εs|

〉
cos(2φ)

]
, (133)

where φ ∈ [0, π/2] and γt is the mean tangential shear in the angular bin
chosen. Thus, the amplitude of the cos-wave yields the (average) strength of
the shear.



Weak Gravitational Lensing 137

0 .2 .4 .6 .8 1 1.2 1.4 1.6

.55

.6

.65

.7

.75

.8

(a) 23 < rs < 24
P

(
)

Fig. 48. The probability distri-
bution p(φ) of the angle φ be-
tween the major axis of the back-
ground galaxy image and the con-
necting line to the foreground
galaxy is plotted for the sam-
ple of Brainerd et al. (1996), to-
gether with the best fit accord-
ing to (133). The galaxy pairs
have separation 5′′ ≤ ∆θ ≤ 34′′,
and are foreground-background
selected by their apparent mag-
nitudes.

The mean tangential ellipticity 〈εt(θ)〉 of background galaxies relative
to the direction towards foreground galaxies measures the mean tangential
shear at separation θ. Since the signal is averaged over many foreground–
background pairs, it measures the average mass profiles of the foreground
galaxies. For sufficiently large samples of galaxies, the lens sample can be
split into several subsamples, e.g., according to their color and/or morphology
(early-type vs. late-type galaxies), or, if redshift estimates are available, they
can be binned according to their luminosity. Then, the mass properties can
be derived for each of the subsamples.

The distinction between foreground and background galaxies is ideally
performed using redshift information. This is indeed the case for the galaxy-
galaxy lensing studies based on the Sloan Digital Sky Survey, for which early
results have been reported by McKay et al. (2001); all lens galaxies used there
have spectroscopic redshifts, whereas the source galaxies are substantially
fainter than the lens galaxies so that they can be considered as a background
population. For other surveys, the lack of redshift information requires the
separation of galaxies to be based solely on their apparent magnitudes: fainter
galaxies are on average at larger distances than brighter ones. However, the
resulting samples of ‘foreground’ and ‘background’ galaxies will have (often
substantial) overlap in redshift, which needs to be accounted for statistically
in the quantitative analysis of these surveys.

Quantitative analysis. The measurement of the galaxy-galaxy lensing sig-
nal provides the tangential shear as a function of pair separation, γt(θ). With-
out information about the redshifts of individual galaxies, the separation of
galaxies into a ‘foreground’ and ‘background’ population has to be based on
apparent magnitudes only. In the ideal case of a huge number of foreground
galaxies, one could investigate the mass properties of ‘equal’ galaxies, by
finely binning them according to redshift, luminosity, color, morphology etc.
However, in the real world such a fine binning has not yet been possible, and
therefore, to convert the lensing signal into physical parameters of the lens, a
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parameterization of the lens population is needed. We shall outline here how
such an analysis is performed.

The first ingredient is the redshift probability distribution p(z|m) of galax-
ies with apparent magnitude m which is assumed to be known from redshift
surveys (and/or their extrapolation to fainter magnitudes). This probability
density depends on the apparent magnitude m, with a broader distribution
and larger mean redshift expected for fainter m. Since the distribution of
‘foreground’ and ‘background’ galaxies in redshift is known for a given survey,
the probabilities p(z|m) can be employed to calculate the value of Dds/Ds,
averaged over all foreground–background pairs (with this ratio being set to
zero if zs ≤ zd). For given physical parameters of the lenses, the shear signal
is proportional to this mean distance ratio.

The mass profiles of galaxies are parameterized according to their luminos-
ity. For example, a popular parameterization is that of a truncated isothermal
sphere, where the parameters are the line-of-sight velocity dispersion σ (or
the equivalent circular velocity Vc =

√
2σ) and a truncation radius s at which

the ρ ∝ r−2 isothermal density profile turns into a steeper ρ ∝ r−4 law. The
velocity dispersion is certainly dependent on the luminosity, as follows from
the Tully-Fisher and Faber-Jackson relations for late- and early-type galax-
ies, respectively. One therefore assumes the scaling σ = σ∗(L/L∗)β/2, where
L∗ is a fiducial luminosity (and which conveniently can be chosen close to the
characteristic luminosity of the Schechter luminosity function). Furthermore,
the truncation scale s is assumed to follow the scaling s = s∗(L/L∗)η. The
total mass of a galaxy then is M ∝ σ2s, or M = M∗(L/L∗)β+η.

Suppose m and z were given; then, the luminosity of galaxy would be
known, and for given values of the parameters σ∗, s∗, β and η, the mass
properties of the lens galaxy would be determined. However, since z is not
known, but only its probability distribution, only the probability distribution
of the lens luminosities, and therefore the mass properties, are known. One
could in principle determine the expected shear signal γt(θ) for a given sur-
vey by calculating the shear signal for a given set of redshifts zi for all lens
and source galaxies, and then averaging this signal over the zi using the red-
shift probability distribution p(zi|mi). However, this very-high dimensional
integration cannot be performed; instead, one uses a Monte-Carlo integra-
tion method (Schneider & Rix 1997): Given the positions θi and magnitudes
mi of the galaxies, one can draw for each of them a redshift according to
p(zi|mi), and then calculate the shear at all positions θi corresponding to a
source galaxy, for each set of parameters σ∗, s∗, β and η. This procedure can
be repeated several times, yielding the expected shear 〈γi〉 and its dispersion
σγ,i for each source galaxy’s position. One can then calculate the likelihood
function

L =
Ns∏

i=1

1
π(σ2

ε + σ2
γ,i)

exp

(
−|εi − 〈γi〉 |2

σ2
ε + σ2

γ,i

)
, (134)
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where σε is the intrinsic ellipticity dispersion of the galaxies. L depends on
the parameters of the model, and can be maximized with respect to them,
thereby yielding estimates of σ∗, s∗, β and η.

First detection The galaxy-galaxy lensing effect was first found by Brainerd
et al. (1996), on a single 9.′6×9.′6 field. They considered ‘foreground’ galaxies
in the magnitude range m ∈ [20, 23], and ‘background’ galaxies with m ∈
[23, 24]; this yielded 439 foreground and 506 background galaxies, and 3202
pairs with ∆θ ∈ [5′′, 34′′].12 For these pairs, the distribution of the alignment
angle φ is plotted in Fig. 48. This distribution clearly is incompatible with
the absence of a lens signal (at the 99.9% confidence level), and thus provides
a solid detection.

They analyzed the lens signal γt(θ) in a way similar to the method out-
lined above, except that their Monte-Carlo simulations also randomized the
positions of galaxies. The resulting likelihood yields σ∗ ≈ 160+50

−60 km/s (90%
confidence interval), whereas for s∗ only a lower limit of 25h−1 kpc (1σ) is
obtained; the small field size, in combination with the relative insensitivity
of the lensing signal to s∗ once this value is larger than the mean transverse
separation of lensing galaxies, prohibited the detection of an upper bound on
the halo size.

Galaxy-galaxy lensing from the Red-Sequence Cluster Survey (RCS).
Several groups have published results of their galaxy-galaxy lensing surveys
since its first detection. Here we shall describe the results of a recent wide-field
imaging survey, the RCS; this survey was already described in the context of
cosmic shear in Sect. 7.3. 45.5 square degrees of single-band imaging data were
used (Hoekstra et al. 2004). Choosing lens galaxies with 19.5 ≤ RC ≤ 21, and
source galaxies having 21.5 ≤ RC ≤ 24 yielded ∼ 1.2 × 105 lenses with me-
dian redshift of 0.35 and ∼ 1.5× 106 sources with median redshift of ∼ 0.53,
yielding 〈Dds/Ds〉 = 0.29±0.01 for the full sample of lenses and sources. Fig.
49 shows the shear signal for this survey.

The lens signal is affected by galaxies counted as lenses, but which in
fact are in the foreground. As long as they are not physically associated with
lens galaxies, this effect is accounted for in the analysis, i.e., in the value of
〈Dds/Ds〉. However, if fainter galaxies cluster around lens galaxies, this pro-
duces an additional effect. Provided the orientation of the associated faint
galaxies are random with respect to the separation vector to their bright
neighbor, these physical pairs just yield a dilution of the shear signal. The
amplitude of this effect can be determined from the angular correlation func-
tion of bright and faint galaxies, and easily corrected for. Once this has been
12 The lower angular scale has been chosen to avoid overlapping isophotes of fore-

ground and background galaxies, whereas the upper limit was selected since it
gave the largest signal-to-noise for the deviation of the angular distribution shown
in Fig. 48 from a uniform one.
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Fig. 49. (a) Tangential shear as a
function of angular separation, ob-
tained from the RCS survey; the
shear signal is detected out to nearly
one degree scale. (b) Cross shear
signal, which is expected to vanish
identically in the absence of system-
atic effects on the ellipticity measure-
ments. As can be seen, the cross sig-
nal in indeed compatible with zero.
The inset expands the scale, to bet-
ter show the error bars (from Hoek-
stra et al. 2003)

done, the corrected shear signal within 10′′ ≤ θ ≤ 2′ has been fitted with
an SIS model, yielding a mean velocity dispersion of the lens galaxies of√
〈σ2〉 = 128 ± 4 km/s. If the scaling relations between galaxy luminosity

and velocity dispersion as described above is employed, with β = 0.6, the
result is σ∗ = 140 ± 4 km/s for L∗ = 1010h−2L& in the blue passband.

To interpret the shear results on larger angular scales, the SIS model
no longer suffices, and different mass models need to be employed. Using a
truncated isothermal model, the best-fitting values of the scaling parameters
β = 0.60 ± 0.11 and η = 0.24+0.26

−0.22 are obtained, when marginalizing over all
other parameters. Furthermore, σ∗ = 137 ± 5 km/s, in very close agreement
with the results from small θ and the SIS model; this is expected, since most of
the signal comes from these smaller separations. Most interesting, the analysis
also yields an estimate of the truncation scale of s∗ = (185 ± 30)h−1 kpc,
providing one of only a few estimates of the scale of the dark matter halo.
Hoekstra et al. also performed the analysis in the frame of an NFW mass
model.

These results can then be used to calculate the mass-to-light ratio of
an L∗ galaxy and, using the scaling, of the galaxy population as a whole.
Considering only galaxies with M ≥ 1010h−1M&, the mean mass-to-light
ratio inside the virial radius of galaxy halos is about 100 in solar units.

The shape of dark matter halos. In the mass models considered before,
the mass distribution of galaxies was assumed to be axi-symmetric. In fact,
this assumption is not crucial, since the relation between shear and surface
mass density, γt(ϑ) = κ̄(ϑ) − κ(ϑ) is true for a general mass distribution,
provided γt and κ(ϑ) are interpreted as the mean tangential shear and mean
surface mass density on a circle of radius ϑ, and κ̄(ϑ) as the mean surface
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mass density inside this circle (see eq. 24). However, deviations from axial
symmetry are imprinted on the shear signal and can in principle be mea-
sured. If the mass distribution is ‘elliptical’, the shear along the major axis
(at given distance ϑ) is larger than that along the minor axis, and therefore,
an investigation of the strength of the shear signal relative to the orienta-
tion of the galaxy can reveal a finite ellipticity of the mass distribution. For
that, it is necessary that the orientation of the mass distribution is (at least
approximately) known. Provided the orientation of the mass distribution fol-
lows approximately the orientation of the luminous part of galaxies, one can
analyze the direction dependence of the shear relative to the major axis of the
light distribution (Natarajan & Refregier 2000). Hoekstra et al. (2002b) have
used the RCS to search for such a direction dependence; they parameterized
the lenses with a truncated isothermal profile with ellipticity εmass = fεlight,
where f is a free parameter. The result f = 0.77± 0.2 indicates first that the
mass distribution of galaxies is not round (which would be the case for f = 0,
which is incompatible with the data), and second, that the mass distribution
is rounder than that of the light distribution, since f < 1. However, it must
be kept in mind that the assumption of equal orientation between light and
mass is crucial for the interpretation of f ; misalignment causes a decrease of
f . Note that numerical simulations of galaxy evolution predict such a mis-
alignment between total mass and baryons, with an rms deviation of around
20◦ (van den Bosch et al. 2002). Given the above result on f , it is therefore
not excluded that the flattening of halos is very similar to that of the light.
Also note that this result yields a value averaged over all galaxies; since the
lens efficiency of elliptical galaxies (at given luminosity) is larger than that
of spirals, the value of f is dominated by the contributions from early-type
galaxies.

Results from the Sloan Survey. The Sloan Digital Sky Survey (e.g., York
et al. 2000) will map a quarter of the sky in five photometric bands, and
obtain spectra of about one million galaxies. A large fraction of the data has
already been taken by SDSS, and parts of this data have already been released
(Abazajian et al. 2004). The huge amount of photometric data in principle
is ideal for weak lensing studies, as it beats down statistical uncertainties to
an unprecedented low level. However, the site of the telescope, the relatively
large pixel size of 0.′′4, the relatively shallow exposures of about one minute
and the drift-scan mode in which data are taken (yielding excellent flat-
fielding, and thus photometric properties, somewhat at the expense of the
shape of the PSF) render the data less useful for, e.g., cosmic shear studies:
the small mean redshift of the galaxies yields a very small expectation value
of the cosmic shear, which can easily be mimicked by residuals from PSF
corrections. However, galaxy-galaxy lensing is much less sensitive to larger-
scale PSF problems, since the component of the shear used in the analysis
is not attached to pixel directions, but to neighboring galaxies, and thus
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varies rapidly with sky position. Another way of expressing this fact is that
the galaxy-galaxy lensing signal would remain unchanged if a uniform shear
would be added to the data; therefore, SDSS provides an great opportunity
for studying the mass profile of galaxies.

Fischer et al. (2000) reported the first results from the SDSS, and a larger
fraction of the SDSS data was subsequently used in a galaxy-galaxy lensing
study by McKay et al. (2001), where also the spectroscopic redshifts of the
lens galaxies were used. Their sample consists of ∼ 31000 lens galaxies with
measured redshifts, and ∼ 3.6 × 106 source galaxies selected in the bright-
ness range 18 ≤ r ≤ 22. For this magnitude range, the redshift distribution
of galaxies is fairly well known, leaving little calibration uncertainty in the
interpretation of the shear signal. In particular, there is very little overlap in
the redshift distribution of source and lens galaxies. The data set has been
subjected to a large number of tests, to reveal systematics; e.g., null results
are obtained when the source galaxies are rotated by 45◦ (or, equivalently,
if γ× is used instead of γt), or if the lens galaxies are replaced by an equal
number of randomly distributed points relative to which the tangential shear
component is measured. Since the redshifts of the lens galaxies are known,
the shear can be measured directly in physical units, so one can determine

∆Σ+ = Σ̄(≤ R) −Σ(R) (135)

in M&/pc2 as a function of R in kpc.
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Fig. 50. The galaxy-galaxy lensing sig-
nal from the SDSS plotted against phys-
ical radius R. The lens sample has
been subdivided into early- and late-type
galaxies (upper panel), and in galax-
ies situated in dense environments vs.
those with a smaller neighboring galaxy
density (lower panel). The figure clearly
shows that the lensing signal is domi-
nated by elliptical galaxies, and by those
located in dense environment. Owing
to the morphology-density relation of
galaxies, these two results are not mutu-
ally independent. Note that the lensing
signal can be measured out to 1h−1 Mpc,
considerably larger than the expected
size of galaxy halos; therefore, the shear
at these large separations is most likely
caused by the larger-scale mass distribu-
tion in which the galaxies are embedded
(from McKay et al. 2001)
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Fig. 50 shows the lensing result from McKay et al. (2001), where the
lens sample has been split according to the type of galaxy (early vs. late
type) and according to the local spatial number density of galaxies, which is
known owing to the spectroscopic redshifts. The fact that most of the signal
on small scales is due to ellipticals is expected, as they are more massive at
given luminosity than spirals. The large spatial extent of the shear signal for
ellipticals relative to that of spirals can be interpreted either by ellipticals
having a larger halo than spirals, or that ellipticals are preferentially found
in high-density environments, which contribute to the lens signal on large
scales. This latter interpretation is supported by the lower panel in Fig. 50
which shows that the signal on large scales is entirely due to lens galaxies in
dense environments. This then implies that the galaxy-galaxy lensing signal
on large scales no longer measures the density profile of individual galaxies,
but gets more and more dominated by group and cluster halos in which these
(predominantly early-type) galaxies are embedded.

A separation of these contributions from the data themselves is not possi-
ble at present, but can be achieved in the frame of a theoretical model. Guzik
& Seljak (2001) employed the halo model for the distribution of matter in
the universe (see Cooray & Sheth 2002) to perform this separation. There,
the galaxy-galaxy lensing signal either comes from matter in the same halo
in which the galaxy is embedded, or due to other halos which are physi-
cally associated (i.e., clustered) with the former. This latter contribution is
negligible on the scales below ∼ 1h−1 Mpc on which the SDSS obtained a
measurement. The former contribution can be split further into two terms:
the first is from the dark matter around the galaxies themselves, whereas the
second is due to the matter in groups and clusters to which the galaxies might
belong. The relative amplitude of these two terms depends on the fraction of
galaxies which are located in groups and clusters; the larger this fraction, the
more important are larger-scale halos for the shear signal. Guzik & Seljak
estimate from the radial dependence of the SDSS signal that about 20% of
galaxies reside in groups and clusters; on scales larger than about 200h−1 kpc
their contribution dominates. The virial mass of an early-type L∗ galaxy is
estimated to be M200(L∗) = (9.3 ± 2.2) × 1011h−1M&, and about a factor
of three smaller for late-type galaxies (with luminosity measured in a red
passband; the differences are substantially larger for bluer passbands, owing
to the sensitivity of the luminosity to star formation activity in late types).
From the mass-to-light ratio in red passbands, Guzik & Seljak estimate that
an L∗ galaxy converts about 10–15% of its virial mass into stars. Since this
fraction is close to the baryon fraction in the universe, they conclude that
most of the baryons of an L∗ galaxy are transformed into stars. For more
massive halos, the mass-to-light ratio increases (M/L ∝ L0.4±0.2), and there-
fore their conversion of baryons into stars is smaller – in agreement with what
we argued about clusters, where most of the baryons are present in the form
of a hot intracluster gas.
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Yang et al. (2003) studied the cross-correlation between mass and galaxies
using numerical simulations of structure formation and semi-analytic models
of galaxy evolution. The observed dependence of the galaxy-galaxy lensing
signal on galaxy luminosity, morphological type and galaxy environment, as
obtained by McKay et al. (2001), is well reproduced in these simulations. The
galaxy-mass correlation is affected by satellite galaxies, i.e. galaxies not situ-
ated at the center of their respective halo. Central galaxies can be selected by
restricting the foreground galaxy sample to relatively isolated galaxies. The
galaxy-galaxy lensing signal for such central galaxies can well be described
by an NFW mass profile, whereas this no longer is true if all galaxies are con-
sidered. Combining the measurement with the simulation, they find that an
L∗-galaxy typically resides in a halo with a virial mass of ∼ 2× 1012h−1M&.

With the SDSS progressing, larger datasets become available, allowing a
more refined analysis of galaxy-galaxy lensing (Sheldon et al. 2004; Seljak et
al. 2004). In the analysis of Seljak et al. (2004), more than 2.7× 105 galaxies
with spectroscopic redshifts have been used as foreground galaxies, and as
background population those fainter galaxies for which photometric redshifts
have been estimated. The resulting signal is shown in Fig. 51, for six different
bins in (foreground) galaxy luminosity.

In a further test to constrain systematic effects in the data, Hirata et
al. (2004) have used spectroscopic and photometric redshifts to study the
question whether an alignment of satellite galaxies around the lens galaxies
can affect the galaxy-galaxy lensing signal from the SDSS; they obtain an
upper limit of a 15% contamination.

The SDSS already has yielded important information about the mass
properties of galaxies; taken into account that only a part of the data of the
complete survey have been used in the studies mentioned above, an analysis
of the final survey will yield rich harvest when applied to a galaxy-galaxy
lensing analysis.

Lensing by galaxies in clusters. As an extension of the method presented
hitherto, one might use galaxy-galaxy lensing also to specifically target the
mass profile of galaxies in the inner part of clusters. One might expect that
owing to tidal stripping, their dark matter halo has a considerably smaller
spatial extent than that of the galaxy population as a whole. The study of
this effect with lensing is more complicated than galaxy-galaxy lensing in
the field, both observationally and from theory. Observationally, the data
sets that can be used need to be taken in the inner part of massive clusters;
since these are rare, a single wide-field image usually contains at most one
such cluster. Furthermore, the number of massive galaxies projected near the
center of a cluster is fairly small. Therefore, in order to obtain good statistics,
the data of different clusters should be combined. Since the cores of clusters
are optically bright, measuring the shape of faint background galaxies is more
difficult than in a blank field. From the theoretical side, the lensing strength
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Fig. 51. The galaxy-galaxy lensing signal for six luminosity bins of foreground
galaxies, as indicated by the absolute magnitude interval in each panel. The curves
show a two-parameter model fitted to the data, based on the halo model, and the fit
parameters are indicated: M is the virial mass of the halo (in units of 1011h−1M&)
in which the galaxies reside, and α is the fraction of the galaxies which are not
central inside the halo, but satellite galaxies (from Seljak et al. 2004)

of the cluster is much stronger than that of the individual cluster galaxies,
and so this large-scale shear contribution needs to be accounted for in the
galaxy-galaxy lensing analysis.

Methods for performing this separation between cluster and galaxy shear
were developed by Natarajan & Kneib (1997) and Geiger & Schneider (1998).
Perhaps the simplest approach is provided by the aperture mass methods,
applied to the individual cluster galaxies; there one measures the tangential
shear inside an annulus around each cluster galaxy. This measure is insen-
sitive to the shear contribution which is linear in the angular variable θ,
which is a first local approximation to the larger-scale shear caused by the
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cluster. Alternatively, a mass model of the (smoothed) cluster can be ob-
tained, either from strong or weak lensing constraints, or preferentially both,
and subtracted from the shear signal around galaxies to see their signal.
However, once the mass fraction in the galaxies becomes considerable, this
method starts to become biased. Geiger & Schneider (1999) have suggested
to simultaneously perform a weak lensing mass reconstruction of the cluster
and a determination of the parameters of a conveniently parameterized mass
model of cluster galaxies (e.g., the truncated isothermal sphere); since the
maximum likelihood method for the mass reconstruction (see Sect. 5.3) was
used, the solution results from maximizing the likelihood with respect to the
mass profile parameters (the deflection potential on a grid) and the galaxy
mass parameters.

Fig. 52. Significance contours (solid) for galaxy properties obtained from galaxy-
galaxy lensing of galaxies in the cluster Cl 0939+4713. The parameters are the
velocity dispersion σ∗ and the halo truncation radius s∗ of an L∗-galaxy. Based on
HST data (see Fig. 22), a simultaneous reconstruction of the cluster mass profile
and the determination of the galaxy mass parameters was performed. No significant
lensing signal is seen from the 55 late-type galaxies (lower panel), but a clear de-
tection and upper bound to the halo size is detected for the 56 early-types. Dashed
and dotted curves connect models with the same mass inside 8h−1 kpc and total
mass of an L∗-galaxy, respectively (from Geiger & Schneier 1999)

Natarajan et al. (1998), by analyzing HST data of the cluster AC114,
concluded that the truncation radius of a fiducial L∗ galaxy in this cluster is ∼
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15h−1 kpc; similarly, Geiger & Schneider (1999) showed that the best-fitting
truncation radius for early-type galaxies in the cluster A851 is ∼ 10h−1 kpc
(see Fig. 52). Although the uncertainties are fairly large, these results indicate
that indeed galaxies near cluster centers have a halo size considerably smaller
than the average galaxy. The sample of clusters which can be investigated
using this method will dramatically increase once the cluster sample observed
with the new ACS camera onboard HST becomes available and gets properly
analyzed.

8.3 Galaxy biasing: shear method

On small scales, galaxy-galaxy lensing measures the mass profile of galaxies,
whereas on intermediate scales the environment of galaxies starts to dominate
the shear signal. On even larger scale (say, beyond ∼ 1h−1 Mpc), the host halo
contribution becomes negligible. Beyond that distance, any signal must come
from the correlation of galaxy positions with the mass distribution in the
Universe. This correlation, and the related issue of galaxy biasing (see Sect.
6.1 of IN), can ideally be studied with weak lensing. In this section we shall
outline how these quantities can be determined from shear measurements, and
describe some recent results. As we shall see, this issue is intimately related
to galaxy-galaxy lensing. The next section deals with the magnification of
distant sources caused by mass overdensities correlated with galaxies and
thereby causing an apparent correlation between high-redshift sources and
low-redshift galaxies; the amplitude of this signal is again proportional to the
correlation between galaxies and the underlying dark matter.

An interesting illustration of the correlation between galaxies and mass
has been derived by Wilson et al. (2001). They studied 6 fields with 30′ ×
30′ each, selected bright early-type galaxies from their V − I colors and I
magnitudes and measured the shear from faint galaxies. Assuming that mass
is strongly correlated with early-type galaxies, these can be used to predict
the shear field, with an overall normalization given by the mean mass-to-light
ratio of the early-type galaxies. This correlation has indeed been found, at
the 5.2-σ significance level, and a value of M/L ≈ 300h in solar units has
been obtained, assuming a flat low-density Universe.

The galaxy-mass correlation and the bias parameter. First, the con-
cept of the correlation between galaxies and mass shall be described more
quantitatively. The mass density inhomogeneities are described, as before,
by the dimensionless density contrast δ(x, w). In analogy to this quantity,
one defines the number density contrast δg(x, w) of galaxies as

δg(x, w) :=
n(x, w) − n̄(w)

n̄(w)
, (136)

where n(x, w) is the number density of galaxies at comoving position x and
comoving distance w (the latter providing a parameterization of cosmic time
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or redshift), and n̄(w) is the mean number density of galaxies at that epoch.
Since the galaxy distribution is discrete, the true number density is simply a
sum of delta-functions. What is meant by n is that the probability of finding
a galaxy in the volume dV situated at position x is n(x) dV .

The relation between δ and δg describes the relative distribution of galax-
ies and matter in the Universe. The simplest case is that of an unbiased
distribution, for which δg = δ; then, the probability of finding a galaxy at
any location would be just proportional to the matter density. However, one
might expect that the relation between luminous and dark matter is more
complicated. For example, galaxies are expected to form preferentially in the
high-density peaks in the early Universe, which would imply that there are
proportionally more galaxies within mass overdensities. This led to the intro-
duction of the concept of biasing (e.g., Bardeen et al. 1986; Kaiser 1984). The
simplest form of biasing, called linear deterministic biasing, is provided by
setting δg = b δ, with b being the bias parameter. One might suspect that the
relative bias is approximately constant on large scales, where the density field
is still in its linear evolution (i.e., on scales >∼ 10h−1 Mpc today). On smaller
scales, however, b most likely is no longer simply a constant. For example,
the spatial distribution of galaxies in clusters seems to deviate from the ra-
dial mass profile, and the distributions of different galaxy types are different.
Furthermore, by comparing the clustering properties of galaxies of different
types, one can determine their relative bias, from which it is concluded that
more luminous galaxies are more strongly biased than less luminous ones, and
early-type galaxies are more strongly clustered than late-types (see Norberg
et al. 2001 and Zehavi et al. 2002 for recent results from the 2dFGRS and the
SDSS). This is also expected from theoretical models and numerical simula-
tions which show that more massive halos cluster more strongly (e.g., Sheth
et al. 2001; Jing 1998). In order to account for a possible scale dependence of
the bias, one considers the Fourier transforms of δ and δg and relates them
according to

δ̂g(k, w) = b(|k|, w) δ̂(k, w) , (137)

thus accounting for a possible scale and redshift dependence of the bias.
Even this more general bias description is most likely too simple, as it is

still deterministic. Owing to the complexity of galaxy formation and evolu-
tion, it is to be expected that the galaxy distribution is subject to stochastic-
ity in excess to Poisson sampling (Tegmark & Peebles 1998; Dekel & Lahav
1999). To account for that, another parameter is introduced, the correlation
parameter r(|k|, w), which in general will also depend on scale and cosmic
epoch. To define it, we first consider the correlator

〈
δ̂(k, w) δ̂∗g(k′, w)

〉
= (2π)3 δD(k − k′)Pδg(|k|, w) , (138)

where the occurrence of the delta function is due to the statistical homogene-
ity of the density fields, and Pδg denotes the cross-power between galaxies
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and matter. The correlation parameter r is then defined as

r(|k|, w) =
Pδg(|k|, w)√

Pδ(|k|, w)Pg(|k|, w)
. (139)

In the case of stochastic biasing, the definition of the bias parameter is mod-
ified to

Pg(|k|, w) = b2(|k|, w)Pδ(|k|, w) , (140)

which agrees with the definition (137) in the case of r ≡ 1, but is more general
since (140) no longer relates the phase of (the Fourier transform of) δg to that
of δ. Combining the last two equations yields

Pδg(|k|, w) = b(|k|, w) r(|k|, w)Pδ(|k|, w) . (141)

We point out again that galaxy redshift surveys are used to determine the
two-point statistics of the galaxy distribution, and therefore Pg; in order to
relate there measurements to Pδ, assumptions on the properties of the bias
have to be made. As we shall discuss next, weak lensing can determine both
the bias parameter and the correlation parameter.

The principle. In order to determine b and r, the three power spectra
defined above (or functions thereof) need to be measured. Second-order cos-
mic shear measures, as discussed in Sect. 6, are proportional to the power
spectrum Pδ. The correlation function of galaxies is linearly related to Pg.
In particular, the three-dimensional correlation function is just the Fourier
transform of Pg, whereas the angular correlation function contains a projec-
tion of Pg along the line-of-sight and thus follows from Limber’s equation as
discussed in Sect. 6.2. Finally, the cross-power Pδg describes the correlation
between mass and light, and thus determines the relation between the lens-
ing properties of the mass distribution in the Universe to the location of the
galaxies. Galaxy-galaxy lensing on large angular scales (where the mass pro-
file of individual galaxies no longer yields a significant contribution) provides
one of the measures for such a correlation. Hence, measurements of these
three statistical distributions allow a determination of r and b.

As we shall consider projected densities, we relate the density field of
galaxies on the sky to the spatial distribution. Hence, consider a population of
(‘foreground’) galaxies with spatial number density n(x, w). The number den-
sity of these galaxies on the sky at θ is then N(θ) =

∫
dw ν(w)n(fk(w)θ, w),

where ν(w) is the redshift-dependent selection function, describing which
fraction of the galaxies at comoving distance w are included in the sample.
Foremost, this accounts for the fact that for large distances, only the more
luminous galaxies will be in the observed galaxy sample, but ν can account
also for more subtle effects, such as spectral features entering or leaving the
photometric bands due to redshifting. The mean number density of galax-
ies on the sky is N̄ =

∫
dw ν(w) n̄(w); the redshift distribution, or more
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precisely, the distribution in comoving distance, of these galaxies therefore
is pf(w) = ν(w) n̄(w)/N̄ , thus relating the selection function ν(w) to the
redshift distribution. Using the definition (136), one then finds that

N(θ) = N̄

[
1 +
∫

dw pf(w) δg(fK(w)θ, w)
]

. (142)

We shall denote the fractional number density by κg(θ) :=
[
N(θ) − N̄

]
/N̄ =∫

dw pf(w) δg(fK(w)θ, w).

Aperture measures. We have seen in Sect. 6.3 that the aperture mass
dispersion provides a very convenient measure of second-order cosmic shear
statistics. Therefore, it is tempting to use aperture measures also for the
determination of the bias and the mass-galaxy correlation. Define in analogy
to the definition of the aperture mass Map in terms of the projected mass
density the aperture counts (Schneider 1998),

N (θ) =
∫

d2ϑ U(|ϑ|)κg(ϑ) , (143)

where the integral extends over the aperture of angular radius θ, and ϑ mea-
sures the position relative to the center of the aperture. An unbiased estimate
of the aperture counts is N̄−1

∑
i U(|θi|), where the θi are the positions of

the galaxies. We now consider the dispersion of the aperture counts,

〈
N 2(θ)
〉

=
∫

d2ϑ U(|ϑ|)
∫

d2ϑ′ U(|ϑ′|)
〈
κg(ϑ)κg(ϑ′)

〉
. (144)

The correlator in the last expression is the angular two-point correlation
function ω(∆ϑ) of the galaxies; its Fourier transform is the angular power
spectrum Pω(3) of galaxies. Using the definition of κg together with the result
(98) allows us to express Pω in terms of the three-dimensional power spectrum
of the galaxy distribution,

Pω(3) =
∫

dw
p2
f (w)

f2
K(w)

b2

(
3

fK(w)
, w

)
Pδ

(
3

fK(w)
, w

)

= b̄2

∫
dw

p2
f (w)

f2
K(w)

Pδ

(
3

fK(w)
, w

)
, (145)

where we made use of (140), and in the final step we defined the mean bias
parameter b̄ which is a weighted average of the bias parameter over the red-
shift distribution of the galaxies and which depends on the angular wave
number 3. To simplify notation, we shall drop the bar on b and consider the
bias factor as being conveniently averaged over redshift (and later, also over
spatial scale). The aperture count dispersion then becomes

〈
N 2(θ)
〉

=
1
2π

∫
d3 3 Pω(3)Wap(θ3) = 2π b2 Hgg(θ) , (146)
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where Wap is given in (109), and we have defined

Hgg(θ) =
∫

dw
p2
f (w)

f2
K(w)

P(w, θ) , (147)

with
P(w, θ) =

1
(2π)2

∫
d3 3 Pδ

(
3

fK(w)
, w

)
Wap(θ3) . (148)

Using the same notation (following Hoekstra et al. 2002c), we can write the
aperture mass dispersion as

〈
M2

ap(θ)
〉

=
9π
2

(
H0

c

)4

Ω2
m Hκ(θ) , (149)

with
Hκ(θ) =

∫
dw

g2(w)
a2(w)

P(w, θ) , (150)

where g(w) (see eq. 94) describes the source-redshift weighted efficiency factor
of a lens at distance w. One therefore obtains an expression for the bias factor,

b2 =
9
4

(
H0

c

)4 Hκ(θ)
Hgg(θ)

Ω2
m

〈
N 2(θ)
〉

〈
M2

ap(θ)
〉 = fb(θ)Ω2

m

〈
N 2(θ)
〉

〈
M2

ap(θ)
〉 . (151)

Note that fb(θ) depends, besides the aperture radius θ, on the cosmological
parameters Ωm and ΩΛ, but for a given cosmological model, it depends only
weakly on the filter scale θ and on the adopted power spectrum Pδ (van Waer-
beke 1998; Hoekstra et al. 2002c). This is due to the fact that both,

〈
N 2(θ)
〉

and
〈
M2

ap(θ)
〉

are linear in the power spectrum, through the functions H , and
in both cases they probe only a very narrow range of k-values, owing to the
narrow width of the filter function Wap. Hence, the ratio

〈
N 2(θ)
〉
/
〈
M2

ap(θ)
〉

is expected to be very close to a constant if the bias factor b is scale indepen-
dent.

Next we consider the correlation coefficient r between the dark matter
distribution and the galaxy field. Correlating Map(θ) with N (θ) yields

〈Map(θ)N (θ)〉 =
∫

d2ϑ U(|ϑ|)
∫

d2ϑ′ U(|ϑ′|)
〈
κ(ϑ)κg(ϑ′)

〉

= 3π
(

H0

c

)2

Ωm b r Hκg(θ) , (152)

with
Hκg(θ) =

∫
dw

pf(w) g(w)
a(w) fK(w)

P(w, θ) . (153)

It should be noted that 〈Map(θ)N (θ)〉 is a first-order statistics in the cos-
mic shear. It correlates the shear signal with the location of galaxies, which
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are assumed to trace the total matter distribution. As shown in Schneider
(1998), the signal-to-noise of this correlator is higher than that of

〈
M2

ap

〉
, and

therefore was introduced as a convenient statistics for the detection of cosmic
shear. In fact, in their original analysis of the RCS, based on 16 deg2, Hoek-
stra et al. (2001) obtained a significant signal for 〈Map(θ)N (θ)〉, but not for〈
M2

ap(θ)
〉
. Combining (146) and (149) with (152), the correlation coefficient

r can be expressed as

r =
√

Hκ(θ)Hgg(θ)
Hκg(θ)

〈Map(θ)N (θ)〉√〈
M2

ap(θ)
〉
〈N 2(θ)〉

= fr(θ)
〈Map(θ)N (θ)〉√〈
M2

ap(θ)
〉
〈N 2(θ)〉

.

(154)
As was the case for fb, the function fr depends only very weakly on the filter
scale and on the adopted form of the power spectrum, so that a variation
of the (observable) final ratio with angular scale would indicate the scale
dependence of the correlation coefficient.

Whereas the two aperture measures Map and N can in principle be ob-
tained from the data field by putting down circular apertures, and the corre-
sponding second-order statistics can likewise be determined through unbiased
estimators defined on these apertures, this is not the method of choice in prac-
tice, due to gaps and holes in the data field. Note that in our discussion of
cosmic shear in Sect. 6.3, we have expressed

〈
M2

ap(θ)
〉

in terms of the shear
two-point correlation functions ξ±(θ) – see (115) – just for this reason. In
close analogy, N 2(θ) can be expressed in terms of the angular correlation
function ω(θ) of the projected galaxy positions, as seen by (144), or more
explicitly, when replacing the power spectrum Pω(3) in (146) by its Fourier
transform, which is the angular correlation function, one finds

〈
N 2(θ)
〉

=
∫ 2θ

0

dϑ ϑ

θ2
ω(ϑ)T+

(
ϑ

θ

)
, (155)

where the function T+ is the same as that occurring in (115). Correspondingly,
we introduce the power spectrum Pgκ(3), which is defined as

〈
κ̂($)κ̂∗

g($
′)
〉

= (2π)2δD($ − $′)Pκg(|$|) . (156)

Applying (98), as well as the definitions of the bias and correlation functions,
this projected cross-power spectrum is related to the 3-D density contrast by

Pκg(3) =
3
2

(
H0

c

)2

Ωmbr

∫
dw

g(w)pf(w)
a(w)fK (w)

Pδ

(
3

fK(w)
, w

)
. (157)

The angular correlation function
〈
κ(ϑ)κ(ϑ′)

〉
occurring in (152) can then be

replaced by its Fourier transform Pκg. On the other hand, since the Fourier
transform of the surface mass density κ is simply related to that of the shear,
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one can consider the correlation between the galaxy positions with the tan-
gential shear component,

〈γt(θ)〉 := 〈κg(0)γt(θ)〉

= −
∫

d23

(2π)2

∫
d23′

(2π)2
e2i(β′−ϕ) exp

(
−iθ · $′

) 〈
κ̂g($)κ̂($′)

〉

=
1
2π

∫
d3 3 J2(θ3)Pκg(3) (158)

⇒ Pκg(3) = 2π
∫

dθ θ 〈γt(θ)〉 J2(θ3) .

Note that 〈γt(θ)〉 is just the galaxy-galaxy lensing signal discussed in Sect. 8.2;
this shows very clearly that galaxy-galaxy lensing measures the correlation
of mass and light in the Universe. In terms of this mean tangential shear, the
aperture mass and galaxy number counts can be written as

〈Map(θ)N (θ)〉 =
∫ 2θ

0

dϑ ϑ

θ2
〈γt(ϑ)〉 T2

(
ϑ

θ

)
, (159)

where the function T2 is defined in a way similar to T± and given explicitly
as

T2(x) = 576
∫ ∞

0

dt

t3
J2(xt) [J4(t)]

2 ; (160)

this function vanishes for x > 2, so that the integral in (159) extends over
a finite interval only. Hence, all three aperture correlators can be calculated
from two-point correlation functions which can be determined from the data
directly, independent of possible gaps in the field geometry.

Results from the RCS. Hoekstra et al. (2002c) have applied the foregoing
equations to a combination of their RCS survey and the VIRMOS-DESCART
survey. The former was used to determine

〈
N 2
〉

and 〈MapN〉, the latter for
deriving

〈
M2

ap

〉
. As pointed out by these authors, this combination of surveys

is very useful, in that the power spectrum at a redshift around z ∼ 0.35 can be
probed; indeed, they demonstrate that the effective redshift distribution over
which the power spectrum, and thus b and r are probed, are well matched
for all three statistics for their choice of surveys. ‘Foreground’ galaxies for
the measurement of ω(θ) and 〈γt(θ)〉 are chosen to have 19.5 ≤ RC ≤ 21,
‘background’ galaxies are those with 21.5 ≤ RC ≤ 24. In Fig. 53 the three
aperture statistics are shown as a function of angular scale, as determined
from their combined survey, whereas in the right panels, the ratios of these
statistics as they appear in (151) and (154) are displayed. Also shown are
predictions of these quantities from two cosmological models, assuming b = 1
and r = 1. The fact that these model predictions are fairly constant in the
right-hand panels shows that the factors fb and fr are nearly independent of
the radius θ of the aperture, as mentioned before.
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Fig. 53. The left figure displays the three aperture statistics as measured by com-
bining the RCS and the VIRMOS-DESCART survey. Points show measured values,
as determined from the correlation functions. The right panels display the ratios of
the aperture statistics as they appear in (151) and (154). The dotted and dashed
curves in all panels show the predictions for an OCDM and a ΛCDM model, re-
spectively, both with Ωm = 0.3, σ8 = 0.9, and Γspect = 0.21, for the fiducial values
of b = 1 = r. The fact that the curves in the right panels are nearly constant show
the near-independence of fb and fr on the filter scale. The upper axis in the right
panels show the effective physical scale on which the values of b and r are measured
(from Hoekstra et al. 2002c)

Fig. 54. The values of the bias
and correlation coefficient, as de-
termined from (151) and (154)
and the results shown in Fig. 53;
here, a ΛCDM model has been as-
sumed for the cosmology depen-
dence of the functions fb and fr.
The upper axis indicates the ef-
fective scale on which b and r are
measured (from Hoekstra et al.
2002c)
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The results for the bias and correlation factor are shown in Fig. 54, as
a function of angular scale and effective physical scale, corresponding to a
median redshift of z ∼ 0.35. The results indicate that the bias factor and the
galaxy-mass correlation coefficient are compatible with a constant value on
large scales, >∼ 5h−1 Mpc, but on smaller scales both seem to change with
scale. The transition between these two regimes occurs at about the scale
where the density field at redshift z ∼ 0.35 turns from linear to non-linear
evolution. In fact, in the non-linear regime one does not expect a constant
value of both coefficients, whereas in the linear regime, constant values for
them appear natural. It is evident from the figure that the error bars are
still too large to draw definite conclusions about the behavior of b and r as a
function of scale, but the approach to investigate the relation between galaxies
and mass is extremely promising and will certainly yield very useful insight
when applied to the next generation of cosmic shear surveys. In particular,
with larger surveys than currently available, different cuts in the definition
of foreground and background galaxies can be used, and thus the redshift
dependence of b and r can be investigated. This is of course optimized if
(photometric) redshift estimates for the galaxy sample become available.

Results from the SDSS. The large sample of galaxies with spectroscopic
redshifts already available now from the SDSS permits an accurate study
of the biasing properties of these galaxies (see the end of Sect. 8.2). Two
different approaches should be mentioned here: the first follows along the line
discussed above and has been published in Sheldon et al. (2004). In short, the
galaxy-galaxy signal can be translated into the galaxy-mass cross-correlation
function ξgm, due to the knowledge of galaxy redshifts. The ratio of ξgm and
the galaxy two-point correlation function ξgg then depends on the ratio r/b.
In Fig. 55 we show the galaxy-mass correlation as a function of linear scale, as
well as the ratio b/r. Note that from the SDSS no cosmic shear measurement
has been obtained yet, owing to the complex PSF properties, and therefore
b and r cannot be measured separately from this data set.

The galaxy-mass correlation function follows a power law over more than
two orders-of-magnitude in physical scale, and its slope is very similar to the
slope of the galaxy two-point correlation function. Hence, the ratio between
these two is nearly scale-independent. When splitting the sample into blue
and red, and early- and late-type galaxies, the correlation length is larger for
the red and the early-type ones. Furthermore, as expected, the lensing signal
increases with the velocity dispersion in early-type galaxies.

An alternative approach was taken by Seljak et al. (2004). Their starting
point is the fact that the biasing properties of dark matter halos is very well
determined from cosmological simulations. This is of course not true for the
biasing of galaxies. The bias parameter of galaxies with luminosity L is given
as

b(L) =
∫

dM p(M |L) bh(M) , (161)
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Fig. 55. The galaxy-mass cross-
correlation function ξgm(r), as a
function of linear scale (dots with er-
ror bars), scaled to a matter den-
sity parameter of Ωm = 0.27, as well
as the two-point galaxy correlation
function obtained from the same set
of (foreground) galaxies (solid curve).
The ratio between these two is given
in the lower panel, which plots b/r
as a function of scale. Over the full
range of scales, ξgm can be well ap-
proximated by a power law, ξgm =
(r/r0)

−γ , with slope γ = 1.79 ± 0.06
and correlation length r0 = (5.4 ±
0.7)(Ωm/0.27)−1/γh−1 Mpc. The ra-
tio r/b ≈ (1.3±0.2)(Ωm/0.27) is con-
sistent with being scale-independent

where bh is the bias of halos of mass M relative to the large-scale matter
distribution, and p(M |L) is the probability that a galaxy with luminosity
L resides in a halo of mass M . This latter probability distribution is then
parameterized for any luminosity bin, by assuming that a fraction 1 − α of
all galaxies in the luminosity bin considered are at the center of their parent
halos, whereas the remaining fraction α are satellite galaxies. For the central
galaxies, a unique mass M(L) is assigned, whereas for the non-central ones,
a mass distribution is assumed. The values of α and M for six luminosity
bins are shown in the various panels of Fig. 51; they are obtained by fitting
the galaxy-galaxy lensing signal with the model just described. The main
reason why the mass spectrum can be probed is that the numerous low-mass
galaxy halos contribute to the lensing signal only at relatively small scales,
whereas at larger scales the higher-mass halos dominate the signal; hence,
different halo masses appear at different separations in the galaxy-galaxy
lensing signal. In this way, b(L) can be determined, which depends on the non-
linear mass scale M∗ (see Sect. 6.2 of IN). The bias parameter is a relatively
slowly varying function of galaxy luminosity for L <∼ L∗, approaching a value
∼ 0.7 for very low-luminosity galaxies, but quickly rises for L > L∗.

Seljak et al. combined these measurements of the bias parameter with
the clustering properties of the SDSS galaxies and the WMAP results on the
CMB anisotropy, and derived new constraints on σ8 = 0.88±0.06 and the bias
parameter of an L∗-galaxy, b∗ = 0.99±0.07; furthermore, the combination of
these datasets is used to obtain new constraints on the standard cosmological
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parameters. This work has opened up a new way on how to employ the results
from galaxy-galaxy lensing as a cosmological tool.

8.4 Galaxy biasing: magnification method

High-redshift QSOs are observed to be correlated on the sky with lower-
redshift galaxies and clusters. This topic has indeed an interesting history:
The detection of very close associations of high-z QSOs with low-z galaxies
(see Arp 1987, and references therein) has been claimed as evidence against
the cosmological interpretation of the QSO redshifts, as the probabilities of
observing such close pairs of objects which are physically unrelated were
claimed to be vanishingly small. However, these probabilities were obtained
a posteriori, and of course, any specific configuration has a vanishingly small
probability. Since the cosmological interpretation of QSO redshifts is sup-
ported by overwhelming evidence, the vast majority of researchers consider
these associations as a statistical fluke.

A physical possibility to generate the association of background sources
with foreground objects is provided by the magnification bias caused by lens-
ing: the number counts of background sources is changed in regions where a
foreground lens yields magnifications different from unity – see Sect. 5 of IN.
Thus, close to a galaxy where µ > 1, the number counts of bright background
QSOs can be enhanced since the slope of their counts is steeper than unity.
There have been various attempts in the literature to ‘explain’ the observed
QSO-galaxy associations by invoking the magnification bias, either with a
smooth galaxy mass distribution or by including the effects of microlensing;
see SEF for a detailed discussion of this effect. The bottom line, however,
is that the magnification effect is by far not large enough to account for the
small (a posteriori) probabilities of the observed individual close associations.

The topic has be revived, though in a different direction, by the finding
that high-redshift AGNs are statistically associated with low-redshift galax-
ies. Fugmann (1990) provided evidence that radio-selected high-z AGNs from
the 1-Jansky-catalog are correlated with relatively bright (and therefore low-
z) galaxies taken from the Lick catalog, an analysis that later on was repeated
by Bartelmann & Schneider (1993), using a slightly different statistics. Differ-
ent samples of foreground and background populations have been employed in
further studies, including the correlation between 1-Jansky AGN with bright
IRAS galaxies (Bartelmann & Schneider 1994; Bartsch et al. 1997), high-z
QSOs with clusters from the Zwicky catalog of clusters (Rodrigues-Williams
& Hogan 1994; Seitz & Schneider 1995b), 1-Jansky AGNs with red galaxies
from the APM catalog (Beńıtez & Mart́ınez-González 1995; see also Norman
& Impey 2001), to mention just a few. Radio-selected AGN are considered
to be a more reliable probe since their radio flux is unaffected by extinction,
an effect which could cause a bias (if the sky shows patchy extinction, both
galaxies and QSOs would have correlated inhomogeneous distributions on
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the sky) or anti-bias (if extinction is related to the lensing matter) for flux-
limited optical surveys of AGNs, and which therefore needs to be taken into
account in the correlation analysis of optically-selected AGNs. However, most
radio source catalogs are not fully optically identified and lack redshifts, and
using incomplete radio surveys therefore can induce a selection bias (Beńıtez
et al. 2001). These latter authors investigated the correlation between two
completely identified radio catalogs with the COSMOS galaxy catalog, and
found a very significant correlation signal.

The upshot of all these analyses is that there seems to be a positive
correlation between the high-z sources and the low-z objects, on angular
scales between ∼ 1′ and about 1◦. The significances of these correlations are
often not very large, they typically are at the 2–3σ level, essentially limited
by the finite number of high-redshift radio sources with a large flux (the
latter being needed for two reasons: first, only radio surveys with a high
flux threshold, such as the 1-Jansky catalog, have been completely optically
identified and redshifts determined, which is necessary to exclude low-redshift
sources which could be physically associated with the ‘foreground’ galaxy
population, and second, because the counts are steep only for high fluxes,
needed to obtain a high magnification bias.) If this effect is real, it cannot
be explained by lensing caused by individual galaxies; the angular region on
which galaxies produce an appreciable magnification is just a few arcseconds.
However, if galaxies trace the underlying (dark) matter distribution, the latter
can yield magnifications (in the same way as it yields a shear) on larger scales.
Thus, an obvious qualitative interpretation of the observed correlation is
therefore that it is due to magnification of the large-scale matter distribution
in the Universe of which the galaxies are tracers. This view is supported by
the finding (Ménard & Péroux 2003) that there is a significant correlation
of bright QSOs with metal absorption systems in the sense that there are
relatively more bright QSOs with an aborber than without; this effect shows
the expected trend from magnification bias caused by matter distributions
associated with the absorbing material.

We therefore consider a flux-limited sample of AGNs, with distance prob-
ability distribution pQ(w), and a sample of galaxies with distance distribution
pf(w). It will be assumed that the AGN sample has been selected such that
it includes only objects with redshift larger than some threshold zmin, cor-
responding to a minimum comoving distance wmin, which is larger than the
distances of all galaxies in the sample. We define the AGN-galaxy correlation
function as

wQg(θ) =
〈[

Ng(φ) − N̄g

] [
NQ(φ + θ) − N̄Q

]〉

N̄g N̄Q
; (162)

where Ng(φ) and NQ(φ) are the observed number densities of galaxies and
AGNs, respectively. The former is given by (142). The observed number den-
sity of AGN is affected by the magnification bias. Provided the unlensed
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counts can be described (locally) as a power-law in flux, NQ,0(> S) ∝ S−β ,
then from (108) of IN we find that NQ(φ) = NQ,0 µβ−1(φ), where µ(φ) is the
magnification in the direction φ. Then, if the magnifications that are relevant
are small, we can approximate

µ(φ) ≈ 1 + 2κ(φ) = 1 + δµ(φ) , (163)

and the projected surface mass density κ is given by (93) with pw in (94)
replaced by pQ. Assuming that the magnifications do not affect the mean
source counts N̄Q, the cross-correlation becomes

wQg(θ) = 2(β − 1)b̄(θ) r̄(θ)wκg(θ) , (164)

where b̄ and r̄ are the effective bias factor of the galaxies and the mean
galaxy-mass correlation function just as in Sect. 8.3, and wκg is the correlation
between the projected density field κ and the projected number density of
galaxies κg, defined after (142), which is the Fourier transform of Pκg(3)
defined in (141). Hence, a measurement of this correlation, together with a
measurement of the correlation function of galaxies, can constrain the values
of b and r (Dolag & Bartelmann 1997; Ménard & Bartelmann 2002).

The observed correlation between galaxies and background AGN appears
to be significantly larger than can be accounted for by the models presented
above. On scales of a few arcmin, Beńıtez et al. (2001) argued that the ob-
served signal exceeds the theoretical expectations by a factor of a few. This
discrepancy can be attributed to either observational effects, or shortcomings
of the theoretical modelling. Obviously, selection effects can easily produce
spurious correlations, such as patchy dust obscuration or a physical associa-
tion of AGNs with the galaxies. Furthermore, the weak lensing approximation
employed above can break down on small angular scales. Jain et al. (2003,
see also Takada & Hamana 2003) argued that the simple biasing model most
likely breaks down for the small scales where the discrepancy is seen, and
employed the halo model for describing the large-scale distribution of matter
and galaxies to predict the expected correlations. For example, the strength
of the signal depends sensitively on the redshifts, magnitudes and galaxy
type.

At present, the shear method to determine the bias factor and the galaxy-
mass correlation has yielded more significant results than the magnification
method, owing to the small complete and homogeneous samples of high-
redshift AGNs. As pointed out by Ménard & Bartelmann (2002), the SDSS
may well change this situation shortly, as this survey will obtain ∼ 105 ho-
mogeneously selected spectroscopically verified AGNs. Provided the effects
of extinction can be controlled sufficiently well, this data should provide a
precision measurement of the QSO-galaxy correlation function.
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9 Additional issues in cosmic shear

9.1 Higher-order statistics

On the level of second-order statistics, ‘only’ the power spectrum is probed.
If the density field was Gaussian, then the power spectrum would fully char-
acterize it; however, in the course of non-linear structure evolution, non-
Gaussian features of the density field are generated, which show up corre-
spondingly in the cosmic shear field and which can be probed by higher-order
shear statistics. The usefulness of these higher-order measures for cosmic
shear has been pointed out in Bernardeau et al. (1997), Jain & Seljak (1997),
Schneider et al. (1998a) and van Waerbeke et al. (1999); in particular, the
near-degeneracy between σ8 and Ωm as found from using second-order statis-
tics can be broken. However, there are serious problems with higher-order
shear statistics, that shall be illustrated below in terms of the third-order
statistics.

But first, we can give a simple argument why third-order statistics is able
to break the degeneracy between Ωm and σ8. Consider a density field on a
scale where the inhomogeneities are just weakly non-linear. One can then em-
ploy second-order perturbation theory for the growth of the density contrast
δ. Hence, we write δ = δ(1) + δ(2) + . . ., where δ(1) is the density contrast ob-
tained from linear perturbation theory, and δ(2) is the next-order term. This
second-order term is quadratic in the linear density field, δ(2) ∝

(
δ(1)
)2. The

linear density field is proportional to σ8, and the projected density κ ∝ Ωmσ8.
Hence, in the linear regime,

〈
κ2
〉
∝ Ω2

mσ2
8 , where

〈
κ2
〉

shall denote here any
second-order shear estimator. The lowest order contribution to the third-
order statistics is of the form

〈
κ3
〉
∝
(
δ(1)
)2

δ(2) ∝ Ω3
m σ4

8 ,

since the term
(
δ(1)
)3 yields no contribution owing to the assumed Gaussian-

ity of the linear density field. Hence, a skewness statistics of the form
〈
κ3
〉
/
〈
κ2
〉2 ∝ Ω−1

m

will be independent of the normalization σ8, at least in this simplified per-
turbation approach. In more accurate estimates, this is not exactly true; nev-
ertheless, the functional dependencies of the second- and third-order shear
statistics on σ8 and Ωm are different, so that these parameters can be deter-
mined separately.

The shear three-point correlation function. Most of the early stud-
ies on three-point statistics concentrated on the third-order moment of the
surface mass density κ in a circular aperture, 〈κ(θ)〉; however, this is not a
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directly measureable quantity, and therefore useful only for theoretical con-
siderations. As for second-order statistics, one should consider the correlation
functions, which are the quantities that can be obtained best directly from
the data and which are independent of holes and gaps in the data field.
The three-point correlation function (3PCF) of the shear has three indepen-
dent variables (e.g. the sides of a triangle) and 8 components; as was shown
in Schneider & Lombardi (2003), none of these eight components vanishes
owing to parity invariance (as was suspected before – this confusion arises
because little intuition is available on the properties of the 3PCF of a po-
lar). This then implies that the covariance matrix has 6 arguments and 64
components! Of course, this is too hard to handle efficiently, therefore one
must ask which combinations of the components of the 3PCF are most useful
for studying the dark matter distribution. Unfortunately, this is essentially
unknown yet. An additional problem is that the predictions from theory are
less well established than for the second-order statistics.

A further complication stems from a certain degree of arbitrariness on how
to define the 8 components of the 3PCF. For the 2PCF, the vector between
any pair of points defines a natural direction with respect to which tangential
and cross components of the shear are defined; this is no longer true for three
points. On the other hand, the three points of a triangle define a set of centers,
such as the ‘center of mass’, or the center of the in- or circum-circle. After
choosing one of these centers, one can define the two components of the shear
which are then independent of the coordinate frame.

Nevertheless, progress has been achieved. From ray-tracing simulations
through a cosmic matter distribution, the 3PCF of the shear can be de-
termined (Takada & Jain 2003a; see also Zaldarriaga & Scoccimarro 2003;
furthermore, the three-point cosmic shear statistics can also be determined in
the frame of the halo model, see Cooray & Hu 2001; Takada & Jain 2003b),
whereas Schneider & Lombardi (2003) have defined the ‘natural components’
of the shear 3PCF which are most easily related to the bispectrum of the
underlying matter distribution. Let γc(θi) = γt + iγ× = −γ e−2iζi be the
complex shear measured in the frame which is rotated by the angle ζi rela-
tive to the Cartesian frame, so that the real and imaginary parts of γc are the
tangential and cross components of the shear relative to the chosen center of
the triangle (which has to be defined for each triplet of points separately).
Then the natural components are defined as

Γ (0) = 〈γc(θ1) γc(θ2) γc(θ3)〉 ,

Γ (1) = 〈γc∗(θ1) γc(θ2) γc(θ3)〉 , (165)

and correspondingly for Γ (2) and Γ (3). Each of the natural components of the
3PCF constitutes a complex number, which depends just on the three separa-
tions between the points. Special care is required for labelling the points, and
one should follow the rule that they are labeled in a counter-clock direction
around the triangle. If such a unique prescription is not systematically ap-
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plied, confusing and wrong conclusions will be obtained about the behaviour
of the shear 3PCF with respect to parity transformations (as the author has
experienced painfully enough). In Schneider et al. (2004), explicit relations
are derived for the natural components of the shear 3PCF in terms of the bis-
pectrum (that is, the generalization of the power spectrum for the three-point
statistics) of the underlying mass distribution κ.

Third-order aperture statistics. Alternatively, aperture measures can be
defined to measure the third-order statistics. Schneider et al. (1998a) calcu-
lated
〈
M3

ap

〉
(θ) in the frame of the quasi-linear structure evolution model

and showed it to be a strong function of Ωm. Van Waerbeke et al. (2001)
calculated the third-order aperture mass, using a fitting formula of the non-
linear evolution of the dark matter bispectrum obtained by Scoccimarro &
Couchman (2001) and pointed out the strong sensitivity with respect to cos-
mological parameters. Indeed, as mentioned before,

〈
M3

ap

〉
is sensitive only

to the E-modes of the shear field. One might be tempted to use
〈
M3

⊥
〉
(θ) as

a measure for third-order B-mode statistics, but indeed, this quantity van-
ishes owing to parity invariance (Schneider 2003). However,

〈
M2

⊥ Map

〉
is

a measure for the B-modes at the third-order statistical level. Jarvis et al.
(2004) have calculated

〈
M3

ap(θ)
〉

in terms of the shear 3PCF, for the weight
function (110) in the definition of Map. Schneider et al. (2004) have shown
that this relation is most easily expressed in terms of the natural components
of the shear 3PCF. On the other hand, Jarvis et al. (2004) have expressed〈
M3

ap(θ)
〉

in terms of the bispectrum of κ, and as was the case for the aperture
dispersion in relation to the power spectrum of κ, the third-order aperture
mass is a very localized measure of the bispectrum and is sensitive essen-
tially only to modes with three wavevectors with equal magnitudes. For that
reason, Schneider et al. (2004) have generalized the definition of the third-
order aperture measures, correlating the aperture mass of three different sizes,
〈Map(θ1)Map(θ2)Map(θ3)〉. This third-order statistics is again a very local-
ized measure of the bispectrum, but this time with wave vectors of different
magnitude 3i ≈ π/θi, and therefore, by considering the third-order aperture
mass for all combinations of θi, one can probe the full bispectrum. Therefore,
the third-order aperture mass correlator with three independent arguments
(i.e., angular scales) should contain essentially the full third-order statistical
information of the κ-field, since in contrast to the two-point statistics, the
shear 3PCF does not contain information about long-wavelength modes.

Furthermore, the third-order aperture statistics can be expressed directly
in terms of the shear 3PCF through a simple integration, very similar to
the relations (125) for the two-point statistics. Finally, the other three third-
order aperture statistics (e.g., 〈M⊥(θ1)Map(θ2)Map(θ3)〉) can as well be ob-
tained from the natural components of the shear 3PCF. These correlators
are expected to vanish if the shear is solely due to lensing, but intrinsic
alignments of galaxies can lead to finite correlators which include B-modes.
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However, as shown in Schneider (2003), 〈Map(θ1)Map(θ2)M⊥(θ3)〉, as well as
〈M⊥(θ1)M⊥(θ2)M⊥(θ3)〉, are expected to vanish even in the presence of B-
modes, since these two correlators are not invariant with respect to a parity
transformation. Therefore, non-zero results of these two correlators signify
the violation of parity invariance and therefore provide a clean check on the
systematics of the data and their analysis.

First detections. Bernardeau et al. (2002) measured for the first time a
significant third-order shear from the VIRMOS-DESCART survey, employing
a suitably filtered integral over the measured 3PCF (as defined in Bernardeau
et al. 2003). Pen et al. (2003) used the aperture statistics to detect a skewness
in the same data set. The accuracy of these measurements is not sufficient to
derive strong constraints on cosmological parameters, owing to the limited
sky area available. However, with the upcoming large cosmic shear surveys,
the 3PCF will be measured with high accuracy. Determining the 3PCF from
observed galaxy ellipticities cannot be done by straightforwardly considering
any triple of galaxies – there are just too many. Jarvis et al. (2004) and
Zhang & Pen (2003) have developed algorithms for calculating the 3PCF in
an efficient way.

Based on the halo model for the description of the LSS, Takada & Jain
(2003b) studied the dependence of the shear 3PCF on cosmological param-
eters. For relatively large triangles, the 3PCF provides a means to break
the degeneracies of cosmological parameters that are left when using the
second-order statistics only, as argued above. For small triangles, the 3PCF
is dominated by the one-halo term, and therefore primarily probes the mass
profiles of halos. Ho & White (2004) show that the 3PCF on small angular
scales also contains information on the asphericity of dark matter halos. The
full power of third-order statistics is achieved once redshift information on
the source galaxies become available, in which case the combination of the
2PCF and 3PCF provides a sensitive probe on the equation-of-state of the
dark energy (Takada & Jain 2004).

Beyond third order. One might be tempted to look into the properties
of the fourth-order shear statistics (though I’m sure the reader can control
herself in doing this – but see Takada & Jain 2002). OK, the four-point
correlation function has 16 components and depends on 5 variables, not to
mention the corresponding covariance or the redshift dependent fourth-order
correlator. One can consider correlating the aperture mass of four different
angular sizes, but in contrast to the third-order statistics, this is expected
not to contain the full information on the trispectrum (which describes the
fourth-order statistical properties of κ). Perhaps a combination of this fourth-
order aperture mass with the average of the fourth power of the mean shear
in circular apertures will carry most of the information. And how much in-
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formation on cosmological parameters does the fourth-order shear statistics
contain? And even higher orders?

Already the third-order shear statistic is not acccurately predictable from
analytic descriptions of the non-linear evolution of the matter inhomogeneities,
and the situation worsens with even higher order.13 One therefore needs to
refer to detailed ray-tracing simulations. Although they are quite time con-
suming, I do not see a real bottleneck in this aspect: Once a solid and accu-
rate measurement of the three-point correlation function becomes available,
certainly considerable effort will be taken to compare this with numerical
simulations (in particular, since such a measurement is probably a few years
ahead, in which the computer power will increase by significant factors). If
we accept this point, then higher-order statistics can be obtained from these
simulations, and several can be ‘tried out’ on the numerical data such that
they best distinguish between different models. For example, one can con-
sider the full probability distribution p(Map; θ) on a given data set (Kruse &
Schneider 2000; Reblinsky et al 1999; Bernardeau & Valageas 2000; Munshi
et al. 2004). To obtain this from the observational data, one needs to place
apertures on the data field which, as we have argued, is plagued with holes
and gaps in the data. However, we can place the same gaps on the simu-
lated data fields and therefore simulate this effect. Similarly, the numerical
simulations should be used to find good strategies for combining second- and
third-order shear statistics (and potentially higher-order ones) for an opti-
mal distinction between comological model parameters, and, in particular,
the equation-of-state of Dark Energy. Another issue one needs to consider for
third- (and higher-)order cosmic shear measures is that intrinsic clustering of
sources, and the correlation between galaxies and the dark matter distribu-
tion generating the shear shear field has an influence on the expected signal
strength (Bernardeau 1998; Hamana 2001; Hamana et al. 2002). Obviously,
there are still a lot of important studies to be done.

Third-order galaxy-mass correlations. We have shown in Sect. 8 how
galaxy-galaxy lensing can be used to probe the correlation between galax-
ies and the underlying matter distribution. With the detection of third-order
shear statistics already in currently available data sets, one might expect that
also higher-order galaxy-mass correlations can be measured from the same
data. Such correlations would then probe, on large angular scales, the higher-
order biasing parameters of galaxies, and thereby put additional constraints
13 In the limits of small and large angular scales, analytic approximations can be

obtained. For small scales, the highly non-linear regime is often described by the
hierarchical ansatz and hyperextended perturbation theory (see Munshi & Jain
2001 and references therein), whereas on very large scales second-order perturba-
tion theory can be used. Nevertheless, the range of validity of these perturbation
approximations and their accuracy have to be checked with numerical simula-
tions.
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on the formation and evolution of galaxies. Ménard et al. (2003) considered
the correlation between high-redshift QSOs and pairs of foreground galax-
ies, thus generalizing the methods of Sect. 8.4 to third-order statistics. The
galaxy-galaxy-shear correlation, and the galaxy-shear-shear correlations have
been considered by Schneider & Watts (2004). These correlation functions
have been related to the underlying bispectrum of the dark matter and the
third-order bias and correlation functions, and appropriate aperture statistics
have been defined, that are related in a simple way to the bispectra and the
correlation functions.

In fact, integrals of these higher-order correlations have probably been
measured already. As shown in Fig. 50, galaxies in regions of high galaxy
number densities show a stronger, and more extended galaxy-galaxy lensing
signal than more isolated galaxies. Hence there is a correlation between the
mean mass profile around galaxies and the local number density of galaxies,
which is just an integrated galaxy-galaxy-shear correlation. In fact, such a
correlation is only first order in the shear and should therefore be much
easier to measure than the shear 3PCF. Furthermore, the galaxy-shear-shear
correlation seems to be present in the cosmic shear analysis of the COMBO-
17 fields by Brown et al. (2003), where they find a stronger-than-average
cosmic shear signal in the A901 field, and a weaker cosmic shear signal in the
CDFS, which is a field selected because it is rather poor in brighter galaxies.

9.2 Influence of LSS lensing on lensing by clusters and galaxies

The lensing effect of the three-dimensional matter distribution will contam-
inate the lensing measurements of localized objects, such as galaxies and
clusters. Some of the associated effects are mentioned in this section.

Influence of cosmic shear on strong lensing by galaxies. The lensing
effect of foreground and background matter in a strong lensing system will
affect the image positions and flux ratios. As this 3-D lensing effects are not
recognized as such in the lens modelling, a ‘wrong’ lens model will be fitted
to the data, in the sense that the mass model for the lensing galaxy will
try to include these additional lensing effects not associated with the galaxy
itself. In particular, the corresponding predictions for the time delays can be
affected through this effect.

Since the image separation of strong lens systems are less than a few
arcseconds, the lensing effect of the LSS can be well approximated by a linear
mapping across this angular scale. In this case, the effect of the 3-D matter
distribution on the lens model can be studied analytically (e.g., Bar-Kana
1996). The lens equation resulting from the main lens (the galaxy) plus the
linearized inhomogeneities of the LSS is strictly equivalent to the single-plane
gravitational lens equation without these cosmological perturbations, and the
mass distribution of the equivalent single-plane lens can be explicitly derived
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(Schneider 1997). For example, if the main lens is described by elliptical
isopotential curves (i.e., elliptical contours of the deflection potential ψ) plus
external shear, the equivalent single-plane lens will be of the same form. The
orientation of the ellipticity of the lens, as seen by the observer, will be rotated
by the forground LSS by the same angle as the potential of the equivalent lens,
so that no observable misalignment is induced. This equivalence then implies
that the determination of the Hubble constant from time-delay measurements
is affected by the same mass-sheet degeneracy transformation as for a single
plane lens.

LSS effects on the mass determination of clusters. The determination
of mass parameters of a cluster from weak lensing is affected by the inhomo-
geneous foreground and background matter distribution. The effect of local
mass associated with a cluster (e.g., filaments extending from the cluster
along the line-of-sight) will bias the mass determination of clusters high,
since clusters are likely to be located in overdense regions of the LSS, though
this effect is considerably smaller than claimed by Metzler et al. (2001), as
shown by Clowe et al. (2004a).

Hoekstra (2001, 2003) considered the effect of the LSS on the determina-
tion of mass parameters of clusters, using either SIS or NFW models. For the
SIS model, the one parameter characterizing this mass profile (σv) can be
obtained as a linear estimator of the shear. The dispersion of this parameter
is then the sum of the dispersion caused by the intrinsic ellipticity of the
source galaxies and the cosmic shear dispersion. For the NFW model, the
relation between its two parameters (M200, the mass inside the virial radius
r200, and the concentration c) and the shear is not linear, but the effect of
the LSS can still be estimated from Monte-Carlo simulations in which the
cosmic shear is assumed to follow Gaussian statistics with a power spectrum
following the Peacock & Dodds (1996) prescription.

For the SIS model, the effect of the LSS on the determination of σv is
small, provided the cluster is at intermediate redshift (so that most source
galaxies are in the background). The noise caused by the finite ellipticity
in this case is almost always larger than the effect by the LSS. There is an
interesting effect, however, in that the relative contribution of the LSS and
shape noise changes as larger aperture fits to the SIS model are considered:
The larger the field over which the shear is fitted to an SIS model, the larger
becomes the impact of cosmic shear, and this increase compensates for the
reduced shape noise. In effect, cosmic shear and shape noise together put an
upper limit on the accuracy of the determination of σv from shear data. The
same is true for the determination of the mass parameters of the NFW model,
as shown in Fig. 56. The uncertainties of the mass parameters of NFW profiles
are about twice as large as if the effects from the LSS are ignored, whereas
the effect is considerably smaller for the one-parameter model of the SIS. One
should also note that a decrease of the shape noise, which can be obtained by
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using data with a fainter limiting magnitude, yields an increase of the noise
from the LSS, since the fainter galaxies are expected to be at higher redshift
and therefore carry a larger cosmic shear signal. For low-redshift clusters,
these two effects nearly compensate.

Fig. 56. The dispersion of the determination of the mass and concentration of
three NFW halos at redshift zd = 0.3. These parameters were derived by fitting
an NFW shear profile to the shear simulated from an NFW halo with parameters
indicated in the figure and adding shape noise and noise from cosmic shear. The
outer angular scale over which the fit was performed is θmax. Dotted curves show
the effect from shape noise alone, dashed curves show the dispersion from cosmic
shear, and the solid curves contain both effects. Surprisingly, the accuracy of the
NFW parameters does not increase once θmax ∼ 15′ is reached, as for larger radii,
the cosmic shear noise more than compensates for the reduced ellipticity noise.
Another way to express that is that the lensing signal at very large distance from
the halo center is weaker than the rms cosmic shear and therefore does not increase
the signal-to-noise any more (from Hoekstra 2003)

The efficiency and completeness of weak lensing cluster searches.
We take up the brief discussion at the end of Sect. 5.8 about the potential
of deriving a shear-selected sample of galaxy clusters. The first studies of
this question were based on analytical models (e.g., Kruse & Schneider 1999)
or numerical models of isolated clusters (Reblinsky & Bartelmann 1999).
Those studies can of course not account for the effects of lensing by the LSS.
Ray-tracing simulations through N-body generated LSS were carried out by
Reblinsky et al. (1999), White et al. (2002), Hamana et al. (2004), Vale &
White (2003), Hennawi & Spergel (2004) and others. In these cosmological
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simulations, halos were identified based on their 3-D mass distribution. They
were then compared to the properties of the lensing results obtained from ray
tracing, either by considering the (smoothed) surface mass density κ (that
could be obtained from a mass reconstruction from the shear field) or by
studying the aperture mass Map which can be obtained directly from the
shear. In both cases, noise due to the finite intrinsic source ellipticity can be
added.

The two basic quantities that have been investigated in these studies are
completeness and efficiency. Completeness is the fraction of dark matter ha-
los above some mass threshold Mmin that are detected in the weak lensing
data, whereas efficiency is the fraction of significant lensing detections that
correspond to a real halo. Both of these quantities depend on a number of
parameters, like the mass threshold of a halo and the limiting significance
ν of a lensing detection [in the case of the aperture mass, this would corre-
spond to (80)], as well as on the choice of the filter function Q. Hennawi &
Spergel (2003) have pointed out that even without noise (from observations
or intrinsic galaxy ellipticities), the efficiency is limited to about 85% – even
under these idealized condition, the selected sample will be contaminated by
at least 15% of spurious detections, generated by projection effects of the
LSS.

To compare these predictions with observations, the six highest-redshift
EMSS clusters were all detected at high significance with a weak lensing anal-
ysis (Clowe et al. 2000). Clowe et al. (2004b) have studied 20 high-redshift
clusters with weak lensing techniques. These clusters were optically selected
and are expected to be somewhat less massive (and potentially more affected
by foreground galaxies) than the EMSS clusters. Only eight of these 20 clus-
ters are detected with more than 3σ significance, but for none of them does
the SIS fit produce a negative σ2

v . Only for four of these clusters are the
lensing results compatible with no shear signal.

10 Concluding remarks

Weak lensing has become a standard tool in observational cosmology, as we
have learned how to measure the shape of faint galaxy images and to correct
them for distortions in the telescope and camera optics and for PSF effects.
These technical issues are at the very center of any observational weak lens-
ing research. It appears that at present, the accuracy with which shear can
be measured is sufficient for the data available today, in the sense that sta-
tistical uncertainties are likely to be larger than potential inaccuracies in the
measurement of unbiased shear estimates from faint images. This, however,
will change quickly. The upcoming large cosmic shear surveys will greatly re-
duce statistical uncertainties, and then the accuracy of shear measurements
from the data will be the essential limiting factor. Alternatives to KSB have
been developed, but they need to undergo thorough testing before becoming
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a standard tool for observers. It should also be noted that the KSB method
is applied differently by different groups, in particular with regards to the
weighting of galaxies and other details. What is urgently needed is a study in
which different groups apply their version of KSB to the same data set and
compare the results. Furthermore, starting from raw data, the specific data
reduction methods will lead to slightly different coadded images, and shear
measurements on such differently reduced imaged should be compared. These
technical issues will be a central challenge for weak lensing in the upcoming
years.

The ongoing and planned wide-field imaging surveys mentioned at the
end of Sect. 7.7 will allow us to investigate several central questions of cos-
mology. The two aspects that I consider most relevant are the investigation
of the equation-of-state of the Dark Energy and the relation between galaxies
and the underlying dark matter distribution. The former question about the
nature of Dark Energy is arguably the central challenge of modern cosmol-
ogy, and cosmic shear is one of the very few methods how it can be studied
empirically. The relation between dark matter and galaxies is central to our
understanding of how galaxies form and evolve, and galaxy-galaxy lensing is
the only way how this relation can be investigated without a priori assump-
tions.

Essentially all weak lensing studies today have used faint galaxies as
sources, since they form the densest source population currently observable.
The uniqueness of faint optical galaxies will not stay forever, with the cur-
rently planned future instruments. For example, there is a rich literature of
weak lensing of the cosmic microwave background which provides a source
of very accurately known redshift. Weak lensing by the large-scale structure
enhances the power spectrum of the CMB at small angular scales, and the
Planck satellite will be able to measure this effect. In particular, polarization
information will be very useful, since lensing can introduce B-modes in the
CMB polarization. The James Webb Space Telescope, with its large aper-
ture of 6.5 meters and its low temperature and background will increase the
number density of observable faint sources in the near-IR up to 5µm to sev-
eral hundred per square arcminute, many of them at redshifts beyond 3, and
will therefore permit much more detailed weak lensing studies, in particu-
lar of clusters (see Fig. 57; an observation of this huge number of arcs and
multiple images will answer questions about the mass distribution of clusters
that we have yet not even dared to ask). The envisioned next generation ra-
dio telescope Square Kilometer Array will populate the radio sky with very
comparable source density as currently the deepest optical images. Since the
beam (that is, the point-spread function) of this radio interferometer will be
known very accurately, PSF corrections for this instrument will be more reli-
able than for optical telescopes. Furthermore, higher-order correlation of the
shear field with sources in the field will tell us about non-Gaussian properties
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Fig. 57. Simulated image of lensed features in the very central part of the massive
cluster A2218, as observed with the future JWST. For these simulations, the mass
profile of the cluster as constrained from HST observations and detailed modelling
(Kneib et al. 1996) has been used. The number density of (unlensed) sources was
assumed to be 4 × 106deg−2 down to K=29. The redshift distribution assumed is
broad and extends to redshift z ∼ 10 with a median value zmed ∼ 3. The brighter
objects (cluster galaxies and brightest arcs) seen by HST are displayed as contours,
to make the faint galaxy images visible on this limited dynamic range reproduction.
An enormous number of large arcs and arclets are seen; in particular, numerous
radial arcs can be easily detected, which will allow us to determine the ‘core size’
of the cluster mass distribution. Due to the broad redshift distribution of the faint
galaxies, arcs occur at quite a range of angular separations from the cluster center;
this effect will become even stronger for higher-redshift clusters. It should be noted
that this 1 arcminute field does not cover the second mass clump seen with HST;
an JWST image will cover a much larger area, and more strong lensing features
will be found which can then be combined with the weak lensing analysis of such a
cluster. For this simulation, a pixel size of 0.′′06 was used; the JWST sampling will
be better by a factor of 2 (from Schneider & Kneib 1998)
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of galaxy-matter correlations and biasing, and therefore provide important
input into models of galaxy formation and evolution.
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